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CH.A.Pl'ER I 

INTRODUCTION 

Conformal mapping occupies a prominent position in the field of 

the theory of functions of a complex variable. The importance of this 

theory in the application of mathematics to other sciences is also 

noteworthy. 

The general theory has been developed through the efforts of 

such noted mathematicians as Gauss, Argand, Dirichlet, Cauchy, Riemann, 

and Weierstrass. Several well-known modern mathematicians have also 

contributed to its present state of development. 

Most works concerning complex variables include sections illus-

trating mapping under various functional relationships. For this 

purpose most authors represent the variables of the functions in 

either rectangular or polar coordinates. Their use is determined by 

the facility of calculation. 

Rectangular coordinates are frequently employed for mapping 

under trigonometric and hyperbolic functions. Mapping of vertical and 

horizontal lines is frequently studied under these transformations. 

The nature of their images suggested to this writer the investigation 

of mappings of other geometrical figures. 

The main problem of this paper is the study of certain trigono-

metric and hyperbolic transformations. The functions sin z, cos z, 

sinh z, and cosh z will be considered. Particular emphasis will be 

placed upon the images of circles and non-vertical and non-horizontal 

lines produced by these transformations. 



CHAPTER II 

FUNDAMENTAL CONCEPI'S AND DEFINITIONS 

Knowledge of certain facts is required as support for study of 

any problem that is encountered. For this purpose some fundamental con-

cepts and definitions from the general theory of complex variables and 

analytic functions will be stated. 

It is assumed that the reader has a working knowledge of complex 

numbers and of the theory of functions of a complex variable. The form 

of complex variables used herein will be z = x + iy and w = u + iv, 

where x, y, u, and v are real variables. The real parts and the imagi-

nary parts of the complex variable, w, will be represented by 

u = R(w) and v = Im(w) , respectively. 

The first partial derivatives of the dependent variables, u and v, with 

respect to the independent variables, x and y , will be represented by 

ux' vx, uy, and vy. The second partial derivatives of u and v with 

respect to x and y will be represented by uxx' vxx' uyy' and vyy. 

The equation of a circle with center at the point, z, and a 
0 

radius of length, d, is lz - z
0

j = d. The set of all points interior 

to this circle is represented by the relation \z - zJ < d. 

Franklin [4, pg 16] defines a neighborhood, or an E. neighbor-

hood, of a point, z
0

, as the set of points, z, such that 

I z - zo j < €. ' 

where l is a given positive number. The set of points consisting of 

all points in a neighborhood of z except z itself is a deleted neigh-
o 0 

borhood. 
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A set of points, S, is said to be connected if any two of its 

points can be joined by a continuous curve all of whose points belong to 

S. A connected set of points in a plane is usually called a region. 

The relationship of each of these points to the region is embodied in 

the definitions of the following three distinct t ypes of points. An 

inner point of a region is any point, z, which has at least one neigh-o 

borhood such that all points in this neighborhood are points of the 

region. A neighborhood of a point, z, that contains no points of the 
0 

region signifies that z is an exterior point. Points which are 
0 

neither interior nor exterior points are called boundary points. These 

have neighborhoods that contain both points of the region and points 

exterior to it, however small £ of the neighborhood may be. 

A point, z, is said to be a limit point of a set of points, S, 
0 

if and only if every neighborhood of z contains at least one point of 
0 

S other than z. From the above definitions we can see that a limit 
0 

point must necessarily be an interior point or a boundary point. Thus 

it may or may not be a point of S. 

Regions are classified as open or closed, or neither. If every 

point of a region is an interior point , the r egion is said to be open. 

An open region is also referred to as a domain. A closed region 

[ 2, pg . 17] is a set of points consisting of an open region with all 

its limit points included. However, a set consisting of a domain with 

some of its boundary points included and some excluded is neither open 

nor closed. 



In 1837 Dirichlet formulated the definition of a function of a 

real variable that is widely accepted today. "If for each value of a 

variable, x, there is determined a definite value or set of values of 

another variable, y, then y is called a function of x for those values of 

x [n, pg. 21] • 11 If there is determined one and only one value of y 

the function, f(x), is single-valued. A multiple-valued function is 

one for which a set of values of y is determined for each value of x. 

Although the accepted definition of a function is swiftly being shifted 

from that of Dirichlet to one involving sets, the former will be used 

in this paper. 

Later, Cauchy applied complex values to variables and from this 

work the theory of functions of complex variables developed. The com-

plex variable, w, is a function of the complex variable, z, in a given 

region, S, if for each value of z in this region w has a definite value 

or set of values. The following notation is used to denote this: 

w = f(z) = u(x,y) + iv(x,y), 

where u and v are real functions of t he two real variables, x and y. 

4 

An elementary function of the complex variable z is defined by 

Franklin [4, pg. 701 to be a function which can be explicitly represented 

in terms of complex constants and the independent variable, z, by means of 

the four fundamental oµerations and the two basic functions, using at most 

a finite number of operations and at most a finite number of basic func-

tions. The two basic elementary functions of a complex variable are the 

exponential and logarithmic functions, ez and log z. 



The inverse of an elementary function is not necessarily elemen-

tary. For example, if 

w = f(z) z = z + e 

is elementary, the inverse 

z = g(w) is not elementary. 

We will be concerned with two types of rational functions. A 

rational integral function is of the form 

where a
0

, a1 , a2 , ... ' a are constants and n is a positive integer. n 

5 

The quotient of two such rational integral functions produces a rational 

fractional function. All functions which are not classified under one 

of these two rational types are irrational functions. 

