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CHAPTIER T

INTRCDUCTION

Conformal ma,ping occupies a prominent position in the field of
the theory of functions of a complex variable. The importance of this
theory in the application of mathematics to other sciences is also
noteworthy.

The general theory has been developed through the efforts of
such noted mathematicians as Gauss, Argand, Dirichlet, Cauchy, Riemann,
and Weierstrass. Several well-known modern mathematicians have also
contributed to its present state of development.

Most works concerning complex variables include sections illus-
trating manping under various functional relationshins. For this
purpose most authors represent the variables of the functions in
either rectangular or polar coordinates. Their use is determined by
the facility of calculation.

Rectangular coordinates are frequently employed for mapning
under trigonometric and hyperbolic functions. DMao ing of vertical and
horizontal lines is frequently studied under these transformations.
The nature of their images suggested to this writer the investigation
of mappings of other geometrical figures.

The main problem of this paper is the study of certain trigono-
metric and hyperbolic transformations. The functions sin z, cos z,
sinh z, and cosh z will be considered. articular emphasis will be
placed upon the images of circles and non-vertical and non-horizontal

lines produced by these transformations.




CHAPTER II
FUNDAMENTAL CONCEPTS AND DEFINITIONS

Knowledge of certain facts is required as support for study of
any problem that is encountered. For this purpose some fundamental con-
cepts and definitions from the general theory of complex variables and
analytic functions will be stated.

It is assumed that the reader has a working knowledge of complex
numbers and of the theory of functions of a complex variable. The form
of complex variables used herein will be z = x + iy and w = u + iv,
where x, y, u, and v are real variables. The real parts and the imagi-
nary parts of the complex variable, w, will be represented by

u=~R(w) and v = Im(w) , respectively.
The first partial derivatives of the dependent variables, u and v, with
respect to the independent variables, x and y, will be represented by
u, v, u, and vy. The second partial derivatives of u and v with

SIS

respect to x and y will be represented by U v Voo uyy’ and vyy'

The equation of a circle with center at the point, Z ) and a
radius of length, 4, is lz - zol = d. The set of all points interior
to this circle is represented by the relation |z - zJ(d.

Franklin [4, pg 16] defines a neighborhood, or an € neighbor-
hood, of a point, z ) as the set of points, z, such that

lz -z '< €,
o
where € is a given positive number. The set of points consisting of

all points in a neighborhood of L except z itself is a deleted neigh-

borhood.




A set of points, S, is said to be comnected if any two of its
points can be joined by a continuous curve all of whose points belong to
S. A comnected set of points in a plane is usually called a region.
The relationship of each of these points to the region is embodied in
the definitions of the following three distinct types of points. An
inner point of a region is any point, Z s which has at least one neigh—
borhood such that all points in this neighborhood are points of the
region. A neighborhood of a point, Z s that contains no points of the
region signifies that z, is an exterior point. Points which are
neither interior nor exterior points are called boundary points. These
have neighborhoods that contain both points of the region and points
exterior to it, however small € of the neighborhood may be.

A point, Z s is said to be a limit point of a set of points, S,
if and only if every neighborhood of z contains at least one point of
S other than Z . From the above definitions we can see that a limit
point must necessarily be an interior point or a boundary point. Thus
it may or may not be a point of S.

Regions are classified as open or closed, or neither. If every
point of a region is an interior point, the region is said to be open.
An open region is also referred to as a domain. A closed region
[2, pEe. 17] is a set of points consisting of an open region with all
its limit points included. However, a set consisting of a domain with
some of its boundary points included and some excluded is neither open

nor closed.




In 1837 Dirichlet formulated the definition of a function of a
real variable that is widely accented today. "If for each value of a
variable, x, there is determined a definite value or set of valucs of
another variable, y, then y is called a function of x for those values of
X DJJ ng. 21]." If there is determined one and only one value of y
the function, f(x), is single-valued. A multiple~valued function is
one for which a set of values of y is determined for each value of x.
Although the accepted definition of a function is swiftly being shifted
from that of Dirichlet to one involving sets, the former will be used
in this paper.

Later, Cauchy applied complex values to variables and from this
work the theory of functions of complex variables develoned. The com-
plex variable, w, is a function of the comnlex variable, z, in a given
region, S, if for each value of z in this region w has a definite wvalue
or set of values. The following notation is used to denote this:

w = £(z) = ulx,y) + iv(x,y),
where u and v are real functions of tlie two real variables, x and y.

An elementary function of the complex variable z is defined by
Franklin [4, pg. 76] to be a function which can be explicitly renresented
in terms of complex constants and the independent variable, z, by mcans of
the four fundamental operations and the two basic functions, using at most
a finite number of operations and at most a finite nunber of basic [func-
tions. The two basic elementary functions of a complex variable are the

. . } . Z
exponential and logarithmic functions, e and log z.




The inverse of an elementary function is not necessarily elemen-
tary. For example, if
w=1t(z) =2z + e
is elementary, the inverse
z = glw) is not elementary.
We will be concerncd with two types of rational functions. A

rational integral function is of the form

n n-1 n-2
az + a zZ + a Z t oeee t+ a2
n n-1 n-2 o

where ajy 21y a cery B are constants and n is a positive integer.

