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TRANSFORMATIONS OF LINES AND CONICS IN THE z-PLANE 

The purpose of the problem was to investigate the behavior of 

curves under some simple complex transf ormations. The transformations 
2 1 used were limited tow,= z w = z2 , and w = - • The curves considered , z 

were limited to straight l ines and conic sections. However, the general 

cases of tne conics were usually too complicated to be dealt with in 

the thesis. Therefore, most of the conics considered were special cases 

which were simpler and from which some indication of t he behavior of 

more general cases might be found. 

Some interesting special cases of the more complicated trans-

formations were treated briefly, as were pract ical applications of 

complex transformations. Sketches were included shoiring the results 

of the transformations in graphic form. 

It was noted t hat, in general, subject i on of a curve to a trans -

formation complicated that curve. Cases in which the curve was simpli-

fied were less numerous, but usually had gr eater chance of application. 
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CHAPTER I 

I NTRODUCTION 

Early in his mathematical studies, the student encounters the 

problem of expressing the square-root of a negative number. Such a 

value is defined as an imaginary number. Then, for the sake of 

simplification, the term-Ci is called io 

Later-, numbers involving the sum of a real number and an imag-

inary number are met. These numbers may be written generally in t he 

form a+ ib, where a and bare real numbers and i o Expressions 

of this form are called complex numbers, and as such include all of 

the real numbers and all of the imaginary numbers. The rules for 

performing the fundamental operations of addition, subtraction, 

multiplication, division, and extraction of roots as they apply to 

complex nu.~bers are established in algebra and are used extensively 

in applications of the quadratic formula. 

Complex variables-o If z is defined as a complex number such 

that z = x + iy, and if x and y are real variables,. then z is called 

a complex variable. The real numbers x and y are knorm as t he r eal 

part and the coefficient of the imaginary part of z, r espectively. 

In some cases it is convenient to indicate these real and imaginary 

components by the notation 

R(z) = x, I(z) c y. 

The common rules for operations with complex numbers appl y t o 

the complex variable z. 
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All complex numbers can be represented geometrically by means of 

the· Ar gand diagram. This is a set of rectangular coordinate axes in a 

planeo Each complex number x + i y is represented by a point whose 

rectangular Cartesian coordinates are (x,y). This coordinate system in 

a plane is also referred to simpl y as the complex plane or the z-plane 0 

The complex number x - i y is commonly noted as z and is called 

the conjugate of z. 

At times it becomes necessary to t hink of t he complex number z 

as a vector from the origin of the coordinate sys t em to the point (x,y). 

The absolute value or modulus of z is defined as 

lzl = Ix+ iy\ r2 2 =-vx + y • 

From a trigonometric standpoint, this value is the Jength of the vector 

which represents, z. Consequently, I z1 - z21 is the distance bet ween 

the points z1 and z2, since 

lz1 - z2I = ICx1-~) + i(y1-Y2)I c-/cx:1-x2 )2 + (y1-Y2) 2 • 

The polar form of z is obtained by substituting 

X = I" COS e , y = r sine o 

Thus, 

z c r( cos e + i sine) o 

All points in the plane may be represented in polar coordinates without 

us ing negative values of r; so r is taken to be greater than, or equal 

to zero. Since 

then, 

r = jzlo 
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The angle e is called the argu_~ent or amplitude of z and is commonly 

expressed as 

e = arg z. 

The value of e may be obtained from the relationship 

tane = y/x. 

If ez is defined as 

ez = ex(cos y + i sin y),1 

the p:olar f orm can be written in the more compact exponential form, 
i0 z = r e • 

If another complex variable, w = u + iv, is related to z so that 

in some part of the z-plane a definite value or set of values of w 

corresponds to each value of z, then w is a function of the complex 

variable z. Thus , 

W = f(z)o 

Two complex numbers , z1 = x1 + iy1 and z2 = x2 + iy2, are 

equal if, and only if, x1 = x2 and y1 = y 2 o Therefore, a function 

w = f(z) 

may be represented by 

u = u(x,y), v = v(x,y ), 

where u(x:,y) and v(x-,y) indicate function.ail relationships. 

If u(x,y) and v(x, y ), toget her w:ith their partial derivatives 

of t he first order, are continuous and single valued and satisfy the 

1Ruel v. Churchill, Introduction.!:£ Complex Vairiables and 
Applications~ (New York: McGrav-r-Hill Book Company, Inc., 1948J, 
pp .. 37-38. 



Cauchy-Riemann conditions, 

3u. av 
ax ay and ou av 

ay = - c>x ' 

at some point, then the f unction f(z) = u + iv is said to be analytic 

at that point. The study of analytic fu...~ctions i n complex variables is 

of considerable importance. 

4 

Real functions of real vari~bles, y = f(x), may be exhibited 

graphically as curves in the xy-plane. When t he variables are complex , 

such graphical representation is more compl i ca t ed, since each of t he 

complex variables wand z is represented by a point in t he z-planeo It 

is generally simpler to use separate planes f or t he two variables. Thus, 

corresponding to each point (x:,y) in the z-plane for which f(x+iy ) is 

defined, there will be a point (u,v) in the w-plane where w = u + ivo 

This correspondence between points in the two planes is called a 

mapping or transformation of points in the z-plane into points i n t he 

w-plane. The point in thew-plane which corresponds to a point (x , y ) 

in the z-plane is called the image of the point (x ,y). This corr e-

spondence of points may be extended to curves, and the t erms mapping 

and transf'ormation are then applied in t he sense that a curve in t he 

z-plane is mapped or trans~orm.ed into another curve in t he w-plane. The 

curve in thew-plane is then the image of the curve in t he z-planeo 

It is convenient at times to think of the mapping as occurring in one 

plane , even though two separat e planes are used to represent wand z. 

This permits the use of such terms as translation and rotation. 

In the consideration of functions of comple~· variables as transfor-

mations it is possible to use the relationships 



u = u(x,y), v = v(x,y) 

as, a. real transformation with real variables, if the w:-plane and the 

z-plane are looked upon as ordinary rectangular Cartesian coordinates 0 

This method is commonly used in dealing with curves of hi gher degree 

because the transformed equations encountered may be r ecognized more 

readily when they are expressed in the way that is used in Cartesian 

geometry. 

Notation. Several types of notation are found in texts on 

complex analysis. The following i s a summar y of the notation used in 

this t hesiso 

where 

The complex variables: 
·e z = x + i y s: r ( cos e + i sin e ) = r e1 , 

w = u +.iv= j'(cos'} + i sin<f) ""f ei ¢, 

x , y , r, e, u, v, f, and ¢ are real variables:o 

The complex constants·: 

The real constants: 

a, b, c, d, and the components of the complex cons,tant s, 

Any deviation from t his notation or t he introduct ion of suppl e-

mentary notation is explained at the time of its occurrence. 

