Journal of International & Interdisciplinary Business Research

Volume 5

Article 5

June 2018

A Statistical Analysis of the Predictive Power of Japanese Candlesticks

Mohamed Jamaloodeen Georgia Gwinnett College, mjamaloo@ggc.edu

Adrian Heinz Georgia Gwinnett College, aheinz@ggc.edu

Lissa Pollacia Georgia Gwinnett College, lpollaci@ggc.edu

Follow this and additional works at: https://scholars.fhsu.edu/jiibr Part of the <u>Finance and Financial Management Commons</u>

Recommended Citation

Jamaloodeen, Mohamed; Heinz, Adrian; and Pollacia, Lissa (2018) "A Statistical Analysis of the Predictive Power of Japanese Candlesticks," *Journal of International & Interdisciplinary Business Research*: Vol. 5, Article 5. Available at: https://scholars.fhsu.edu/jiibr/vol5/iss1/5

This Article is brought to you for free and open access by FHSU Scholars Repository. It has been accepted for inclusion in Journal of International & Interdisciplinary Business Research by an authorized editor of FHSU Scholars Repository.

A STATISTICAL ANALYSIS OF THE PREDICTIVE POWER OF JAPANESE CANDLESTICKS

Mohamed Jamaloodeen, Georgia Gwinnett College Adrian Heinz, Georgia Gwinnett College Lissa Pollacia, Georgia Gwinnett College

Japanese Candlesticks is a technique for plotting past price action of a specific underlying such as a stock, index or commodity using open, high, low and close prices. These candlesticks create patterns believed to forecast future price movement. Although the candles' popularity has increased rapidly over the last decade, there is still little statistical evidence about their effectiveness over a large number of occurrences. In this work, we analyze the predictive power of the Shooting Star and Hammer patterns using over six decades of historical data of the S&P 500 index. In our studies, we found out that historically these patterns have offered little forecasting reliability when using closing prices but were highly reliable when using high price for the Shooting Star and low price for the Hammer.

Keywords: Japanese Candlesticks, Shooting Star, Hammer, Stock market forecasting

INTRODUCTION

Technical Analysis is a popular method used in the financial industry to predict future price movements of financial securities. It is the study of market action, primarily through the use of charts, for the purpose of forecasting future price trends (Murphy, 1999). Charts are drawn using historical prices and may contain additional information such as volume and open interest. This technical methodology relies on three main assumptions: #1. Market action discounts everything. All relevant information that affects price of the security is already discounted in the market price. #2. Prices move in trends. #3. History repeats itself.

Based on assumption #1, the technician only relies on charts since it is all that it is required to forecast future prices. It follows from assumptions #2 and #3 that by studying past data using charts, it is possible to forecast future price trends. Historically, the technical approach has suffered its fair share of criticism. Probably the most well-known example is the Efficient-market hypothesis (EMH), which states that it is not possible to consistently achieve returns superior to those of the market on a risk-adjusted basis by using publicly available information (Fama, 1970). While the validity of EMH has been questioned repeatedly, it is not our purpose to prove or disprove this hypothesis.

Although it is difficult to find scientific evidence for the efficiency of technical analysis, it is hard to argue the immense popularity that it enjoys in the investment community. Popular financial websites such as Yahoo! Finance (Yahoo! Finance, n.d.), Google Finance (Google Finance, n.d.), MSN Money (MSN Money, n.d.), and CNN Money (CNN Money, n.d.) offer stock charts with a wide variety of technical indicators. In addition, those websites allow plotting multiple styles of charts that use not only closing prices but also incorporate other prices. One of

1

the most popular styles is Japanese Candlesticks, which are candles created using open, high, low and closing prices. When these candlesticks are drawn on a chart, they display patterns believed to be useful in forecasting temporary tops, bottoms, continuations and reversals. The effectiveness of Japanese Candlesticks is the focus of our work.

Although there is extensive literature on Japanese Candlesticks, most of it is generally vague and does not provide any statistical evidence on the validity of the patterns. On the other hand, the studies that do offer statistical evidence mostly concentrate on specific stocks over a short period of time (usually few years), instead of a highly liquid index over a long period of time (over a decade). The advantage of using a highly liquid index such as the S&P500 is that no single participant has large enough capital to influence price movement for long periods. In our study, we analyze the performance of two one-candle patterns: the Shooting Star, which is believed to forecast a temporary top and the Hammer, which is believed to forecast a temporary bottom. Our study is based on over 60 years of historical data on the S&P500 index, which is the most followed index by the media as well as analysts, and widely believed to be a leading indicator of the health of the US economy.

JAPANESE CANDLESTICKS

Japanese Candlesticks were initially developed in Japan around the 18th century; used by Japanese investors to forecast the price fluctuations of rice. Although Japanese Candlesticks Charts have been used in Japan for over 200 years, they were virtually unknown in the West until 1990 when they were introduced by Steve Nison (Nison, The Candlestick Course, 2003). Following Nison's introduction and the rise of the World Wide Web, Japanese Candlesticks have enjoyed increased popularity. Today, they are commonly included in most software packages and websites for technical stock analysis.

A daily Japanese Candlestick (Nison, Japanese Candlestick Charting Techniques, 2001) is formed by using 4 prices. These prices are the open, high, low and close for that particular day. The open and close prices determine the candle body, which is represented by a box. The high and low determine the candle's upper and lower shadows respectively, which are shown as thin vertical lines above and below the candlestick body. Figure 1 shows three sample candlesticks. In Figure 1(a), the closing price is higher than the opening price, thus the candlestick body is white (or green). Shown in Figure 1(b), the closing price is lower than the opening price, thus the candlestick body is black (or red). A special case appears in Figure 1(c), where the opening price equals the closing price, this is referred to as *Doji*.

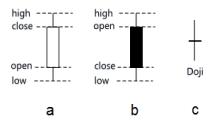


Figure 1. Sample Candlesticks.

With this terminology, the most basic pattern that can be defined consists of only one candle. This one-candle pattern is based on the body length and its position. Figure 2 shows several one-candle patterns. Starting from the leftmost pattern, the first one is known as Shooting Star (a), which is made of a small body at the bottom and a large upper shadow, the Hammer (b) has a small body at the top and a large lower shadow, the Doji (c) has a tiny body usually appearing near the middle of the candle with the exceptions of the Gravestone Doji (d) for which its body appears at the bottom and the Hanging Man (e) whose body appears at the top.

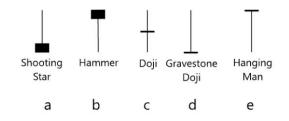
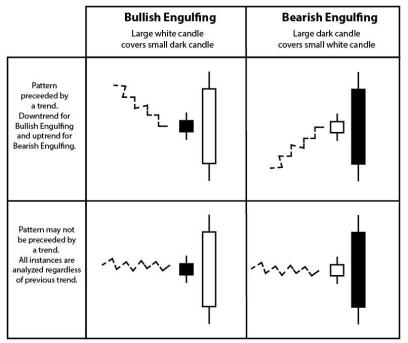



Figure 2. One Candle Patterns

More complex patterns involving multiple candles are possible as shown in Figure 3. For instance, the *Bullish Engulfing pattern*, which consists of a small dark candle *engulfed* by a subsequent large white candle whose body covers the previous small dark candle. Conversely, a *Bearish Engulfing pattern* is a small white candle engulfed by a large dark candle.

A pattern believed to forecast an uptrend is referred to as "bull" or "bullish" pattern while a pattern believed to forecast a downtrend is referred to as "bear" or "bearish" pattern. This terminology comes from Wall Street since market participants expecting a rise in prices are called "bulls" and participants expecting a fall are called "bears".

Figure 3. Bullish and Bearish Engulfing patterns

According to much of the literature, the significance of candlestick patterns is dependent upon the previous trend (Nison, Japanese Candlestick Charting Techniques, 2001). For instance, a Shooting Star in an uptrend is believed to forecast a top or resistance area, since prices have been consistently moving up but finished near the bottom of the day failing to establish a new high. In contrast, a Shooting Star in a sideways trend is believed to possess little predictive value. Figure 3 shows examples of two-candle patterns and the prior trend necessary to give validity to the pattern.

The literature also attaches significance to a Bullish Engulfing pattern occurring after a downtrend. This pattern is believed to indicate a bottom or support area and therefore, a trend reversal is likely. The opposite pattern is the Bearish Engulfing, which consists of an uptrend followed by a small white candle and a large dark candle. As its name implies, this patterns indicates a top or a resistance area. In this work, we study the patterns when they are preceded by a trend and also in all instances (regardless of trend).