5?
The quotient of two such rational integral functions produces a rational
fractional function. All functions which are not classified under one
of these two rational tyves ure irrational functions,

Functions are also divided into algebraic and transcendental

classes. Any variable, w, is an algebraic . mction of z if w and z are

related in an irreducible equation of the form

n )
fo(z) W+ fl(z) W + eee + fn(z) = 0,

where fo(z), fl(z), cer fn(z) are rational integral functions of z.

Some examples of algebraic functions are:

It is a matter of interest to note here that all rational functions are
algebraic. Trigonometric, exponential, and logarithmic functions are
examples of transcendental functions. Transcendental functions cncompass

all functions that are not algebraice




It should also be noted here that a certain set of values may be
used in defining a function. A multiple-valued function, w, may be
considered single-valued in a given region if for each valuc of z there
is one and only one value of w in that region.

Sokolnikoff [9, Dg. 23] considers the functional dencendence of
one variable upon another and gives this definition of the limit of £(z):
"The function f(z) approaches the limit L as z tends to 2z, when, corres-
ponding to any given positive number € , one can find a numbercgsuch
that {f(z) - L’<E for all values of z for which 0 £ ’z - Zol< 5 ol

This is equivalent to the following expression:

lim f(z) = L.
Z—Z
0

Only those values which the function talies in the deleted
neighborhood of the point, 9 determine this 1limit and not the value
of the function at z,. The function must therefore be defined through-
out some neighborhood of Z but not necessarily at zZ for the limit
to exist.

Whether or not a function is continuous is an imnortant
criterion in analyzing the function. For a function to be continuous
at a point the following must hold:

1. the function must be defined at the point in question,

2. the function must have a unique limit as the variable
approaches the »noint,

3. the value of the limit must be equal to the value of the

function at the point.




This may also be represented symbolically by:
1. f(zo) is defined ,

2. lim f£(z) exists ,
z2—2z

3. 1lim f(z) = f(zo) .
Z—--ZO

A function is continuous throughout a region, whether open or closed,
if it is continuous at each point of the region.

A further proverty which a function may have is that of analyti-
city. A single-valued function, w = £(z), is analytic [2, NG 34 at a
point, Z if and only if its derivative exists at every noint in some
neighborhood of z . This definition imrlies that the derivative must
exist at z - If a function has a derivative at each »oint of a region
it is said to be analvtic throughout that region. "Regular" and
"holomorphic" are often used in place of the *erm analytic.

Any point where f(z) is an analytic function is knowa as an
ordinary point. Any point that is not an ordinary pjoint is a singular
point. Thus, the derivative of a function loes not exist at a singular
point. A function that is analytic throuchout a region will not hLave a
singular point in that region. Tor example, a singularity of the
function,

f{z) =

N

2

exists at the point where the derivative of the function,

1
f'(z) =T 350

Z




does not exist. This is at the point, z = O. The image of the point,
Z s is undefined in the w-plane.

A zero of a function, £(z), is a number, Z s for which f(zo) = 0.
Churchill [ 2, pg. 194] has shown that the zeros of an analytic function
are isolated. That is, there is some neighborhood of z, throughout which
£(z) is analytic except at z itself.

Any point, z , where f'(zo) = 0 is called a critical point of the
function. For example, a critical point of the function

£(z) =z + z'-1
exists at the point, z, = 1, where the derivative of the function,
£ (z) =1 - zo"2 =0 .

The discontinuities of multiple-valued functions are called
branch points. Branch points always occur in pairs. The line joining
a pair of branch points is known as a branch cut or a branch line. The
regions for which branch cuts serve as boundaries are denoted as branches,
or sheets of a Riemann surface. It is also single-valued in that it
aésumes only one value of the multiple-valued function, £(z), for each
value of z. A suitable number of sheets, or branches are considered
collectively as a Riemann surface. This presents the transformation
under a multiple-valued function in such a manner that it can be con-
sidered as a one-to-one relation.

There are two methods of showing the analyticity of a function:

1. exhibiting that the derivative exists at every point

throughout the region R, or




2. determining, for the function £(z) = u + iv, that u(x,y),
v(x,y), u uy, Vo and vy are continuous and single-valued
and satisfy the Cauchy-Riemann conditions throughout L.
The Cauchy-Riemann conditions are:

u =v and u = -v_ .
X y y X

If a function, u(x,v), is assumed to have continuous partial
derivatives of the first and second order in some given region and if
it satisfies Laplace's equation in two variables,

(2.1) u_ + u :O,

then it is a harmonic function. Two harmonic functions, u(x,y) and
v(x,y), are said to be conjugate harmonic functions if they satisfy the
Cauchy-Liemann conditions; i.e., if and only if u + iv is an analytic
function.

A concept that parallels and complem ats that of multiple-valued
functions is periodicity of functions. A function is known as simply
periodic [11, DL, 126J if it remains invariant under a translation of
the plane by means of the relation,

z' = z + nt,
where n is an integer and t is the fundamental period of the function.
If £(z) is our given function, then
£(z') = £(z + nt) = £(z) n=(1, 2,3, ... )
defines it as a periodic function. A period-strip is then a counter-

part of a branch.




