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CHAPTER I 

INTRODUCTION 

Mathematics is often called the oldest science, but 

it might also be called the most modern of sciences. In many 

aspects it is so modern that practical uses have not been 

found. While ttpure" mathematicians develop new ideas and 

concepts with small attention to possibilities of practical 

applications, the applied scientist regularly discovers uses 

which may never have been considered by the originator. 

One very old idea in mathematics which is today finding 

new importance is the calculus of finite differences. Closely 

related to the infinitesimal calculus, the calculus of fi .ni te 

differences is said in Van Nostrand's Scientific Encyclopedia 

to have been understood by Newton and Leibniz. The first book 

on the subject was written by Brook Taylor in 1715. 
Developmental work was done by Daniel and Jakob Ber-

noulli, Euler, Sterling, and many others. George Boole pub-

lished A Treatise .2,g the Calculus of Finite Differences in 

1880. Milne, Thomp son, Fort, and Jordon are a few more recent 

writers. Finite differences have traditionally found uses in 

approximate integration and differentiation, interpolation, 

and summation of f ini te series. Difference equations have the 

same relation to the calculus of finite differences as differ-

ential equations have to differential calculus. With the 
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development of computers and numerical methods of solutions, 

the difference equation is taking on renewed interest. Modern 

application of mathematics to the field of social science has 

likewise found difference equations particularly suited to its 

needs. 

A variety of sources is available for those interested 

in either applications or theoretical background of difference 

equations. Many universities are offering graduate courses, 

and some are offering undergraduate courses, in difference 

equations. Still, to the majority of undergradua te students, 

difference equations are probably thought to be another name 

for differential equations. The purpose of this paper is thus 

to help those who are unfamiliar ,nth difference equations to 

become better acquainted with them by giving a brief summary 

of the types of difference equations, a discu ssion of the 

methods of solution, and a few applications to practical prob-

lems. This will include some explanation of notation and a 

summary of important relationships found in the calculus of 

finite differences. The reader should have some knowledge of 

, differential equations if he is to attain complete understand-

ing of this material, but he would not need any background in 

the calculus of finite differences. 



CH.APTER II 

NOTATIONS AND DEFINITIONS USED IN THE 
CALCULUS OF FINITE DIFFERENCES 

General background. The familiar calculus is concerned 

with the manipulation of continuous variables, or variables 

which may take on changes or increments of any desired size; 

and with a limiting process whereby t he change in increment 

size become s ever smaller or approaches as closely as desired 

to zero. I n contrast, the calculus of finite differences is 

associated with variables which are defined or known only at 

discrete, evenly spaced intervals. For instance, a psychology 

experiment may obtain information on repeated trials of a rat 

being conditioned to a stimul s; or an agronomist may obtain 

yields of a plant variety in successive years, in which cases 

the information is defined only in relation to these particular 

trials. Similarly, an economist may obtain census information 

every five years such that his data is discrete and evenly 

spaced although he may logically assume that the variable being 

studied had made a continuous change throughout the period. 

Many electrical and mechanical problems can b~broken down into 

repeated sets of identical components which are advantageously 

studied by finite difference methods. 

Notation. In the study of finite differences the inde-

pendent variable is represented as x, and f(x) represents a 



function of x or the values which the dependent variable 

assumes as the independent variable, x, changes by definite 

intervals. Since the variable xis only defined at discrete 

points, f(x) is only defined at values of f(x + h), f(x +2h), 

to f(x + nh) where his some constant spacing and n is zero 

or some whole number. That is, the dependent variable 

changes as x ehanges by various multiples of .h. The value 

of h can be chosen as any constant amount since its size 

serves only to determine the scale, so it is convenient to 

choose its value to be 1. Many notations have been used by 

writers, but a popular one is to use Ux to represent f(x), 

the dependent variable. ((ll)p. This has the disadvantage 

of implying a continuous function which suggests to some wri-

ters the use of Yk• The k intim·ates discrete values but can 

give the impression of being a constant which it is not. 

Using the fo rmer notation, if the function is x2, Ux=x2 

Ux + 1 = f(x + 1) = (x + 1) 2 = x2 + 2x + 1 

and 

Dx + 2 = (x + 2) 2 = x2- + 4x + 4 

with the method of finding succeeding values obvious. 

The change in a function corresponding to an increase 

in the independent variable is represented by.AUX and is the 

difference between the new and the original value. Thus 

ux = ux + 1.. - ux 
is called the first forward difference. Forward difference is 

used since the difference could be 
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or 

C' U = Ux - U - x Cl X - - -2 2 

which are called backward and central differences respectively. 

The second difference is defined as the change in the 

first difference or 

Ll2Ux = Ll(~Ux) = (Ux+l+l - ux+l) - (Ux+l ·_ Ux) 

= Ux+2 - 2Ux+l + Ux 

Likewise, the third, fourth ••• , and nth differences are repre-

sented as A3Ux, A4ux,··• Allox with the nth difference equal to 

the first difference of the (n-l)st difference: 

A~ = 1::,(1:ln-l u ) 
X X 

The expansion of this in terms of successive values of the 

original function is related o the binomial expansion or 

/J,. Dux :c Ux+n - n Dx+n-1 + n(n-1) ux+n-2 - ••• 
1•2 

+. n n-1)·••(2) Dx+l ± •·• + U 
- 1•2••• n-1) - X 

with numbers added to the subscript x corresponding to the 

power, and signs alternating as when the binomial has opposite 

signs. For example, 

,63ux = Ux+3 - 3ux+2 + 3ux+l - ux 
Use of operators. Considerable use is made of operator 

notation and the fact that the operators satisfy most of the 

laws of algebra. Thus, the delta just introduced is treated 

as an operator. This and other operators in common use are 

indicated below: 



(1) Aux = ux+l - u X 
(2) EUX = u 1 x+ 
(3) DUX = £_ ux 

dx 
(4) kUX = kUx 

It is seen that the operator, E, serves to translate 

the function 1 unit to the right, or is the value as xis in-

creased one increment. The operator , D, is the usual deriva-

t i ve of x taken at one of the spaced intervals, and k is any 

eoastant multiplied times the variable. As with the delta 

operator, successive application of all the opera tors is in-

dicated by t he power notation. Thus E2 serves to translate 

t he function 2 units to t he ri ght or 

E2 = ux+2 

As long a s the symbols are interpreted as operators 
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their multiplication is distributive with respect to addi tion. 