Functions are also divided into algebraic and transcendental 

classes. Any variable, w, is an algebraic f ..lllction of z if wand z are 

related in an irreducible equation of the form 

where f
0

(z), f 1 (z), ••• , fn(z) are rational integral functions of Zo 

Some examples of algebraic functions are: 

n 
w = z 

1 ,w=z 

It is a matter of interest to note here that all rational functions are 

algebraic. Trigonometric, exponential, and logarithmic functions are 

examples of transcendental functions . Transcendental functions encompass 

all functions that are not algebraic. 



It should also be noted here that a certain set of values may be 

used in defining a function. A multiple-valued function, w, may be 

considered single-valued in a given region if for each value of z there 

is one and only one value of win that region. 

Sokolnikoff [9, pg. 23] considers the functional dependence of 

one variable upon another and gives this definition of the limit of f(z): 

"The function f(z) approaches the limit Las z tends to z when, corres-o 

ponding to any given positive number E , one can find a number J such 

that { f(z) - Lj < E for all values of z for which O .C:. /z - z J < J . 11 
0 

This is equivalent to the following expression: 

lim f(z) = L. 
z- z 

0 

Only those values which the function takes in the deleted 

neighborhood of the point, z, determine this limit and not the value 
0 

of the function at z. The function must therefore be defined through-o 

out some neighborhood of z
0

, but not necessarily at z
0

, for the limit 

to exist. 

Whether or not a function is continuous is an important 

criterion in analyzing the function. For a function to be continuous 

at a point the following must hold: 

1. the function must be defined at the point in question, 

2. the function must have a unique limit as the variable 

approaches the point, 

3. the value of the limit must be equal to the value of the 

function at the point. 

6 



This may also be represented symbolically by : 

1. f(z) is defined, 
0 

2. lim f(z) exists, 

3. 

z -- z 
0 

lim f(z) 
z - z 

0 

= f(z ) • 
0 

A function is continuous throughout a region, whether open or closed, 

if it is continuous at each point of the region. 

7 

A further property which a function may have is that of analyti-

city. A single-valued function, w = f(z), is analytic [2, pg . 32] at a 

point, z
0

, if and only if its derivative exists at every point i n some 

neighborhood of z. This definition implies that t he derivat i ve must 
0 

exist at z. If a function has a derivative at each point of a r egion 
0 

it is said to be analytic throughout that region. "Regular" and 

"holomorphic" are often used in place of the te rm analytic. 

Any point where f(z) is an analytic functi on is known a s an 

ordinary point. Any point that is not an ordinary point is a singul ar 

point. Thus, the derivative of a function does not exist at a singul ar 

point. A function that is analytic throughout a regi on will not have a 

singular point in that region . For exampl e , a singularity of t he 

function, 
1 f(z) = - , z 

exists at the point where t he derivative of the function, 

f' (z) = - ~2 , 
z 



does not exist. This is at the point, z = 0. The image of the point, 

z
0

, is undefined in thew-plane. 

A zero of a function, f(z), is a number, z, for which f(z) = O. 
0 0 

8 

Churchill [ 2, pg . 194} has shown that the zeros of an analytic function 

are isolated. That is, there is some neighborhood of z throughout which 
0 

f(z) is analytic except at z itself. 
0 

Any point, z, where f'(z) = 0 is called a critical point of the 
0 0 

function. For example, a critical point of the function 

f(z) = z + z-l 

exists at the point, z = 1, where the derivative of the function, 
0 

-2 f'(z) = 1 - z = 0. 
0 0 

The discontinuities of multiple-valued functions are called 

branch points. Branch points always occur in pairs . The line joining 

a pair of branch points is known as a branch cut or a branch line . The 

regions for which branch cuts serve as boundaries are denoted as branches, 

or sheets of a Riemann surface. It is also single-valued in that it 

assumes only one value of the multiple-valued function, f(z), for each 

value of z. A suitable number of sheets, or branches are consider ed 

collectively as a Riemann surface. This presents the transformation 

under a multiple-valued function in such a manner that it can be con-

sidered as a one-to-one relation. 

There are two methods of showing the analyticity of a function: 

1. exhibiting that the derivative exists at every point 

throughout the region R, or 



2. determining, for the function f(z) = u + iv, that u(x,y), 

v(x,y), u, u, v, and v are continuous and single-valued 
X y X y 

and satisfy the Cauchy-Riemann conditions throughout R. 

The Cauchy-Riemann conditions are: 

U = V 
X y and u = -v • y X 

If a function, u(x,y), is assumed to have continuous partial 

derivatives of the first and second order in some given region and if 

it satisfies Laplace's equation in two variables, 

(2.1) u + u = o, xx yy 

then it is a harmonic function. Two harmonic functions, u(x ,y) and 

v(x,y), are said to be conjugate harmonic functions if they satisfy the 

Cauchy-Riemann conditions; i.e., if and only if u + iv is an analytic 

function. 

A concept that parallels and complem0 nts that of multiple-valued 

functions is periodicity of functions. A function is known as simply 

periodic [11, pg . 126] if it remains invariant under a translation of 

the plane by means of the relation, 

z' = z + nt, 

where n is an integer and tis the fundamental period of the function. 

If f(z) is our given function, t hen 

9 

f(z') = f(z + nt) = f(z) n = (1, 2, 3, ... ) 

defines it as a periodic function. A period-strip is then a counter-

part of a branch. 



The expression of the relation of points of one plane to points 

of another plane is defined as mapping. In this paper mappinRS in the 

w-plane and the z-plane are considered under the previously listed func-

tional relation 

w = f(z) = u(x,y) + iv(x ,y) • 

The point, w = f(z), is the image or transform of the point z. The 

enlarged z-plane will be lrnown as the plane consisting of all finite 

points of the z-plane with the addition of the ideal point, z = oo . In 

like manner the enlarged w-plane consists of all finite points of the 

w-plane with the addition of the ideal point, w = oo • With the inclu-

sion of these ideal points a unique one-to-one correspondence between 

the points of the two planes may be established. 

