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A MODERN A ROACH TO CERTAI ALGEBRAIC TO IC 

by 

Russell A. Duer 

( n .Abstract) 

The purpose on this paper is to incorporate in 

textbook form, notes and metnods tat t Ge author has 

used for the past three years on an experimental basis. 

Set terminology is introduced and applied to the 

development of the number system through the set of real 

numbers. Rigorous proofs are used in developing t he 

arithmetic of the various sets of numbers. 

~ethods for solving equations and inequalities 

are discussed in set terminology. Graphs of solution 

sets of equations and inequalities are displayed, and 

t he methods of plotting solution sets a~e discussed. 

Conclusions concerning t he success of applying t he 

material submitted in this thesis are presented in the form 

of observations that the writer has made during his experi-

mentation with the material in the classroom. 
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INTRODUCTION -

The purpose of this paper is to organize notes and 

elaborate on methods that the writer has used on an experi-

mental basis tor the past three years in introductory 

algebra. The material included in the body of t his t hesis 

is intended ae a supplement to a traditional algebra text. 

The approach to the use of signed numbers presented in this 

paper is somewhat unorthodox in high school mathematics, but 

it is the opinion of this writer that an abstract approach 

to the rules of operation with s igned numbers is as easily 

understood by most students as an approach using a mathe-

matical model. 

One purpose of this work is to demonstrate the use of 

mathematical proofs in algebra. The second chapter of the 

thesis is devoted largely to proofs, and some of these 

proofs are left to the student as exercises. It is the 

opinion of this writer that the sooner students learn to 

support mathematical statements with accepted reasons, t he 

taster will be their progress in the field of mathematics. 

No attempt is made to define all the technical 

terms used in this paper, but the student should already 

be familiar with most of them. An effort has been made 

to define any new term that 1s not usually used in elemen-

tary arithmetic. 



Rigorous proofs or the laws of operation and many 

other theorems have been omitted purposely at this time. 

It seems to this writer that it is better to postulate many 

of the things that may be proved in higher mathematics. 

Many of the terms of set theory are used throughout 

the thesis, but most of the algebra of sets and much of the 

material used in studying sets has been omitted. The 

writer has tried to use set notation wherever possible, but 

set terminology has been introduced and used only where 

that particular terminology fitted the needs of the writer 

and students. 

Exercises are included throughout the text, but 

these are only speeimen exercises. In actual practice 

many more exercises would be needed. 

The material in this work does not parallel any text 

book, but by the use of this material in the beginning of 

an algebra course, the chapters in he traditional text 

on signed numbers, and the solution of simple equations can 

be omitted. 

The writer does not consider the material in this 

thesis to be easily understood by a student wit hout con-

siderable explanation by the teacher. It is submitted for 

the purpose of complementing the work of the teacher. 



CHAPTER I 

DEFINITIONS AND PROPERTIES 

Sets. Usually "set" is not defined mathematically, 

however, the idea of "set" is familiar to the student. The 

student is familiar with sets of dishes, sets of golf clubs, 

sets of checkers and other sets found in and around the 

home. It can be said that a set is a collection of objects 

or elements whose membership in the set may be determined 

either by naming each element in the set or by prescribing 

a condition that will determine whether the element is in 

the set or not. Listing the names of each member in the 

set is called tabulation. For example, a set can be desig-

nated by listing the name of each person in an algebra 

class and enclosing the names in brackets, or t he same set 

could be formed by enclosing a defining property in brackets 

and agreeing that the persons havin that property and only 

those persons are members of the algebra class. 

A set consisting of tbree whole numbers is indicated 

in the following manner: A = f 1,2,3}. It is read 11 A is the 

set containing the elements 1,2,3." The order of the ele-

ments in the set is not important. The set B = [ 3,1,2J is 

equal to set A since the elements in A are the same aa t he 

elements in B. When this condition exists, that is, when 

for each element in one set there exists an identical 

element 1n a second set, and for each element in the second 



set there exists an identical element in the first, then 

the two sets are equal • 

.'.!'.!!! Set Builder. For the sake of convenience it is 

often desirable to express the conditions determining 

membership in the set as a statement enclosed in braces. 

To do this mathematicians often employ what is called the 

set builder. The set builder is written 1n this manner: 

2 

A = £ x / F(x) J. It is read, 11 A 1s the set of all x such 

that x meets a certain condit1on11 • The set of all possible 

values from which x may be selected is called the universe 

of the set. The following are examples: 

(a) B = f x/xJ is a whole number between 2 and 7 J 
read, "Bis the set of all x such that xis a 

whole number between 2 and 7 11
• In this case 

(b) 

the universe is the set of whole numbers 

t l,2,3,4,5,6,7,8J . Another way to write the 

same set would be: B = [3,4,5,6]. 

C = f x J x >2 , read, II C is the set of all x such 

that x is a whole number greater than 2". 

(Note: The symbol> is read "greater than". 

The symbol < is read "less than".) The 

universe is {1,2,3,4, •• • J. This set 

could also be written: C = l 3,4,5, ••• } • 

(Note that the three dots indicate tbat the 

sequence continues indefinitely). 



1. 

2 . 

3. 

4. 

s. 

EXERCISES 

Write the set M, whose elements are the members of 
your family. 

Write the set G, whose elements are the girls in 
your algebra class. 

Write the following set in set builder notation: 
N = [1,3,5,7, ••• J • 
Write the following set in set builder notation: 
R = [ 8 , 9 , 10 j . 
Write the following set by tabulation if the universe 
is [1,2,3,4,5,6,7,8,9,10} S = fx /2<x~9] . 

3 

Subsets. A set A is a subset of set B if each ele-

ment of A is also an element of B. B would be called the 

universal!!!• Subsets with one element are called unit 

!.!1! and the set which contains no elements is called the 

empty lli· A subset of the universal set that does not 

contain all of the elements of the universal set is a 

proper subset. The subset that is equal to the universal 

set is called the improper subset. In listing all of the 

subsets of a given set the empty set and the improper 

subset must be included. The empty set is indicated by f} 
or by¢. The subsets of A= [ a,b,c l are {a} , l b] , tc! , 

fa,bJ, fa,c}, [ b,c}, [ a,b,cJ and ! 1. 
EXERCISES 

1. List all of the subsets of A= fa,b,c,d} . 

2. Suppose that three students, s1 , s 2, s3 , and their 
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teacher, t, plan a trip to a convention. Show the ways 
committees of students can be formed to be responsible 
for making hotel reservations. 

The set Qt natural numbers. The student will recall 

that his first introduction to mathematics was learning to 

count. All numbers used to count are members of the set 

of natural or counting numbers. This set ean be indicated 

by N = £1,2,3,4, ••• j . This set is called an infinite 

.!.!,1, since there is no last element in the set. The symbol 

is read, "is identical to". 

Properties or natural numbers. The properties of 

natural numbers are most important in understanding the 

material that follows. The first property to examine is 

closure. A set is closed under a particular operation if 

the result of performing the operation on members of the 

set is also a member of the set. Thus, if two elements 

are added together, the sum is a member of the set if the 

set is closed under addition. If any two elements are sub-

tracted, the difference is an element of the set if the set 

is closed under subtraction. As the student will discover, 

the set of natural numbers is closed under the operation of 

addition and multiplication, but not under subtraction or 

division. 

EXERCISES 

1. Given the set of natural numbers, show that the set is 
not closed for subtraction and division. 



2. Is the set of all natural odd numbers closed for 
addition? Explain. 

3. Is the set of all natural even numbers closed for 
addition? Explain. 

4. Is the set of all odd numbers closed for multipli-
cation? Explain. 

5. Is the set of all even numbers closed for multipl i-
cation? Explain. 

6. Is the set of natural numbers less than 10 closed 
for any operation? Explain. 

7. Is the set of all odd numbers that are not multiples 
of 5 closed under addition? Under multiplication? 

Fundamental Properties of Operation 

5 

If a is an element of the set of natural numbers, N, 

and bis also an element of N, then a+ b = b + a. This is 

t he commutative property Q1 addition. This simply states 

that order of adding two natural numbers is of no importance, 

the result is the same regardless of order. Symbolically, 

we could write the above property a s follows: If a € N and 

b E: N then a + b = b + a. .s, is read 111§. !!1 element of 11
• 

If a € N' b € N and C E N then ( a + b) + C = a + ( b + C ) • 

This is the associative property of addition. 

Thus, 

(2 + 3) + 4 = 2 + (3 + 4). 

The parentheses indicate that the quantities contained within 

them are to be treated as a single quantity. Thus, combining 

the 2 and 3 gives 5 and adding 5 to 4 gives 9. On the right, 
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2 plus the sum of 3 and 4 is the same as 2 plus 7 which 

also yields 9. The student should note the necessity of 

using parentheses, because as the student will recall, 

he learned to add numbers two at a time. In fact, addition 

is defined for two numbers at a time. Thus, if more t han 

two numbers are to be added, they must be paired before t he 

addition pan be performed. 