There are several other Japanese Candlestick patterns that consist of two, three, and even four candlesticks. Popular patterns include *Morning Star*, *Evening Star*, *Dark Cloud Cover*, *Hammer*, *Piercing*, *Three Black Crows*, and *Three White Soldiers* (Nison, The Candlestick Course, 2003).

LITERATURE REVIEW

Many studies have been done to answer the question "Are Japanese Candlesticks an effective tool for forecasting future price action in the stock market?" This is not a simple question due to the fact that academicians are skeptical of technical analysis, while professional and retail traders rely heavily on technical indicators for predicting future prices and trends.

Examination of the literature to determine if there is a consensus concerning whether or not Japanese candlesticks are effective market predictors yielded mix results. There were some studies that had a positive result, but for limited markets, or just for certain patterns. For example, Lu, et. al. (Lu, Shiu, & Liu, 2012) investigated six different candlestick patterns using the Taiwan 50 component stocks. Using an adjusted t-test and the binomial test, they find that three bullish reversal patterns, i.e. the Bullish Engulfing, the Bullish Harami, and the Piercing, "have significant predictive power in the Taiwan stock market." They also examined three bearish patterns, but these did not show the predictive power of the bullish patterns.

In another study, Zhu (Zhu, Atri, & Yegen, 2015) concludes that certain candlestick patterns are effective for certain kinds of stocks in the Chinese exchanges. Specifically, in this study, the Bearish Harami and cross signals are effective in predicting reversals for stocks of low liquidity. Bullish Harami, Engulfing and Piercing patterns are seen to work well when applied to highly liquid, small companies' stocks.

Xie et al. (Xie, Zhao, & Wang, 2012) challenged the academic skepticism and claim to have demonstrated that candlesticks do provide predictive power based on past performance using S&P 500 data.

Another investigation yielding mixed results was that of Chmielewski, et al (Chmielewski, Janowicz, Kaleta, & Orlowski, 2015), who applied k-nearest neighbor classifier techniques to candlestick patterns for the Warsaw, Poland market. They conclude that, in general, there was no evidence to suggest candlesticks could be used to make a profit. However, evidence does indicate that there are some situations for which the opposite can occur; and that practicing traders can use candlesticks for their trading tactics differently from the way that academic studies are conducted.

On the negative side; in a seminal case study, Horton (Horton, 2009) examines candlesticks as a method of technical analysis for 349 stocks from Commodity Systems Inc. (CSI), with 349 randomly selected companies. Their study involved use of the following bull market candlesticks: Three White Soldiers, Three Inside Up, Three Outside Up, Morning Star; and the following bear market candlesticks: Three Black Crows, Three Inside Down, Three Outside Down, and Evening Star. They analyzed these as they related to a 3-day moving average (for uptrends and downtrends). The main conclusion of this study was that these candlestick charting methods had no value for trading individual stocks.

Prado, et al (Prado, Ferneda, Morais, Luiz, & Matsura, 2013) replicated a study performed on the U.S. Market, and applied these to the Brazilian market. Not only was no statistical evidence found to confirm predictive power, at least one pattern's analysis showed its trend was contrary to the original interpretation of the pattern. A few patterns showed predictive power in the markets of their intended use, but not in the Brazilian market.

Another study develops a mathematical definition scheme to enable objective and computerized identification of candles. Fock et al (Fock, Klein, & Zwergel, 2005) use this scheme to examine intra-day market performance. Even without taking transaction costs into account the results reflect poorly for the effective use of candles. In most cases, the results were not significantly better than results for a benchmark with randomized transactions. This was confirmed by Duvinage et al (Duvinage, Mazza, & Petitjean, 2013), who examined the predictive power of candlesticks at the 5-minute interval for the 30 constituents of the DJIA index. They found no evidence that candlesticks outperform the buy-and-hold method, after transaction costs are considered.

OVERVIEW OF THE STUDY

The focus of our study was to examine the predictive capability of the Shooting Star and Hammer, which are patterns determined by a single candle as shown in Figure 2(a) and Figure 2(b). The Shooting Star preceded by an uptrend is believed to forecast a market top, while the Hammer preceded by a downtrend is believed to forecast a market bottom. According to Nison (Nison, The Candlestick Course, 2003), when the market begins by rallying after the open but fails to make a new high due to a sell off and by the end of the trading session finishes near the opening price, it is a sign that the market participants are bearish and a downtrend is imminent, in which case the Shooting Star pattern is formed. Conversely, when the market sells off after the open but rallies toward the end of the trading session and closes near the open, it is a sign that the market participants are bullish and an uptrend is imminent, in which case a Hammer pattern is formed.

66

In order to test the predictive power of the Shooting Star and Hammer patterns, we created a computer program using C# to find all instances of both patterns in the S&P500 index by using historical data from 1950 to 2017. This program provides a graphical user interface (GUI) that allows the user to find multiple candlestick patterns by reading a CSV (comma separated values) file with historical prices. In addition, it allows the user to specify multiple parameters such as the candle's body length in relation to the entire candle's length, period of time, trend's strength, etc. For our study, we used historical data of the S&P 500 index from Yahoo finance.

The S&P 500 is a widely followed index comprised of 500 leading companies in the United States. Every time a candle pattern was found, we determined the previous trend as well as high and low prices following the candle to find out if it was a top (for the Shooting Star) or bottom (for the Hammer) for the next 5, 7 and/or 10 days. After finding the candle pattern and obtaining the success/failure of each instance found, we compared the results against those for all candles to determine whether using the candle pattern provided a statistical advantage of picking a top or bottom than simply using any random candle.

Although there is abundant literature on Japanese Candlesticks, these sources typically provide vague definitions rather than precise concepts. For instance, although a Doji candle is strictly defined as a candle where open and close prices are equal, there are instances in which those two prices are separated by only few cents. Should those instances be also considered a Doji and if so, how close should the two prices be? A similar situation occurs with the Shooting Star since it is suggested that the candle body should be small but there is no precise definition of how small. To further complicate matters, this pattern is often studied when it is preceded by an uptrend, but there is little information of what qualifies as an uptrend. Is it a 7-day uptrend, 10-day uptrend, 1-month uptrend? Should all the previous candles be rising or only some of them?

In order to perform our studies, we defined the following parameters for the candle patterns and trends.

A. Parameter definitions:

High (H). The highest traded price for the day. Low (L). The lowest traded price for the day. Open (O). The opening price for the day. Close (C). The closing price for the day.

Lower Shadow (LS) = MIN(O, C) – L Upper Shadow (US) = H - MAX(O, C) Body (B) = ABS(O – C) Whole Candle (WC) = H – L

Shooting Star. A candle for which the body is less than or equal to 25% of the entire candle, and the lower shadow is less than or equal to 5 percent of the entire candle length. Formally, $B/WC \le 25$ AND LS/WC $\le .05$

Hammer. A candle for which the body is less than or equal to 25% of the entire candle, and the upper shadow is less than or equal to 5 percent of the entire candle length. Formally, $B/WC \le .25$ AND US/WC $\le .05$

Moving Average. The n-Day Moving Average (n-Day MA) is the average of the closing prices for n consecutive days.

Uptrend. We consider a sequence of n candles to be in an uptrend when the n-day MA increases for least 70% of the n days.

Downtrend. We consider a sequence of n candles to be in a downtrend when the n-day MA decreases for least 70% of the n days.

Regardless of trend or No Trend. Any sequence of n days that it is either an uptrend, downtrend or sideways (neither of both).

Success/Failure of Shooting Star pattern. The Shooting Star over a period of n days is considered successful if:

- Closing price success (CLOSE criterion). The Shooting Star's close is higher than or equal to the highest close for the next n days. Otherwise, it is considered a failure.
- High price success (HIGH Criterion). The Shooting Star's high is higher than or equal to the highest close for the next n days. Otherwise, it is considered a failure.

As an example, the 5-day Shooting Star using the CLOSE criterion is expected to be a top for the next 5 trading days so that no other subsequent day can close higher than the closing price of the Shooting Star pattern to be considered a success. Similarly, the 10-day Shooting Star using the HIGH criterion is expected to be a top for the next 10 trading days so that no other subsequent day can close higher than the highest price of the Shooting Star pattern to be considered a success.

Success/Failure of Hammer pattern. The Hammer over a period of n days is considered successful if:

- Closing price success (CLOSE criterion). The Hammer's close is lower than or equal to the lowest close for the next n days. Otherwise, it is considered a failure.
- Low price success (LOW criterion). The Hammer's low is lower than or equal to the lowest close for the next n days. Otherwise, it is considered a failure.