The conics in~ of complex variableso A circle is the locus 

of all points equidistant from a fixe d pointo Thi s sugges ts the 

r epresentation 
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lz - z1I = a 
for the circle; that is, the point z moves so t hat the distance between 

z and z1 is a constant, a. In other words, z describes a circle with 

center at z1 and radius a. 

Sirailarly, the equation of t he ellipse i s 

Its f oci are z1 and z2 and the length of the major axis is Za.o 

The equation 

represents a hyperbola, with the positive or ne gative sign applying for 

the branch nearer the focus z2 or for t he branch nearer the focus z1, 

respectively. 

In Cartesian coordinat es the equat i on of the ovals of Cassini is 

(x2 + y2 + a2)2 _ 4a2x2 = c4. 
This curve is the locus of a point which moves so that t he product of 

its undirected distances from two fixed points i s a constant. This 

Felationship suggests the equation 

(a> 0) 

in complex variables. 

These equations usually lead to difficulties under transformations , 

but in a f ew cases they great l y simplify the work involved. 

The probl em and its limitations . The purpose of the problem was 

to inves;t i gate the behavior of curves under some simple compl ex t rans;.. 

formations. 



and 

The transformations used w.ere limited t o 

w = ~2 ,., , 
1 

w: = z2 , 

wr = 1/z. 

These are basic transformations, but in many cases the job of analyzing 

a complicat ed transformation may be made easier by express;ing it as a 

sequence of successive transformations of these basic forms. 

The curves considered w.ere limited to straight lines and conic 

sectionso However, the general cases of the conics were usually too 

complicated to be dealt with in this thesis. Therefore, most of t he 

conics considered were special cases which were simpler and from which 

some indication. of the behavior of more general cases might be foundo 

Some interesting special cases of t he more complicated t ransfor-

mations are treated briefly in Chapter V"' In Chapter VI the practical 

applications of complex transformations are discussed. 
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Within the discussions of the various curves and their transf orms, 

sketches appear showing the appearances of the curve i n t he z-pl.ane and 

of its, image in the w-plane. 'l'he equat ions of the curves in each plane 

are given below the sketches·. Pertinent points, such as t he int ercepts 

on the axes, are labeled only when that information is necessary to 

clarify some aspect of t he transformation. 

Append:ix A contains the proofs of certain properties of each 

transformation, called here rotational properties or rotational char-

acteristicso Appendix B consists of ~n outline of the procedure used 

in analyzing cubic and quartic equations in order to sketch the cu_rves. 



CHAPTER II 

THE TRANSFORI11A.TION w = z2 

The t ransformation w· = z2 is easily descr i bed i n terms of 

polar coordinates. When z = r eie and w •;; ei~, it becomes 

;; eif • r 2e2ie 

and when the real and imaginary component s ar e equat ed, 

!° = r 2, f = 20. 

That is, the point (r1 ,e1 ) in the z-pl ane is transformed i nt o t he point 

i n the w-plane whose polar coordinat es are/ = r1
2 and ¢ "' 2.el. 

Geometrically then, the length of the r adius vect or of the point 

in thew-plane is equal to the square of t he length of t he r adius 

vector of t he point i n the z- pl ane, and its ar gument i s twice the 

argument of the point in t he z-pl ane. 

or 

In rectangular coordinates, the t r ansf oI'll'a t i on i s 

U + i V a: x2 - y 2 + 2ixy 

u = x2 - Y2, v = 2:z.y . 

A rotational property of this transf ormat i on can be s t at ed as 

follows,: 1 

If C2 is a curve in t he z-plane which is obtained by r otating 
another curve c1 through an angle f about z-=O, then K2, the image 
of c2, can be ootained by rotating K1, the image of c1, through 
an angle 2f about w=O. 

Use of t his property allows t he determinati on of the transf or ms of 

many curves, if, and when, the transf orm of one such curve i s knoi-m. 

½he proof of this property is gi ven in Appendix A, p . 62. 



The straight line. The transformation of the line 

ax + by c: c, 

can be made by noting that 

c-ax y =-b-o 

9 

When this value is substituted into the expressions for u(x,y) and v(x,y) 

2 (b2'.- a.2)x2 + c(2ax-c) 
u = x2 - y • 2 , 

b · 

2.xi' c-ax) 
V = 2xy = \b • 

These equations essentially are the parametric equations of the 

transformed curve, the parameter being x . If these equations are 

reWJritten ais 

and 

(a2-b2)x2 - 2acx + c2 + b2u = o, 
2 2ax ' - 2cx + bv c: o, 

S~lvester 1s Method2 may be used t o el iminate the parameter~ 

Thus, the equation of the image of ax+ by= c becomes 

4a2b2u2 - 4ab(a2-b2)uv + (a2- b2)2v2 + 4c2(a2- b2)u + 8abc2v - 4c4 -= Oo 

When this conic is compar ed with the general conic 

Au2 + 2Ruv + Bv2 +2Gu + 2Fv + C • o, 
the value3 

This is the condition which indicates that the conic is a parabola. 

2Nelson Bush Conkwright, Introduction to the Theor y of Equations 
(Boston: Ginn and Company, 1941), pp. 162-164. 

3Alan D. Campbell, Advanced Analytic Geometry (New York: John 
Wiley & Sons, Inco, 1938) , P• 8. 



Fur t her, when the discriminant4 of this parabola is evaluated, it is 

seen that 

10 

and r = 0 only when c .,.. 0 ., This shows that the im.age of ax + by = c 

will be degenerate only when c"' o, or when the line pass-es through the 

origin. 

In summary, under the transformation w = z2, all straight lines 

are transformed into parabolas as is shown in Fi gure 1 and in Figure 2o 

<) 
I 

11 
1( 

z-plane 
y 

v 
I, 
>( 

0 

X = c, X = - C 

w- plane 
v 

0 

Figure l o Transformation of x = c and x = -c under w = z2• 

u 



z-plane 
y 

Y=c.. 