If a ~N and b Ea N then a •b = b •a. (The dot between 

the letters is a symbol for multiplication and is read 

"times".) This is the commutative propert y of multiplica-

tion. Thus 3·4 = 4 ·3. ~his property simply states t hat 

the order of multiplying two elements does not affect t he 

result. 

If a E. N, b E: N and c ~ N, then (a• b) • c =a • (b •c). 

This is called the associative property of multiplication. 

As in addition, multiplication is define d for only two 

numbers at a time, thus the parentheses are necessary to 

pair the numbers so that t hey can be multiplied. It s hould 

be noted at this time that subtraction and division are also 

defined for only 2 numbers at a time. When an operation is 

defined for only two numbers at a time, the operation is 

called a binar;y o:eeration. 

If a E N, b c N and c <: N, t hen a , (b + c) = a ·b + a•c. 

This 1s called the distributive property of multiplication 

addition. This property states that multiplying the 



7 
sum of two numbers by a number yields the same result as 

multiplying the number times each of the numbers to be 

added, then adding the results. 

Thus, 

2 • ( 3 + 5) = 2 • 8 = 16 

and 

2 • (3 + 5) = 2 •3 + 2 ·5 = 6 + 10 = 16 

Cancellation properties. If a, b,c c N and a + c = 

b + c, then a= b. This is called the cancellation property 

2.f. addition. Similarly, if ac = be, then a= b. This is 

called the cancellation property 52! multiplication. 

The commutative properties of addition and multipli-

cation, the associative properties of addition and multipli-

cation and the distributive properties of addition over 

multiplication are collectively called the fundamental proper-

of operation. 

Symbols of inclusion. In the associative properties 

above and in the distributive property, parentheses were 

used for grouping numbers. Symbols used for grouping are 

called sJmbols of inclusion and include parentheses, (), 

brackets, [ ] , braces, l ! and the bar, - . It is sometimes 

necessary to use more than one symbol of inclusion since one 

symbol of inclusion may be contained within another. 
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xamples: 

( a ) ( 2 + 3 ) + [ ( 3 + 5 ) + 8 J 
(b) B 1+2) + (3+2)] + [[(4+1) + (5+6)] + 

( 6 + 2) 

( C) 3 • [ , 5 + 6) + ( 8 + 3 )] 

In s t udying t ne above examples t he student should 

see that tne numbers are paired so t ha t t he indicated oper-

ations can be performed. 

In example (a), 

( 2 + 3) + [ , 3 + 5) + 8] = 5 + fo + 8] = 5 + 16 = 21. 

In example ( b), 

[(1 + 2) + (3 + 2il + f r ,4 + 1) + ,s + 6)J + (6 + 2>1 
= [3 + s] + l [s + 11] + e1 
= s + ! 16 + si = s + 24 = 32. 

In example (c), 

3 • [ ,s + 6) + , s + 3 )j = 3 • 11 + 11 1 = 3 • 22 = 66. 

The bar is not used as often as other symbols of 

inclusion except when division is indicated. In algebra, 

division is customarily s hown by writing a fraction. Thus, 

a -;- bis written a/b. 2 + 4 means the sum of 2 and 4 is 
3 + 1 

divided by the sum of 3 and 1. Here t he bar serves two 

purposes; one to show division, and one to show that 2 + 4 

and also 3 + 1 are to be treated as single quantities. 

After the student becomes familiar with handling 

grouping of numbers for computaticn, the symbols of inclusion 



are freqaently omitted. Thus (a+ b) + c is frequently 

written a+ b + c. But the student must be aware that be-

fore the numbers can be combined there must be at least a 

"mental grouping", so that a+ b + c =(a+ b) + c or 

a+ b + c =a+ (b + c). Similarly (a ·b) • c = a•(b · c) may 

be written a · b •c. 

EXERCISES 

1. Place symbols of inclusion in the following so that 

2. 

3. 

the operations can be performed. 

a. l + 2 + 3 + 4 + 5 + 6 

b. 3•2·5 ·6 

c. 3 ·1 + 4• 2 + 5 ·6 

d. 4 + 3 + 7 + 8 + 6 + 9 + 7 
Find the value of each of. the parts of exercise 1. 

Show that the associative property of addition holds 
for the following~ [ (2 + 3) + (4 + 6)J + (8 + 1) = 
,( 2 + 3) + [( 4 + 6) + (8 + l)J . 

9 

4. Apply the distributive property to each of the following: 

a. 2 1 (a + 2 b) = 

b. 3 , x + 4•x = 

5. Show by using the fundamental properties that: 

a. a •(b + c) = C• a + a •b 

b. a •(b c) = c • (a b) 

6. State all properties involved in changing the left side 
of the following statements to the right side. 

a. 2 •(3 •y) = 6y 
b. 2 , (a + 1) = (1 + a) 1 2 
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4 x + 5 = 17, [ 3J is the solution set, since 4•3 + 5 = 17 

is a true sentence . 

A sentence like 5 + x > 7 is called an ineguali ty. 

A study of the open sentence shows that any value of x 

greater than 2 makes this open sentence a true statement. 

Then the solution set from the set of natural numbers is 

X: £3,4,5, ••• I • 
EXERCISES 

Find the solution sets of each of the following. The solu-
tion set must be a subset of the set of natural numbers. 
Hint: The solution set may be the empty set. 

1. 3 X + 4 = 10 

2. X + X + 2 = 4 

3. X + 2 < 10 

4. X - 6 = 4 

5. 6 - 3 X = 12 

6. X + 1 < 1 

defined. Consider the open sentence x + 5 = 5. 

If N = [ 1,2,3, •• • 1 there can be no solution in N. When 

the mathematician is faced with a problem for which there 1s 

no solution, he can accept the fact that no solution exists, 

or he can make a definition so that a solution will exist. 

Rather than accept a case having no solution, it is preferable 

to define a new set which will contain the element or elements 
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needed to give the desired non-empty solution set. Therefore, 

the following definition is given: 

There exists an element,~, such that when zero 
is added to any element in N the sum is the same 
element. Symbolically, b + 0 = b. 

A new set is now defined; Z = ! o,1,2,3, . l . It 

should be noted immediately that the set, N is a subset of 

z. This fact may be written N C Z, and read, "N is a subset 

of Z". 

Z is defined so that all of the fundamental proper-

ties of operation of N will still hold for Z with the ex-

ception of the cancellation property of multiplication. In 

the set, Z, the cancellation property of multiplication can 

be stated, if ac = be than a= b providing c is different 

from zero. (written c IO). The necessity of this pro-

vision follows from the fact that zero times any number is 

zero. The proof of this statement follows later in this 

chapter. The student can see that 2·0 = 3·0 is true, but 

this does not imply that 2 = 3. So, for the set Zand all 

subsequent sets, the provision that c IO must be made in 

connection with the cancellation property. From the defini-

tion of o, a+ O = a, but the commutative property of addi-

tion is required to hold, therefore, a+ 0 = 0 +a= a. 

The new element, o, is called the additive identity since 

adding Oto any element 1n the set does not change the value 

of the element. It will be agreed that O + O = o. 
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It is necessary to check the new set for closure 

under addition and multiplication. It has been shown that 

O is the additive identity, hence, the set is closed under 

addition. 

In checking multiplication, the only possible c hange 

would come about by multiplying by zero. Subtraction of 

natural numbers makes it evident that b + 0 =bis just 

another way of writing b - b = o. So to investigate the 

product of zero and any element, a, the product can be 

written, a •O, but replacing o with b - b, a , o = a • (b - b). 

By the distributive property, a • (b - b) = a • b - a •b and by 

the closure property, a •b e N. But a natural number sub-

tracted from itself 1s zero by our definition, hence 

a ~b - a •b = O, and this completes the proof that a •O = O. 

By the commutative property of multiplication it follows 

that O·a = o. 
Subtraction. Subtraction is defined as follows: 

a - b = c if b + c = a where a, b, care elements of N. 

Thus, 6 - 2 = 4 if 4 + 2 = 6. Consider the exercise in 

the previous section, 6 - 3 x = 12. If the solution set is 

required to be a subset of the set Z, then the solution set 

must be the empty set, since, applying the definition of 

subtraction, 6 = 12 + 3 ·x, and there is no element in Z that 

can be multiplied by 3 and added to 12 to give 6. Clearly, 

the set Z is not closed for subtraction. In order to have 



a non-empty solution set for the above example, it is 

necessary to define a new set that will be closed for 

subtraction. 

14 

The integers. A new set will now be defined as 

follows: There exists a set N, such that for every element 

a in N there corresponds an element i in N such that 

a + a = o. The new set is indicated by N = [ • •• 4,3,2,1i . 
This set is an infinite set since it has no first element. 

The numbers in N will be called "barred numberstt. 

When two sets of elements are combined to form a new 

set which contains as element all the elements of t he origi-

nal sets, the sets are said to be united. If A is one set 

and B is the other then AU B (read A union B) contains all 

of the elements which belong to A or B or to bot h A and B. 

If we unite sets N and Z, (N U Z), t hen t he new set, 

(N U Z), will be denoted by I = { •• • 3,2,l,O,l,2,3 ••. j . 
This set 1s called the set of integers. 