Further,operators are commutative wi t h respect to multiplica-

tion and addition when operating on constants, and associative 

with respect to addition and multiplication. rr11) p. 16_] 

The opera tors are related by: 

by substituting (2) into (1) 

or 

(6) A:, E - 1 

With the symbolic form of Taylor's series 

(7) E = ehD = el•D = eD 

and 

(8) Ln E = D = Ln (1 + A) 



where Ln indicates t he principle value of the natural 

logarithm. Then 

(9) A= eD - 1 

Many useful interpretations are gained from these operators, 

such as interpolation formulas, and differention and integra-

tion of tabulated func tions . 

The factorial function. A us eful function called the 

factorial function i s introduced in the calculus of fini te 

dif f erences. It is found to play the same role in finding 

differences as a function raised to a power does in differen-

tial calculus. The factorial function is defined as R6J p . 

262) 

(10) x<m)= x(x-1) (x-2) ••• (x-m+l): r(x+l ) 
/'( x - m+l) 

where xis real and continuous and mis rational. 

and 
1 : r'(x+l) 

(x+l) (x+2) • • • (x+m) fi<x+m-1) 
r..m) x\ = 

The Gamma function, r, as defined by l!.'Uler E9) p . 339) is the 

definite integral 

(11) P (n) n?O 

It permits some summations which would not be possible using 

the factorial definition alone. 

7 



CHAPTER III 

DIFFERENCE EQUATIONS 

Definition, types, and properties. A difference 

equation is defined by Richardson lill) p. 9~ as, "An equa-

tion which expresses a relation between an independent vari-

able~ and successive differences or successive values of a 

dependent variable Ux ••• " An example is: 

(12) a 0 1).2 Un - a1 .bPx + a2 Ux = a3 
where the a1 are constants or functions of the independent 

variable x. Due to equalities of operators ·this may be writ-

ten as 

or 
ao Ux+2 - (2ao + a1) Ux+l + (ao + al + a2 ) Ux = a3 

By substituting new coefficients this becomes 

(13) b0 ux+2 - b1 ux+l + b2 ux - b3 =·o 
or equivalently 

(14) b0 E2 Ux - bl EUx + b2 Ux - b3 = 0 

By similar methods ·any combination of differences and the 

function may be expressed in terms of sums of the successive 

values of the function or the value of the function at various 

intervals. The form of equation (13) is the most convenient 

and commonly used form of the difference equation. 

Difference equations are classified and studied accord-

ing to standard classifications of order, degree, and 
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homogeneity. If an equation written in the form of successive 

values as (13) contains Ux and successive values out to Ux+m' 

the equation is said to be of order m. Equation (13) is of 

the second order. An example of a _third order equation is 

(14-) ux+3 + 2Ux+2 - ux+l - 2Ux = 6 
It is instructive to note here that an identical equation 

would be 

(15) ux+l + _2ux - ux-l - 2Ux_2 = 6. 

since if the equation is to hold for all x, we can think of 

the x in (14-) as being diminished by 2. Otherwise stated, 

the equation specifies a relation among successi vely spaced 

values of the independent variabl .e re gardl ess of the starting 

point within the specifi ed interval. A more complete defini-

tion of order, then, would be to say it is the algebraic 

difference of the final and ini tial increment . The use of 

"successive" above does not mean to imply that all intermediate 

values must be included. An example is 

(16) ux+3 - ux_2 = x 

which is a fifth order equation. 

The de gree of an equation relates to the power of the 

dependent variable and its successive values. If all such 

variables are to the first power and no produc ts between the 

variables are present, the equation is of first degree, nor-

mally referred to as linear. Linear equati ons are the most 

frequently encountered, are most easily solved, and have re-

ceived the most study. 
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Equations are further classified as homogeneous if the 

only terms involved are terms of the dependent variable or 

its differences or successive values. That is, 

(17) a0 U + + a1 U + + • • • 
iS a homcgeneou.s X n X n-1 

+a U +aU- R n-1 x+l n x - x 
/linear equation of order n if Rx is zero. 

of x the equation is non-homogeneous. 

If R is a function 
X 

Solutions and solution methods. U~. is called a solu-

tion of a difference equation if substitution of the value into 

the equa tion makes it an equality for all values of x. Solu-

tions of two general types are found, explicit solutions and 

step by step solutions. \36) p. 23oJ Explicit solutions may 

be in a finite series form or in a closed form. It is proven 

in the literature that an explicit solution may always be 

found when the equation is linear with constant coefficients 

and the independent variable ( Rx in equation 17) is zero or 

one of the standard forms aX or ebx, sin ex, cos ex, or xr 

(r = 0,1,2, ••• ) or combinations of their products or sums. 

Further, if the function is defined at consecutive values, 

the most general solution will contain exactly "n" arbitrary 

constants, where ''n" is the order of the equation. Second 

order equations of certain special forms with variable coeffi-

cients have explicit solutions by me thods analogous to those 

of differential equation such as integrable combinations, sub-

stitution, and separable equations. 

Step by step solutions may be found to a large number 

of equations not otherwise solvabie. This type of solution has 

found considerable application in thwsolution of differential 



equation problems and, particularly, partial differential 

equation boundary value problems . By substituting an anal-

ogous difference equation for the differential or partial 

differential equation, an iterative formula may be derived 

whereby values may usually be found to any desired accuracy. 

Explicit solutions. Methods for obtaining explicit 

solutions are analogous to those used in differential equa-

tions. The me thods will be discussed according to types of 

equations to which they are applicable. One cl assification 

of types is: 

1. First order linear equations, 

2. Linear equations of nth order with constant co-
efficients, and 

3. Special forms and simple difference equations. 

11 

First order linear eg tions. Methods are available 

for solving completely linear equations of the first order 

ei t her with constant or variable co effici ents . Simple first 

order equations such as Aux= Ax which are expressed as a 

difference (or which may be put in this form by substitution 

or rearrangement) are solved by summation or the reverse pro-

cess of differencing. These formulas for summation or anti-

differences ,are developed in the calculus of finite di f ferences 

and may be found tabulated in those references or in handbooks 

such as Cogan and Norman's Handbook of Calculus, Difference 

and Differential Equations. lil) Tables 14.~ Includ ed in 

this handbook is a table of Stirling numbers ~n~ich is useful 

in transforming powers of x into factorial powers , previously 
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mentioned. Factorial powers obey analogous rules in differ-

ences and antidifferences as simple powers do in differentia-

ting and integrating. Compare 

(18) b.x(n) = nx<n-l) to Dx = nr1-1 
I 

(19) A(ax + b)(n) = an(ax + b)n-l to 

Dx (ax+ b)n = an(ax + b)n-l 

It is shown {S2) p. I I 6~ that powers of x may always be ex-

pressed a s factorial powers with the coefficients found by 

using Stirling numbers. 