X \) 

0 

y = c, y = -c 

Figure 2o Transformati on of y =candy = -c under w = z2• 

Figure 3 shows the case i n which c = 0 and the parabola degen-

erates i nto a pair of coinci dent straight lines o 

1....=--Y 

z-plane 
y 

X = Y, X .. - y 

w- plane 
V 

0 

V=D, (v ~o) 
(J(:1] 

u.:o_,('lf~O) 
[~ ,, -Y] 

u = O; (v ~ o, v ~ O) 

Figure J. Transformation of x = y and x = -y under w = z2o 

u 

11 
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The circle. From the equation 

x2 + y2 = a2 

it is seen that 

X2 = _2 y2 
a. - , 

or X c tla2 - y2 o 

Subs-ti tution into the rectangular coordi nate f orm of the t r ansformat ion 

gives 

u = x2 - y2 = a2 

v = 2xy = -i2yla2 

Elimination of the parameter y result s i n t he equat i on 

u2 + v2 
::i aho 

Seemingly, this equation simply represent s a circle about w = o, 'Wh ose 

radius is the square of the radius of the circle in the z-planeo 

How.ever , upon examination of the parametric equations of t he circle, 

X = a COS, o/ , y C a s i n l\' ' 
it is seen that the. transformation results i n 

u -= a 2cos:24' - a2sin2o/, v = 2a2cos 'j' sin 'f', 
or u = a 2cos 2f , v = a 2sin 2:'j' o 

To be sure, the curve is a circle with r adius a 2, but the parameter 2f 

indicates that, while the circle in the z-pla.ne is being generated 

once, t he circle in the w-plane is generated twice o This conclusion 

follows f rom t he condition that, to generate the circle x2 + y2 = a2, 

f must take all values in t he interval 

and hence, 2f must talce all t he val ues i n t he interval 

O'S 2'P.S41'I'. 



Figure 4 shows the physical appearance of this transformation. 

z-plane 
y 

w-plane 
\I 

Fi gure 4. Transformation of x2 + y2 
c: a 2 under w = z2• 

An interesting circle which illustrates the use of the polar 

f orm of the transformation is 

x2 + y2 - 2ax = Oo 

This is a circle whose cent er is on the x- axis at (a,O) and which 

passes through the origin. I n polar coordinates the equation is 

r = 2a cos e o 

When this equation is trans~ormed 

f = r 2 = 4a2cos2e = 2a2(l+cos 20), 

but ¢ = 2e ; so the transformed equation becomes 

,P c: 2a 2(l+cos ¢ ). 

This curve is the cardioid shown in Fi gure 5o 

13 
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z- plane 
y 

0 

r = 2a cos e 

w- plane 
V 

JJ = 2a2(l+cos ¢ ) 

Figure .5 . Transformation of r = 2a cos e under w = z2• 

14 

v 

Al gebraically the general circle presents a complicated problem 

when the t r ansfonnation is applied. However, in t he Dictionary of 

Conformal Representations' , it is shown t hat, in general, a circle is 

transformed into a limal on with the cardioid and circle as limiting caseso 

The parabola. When the parabola 

y2 = 2px 

is . trans£ormed under w = z2, 

u = x2 - 2px, v = ±2xl 2px 

since y = o 

Elimination of the parameter x reduces these equ~t ions to 

v4 - 64p4v 2 - 48p2uv2 - 64p2u3 = Oo 

5H. Kober , Dictionary of Conformal Representations (New York: 
Dover Publications, Inc ., 1952}, p . 380 



A procedure established in Cartesian geometry6 is followed to 

determine the appearance of the transformed curveo 

First, it is noted that the curve is symmetric with respect to 

t he u-ax.is and that its intercepts on the axes are 

v = o, z8p2 when u = O 

and u = 0 when 

Second, if pis considered greater than zero, the equation is 

solved for v2 in terms of u, and t he resulting expres~ion is examined 

for limits of extento Thus, the following conditions which affect the 

appearance of the curve are determinedr 

and 

v has fou:r· real values, when -p2S u~O; 

v has two real values, when o< p <oo; 

v has no real value, when -oo<. u < -p-2 
0 

15 

Then, if the equation of the trans£ormed curve is solved simul-

taneously with the equation of a line v = ku, and k is allowed t o 

approach zero, it is seen that the curve forms a cusp at the origin. 

This combined information is sufficient to allo~ a sketch of 

the curve to be made as in Figure 6. The images of parabolas, where 

pis less than zero, along with the rotated forms of the parabola 

y2 = 2px, may be determined by use of the rotational property of this 

transformation as s tated on page 8. 

6An outline of that procedure is presented in Appendix B, p. 68. 



z-plane 
y 

0 

y2 = 2px 

w-plane 

Fi gure 60 Transformation of y2 2px under w = z2• 

The ellipse. If the ellipse 

x2 + ,i = 
a2 b2 1 

is transformed under w = z2, then 

, 

After elimination of the parameter, these equations become 

= lo 

This equation is obviousl y the equation of the ellipse which is 

illustrated in Figure 7. 

16 



z-plane 
y 

w-plane 

" 

Figure 7. 
x2 2 

Transformation of - + L = 1 under w = z2• 
a2 b2 

17 

The hyperbola . In a manner similar to that used in transforming 

the ellipse , it can be shown that the hyperbola 
2· 2 

Li:c1 
a2 - b2 

is transformed i nto the curve 

Now, when a f b, it is permissible to 

[, 
(a2+b2 ~ 2 

u - 2 J 

simplify t his further to 

v2 
- 22 • l o 

ab 

This equation is obvious l y the equati on of the hyperbola shoi:m in 

Figure So 



z_- plane 
y 

0 

w- plane 
V 

Figure 80 x2 v2 2 
Transformation of 2 - 2 = 1 under w = z • 

a b 

·when a = b, the curve x
2 

- ?.,- = 1 becomes 
a2 b2 

the rectangular hyperbola, and its image, as seen in Figure 9, is the 

s~raight line u = a2 o 

18 

If the rectangular hyperbola x2 - y2 = a2 is rotated through an 

angle r = ~/4, it becomes the rectangular hyperbola 

'2xy = a2 o 

Then by the rotational characteristics of the transformation w = z2, 

the image of this hyperbola will be t he line u = a2, aftex it has been 

rotated through an angle ~ = 2~ • ~/2. That curve (Figure 10) is the 

straight l ine v = a2• 



z-plane 
y 

.x 

w-plane 

" 

0 

u = a 2 

Fi gure 9o Transformation of x2 - y2 c a2 under w = z2. 

z-plane w-plane 
y 

0 

2xy • a2 v c a2 

Figure 10. Transformai.tion of 2xy a2 under w = z2
o 

LI 

I,) 

Some other interesting curves . Some special curves have inter-

esting properties under the transformation w = z2• 

19 



For instance, the littuus , 

is transformed into 

But = 2 e , so 

which is a hyperbolic spiral as seen in Figure 11. 

spiral 

There 

and 

Hence , 

z-plane 
'/ 

f ¢ = 2a2 

Figure llo Transformation of r 28 = a2 under w = z2• 

Figure 12 illustrates the transformation of the logarithmic 

r = eae 
0 

JJ e r2. -= e2a e , 
~ = 2 e . 