Churchill [ 2, pg. 13ij proves the theorem that at each point 

where a function f(z) is analytic and f'(z)-/:. O, the mapping w = f(z) 

is conformal. If the argument of the function, or the magnitude of the 

angle, is preserved in the transformation, it is said to be conformal. 

The terms "equiangular" and 11 isogonal" are also used for this condition. 

If the transformation preserves the magnitude of the angle but causes 

the angle to be reflected on the axis of reals it is said to be isogonal 

with reversal of angles. 

Under any conformal transformation a harmonic function is trans-

formed into a harmonic function in the other plane. Thus, the following 

relations hold true and satisfy Laplace's equation (2.1): 

u (x,y) + u (x,y) = 0 V (x,y) + V (x,y) = 0 ' xx yy xx yy 

and x (u,v) + x (u,v) = 0 y (u,v) + y (u,v) = 0 • uu vv uu vv 

10 
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The image of each small figure near a point conforms to the 

original figure in the sense that it has approximately the same shape. 

However, large figures may transform into images that bear no 

resemblance to the original. 

Even though the sizes and shapes are distorted by expansion, 

contraction, rotation, or translation, or a combination of these it must 

be remembered that under conformal transformations the angles are pre-

served. From this we conclude that sets of orthogonal curves are mapped 

into orthogonal curves under every conformal transformation. A system of 

orthogonal curves on a surface is defined by James and James (5, pg. 276] 

to be "a system of two one-parameter families of curves on a surface, 

S, such that through any point of S there passes exactly one curve of 

each family, and such that at each point, P, of S the tangents to the 

two curves of the system through Pare mutually per pendicular or 

right-angled." 



CHAPI'ER III 

THE TRANSFORMATIONS 

Properties. The function which will be considered here 

(3.1) w = sin z 

is an elementary transcendental integral function. It is easily recog-

nized as an elementary function when represented in the exponential form 

iz -iz 
(3.2) e - e 

2i 

If the series 
3 5 7 9 

(3.3) sin z z z z z - z - 3! + 5! 7T + 9! 

is an infinite series it represents sin z but requires an infinite number 

of terms. Hence, it is not an algebraic expression and is known as a 

transcendental function. The above Maclaurin Series expansion, however, 

denotes that the function is integral [5, p . 140] • 

For each value of z there is one and only one value of w. The 

function is therefore single-valued. 

(3.4) 

Equation (3.1) may be represented in the following manner: 

u +iv= sin ( x + iy) 

= sin x cos iy + cos x sin iy 

u +iv= sin x cosh y + icos x sinh y. 

Equation (3.4) implies that 

(3.5) 

(3.6) 

R(w) = u(x,y) = sin x cosh y 

Im(w) = v(x,y) = cos x sinh y 
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The derivative of the function is 

f I (z) = cos z 

= cos (x + iy) 

cos X cos iy - sin x sin iy 

(3.7) f I (z) = cos X cosh y - i s in x sinh y 

The derivative exists at every point in the z-plane. The first and 

second order partial derivatives of the real and imaginary parts of sin z 

are as follows: 

(3.8) u = cos x cosh y u = sin x sinh y 
X y 

(3. 9) V = -sin x sinh y V = cos X cosh y 
X y 

(3.10) u = -sin x cosh y u = sin x cosh y 
xx yy 

(3.11) V = -COS X sinh y V = cos X sinh y xx yy 

The zeros of the function may be found by considering equations 

(3.5) and (3.6) and noting that the zeros m1 st satisfy the equation 

(3.12) w = sin z = 0 • 

Both the real and imaginary parts of w must be equal to zero. Thus, 

(3.13) sin x cosh y = 0 and COS X sinh y = 0 • 

Since x and y are real, cosh y never vanishes, while sin x = 0 only for 

the values x = O, ~1, ~2, ~3, •••• The function cos xi O for 

these given values of x. This implies that sinh y must vanish. The 

only value of y for which sinh y = 0 is y = O. Thus, zeros exist for 

the sin z function only when z takes on the real values 

z = O, n (n = 1, 2, 3, ••• ). 



If the derivative of the function, (3.7), is inspected for its 

zeros, we find that such zeros exist only for 

cos x cosh y = 0 and sin x sinh y = 0. 

As pointed out before, each y is never equal to zero which implies that 

cos x = 0 must hold. IL 3-rr 5,r This is true for values of x = ¼ 2 , ¼ 2-, ¼ 2 , 

This makes it necessary that sinh y = 0 since sin x never vanishes for 

these values. Hence, y = O, and only zeros of cos z are real values 

2n + 1 
z = ¼ --2-- 1T (n = O, 1, 2, ••• ). 

These are the critical points of the function w = sin z. It should be 

noted here that a critical point, z, implies f'(z) = 0. A conformal 
0 0 

mapping requires that f'(z) JO. Thus a mapping is never conformal at 

a critical point. 

It has already been shown that the derivative of sin z exists 

at all points of the z-plane. The analyticity may be shown in another 

manner. The equations (3.5), (3.6), (3.8), and (3.9) are continuous 

and single-valued, and the following relationships apply: 

U = V 
X y and u = -v y X 

Thus, the Cauchy-Riemann conditions are satisfied, and t he function 

w = sin z is analytic at all points in the region. 

The conditions of Laplace's equation (2.1) are met as evidenced 

by inspection of the second order partial derivatives, (3.10) and 

(3.11), of the function. That is 

u +u Oandv +v =0 xx yy xx yy 

The function is therefore a harmonic function. 