To solve the equation 

6ux: x3 
express x3 as x(l) + 3 x(2 ) + x(3) rr1) Table 5. ~, the table 

lists the value of each coefficient, so that 

~u = x<1 )+ 3 xC2 )+ x<3) 
X 

Taking the anti difference of each term by using (.18) gives 

= x(2) + 3x(3) + x(4) + C 
-2- 3 

which by use of the equalities listed in Table 5.7 of the 

handbook becomes 

U = ½(-x + x 2 ) + (2x- 3x2 + x3) + ¼(-6x-t ux2 - 6x3 + x4) 
X 

and collecting terms gives 

U = x2 - x3 + x4 + C 
X 4 2 4. 

A check show.sit is indeed the solution: 

~u = U 1 - U = ¼(x + 1) 2 - ¾x - ½(x + 1)3 + ½(x)3 X X+ X . 4 4 . 
+ ¾(x + 1) - ¾x + C - C = x3 

Solutions may be obtained by a variety of methods. If 

the first order equation has constant coefficients, it 
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obviously is included under the theory of those of nth order 

equations to be discussed later and may be solved by those 

methods. A method somewhat easier to apply in this case, 

however, is outlined by Goldberg [(5) p. 63_). Taking the 

general equation with constant coefficients. 

X = 0,1,2,••• 

where A and Bare constants, we can rewrite it as 

(20) ux+l =Aux+ B 
We assume AF O since the .equation with A= 0 would be simply 

solved as Ux = B. 

If we suppose that U0 is known, then t aking x = o and 

substituting in (20) 

u1 = A U0 + B 

Then with x = 1 

or 

= A(A U + B) + B 
0 

U2 = A2 U
0 

+ B (1 + A) 

and with x = 2 

= 

Continuing with x = k - 1 
k 2 k-1) Uk = A U

0 
+ B (1 + A + A + ••• + A , k = 0, 

· that is 

1,2 ••• 

Ux = Ax U
0 

+ B (1 +A+ A2 + ••• + Ax-l), x = O, 1, 2 ••• 

The quantity in parenthesis is a finite geometric 

series which has the sum, as shown in many standard calculus 

books, of 



2 x-1 [1-Ax 
1 + A + A + • • • + A = l /-A if A\ 1 

if A= 1 

The solution to 

(21) 

(22) 
u X 

(20) may now be written as 

(

Ax U + B l-AX if A 1 = 0 I=1r 
uo + B~ if . A c 1 

X = 0,1,2 ... 

14 

The proof is completed by Goldberg by directly substi-

tuting this solution back into the equation t•- give an 

identity. That the solution is unique is proven by letting 

U0 be an arbitrary constant, c, and thus putting it in the 

pattern of a previously proven theorem. 

Solving an equation such as 

X = 0,1,2 ... 

with the initial condition U
0 

= 4, now is routine substitution. 

From (20) and (21) A= 3 and B = 2, and 

UX ::: 3X(4) + 21:~X 

which gives 

ux = 3X(4) + 3X - 1 
or 

ux = 5(3)x - 1 X ::· 0,1,2 ... 

Variable coefficients. The general linear first order 

equation with variable coefficients in the form 

X = 0,1,2 .. • 

where Ax and .Bx are functions of x ·with Ax; ·o is solved by 

Richardson [111) p. 10.i]. Consider first where Bx= 0 the 

homogeneous equation. If x == o, then , 

U1 = Ao Uo 

and with x=l,2,3 ••• k-l, respectively, 



or 

U2 = Al Ul = Ao Al Uo 

U3 = A2 U2 = Ao Al A2 Uo 

Ux = Uo Ao Al Al½ ... ~-1 
If we let t he value of U

0 
be an arbitrary constant, c, and 

express the continued product using the symbol Tt 
x-1 

A · A A2 • • • A l = -n- Ax· o 1 x- x=o 
the solution may be written as 

(23) x-1 
Ux = C x-go Ax 

Since a product may be expressed as the sum of t he logarithm 

of the factors, t his may alternately be written as 

(24) 
x-1 log Ux = log C + E. log A x=o x 

The equation 

ux+l - 3ux = o 

solved by this method has Ax= 3. 
Then from (23) 

x-1 
Ux = C 1t 3 = C (3•3•3•·•3) , x=o ,_ 

where the number of factors is x. Hence, we have 

U - C3X X -

To check 

ux+l = C(3) x+l = c3x.3 

and 
ux+i - 3Ux = c3x.3 - 3c3x = o 

For any value of C t his is an identity and thus a solution. 

15 



The sqlution of the nonhomogeneous equation 

(25) Ux+l - Ax Ux = Bx 
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where Bx F O makes use of the homogeneous solution by means 

of wha~ is called the associated homogeneous equation or re-

duced equation. First assume the solution, Ux 

(26) ux = zx vx 

where the functions Zx and Vx are to be determined. The 

method used here \ill) p. 10~ is to show that if Zx can be 

found so that it is a solution of the r educed equation, then 

Vx can be determined. Substituting Ux = ZxVx into (25) it 

become s 

(27) Z V - A Z V =B x+l x+l x x x x 
From the definition 

b.Vx = Vx+l Vx 

we may substitute ivx + Vx for Vx+l in (27) giving 

2x+l (~Vx + Vx) - 2x Vx = Bx 
This is rearranged to give 

vx (Zx+l - Ax 2x) + 2x+l ~Vx = Bx 

Let x-1 
Z = TT A 

X X=o X 
(28) 

then Zx is a solution of the homogeneous or reduced part of 

the original .equation (25), and the part in the parenthesis 

must identically equal zero. Then this gives 

Z !).V = B x+l X X 

Solving this for ~vx and taking the antidifference or in-

definite sum, we have 



(29) V = b,-l B + C 
X zx!l 

The complete solution then is 

(30) Ux = ZxVx = CZx + z ~-1 Bx x Zx+l 

Since division by zero is not allowed the solution zx, hence 

Zx+l' must be nonzero. 