/ = ea r; 

which is another logarithmic spiral exactly the same as the original, 

2.0 



but transferred from the z- plane to the w-plane o 

z- plane 
'I 

w- plane 
·...; 

Figure 12 . Transformation of r eae under w, = z2• 
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CHA.PTER III 

]. 

THE TRANSFOill-1A.TION w c z2 

l 
The function w = z2 is a double-valued function; that is, 

w assumes two values f or each ass i gned value of Zo 

The transformation in polar coordinat es is 

,,P exp (i¢) = -Ir exp [ i(e ;211'k)j 

where k = o, 1 

and is t he principle square-root of r •1 

Geometrically, this transformation changes t he l ength of the 

radius vector of z by the fact or lf,/r and rot ates it t hrough an angle 

- 8/2 t o obtain t he corresponding point in the w-plane o 
l 

The trans£ormation Wi = z2 can be t hought of as the inverse of 

the trans£ormation w = z2• Compariso_ of these two transf ormations i n 
]. 

t his way i ndicates t hat w = z2 might be expres sed as 

x s u2 - v2, y = 2uv. 

This f orm can be shown t o be correct, and it S'implifies t he algebraic 

computations involved in determining the equation of the image of a 

curve in the z-plane o 

In some cases it is necessary t o return to the polar form in 

order to avoid confusion because of the double-valued property of the 

transformation. 

¼he notation exp I" is equivalent t o efl o 



A useful rotational characteristic is connected with this 

transformation, also. It may be stated: 2 

If C2 is a curve in the z-plane whi ch is obtai ned by r otati ng 
another curve c1 t hrough an angle f about z=O, t hen K2, t he image 
of C2, can be obt ained by rotating Ki, t he image of C1, through 
an angle 'f/2 about w=Oo 

The straight line. When t he general line 

ax+ by= c 
l 

is t ransformed according to the function w = z2, it becomes 

au2'. + 2buv - av2 - c = Oo 

Comparison of this equation and the equc>.:tion of the gener al conic and 

the evaluation of3 

and I
A H GI r = H BF = -c(a2+b2), 
G F C 

shows t hat t he curve i s a hyperbola which becomes degenerate onl y 

when c = o. 

23 

Caaes of degeneracy s tem f rom lines which pas s through t he 

origino These cases indicate the need f or cauti on arising f rom t he use 

of a double-valued function as a transf ormationo 
.l 

In transforming the line x = 0 by t he t r ans£ ormation w = z2 in 

the rectangular form, the degenerat e hyperbola 

u2 - v2 = O 

2The proof of this property is given i n Appendix A:., p. 64. 
3campbell, .9£• cit., PP• 8, 28. 



is obtained. This degener ate curve is the same as the two lines 

U = V and u = - v. 

However, if the half-line 

X "" O, 0 5 y <QQ 

is considered in its polar form 

e = 11'/2, r ~ o, 

it is seen that, when it is transformed, it becomes 
A. 8 + 2k 1'1' 1I 
'f' = 2 = 4 + k 1'f , k = O,l; 

j' = r 2 ~ o. 
This is the complete line ¢ = { or u = v . 

Similarly, the half- line 

X = O, - oo< y ~ O 

is t ransformed into the complete line u = - v. 

These straiight lines are sho1-1n in F' ':';ure 130 

z-plane 
'f 

0 

X = 0, y ?:. 0; X = 0, y S, 0 

w-plane 

){ 

u = v; u = - v 
.L 

Figure 13. Transformation of x = 0 under w = z2 o 



This same reasoning applies to other lines through the origino 

Although an analysis of this sort is necessary to determine the point-

wise correspondence of curves in the z-plane and in thew-plane, the 

rectangular representation of the transfonnation will suffice to 

establish the correspondence of entire curves in each of the pla.neso 

Thus, the application of the transformation to the lines x = c 

and y = c obviously results in the rectangular hyperbolae 

u2 - v2 = c 

as illustrated in Figure :Ll+o 

z-plane 
y 

.J 
I v 
11 " >( )( 

y-,_c_ 

and 2uv = c 

w- plane 
V 

25 

X 
[Y-:L) ----~u 

C t '/:-tJ 
)I= - {._ 

x = ±c; y = ±c u2 - v2 = ±c; 2xy = ±c 
1 Figure :Ll+ . Transformation of x =cand y= c under w = z2. 

The circle. The equation of the circle 

x2 + y2 = a2 

in polar coordinates is 

r = a, 0 ~ 6 < 21f o 



Transf ormed, thi s circle becomes 

.f> = ,/a" , irk ~ cf, < (k+l) rf ;: (k=O,l). 

The limitai.tions on <p may also be stat ed 

0~ ¢<1r 

and 

They are int erpreted to indicat e that each point on t he circler= a 

is t r ansf ormed into two points on t he circle /? = ,la . Thus, while the 

circle r-= a is gener ated once by a movi ng point, t he upper and lower 

halves of the circle I' = -..fa are generat ed simult aneously . 

The general circle offers an opport unity f or demonst rating t he 

use of t he complex variable notation. In t his f orm t he equation of 

the general circle 

is transformed into 

This equation may t hen be f actored and writt en 

fw - w0 / jw + w0 1 = a , where w0 

In Chapter I such an equation was sho'Wll t o be the equation of t he 

ovals of Cassini . The Dictionary of Conformal Representat ions4 

distinguishes three separate cases and provides sket ches drawn f or 

circles whose centers lie on the x- axis . 

Figure 15 shows t he first case, in which a < I z0 I ; that is, the 

origin is outside t he circle . 