Operations with the set of integers. It will be 

required, by definition, that all the fundamental proper-

ties of operation with the natural numbers and zero hold 

for the new set. Before a check can be made for closure, 

an investigation of the properties of the arithmetic of I 

must be made. To make the arithmetic of I meaningful it 

must be developed in terms of the elements of Z with which 

the student is familiar. 
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natural number, and by definition (b - a)+ (b - a)= O. 

Then 

a-b=a+b 

=(a+ b) + O =(a+ b) + (b - a)+ (b - a) 

= [ (a + b) + (b - a)] + (b - a) associative property 
of addition 

= [.a + (b + b) - a] + (b - a) 

= [ a+ O - a] + (b - a) 

= (a - a)+ b - a 

= 0 + b - a -= b - a 

associative property 
of addition 

definition of zero 

definition of zero 

definition of zero 

definition of zero 

Therefore , in the case of a ~ b> a - b = a + b = b - a and by 

commutative property of addition a - b =a+ b = b +a= -b - a if a <. b. 

Examples: 

(a) 3 + 2 = (3 - 2) = 1 

(b) 4 + 5 = (5 - 4) = I 
( C) 6 + 2 = (6 - 2) = 4 

(d} 3 + 3 = 0 

(e) 5 + 5 = 0 

The proofs given above establish the rules for adding 

the elements of set I and enable the student to discover 

that I is closed for addition. 



CHAPTER II 

THE SET OF INTEGERS 

The purpose of this chapter is to derive a new set 

of numbers, starting with the familiar set of natu~al num-

bers,which will be closed under the operations of addition, 

subtraction and multiplication. 

Equations. An equation is a sentence which states 

that two expressions represent the same number and is gener-

ally expressed in mathematical symbols. a+ b = c could be 

expressed in word.a by: 11 The sum of two numbers, a and b, 

is equal to another number, o". 

Open sentences. If an equation is written so that 

some symbol such as a, b, c, x or y takes the place of a 

number or set of numbers, then the equation may be either 

true or false. Thus 5 + x = 9 is an equation. x holds the 

place for some number or numbers t hat will make t his state-

ment true or false. For example, if xis replaced by 6, 

the statement is false, but if xis replaced by 4, t he 

statement is true. Such an equation can properly be called 

an open sentence. When the set of numbers that will make 

the equation true is formed, the set is called t he solution 

,ill for the open sentence. The solution set is sometimes 

called the truth set. In the equation, 5 + x = 9, it can 

readily be seen that l 4J is the solution set, since only 

4 will make the open sentence true. In the open sentence 



First the rules for addition will be considered. 

What is the result of adding a+ b? If a+ bis added to 

a+ b, then, by the associative property of addition, 
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(a+ b) +(a+ b) =a+ (b +a)+ b. This in turn is equal 

to a+ (a+ b) +busing the commutative property of addi-

tion, which equals (a+ a)+ (b + b) using the associative 

property of addition again. But by the definition of zero 

a+ a= 0 and b + b = o, hence, (a+ b) +(a+ b) = 0 + 0 = 0 

therefore, a+ b =(a+ b). This sta tes simply that the sum 

of two barred numbers is equal to the bar of the sum of two 

natural numbers. 

Examples: 

(a) 2 + 3 = 2 + 3 = 5 

( b) 7 + 4 = 7 + 4 = 11 

What is the result of adding a natural number to a 

barred number? Start with an open sentence a+ b = x, then 

add b to a+ band to x to obtain (a+ b) + b = x + b. Then 

a+ (b + b) = x + b by the associative property of addition. 

But b + b = 0 by the definition of zero. Hence a+ O = 

x + b or a= x + b. But if a= x + b then x = a - b by 

the definition of subtraction. Hence a+ b = a - b. If 

a > b then a - bis a natural number and there 1s no problem. 

If a = b, then a - b = O, but if a ~ b then the value of 

a - b must be established. If a <.. b then b - a must be a 
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EXERCISES 

1. Add the following: 

a. (2 + 3) + (5 + 6) 

b. (2 + 3) + (5 + 2) 
c. (4 + 2) + 7 

d. 6 + 3 + 8 + 2 

e. 8 + 6 + 7 + 8 

2. Rewrite the following using barred numbers: 

a. X - y c. 3 - 7 

b. 7 - 3 d. 4 - 5 

Closure for subtraction. To discover the rules for 

subtraction in I, the results of subtracting b from a, 

b from a and b from a and b from a in terms of natural 

numbers a and b must be investigated. 

What is the result of subtracting b from a where 

a and bare any natural numbers? It will be recalled that 

in the set of natural numbers, subtraction was only possible 

1f a > b. Here, no restriction is made on a and b, but three 

cases exist. One of the following must be true: a -' b, a = b 

or a > b. If a > b, then the rules for subtracting natural 

numbers will hold, and if a= b, a - b = a - a= O. The 

case that must be investigated is the one in which a i.. b. If 

a <. b, then b .> a, therefore (b - a) is a natural number. By 

the definition of zero, if (b - a) is a natural number then 
(b - a)+ (b - a)= O. 
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Let 

a - b = (a - b) + 0 

then replacing O with (b - a)+ (b - a) 

a - b = ( a - b) + [( b - a) + ( b - a )j 
= [(a - b) + (b - a)] + (b7a) by the associa-

tive property 
of addition 

= [(b - a) + (a - b)] + b - a 

= f b - a) + aJ - b J + b - a 

by the commuta-
tive property 
of addition 

by the associa-
tive property 
of addition 

But it will be agreed that a - a= - a+ a= O 

therefore, fb - a+ a] = b + O = b 

Hence, 

a - b = (b - b) + (b - a) 

but b - b = 0 

the ref ore, when a <. b 

a - b = b - a 

To investigate the results of a - b, 

let 

a - b = a - b + O = O + a - b 

= (b + b) + (a - b) 

(b + a) 
,... 

= b + - b 

= b + (a+ b) - b 

= b + a + ( b - b) 

by the definition of 
zero, 

by the associative 
property of addition 

by the commutative 
property of addition 

by the associative 
property of addition 



= b + a + 0 

therefore, 

a - b = a + b 

from the definition of zero, 

by the commutative property 
of addition. 
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The preceding proof establishes the result that subtracting 

a barred number from a natural number gives the~ of !Q! 
natural number and the natural number corresponding to ,1h! 

barred number. 
-If bis to be subtracted from a, 

then, 
-a - b = (a - b) + 0 = 0 + 

= (b + b) + (a - b) 

= (b + b) + (i - b) 

= b + (b + a) - b 

= b +{a+ b) - b 

(a - b), 

= {b +a)+ (b - b) = b +a+ 0 = b + a 

Therefore 

a - b = a + b 

and finally a - b =a+ b 

The reasons for the various steps of the above proof 

will be left to the student as an exercise. 

,TI'!! result of subtracting~ natural number from~ 

barred number is the bar of the !.!:!!B of the natural number, 

£,~the natural number corresponding!£~-



The result of subtracting a barred number from 

another barred number, remains to be established. 

Let 

a - b = (i - b) + 0 = 0 + (a - t>} 
= (b + t>) + (a - b) 
= b + (b + a) - b 

= b + (a + b) - b 

= (b + a) + (b - b) 

= b+a+ 0 

= a + b 
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The reasons for the above proof will be left to the 

student as an exercise. 

The result of subtracting! barred number from! 

barred number is equal to~™ of the bar of 1.h!. first 

and the natural number correspondinp; to the second barred 

number. The method of adding b rred numbers and natural 

numbers has already been established. 

The student should see that the results of subtrac-

ting in the set of integers is always defined in terms of 

addition, therefore, it will be convenient to always think 

of combining numbers in terms of addition and the term 

"subtraction" will not be used in general. 

To summarize the rules of subtraction, let a be 

called the additive inverse of a, and a be called the addi-

tive inverse of a. subtraction .£!!:E always be defined 
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Closure for multiplication. To investigate closure 

under multiplication, it is necessary to find the results of 

each of the following: a · b, a •b, a ·b, a•b. The first case 

is simply the product of two natural numbers, and it is 

known that the product of two natural numbers yields a 

natural number. 

When there is no danger of confusion, the dot indi-

cating multiplication may be omitted. Thus, a • b may be 

written ab. a • (b + c) may be written a(b + c) and (a+ b) • 

(c + d) may be written (a+ b) (b + c). Obviously, the dot 

cannot be omitted when two numerals are multiplied, since 

2 •2 is not equal to 22. The dot may be omitted when a 

numeral is multiplied by a letter which represents another 

number. For example, 2 •a can be written 2a. 

Before developing the properties of multiplication 

for the remaining cases, it is necessary to prove that 

b •O = O. To do this, let ab= (a+ O) • b. Then applying 

the distributive property, ab= ab+ O•b, and applying the 

cancellation property of addition, 0 = Ob, but since the 

commutative property of multiplication is to hold, 0 = O•b = 

b •O. It will be agreed that O•O = O. 