To summarize: first find the solution to the reduced 
x-1 

equation given by Zx = ~o ~, find Vx by taking the anti-

difference, 
= A-1 vx 

then multiply to give 

U = Z V 
X XX 

The equation 

ux+l ... 3Ux = 2 

+ C 

used as an example earlier, has the reduced equation 

ux+l - 3Ux = o 
This has the solution 

Zx = ~l 3 = 3X 

From (29) 

and 

Vx = 2/3 t:,.-l (l/3)x + C 

From table 14.10 of Cogan and Norman we get 

Vx = 2/3 • 17}-1 (l/3)x + C 

which simplifies to 

Vx = -(l/3)x + C 

17 



Hence, the general solution is 

ux = ZxVx = -(3)X (l/3)X + 3x + C = 3Xc - 1 

If we take U0 = 4 as an initial condition as in the 

solution by the previous method, 

U0 = 4 = 3°c - 1 

Solving for C gives 

C = 5 
and 

Ux = 5(3)x - 1 

as before. 

18 

Another example illustrates the method where Ax and Bx 

are actually variables. Solve [(11) p. 107] the equation 

Ux+l (x+l) Ux = 2x (x-1) 

Here 

and 
Ax = X + 1 

B = 2X (x - 1) X 

From (28) we have 

but 

hence 

Z = x,,.l (x + 1) 
X O 

A0 = 1, A1 = 2, ,½ = 3, .•. A:z:-l = x 

= X ! 

and 
zx+l = (x+l) l 

:From (29) comes 
V -6-1 2X(x-l) + C 

X - (x+l') 1 

Here the finite integral is not one of the tabulated forms. 

It may be found hy a method of undetermined coefficents and 

undetermined functions [(11) p. 3~ as illustrated. We wish 



to find Vx such that 

AV = W X X 

where 
2X(x-l) 

W. = (x+l)l X 

Assume V contains some arbitrary function, f(x), so that 
X f(x) 2 

V = xl 
X 

then 
AVX = Vx+l - Vx =·Wx 

Substituting values into the equation gives 

f(x+l) 0 2x+l - f(x)•2x = 
. (x+l) 1 xl 

or 
2f(x+l) - (x+l) f(x) = x-1 

19 

since it must be an identity. The right hand side of this 

equation is of the first degree in x, so it is evident that 

f(x) must be a constant if t he left hand side of the equation 

is to be of the first degree in x. This gives us 

f(x) = k 

f(x+l) - k 

and substituting in the preceding equation, 

2k - (x+l)k = x - 1 

from which k = -1 

Then -1.2X 
V · = xl . + C 

X 

Since the general .solution is 

ux = zxvx 
then -1•2x 

Ux :i:: xl xl + Cx 1 



A check of this solution in the original equation 

gives: 
ux+l = -(2)x+l + C(x+l)l 

-(x+l)Ux = (x+1)2x -C(x+l)l 

and 

20 

ux+l - (x+l) ux = 2X (-2+x+l) + (x+l)l (C-C) = 2X(x-l) 

This shows the solution is correct. 

Nth order linear equations with constant coefficients. 

The general method for solving linear equations of nth order 

is found in many publications. The homogeneous equati on is 

first solved by use of an auxiliary equation givi ng the general 

solution. The nonhomogeneous equation is solved by finding 

the solution of the associated homogeneous equation, called 

the complementary so l ution, and adding a partieular solution 

to give the general solution. 

The general linear homogeneous equation with constant 

·coefficients is written as 

(30) ao ux+n + al u4+n-l + ••• an-1 ux+l + an ux = o 
where the a1 are constants. By assuming a solution of the 

type U =Px and substituting into the equation, it becomes 
X 

ao p x+n + al ~ x+n-1 + • • • + an-1 (1X+l + an ~X = 0 

and factoring out the common factor ~x it is 

~x ( ·/ln an-1 (3 ) ~- a0 v + a1 + ••• + an-l + an = 0 

Assuming ~ x different from zero for any finite value of x, 

since this would give a trivial solution, the term in the par-

enthesis m~st be identically zero. This is a linear algebraic 

equation in Qn (called the auxiliary equation) and has n 
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solutions (counting repeated roots). If the roots are real 

and dis tine t and de si gna t _ed // 1 , 2 , • • . f n, then the equation 

has the general solution 

ux = cl f1x + c262x + c3Px + ••• + en ~nx 

It is evident that if each term here is a solution 

(that is, it makes the equation identically zero), then the 

sum of them is also zero. That it is indeed the general solu-

tion is not so obvious. The proof is not difficult, but is a 

little lengthy. It is given by Goldberg [<5) p. 12~ for the 

case n = 2 with the general proof indicated as f ollowing the 

same pattern. 

If there are some repeated roots, say (1r
1

, fr2 , ~r
3

, 

fr4 ... ~n where the subscripts r 1 , r 2 , and r 3 indicate a 

thrice repeated root, then the general solution is 

Ux ={j,r (Cl+ C2 x + C3 x:2) +~•4x + ••• +~nx 

The derivation of this result due to Seliwanoff is indicated 

in Richardson [s11) p. 11i]. In the case of conjugate complex 

roots,$1 =a+ cb andQ2 = a - cb, the Euler relations may be 

used to write the roots in the more standard form 

Ux =fx (A cos 0 x + B sin x) 

where 

Repeated complex roots and combinations are written in an ob-

vious manner. 

The general linear nonhomogeneous equation with con-

stant coefficients is written as 

(31) ao Ux+n + al Ux+n-1 + •·· + an-1 Ux+l + an Ux = Rx 
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where~ may be either a constant or a function of x. The 

general solution is the sum of the complementary and particu-

lar solution to the reduced or associated homogeneous equation 

(when~ is taken as zero.) The complementary solution is 

found as just indicated for homogeneous equations. Various 

methods may be used to find the particular solution, a solu-

tion which makes . the complete equation an identity. Some 9f 

these are variation of parameters, the method of operators, 

and the method of undetermined coefficients. 