4see PP• 38-39. 
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z-plane 
'I 

0 

w- plane 
" 

27 

u 

Figure 15 . Transformation of \ z - zol = a , a < I z0 / under w -== z½ o 

The second case , a > I z0 j , is shown in Figure 16. There the 

origin is contained within the circle. 

z- plane 
'/ 

jz - z0 j = a, a > \zol 

X 

w- plane 

" 

Figure 16 . Transformation of /z - z0 / = a , a > lzol under w 

u 



If the circle passes through the origin, then a· = lz0I o 

/ 

This is the third and final case and is illustrated in Fi gure 17 0 

z-plane w- plane . 
y I 

D 

(z - zd = a, a= \z~ 
Figure 17. Transformation of lz - z0I = a , a= lzol under w 

The same r esults as shown with t he use of complex variable 

notation may be obtained by using t he r ect angular representations, but 

the process is very cumbersome . 

l 
The parabola. When the trans f or mat ion w = z2 is applied t o the 

parabola 

(y-k) 2 c 2p (x-h), 

28 

it becomes necessary to investigate at least eight specif ic cases, 

depending upon the relationshi ps of h, k, and p , to obtain resul t s 

which may be used t o draw any conclusions. This parabola is, theref ore, 

an example that is best omitted here~ 

Now, consider the simpler parabola 



bec:!.or.ies e C 

2 2 2 v2 - 0., 

c O is s~ etric v. • LL-Fl res ect t.o the u axis, the 

e i gi1 

line 

.,,...,.,,,,IT'\+n.ti all:r. 

as~ totes , 

no 

3e::lee, 

sine ce the axes are 

- o, 
o, - o. 

Ap er dix reveals tha""G the curve 

, ,;Ji C i-S oints hetwee 

es of , · as values . 

val ev i o a ll fini 

l • 
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The ellipse . If the ellipse 

x2 _2 
-+ L =l 
a2 b2 

1 
is transformed according t o the transformation w = z2, it becomes 

b2(u2-v2 )2 + 4a2u2v2 = a2b2, 

or b2u4 + 2(2a2- b2)uY + b2.J+ - a2b2 = Oo 

Use of the established method5 for analyzing this curve , shows 

that the curve is symmetri c with respect to the u-axis , the v- axis , 

the origin, and the lines u = v and u = -vo The intercepts on the 

axes are 

and 

V = 0 , U = t,./a" 

U = O, V = t,/a • 
The curve is limited to the intervals 

and 

The int ers:ections of the curve and the line u = v are found by 

solving the equation of the curve simultaneously with that of t he 

line . This process yields the points (/b/2,/bf2) and (-/bfi.,-N2), 
and by the symmetry of the curve i t is then known that the points 

(/b/2,-lbli.) and (-./b/?.,/bTz) are also on t he curve . 

All of these fac t s considered t ogether p:irmit a sket ch of the 

curve such as that in Figure 190 

5see Appendix B, Po 68 . 
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becomes 

z-plane 
y 

0 

w- plane 
" 

Fi gure 19. 
X2 2 l 

Transforrretion of - + r:_ a 1 under w = z2 0 a2 b2 

The hyperbola. When transformed, the hyperbola 

x2 ..2 _ _ L.= 1 
a2 b2 

b2u4 - 2(2a2+b2)u2v2 + b2v4 - a2b2 a 0 0 

Determination of the physical charac teristics proceeds as before . 6 

The transformed curve is symmetric with r espect to the u- axis , 

the v-a.xis , the origin, and the lines u = v and u • -v. It intersects 

the axes at 

V = O, U = :!; /a 

and U = 0, V = :!; /a o 

6see Appendix B, P o 68. 
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32. 

No real solutions are obtained when the equation of the t rans-

formed curve is solved simultaneously with the equation of the line 

u = V o This situation indicates that t here are no real points of 

intersection of those two curves. Considerations of symmet ry show that 

a similar situation exists concerning intersections of the transformed 

curve and the line u c - v . 

Examination of the limitations of u and v shows that there are 

no real points of the curve within a square bounded by the four l ines 

u ::: ±fa and V = ±./a Cl 

Now it is possible to sketch the curve that i s the image of the 
l 

hyperbola under t he transformation w z2. 

z-plane 
y 

(Figure 20) 

w- plane 
V 



CHAPTER IV 

THE TRANSFORMATION w 1 
C -

z 

In the language of complex variables, a t ransf ormation in which 

W C f(z) and z = f(w) 

i s called an involutory t ransf ormat i on. The transformation 
1 w;- = z 

is such a t ransf ormation. 

as 

or 

In rectangular coordinates t his transformation may be expressed 

1 w = u +iv= ---x + i y 

X 

• X - iy 
x2· + y2 ' 

u = 2 'l) , 
X -Ir y~ V• 2 _ _?O 

X + y-
- y 

1 Its inverse, z = w, is then 

or 

u 
x = u2 + v2, 

-v 
y = 2 2 • 

U + V 

In polar coordiri..at es the transformation is 
• ,J.. 1 · e 

I e1 '1' = - e-1 
r , 

Upon furthex consideration of this polar f orm, it is seen that the 

transformation can be expressed as the product of two successive 

transformations , 

and 

• ,J.., 
w' == f, ei'r 

w c: w• =,• 

1 .,... 
= - eJ.,p, 

r 

-i~• e o 



By the firs t of these successive t ransformations, a point z is 

transformed into a point w1 which is collinear with z and the origin. 

The distance of w1 from the origin is 

This equation may be written 

Therefore, the product of the distances of w1 and z from the origin is 

a constant . Tr...is property and the propert y of collinearity, satisfy 

34 

the conditions of the definition of inversion with respect to a circleo1 

The radius of the circle of inversion is the square-root of the constant 

product of the distances of t he points from the origin. Thes;e factors 

indicate that the transformation 

w' = 1: ei e 
r 

is an inversion wi th respect to the unit circle . 

This inversion is t hen followed by the second t ransf ormat ion, 

which is easil recognized as a reflection wi th respect to the x- axis. 
7 

It may be said that the transformation w == maps t he point z 
z =o0 into the point w = o. But the behavior of a function at z =00 

means, precisely, the behavior of the function at z 1 = 0 when z 

Thus it can be said that 
1 1 w - ---= z 1 o - i - l/z 1 

Consi der ation of this relationship when z 1 = 0 shows that w = 0 when 

1:Levi s. Shively, An Introduction to Jiliodern Geometry (New York: 
John Wiley & Sons, Inco , 1939 ), P• 600 -



z = 00 • The same r easoning process is used i ~ showing that , under this 

transJ'ornation z = 0 is transformed i nto wr =00 • 

35 

The concept of an infinite point is , of course, an abbreviation 

for a limiting process, and in case of doubt the direct use of limits 

should be applied. 

In much the s ame manner as w.as used in the discussions of the 

transformations· WI = z2 and w = z½, it can be shm,'ll that: 2 

If c2 is a curve in the z-plane which is obtained by r otating 
another curve c1 through an angle f about z=O, then K2, the image 
of c2, can be obtained by r otating K1, the :i.Jnage of c1, through 
an angle -f about w=Oo 

Straight lines and circles.3 Consider the equat ion 

a(x2+y2 ) +bx + cy + d = o. 
This equation represents a circle if a I O or a l ine if a= o. Undex 

1 the transf ormation w = - , it becomes z 

a[(u2:~)2 + (u2:~)2] + u2b: v2 - u2c:,?. + d = O; 

or 

The new equation is, in turn, a circle or a line, depending now upon 

whether d IO or d = o, respectivelyo 

s ort. 