14 



That the function sin z is periodic with a period of 2 is 

evidenced by the fact that 

(3.14) sin (z + 2 rr) = sin z. 

The z-plane may be divided into strips such that 

15 

(3.15) ( 2n - 1 )rr ::;; x < ( 2n + 1) TT and y 0 (n = O, = 1, = 2, •.• ). 

Each strip is called a period-strip. Each distinct period-strip 

will then map into the complete w-plane with a branch cut extending from 

the origin along the negative half of the imaginary axis to infinity. The 

z-plane may also be divided into period-strips such that 

(3.16) n rr~ x < (n + 2) rr and y ~ O (n = 0, :I: 1, = 2, •.• ) • 

In this case the period-strip maps into the whole w-plane with the branch 

cut extending from the origin along the positive half of the imaginary 

axis to infinity. 

Thus, there are an unlimited number of period-strips in the 

z-plane and an unlimited number of branches ~ thew-plane. These 

superimposed branches constitute the Riemann surface for w = sin z. 

Transformations. The portion of the z-plane that will be consid-

ered in this investigation of the function w = sin z is the period-strip 

where x and y are limited to the following values 

(3.17) O~ x < 2 rr and y ~ O. 

This period-strip maps into the whole w-plane with the branch cut ex-

tending from the origin along the positive half of the imaginary axis 

to infinity. The corresponding letters indicate the regions of the 

z-plane that are mapped into quadrants of thew-plane. The correspondence 

of the branch cut to the boundary lines of the period-strip of the z-plane 



are indicated by two distinct markings. The hash marks along the 

boundary line indicate that the boundary points are included, while 

the wavy line paralleling the boundary line indicates that the boundary 

points are excluded. No generality is lost in the selection of this 

particular period-strip. 

z-plane 

y I 

tJ.- I h 
I 
I 
I 

0 rr 

c. I c:1 

X 
.111 

d 

C 

w-plane 

V 

0 

b 

Figure 1. Transformation of period strip under w = sin z. 

Some elementary figures to be considered are the general cases 

of parallel and horizontal line segments. The line segment 

(3.18) y = 0, O~ x<2 rr 

transforms into the line segment -1 u ~ l. It should be noted that 

as x increases in value from Oto 2 rr- , u increases in value from Oto 1, 

from 1 to -1, and then from -1 to 0. 

The line segment 

(3.19) y = k , 0 x -cC 2 TT , where k > 0, 

maps into the ellipse whose parametric equations are 

16 



(3.20) u sin x cosh k, v = cos x sinh k. 

An ellipse of this type is represented by the equation 

(3.21) 2 
+ V = l 

and is illustrated in Figure 2. An examination of equation (3.21) 

shows that all such ellipses are confocal with foci at w = * 1. 

(3.22) 

z-plane 
y 

y = k 7 0, 0 X 0::::::: 2n 

w-plane 

V 

" 

Figure 2. Transformation of y = k under w = sin z. 

The branch cut in this case, or the line, 

U = 0 7 V ~ 0 

is the image of the line 

(3. 23) x=0,y ~ 0. 

17 



(3.24) 

As illustrated in Figure 3, the line 

X = C , y ~ Q 

where O c < 2-ir maps into the curve 

(3.25) u = sin c cosh y, v = cos c sinh y 

which is the hyperbola 

(3.26) 1 . 

.An examination of (3.26) shows that all such hyperbolas are confocal 

with foci at w = ¼ 1. 

z-plane w-plane 

y V 

X 
0 :J.ff 

2 2 
O ~ x= cz2 rr , y>O U V l • -.-2- - --2- = 

sin c cos c 

Figure 3. Transformation of x = c under w = sin z. 
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It has been shown that the function w = sin z has a derivative 

that exists at all points of the region. It has also been shown to be 

analytic at all points in the region. Therefore, the function is 
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When y = O, 

u = sin x cosh O, v = cos x sinh O, 

and u = sin x , v=O. 

These equations produce derivatives of indeterminate form. The product 

of the slopes cannot be found in this case. Therefore, the two families 

of curves are orthogonal everywhere except for the values, x = 0 or 

y = o. 

This transformation will now be considered for a more general 

case. If the real variable, y, can be expressed as an analytic function 

of the real variable, x , the resulting curve can be expressed in a form 

from which the parameters have been eliminated. 

Beginning with the parametric equations of the function, 

w = sin z, 

(3.30) u = sin x cosh y and v = cos x sinh y, 

squaring, rearranging and combining gives t he elliptical form of the 

equation, 

(3.31) 
2 u ---r 

cosh y 
1 • 

Multiplying both sides of the equation by cosh2y sinh2y, and substi-

tuting the exponential form of the hyperbolic function produces 

(3.32) uf; ·12 + v2(ey; .-r = (·y; ·-y) (·y; .-y) 

Squaring and rearranging terms gives 

(3.33) 4y + - 4y 2 e e - • 



Substitution of s = e2Y yields 

(3.34) 

(3.35) 

2 -1 2 -1 2 -2 4u (s + s -2) + 4v (s + s + 2) = s + s + 2 - 4, and 

4u2(s + s-1 ) - 8u2 + 4v2(s + s-1) + 8v2 = (s + s-1)2 - 4. 

Letting (s + s-1 ) = t, and solvin,g fort by use of the quadratic formula 

gives, 

(3.36) 

(3.37) 

t 2 - 4(u2 + v2)t + 8(u2 - v2) - 4 = 0, and 
1 2 2 1. 2 22 2 2 ' 2t = (u + v) ¼y(u + v) - 2(u - v) + 1. 