As an example, the 5-day Hammer using the CLOSE criterion is expected to be a low for the next 5 trading days so that no other subsequent day can close lower than the closing price of the Hammer pattern to be considered a success. Similarly, the 10-day Hammer using the LOW criterion is expected to be a low for the next 10 trading days so that no other subsequent day can close lower than the lowest price of the Shooting Star pattern to be considered a success.

STATISTICAL ANALYSIS

The focus of our study was to examine the predictive capability of Japanese candlesticks by examining the Shooting Star and Hammer patterns, which have been given significance in the literature. For example: *a Shooting Star in an uptrend is hypothesized to forecast a temporary top price and thus, price will move downward afterwards*. In order to test that hypothesis, we wanted to compare the instances of this pattern with past data and perform a statistical analysis to determine the truth of the hypothesis.

In this study, we analyzed the Shooting Star in scenarios in which there were uptrends, as well as all scenarios. Likewise we analyzed the Hammer in scenarios in which there were downtrends, as well as all scenarios.

The next section contains the analysis for the Shooting Star forecasting a top, based on 5-, 7- and 10-day future days, and a comparison with forecasting a top randomly without using a candle signal. By random, we mean, using all days, we compare against the actual tops, as a proportion of the total number of data points. Similarly we present analysis for the Hammer forecasting a bottom, based on 5-, 7- and 10-day future days, and compare with forecasting a bottom randomly without using a candle pattern signal.

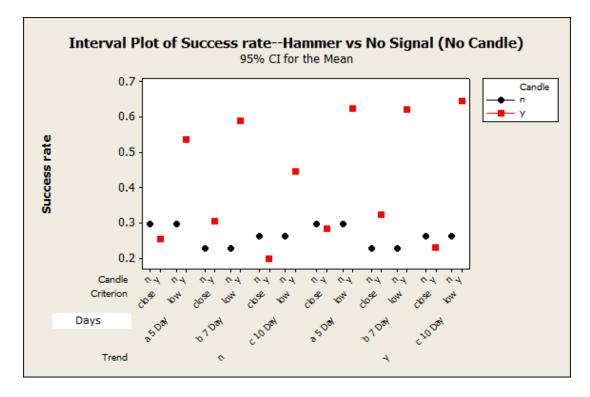
A. Descriptive Analysis

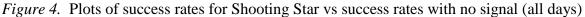
The important data used in the statistical analysis is summarized in Appendix A. The two criteria used are the HIGH/LOW for Shooting Star and Hammer respectively as well as the CLOSE. The HIGH criterion of the Shooting Star, expects the High price of the candle pattern to serve as a temporary top while the CLOSE criterion assumes the Close price of the candle pattern would serve as the temporary top (no closing price for the future n days can be higher than the top). In the case of the Hammer, the LOW criterion expects the Low price of the candle pattern to serve as a temporary bottom while the CLOSE criterion assumes the Close price of the candle pattern to serve as a temporary bottom while the CLOSE criterion assumes the Close price of the candle pattern to serve as a temporary bottom while the CLOSE criterion assumes the Close price of the candle pattern to serve as a temporary bottom while the CLOSE criterion assumes the Close price of the candle pattern to serve as a temporary bottom while the CLOSE criterion assumes the Close price of the candle pattern to serve as a temporary bottom while the CLOSE criterion assumes the Close price of the candle pattern would serve as a temporary bottom (no closing price for the future n days can be lower than the bottom).

The data suggests that both the Shooting Star and Hammer candles are effective when the HIGH criterion for Shooting Star is used and the LOW criterion for Hammers. When using the CLOSE criterion neither the Shooting Star nor the Hammer appear to be effective.

Beginning with the Shooting Star, when using the CLOSE criterion, we observe that the proportion of successes for the candle is typically lower than, or comparable to, the proportion of successes for all days, regardless of trend (Table 1) and with trend (Table 2). By contrast, from

		Number of tops (successes)	Total Number of observations	Proportion of tops (successes)
5 Day	All days	3560	16635	0.214007
	Shooting Star	76	161	0.47205
7 Day	All days	2933	16631	0.176357
	Shooting Star	64	161	0.397516
10 Day	All days	2363	16625	0.142135


	Shooting Star	46	161	0.285714
 				ä


Table 3 and Table 4 when the HIGH criterion is used the Shooting Star success proportions are markedly higher than the corresponding success proportions for all days (5-, 7- and 10-day) with trend and regardless of trend.

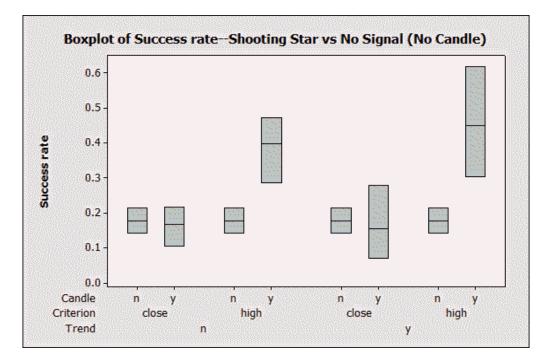

The proportions in

Figure 4 also bear these out—the success proportions using the HIGH criterion are markedly higher for the Shooting Star especially under the 5- and 7-day and to a lesser extent the 10-day (both regardless of trend and with trend). Likewise, bundling into one all the success rates by moving average (5-, 7 - and 10- day), we see using boxplots ()

Figure 5) that when the CLOSE criterion is used the Shooting Star success proportions are comparable to the success proportions of all days, this is regardless of trend and with trend. In fact the medians of the boxplots for the Shooting Star (with the CLOSE criterion) are lower than the medians for the boxplots for the proportions for all days (with the CLOSE criterion). However when the HIGH criterion is used we see the boxplots for the Shooting Star are much higher than those for all days (with the HIGH criterion)—in fact the tail of the Shooting Star boxplot is higher than the head of the corresponding boxplot for all days (again, regardless of trend, and with trend).

Figure 5. Boxplots of success rates for Shooting Star vs success rates with no signal (bundled into one across 3-, 5-, 7- and 10-days)

A similar situation occurs with the Hammer signal. The Hammer appears effective when using the LOW criterion and not effective when using the CLOSE criterion. For the Hammer, looking at the proportion of successes when using the CLOSE criterion, we see from Table 5 and Table 6 that the proportion of successes for the candle is typically lower than, or comparable to, the proportion of successes for all days, regardless of trend (Table 5) and with trend (Table 6). By contrast, when the LOW criterion is used the Hammer candle success proportions are markedly higher than the corresponding success proportions across all 5, 7 and 10-day regardless of trend (Table 7) as well as with trend (Table 8).

The proportions in

Figure 6 also bear these out—the success proportions using the LOW criterion are markedly higher for the Hammer especially when there is a trend (for all 5, 7 and 10-days) and regardless of trend with the 5 and 7 days and to a lesser extent even the 10-day. Likewise, bundling into one all the success rates (5-, 7 -and 10- day), we see using boxplots (

Figure 7) that when the CLOSE criterion is used the Hammer success proportions are comparable to the success proportions of all days, this is regardless of trend and with trend. In fact the median of the boxplots for the Hammer are lower than the median for the boxplots for the proportions for all days when the CLOSE criterion is used and when there is no trend. The median under the CLOSE criterion when there is a trend is only marginally higher for the Hammer candle boxplot than that for the boxplot for success with not candle. However when the LOW criterion is used we see the boxplots for the Hammer are much higher than those for all

days—in fact the tail of Hammer boxplot is higher than the head of the corresponding boxplot for all days (again, regardless of trend, and with trend).

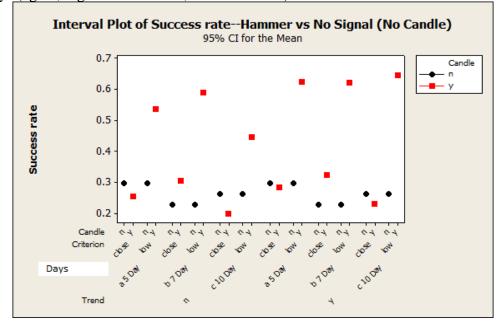
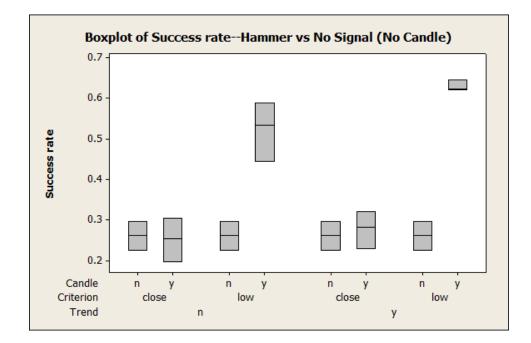



Figure 6. Plots of success rates for Hammer vs success rates with no signal (all days)

Figure 7. Boxplots of success rates for Hammer vs success rates with no signal (bundled into one across 3-, 5-, 7- and 10-day

72

B. Inferential Analysis

1. Tests for independence between candle signals

We conducted nonparametric chi-squared tests for both the Shooting Star candle as a bearish signal and the Hammer candle as a bullish signal. We tested whether the appearance of a top was dependent on the Shooting Star signal or not. Likewise we tested whether the appearance of a bottom was dependent on the Hammer signal or not.