The expression of the relation of points of one vplane to points
of another plane is defined as mapping. In this paper mappings in the
w-plane and the z-plane are considered under the previously listed func-
tional relation

w = f(z) = ulx,y) + iv(x,y) .
The point, w = f(z), is the image or transform of the point z. The
enlarged z-plane will be known as the plane consisting of all finite
points of the z-plane with the addition of the ideal point, z = co. 1In
like manner the enlarged w-plane consists of all finite points of the
w-plane with the addition of the ideal point, w = o2 . ¥With the inclu-
sion of these ideal points a unique one-to-one correspondence between
the points of the two planes may be established.

Churchill [2, Pg. l3i] proves the theorem that at each point
where a function f(z) is analytic and f£'(z) £ J, the mapping w = £(z)
is conformal. If the argument of the function, or the magnitude of the
angle, is preserved in the transformation, it is said to be conformal.
The terms "eguiangular'" and "isogonal" are also used for this condition.
If the transformatién preserves the magnitude of the angle but causes
the angle to be reflected on the axis of reals it is said to be isogonal
with reversal of angles.

Under any conformal transformation a harmonic function is trans-
formed into a harmonic function in the other plane. Thus, the following
relations hold true and satisfy Laplace's equation (2.1):

un(x,y) + uyy(x,y) =0, vxx(x,y) + vyy(x,y) =0 ¢

|
(@)
il
(@]

and xuu(u,v) + xvv(u,v) =0, yuu(u,v) + yvv(u,v)
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The image of each small figure near a point conforms to the
original figure in the scnse that it has approximately the same shape.
However, large figures may transform into images that bear no
resemblance to the original.

Even though the sizes and shapes are distorted by expansion,
contraction, rotation, or translation, or a combination of these it must
be remembered that under conformal transformations the angles are re-
served. From this we conclude that sets of orthogonal curves are mapned
into orthogonal curves under every conformal transformati.n. A system of
orthogonal curves on a surface is defined by James and Janes [5, IZ. 276]
to be "a system of two one-parameter families of curves on a surface,

S, such that through any point of S there pas:es exactly one curve of
each family, and such that at each point, 2, of S the tangents to the
two curves of the system through P are mutually ncroendicular or

right-angled."




CHAPTER IIT

THE TRANSFORMATICONS

Properties. The function which will be considered here
(3.1) w = sin z
is an elementary transcendental integral function. It is easily recog-

nized as an elementary function when represented in the exponential form

eiz _ e-iz
%) e =e -
(3.2) =
If the series
23 z5 z %
(3‘3) Sinzéz—-j-!-+-5--!-—?T+-9-T-...

is an infinite series it represents sin z but requires an infinite number
of terms. Hence, it is not an algebraic expression and is known as a
transcendental function. The above Maclaurin Series exnansion, however,
denotes that the function is integral [5, Df, 140] o

For each value of z there is one and only one value of w. The
function is thercfore single-valued.

Equation (3.1) may be represented in the following manner:

u + iv = sin ( x + iy)
= sin x cos iy + cos x sin iy

(3.4) u + iv = sin x cosh y + icos x sinh y.
Equation (3.4) implies that
(3.5) R(w) = u(x,y) = sin x cosh y

(3.6) Im(w) = v(x,y) = cos x sinh y .

il
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The derivative of the function is
£'(z) = cos z
= cos (x + iy)
= c0S X coS 1y - sin x sin iy

(3.7) f'(z) = cos x cosh ¥y — i =in x sinh y .

The derivative exists at every point in the z-plane. The first and
second order partial derivatives of the real and imaginary jarts of sin z

are as follows:

(3.8) u = cos x cosh y 9 uy = sin x sinh y

(3.9) v, = —-sin x sinh y , T, = cos x cosh y

3.10 = =si h = sin X

( ) u sin x cosh y , uyy sin x cosh y

(3.11) v ==-cos x sinhy , v __ =cos x sinh y .
nX yy

The zeros of the function may be found by considering equctions
(3.5) and (3.6) and noting that the zcros m-st satisfy the equation
(3.12) w==sin z =0 .
Both the real and imaginary parts of w must be ecual to zero, Thus,
(3.13) sin x cosh y =0 and cos x sinhy =0 .
Since x and y are real, cosh y never vanishes, while sin x = O only for
the values x = O, #], #2 , #3 , ... . The function cos x # O for
these given values of xe. This implies that sinh y must vanish. The
only value of y for which sinh y = 0 is y = O. Thus, zeros exist for
the sin z function only when z takes on the real values

z=0, #n (n=1, 2, 3, ...).
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If the derivative of the function, (3.7), is inspected for its
zeros, we find that such zeros exist only for
cos x coshy=0 and sinxsinhy=0.
As pointed out before, each y is never equal to zero which implies that