Undetermined coefficients. The most useful of these is 

probably the method of undetermined coefficients. Brief ly, 

the procedure is: 

1. Assume a solution cont aining the types or families 

represented by the variable term Rx. The families are px, cos 

0 x + sin 0 x, or t'. 
2. If the f amily is represented by t he homogeneous 

solution, multiply it by r1r, where n is one greater than the 

greatest power of xr in the homogeneous solutionl 

3. Substitute the assumed solution i nto the original 

equation and equate like coefficients to give an identity. 

Repeating~the complete solution, then , consists of the sum of 

the comp lementary solu tions and t he particular solution . Con-

stants are determined from the initial or final conditions . 

An example will help clarify the procedure: 

(32) Dx+2 - 7 Ux+l + 12 ux = x + 3x 

The auxiliary equation is 

Q 2 - 7 {3 + 12 = 0 
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which has roots 

~l = 3, 2 = 4. 
This is obtained by substituting the assumed solution ~x into 

the equation. More simply, we may notice equation (32) may 

be written 

E2 - 7E + 12 = x + 3X 

due to the equivalency of operators. The reduced equation may 

then be written 

L(E) = 0 

where L(E) is a general linear equation i n E. 

Then the auxiliary equation is 

L(~) = 0 

The complementary solution is 

Uxc = C1 3X + ex 4x 

Since one of the comp lementary solution terms is contained in 

the nonhomogeneous part of the original equation (3X), we will 

choose a particular solution, 

Uxp = a + bx + Cx 3x 

Substituting this into (32) gives 

a+ b (x+2) + C (x+2) 3x+2 - 7 G,+b(x+l) + C(x+l)3x+~ 

+ 12 G,+bx + ex 3~ = x+3x 

Collecting terms and rearranging, we have 

G,+2b - 7a - ?b + 12~ + x - 7b + 12~ + 3X (3c• 32 -

7c.3J + x•3x L9·32 - lC·3 + 12c.J = x + 3x 

and equating like coefficients since it must be true fo r all 

x gives 



The 

and 

6a - 5b = 0 

6b = 1 

-3C = 1 
1 

= Ji; b = e;; a and C 

particular solution is 

u -J + X - X 3x Xp - 3 75 3 
the general solution is 
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1 =·3· 

If initial ccnditions are specified by physical or 

other conditions, the constants c1 and c2 are determined from 

these conditions. In this example take 

U0 = 0 
and 

u1 = 1 

Then 
= rt (J %30 + C 3° + c2 4o; cl + c2 = - J1 u = 0 + '6' -0 1 

- -2 1 1 31 + C 31 + c2 1 + 4c2 - 2. Ul = 1 - 16 +o- 3 . 1 4; 3C1 - 8 

Solving these two equations simultaneously gives x 
12 ·, .?.2 Cl= - 8 C2 = 16 

This is a specific solution to the equation (32) which satis-

fies t he initial conditions that the function equal zero when 

x = 0 and equal one when x = 1. 

A check that t his actually is the solution is as follows: 



Adding 
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ux+2 = '% + ¼ (x+2) - ½ (x+2)(3)x+2 - 1l: (3)x+2 + f¾c4)x+2 

= i + + ½ - ½<x+2)3x.32 - '1fc3)x.32 + f't(4)x.42 

1Z, X X 183 = 36 + 6 - 3x•3 - .8 . • 3x + 25.4x 
-7 Ux+l = -7[:ii + i<x+l) - ½<x+l)3x+l - '1f(3)x+l ~(4)x+l 

= - - ix + 7x.3X + ~.3X - w.4x 
12U = 60 + 12 X - 4 3X - 180 3X +145 4x 

X 3b b. x• 8 • 

these together gives 

( 12 72 + 60) (i _ 2 + 12) 
Ux+2 - 7Ux+l + 12Ux = 3b - 3b 3b + x \ 6 o b 

(_ .ill} + .m. - ~) + X•3X(-3 + 7 - 4) + 3X \- --g- -g- o 

+ 4x (25 - + f) 
U - 7U + 12U = O + x + 3x + O • 4x = x + 3x. x+2 x+l x 

This is an identity which was t o be proved. 

Generating functions. A method of solving difference 

equations using what is called generating functions is de-

scribed by Goldberg G5) p. 189]. This is one of many trans-

formation me t hods for solving such equations. The function 

Y(s), in some real interval including zero, of the series ins, 

(33) Y{s) =Yo+ Yl s + Y2 s2 + ••• + Yk sk + ••• 

is defined as the generating function for the sequence y0 , y1 , 

y2 , · •.• desi gnated as {yk)· Then the sequence of y 0 = 1, y1 = 1, 

yk = 1 has for its genera ting function 

Y(s) = 1 + s + s2 + ••• + sk + ••• = i-s 
as can be demonstrated by performing the division. Again by 

division, or other methods of infinite series, 



(l~s)2 = 1 + 2s + 3s2 + ••• + (k + 1) sk + •L• 

This is the generating function for the sequence with the 

general term (k + 1). 
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In a similar manner, a small table of general terms 

(Ykj with their generating terms Y(s) is established. From 

the definition of Y(s) it is readily seen that by rearranging 

(33) the genera ting function for ( Yk+l~, f Yk+2j, ... , can be 

found if it is known for(Ykj. Thus 

( 4) Y(s)-Yo 2 k 3 S = Y1 + Sy2 + Y3 s + ••• + yk-1 s + ••• 

is obtained as the generating function for (Yk+lJ by trans-

posing y0 and dividing bys. 

This transformation has the property of transforming 

the difference equation into a linear algebraic equation 

which may be solved for Y(s) by standard algebraic procedures. 

The reverse transformation t hen gives the actual solution. 

It has as advantage over some transformations in that its 

close relationship to the desired solution often allows some 

analysis of the solution before, or even when the reverse 

transformation cannot be performed. 

The application of the procedure is quite simple when 

a table of transforms is available. The steps are: 

1. Replace each variable in the equation by its trans-
form. 

2. Solve the resulting equation for Y(s). This is 
usually simplified by use of partial fractions. 

3. Perform the inverse transform to give the solution 
yk. 

The following example, previously solved, will demon-

strate the procedure. 