In the case of tops and the Shooting Star the hypotheses are:

H₀: tops are independent of the Shooting Star

Ha: tops are dependent on the Shooting Star

In the case of bottoms and the Hammer the hypotheses are:

H₀: bottoms are independent of the Hammer

H_a: bottoms are dependent on the Hammer

For example, consider the Shooting Star 5-day, regardless of trend (CLOSE). We see that there are 161 Shooting Star observations of which 35 successfully signaled a top for the next 5 days. Using a chi-squared test, we investigated whether this is independent or not of the Shooting Star signal by using all 16,635 candles for which 3,560 were tops for 5 days. The nonparametric chi-squared test for independence comparing 35 successful Shooting Star signals out of a total of 161 Shooting Star signals against 3,560 days that are tops out of a total of 16,635 days yields a p-value of 0.9939 (Figure 8) suggesting that tops are independent of the Shooting Star pattern.

The tests are summarized in Figure 8 for the Shooting Star pattern and Figure 9 for the Hammer pattern. We see that when the CLOSE criterion is used, neither the Shooting Star nor the Hammer results are significant. However when the HIGH criterion is used, tops do appear to significantly depend on the Shooting Star. Likewise when the LOW criterion is used bottoms do appear to significantly depend on the Hammer.

H ₀ : tops are independent of the Shooting Star pattern H _a : tops are dependent on the Shooting Star pattern	p-value regardless of trend (CLOSE)	p-value with uptrend (CLOSE)	p-value regardless of trend (HIGH)	p-value with uptrend (HIGH)
5 Day	0.9939	0.2445	5.464e-15	2.21e-15
7 Day	0.8549	0.7514	6.486e-1	4.071e-09
10 Day	0.2265	0.1862	4.227e-07	0.001126

Figure 8. Chi-square tests for independence of tops on Shooting Star candle pattern regardless of trend and with uptrend

H ₀ : bottoms are independent of the Hammer pattern H _a : bottoms are dependent on the Hammer pattern	p-value regardless of trend (CLOSE)	p-value with downtrend (CLOSE)	p-value regardless of trend (LOW)	p-value with downtrend (LOW)
5 Day	0.8224	0.6927	< 2.2e-16	9.717e-11
7 Day	0.8036	0.7584	< 2.2e-16	1.099e-13
10 Day	0.2835	1	< 2.2e-16	1.478e-11

Figure 9. Chi-square tests for independence of bottoms on Hammer candle pattern regardless of trend and with downtrend

2. Tests for comparing success proportions between candle signals and no signals

We also conducted tests of proportions both parametric and nonparametric. We tested whether the proportion of successes with the candle pattern is greater than the proportion of tops, in the Shooting Star case, and whether the proportion of success with the candle pattern is greater than the proportion of bottoms, in the Hammer case. The hypotheses, for both the Shooting Star and Hammer signals are:

 H_0 : success proportion for candle pattern = success proportion without using candle pattern

 $H_a\!\!: \text{success proportion for candle pattern} > \text{success proportion without using candle pattern}$

For example, consider again the Shooting Star 5-day without trend (CLOSE). We see that there are 161 Shooting Star observations of which 35 successfully signaled a top giving a success proportion of r1 = 0.217391. Using a nonparametric test, we determined whether this is greater than the proportion for all 16,635 trading days, where 3,560 tops were found, giving a rate of appearance of tops ("success proportion") of r2 = 0.214007. The nonparametric tests for proportions comparing 35 successful Shooting Star signals out of a total of 161 Shooting Star signals against 3,560 days that are tops out of a total of 16,635 trading days yields a p-value of 0.4582 (See Figure 10) suggesting that the proportion of successes with the Shooting Star is no more than the ordinary proportion of tops.

The nonparametric tests are summarized in Figure 10 for the Shooting Star and Figure 11 for the Hammer. We see that when the CLOSE criterion is used, neither the proportion of successes for the Shooting Star, nor the proportion of successes for the Hammer, is higher than the proportion of all tops, in the case of the Shooting Star, or higher than the proportion of all bottoms, in the case of the Hammer. However, when the HIGH criterion is used, the proportion

of successes of the Shooting Star is significantly higher than the proportion of successes for all days. Likewise, when the LOW criterion is used, the proportion of successes with the Hammer are significantly higher than the proportion of successes for all days.

H ₀ : success proportion for Shooting Star = success proportion without Shooting Star H _a : success proportion for Shooting Star > success proportion without Shooting Star	p-value regardless of trend (CLOSE)	p-value with uptrend (CLOSE)	p-value regardless of trend (HIGH)	p-value with uptrend (HIGH)
5 Day	0.4582	0.09422	7.107e-16	2.41e-16
7 Day	0.6488	0.6795	7.873e-14	6.077e-10
10 Day	0.9077	0.9351	8.99e-08	0.0002693

Figure 10. Tests for proportions for Shooting Star

H ₀ : success proportion for Hammer = success proportion without Hammer H _a : success proportion for Hammer > success proportion without Hammer	p-value regardless of trend (CLOSE)	p-value with downtrend (CLOSE)	p-value regardless of trend (LOW)	p-value with downtrend (LOW)
5 Day	0.296723	0.304	< 2.2e-16	1.859e-11
7 Day	0.6269	0.3337	< 2.2e-16	1.671e-14
10 Day	0.877	0.4826	< 2.2e-16	1.958e-12

Figure 11. Tests for proportions for Hammer

3. How high success proportion would be considered effective for a candle

In the preceding analysis we found success proportions for the Shooting Star and Hammer patterns using 5, 7 and 10-days, with and regardless of trends (uptrend in the case of the Shooting star, and downtrend in the case of the Hammer). The analysis showed that the proportion of successes for the Shooting Star was statistically lower than the actual proportion of days that were tops overall, approximately 16,600 days sampled when the CLOSE criterion was used, but statistically higher than the actual proportion of days that were tops overall when the HIGH criterion was used. Likewise the proportion of successes for the Hammer was statistically lower than the actual proportion of days that were bottoms overall with approximately 16,000 days sampled, when the CLOSE criterion was used, but statistically higher than the actual proportion of days that were bottoms overall when the LOW criterion was used. In this section we take a different view and begin by explaining the difference with the previous analysis.

In the previous approach, we looked to detect candle patterns and then find out how successful these patterns were in signaling downturns (tops) in the case of the Shooting Star and

upturns (bottoms) in the case of the Hammer. We then compared these results with the overall proportion of days that were tops out of the total number of days in the case of the Shooting Star. The analysis for the Hammer was similar. More specifically, the failure for the Shooting Star can be measured by the frequency of the following scenarios,

- 1) A top arises, but it is not preceded by the appearance of a Shooting Star
- 2) A Shooting Star appears but it is not followed by a top

In the previous analysis, by comparing the proportion of Shooting Star success with the proportion of all tops we essentially looked at scenario 1). Proponents of candle strategies may argue that scenario 1) should not be used to dispute technical strategies such as the use of candlesticks. The argument is that a top may or may not be signaled by a candle pattern such as the Shooting Star—and that is fine. However, if a Shooting Star candle is detected, then it is expected to signal a top which corresponds to scenario 2). The argument is that a candle such as a Shooting Star should be assessed on how good the signal is once it appears, since this is due to specific circumstances that make the candle pattern to be created and are the cause of the trend reversal. In some sense then, where a candle appears should be considered "distinguished," or "special." For example, consider, the Shooting Star success proportion for the 5-day regardless of trend and the same for the Hammer, which are respectively $r_1 = 35/161 = 0.217391$ (Table 1) and $r_2 = 88/289 = 0.304498$ (Table 5) when the CLOSE criterion is used. Proponents of candle strategies may argue that these are significant success proportions, against, say other conceivable trading strategies. We show that this is not in fact the case when the CLOSE criterion is used for candles, but that there is strong evidence for significant success proportions when the HIGH criterion is used in the case of the Shooting Star candle and when the LOW criterion is used in the case of the Hammer candle.