Having shown that O times any natural number is O, 

it can be noted that if b were replaced with b, the same 

procedure could be used to show that O•b = o, hence Ox= 0 

where xis any integer. 
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It is now easy to develop t he results in the remain-

ing cases. Since O = Oa, it follows that O = (b + b) • a. 

Applying the distributive property, it can be seen t hat 
-O = ba + ba, but from the definition of O, o = ba + ba. 

Replacing O wit h ba + ba, t he equation become s ba + ba = 

ba + ba, hence, applying t he cancellation property of addi-

tion, ba = ba. Similarly, it can be shown t hat ab= ab, 

therefore, it can be concluded t hat t he product of a 

natural number by a barred number is equal to t he bar of 

t he product of the natural number and t he natural number 

corresponding to the barred number. Thus, 4 • 2 = 4 • 2 

and 5 • 3 = 5 • 3 • 

It remains to inves'tigate the case of t he product 

of two barred numbers. 

Let 

ab= ab+ O, then a b = ab+ aO, 

since it has been s hown that O times any integer is O. 

Then replacing O with b + b, t he equation becomes ab= 

ab+ a(b + b). Applying t he distributive property, which 

has been assumed for all integers, 

ab = ab + (ab + a • b) • 

Using the associative property of addition, 

ab = (ab + ab) + a. b 
In the previous section, it was s hown that ab+ ab= 

ab+ ab= O. 
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Therefore, 

ab= 0 + a•b or ab= a•b. 
In words, this says that the product of any two barred 

numbers gives a product equal to the product of the natural 

numbers corresponding to the barred numbers. 

Since it has been demonstrated that the product of 

two elements in set I gives an element belonging to set I, 

it can be said that the set of integers is closed for 

multiplication 

EXERCISES 

Using the rules developed for the equations with integers, 
find the following: 

1. 3 • 4 6. 5(7 + 6) 

2. 3, 6 7. (8 + 7) (9 + 13) 
- - (6 - 9) (10 + 3. 7 · 4 8. 16) 

4. 6·5 9. (43 + 21) (4 + 13) 
- -

[6(8 + 1~ + 3 ( 4(6 + 12)] 3 5. 6 ·7 10. 

[6(5 - 1fl 
Division of integers. It has been shown that the set 

of integers is closed for addition, subtraction and multipli-

cation. Can it be shown that the set is closed for division? 

The question means, ttcan one divide any integer by any other 

non-zero integer and be always assured that the quotient is 

an integer?" If the student can think of a single example 
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where one integer is divided by another and the result 1s 

something other than an integer, then the set is not closed 

for division. Try, for example, dividing 3 by 4. Assume 

that the result is x. Then 4 •x should equal 3, but no 

integer x exists for which this is true. Hence, the set 

of integers is not closed for division. 

Negative integers. In the section on subtraction, 

it was pointed out to the student that subtraction is de-

fined in terms of addition. Since there is no need to use 

the word "subtraction", it follows that there is no need 

to use the minus sign to mean subtraction. Since the minus 

sign is not to be used to indicate subtraction, it may be 

put to use to indicate something else. 

Let the student imagine that he could push the bar 

from the top of one of the barred integers so that it falls 

in front of the integer. Then i would become -a. The 
11 -a" can then be called a negative integer. Since this is 

the same integer as a, the rules developed for barred 

numbers apply for negative numbers. Also, the natural 

numbers then are called positive integers. 

The following examples illustrate how the barred 

numbers can be written as negative numbers. 

Examples: 

(a) a+ b =(-a)+ (-b) 



(b) 

(c) 

-a+ b =(-a)+ b 
-a+ b =a+ (-b) 

In order to conserve as much writing as possible, 
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the plus sign in examples a and c could be omitted. This 

1s, (-a)+ (-b) can be written -a -b, but the student should 

recall the meaning of the expression. It should be thought 

of as, "negative a plus negative b". 

EXERCISES 

Write the following as negative numbers and evaluate each of 
the following expressions: 

-l. 3 + 4 

2. 5 + 4 + 6 

3. 7 + 8 + 9 + 10 

4+ - -4. 6 + 8 

Find the value of each of the following: 

5. - 6 + 8 - 7 - 8 

6. - 5 - 7 - 8 - 4 

7. 8 - 9 - 3 - 7 
8. (b - 10) + (9 - 8) 



CHAPTER III 

THE RATIONAL NUMBERS 

The discussion in the previous chapter demonstrated 

that the set of integers was not closed for division. Con-

sider the open sentence, 5x = 4. What is the solution set 

for this open sentence? If the sol~tion set 1s required 

to be a subset of the set of integers, then it must be¢ 

since no integer multiplied by 5 gives 4. In order to 

have a solution to the open sentence, it is necessary to 

define a new set such that a non-empty subset of the new 

set will be the solution set. 

The set of rational numbers. A rational number is 

defined to be any number that can be expressed in the form 

E• where a and bare integers, except b can not be zero. 

The set of rational numbers is t he set of all elements of 

the form E. This set, desig ated R1 , will have t he follow-

ing defined properties: 

1. (i }b = a 

2. (i){~} = 1 provided a~ 0 and b o. 

If Eis an element of R1 , then~ is called the 

multiplicative inverse of a - b. 
As before it will be required by definition that 

the fundamental properties of operation hold for R1 • 



28 
It can be shown that the set of rationals is closed 

for addition, subtraction, multiplication and division. 

Addition in the set of rationals is defined as 

follows: 

a/b + c/d =ad+ be, where bi O and di O 
bd 

This definition conforms to the definition of set R1 • 

a,b,c and dare integers, and since the set of integers 

is closed for multiplication, then ad, be, bd are integers, 

and from the closure property of addition in the set of 

integers ad+ be is an integer, hence, ad+ be is an 
bd 

integer over an integer which conforms to the definition 

of a rational number. Therefore, the set of rationale is 

closed for addition. The properties of subtraction have 

been defined in terms of addition, so R1 is closed for 

subtraction as well as addit on. 

Multiplication of rational numbers if defined as 

follows: 

(t )(~)= ac 
bd if b # 0 and di 0 

Since a, b, c and dare integers, ac and bd are integers 

by the closure property of multiplication in the set of 

integers. The product of (i ) (~) yields an integer over an 

integer which conforms to the definition of a rational 

number. Therefore, the set of rationals is closed for 

multiplication. 
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Division is defined as follows: 

a; b = c (usually written a/b = c) 

if and only if a= be where b Io. 
The student can see the necessity of the provision that 

b IO, since it has been proved that zero times any number 

is zero. Consider the following open sentence: 

4/0: X 

Applying the definition of division, then 

4 = O•x. 

But it has been shown that O•x = O, hence, a non-empty 

solution set for x which makes Q, x = 4 does not exist. 

Therefore, division BI Q is not defined. 

By tbe definition of division, it can be seen that 

if a 1s divided by b, the quotient is written~. This is 
b 

an element of R1 , hence, R1 is closed for division whenever 

a and bare integers and bi o. 
Ratio. When one number is divided by another num-

ber, the quotient is called a ratio. A ratio is usually 

written as a fraction, such as a/b, and is read, "the ratio 

of a to b". It may also be written a:b and is read in the 

same manner. In a ratio both a and b must be expressed 1n 

the same units. Thus the ratio of one foot to a yard could 

be written 12/36 or 1/3. 

Equivalence classes. In the set of rationals, a 

particular element can be expressed in many different ways. 
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For instance, the number 4 can be expressed as 4/1, 8/2, 

12/3, 16/4 ••• , tbe fraction 1/2 can be expressed as 

2/4, 3/6, 4/8, 6/12 •••• These sets of numbers,wh1ch 

can be used to express a particular element in R1 are called 

equivalence classes. 

EXERCISES 

1. Write an equivalence class for "5". 

2. What is the ratio of 1 pint to 1 gallon? 

3. Write an equivalence class for 2/3. 
4. Using the ' rule for adding rational numbers, add 3/5 

and 2/7. 

5. Add: - 5/8 + 6/11 

6. Add: 5/8 - 3/13 

7. Add: (3/5 + 6/7) + (2/3 + 2/5) 

Repeating decimals. When a number is expressed as 

the ratio of two numbers, the ratio can be changed to a 

decimal such that a digit or a group of digits in the 

decimal part will repeat. For example, 1/3 = .3333 . . . . 
Here the digit three repeats. 1/4 = .25000. 

the zero repeats. 1/7 = .142857142857 •••• 

Here 

Notice 

that the group of digits 142857 will continue to repeat 

indefinitely. 

In higher mathematics it is shown that any repeating 

-



decimal can be expressed as a ratio of two numbers, and 

hence, it is a rational number. 

EXERCISES 
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Change the following rational numbers to repeating decimals: 

1. 1/8 3. 4/7 5. 3/13 

2. 3/5 4. 1/9 

What rational number do the following repeating decimals 
represent? 

6. .666 . . . 
7. .625 . • • 

8. • 87500 . 
9. .16666 . . . 