:0:31’-:&5"-

cos x = O must hold. This is true for values of x = = I, 59 F 57y ees

2
This makes it necessary that sinh y = O since sin x never vanishes for
these values. Hence, y = O, and only zeros of cos z are real values

z==l=222—+—}-1r (n'="0; 1, 2; ..).
These are the critical points of the function w = sin z. It should be
noted here that a critical point, z , implies f'(zo) = 0. A conformal
mapping requires that £'(z) # O. Thus a mapping is never conformal at
a critical point.
It has already been shown that the derivative of sin z exists
at all points of the z-plane. The analyticity may be shown in another
manner. The equations (3.5), (3.6), (3.8), and (3.9) are continuous

and single-valued, and the following relationships apply:

u =v and u_ =-=v_ .
X y y x

Thus, the Cauchy-Riemann conditions are satisfied, and the function
w = sin z is analytic at all points in the region.

The conditions of Laplace's equation (2.1) are met as evidenced
by inspection of the second order partial derivatives, (3.10) and
(3.11), of the function. That is

+u =0and v +vyy=0 .

u
XX yy XX

The function is therefore a harmonic function.
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That the function sin z is periodic with a period of 2 is
evidenced by the fact that
(3.14) sin (z + 2m) = sin z .

The z-plane may be divided into strips such that
(3.15) (2n - I)r<x < (2n + 1) and y =0 (n=0, 1, £2, ...).

Each strip is called a period-strip. kach distinct period-strip
will then map into the complete w-plane with a branch cut extending from
the origin along the negative half of the imaginary axis to infinity. The
z-plane may also be divided into period-strips such that
(3.16) nt< x < (n+ 2)r and y =20 (n=0, £1, £2, ...).
In this case the period-strip maps into the whole w—~plane with the branch
cut extending from the origin along the positive half of the imaginary
axis to infinity.

Thus, there are an unlimited number of period-strips in the
z-plane and an unlimited number of branches 1 the w—plane. These
superimposed branches constitute the Riemann surface for w = sin z.

Transformations. The portion of the z-plane that will be consid-
ered in this investigation of the function w = sin z is the period-strip
where x and y are limited to the following values
(3.17) O0<x<2m and y=0.

This period-strip maps into the whole w-plane with the branch cut ex-
tending from the origin along the positive half of the imaginary axis

to infinity. The corresponding letters indicate the regions of the
z-plane that are mapped into quadrants of the w-plane. The correspondence

of the branch cut to the boundary lines of the period-strip of the z-plane




are indicated by two distinct markings. The hash marks along the
boundary line indicate that the boundary points are included, while
the wavy line paralleling the boundary line indicates that the boundary
points are excluded. No generality is lost in the selection of this

particular period-strip.

16

z-plane w~plane
by 0L v
v i | |
A | |
b
AR T B b
Lo b ¢ d d a
! ! [
Lo
| I t
L | ! 1 X 4 m
4 i 1« o
¢ b
o<x<2m, y>0 >0 , 0< gL 27

Figure 1. Transformation of period strip under w = sin z.

Some elementary figures to be considered are the general cases
of parallel and horizontal line segments. The line segment
(3.18) y=0, 0<Lx<2¢
transforms into the line segment -1 €< u <1. It should be noted that
as x increases in value from O to 2w, u increases in value from O to 1,
from 1 to -1, and then from -1 to O.

The line segment
(3.19) y=k, 0<x<2y, where k>0,

maps into the ellipse whose parametric equations are
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(3.20) u = sin x cosh kX , v = cos x sinh k .
An ellipse of this type is reoresented by the equation

2 2
(3.21) u N v - 1

coshzk sinhzk

and is illustrated in Figure 2. An examination of equation (3.21)

shows that all such ellipses are confocal with foci at w = %+ 1.,

z-plane w—plane
Y v
j=n
¥ u
2 T m +
2 2
y=k >0, 0<x<2n u L Y -1

cosh2k sinhzk
Figure 2. Transformation of y = k under w = sin z.
The branch cut in this case, or the line,
(3.22) u=0, v>0
is the image of the line

(3.23) x=0,y20.
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As illustrated in Figure 3, the line
(3.24) x=c¢,y=>0
where 0 < ¢ < 2y maps into the curve
(3.25) u = sin ¢ cosh y , v = cos ¢ sinh y
which is the hyperbola
u? v
1

(3.26) -

. 2 2
sin ¢ cos c

An examination of (3.26) shows that all such hyperbolas are confocal

with foci at w = + 1.

z-plane w-plane

y \%
x=C
X +
o 7 27 1) e ]

2 2

u v
ogx=c<2m, y>0 B

sin ¢ cos ¢

Figure 3. Transformation of x = ¢ under w = sin z.
It has been shown that the function w = sin z has a derivative

that exists at all points of the region. It has also been shown to be

analytic at all points in the region. Therefore, the function is



conformal, which implies that orthogonal sets of curves map into
orthogonal sets of curves.