The following i llustrations show some particular cases of this 

2see Appendix A, p. 66 . 
3churchill, EE• cit., PP • 54-55~ 
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In Fi gure 21, if a f O and d r O, both the curve in the z-plane 

and its image are circles, and neither of t hem passes t hrough the origin 0 

z-plane 
y -----

w-plane 

Figure 21. Transformation of a (x2+/) +bx+ cy + d = O 
under w = 1/z. 

If d = 0 and a r o, t he z-plane curve is a circle through 

z = o, and its image is a straight line which does not pas s t hrough 

w = Oo This case is shown in Figure 22. 

Figure 23 shows the case where a= 0 and d r Oo There t he 

z-plane curve is a straight line which does not pass t hrough z = o, 
and its image is a cir cle through w == Oo 

\) 



z-plane 
'/ 

w-plane 

Figure 22.. 

bu - cv + a =- 0 

Transformation of a(x2+y2) +bx + cy = 0 under w 

z-plane 
y 

bx+ cy + d = O 

w-plane 

" 

d(u2+v2) + bu - cv = 0 

Figure 2-30 1 Transformation of bx+ cy + d = 0 under w = - o 
z 
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1 
= -z 0 

tJ 
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The caae i n which a= 0 and d = 0 is shown in Figure 240 Under 

these conditions, both the curve in the z- plane and its image are 

straight lines which pass through the origin in their respective planes 0 

z-plane 
y 

bx+ cy = 0 

w- plane 
V 

bu - CV = 0 

Figure 24. Tr ansformation of bx + cy = 0 under w 1 = -z • 

The line x = a is transformed by w =½into the circle 

u2 + v2 - = Oo a 

This circle has its center at (!a , O) and is tangent to t he v-axis at 

the origin. 

u 

Similarly, the line y = b t ransforms into the circle whose center 

is at (o,- ! b ) and which is tamgent to the u- axis at the origin. The 

equation of such a. circle is 

u 2 + v 2 + :!.. = Oo b 



The circle 

x2. + y2 = a2 

is transformed into the circle 

u2 + v2 1 = a2 • 

In case a= 1, the circle in the z-plane is the unit circle, and its 

image is the unit circle in t hew-plane. 
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All of these results of transf orming lines and circles under the 

trans-formation w =,½may be summed up as follows: If lines are con-

sideTed as limiting cases of circles (that is, circles of infinite 

radii) , then the transformation w = l transforms circles into circleso z 

The parabola. When the parabola 

y2 = 2px 

is transformed by the t ra..nsformation w = l, it becomes z 

v2 - 2puv2 - 2pu3 = o. 
This curwe is symmetric with respect to the u-axis. It intersects t he 

axes only at the origin, and approaches the line 
1 u .. -2p 

asymptoticallyo 

Then, consideri ng only the cases where p 2:. O, i t is found that 

the real values of u which satisfy the equation of the curve are 

limited to the int erval 



The first derivat ive of v with respect to u, from the function 

v2 - 2puv2 - 2pu3 = o, 
vanishes when u = o, which indicates that the curve forms a cusp at 

the origin. 

Now, the curve can be sketched as shown in Figure 25. 

z- lane 
'I 

:l- = 2px 

w- plane 
v 

0 

v2 - 2.puv - 2pu3 = 0 

Fi gure 25 . Transformation of y2 : 2p:X1 under w = ¾ o 

Application of the property of rotated curves for t he trans-

formation w =~ permits the examination of the images of all parabolas z 
that have their vertices at the origino 

The ellipse . Next to be considered is the ellipse 

x2 i_ 
2 + 2 = lo 
a b 

When this ellipse is transf ormed, its image is found t o be the curve 

40 



The l eft- hand member of this equation becomes undefined as u and v 

approach zero simultaneousl y . That sho~s that the origin is not included 

in the curve . 

If the equation is expanded, it becomes 

a2t2u4 + 2a2b2u2v2 + a2b2v4 - t 2u2 - a'Zv2 = o. 
The point (O, O) satisfies this equation, but the original equation of 

the transformed curve shows that this point is excludedo Therefore, 

in the f ol l owing discussion the origin will not be considered a real 

point on the curve o 

The quartic 

a2b2u4 + 2a2b2u2v2 + a2b2v4 - b2u2 - a2v-2 = O 

is symmetric with respect to the u- axis, the v-axis, and the origino 

It intersect s the u- axi s at the two points (¾, o) and (- ¾,o) o Its 

v- intercepts are at v = ± i o 

When the limits of extent of the curve are determined, it is 

found that wen vis in the interval 
1 1 

- "'5 5, v~ "'5 , 

u assumes two real values , and when 
1 v > - or 
b 

1 
v <- b , 

u has no real value o 

When the same process is used to determine t he limits on u which 

wd.11 gi ve real values of v, three distinct cas,es appear . These cases 

depend upon the relationships between a and b, 

1: > _l_ 1 1 1 -< 1 
a -12 b ' = -12 b ' and v2 b 8 
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These r elationships may be expressed in t erms of the eccentricity of the 

ellipse in the z-pl~ne . Then the three cases become dependent upon 

1 1 1 
e <~ , e "",1l, and e > I!, 

respectivel y . 

When e <j , the foil owing conditions are found: 
· 1 1 v assumes two r eal values when - - ~ u~ - ; 

a a 
1 1 v assu.mes no real value when u > - or when u < - - o a a 

This case is illustrated in Figure 2.6 o 

z- plane 
y 

w-pl ane 
" 

u 

x2 'z!:.. 1 2 + 2 "" 1 , e <,tt 
a b 

a2b2(u2+v2)2 - b2u2 - a2v2 = 0 
(O, O) not included 

Figure 26 . x2 ..2 1 1 Transformation of + L • 1, e <. under wr = z • 
a.2 b2 -vc. 

1 If e = - , a similar set of conditions is:· 
1 v assumes four real values when u = + - ,• - a 

1 1 v assumes two real values when - - <. u < - ; 
a a 

1 1 v assumes no real value when u > - or when u < - - o a a 
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Physically, this curve is similar to the curve in Figure 26, except that 

the values of u -where the curve intersects the u-axis provide four real 

values of v rather than two such values. These four values are all 

equal to zero. 