10. • 375000 . . . 
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CHAPTER IV 

TEE REAL NUMBER SYSTEM 

The set of rational numbers does not meet all of the 

needs of first year algebra. That is, there are numbers 

which cannot be expressed as a ratio of two numbers. For 

example, the student will recall from arithmetic that when 

the circumference of a circle is divided by its diameter, 

the result is 1i which is equal to 3 .141592653589 • • • • 

It should be noted that the decimal part of 1f does not appear 

to be a repeating decimal, and hence, is apparently not a 

rational number. It is necessary to define a set, then, 

that will contain the number, 1T , and other numbers similar 

to fT that cannot be placed in the set of rational numbers. 

numbers. For the present, the set of real 

numbers, R, is defined to be the union of R1 and the set of 

all numbers expressed by means of non-repeating decimals. 

Also, since the set of integers is a subset of the set of 

rational numbers, and the set of natural numbers is a sub-

set of the set of integers, the set of integers and the set 

of natural numbers are subsets of the set of real numbers. 

Symbolically, this could be written: NC R, I C R, R1 C R. 

The subset of numbers in R which are not in R1 are 

called irrational numbers. This set includes numbers like 

TT , Y2, (3, rs and many more. Indeed, it can be shown in 

-



33 
advanced courses that there are more irrational numbers 

than there are rational numbers. 

The set of real numbers will be the last set of 

numbers defined in this course. The student should not 

get the idea, however, that this is the extent of the 

number system. It can be shown that the set of real num-

bers form a subset of a larger set that is defined in higher 

mathematics, but the set of real numbers will be adequate 

for this course. 



CHAPTER V 

SOLUTION OF EQUATIONS AND INEQUALITIES 

Equations were defined in Chapter II and the student 

found the truth sets for several open sentences by inspection. 

This chapter will introduce methods of finding solution sets 

for equations and inequalities which are not so easily found 

by inspection. 

There are several definitions that are used in sol-

ving equations with which the student must become familiar. 

Consider the equation 

ax+ b = c. 

An equation of this type is called a literal equation. xis 

the placeholder for the solution set that will make t he open 

sentence true. a, band c represent numbers whose values 

are known. ax, band care called terms. ax is called an 

algebraic term and band c re called arithmetic terms or 

constant terms. When reference is made to "number" in t his 

chapter and later chapters, the set of real numbers will be 

the universe unless it is specified otherwise. 

In the term, ax, a and x are factors of ax. Factors 

are any of the numbers which when multiplied toget her form 

a product. The factors of an algebraic term are called 

coefficients. Thus, in the given equation, a is the co-

efficient of x and xis the coefficient of a. The term is 

most often used when referring to the coefficient of a 
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placeholder or placeholders. 

In literal equations, it is customary to let the 

letters near the first of the alphabet represent known 

values or constants, while the letters near the end of the 

alphabet represent placeholders for the solution set. 

EXERCISES 

1. In the equation 3x + 5 = 8, what are the constants? 
What are the constant terms? What are the algebraic 
terms? What is the coefficient of x? 

2. In the equation 5x + 7x + 9x = 4 - 6x list the coeffi-
cients of x. What is the constant term? 

3. Using the definition of factors, give a set of factors 
for the following numbers. 

(a) 24 

(b) 12 

(c) 18 

(d) 48 

(e) 14 

(f) 27 

(g) 32 

(h) 15 

Which of the above numbers have only one set of factors? 

Similar terms. In algebraic terms such as 3x, 4y, 

3xy, the letters (or letter) in the term which represent a 

placeholder for some numbers (or number) are called literal 

coefficients. Algebraic terms having the same literal co-

efficients are called similar terms or like terms. Thus, 4x 

and 7x are like terms. 9xy and 14xy are similar terms, but 

9y and llx are unlike terms. Unlike terms cannot be combined. 
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Similar terms can be combined. This follows from 

the distributive property of multiplication over addition. 

Given the expression 5x + 7x, 

from the distributive property, 

5x + ?x = (5 + ?)x = 12x. 
From this example it can be seen that similar terms can be 

combined by adding the coefficients of the similar terms and 

multiplying the sum times the common literal coefficient. 

Examples: 

(a) 4x + 9x - 3x = (4 + 9 - 3)x = lOx 
(b) 7XY - 4xy - 13xy = (7 - 4 - 13)xy = -lOxy 

(c) 8z + 15z - 3z = (8 + 15 - 3)z = 20z 

(d) 8x + Sy - 4x + 7Y = Bx - 4x + 5y + 7Y = 
(8 - 4)x + (5 + 7)Y = 4x + 12y 

Methods tor finding solutions of equations and in-

equalities will now be de eloped. When one or more operations 

are performed on an expression containing x such that the 

resulting expression contains only the xterm with a coeffi-

cient of 1, xis said to be "ieolated11
• 

If two or more operations are indicated in an expres-

sion, then to isolate x, an inverse of each indicated opera-

tion must be performed on the expression. Thus, in the 

expression, ax+ b, to isolate x the additive inverse of b 

must be added to the expression which gives ax, and the 
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multiplicative inverse of a must be multiplied times ax to 

give x with a coefficient of 1. 

Thus, 

{¼) • (ax) + b + ( - b) = X 

In the expression fil5. + c, to isolate x, ax must be 
b b 

multiplied by the multiplicate inverse of a and the 
b 

additive inverse of c must be added to the expression. 

Hence, 

(~)(i)• x + c + (- c) = x 

EXERCISES 

Isolate x in each of the following by applying the inverse 
of each indicated operation: 

1. X + 3 

2. 2x 

3. 2x + 4 

4. x/5 + 6 

5. 3x - 4 

6. 5x - 6 

7. 4x + 8 5 
8. ~- 7 

2 

To find the solution set of an equation, one must 

find the value or values of the placeholder that will make 

the equation a true statement. By inspection, the student 
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can see that {2 ~ is the truth set for the open sentence 

x + 3 = 5. It is convenient to say that x = 2 is a solution 

or a~ to the equation x + 3 = 5, and 1n general that 

each element of a solution set for a given equation is a 

solution of the equation. 

Axiom. An axiom is a basic assumption that will 

be accepted without proof. The following axiom or equality 

will be used to find the solutions or roots of equations. 

Solution axiom. The same operation may be performed 

on both sides of an equation without changing the equality. 

For example, 

if ax= b, then ax+ c = b + c or 

if x = d, then ax= ad or 

if ax= b, then ax - c = b - c, or 

if x/a = b/c, then dx = db 
a C 

Now reconsider the equation given at the beginning 

of this chapter; ax+ b = c. To find a solution of the 

equation, examine the left side of the equation. The 

student should consider the steps necessary to isolate x. 

The steps~~ reguired ~isolate,!~ applied to both 

sides of~ equation. To isolate x, ax must be multiplied 

by the multiplicative inverse of a and the additive inverse 

of the constant term must be added to the left side of the 

expression. 
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Applying these steps to both sides of the equation 

will yield a solution for x. These steps should be applied 

one at a time. Usually applying the additive inverse to 

both sides of the equation first will make the solution 

easier to find, but applying the multiplicative inverse to 

both sides of the equation first would result in a correct 

solution. 

The method of finding a solution of ax+ b = c will 

now be demonstrated. 

Given: 

ax+ b = c 

adding the additive inverse of b to both sides 

ax+ b + ( -b) = C + ( -b) 

results in 

ax= c - b 

multiplying by the multiplicative inverse of a 

1/a(ax) = 1/a(c - b) 

results in 

x = 1/a(c - b) 

applying the distributive property, 

x = c/a - b/a 

applying the rule for adding rational numbers, 

x = c/a - b/a = ac - ab 
a a 

applying the distributive property, 

x = a(c - b) 
a •a 



4o 

from the definition of multiplication of rational numbers, 

x=~ , c-b, 
a a 

but a/a= 1, hence, 

X = C - b 
a 

Usually these steps are not all s hown. When t he student 

gains proficiency in solving equations only t he most impor-

tant steps are s hown. 

Several examples will now be presented. Supplying 

a reason for eac h step in t he solution "'fill be left to t he 

student as an exercise. 

Examples: 

(a) 

(b) 

( C) 

(d) 

(e) 

X + 4 = 8 
X + 4 +(- 4) = 8 + (- 4) 
X = 4 

3x = 12 
(l/3)(3x) = (1/3)12 
X = 4 

2x + 4 = 16 
2x + 4 + (- 4) = 16 + (- 4) 
2x = 12 
(l/2)(2x) = (1/2)(12) 
X = 6 

x/4 = 24 
(4)(x/4) = (4)(24) 
X = 96 

3x + 4 = 16 
5 
3x + 4 + (- 4) = 16 + (- 4) 
5 
3x = 12 
5 
(5/3)(3/5)x = (5/3)(12) 



(f) 7x - 3 = 25 
7X - 3 + (3) = 25 + 3 
7x = 28 
(l/7)(7x) = (1/7)(28) 
X = 4 
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In many cases, terms containing the placeholder will 

be found on both sides of the equation. Applying the addi-

tive inverse of one of the terms to both sides of the equa-

tion will result in getting the placeholder terms on the 

same side of the equation. The terms can then be combined 

and the equation can be solved by consecutive applications 

of inverse operations. For example, consider the equation: 

3x + 5 = 2x + 10 

Adding the additive inverse of 2x to both aides of the equa-

tion, 

3x + 5 + (- 2x) = 2x + 10 + (-2x) 

gives 

X + 5 = 10. 