The second scenario above suggests that all the instances where the candle pattern appears must be distinguished. So for example in the 5-day regardless of trend, there are 161 appearances of the Shooting Star, and 289 appearances of the Hammer. Proponents of candles would argue that the 161 instances where the Shooting Star appeared and where the 289 instances where the Hammer appeared are distinguished. We show that statistically these signals do not appear at distinguished instances when the CLOSE criterion is used for the candle signal. We randomly selected 161 days out of the total 16,635 days and considered what proportion of them signaled tops to compare against the actual 161 Shooting Star appearances. We repeated this over 50 iterations. Likewise we randomly selected 289, days out of the total 16,635 days and considered what proportion of them signaled bottoms to compare against the actual 289 Hammer appearances, again repeating over 50 iterations. The results are summarized in Appendix B (Table 9 - Table 14) for 5-, 7- and 10-day with CLOSE criterion and HIGH and LOW criteria for the Shooting Star and Hammer respectively.

In this study, we conducted nonparametric tests (permutation tests) for proportions. In the case of the Shooting Star the hypotheses are:

 H_0 : probability that a candle instance detects top = probability that a random instance detects top

 H_a : probability that a candle instance detects top > probability that a random instance detects top

For the Hammer, the hypotheses are:

 H_0 : probability that a candle instance detects bottom = probability that a random instance detects bottom

 H_a : probability that a candle instance detects bottom > probability that a random instance detects bottom

In the case where the CLOSE criterion was used, we tested against the worst rate with random signal assignment (minimum success rate) as shown in the highlighted rows of Table 15 and Table 16. Observe that in every case for the Shooting Star and Hammer (5, 7, or 10-day, with trend or regardless of trend), the lowest random placement success ratio is greater than the corresponding candle pattern success ratio. This means that all p-values for the CLOSE criterion are comparable to 0.5 and closer in fact to 1. We see then, using the data in Table 15 and Table 16, that there is no evidence to support the claim that the instance where a Shooting Star or Hammer candle pattern arises is more likely to signal a top or bottom respectively than randomly assigning instances of signals when the CLOSE criterion is used for the candle.

Consider the same study, except now using the HIGH criterion for the Shooting Star, and the LOW criterion for the Hammer. There is good evidence to support the claim that the instance where a Shooting Star or Hammer candle arises is more likely to signal a top or bottom respectively than randomly assigning instances of signals. For evidence to this effect we would ideally like that the candle pattern success ratio be better or at least equal than the best rate with random signal assignment (maximum success rate), which are the highlighted rows in Table 17 and **Error! Reference source not found.** Observe that this is the case for the Hammer (**Error! Reference source not found.**) in every scenario (5, 7, or 10-day, with trend or regardless of trend). In the case of the Shooting Star (Table 17), this only the case for the 5-day with trend. Nevertheless the success ratios for the Shooting Star with HIGH criterion are comparable to the maximum success ratios with random assignments and are better than every median success ratio for random assignments.

Afterwards, we summarize the test results for comparing the candle success ratios with HIGH criterion for the Shooting Star and LOW criterion for the Hammer. We then test against the corresponding maximum success ratio, median success ratio, and minimum success ratio for the random assignments. Clearly the p-values should decrease as we test against the maximum, median and minimum random assignment success ratios. The results for the Shooting Star are shown in Table 18. We see that the p-value is not significant in any case when testing against the maximum success rate. However the p-value is significant when testing against the median success rate for the 5 and 7 day (with trend or regardless of trend). The Shooting Star does not appear significant when using the HIGH criterion for the 10-day (neither with trend nor regardless of trend).

Table 19 shows the results for the Hammer. We see that the p-value is significant in some cases even when testing against the maximum success rate (e.g. 10-Day with trend) and it is

always significant when testing against the median success rate (with trend or regardless of trend).

SUMMARY

In this work, we have examined various statistical methods to determine if two of the most popular Japanese candlestick patterns, namely Shooting Star and Hammer, have predictive significance.

In our studies, we found out that when using the closing price of the Shooting Star to determine a temporary top (5, 7 or 10 subsequent days), the pattern's reliability was no better than that of using a randomly chosen candle. On the other hand, if we instead use the high price of the Shooting Star as a temporary top, the predictive power was significantly better than when using a randomly chosen candle. A similar outcome occurred with the Hammer pattern. When we used the closing price of the Hammer as a temporary bottom, its predictive power was no better than that of a randomly chosen candle. However, when we selected the Hammer's low as a temporary bottom, the pattern's reliability clearly outperformed that of a randomly selected candle.

Future work may include an application of trading strategies to measure the profitability of the Hammer and Shooting Star candlestick patterns across bullish and bearish patterns. This would involve the incorporation of a performance measure to determine if returns superior to those of the general market can be achieved. This method would allow out-of-sample tests to be performed, which can help measure the predictive ability of the technique.

Additionally, as we only used historical data of the S&P500 index, more studies may be conducted to determine the candles patterns' reliability in other markets such as commodities, interest rates, precious metals or even foreign markets.

Finally, we sincerely thank the anonymous referees for their valuable feedback, which led to valuable improvements of this work.

REFERENCES

- Chmielewski, L., Janowicz, M., Kaleta, J., & Orlowski, A. (2015). Pattern Recognition in the Japanese Candlesticks. In *Soft Computing in Computer and Information Science* (Vol. 342, pp. 227-234). Springer.
- CNN Money. (n.d.). Retrieved 09 22, 2016, from http://money.cnn.com/
- Detollenaere, B., & Mazza, P. (2014, November). Do Japanese Candlesticks help solve the trader's dilemma? *Journal of Banking and Finance*, 48, 386-395.
- Duvinage, M., Mazza, P., & Petitjean, M. (2013, July). The Intra-day Performance of Market Timing Strategies and Trading Systems based on Japanese Candlesticks. *13*(7), 1059-70.

- Fama, E. F. (1970, May). Efficient Capital Markets: A Review of Theory and Empirical Work. 25, pp. 383-417. New York: Papers and Proceedings of the Twenty-Eighth Annual Meeting of the American Finance Association.
- Fock, J. H., Klein, C., & Zwergel, B. (2005). Performance of Candlestick Analysis on Intraday Futures Data. *13*(1), 28-40.
- Google Finance. (n.d.). Retrieved 09 22, 2016, from http://www.google.com/finance
- Horton, M. J. (2009). Stars, crows, and doji: The use of candlesticks in stock selection. 49, 283-294.
- Lu, T.-H., Shiu, Y.-M., & Liu, T.-C. (2012). Profitable Candlestick Trading Strategies--The Evidence from a New Perspective. 21, 63-68.
- MSN Money. (n.d.). Retrieved 09 22, 2016, from http://money.msn.com/
- Murphy, J. (1999). Technical Analysis Of The Financial Markets. New York Institute of Finance.
- Nison, S. (2001). Japanese Candlestick Charting Techniques (2 ed.). Prentice Hall Press.
- Nison, S. (2003). The Candlestick Course. Hoboken, New Jersey: John Wiley & Sons, Inc.
- Prado, H., Ferneda, E., Morais, L. C., Luiz, A. J., & Matsura, E. (2013). On the effectiveness of candlestick chart analysis for the Brazilian stock Market. 22, 1136-45.
- Xie, H., Zhao, X., & Wang, S. (2012). A comprehensive look at the predictive information in Japanese candlestick. *9*, 1219-1227.

Yahoo! Finance. (n.d.). Retrieved 09 22, 2016, from http://finance.yahoo.com/

Zhu, M., Atri, S., & Yegen, E. (2015). Are candlestick trading strategies effective in certain stocks with distinct features? 2015. Retrieved from http://dx.doi.org/10.1016/j.pacfin.2015.10.007

		Number of tops (successes)	Total Number of observations	Proportion of tops (successes)
5 Day	All days	3560	16635	0.214007
	Shooting Star	35	161	0.217391
7 Day	All days	2933	16631	0.176357
	Shooting Star	27	161	0.167702
10 Day	All days	2363	16625	0.142135
	Shooting Star	17	161	0.10559

Appendix A Summary of Data used in Statistical Analysis

Table 1. Shooting Star observations vs all days (no signal) regardless of trend CLOSE

		Number of tops (successes)	Total Number of observations	Proportion of tops (successes)
5 Day	All days	3560	16635	0.214007
	Shooting Star	19	68	0.279412
7 Day	All days	2933	16631	0.176357
	Shooting Star	11	71	0.15493
10 Day	All days	2363	16625	0.142135
	Shooting Star	4	56	0.071429