Replacing t by its equal, (s + s-1), and letting the right hand part of 

equation (3.37) be represented by d, 

(3.38) 
2y The substituion, e = s, now gives a hyperbolic form, 

(3.39) 

(3.40) 

2y -2y 
e ; e = d , or 

cosh 2y = d. 

This can be arranged in the form 

(3.41) 

Letting 

(3.42) 

then, 

(3.43) 

Thus, when y = f(x), 

(3.44) 

1 -1 y = 2 cosh d. 

a = cosh-l d = ln(d ¼ / a2 - 1 ) , 

y = ½a. 

y = f(x) = ½a and x = g(a) , 

where g{a) is some function of a. 
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The hyperbolic functions, sinh y and cosh y, may be evaluated as 

follows: 

(3.45) 

and 

(3.46) 

sinh y = sinh ½a = :i: / ½(cosh a - 1) 

cosh y = cosh ½a= /4(cosh a+ 1) 

= ( ½{d + 1) • 

The parametric equations (3.30) can now be expressed as, 

(3. 47) u = /½(d + 1) sin ~(a)} and v = :i: { ½(d - 1) cos fg(a)] . 

(3.48) 

The family of straight lines which pass through the origin, 

y = f(x) = mx, 

where mis the slope of the line, will now be considered. Combining 

equations (3.43) and 0.48) yields 

(3. 49) mx = ½a and x = g(a) = ~. 

The equation of the images of this family of lines may then be expressed 

in the form 

(3.50) 
u tan::!'._ - = 
V 1 2m 

or .a 
1.-

jg{ m - 1 (3.51) u e -
V 1 .a 

i-

e m+ 1 

The equation of the curves which are the images of any general 

line of the form, 

(3.52) y = f(x) = mx + b, 

where mis the slope of the line and bis they-intercept, is similar 



to equation (3.51). From equations (3.43) and (3.52), 

(3.53) mx + b = ½a and a - 2b 
X = ----- • 2m 

The parametric equations (3.30) are expressed in the form 

u = sin x cosh (mx + b) 

(3.54) 

(3.55) 

= sin x (cosh mx cosh b + sinh IIL~ sinh b) , 

v = cos x sinh (mx + b) 

= cos x (sinh mx cosh b + cosh mx sinh b) 

The equation without the parameters is then of the form 

i a - 2b 

Mi m 
- 1 (3.56) u e = a - 2b V 1 i 

m 1 e + 

If the real variables, x and y, are expressed in polar 

coordinates 

(3.57) X = r COS 0 and y = r sin 0, 

the parametric equations of the transformation are of the form 

(3.58) u = sin(r cos 8) cosh(r sin 8) 

v = cos(r cos 8) sinh(r sin 9) • 

The straight lines passing through the origin can then be represented 

by letting 8 be a constant and letting r vary. Hence, sine and cos 9 

are constants, which will be represented by A and / 1 - A2 respectively, 

and 

(3.59) X = r cos e = r and y = r sin e = rA. 

Equations (3.58) are then exPressed by the equations 

(3.60) u = sin rA cosh rB 

v = cos rA sinh rB , where B = /1 - A2 • 

23 



If r remains constant such that 

r=R, 

and e varies, the parametric equations 

U= sin(R cos e) cosh (R sine) 
(3.61) 

v= cos(R cos e ) sinh (R sine) 

express the shape of the images of a set of concentric circles with 

their centers at the origin of the z-plane. 

The general equation, 

(3.62) 2 2 K(x + y ) + Nx + Py + Q = 0 , 

where x and y are real variables and K, N, P , and Qare constants, 

may be used to represent any circle in the z-plane. Solving for y, 

(3.63) 1 -P :1:# - 4K(Kx
2 + Nx + Q) 

y = 2a = 2K • 

Rearranging and solving for x in terms of a produces the following form 

for x, 

(3.64) ( ) _ -N :1: /if' - K(Ka2 + 2Pa + 4Q) 
x = g a - 2K 

This is an es~ecially long and unwieldy form, but in connection with 

equation (3.43) and the parametric equations (3.30) will give the image 

of the general circle under the transformation w = sin z. 

24 

The parametric equations (3.58) have been used to compile a table 

of values, Table I . Values or r ranging from Oto 9 in increments of 

.25 of a unit were used, while e was allowed to assume values of O, rr/32, 

n/16, rr/8, 3 -rr/ 16, rr/ 4, Str/16, 311"/8, 711/16, and rr/2. The quantities 

r cos e and r sin e were then calculated and substituted into equations 

(3. 58 ) to obt ain the tabulated values of u and v . These values were 



employed to plot the images of selected lines and circular arcs under 

the transformation w = sin z. Values of Table I are accurate to four 

significant digits. However, the accuracy was limited so that a 

hundredth of a unit represents the greatest degree of accuracy. This 

degree of accuracy obviously cannot be read from the mappings. 

The lines that were transformed are the lines extending radially 

from the origin with the angles of 11/32, TT/16, rr/8, 3TT/16, ~/4, 5-rT/16, 

25 

311"/8, and 7ir/16. The length of these lines, r, are such that O r £ -~--, cos e 

where e is their respective angle. 

The large numerical values involved in the computations and the 

size of the required map made it necessary to limit t he values of r 

still more, so that r 9.00. The lines and t heir images are repre-

sented in Figures 4a, 4b, 4c, and 5. It was also necessary to make t he 

inset, Figure 4b, for Figure 4a and the inset , Figure 4c, for Figure 4b 

because of the wide range of values which determine the curves. Figure 

5 represents the lines e = rr/32, 9 = rr/16 and 0 ~ r ~-9 9, in 
cos 

considerable detail. The purpose of this particular map was to investi-

gate a line that was more nearly parallel to t he x-axis than the others. 