Adding the additive inverse to both sides 

X + 5 + (- 5): 10 + (- 5) 
gives the result 

X = 5 
which is a solution to the equation. 

A solution of an equation may be checked by replacing 

the placeholder with the solution and determining if the 

two sides can be s nown to be the same number. For example, 

to check the solution of the previous example, the place-
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holder in the original equation is replaced with 5. 
Hence, 3(5) + 5 = 2(5) + 10 

The value of the left side becomes 15 + 5 = 20 and the value 

of the right side becomes 10 + 10 = 20. Since both sides 

reduce to 20, 5 checks as a solution to the equation, and 

5 is said to satisfy the equation. 

EXERCISES 

1. Give the reasons for each step in the solution of 
examples, a through f above. 

2. Check the solution of each of the examples a through 
r, and show that when the placeholder is replaced by 
the root that the value of the left side of the equation 
reduces to the value of the right side. 

3. Solve the following equations, giving reasons for each 
step, and check to see if the solution satisfies the 
equation. 

a. y + 17 = 15 

b. X + 18 = 86 

c. X + 9 = 15 

d. 5x + 7 = 18 

e. 4x + 3 = 9 

f. 2x - 12 = - 16 

g. y/4 = - 2 

h. X - 9 = 7 

1. 9x = 63 

j. 5x - 6 = 3x + 8 

k. 4x + 9 = 12 - 2x 
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Order. The set of real numbers was developed with 

no mention of the order of the numbers. That is, no in-

vest i gation was made as to the sequence in which the numbers 

were placed. Before investigating t he solution of inequali-

ties it is desirable to order the set of real numbers. To 

do t his, consider the subset Z of R. The first element in 

Z is O. This is followed by 1,2,3, • . . . The student 

is familiar with the order of this set from his past 

experience . This could be written 0~1<2 , 3 . . . . 
In set I, the order will be defined as follows: 

-1 precedes O, -2 precedes -1, -3 precedes -2 

This could be written, ••• -3<-.-2~-1~0 <1<2 

. . . . 

Similarly, in the set R1 , an example of order is 

. . . -3 <-5/2 (-2 (-3/2<-l(-l/2<0<1/2<1~3/2 • . . . 
The same ideas apply to the set of real numbers. 

Inequalities. The met hods of solving inequalities 

are similar to the methods of solving equations. The 

axiom of equality will not hold for inequalities, however, 

so this axiom is replaced with axioms which apply to in-

equalities . 

These axioms are: 

(1) 

(2) 

Equal quantities may be added to each side of 
an inequality without changing the order of t he 
inequality . 

Each side of an inequality may be multiplied by 
a positive r eal number without changing the 
order of the inequality . 



(3) Each side of an inequality may be multiplied 
by negative real numbers provided the symbol 
of inequality is reversed. 

The following examples illustrate the above axioms: 

(a) Given: 4 > 2 
By axiom l 

4+3 > 2+3 
or 7 > 5 

(b) Given: 7 11 
By axiom 1 

7 + (-3) < 11 + (-3) 
or 4 < 8 

(c) Given: 8 > 5 
By axiom 2 

then (6) • (8) > (6)~5) 
or 40 > 25 

(d) Given: 8 > 5 
then multiplying each side by (-6) 

( -6 ,~, 8) < ( -6 )·( 5) 
or -48 < -40 

The student should notice the necessity of reversing the 

inequality sign in the last example. 
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The procedure for finding the solution set for an 

inequality is similar to that for the solution of equations. 

The first step is to combine t he algebraic terms containing 

the placeholder, and then using inverse operations discover 

what operations need to be performed to isolate t he place-

holder, making use of the axioms of inequalities. 



Examples: 

(a) Given: 3x + 6 < 5 
Adding a negative 6 to each side, (axiom 1) 

3x + 6 + (-6) < 5 + (-6) 
or 3x < - l. 

~ultiplying by the multiplicative inverse 
of 3, (axiom 2) 

(l/3)(3x) z.. (l/3)(-1) 

X <. - 1/3 
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The solution set then is l x I x L.. - 1/31 
Any value of x less than - 1/3 will make the 
original equation a true statement. For 
example, -1 < -1/3. Replacing x with -1, 

(3)(-1) + 6 L_ 5 

or 3 z 5 which is a true statement. 

Consider this example: 

(b) 5 - 6x > 4 

5 - 6x + (- 5) > 4 + (- 5) by axiom l 

or -6x ) - 1 

(- 1/6)(- 6x) (- 1/6)( - 1) by axiom 3 

or x l. 1/6 

Hence, the solution set is ! x / x <- l/6J , 

o 1/6, so putting O in place of x, 

5 - 6 •0 > 4 

or 5 > 4 which is a true statement. 

Any value of x which is less than 1/6 may be used 

to check the solution of this inequality. 
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EXERCISES 

Find the solution set to each of the following inequalities 
and give a reason for each step in the solution. 

1. 4x > 8 

2. 5y + 9 > 4 

3. 3x - 2 .:::: 7 

4. 2x + 5 L. 27 

5. 1/x <. 3 

6. 2 - 5x < 27 

7. 7 - 2/3x > 15 

8. 3(x + 4) > 9 + 2x 

9. x/2 +5 ~ x-5 

10. Check the solutions in each of the above 
inequalities. 



CHAPTER VI 

GRAPHICAL REPRESENTATION 

An alternate definition of the set of real numbers 

R will now be considered. Membership in the set will be 

determined as follows; for every point Pon a given line 

1 there is a number a belonging to the set which corres-

ponds to P. On the other hand, for each number in the 

set there is a corresponding point on the line. 

The set of real numbers can then be represented on 

a straight line which will be called the graph of the real 

numbers, or more commonly, the real number line. Figure 1 

is a graph of all of the real numbers, x, where -3 < x < 3. 

(written [x 1-3 x <. 3 and x E RJ and read, "the set of 

all x such that xis between -3 and 3, inclusive and xis 

a real number. ) 

I I 
- 3 -a. -, 0 

Fig. 1 

In general, a grapb is a diagram or picture that 

represents mathematical relationships. In this chapter, 

graphs will represent the relation between sets of 

points. 
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If the set, [ x / -3 s_ x 3, x €. Ni is graphed on 

the real number line as shown in Figure 2, the graph shows 

a relationship between the set of real numbers and the set 

of integers. 

-3 -;z. I 0 I Z.. 3 

Fig. 2 

The circles about the points in Figure 2 indicate the 

integers. This illustrates graphically that the set of 

integers is a subset of the set of real numbers. 

It is sometimes convenient to graph the solution 

set of equations or inequalities. The procedure for graph-

ing the solution set is to locate points on the real num-

ber line corresponding to the numbers which are in the 

solution set. This process is called plotting the points. 

Consider the equation 3x + 2 = 8. The solution 

set isf2s. But !2SCR, therefore, f2! can be graphed or 

plotted on the real number line. In plotting solution 

sets a circle about a point will indicate that the num-

ber corresponding to the point belongs to the solution 

set. Figure 3 is the graph of the solution set, 

[ x J 3x + 2 = 8 , x €. R ! . 
-3 -2 -f 0 

Fig. 3 
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For the equation , x - 3 = 3, [6~ is the solution set. 

The graph of the solution set ls shown in Figure 4. 

0 2. 3 4 5 6 

Fig. 4 

The solution set of an inequality can also be 

shown on the graph of the real numbers. Consider the in-

equality, x + 2 ..::::::.. 6. If the universal set is the set of 

natural numbers, then the solution set would be l1,2,3l . 
The graph of the solution set is shown in Figure 5. 

I 
0 

e © I L L 
I Z 3 4 5 6 

Fig. 5 

The graph of [ x /x - 2 / 4 , O .c( x 10, and x E: NJ 1s shown 

in Figure 6. 

I I I 
If 5 6 1 8 !3 /0 

Fig. 6 

The graph of [x(2x + 1 = 6 and x~Rf is shown in Figure 7. 

I I G) I I I I l 
I y,._ 2.. .Z;i. 3 .3 Y2., 4 4 Y~ .5 

Fig . 7 
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The graph ot f x }2x + 1 = 6 and x t Ij will contain 

no points, since the solution set in I is empty. 

The graph of x f 3x > 6 and x £. Rj is shown in 

Figure 8. The solution set contains all points covered 

by the double line. 

0 2. .3 

Fig. 8 

Notice that t he point 2 is not included in the graph of the 

above set, as indicated by ) , since the solution set 1s 

fx(x > 2J. If the inequality sign had been ~ , then 2 would 

have been included. 

Consider the case where more than one solution set 

1s graphed on the real number line. For example, the sets 

A= [x/x 4 and x~ RJ and B = f x/x > 2 and x~RJ. The 

graphs are shown in Figure 9. 

-s -.If -3 -z - , 0 3 5 

Fig. 9 

The student should observe that the two graphs overlap. 