Table 2. Shooting Star observations vs all days (no signal) with trend CLOSE

		Number of tops (successes)	Total Number of observations	Proportion of tops (successes)
5 Day	All days	3560	16635	0.214007
	Shooting Star	76	161	0.47205
7 Day	All days	2933	16631	0.176357
	Shooting Star	64	161	0.397516
10 Day	All days	2363	16625	0.142135
	Shooting Star	46	161	0.285714

Table 3. Shooting Star observations vs all days (no signal) regardless of trend HIGH

		Number of tops (successes)	Total Number of observations	Proportion of tops (successes)
5 Day	All days	3560	16635	0.214007
	Shooting Star	42	68	0.617647
7 Day	All days	2933	16631	0.176357
	Shooting Star	32	71	0.450704
10 Day	All days	2363	16625	0.142135
	Shooting Star	17	56	0.303571

Table 4. Shooting Star observations vs all days (no signal) with trend HIGH

		Number of tops (successes)	Total Number of observations	Proportion of tops (successes)
5 Day	All days	4936	16635	0.296724
	Hammer	88	289	0.304498
7 Day	All days	4355	16631	0.26186
	Hammer	73	288	0.253472
10 Day	All days	3766	16625	0.226526
	Hammer	57	288	0.197917

Table 5. Hammer observations vs all days (no signal) regardless of trend CLOSE

		Number of tops (successes)	Total Number of observations	Proportion of tops (successes)
5 Day	All days	4936	16635	0.296724
	Hammer	28	87	0.321839
7 Day	All days	4355	16631	0.26186
	Hammer	24	85	0.282353
10 Day	All days	3766	16625	0.226526
	Hammer	11	48	0.229167

Table 6. Hammer observations vs all days (no signal) with trend CLOSE

		Number of tops (successes)	Total Number of observations	Proportion of tops (successes)
5 Day	All days	4936	16635	0.296724
	Hammer	170	289	0.588235
7 Day	All days	4355	16631	0.26186
	Hammer	154	288	0.534722
10 Day	All days	3766	16625	0.226526
	Hammer	128	288	0.444444

Table 7. Hammer observations vs all days (no signal) regardless of trend LOW

		Number of tops (successes)	Total Number of observations	Proportion of tops (successes)
5 Day	All days	4936	16635	0.296724
	Hammer	54	87	0.62069
7 Day	All days	4355	16631	0.26186
	Hammer	53	85	0.623529
10 Day	All days	3766	16625	0.226526
	Hammer	31	48	0.645833

Table 8. Hammer observations vs all days (no signal) with trend LOW

		Appendix	ĸВ			
	Trend		Regardless of Trend			
Тор	No-	Success	Тор	No-	Success	
Top	Тор	Proportion	rop	Тор	Proportion	
24	44	0.3529	63	98	0.3913	
25	43	0.3676	59	102	0.3665	
28	40	0.4118	55	106	0.3416	
21	47	0.3088	50	111	0.3106	
26	42	0.3824	55	106	0.3416	
22	46	0.3235	61	100	0.3789	
21	47	0.3088	62	99	0.3851	
28	40	0.4118	63	98	0.3913	
27	41	0.3971	60	101	0.3727	
22	46	0.3235	51	110	0.3168	
27	41	0.3971	61	100	0.3789	
23	45	0.3382	50	111	0.3106	
25	43	0.3676	53	108	0.3292	
22	46	0.3235	61	100	0.3789	
27	41	0.3971	74	87	0.4596	
28	40	0.4118	63	98	0.3913	
27	41	0.3971	68	93	0.4224	
28	40	0.4118	67	94	0.4161	
29	39	0.4265	58	103	0.3602	
30	38	0.4412	66	95	0.4099	
27	41	0.3971	76	85	0.4720	
29	39	0.4265	64	97	0.3975	
34	34	0.5000	61	100	0.3789	
28	40	0.4118	63	98	0.3913	
22	46	0.3235	62	99	0.3851	
27	41	0.3971	64	97	0.3975	
27	41	0.3971	67	94	0.4161	
28	40	0.4118	58	103	0.3602	
26	42	0.3824	65	96	0.4037	
24	44	0.3529	59	102	0.3665	
26	42	0.3824	72	89	0.4472	
31	37	0.4559	52	109	0.3230	
21	47	0.3088	80	81	0.4969	
25	43	0.3676	57	104	0.3540	
24	44	0.3529	67	94	0.4161	
27	41	0.3971	60	101	0.3727	
24	44	0.3529	59	102	0.3665	
24	44	0.3529	57	104	0.3540	
25	43	0.3676	57	104	0.3540	

Journal of International & Interdisciplinary Business Research, Vol. 5 [2018], Art. 5

			1			
	24	44	0.3529	68	93	0.4224
	23	45	0.3382	64	97	0.3975
	29	39	0.4265	62	99	0.3851
	23	45	0.3382	59	102	0.3665
	30	38	0.4412	70	91	0.4348
	28	40	0.4118	58	103	0.3602
	29	39	0.4265	64	97	0.3975
	30	38	0.4412	58	103	0.3602
	31	37	0.4559	63	98	0.3913
	34	34	0.5000	64	97	0.3975
	26	42	0.3824	60	101	0.3727
Low	21	47	0.3088	50	111	0.3106
High	34	34	0.5000	80	81	0.4969
Average	26.32	41.68	0.3871	61.8	99.2	0.3839
Median	27	41	0.3971	61.5	99.5	0.3820

Table 9. Iterations Shooting Star (Tops) 5 day

	Trend		Regardless of Trend			
Тор	No- Top	Success Proportion	Тор	No- Top	Success Proportion	
22	49	0.3099	53	108	0.3292	
22	49	0.3099	51	110	0.3168	
21	50	0.2958	57	104	0.3540	
31	40	0.4366	46	115	0.2857	
25	46	0.3521	47	114	0.2919	
20	51	0.2817	40	121	0.2484	
21	50	0.2958	58	103	0.3602	
24	47	0.3380	53	108	0.3292	
26	45	0.3662	47	114	0.2919	
14	57	0.1972	51	110	0.3168	
17	54	0.2394	48	113	0.2981	
24	47	0.3380	54	107	0.3354	
25	46	0.3521	57	104	0.3540	
23	48	0.3239	61	100	0.3789	
22	49	0.3099	49	112	0.3043	
23	48	0.3239	56	105	0.3478	
18	53	0.2535	56	105	0.3478	
18	53	0.2535	55	106	0.3416	
20	51	0.2817	50	111	0.3106	
24	47	0.3380	58	103	0.3602	
23	48	0.3239	48	113	0.2981	

	21	50	0.2958	55	106	0.3416
	23	48	0.3239	56	105	0.3478
	21	50	0.2958	50	111	0.3106
	21	50	0.2958	47	114	0.2919
	22	49	0.3099	53	108	0.3292
	27	44	0.3803	44	117	0.2733
	34	37	0.4789	58	103	0.3602
	24	47	0.3380	46	115	0.2857
	22	49	0.3099	47	114	0.2919
	26	45	0.3662	62	99	0.3851
	19	52	0.2676	63	98	0.3913
	22	49	0.3099	47	114	0.2919
	22	49	0.3099	66	95	0.4099
	27	44	0.3803	47	114	0.2919
	13	58	0.1831	44	117	0.2733
	21	50	0.2958	43	118	0.2671
	20	51	0.2817	49	112	0.3043
	20	51	0.2817	51	110	0.3168
	23	48	0.3239	51	110	0.3168
	18	53	0.2535	62	99	0.3851
	21	50	0.2958	48	113	0.2981
	22	49	0.3099	46	115	0.2857
	25	46	0.3521	44	117	0.2733
	22	49	0.3099	51	110	0.3168
	23	48	0.3239	52	109	0.3230
	17	54	0.2394	56	105	0.3478
	23	48	0.3239	55	106	0.3416
	38	33	0.5352	51	110	0.3168
	24	47	0.3380	51	110	0.3168
LOW	13	58	0.1831	40	121	0.2484
High	38	33	0.5352	66	95	0.4099
Average	22.48	48.52	0.3166	52	109	0.3217
Median	22	49	0.3099	51	110	0.3168