The orthogonality of the curves in the w—plane may also be
shown in another manner. The slope of a curve at a point is the de-
rivative evaluated at that point. A horizontal line segment, y =k,
is a funciion of the independent variable x only. Its image expressed

by equstion {3.20) is also a function of x only. The derivative of
these marameiric equations is the slope of the image of y = k in the
w-plane. Likewise, a vertical line segment, x = ¢, and its image are
funciions of ¥ only. The derivative of the parametric ecuations

(}.24) as a function of y anly is the slore of the image of x = ¢ in
ihe w—plane. The slopes of these iwo families of curves in the w—plane
are then expressed as the derivatives of ecuations (3.5) and (3.5

of y.

take=n first as = function of x and then as a function

These derivatives may be denoted by
\ a TRE a

ooy dv| x ‘dv ¥

.L3n6|. d_n.j =—'— " (% =_v_'g
Vo =k x i = ¥

. v cos x coshy [iv| sin x sinh ¥

- — e T s e — 5 .
i I:l"..,r‘ . sinx sinh y ' |3n cos x cosh ¥

y=k LA = 0
The product of these slopes
1 f':vl {'—.'::ll - =
= . & __ ="t
'y =k s SN

This i true for all points except the points on the lines, x = 0 &nd

19
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When y = O,

f=
il

sin x cosh O , v = cos x sinh O ,

and u = sin x , v =0

These equations produce derivatives of indeterminate fori. The product
of the slopes cannot be found in this case. Therefore, the two families
of curves are orthogonal everywhere except for the values, x = 0 or

y = 0.

This transformation will now be considered for a more general
case. If the real variable, y, can be expressed as an analytic function
of the real variable, x, the resulting curve can be ex.ressed in a form
from which the parameters have been eliminated.

Beginning with the parametric equations of the function,

w = sin z,
(3.30) u = sin x coshy and v = cos x sinh y ,
squaring, rearranging and combining gives the elli tical form of the

equation,

a2 Vz
(3.31) + = 1

coshzy sinhzy

2
Multiplying both sides of the equation by cosh y sinhzy, and substi-

tuting the exsonential form of the hymerbolic function produces

y -y 2 y -7 2 v = y -y
2(e” = e 2fe’ + e e’ + e e’ - e
(3.32) u (___5____) + v (___5____ ( 5 ) < - )

1l

Squaring and rearranging terms gives

(3.33) 4u2(e2y + em2y -2) + 4v2(e2y + e-2y +2) = M 4 e-4y -2 .
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Substitution of s = e2y yields

(3.34) 4u2(s + s-1 =2) + 4v2(s T

Ly

+2)=s"+s " +2~4, and

1

(3.35) 4u2(s +s ) - 8u2 + 4v2(s + s_l) + 8v2 = (s +s

Letting (s + s—l) = t, and solving for t by use of the quadratic formula

gives,

2 2
(3.36) 2 - 4(u” + v2)t + 8(u” - v2) - 4=0, and
(3.37) = (u2 + v2) iv&uz + v2)2 - 2(u2 - v2) +1 .

Replacing t by its equal, (s + s—l), and letting the right hand vart of
equation (3.37) be represented by d,

1

(3.38) H(s+s )=4d.

The substituion, e2y = s, now gives a hyperbolic form,
(3.39) sz_g_sfb_’ —d, or

(3.40) cosh 2y = d.

This can be arranged in the form

(3.41) y =3 e -

Letting

(3.42) 5 = cosh™’ d = In(d + -1) ,
then,

(3.43) v = ¥a.

Thus, when y = f(x),
(3.44) v =f(x) =% and x =gla) ,

where g(a) is some function of a.
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The hyperbolic functions, sinh y and cosh y, may be evaluated as

follows:

(3.45) sinh y = sinh fa = +/2(cosh a - 1)
=|/%(d - 1) ’

and

(3.46) cosh y = cosh %a = y/2(cosh a + 1)

‘/‘E(d +1) .

The parametric equations (3.30) can now be expressed as,

(3.47) u=\A@+1) sinf(a)] and v==+y/Hd-1) cosfg(a).

The family of straight lines which pass through the origin,

(3.48) y = f(x) = X ’
where misthe slope of the line, will now be considercd. Combining
equations (3.43) and (3.48) yields

a
(3.49) mx = a and x = g(a) = 5 .

The equation of the images of this family of lines may then be expressed

in the form

u d + 1 a
(3.50) ; = (.‘—:—T tan -—2;1 ’
or .a
n
u d+1 e -1
(3.51) L e
o
e + 1

The equation of the curves which are the images of any genecral
line of the form,
(3.52) y=f(x) =mx +b ,

where m is the slope of the line and b is the y-intercept, is similar




to equation (3.51). From equations (3.43) and (3.52),
(3.53) mx +b=2a and x = ——2-22 .

The parametric equations (3.30) are expressed in the form

u = sin x cosh (mx + b)

(3.54) = sin x (cosh mx cosh b + sinh mx sinh b) ,
v = cos x sinh (mx + b)

(B855) = cos x (sinh mx cosh b + cosh mx sinh b) .

The equation without the parameters is then of the form

(3.506) = = .
v .