The circular arcs selected for transformation under w = sin z are 

the arcs of concentric circles with their centers at the origin. These 

arcs are in the first quadrant of the z-plane. Thus they are contained 

in the period-strip that was selected for study. They are arcs of the 

circles, r = n, (n = 1, 2, 3, 4, 5, 6), and t heir angles are o~ e~ rr/2. 

It was necessary for clarity to represent their images on a map, Figure 

6a, which has an inset, Figure 6b. 
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TABLE I 

VALUES FOR THE TRANSFORMATION w = sin z. 

u = sin(r cos ) cosh(r sin ) 

e 0 ..JL ..JI.. !!. 3n- JI.. 57T 311 7rr E:. 
r 32 16 8 16 4 16 8 16 2 

0 .00 0.00 o.oo 0 .00 0 . 00 o.oo o.oo o.oo 0.00 0.00 0 . 00 
. 25 . 25 .25 . 25 .23 .21 .18 . 14 .10 .05 .00 
.50 .48 . 48 . 47 .45 . 42 . 36 .30 .21 .11 .oo 
.75 .68 .68 ,75 . 66 .63 .58 . 49 .36 . 19 .00 

1.00 . 84 .84 . 85 . 85 . 86 . 82 . 76 .54 .30 . 00 
. 25 . 95 .95 . 97 1.02 1.11 1.09 1.01 .80 .44 .oo 
.50 1.00 1.01 1.04 1.15 1.30 1.41 1.39 1.15 .65 .oo 
.75 .98 1.00 1.05 1.23 1.50 1.77 1.87 1.63 .96 . 00 

2.00 .91 .93 1.00 1.26 1.67 2.16 2. 44 2.27 1.38 . 00 
.25 ,78 .80 .89 1.22 1.80 2.55 3.15 3.11 1.97 . 00 
.50 .60 .62 .71 1.11 1. 87 2.97 4 .00 4 . 17 2.75 .00 
.75 .38 .40 .49 . 91 1.82 3.31 4 . 98 5.57 3.84 .oo 

3.00 .14 .17 .23 .63 1.66 3. 97 6 . 10 7.31 5.28 .oo 
.25 - .11 - .10 - . 06 . 26 1.33 4.14 7.26 9.55 7.34 . 00 
.50 - .35 - • 35 - . 34 - .18 . 88 4.18 8. 55 11.96 9.55 .oo 
.75 - .57 - . 60 - .65 - .71 .08 3.29 9.65 16.45 13.65 . 00 

4 . 00 - .76 - .80 - . 93 -1.28 - . 42 2.87 10 . 96 20 . 22 17.38 .oo 
. 25 - . 90 - . 97 -1.17 -1. 87 - 2. 13 1.40 12. 14 27 . 00 23.88 .oo 
.50 - .98 -1. 07 -1.35 - 2.46 - 3.46 - . 48 12.57 31.99 31.74 .00 
.75 -1.00 -1.11 -1.46 -2. 98 - 5.10 - 3.15 12.46 39 . 16 42 . 34 .oo 

5.00 - .96 -1. 07 -1. 49 -3. 44 - 6.89 - 6.72 11.40 47.83 55 . 77 .00 
.25 - .86 - .98 -1. 43 -3.72 - 8 .76 -11. 03 8 .63 58.04 73 . 93 .oo 
.50 - .70 - .83 -1.28 -3.86 -10 .57 -16.68 3,97 69 .33 96 . 67 .oo 
.75 - .50 - .61 -1. 02 -3.67 -12. 25 - 23 . 48 - 3.61 81.70 127.3 .oo 

6 . 00 - .28 - .36 - .55 -3.36 -13. 55 -30. 94 - 13.88 94. 82 165.4 .oo 
.25 -0.03 - 0 . 07 - 0 .28 -2. 68 -14 .19 -39. 81 - 29 . 36 109 . 3 216.5 .oo 
.50 -1. 68 -14.14 -49.44 - 50.64 122.1 279 . 8 .oo 
.75 -0.33 -13. 04 -59. 41 - 79.03 134. 9 364.2 .oo 

7.00 -10 . 86 -68.56 -114.8 143.3 472.7 .oo 
. 25 - 6 . 96 -77.14 -161 .5 146.9 606.0 .oo 
.50 - 1.30 - 83 . 45 -220 . 4 136.4 774. 9 .oo 
.75 - 86 .03 -291. 3 115. 2 998.3 . 00 

8 .00 -84 .26 -372.3 64 .72 1,283. .oo 
. 25 -73. 25 -472.6 - 10.10 1,630 . .oo 
.50 -52. 90 -588 . 0 -140 .8 2,065. .00 
.75 -22.03 -717.3 -308 .2 2 , 636 . .oo 

9.00 -848.9 -586 .9 3,356. 0 . 00 
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TABLE I (CONTINUED) 

V = cos(r COS 9) sinh(r sin 8) 

TT ..II... 1! 3rr .!! 571" 3-rr Tu. !! 
32 16 8 16 4 16 8 16 2 

o.oo 0.00 o.oo o.oo o.oo o.oo o.oo o.oo o.oo 0.00 o.oo 
.25 .oo .02 .05 .10 .14 .18 .21 .24 • 25 .25 
.50 .00 .04 .09 .17 .26 .34 .42 .47 .51 .52 
.75 .00 .05 .ll • 23 .35 .48 .60 .71 .80 .82 

1.00 .oo .05 .ll .24 .38 • 58 .79 1.00 l.ll 1.18 
.25 .oo .04 .08 .20 .40 .64 .95 1.26 1.52 1.60 
.50 .oo .01 .03 .ll .29 .62 1.08 1.59 1.97 2.13 
.75 .oo - .03 - .05 - .04 .13 .51 1.16 1.90 2.55 2.79 