Table 10. Iterations Shooting Star (Tops) 7 day

-

	Trend		Reg	ardless of	Trend
Ton	No-	Success	Ton	No-	Success
Тор	Тор	Proportion	Тор	Тор	Proportion
18	38	0.3214	53	108	0.3292
12	44	0.2143	51	110	0.3168
14	42	0.2500	57	104	0.3540
22	34	0.3929	46	115	0.2857
19	37	0.3393	47	114	0.2919
22	34	0.3929	40	121	0.2484
14	42	0.2500	58	103	0.3602
16	40	0.2857	53	108	0.3292
17	39	0.3036	47	114	0.2919
9	47	0.1607	51	110	0.3168
14	42	0.2500	48	113	0.2981
16	40	0.2857	54	107	0.3354
11	45	0.1964	57	104	0.3540
8	48	0.1429	61	100	0.3789
15	41	0.2679	49	112	0.3043
19	37	0.3393	56	105	0.3478
13	43	0.2321	56	105	0.3478
11	45	0.1964	55	106	0.3416
14	42	0.2500	50	111	0.3106
15	41	0.2679	58	103	0.3602
14	42	0.2500	48	113	0.2981
20	36	0.3571	55	106	0.3416
15	41	0.2679	56	105	0.3478
20	36	0.3571	50	111	0.3106
15	41	0.2679	47	114	0.2919
12	44	0.2143	53	108	0.3292
11	45	0.1964	44	117	0.2733
18	38	0.3214	58	103	0.3602
18	38	0.3214	46	115	0.2857
14	42	0.2500	47	114	0.2919
20	36	0.3571	62	99	0.3851
21	35	0.3750	63	98	0.3913
12	44	0.2143	47	114	0.2919
15	41	0.2679	66	95	0.4099
12	44	0.2143	47	114	0.2919
9	47	0.1607	44	117	0.2733
13	43	0.2321	43	118	0.2671
8	48	0.1429	49	112	0.3043
10	46	0.1786	51	110	0.3168
15	41	0.2679	51	110	0.3168

	12	44	0.2143	62	99	0.3851
	17	39	0.3036	48	113	0.2981
	12	44	0.2143	46	115	0.2857
	20	36	0.3571	44	117	0.2733
	12	44	0.2143	51	110	0.3168
	14	42	0.2500	52	109	0.3230
	23	33	0.4107	56	105	0.3478
	12	44	0.2143	55	106	0.3416
	13	43	0.2321	51	110	0.3168
	19	37	0.3393	51	110	0.3168
Low	8	48	0.1429	23	138	0.1429
High	23	33	0.4107	56	105	0.3478
Average	14.9	41.1	0.2661	42.64	118	0.2648
Median	14	42	0.2500	42	119	0.2609

Table 11. Iterations Shooting Star (Tops) 10 day

	Trend		Regardless of Trend			
Top	No-	Success	Top	No-	Success	
Тор	Тор	Proportion	Тор	Тор	Proportion	
33	54	0.3793	142	147	0.4913	
44	43	0.5057	137	152	0.4740	
40	47	0.4598	141	148	0.4879	
48	39	0.5517	135	154	0.4671	
39	48	0.4483	136	153	0.4706	
44	43	0.5057	127	162	0.4394	
43	44	0.4943	150	139	0.5190	
39	48	0.4483	154	135	0.5329	
47	40	0.5402	144	145	0.4983	
37	50	0.4253	136	153	0.4706	
39	48	0.4483	125	164	0.4325	
39	48	0.4483	140	149	0.4844	
35	52	0.4023	132	157	0.4567	
39	48	0.4483	123	166	0.4256	
35	52	0.4023	142	147	0.4913	
47	40	0.5402	130	159	0.4498	
47	40	0.5402	147	142	0.5087	
39	48	0.4483	144	145	0.4983	
45	42	0.5172	136	153	0.4706	
52	35	0.5977	152	137	0.5260	
40	47	0.4598	141	148	0.4879	
46	41	0.5287	135	154	0.4671	

	48	39	0.5517	139	150	0.4810
	39	48	0.4483	130	159	0.4498
	38	49	0.4368	140	149	0.4844
	48	39	0.5517	152	137	0.5260
	36	51	0.4138	147	142	0.5087
	42	45	0.4828	150	139	0.5190
	50	37	0.5747	153	136	0.5294
	43	44	0.4943	138	151	0.4775
	45	42	0.5172	145	144	0.5017
	44	43	0.5057	139	150	0.4810
	40	47	0.4598	141	148	0.4879
	45	42	0.5172	152	137	0.5260
	41	46	0.4713	147	142	0.5087
	51	36	0.5862	135	154	0.4671
	42	45	0.4828	132	157	0.4567
	52	35	0.5977	144	145	0.4983
	35	52	0.4023	143	146	0.4948
	46	41	0.5287	148	141	0.5121
	40	47	0.4598	143	146	0.4948
	37	50	0.4253	137	152	0.4740
	44	43	0.5057	142	147	0.4913
	44	43	0.5057	132	157	0.4567
	41	46	0.4713	156	133	0.5398
	36	51	0.4138	161	128	0.5571
	38	49	0.4368	132	157	0.4567
	44	43	0.5057	151	138	0.5225
	37	50	0.4253	146	143	0.5052
	51	36	0.5862	140	149	0.4844
Low	33	54	0.3793	123	166	0.4256
High	52	35	0.5977	161	128	0.5571
Average	42.28	44.72	0.4860	141.28	148	0.4889
Median	42	45	0.4828	141	148	0.4879

Table 12. Hammer (Bottoms) 5 day

	Trend		Reg	Trend	
	No-	Success		No-	Success
Тор	Тор	Proportion	Тор	Тор	Proportion
39	46	0.4588	102	186	0.3542
35	50	0.4118	121	167	0.4201
30	55	0.3529	135	153	0.4688
37	48	0.4353	119	169	0.4132
34	51	0.4000	132	156	0.4583
44	41	0.5176	125	163	0.4340
40	45	0.4706	127	161	0.4410
37	48	0.4353	125	163	0.4340
37	48	0.4353	131	157	0.4549
39	46	0.4588	134	154	0.4653
45	40	0.5294	133	155	0.4618
33	52	0.3882	130	158	0.4514
42	43	0.4941	136	152	0.4722
44	41	0.5176	134	154	0.4653
33	52	0.3882	131	157	0.4549
42	43	0.4941	134	154	0.4653
34	51	0.4000	117	171	0.4063
37	48	0.4353	129	159	0.4479
30	55	0.3529	119	169	0.4132
41	44	0.4824	132	156	0.4583
37	48	0.4353	126	162	0.4375
32	53	0.3765	121	167	0.4201
35		0.4118	109	179	0.3785
34	51	0.4000	127	161	0.4410
39		0.4588	120	168	0.4167
36	49	0.4235	125	163	0.4340
38		0.4471	126	162	0.4375
39		0.4588	138	150	0.4792
39		0.4588	133	155	0.4618
45		0.5294	124	164	0.4306
38		0.4471	123	165	0.4271
33		0.3882	111	177	0.3854
37		0.4353	123	165	0.4271
41	44	0.4824	124	164	0.4306
32		0.3765	111	177	0.3854
35		0.4118	130	158	0.4514
27		0.3176	115	173	0.3993
36		0.4235	128	160	0.4444
37		0.4353	128	160	0.4444
35	50	0.4118	128	160	0.4444

	40	45	0.4706	137	151	0.4757
	34	51	0.4000	132	156	0.4583
	35	50	0.4118	127	161	0.4410
	32	53	0.3765	112	176	0.3889
	39	46	0.4588	117	171	0.4063
	37	48	0.4353	129	159	0.4479
	34	51	0.4000	130	158	0.4514
	34	51	0.4000	128	160	0.4444
	40	45	0.4706	123	165	0.4271
	39	46	0.4588	124	164	0.4306
Low	27	58	0.3176	102	186	0.3542
High	45	40	0.5294	138	150	0.4792
Average	36.84	48.16	0.4334	125.5	163	0.4358
Median	37	48	0.4353	127	161	0.4410

Table 13. Hammer (Bottoms) 7 day

	Trend		Regardless of Trend				
Тор	No-	Success	Тор	No-	Success		
rop	Тор	Proportion	rop	Тор	Proportion		
19	29	0.3958	112	176	0.3889		
20	28	0.4167	104	184	0.3611		
15	33	0.3125	121	167	0.4201		
13	35	0.2708	119	169	0.4132		
16	5 32	0.3333	120	168	0.4167		
24	- 24	0.5000	116	172	0.4028		
22	26	0.4583	104	184	0.3611		
23	25	0.4792	120	168	0.4167		
19	29	0.3958	101	187	0.3507		
12	36	0.2500	90	198	0.3125		
22	26	0.4583	104	184	0.3611		
18	30	0.3750	112	176	0.3889		
20	28	0.4167	118	170	0.4097		
24	- 24	0.5000	111	177	0.3854		
19	29	0.3958	101	187	0.3507		
16	32	0.3333	100	188	0.3472		
19	29	0.3958	106	182	0.3681		
16	32	0.3333	101	187	0.3507		
17	31	0.3542	109	179	0.3785		
15	33	0.3125	104	184	0.3611		
15	33	0.3125	95	193	0.3299		
16	32	0.3333	109	179	0.3785		
16	32	0.3333	104	184	0.3611		