U - 7U + 12U = x + 3 2 
X+ 2 X+l X 

From the Tables of transforms 4.1 and 4.2 in Goldberg tS_5) p . 

19Q] this is transformed into 

Y(s) - 40 - ·Yl s 
s2 

1 

Solving for Y(s) gives 

7 fi ( s) Yol + 12 Y( s) = s + [ :J (l-s)2 

s3 s2 

27 

Y(s) [ 1-75 + 12s~ = (l-s;2 + ( l-3 s ) + Y
0 

+ y1s + 7Y s 0 

Y(s) = s3 + s2 + (1-s)2 (l-4s) (l-3s) (1-.3s)2 (1-4s ) 

yo Cl-7s) + YJ s 
(l-4s) (l-3s) (1•4s) - (1~3s} 

Using the initial conditions of the problem 

O=y 
0 

and 
u1 = l = Y1 

the second term from the right i s zero and t he las t one i s 

s 
(1-£1-s) (1-3s) 

By partial fractions the equation i s further simplified to 

1 7s61 1 _l _l 
'Y(s) = b + 3 + 9 + 1+ + '} + 

(1-s) (1-sg (l-4s) (1-3} ) Cl-3s) 

2s - 2/3 + 1 + 1 + -1 (l-3s}2 (l-4s) (1-.4s) ~(l,,_._...,,3,.....s._) 

By combining like terms we have 

1 7s61 6s-2 
Y(s) = b + 3 - + 

(1-s) (1-sF (1 ... 3s)2 
+ 

-12 12. 
12 + 

(1-3s) (1- s) 

Since the table of transforms is incomplete, this pre-

sents some difficulty in performing the inverse transformation. 



The inverses of the first, fourth, and fifth terms are: 

1 ; - 12. 3x . 6 12 • ' and 12. 4X , 
9 

By expanding into series andarranging into combinations of 

sums and products, the second and third terms can be shown 

to be generating functions for 

respectively. 

Adding these to the other 3 terms, the solution becromes 
2_ A X 2_ 12_ 

UX = 36 + 6 - 3 • 3X - 4 • 3X + 9 . 4X 

which is the same solution arrived at previously by undeter-

mined coefficients. 
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Dirichlet series transform. Tomlinson Fort CTi+) p. 61+~ 

has suggested a transform method of solving linear difference 

equations with constant coeffi cients using the Dirichlet 

series transform. The transformation, n(a(t)}, is defined, 

where tis an integer, as 
ob 

f ( s) = D ( t )1 = m - st a ( t) , m :::r 1 , s :::r 1 (_c j t=O 

A table of transforms has been developed by Fort. 

This table will be used as needed for an example, but it will 

not be reproduced here. The method is similar to the one used 

in solving differential equations by Laplace transforms. Each 

element in the equation is replaced by its transform giving a 

linear algebraic equation in f(s), the transform of the un-

known. The resulting equation is solved for f(s) after which 



Ux = - 2. 3x + . 4x + ½ •2x 

Substituting t hi s into t he original equation to check the 

solution gives : 

ux+2 = - 2(3)x+2 + (4)x+2 + ½ (2)x+2 

= -18•3x + 24•4x + 2•2x 

-'7Ux+l = -7[:2(3)X+l + ¾ (4)x+l + ½ (2)x+~ 

= 42•3X - 42 •4X - 7•2X 

12U = -24•3X + 18•4X + 6•2X 
X 

Adding gives 

U 7U + 12U = 3X(-l8 + 42 -24) x+2 - x+l x 
+ 4X(24 - 42 +18) + 2X(2 - 7 + 6) 

or 
ux+2 - 7Ux+l + 12Ux = 2x 
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This is the identical equation required to complete the check. 

Special methods, the classical ruin problem. In study-

ing the ''classical ruin problem," Feller D3) p. 31~ uses 

the me thod of particular solutions to solve the difference 

equation, 

l < zc:::a - 1 

This is a departure from our standard notation, which would be 

Ux = p Dx+l + q Dx-1 
but is justifiable due to the wide usage of p and q in 

probability problems . Here qz is the probability of the gam-

bler's losing all (ultimat e ruin) and p
2 

is his probability 

of winning. His probability of winning or losing on each 

trial is represented by p and q respectively, z represents 

his present fortune and§:. his anticipated gain. The equation 



31 
is deduced from the fact that after the first trial, the gam-

bler's fortune is either z - 1 or z + 1. To obtain boundary 

conditions it is noted that if z = 1, the first trial may 

lead to ruin, and if z = a - 1, the first trial may result in 

victory. This suggests the conditions that 

q0 = 1, and qa = O 

two particular solutions, qz 

verified by trial as 

1 = p-1 + q•l 

= 1 and qz = ( i r, 
and 

(~p)z = P(~p)Z+l + q(pq)z-1 -- (q)Z (q)Z qp +pp 

since it is known that 

p + q = 1 z z 

are 

Multiplying each solution by arbitrary constants, A 

and B, and adding them the formal elution is 

(36) qz =A + B (~)z 
The constants A and Bare determined from the boundary condi-

tions which give the two equations 

1 =A+ B 

and 
+ B (~t 0 = A 

That is 
(i)a 

A = E 
(t)a -1 

and 

B = 1 

The solution satisfying the boundary condition~ is thus 
_, FORSYTH LIBRA.RY 

fORT HAYS KANSAS ~:· ,-i C0 .. L. .. GL.. 
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(37) 

To prove that this is the unique solution, it must be 

shown that all solutions are of this form. If an arbitrary 

solution is assumed, the constants A and B can be chosen such 

that (36) is an equation for the two values z = o and z = 1, 

since this represents two unknowns with two equations. But 

from the equation it is seen that any value is determined if 

the two adjacent values are known. Thus t he solution is unique. 

The probabilities p and q are parameters. The above 

argument is not valid when p = q =½since then only one par-

ticular solution has been found. In this case it is seen that 

a second particular solution is qz = z. Substituting 

z = p(z+l) + q(z-1) = ½(z+l) + ½(z-1) = z 

The formal solution is then 

(38) qz =A+ Bz. 