Finally, the case in which e > .A is shown in Figure 27. There 

the conditions which limit the extent of the values of u on the curve 

are: 
1 a; v assumes four real values when - ~ u ~ , 
a 2b v'a'--b'-
l -a or when - - z u > - --;::""""~ ; 
a -
1 1 v assumes two real values when - > u> - - ; 
a a 

a v assumes no real value when u > 
2b lfa2-b2 

or when u < r,:;---;r ., 
2b fa 2-b'" 

-a 

z-plane 
y 

x2 .; 1 
- + - = 1 e > a2 b2 , --v c. 

w-plane 
"' 



The hyperbola . Under the trans£ormation w 

becomes 

1 = - , the hyperbola 
z 

This quartic is synunetric with respect to the u-a.xis, the v-a.xis, and 

the origin. Its only point of intersection of the v-a.xis is at the 

origin, and the u-intercepts are at the origin and at the points (~,O) 
a 

1 and (- -,o) . a 
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Investigation of limits of extent establishes the following set 

of conditions: 
-b b u assumes four real values when v~ ff? ; 

2a 'la'-+b... 2a v'a-+b-
b -b u assumes no r eal value when v> or when v <. ; 

2aVa ... +b2 2ava2+b ... 
1 1 v assumes two real values when - - u~ - ; a a 

1 1 v assumes no real value when u :> - or when u <. - - o a a 
Consideration of all of this information permits the curve t o 

be sketched as in Figure 280 



z-plane 
y 

0 

w- plane ., 

Figure 28 0 
x2 .2 1 

Transformation of - - L = 1 under w = - 0 a2 b2 z 
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CHA.PTER V 

OTHER TRANSFORMA.TIONS 

The expression of a complicated transf ormation as the product of 

several successive transformations of a simpler nature oft en requires 

the use of functions other than 

w = z2, w 
l 

= z2, and w 1 
= -z 0 

Two of t hese other basic transformations are 

and w = sin z. 

Although they are usually more difficult to work with, they are still 

importanto 

The transformation w = ezo If/ and ¢ are the polar coordinates 

of the point w, as before , t he transformation 

can be written 

/ ei¢ = ex eiYo 

Then, upon the equation of the real and imaginary parts of that 

expression 

Therefore , the line x = c is transf ormed into the circle, 

In rectangular coordinates, the equation of the circle is 

u2 + v2 : e2.c o 

The line y = C is mapped into a ray, ¢ =c, ;>o, 



which, in rectangular coordinates, is tne half-line 

V =Utan c, O< u <oo 0 

These curves appear in Figure 290 

z-plane 
y 

w-plane 
V 

X. 
0 0 

X = c, y a::: C 

Figure 29. Transformation of x =candy= c under w = ez. 

The transformation w = sin Zo It can be shown that 

sin z = sin x cosh y + i cos x sinh y. 

Thus the transformation 

w = sin z 

can be W!ritten 

us sin X cosh Y, V = cos X sinh Yo 

47 

V 

Churchill1 mentions several elementary examples of transformations, 

by the function w = sin Zo 

12£. cit., PP• 69-700 
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'l'he line x = 0 is transformed into the line u = 0 in the w-plane 0 

The line x: = 1Y/2 is mapped into the part of the u-axis in thew-plane 

where u lo The line segment 

y = o, - 7"/2 :!fx ~ ?11/2, 
is transformed into the segment of the u-axis where 

As illustrated in Figure 30, the line segment 

y = ai., - 1'r/2~ ~ 7T'/2, 
is transformed into the upper half or the lower half of the ellipse 

u2 v2 
---,,-- + ---,-- .. 1, 
cosh2a sinlia 

depending upon whether a is greater than or less than zero, respectivelyo 

The foci of this ellipse are the points w-= tl, independent of the value 

of a. 

z-plane 
V 

0 

=-3 

Y=--a 

y c: a, y = -a 
(- 1'1/2 ~ x -f.:rr/2) 

w-plane 
\J 

0 

\/<O 
lY=-a] 

Figure 30. Transformation of y = a and y c -a under w = sin Zo 



The line x a b, where - 1"</2 <b < rr/2 is transformed into the 

right- hand branch of the hyperbola (Figure 31), 

u2 v2 
-----=l 
sin2b cos2b ' 

when bis great er than zero. When bis less than zero, the line is 

transformed into the left-hand branch of the sa.i.ne hyperbola. 

..c 
I 

If .c 

z-plane 
y 

0 

X = b, X = -b 
(- ,r/2 <.. b <. 11"/2) 

w-plane 

" 

0 

u2 v2 :7 
-- - -- = 1, [u > O, u ~ OJ 
sin2b cos2b 

Figure 31. Transformation of x =band x = -b under w sin z 0 

Jahnke and Emde show in their Tables of Functions with Formulae 

and Curves 2 that the curve 

cos x sinh y = c, - 77/2 '5. x ~ 11/2., 

as shown in Figure 32, is transformed into the line v = c by the 

function w = sin z. 
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2Eugene Jahnke and Fritz Emde, Tables of Functions with Formulae 
a.nd Curves (New. York: Dover Publications, 1943), Addenda, To°"67 o 



z-plane 
y 

0 

cos x sinh y = c, (c > o, c < O) 

w-plane 
y 

'I=<., (C >O) 

C) 

V=-C {c.<o) 

V = c, (c > O, c < O) 
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Figure 320 Transformation of cos x sinh y = c undeT w = sin Zo 

Further, they show that the curve sin x cosh y = d, - 1Y /2 ~ x ;:;; 1f/2 

is transformed into the line u = d (Figure 33)o The variatio!l of shape 

of the curves in the z-plane is a consequence of the conditions 

0 < d < 1, d = 1, or d > lo 

z-plane w-plane 
y " 

C> 
i" V " ii " I ';i ...; I I "1. ,J 

,:) -.::, I 0 . 
-r, , . . 

rl ..., .., -0 il :i ,I " II ,, 
':) ::i ? ':J 

)< u 
0 

sin x cosh y = d u = d 

Figure 330 Transformation of sin x cosh y = d under w = sin z. 
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The Schwarz-Christoffel transformation.3 Practical applications 

of transformations in the z-plane often require the use of a generalized 

transformation which can be adjusted to satisfy the conditions of a 

certain problem. One such transformation that is used in many cases is 

the Schwarz-Christoffel transformation. The Schwarz-Christoffel 

transformation was named in honor of the two German mathematicians, 

H. s. Schwarrz and E. B. Christoffel, who discovered it independently. 

This transformation maps the entire x-axis of the z-plane into 

a polygon in thew-plane and is commonly written 

T~e integral sign denotes any one of the indefinite integrals of the 

integrand. The values 

are the points on the x-axis which are transformed into the vertices of 

the polygon in thew- plane, and each k. is a real constanto A and B 
J 

are complex constants which depend upon the conditions imuosed upon the 

transformationo 

The linear f ractional transformation. The transformation 

•·'i C CJ4.. z + /3 • 0<¢ - R. y .J 0 .. , '( Z + ;' , ,- T , 

where ""'- , rB, Y , and S' are complex constants, is called the linear 

fractional, or bilinear transformation. Like the transformation w a½ , 

3churchill, ~• cit., PP • 171-17.5. 



which is actually a special case of it, the bilinear transformation 

always transforms circles into circles, with lines as limiting cases. 