	16	32	0.3333	101	187	0.3507
	20	28	0.4167	118	170	0.4097
	18	30	0.3750	98	190	0.3403
	13	35	0.2708	111	177	0.3854
	14	34	0.2917	128	160	0.4444
	18	30	0.3750	113	175	0.3924
	21	27	0.4375	110	178	0.3819
	17	31	0.3542	102	186	0.3542
	19	29	0.3958	109	179	0.3785
	18	30	0.3750	93	195	0.3229
	17	31	0.3542	100	188	0.3472
	18	30	0.3750	100	188	0.3472
	17	31	0.3542	104	184	0.3611
	20	28	0.4167	93	195	0.3229
	15	33	0.3125	108	180	0.3750
	18	30	0.3750	117	171	0.4063
	20	28	0.4167	123	165	0.4271
	16	32	0.3333	104	184	0.3611
	23	25	0.4792	120	168	0.4167
	21	27	0.4375	93	195	0.3229
	14	34	0.2917	97	191	0.3368
	15	33	0.3125	107	181	0.3715
	21	27	0.4375	109	179	0.3785
	21	27	0.4375	126	162	0.4375
	22	26	0.4583	104	184	0.3611
	19	29	0.3958	112	176	0.3889
	18	30	0.3750	104	184	0.3611
Low	12	36	0.2500	90	198	0.3125
High	24	24	0.5000	128	160	0.4444
Average	18.1	29.9	0.3771	107.7	180	0.3740
Median	18	30	0.3750	106.5	182	0.3698

Table 14. Hammer (Bottoms) 10 day

			Trend		N	lo Trend	
	Shooting Star	5 Day MA	7 Day MA	10 Day MA	5 Day MA	7 Day MA	10 Day MA
Candla	Total # of Observations	68	71	56	161	161	161
Candle	Total # of Tops detected	<mark>19/68</mark>	11/71	<mark>4/56</mark>	<mark>35/161</mark>	27/161	17/161
No Candle	Total # of Tops detected (lowest instance)	<mark>21/68</mark>	<mark>13/71</mark>	<mark>8/56</mark>	<mark>50/161</mark>	<mark>40/161</mark>	<mark>23/161</mark>
(50 random instances of total # of	Total # of Tops detected (median instance)	27/68	22/71	14/56	61.5/161	51/161	42/161
observations)	Total # of Tops detected (highest instance)	34/68	38/71	23/56	80/161	66/161	56/161

Appendix C

Table 15. Shooting Star (Close) against 50 iterations of random instances

			Trend			No Trend			
		5	7	10	5	7	10		
	Hammer	Day	Day	Day	Day	Day	Day		
		MA	MA	MA	MA	MA	MA		
Candle	Total # of Observations	87	85	48	289	288	288		
Candle	Total # of Bottoms detected	<mark>28/87</mark>	<mark>24/85</mark>	11/48	88/289	73/288	<mark>57/288</mark>		
No Candle	Total # of Bottoms detected (lowest instance)	<mark>33/87</mark>	<mark>27/85</mark>	<mark>12/48</mark>	<mark>123/289</mark>	<mark>102/288</mark>	<mark>90/288</mark>		
(50 random instances of total # of	Total # of Bottoms detected (median instance)	42/87	37/85	18/48	141/289	127/288	106.5/288		
observations)	Total # of Bottoms detected (highest instance)	52/87	45/85	24/56	161/289	138/288	128/288		

91

Table 16. Hammer (Close) against 50 iterations of random instances

		Trend			No Trend			
		5	7	10	5	7	10	
	Shooting Star	Day	Day	Day	Day	Day	Day	
		MA	MA	MA	MA	MA	MA	
	Total # of Observations	68	71	56	161	161	161	
Candle	Total # of Tops detected	<mark>42/68</mark>	32/71	<mark>17/56</mark>	<mark>76/161</mark>	<mark>54/161</mark>	<mark>46/161</mark>	
	Total # of Tops							
	detected (highest	<mark>34/68</mark>	<mark>38/71</mark>	<mark>23/56</mark>	<mark>80/161</mark>	<mark>66/161</mark>	<mark>56/161</mark>	
No Candle(50	instance)							
random	Total # of Tops							
instances of	detected (median	27/68	22/71	14/56	61.5/161	51/161	42/161	
total # of	instance)							
observations)	Total # of Tops							
	detected (lowest	21/68	13/71	8/56	50/161	40/161	23/161	
	instance)							

			Trend		No Trend		
		5	7	10	5	7	10
	Hammer	Day	Day	Day	Day	Day	Day
		MA	MA	MA	MA	MA	MA
Candla	Total # of Observations	87	85	48	289	288	288
Candle	Total # of Bottoms detected	<mark>54/87</mark>	<mark>53/85</mark>	<mark>31/48</mark>	170/289	154/288	128/288
No Candle	Total # of Bottoms detected (highest instance)	<mark>52/87</mark>	<mark>45/85</mark>	<mark>24/56</mark>	<mark>161/289</mark>	<mark>138/288</mark>	<mark>128/288</mark>
(50 random instances of total # of	Total # of Bottoms detected (median instance)	42/87	37/85	18/48	141/289	127/288	106.5/288
observations)	Total # of Bottoms detected (lowest instance)	33/87	27/85	12/48	123/289	102/288	90/288

Table 18. Hammer (low) against 50 iterations of random instances

H ₀ : probal	bility that a		Trend			No Trend	
candle ins							
detects top =							
probability that a random instance							
detects top							
			7 Day	10 Day	5 Day	7 Day	10 Day
H _a : probal	bility that a	5 Day MA	MA	MA	MA	MA	MA
candle ins							
detects top	-						
probabilit							
random in							
detects top	o Total # of						
Candle	Tops	42/68	32/71	17/56	76/161	54/161	46/161
Culture	detected	12/00	52/11	17/50	/0/101	5 1/ 101	10/101
	Total # of	24/69	20/71	22/56	00/171	<i>CC</i> /1 <i>C</i> 1	50/101
No	Tops	34/68	38/71	23/56	80/161	66/161	56/161
Candle	detected						
(50	(highest	p=0.0622	<mark>p=0.7999</mark>	p=0.8318	p=0.6315	<mark>p=0.5527</mark>	<mark>p=0.8564</mark>
random	instance)						
instance	Total # of Tops	27/68	22/71	14/56	61.5/161	51/161	42/161
s of total	detected						
# of	(median	p=0.0019	p=0.0265	p=0.2134	p=0.0452	p=0.0225	p=0.2633
observat	instance)	p oroory	p 010200	P 01210	P 010 10 -	p 010220	p 0.2000
ions)	Total # of	21/68	13/71	8/56	50/161	40/161	23/161
	Tops	21/00	13//1	0/30	30/101	40/101	23/101
	detected						
	(lowest	p=0.0001	p=0.0001	p=0.0165	<mark>p=0.001</mark>	<mark>p=0</mark>	p=0.0001
	instance)						

Table 18. Shooting star (high) against 50 iterations of random instances: Tests for probability of a successful Hammer instance is greater than a probability of success for a random signal instance when using the high criterion for the Shooting Star

H ₀ : proba	ability that a		Trend			No Trend	
candle instance detects bottom = probability that a random instance							
detects bottom Ha: probability that a candle instance detects bottom > probability that a random instance detects bottom		5 Day MA	7 Day MA	10 Day MA	5 Day MA	7 Day MA	10 Day MA
Candle	Total # of Bottoms detected	54/87	53/85	31/48	170/289	154/288	128/288
	Total # of Bottoms	52/87	45/85	24/56	161/289	138/288	128/288
No Candle (50 random	detected (highest of 50 instances)	p=0.4408	p=0.0777	<mark>p=0.0494</mark>	p=0.5644	<mark>p=0.0806</mark>	p=0.4634
instanc es of	Total # of Bottoms	42/87	37	18/48	141/289	127/288	106.5/288
total # of observa tions)	detected (median of 50 instances)	p=0.0001	<mark>p=0.004</mark>	p=0.0021	p=0.0054	p=0.0091	p=0.0377
	Total # of Bottoms	33/87	27/85	12/48	123/289	102/288	90/288
	detected (lowest of 50 instances)	p=0	p=0	p=0	p=0	p=0	p=0.0004

Table 19. Hammer (low) against 50 iterations of random instances: Tests for probability of a successful Hammer instance is greater than a probability of success for a random signal instance when using the low criterion for the Hammer candle