If the real variables, x and y, are expressed in polar
coordinates
(3.57) x=rcos® and y=r sin 6 ,
the parametric equations of the transformation are of the form
u = sin(r cos 8) cosh(r sin 0)

(3.58)

v = cos(r cos ©) sinh(r sin 8) .

The straight lines passing through the origin can then be represcnted
by letting © be a constant and letting r vary. lence, sin 6 and cos ©
are constants, which will be represented by A and /1 - A2 respectively,
and

(3.59) x=rcos®=r,/1-A and vy =r sin 8 = rA.
Equations (3.58) are then expressed by the equations

sin rA cosh r8

cos TA sinh rB , vhere B8 = \/1 - A2 o

u

1l

(3.60)

<
i

23
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If r remains constant such that
P =08
and © varies, the paranmetric equations

u = sin(R cos 8) cosh (R sin 8)

(3.61)

v = cos(R cos 8) sinh (R sin 9)

il

express the shape of the images of a set of concentric circles with
their centers at the origin of the z-plane.
The general equation,
.2 2
(3.62) K(x“+y) + Nx+Py+Q0 =0,
where x and y are real variables and K, N, P, and Q are constants,

may be used to represent any circle in the z-plane. dolving for y,

-P :h\/PZ = 4K(lixz + Nx + Q)
2K o

(3.63) ¥ = 3a =

Rearranging and solving for x in terms of a oroduces the following form

for x,

- + »/N2 - K(Ka.2 + 2Pa + 4Q)
2K o

(3.64) x = g(a) =

This is an especially long and unwieldy form, but in connection with
equation (3.43) and the parametric equations (3.30) will give the image
of the general circle under the transformation w = sin z.

The parametric equations (3.58) have been used to compile a table
of values, Table I. Values or r ranging from O to 9 in increments of
.25 of a unit were used, while 8 was allowed to assume values of O, n/32,
n/16, n/8, 316, ™4, 51/16, 378, 71m/16, and T/2. The quantities
r cos © and r sin 9 were then calculated and substituted into equations

(3.58) to obtain the tabulated values of u and v. These values were
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employed to plot the images of selected lines and circular arcs under
the transformation w = sin z. Values of Table I are accurate to four
significant digits. However, the accuracy was limited so that a
hundredth of a unit represents the greatest degree of accuracy. This
degree of accuracy obviously cannot be read from the mappings.

The lines that were transformed are the lines extending radially
from the origin with the angles of /32, T/16, 7/8, 37/16, T/4, 57/16,

31/8, and 7T/16. The length of these lines, r, are such that 0< r <

2 -
cos &’
where 6 is their respective angle.

The large numerical values involved in the computations and the
size of the required map made it necessary to limit the values of r
still more, so that r << 9.00. The lines and their images are repre-—
sented in Figures 4a, 4b, 4c, and 5. It was also necessary to make the
inset, Figure 4b, for Figure 4a and the inset, Figure 4c, for Figure 4b
because of the wide range of values which determine the curves. Figure
5 represents the lines 6 = 7/32, 8 = /16 and 0 r 50_02"55 9, in
considerable detail. The purpose of this particular map was to investi-
gate a line that was more nearly parallel to the x-axis than the others.

The circular arcs selected for transformation under w = sin z are
the arcs of concentric circles with their centers at the origin. These
arcs are in the first quadrant of the z-plane. Thus they are contained
in the period-strip that was selected for study. They are arcs of the
circles, r =n, (n=1, 2, 3, 4, 5, 6), and their angles are 00 T/2.