That is, there are elements in A that are also in B. The 

set of elements which is common to the two sets is called 

the inter~ection of A and B, written An B and read, 11 A 
intersection B." 
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The intersection of two sets can also be represented 

by means of Venn diagrams. It is customary in this case 

to let a rectangle represent the universe, and use circles 

to represent subsets of the universe. Consider the sets 

A = [ x f O '-- x <. 6, x e R J and set B = [ x / 4 L... x l.. 8, x E R j . 
Using Venn diagrams the sets A and B could be represented 

as in Figure 10. 

Fig. 10 

R represents the set of real numbers. The circle A repre-

sents the set A and circle B represents the set B. The 

shaded area represents the elements in R that are in both 

A and B. The area in R that is outside of both circle A 

and circle B represents t e elements in R that are neither 

in A nor in B. 
In the Venn diagram in Figure 11, R represents the 

set of real numbers. A represents a subset of R. The area 

in R but not in A is called the complement of A {written A) 
and represents those elements in R that are not in A. 

Fig. 11 



Let A = S" x) 2 t.. x 1..... 7, x l Rt • Th 1 (""' ) l J e comp ement of A, A, 
is graphed on the number line in Figure 12 as t he heavy 
portions. 

)1 
2. 3 j- 6 

Fig. 12 

Using Venn diagrams the above graph could be represented 

by Figure 13. 

Fig. 13 

The shaded area in Figure 
/'>J 

13 represents A. 

If the graphs of A = !x/o<- x <. a, x € R3 
B = ~x/2 < x <. 5, x€RJ are plotted on the real 

line, the graph would be as shown in Figure 14. 

I )1 :( 
2. 3 6 1 8 'f 

Fig. 14 

and 

number 

Here it can be seen that Bis a subset of A. That is the 

points included in Bare also in A. Figure 15 shows a 

Venn diagram of the above sets. 
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Fig. 15 

EXERCISES 

1 . Graph each of the following on a real number line. 
x E R in each set. 

(a) [xjx = 2f 

(b) [x l3x = 9} 
(c) [x{x ~6J 
(d) fx/2x < 4 ! 
(e) [x}2x + 3 = 9 ~ 

(f) [x/o -' x <s J 
(g) !x/o f x~7} and [x j 2 ) x ) O 1 
(h) zx/x ) 3/ ~x/x<6} 

2. Given: A= [xlo <x <. 9, x t R! 
B = f x j 5 < x < 12, x R~ 

C = [ x/7 <x <- 14, X E R} 

Draw Venn diagrams to represent the following and shade 
the areas represented by: 

(a) An B (d) 
,v 
A 

(b) B /\ C (e) 
,v 
B 

(c) A f1 B/1 C (f) 1 /1B 

Ordered pairs. The student is familiar with giving 

directions. He may direct someone to go 3 blocks west and 
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4 blocks north. He could also direct the person to go 4 

blocks north and 3 blocks west. Either set of directions 

would bring the person to the same point. In the study of 

geography, the student learned that places on the earth are 

designated by degrees of latitude and longitude. He may 

also be familiar with the fact that legal descriptions of a 

particular section of land is given by a township number 

and a range number. All of these examples illustrate that 

particular points are located by reference to two "perpen-

dicular lines." In the first case, the two perpendicular 

lines would be streets, in the second the lines would be 

the equator and the prime meridian, and in the third the 

lines are parallels of latitude and meridians of longitude. 

It is convenient to divide a plane into fourths by 

constructing two perpendicular lines, called~- The 

horizontal line is called the x-axis and the vertical line 

is called the y-axis. Both axes can be considered as num-

ber lines, so that every point on each line represents a 

number. The point where the axes intersect is called the 

origin and the point is designated by two numbers (0,0). 

(see Figure 16) This means that the point on the x-axis 

is o, and also that the point on the y-axis is O. 

p 
Fig. 16 
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Every point on the plane can be located by using 

ordered pairs. (The term "ordered pair" will be explained 

in more detail below.) The ordered pairs are written (x,y). 

The numbers in the parentheses are called coordinates of 

the point. The first coordinate always indicates the 

distance from the y-axis to the point, and the second co-

ordinate indicates the distance from the x-axis to the 

point. 

Points having positive x-coordinates are located to 

the right of the y-axis and points having negative x-coordi-

nates are located to the left of the y-axis. Points having 

positive y-coordinates are located above the x-axis and 

those having negative y-coord1nates are located below the 

x-axis. Because the point 1s located by first determining 

the value of x-coordinate and then determining the value 

of they-coordinate, the number pairs are called ordered 

pairs, since locating the desired point requires a specific 

order. 

The point (4,3) is located by going right from the 

origin 4 units and then going up from the x-axis 3 units. 

The point (-2, 1) is located by going to the left from 

the origin 2 units along the x-axis, and then going up 

1 unit. The point (-3, -2) is located by going left from 

the origin 3 units along the x-axis and then down 2 units. 

A point (4, -3) is located by going to the right from the 



origin 4 units along the x- axis and then down 3 units . 

Graphs of the above points are shown in Figure 17. 

-~ .. J -2 -\ 
-\ 

-3 • (4,-3) 

- 4. 

Fig. 17 

Every point on the plane can be represented by an 

ordered pair of coordinates and every distinct ordered 

pai r represents a point on the plane. 

EXERCISES 

Locate each of the following ordered pairs on a graph: 

l . (1 , 1) 

2. (0 , 1) 

3 . {3 , 0) 

4. (4 , 4) 

5 . {2 ,1 ) 
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6. (-3,-3) 

7. (-1,4) 

8. (5,-1) 

9. (4,-3) 
10. (0,-5) 

Relations &!J1 two placeholders. In the previous 

chapter, the student was given an opportunity to find 

solution sets to equations or inequalities with one 

placeholder. Consider an equation x + y = 6. There are 
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an unlimited number of solutions to this equation. The 

solution set could be written f (x,y) x + y = 6 ) · First 

consider that the universe of the solution set is the set 

of natural numbers. The solutions could then be any of the 

following: 

X: 1 when y = 5 

X = 2 when y = 4 

X = 3 when y = 3 

X = 4 when y = 2 

x = 5 when y = l 
If the solutions were written as ordered pairs, then 

x = l when y = 5 could be written (1,5), the entire solution 

set could be written: 

t (l,5), (2,4), (3,3), (4,2), (5,1) ~ 

These ordered pairs are plotted on a graph in Figure 18. 

-
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• ( 1\5) 

• (:Z., ~) 

.3 
• (31'3) 

_ ( 4, 1J 

.. (5; ,) 

2 3 ii S' 

Fig. 18 

If the universe 1s the set of integers, the solution 

set could not be written by tabulation. There would be an 

infinite number of solutions. The set below shows only a 

few of the many elements that belong to the solution set. 

l· .. ,-19,2s> 

(350,-344) ••• J 
• • • (10,-4) • . . (12,-6) ••• 

A portion of the graph of this solution set is s hown in 

Figure 19. 
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• 10 

• 'i ., 
h 

S' • 
'I 

:?, • 
z • 

) 2. 3 ,. s " 1 I , /0 JI ,-i. 
• 

• 
• 

• 
• 

' 

Fig. 19 

If the tmiverse of the solution set were the real 

numbers then the points of the solution set would fill 

a line. The graph is shown in Figure 20. 
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X 

Fig. 20 

When the universe of the solution set of an equation 

containing two placeholders is the set of real numbers, it 

would be impossible to locate every point corresponding to 

the numbers in the solution set individually, since there 

would be an intinite number of points to locate. It is suf-

ficient to locate two or three points which correspond to 

elements of the solution set and then to draw a line through 

these points. Actually, two points determine the line, but 

it is a good idea to plot a third point to insure that a 

mistake was not made in determining the first two points. 



The points that are usually easiest to locate are 

those where the graph crosses the x-axis and the y-axis. 

The point on the x-axis where the graph crosses it is 
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called the x-intercept, and the point on the y-axis where 

the graph crosses it is called they-intercept. The y-coor-

dinate of the x-intercept is always o, and the x coordinate 

of they-intercept is always o. That is, the ordered pair 

representing the x-intercept is always written in the form 

(x,0), and the ordered pair representing they-intercept 

1s always written in the form (0,y). 
The intercepts for a particular graph can be found 

by finding the ordered pairs, (x,0) and (0,y), which are 

solutions of the corresponding equation. In an equation 

such as 2x + y = 4, the ordered pair, (x,0), can be found 

by replacing y with zero, and solving the equation for x. 

Thus 

2x + 0 = 4 

2x = 4 

X = 2 

The x-intercept is then (2,0). Similarly they-intercept 

may be found b~r replacing x with 0, and solving the re-

sulting equation for y. They-intercept in this case is 

(0,4). 
If the intercepts are plotted on the graph and a 

line is drawn through the 1nterce9ts, the line represents 

s 1 0 
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the solution set of the given equation. 

To check, a third point can be located by arbitrarily 

selecting a value for either x or y. x or y is then re-

placed by this value and the resulting equation is then 

solved to find the other coordinates. 