The constants to satisfy the boundary conditions must satisfy 

the equations 

1 = A + O; A = 1 
-1 

0 = A + Ba; B=a 
Thi s gives 

(39) z 
qz = i - a 

These results are summarized by saying that qz is the 

gambler's probability of ultimate ruin, or losing all his 

money, when he begins with a capital, z; plays against an ad-

versary with unlimited capital; and plays until he either 
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loses all or increases his capital to the amount~- If qz is 

his probability of losing, then 1 - qz must be his probability 

of winning . 

The tacit assumption made here in the initial differ-

ence equation is that the wager for each bet or trial is 1 

unit compared to the capital. If the capital is $10, then 

the bet is $1. If capital is 90 cents, bet is 1 cent. 

To see how this is applied, let us assume a player 

starts with $90 and wishes to make $10 to give him a total 

of $100. He is playing where the odds are against him such 

that he has 4 chances in 10 of winning on each trial . What 

are his chances of reaching his total goal? 

In the solution we note that z = $90, a= $100, p = 0.4, 

and q = 0.6. Equation (37) gives qz, his chance of losing, 

and 1 - qz is his chance of win~ing. Substi t u ting in (37) 

and 

(~)100 _ (:¾)90 

(:¾)100 -1 

1 - q = 0.017. z 

= .983 

His probability of winning $10 before losing $90 is, then, 

0.017. 

Step me step methods . Step by step me thods of solution 

of diff erence equations are i n general solved by one of two 

ways, depending on the conditi ons of the prob~em. The simp le 

equation 

~x+2 + Ux+l + ux = x 

with the conditions that U0 = 0 and u1 = 1 could be solved by 



steps by substituting the conditions into 

then 
U 2_ = -1 -0 -tO = -1 

1 + 0 = 0 

0 (-1) + 0 = 1 

u; = - un-2 - un-3 + n 

from which either the specific value wanted could be obtained 

or the general solution deduced. 

If, hm.-rever, the conditions had been boundary conditions 

such as U0 = O, and Un= o, the substitution would have given 

U2 = - U 1 + 0 + 0 = -U l 

U4 = U3 - U2 + U1 

Un= - Un-2 - Un-3 + n = 0 
The method of solution would have naturally led to a system 

of m simultaneous linear equations in m unknowns. The solution 

would then involve solving these equations, ·which in practice 

is usually accomp lished by matrix methods. 

Equations requiring such solutions often arise in con-

junction with partial differential equations. The definition 

of the derivative of a function u, 
(4o) du= lim 

dx h • O 
u(x+h) - u(x) 

h 

is compared to the difference definition, 

(41) Ux = U(x+h) - U(x) 

returning here to the general constant difference of h instead 
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instead of 1 . If (41) is divided by hand the limit t aken as 

h approaches zero, it is equal to (40) . This suggests that if 

we take h quite small i n (41) t he difference will approximate 

the derivative . 

This is the type of approximation used in solving 

boundary problems in partial differential equations by numer-

ical methods. The partia l derivatives 

a u _ lim u (x+h,~ - u (x1 y) 
a x - h - o h 

a2u _ lim U(x+h1 y) - 2U (x1 y) + U(x- h1 y) 
ax2 - n-ro h2 

are replaced by 
1 Ax U = Ii U(x+h,1 y) - U(x,_ Y) 

and 
Axx U = ½2 [ u_(x+h,_ y) -2U(x,_ y) + U(x-h,_ y~ 

The parabolic type of partial differential equation, 

so called because 

parabola, E 13) p . 

a2u _@. 
ax2 - aY 

of its similarity to the equation of a 
r' 

is approximated by 

/Jxx u = Ay u 
or ½2 [ u(x+~ y) - 2U( x,_ y) + U(x-h,_ Yli = ½ ~(x,_ y+k) 

-U(x1 YU 
which may be simplified to 

h2 h2 
U(x+1½_ y) - (2- k) U(x,_ y) + U(x~hi y) = k U( x,_ y+k) 

the ratio:. , ~2 is taken as a constant (often as 

the change in x is the s&~e as t he change in Y• 

1) so that 

This equation 
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can be thought of in terms of points on a graph or rectangular 

net, as indicated in Figure 1. 

(riJ +k) 

(~-i 1., y ) (rl ~h,y) 
+ (l'J\ y ) k 
t 

r+ h--+ 

If three of the four points are known, then the fourth 

can be determined. It can be seen that if this process were 

started, say at the bottom boundary, it could be continued 

until all points of the rectangular net or lattice were known. 

If the accuracy were not satisfactory, the spacings could be 

made smaller . The specific solution could be made general by 

fitting a general equation to the data. There are numerous 

methods of actually carrying out this process including sub-

stituting higher order difference equations as approximations 

to the differential equation, different mesh shapes , and special 

techniques for finding the point value approximations. Hilde-

brand [ (6) p .2!?1 describes one of these techniques called the 

relaxation method . It is essentially a process of trial and 

error averaging and weighing or giving more value in the aver-

age to the central point being computed. This tends to speed 

up the process of finding the best value. 



CHAPTER l+ 

AN ELECTRICAL PROBLEM BY DIFFERENCE METHODS 

Since a considerable amount of theoretical physics is 

required to set up the partial differential equations of most 

practical problems, an example is taken fro 11 Sokolnikoff and 

Redheffer G13) p . 51~. They have derived a differential 

equation for an electrical transmission line problem and have 

then found a solution by Fourier series. It is interesting 

to compare this solution to one obtained by difference equa-

tion methods. 

The problem is one of a submarine cable L miles in 

length. The voltage at the source is 12 volts, and, under 

steady state conditions, 6 volts at the receiving end. At 

time t = O the receiving end is grounded, but the source re-

mains constant. The problem is to find the voltage at any 

time and distance from the source, (V(x, t), subject to the 

boundary conditions 

V ( O , t) = 12 , V ( L, t) = 0 , and t 0 . 

The derivation of the problem classifies this as one 

most closely approximated by the parabolic type partial 

differential equation 

Here 

and 

au _ J.2 a2B at - &x 

U _ (I, the current (amperes) or 
- ~ , the voltage (volts), 



where R is the resistance (ohms per mile), C is the capaci-

tance (farads per mile). The solution is equivalent to that 

of the one-dimensional heat flow problem and is shown to have 

the solution in Fourier series 

(42) V(x, t) = 12 - 12f 

olJ ( 1J(mrJ2t + (g_ f £ . nnx1 d _l - RC L 
n=l L )~ L xl sin L xj e 

sin°~ J 
The approximate difference equation is, as previously 

shown, 

(43) h2 
U(x=h, y) - (2 - c:J2k U(x, yJ + U(x-h, y) 

= h2 U (x, y+k) 
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If we make a 
~ 2k 

particularly convenient choice of spacing 86) p. 