It was necessary for clarity to represent their images on a map, Figure

6a, which has an inset, Figure 6b.
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TABLE I
VALUZS FPOR THE TRANSFORMATION w = sin z.
u = sin(r cos 8) cosh(r sin 9)
ol I o 2n us m 3n Ir =
r 32 16 8 16 4 16 8 16 2
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.00
.25 .25 025 02> 023 .21 .18 .14 .10 .05 .00
.50 .48 .48 AT .45 .12 .36 .30 o2l .11 .00
.75 .68 .68 .75 .66 .63 .58 .49 .36 .19 .00
1.00 .84 .84 .85 .35 .86 .82 .76 .54 .30 .00
.25 .95 5C)5) 97 1.02 1.11 1.09 1.01 o0 44 .00
.50 1.00 1.01 1.04 1.15 1.30 1.41 1L, 25l 1,15 .65 .00
.75 .98 1.00 1.05 1.23 1.50 1.77 1.87 1.63 .96 .00
2.00 .91 .93 1.00 1.26 1.67 2.16 2.44 2.27 1.38 .00
.25 .78 .80 .89 1.22 1.80 2.55 3.15 3.11 1.97 .00
.50 .60 .62 .71 1.11 1.37 2.97 4,00 4.17 2.75 .00
.75 .38 .40 .49 .91 1.82 3.31 4,98 557 3.34 .00
3.00 .14 17 .23 -6 1.66 3.97 6.10 7.31 5.28 .00
.25 - .11 - .10 - .26 .26 1.33 4,14 S 9.55 T.34 .00
50| - .35 - .35 - .24 - .18 .03 4,18 $.55 11.96 9.55 .00
75| - .57 - .60 = .65 - .71 .08 3.29 9.65 16.45 13,65 00
4,00 - .76 - .80 - .93 =1.28 - .42 2.87 10.96 20,22 17.38 .00
.25 - .90 - .97 -1.17 -1.87 - 2.13 1.40 12.14 27.00 23.88 .00
.50 - .98 -1.07 ~1.35 -2.46 - 3.46 - .48 12.57 31.99 31.74 .00
.75 -1.00 -1.11 -1.46 -2.98 - 5.10 - 3.15 12.4 3%.16 42.34 .00
5.00| - .96 =1.07 =1.49 =3.44 - 6.89 - 6.72 11.40 47,83 55.77 .00
25| = .86 - .98 =1.43 -3.72 - 8.76 -11.03 8.63 58.04 73.93 .00
.50 - .70 - .83 -1.28 -3.86 ~10.57 -16.68 3.97 69.33 96.67 .00
75| = .50 - .61 =1.02 =3.67 =12.25 -23.48 - 3.61 81.70 1273 .00
6.00] - .28 = .36 = .55 =3.36 -13.55 -30.94 -~ 13.88 94.82 165.4 .00
.25 =0.03 =0.07 -0.28 =2.68 =-14.19 =-39.81 - 29.36 109.3 216.5 .00
.50 -1.68 -14.14 -49.44 - 50.64 122.1 279.8 .00
oD -0.33 =13.04 =-59.41 - 79.03 134.9 364.2 .00
7.00 ~10.86 -68.56 =114.8 143.3 472.7 .00
.25 - 6.96 =77.14 -161.5 146.9 606.0 .00
.50 ~ 1.30 =-83.45 =220.4 13654 T74.9 .00
.75 -86.03 -291.3 115.2 998.3 .00
8.00 ~84.26 =372.3 64.72 1,283. .00
.25 -73.25 -472.6 - 10,10 1,630 .00
.50 -52.90 -588.0 -140.8 2,065. .00
.75 -22.03 ~717.3 =308.2 2,636. .00
9.00 -848.9 -586.9 3,356. 0.00




TABLE I (CCONTINULD)

= cos(r cos 8) sinh(r sin 8)
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v
bl L @©m =x 33 @& 5w 37 T z
r 32 16 8 6 4 16 g 16 2
0.00[0.00 0.00 0.00 0.00 0.00 0.00  0.00 0.00  0.00  0.00
.25/ .00 .02 .05 .10 .14 .18 .21 .24 .25 .25
50| .00 .04 .09 .17 .26 .34 .42 .47 .51 .52
750.00 .05 .11 .23 .35 .48 .60 .71 .80 .82
1.00| .00 .05 .11 .24 .38 .58 .79 1.00  1.11 1.18
25| .00 .04 .08 .20 .40 .64 .95 1.26  1.52 1.60
.50 .00 .01 .03 .11 .29 .62  1.08 1.59 1.97  2.13
750 .00 - .03 = .05 = .04 .13 .51  1.16 .90 2.55  2.79
2.00| .00 - .08 - .15 = .23 - .13 .31 1,13 2.23  3.22  3.63
25| .00 = .14 - .26 - .47 - .49 = .04  1.00 2.54  4.07 4,69
.50 | .00 = .20 = .39 = .75 - .94 - .54 .71 2.88  5.07  6.05
75| .00 = .25 - .51 -1.04 -1.45 - 1.23 .20 3.8 6.81  7.79
3.00 | .00 - .30 - .61 =1.36 —2.04 - 2.38 = .60 3.25  7.84  1).02
.25 | .00 = .32 = .67 =1.57 =2.69 - 3.65 - 1.76 3.16  9.82  12.88
.50 | L00 = .34 - .69 -1.77 -3.32 = 5.09 - 3.39 2.80 11.54  16.54
75| .00 = .31 - .69 -1.89 =3.94 - 6.31 - 5.51 1.99  14.93  21.2
4.00 | .00 - .27 - .61 =1.87 -4.46 - 8.04 - 8.20 .82 17.96  27.29
.25 ] .00 - .20 - .48 -1.71 —4.83 - 9.92 - 11.76 -  1.25 22.50  35.04
.50 | .00 = .11 = .30 -1.41 -4.99 -12.24 - 16.21 =  5.01 25.95  45.00
75| .00 .10 = .05 - .94 -4.81 -14.60 - 23.95 =  9.71 32.86  57.79
5.00 | .00 .14 .22 - .30 -4.20 -15.24 - 31.20 = 16.62 37.40  74.20
25| .00 .27 .52 .51 -2.45 -17.02 - 39.74 - 28.04 46.66  95.28
.50 | .00 .40 .82 1.46 -1.44 -18.07 - 49.58 - 41.51 52.18 122.3
750.00 .50 1.11 2.52 .99 -17.85 - 60.64 - 59.08 57.69 157.1
6.00 | .00 .60 1.34 3.65 4.72 -15.12 - 72.87 - 81.66 T71.21 201.7
.25 P.00 0.65 1.53 4.72 7.80 -11.66 - 85.74 — 120.8  76.61  259.0
.50 5.76 11.79 - 5.50 - 98.70 — 160.6  89.16  332.6
.75 6.55 17.65 4.30 -110.8 - 208.7  91.20  427.0
7.00 22.12 16.01 -120.8 - 298.0 103.0  543.3
.25 29.22 33.42 -127.0 - 378.7  97.02 704.1
.50 33.30 56.63 -126.8 - 478.2  90.45 904.0
.75 85.24 -129.8 - 658.9  60.70 1,16l.
8.00 121.6 -108.4 - 815.4  13.17 1,491.
.25 149.4 - 64.71 - 999.1 - 67.18 1,914.
.50 194.9  6.54 -1,216. -182.4 2,457T.
.75 245.1 111.2 -1,461  -381.1 3,155.
9.00 259.2 -1,927  ~629.1 4,052.
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Figure 4a. Transformation of the lines 0 < r =< 27/cos 6 =9