2.00 .00 - .08 - .15 - .23 - .13 .31 1.13 2.23 3.22 3.63 
.25 .00 - .14 - .26 - .47 - .49 - .04 1.00 2.54 4.07 4.69 
.50 .oo - .20 - .39 - .75 - .94 - .54 .71 2.88 5.07 6.05 
.75 .oo - .25 - .51 -1.04 -1.45 - 1.23 .20 3.08 6.81 7.79 

3.00 .00 - .30 - .61 -1.36 -2.04 - 2.38 - .60 3.25 7.84 10.02 
.25 .oo - .32 - .67 -1.57 -2.69 - 3.65 - 1.76 3.16 9.82 12.88 
.50 .00 - .34 - .69 -1.77 -3.32 - 5.09 - 3.39 2.80 11.54 16.54 
.75 .oo - .31 - .69 -1.89 -3.94 - 6.31 - 5.51 1.99 14.93 21.25 

4.00 .oo - .27 - .61 -1.87 -4.46 - 8.04 - 8.20 .82 17.96 27.29 
.25 .oo - .20 - .48 -1.71 -4.83 - 9.92 - 11.76 - 1.25 22.50 35.04 
.50 .oo - .ll - .30 -1.41 -4.99 -12.24 - 16.21 - 5.01 25.95 45.00 
.75 .00 .10 - .05 - .94 -4.81 -14.60 - 23.95 - 9.71 32.86 57.79 

5.00 .oo .14 .22 - .30 -4.20 -15.24 - 31.20 - 16.62 37.40 74.20 
• 25 .oo .27 .52 .51 -2.45 -17.02 - 39.74 - 28.04 46.66 95.28 
• 50 .oo .40 .82 1.46 -1.44 -18.07 - 49.58 - 41.51 52.18 122.3 
.75 .oo .50 l.ll 2.52 .99 -17.85 - 60.64 - 59.08 57.69 157.1 

6.00 .oo .60 1.34 3.65 4.72 -15.12 - 72.87 - 81.66 71.21 201.7 
.25 .oo 0.65 1.53 4.72 7.80 -11.66 - 85.74 - 120.8 76.61 259.0 
.50 5.76 11.79 - 5.50 - 98.70 - 160.6 89.16 332.6 
.75 6.55 17.65 4.30 -ll0.8 - 208.7 91.20 427.0 

1.00 22.12 16.01 -120.8 - 298.0 103.0 548.3 
.25 29.22 33.42 -127.0 - 378.7 97.02 704.1 
.50 33.30 56.63 -126.8 - 478.2 90.45 904.0 
.75 85.24 -129.8 - 658.9 60. 70 1,161. 

8.00 121.6 -108.4 - 815.4 13.17 1,491. 
.25 149.4 - 64.71 - 999.1 - 67.18 1,914. 
.50 194.9 6.54 -1,216. -182.4 2,457. 
.75 245.1 lll.2 -1,461 -381.1 3,155. 

9.00 259.2 -1 , 927 -629.1 4,052. 
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Figure 4a. Transformation of the lines O r 2-,r/cos 9 9 

and @ = nff/16 (n = 1, 2, 3, 4, 5, 6, 7) under w = sin z. 
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'" V 

----------7 

L 

Figure 4b. Inset for Figure 4a. Transformation of the lines 

O ~ r ~ 2 1V'cos e ~ 9 and e = nef/16 (n = 1, 2, 3, 4, 5, 6, 7) under 

w = sin z. 
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Figure 4c. Inset for Figure 4b. Transformation of the lines 

O ~ r ~ 2rr/cos0 :E', 9 and0=n11/16 (n=l, 2, 3, 4, 5, 6, 7) under 

w = sin z. 
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y z-plane 
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Figure 5. Transformation of the lines e = n/32, 0 = "/16 

and O r 211"/cos 0 9 under w = sin z. 
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Figure 6a. Transformation of the circular arcs in the first 

quadrant of the z-pla.ne, 0 0 rr;2 and r = n (n = 1, 2, 3, 4, 5, 6) 

wider w = sin z. 
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L - - - - ----- -11- ___________ _J 

Figure 6b. Inset for Figure 6a. Transformation of the circular 

arcs in the first quadrant of the z-plane, 0 0 1'/2 and r = n 

(n = 1, 2, 3, 4, 5, 6) under w = sin z. 



Transformations rmder other functions. The frmctions cos z, 

sinh z, and cosh z will now be considered. To accomplish this the tool 

of successive transformations will be utilized. Transforming a function 

of z into another variable, which is then transformed into w by the 

original function is known as successive transformations. 

Since the frmction, sin z = cos(z - rr/2), 

(3.65) w = sin z = cos z' , where z' = z - rr/2. 

Therefore, the transformation, w = cos z, is the same as the transfor-

mation, w = sin z, preceded by a translation to the left of each point 

of the z-plane through TT/2 units. 

The function, w = sinh z, can be written 

(3.66) iw = sin(iz) 

since sinh z = -i [sin (iz ~ Equation (3.66) can be written 

(3.67) w' = sin z', where iw = w' and iz = z'. 

The axes of each plane can be rotated through the angle rr/2, 

and then the transformation w = sin z applied to obtain the transfor-

mation w = sinh z. 

Following a similar procedure w = cosh z can be written in the 

form 

w = cos(iz) 

because cosh z = cos(iz). Then, 

w = cos z' , where z' = iz, 

and w = cos z' = sin z " , where z11 = z' + rr/2. 
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Therefore, w = cosh z is a combination of the rotation of the axes of the 
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z- pl throu h a.n le /2 , th ranslation of all oints in he 

z '-pl < 11/2 units to he ri ht , and the transformation under the function 

= sin z . 