28j] such that the relation 1ip is 

h2 = 2 o< 2 k 
h2 

the term 2 - of 2k = 0. 

Substituting the variable 1 for~ and rearranging (43), it 

becomes 

U(x, y+k) = t E1 (x+h, y) + U(x-h, 01 
This relation can be taken to mean that within the prescribed 

boundaries, each point, x, is the average of the diagonally 

neighboring points below. 
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From fi gure 2 , point 2 is the average of points 1 and 3. 
This network represents a graph of the values of the function 

with values to be found at each intersection. In this prob-

lem each point is the voltage a t x miles along the cable a t 

time t seconds . 

From the boundary 9onditions it is s een that when x = O 

the voltage is 12 volts at all tL1es . The steady state condi -

tions show that the voltage drop is linear from 12 to 6 when 

t = 0 . Finally , when x = L, at the receiving end of the cable, 

and t ::,, 0, the voltage is a t zero. It is convenient to choose 

6 division points in the x direction making t he voltages at 

successive points along the x boundary 12, 11, 10, 9, 8, 7, 
and 6. The left boundary, when X = o, is 12 at all points, and 

the ri ght boundary is zero at all points except when t = O. 

The computation is strai ght f or war d a ccording to the formula 

V2 = ½(Vl + V3 ) 

from figure 2 except for one adjustment . There can be consid-

ered a discontinui t y in the l ower right hand corner where in 

t hinking of 1 oving along x the value.is 6, but in moving down 

the r i gh t boundary , the value is zero except at the exact 
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point. Hilderbrand D6) p. 2a~ suggests a correction here of 

using an average of the two values for computing the rest of 

the values. Note the 3 in parenthesis which was used in com-

puting the other terms. 

The distance, 1, is obviously divided into 6 divisions, 

giving 

6h = 1 
L 

h = 6 
Since the spacing was assumed such that 

h 2 = 2 o<2 k 

and 
°"2 1 

= RU 
then 12 RC k = 

72 

Some assumed values may make this more meaningf ul. 

Let 
L = 60 miles, 

R = .1 ohms per mile, 

and 
C = 10 /1flm = l x 10-5 farads per mile. 

Then 
h = 10 miles 

and 
k = 50 micro-seconds 

These values can be substituted into (42) to give actual 

values at points of the approximate solution. For i nstance, 

the voltage at 30 miles out after 250 microseconds is given 

from figure 3 as 7.9 volts. This is the point where 
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t 

{, gure 3 

Volta:Je al d1slances ancl times-



and 

The 

k = 250 = 5 spaces 50 
3Q h l0 = 3 spaces 

actual value here by calculation 

V(30 ,250) = 12 - 6 +~ 12 - (-cos 60 n=l 
e-(106)(16~)2 (250 X 10-6) 

= 6 .1 approximately 

n7r) 

sin l.'TT -y 

Since the factor sin¥ is zero when n = 2, and the factor 

of e to a power is less than .01 when n = 3. 
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This value is not agreeably close to t he one obtained 

by difference methods. Further investiga tion would be neces-

sary to explain the discrepancy. A different ratio of hand 

k would perhaps improve the approximation, since convergence 

is sometimes affected by their ratio. 



CHAPTER V 

SUMMARY 

Difference equations have applications in solving 

problems in the social sciences, physical sciences, and in 

numerical solutions to differential equations. Solutions 

obtained are explicit or of a step by step approximation. 

Methods of solutions may always be found to first order linear 

equations. Linear equations of higher order than one with con-

stant coefficients are solvable under most conditions. They 

are solved by finding a complementary solution through use of 

the auxiliary equation and adding i t to a particular solution. 

Particular solutions may be found by various me t hods , but the 

method of undetermined coef i cients is most useful. Various 

transform methods such as generating functions and Dirich~et 

series transforms may be used to solve linear equations with 

constant coefficients. 

Approximate solutions to differential equations are 

often found by replacing the differential equations by an 

analogous or equivalent difference equation. The difference 

equation gives a method for successive calculation3 to obtain 

the approximate solution. 

Chapters I and II give some of the background of differ-

ence equations and the calculus of finite differences. Al-

though much of the theory was developed quite early, the 



applications are more recent. The analogies between differ-

ence equations and differential equations are extensive, and 

a study of one aids understanding of the other. The use of 

operator notation not only simplifies notation, but makes 

possible expanded solutions. 

Chapter III illustr~tes the classification of equations 

according to order, degree, and whether homogeneous or nonhomo-

geneous. Solutions to first order linear equations are first 

found by summation or antidifferencing where the equations 

are simple. A formula is developed which is u seful for find-

ing the so~ution to first order linear equations t ha t are 

either homogeneous or nonhomogeneous and which have variable 

or constant coefficients. Examples help clarify the procedure. 

Equations of order greater than one must have constant coeffi-

cients or be of special forms to have a solution. 

Homogeneous equations of nth order with constant co-

efficients are solved by finding the solution to an auxiliary 

algebraic equation. Methods fo'r solving nonhomogeneous equa-

tions are then given with the particular solution being found 

by undetermined coefficients, generating functions, and 

Dirichlet series transforms. 

The "classical ruin problem'' illustrates one of the 

special methods of finding solutions, one called the method 

of particular solutions. 

Step by step methods are shown by finding the approxi-

mate solution to a differential equation. If the equation is 
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sufficiently well behaved, solutions may be found to any de-

sired accuracy, but the work is often laborious. This is one 

of many numerical methods in use today. 

A specific application of t his procedure is given in 

finding an approximate solution to an electrical transmission 

line problem. The solution is compared to an exact one found 

by Fourier series. 

The social scientist is making the greatest use of 

difference equations today as he develops more theory to 

translate social problems into mathematical terms. The success-

ful worker in this field in the future will ne ed a broad under-

standing of difference equations . 

The applied scientists find uses for difference equa-

tions, but often in altered form or converted to formula work 

which requires little understa~ding of the background. The 

future use of difference equations appears to be in these two 

areas. 
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