and ® = nr/16

(n=1, 2, 3, 4,5, 6, 7)

under w = sin z.
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Figure 4b. Inset for Figure 4a. Transformation of the lines

0<r<2mcos ©<£L9 and & =n716 (n=1, 2, 3, 4, 5, 6, 7) under

w = sin z.
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Figure 4c. Inset for Figure 4b. Transformation of the lines

0<Lr< 2m/cos ©<9 and 8 = n7/16

w = sin z.

(n=1, 2, 3, 4, 5, 6, 7T) under




31

Yy z-plane

Figure 5. Transformation of the lines = 7/32 , 8 = 7/16

and 0 < r < 2v/cos 8 £9 under w = sin z.
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Figure 6a. Transformation of the circular arcs in the first
quadrant of the z-plane, 0<6<7%/2 andr=n (n=1, 2, 3, 4, 5, 6)

under w = sin z.
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Figure 6b. Inset for Figure 6a. Transformation of the circular

arcs in the first quadrant of the z-plane, 0<8< 72 and r =n

(n=1,2, 3, 4, 5, 6) under w = sin z.
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Transformations under other functions. The functions cos z,

sinh z, and cosh z will now be considered. To accomplish this the tool
of successive transformations will be utilized. Transforming a function
of z into another variable, which is then transformed into w by the
original function is known as successive transformations.

Since the function, sin z = cos(z - /2),
(3.65) w =sin z = cos z' , where z' =z - /2.
Therefore, the transformation, w = cos z, is the same as the transfor-
mation, w = sin z, preceded by a translation to the left of each point
of the z—plane through 17/2 units.

The function, w = sinh z, can be written
(3.66) iw = sin(iz)

since sinh z = =i [sin (izﬂ . DBcuation (3.66) can be written

(3.67) w' = sin z', where iv = w and iz = z'.

The axes of cach plane can be rotated through the angle 2,
and then the transformation w = sin z applied to obtain the transfor-
mation w = sinh z.

Following a similar procedure w = cosh z can be written in the
form

w = cos(iz)
because cosh z = cos(iz). Then,
w = cos z' , where z' = iz,
and w = cos z' = sin z" , where z" = z' + T/2.

Therefore, w = cosh z is a combination of the rotation of the axes of the
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z-plane through an angle 7/2, the translation of all points in ‘the
z'-plane 17/2 units to the right, and the transformation under the function

w = sin z.

The properties of the sin z function that have been discussed
apply to each of these functions as well., Therefore, it will not be
necessary to reiterate these properties. After the preliminary transfor-
mations have been applied to these functions, mappings identical to

those of the sin z function will result,




CHAPTER IV

SUMMARY

Reference material concerning conformal transformations under
trigonometric and hyperbolic functions is very limited. Apparently,
very little work on these transformations has been published other
than the cursory treatment presented in most complex variable and
applied mathematics textbooks.

The investigation of the problem of this paper presents the
probable reason for this lack of material. A discussion of the gen-
eral properties of these functions presents no specific problem. The
actual mapping, however, of geometrical figures by these functions is
a formidable task.

It was shown that the functions being consilcred, sin z, cos z,
sinh z, and cosh z, were very closely related. Therefore, the investi-
gation of w = sin z was sufficient to determine the »roperties of each
function.

It was found that the usual renrescntation by parametric
equations can be changed into an expression which is a function of u
and v only. General cases of lines and circles were considered.
Zauations of images of lines and circular arcs were extremely complex.
It was not possible by methods known to this writer to reduce the
expressions into more usable forms.

Parametric equations were used in transforming selected lines

passing through the origin and selected concentric circular arcs with
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the origin as their center. The images of both the lines and the arcs
were spiral shaped. The images of the lines started at the origin of
the w-plane and spiraled outwardly in a clockwise direction.

The images of the arcs spiraled from a point on the nositive
v-axis inwardly in a clockwise direction. These spirals ended on a
line segment such that v = 0 and -1 € u 1. The general shape of
their image was determined by the length of the radius of the circular
arc.

No immediate application of the results of this paper are known.
The vroblem suggests that there is need for the development of a
method of representing trigonometric and hyperbolic transformations

that would greatly facilitate their evaluations.
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