Suppose that l 1s selected as an arbitrary value 

of x. Replacing x with 1, the given equation becomes 

2 ~1+y=4 

y = 2 

The ordered pair is then (1,2). This is an element of the 

solution set, and should fall on the line representing the 

solution set. This point is then plotted on the graph. If 

the point falls on the line representing the solution set, 

then the set has been graphed correctly. If the point fails 

to fall on the line representing the solution set, the 

student should check his work carefully to find the error 

in his work. 

The graph of the solution set of 2x + y = 4 is 

shown in Figure 21. Circles are drawn about the intercepts 

and the point used as a check. 
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Fig. 21 

When t he solution sets of two equations wit b two 

place holders are grap hed on t he same set of axes, and t he 

graphs of the sets intersect, t hen t he intersection of the 

two sets is called t he simultaneous solution of t he two 

equations. 

The solution sets of two given equations x + y = 4 

and x - y = 2 are [ (x,y) / x + y = 4; (x,y) E RJ (read, 
11 the set of all x and y such that the sum of x and y is 

4 where x and y are real numbers") and [ (x,y) / x - y = 2; 

(x,y) € R} . If the solution sets are graphed with refer-

ence to the same axis as shown in Figure 22, t he point of 

intersection of the two sets is (3 , 1) . This is the only 

element that 1s contained in both of the solution sets . 

Replacing x with 3 and y with 1 jn each of the equations, 
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x + y = 4 and x - y = 2, makes each a true sentence. Thus 

3 + 1 = 4 and 3 - 1 = 2 

Therefore, x = 3 when y = 1 is the simultaneous solution of 

the two given equations. 

Fig. 22 

EXERCISES 

1. Write the coordinates of each point of the solution set 
shown in Figure 19. 

2. Graph each of the following solution sets: 

(a) [(x,y) f x + y = 7; (x,y) 6 NJ 

( b) f (x,y) ) X - y = 4; (x,y) f Il 
(c) i (x,y) / X + 2y = 6; (x,y) e RS 
(d) [ (x,y) { 2x - 3y = 12; (x,y) £ Rj 



3. Write the solution set of each of the following equa-
tions, graph the solution sets of each pair of equa-
tions on a set of axes and find the simultaneous 
solution of each pair of equations. 

(a) X + y : 6 
X - y : 4 

(b) 3x + y = 8 
4x - y = 6 

(c) 3x + y = 9 
4x + y = 12 
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The solution sets of inequalities containing two 

placeholders can also be represented by sets of ordered 

pairs. In the inequality x + y + 4 > 6, the solution set 

can be written l (x,y) j x + y > 2 l . If the universe of 

the solution sets is the set of natural numbers, then 

the solution set consists of all ordered pairs of natural 

numbers with the exception of (1,1). If x and y are re-

placed with the coordinates of this ordered pair, then 

x + y = 2, which violates t e given relation. All other 

ordered pairs of natural numbers satisfies the given 

relation. 

If the universe of the solution set 1s the set of 

integers or the set of real numbers, it is more difficult 

to describe the members of the solution set. The members 

of the solution set can be easily seen, however, if the 

solution set of the inequality is graphed. Since the set 

of integers is a subset of the set of real numbers, the 

discussion on graphing inequalities will refer to a universal 
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set of real numbers. 

In grap hing the solution set of an inequality t he 

first step is to grap h its boundary. The boundary is the 

set of points obtained by c hanging the inequality sign to 

an equals sign and grap hing the solution set for t he new 

equation. The solution set for a strict inequality will 

lie entirely on one side of t ne boundary. Substituting 

arbitrary values for x and y will determine t he side of 

the boundary on whic h the solution set will lie. The 

boundary is included in t he soltuion set if the sign is 

2 or 5.. 
Consider the solution set {(x,y) Ix+ y > 2, (x,y) ER]. 

The boundary is determined by the solution set {(x,y)/x + y = 

2, (x,y)( Rj. This set graphs on the line AB in Figure 23. 

If x and y are replaced wit h any two arbitrary values 

which make t he inequality x + y > 2 a true sentence, the pair 

of values of x and y will determine a point. The side of 

the boundary on which this point falls determines t he side 

of the boundary on whic h the solution set will be grap hed. 

For example, suppose t nat 1 is c hosen for x and 3 

is chosen for y. This determines the point (1,3). If x 

and y are replaced with 1 and 3, respectively, then 

1 + 3 ) 2 is a true statement. If values of x and y are 

chosen whic h make the given inequality false, t hen more 

arbitrary values are chosen until an ordered pair can be 



found to make the inequality a true sentence. 

On the graph of f (x,y) I x + y > 2, (x,y) c R~ in 

Figure 23, the shaded area represents the points in t he 

solution set, since the point (1,3) is on that side of the 

boundary AB. 

Fig. ,..,3 

When t he solution sets of two inequalities are grap hed 

on t he same axis, the intersection of their solution sets 

is t he simultaneous solution for t he inequalities. 

If two inequalities are x + y > 3 and x - y 4, the 

solution sets would be t (x,y) I x+ y > 3; (x,y) ~ Rj and 

l (x,y) / x - y <. 4; (x,y) E RJ • The graphs of t hese solution 

sets are shown in Figure 24. The area which is cross hatched 

1s the simultaneous solution set for the two inequalities. 
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EXERCISES 

1. Grap h t he solution set for each of the following: 

(a) ~(x,y)/ x + y > 4; (x,y) R! 
(b) f(x,y)I x - y < 5; (x,y) € R 

( c ) l ( x , y ) / 3x - y > 6 ; ( x , y ) R 

{d) {Jx,y) f 2x - y f. 4; (x,y) Rj 
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2. Write the solution set for each of the following in-
equalities, graph each pair of inequalities on a pair 
of axis, and shade the simultaneous solution set. 

(a) X + y > 2 
X - Y < 5 

(b) X + 2y < 6 
2x + y > 2 

3. What is the simultaneous solution set for the pair of 
inequalities. 

X + y 2 

X + y 2 
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CHAPTER VII 

OBSERVATIONS 

As the writer stated in the introduction, the material 

presented in the body of this thesis has been used in the 

classroom for the past three years on an experimental basis. 

The manner of presentation was varied somewhat from 

year to year, but the basic material presented did not vary. 

Most of the material was presented through lectures from 

which students took notes, although certain sections were 

written and duplicated on a spirit duplicator and presented 

to the students to add to their notes. The exercises were 

run off on the duplicator so that each student might have 

a copy. 

The course in Algebra was started each year with the 

material presented in the first five chapters of this thesis. 

To present this material i such a way that the students 

might become proficient in the use and terminology of the 

sets of numbers and the solutions of equations and inequal-

ities required about four or five weeks. 

A traditional text was then used for several weeks, 

giving the students an opportunity to progress in solving 

more difficult equations and to solve verbal problems. 

The material in Chapter VI was then used to introduce 

graphing. This section was followed by a treatment of 
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solving systems of linear equations using a traditional 

text. 

The remainder of the course was taught from a tra-

ditional text, however, an attempt was made to use termi-

nology tnroughout the course that was consistent with the 

terminology introduced in this thesis. 

The writer chose this approach because of his dis-

satisfaction with the traditional presentation of signed 

numbers. From past experience, he had found that students 

seldom found difficulty in adding signed numbers, but when 

subtraction was introduced, students became confused with 

the meaning of the negative sign. The writer feels that 

the use of the material presented in this thesis has largely 

eliminated this confusion. 

The traditional text usually introduces the number 

line as a mathematical model. The discussion of operations 

with signed numbers are then justified by reference to the 

number line. However, the writer has yet to see a convincing 

argument justifying the fact that the product of two nega-

tive numbers is a positive number. Through this abstract 

approach, this fact is proved and the students accept it 

without question. 

The writer has observed that the modern terminology 

seems to appeal to students, and it is his belief that the 
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students grasp the fundamental concepts of mathematics more 

readily. 

The writer was a bit pessimistic about the slower 

students being able to grasp the concepts of this material 

the first year it was presented. However, it has been his 

observation that the slower students seem to benefit most 

from this approach. This does not necessarily mean that 

the slow students become good students, but there seems to 

be less confusion about certain concepts. 

The writer does not recommend this approach for 

every teacher. He feels that there are ideas presented 

in this paper worthy of consideration by any teacher, but 

the extent that this material can be used would depend 

greatly upon the personality of the teacher and his mathe-

matical background. 

It is not to be implied that the writer feels that 

the organization of the material presented here is an end 

product. The organization of this material is a stepping 

stone toward further experimentation in search of better 

methods of presenting algebraic concepts. 

It is difficult to draw conclusions as to the success 

of using this approach to algebra. There were no control 

groups with which to compare achievements. The conclusions 

of the author concerning the success of this approach are 

reflected in the observations made above. The author feels, 
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through the observations he has made, that a great deal has 

been done in this approach to improve his students' under-

standing of some of the fundamental concepts of algebra. 

Students who were taught algebra by this approach have had 

average or above average success in advanced courses in 

mathematics. 
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