The properties of the sin z function that have b en discussed 

pply to ach of th se functions as well. Therefore , it will not be 

n c ss to reiterate these propert ies . After the preliminary tra.nsfor-

mat ·on hav been appl i ed to these functions , ma ni s identical to 

tho e of the sin z function will result . 



CHAPl'ER IV 

SUMMARY 

Reference material concerning conformal transformations under 

trigonometric and hyperbolic functions is very limited. Apparently, 

very little work on these transformations has been published other 

than the cursory treatment presented in most complex variable and 

applied mathematics textbooks. 

The investigation of the problem of this paper presents the 

probable reason for this lack of material. A discussion of the gen-

eral properties of these functions presents no specific problem. The 

actual mapping, however, of geometrical figures by these functions is 

a formidable task. 

It was shown that the functions being considered, sin z, cos z, 

sinh z, and cosh z, were very closely related. Therefore, the investi-

gation of w = sin z was sufficient to determine the properties of each 

function. 

It was found that the usual representation by parametric 

equations can be changed into an expression which is a function of u 

and v only. General cases of lines and circles were considered. 

Equations of images of lines and circular arcs were extremely complex . 

It was not possible by methods known to this writer to reduce the 

expres sions into more usable forms. 

Parametric equations were used in transforming selected lines 

passing through the origin and selected concentric circular arcs with 



the origin as their center. The images of both the lines and the arcs 

were spiral shaped. The images of the lines started at the origin of 

thew-plane and spiraled outwardly in a clockwise direction. 

The images of the arcs spiraled from a point on the positive 

v-axis inwardly in a clockwise direction. These spirals ended on a 

line segment such that v = 0 and -1 ~ u ~ l. The general shape of 

their image was determined by the length of the radius of the circular 

arc. 
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No immediate application of the results of this paper are known. 

The problem suggests that there is need for the development of a 

method of representing trigonometric and hyperbolic transformations 

that would greatly facilitate their evaluations. 



BIBLIOO-RAPHY 

1. Ahlfors, Lars V. Complex Analysis. New York: McGraw-Hill Book 
Company, Inc., 1953. 

2. Churchill, Ruel V. Introduction to Complex Variables and Applica-
tions. New York: McGraw- Hill Book Company, Inc., 1948. 

3. Curtiss, David R. Analytic Functions of~ Complex Variable. 
LaSalle, Illinois: The Open Court Publishing Company, 1948. 

4. Franklin, Philip. Functions of Complex Variables. Englewood 
Cliffs, N. J.: Prentice-Hall, Inc., 1958. 

5. James, Glen, and Robert C. James. Mathematics Dictionary. 

6. 

New York: D. Van Nostrand and Company, Inc., 1958. 

LePage, Wilbur Ro 
for Engineers. 
1961. 

Complex Variables and the LaPlace Transforms 
New York: McGraw-Hill Book Company, Inc., 

7. Pipes, Louis A. Applied Mathematics for Engineers and Physicists, 
New York: McGraw-Hill Book Company, Inc., 1958. 

8. Reddick, H. W., and F. H. Miller. Advanced Mathematics for 
Engineers. New York: John Wiley and Sons, Inc., 1938. 

9. Sokolnikoff, Ivan S. Advanced Calculus. New York: McGraw-
Hill Book Company, Inc., 1939. 

10. Sokolnikoff, Ivan S., and Elizabeth S. Sokolnikoff. Higher 
Mathematics for Engineers and Physicists. New York: 
McGraw-Hill Book Company, Inc., 1941. 

11. Townsend, E. J. Functions of a Complex Variable. New York: 
Harry Holt and Company, 1930. 


	A Study of Certain Trigonometric and Hyperbolic Transformations
	Recommended Citation

	fhsufltc_nelsonronald_p0a
	fhsufltc_nelsonronald_p0i
	fhsufltc_nelsonronald_p0ii
	fhsufltc_nelsonronald_p0iii
	fhsufltc_nelsonronald_p001
	fhsufltc_nelsonronald_p002
	fhsufltc_nelsonronald_p003
	fhsufltc_nelsonronald_p004
	fhsufltc_nelsonronald_p005
	fhsufltc_nelsonronald_p006
	fhsufltc_nelsonronald_p007
	fhsufltc_nelsonronald_p008
	fhsufltc_nelsonronald_p009
	fhsufltc_nelsonronald_p010
	fhsufltc_nelsonronald_p011
	fhsufltc_nelsonronald_p012
	fhsufltc_nelsonronald_p013
	fhsufltc_nelsonronald_p014
	fhsufltc_nelsonronald_p015
	fhsufltc_nelsonronald_p016
	fhsufltc_nelsonronald_p017
	fhsufltc_nelsonronald_p018
	fhsufltc_nelsonronald_p019
	fhsufltc_nelsonronald_p020
	fhsufltc_nelsonronald_p021
	fhsufltc_nelsonronald_p022
	fhsufltc_nelsonronald_p023
	fhsufltc_nelsonronald_p024
	fhsufltc_nelsonronald_p025
	fhsufltc_nelsonronald_p026
	fhsufltc_nelsonronald_p027
	fhsufltc_nelsonronald_p028
	fhsufltc_nelsonronald_p029
	fhsufltc_nelsonronald_p030
	fhsufltc_nelsonronald_p031
	fhsufltc_nelsonronald_p032
	fhsufltc_nelsonronald_p033
	fhsufltc_nelsonronald_p034
	fhsufltc_nelsonronald_p035
	fhsufltc_nelsonronald_p036
	fhsufltc_nelsonronald_p037
	fhsufltc_nelsonronald_p038