Another property of this transformation, which makes it a 

general type, is that it maps any three distinct points in the z-plane 

into any desired three points which are distinct in the w-plane 0 

S2 



CHA.PTER VI 

PRACTICAL ~PPLICATIONS 

The theory of transformations in the z-plane has a very definite 

application in the fields of engineering and physics. The engineer or 

physicist is more often concerned with problems which involve areas or 

volumes than with purely mathematical considerations of points and 

curveso However, it is a relatively simple step from consideration of 

curves to areas bounded by curveso This consideration of areas leads 

to several applications of transformations. 

of proble:rns. In general, transformations in the z- plane 

can be helpful in solving all boundary value problems associat ed with 

the Laplace equation in two independent variables, 

a2v a2v -- + -- ,:: o, 
J x2 d:/2 

or the more general Poisson equation, 

Problems in hydrodynamics, aerodynamics, thermodynamics , and 

electricity and magnetism often make use of these equations. Trans-

formations are n0t a method of solution of such problems, but rather 

a means of simplifying them. Thus, boundary value problems which 

involve considerations of oddly shaped areas may be transformed into 

similar problems involving considerations of much si:rr..pler areas. 



As an example , consider the airfoil, A, in Figure 34.1 

z-plane 
y w-~l oane . [e] 

v=-k 

0 

Figure 34. Transformation of an airfoil under a specialized 
transformation. 

0 

The shape of this airfoil is determined by the angles ex and /) and the 

value of c~ 

Under the transformation 

c ? o, (3 > o, 0-< o< <. °'-+f3 L... 11' , 

the area of airfoil A, in the z- plane, is transformed into the entire 

area above the line v 11: kin thew-plane, where k depends upon t.he 

values of ~, # , and c. The area of a particular airfoil such as 

airfoil Bis transformed into a circle by this same transformationo 

54 



If the problem is to determine the behavior of a current of air 

passing around airfoil B under certain conditions, the boundary 

conditions can be transformed algebraically by the transformation. 

55 

The problem is then reduced to the sirri~ler study of air currents around 

a cylinder . When results are obtained and conclusions drawn for the 

case of the cylinder, they can again be transformed algebraically by 

the inverse of the original transfor:rr.ation, thus yielding results and 

conclusions relative to the original airfoil. While the transformation 

of boundary conditions may be quite complicated, the possibility of 

simplifying the shape of the area being studied usually overbalances 

these complications o 

Applications of basic transformations. Most physical problems 

involve quite com~licated transformations, but the simpler basic 

transformations find application in some special cases. 

In problems of fluid mechanics the two- dimensional steady-state 

type of flow is often considered; that is , the motion of the fluid is 

assumed to be identical in all planes parallel to the z-plane. 2 The 

velocity of the fluid is parallel to that plane and is independent of 

the time . Then it suffices to consider only the motion of the fluid 

in the z- plane . 

If a problem concerns such a uniform flow to the right in the 

upper- half of the z- pl ane, its results may be transformed by the 
1 

transformation w = z2 to obtain results for a similar flow of fluid 

2churchill, ~ o cit., PPo 161-166. 
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in a quadrant of thew-plane . Reference to Figure 14, page 25, shows 

that the lines representing the fluid flow in the z- plane are transformed 

by this transformation into the branches of the equilateral hyperbolae in 

the first quadrant of thew-plane. These hyperbolae represent the path 

of a fluid flowing around a corner . 

Transformations are not always used as appl ications to physical 

problems . One cormnon use is found in t he manufacture of maps f or 

navigational purposeso If the north pole of the earth is used as a 

center of projection, and the surface of the sphere is projected upon 

plane , a representation of the surface is obtained in which the 

meridians appear as rays through a single point and t he parallels 

appear as concentric circles about the same pointo If then, the 

inverse of the transformation w = ez is applied to these concentric 

circles and rays, reference t o Figure 29, page 47, indicates that they 

will become two sets of parallel lines that are perpendicular to each 

other . Such a map of the earth 1s surface is the familiar Mercator 1 s 

projection) 

Since these maps show great distortion of areas, most maps are 

compromises produced by a sequence of perhaps thirty transformations, 

each of which can be written as a transformation in the z-plane. 

3E. J . Townsend, Functions of a Complex Vari able (New York: 
Henry Holt and Company, 1915) , P o 137°: 



CHAPTER VII 

SUMMARY 

In the brief discussions of the behavior of some lines and conics 

under various transformations, it was noted that the complexity of the 

algebraic operations involved increased greatly as curves of higher 

degree were transformed. In all cases considered, lines were trans-

formed into conics, while conics were generally transformed into 

quartics o One exception to the latter case was seen when the parabola 

y2 = 2px 

was transformed into a cubic by the transformation 
1 

w = z. 
Other exceptions occurred when the ellipse 

and the hyperbola 

were transformed under the transformation 

w = 'ZI2 

and resulted in an ellipse and a hyperbola, respectively. 

Several further investigations are suggested by the results of 

this researcho First, the general forms of the conics and some 

representative cubics and quartics should be studied under the basic 

transformations . Second, a study might be made of the behavior of 



lines and conics under other, more complicated t ransformations. 

Lastly, invest i gations of the results obtained here should be made in 

order to establish pract ical applications of them. 
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APPEi\JDIX A 



ROTATIONAL PROPERTIES OF THE TRI\NSFORl"IATION w = z2 

Suppose that:- The points z1 and z2 are in the z-plane; z2 is obtained 

by rotating z1 through an angle ~ about z = O; 

amp z1 = e ; amp z2 = u:> ; w:1 is the image of z1 and 

w.2 is the image of z2 under the transformation w = z2; 

a.mp w1 = ¢; and amp w2 = Ao 

z- lane 
y 

0 

8 

w-plane 
" 

0 
l) 

Figure 35. Rotational properties of the transformation w = z2
0 

The transformation w = z2 may be written 

? = r 2 , 1 = 2 ~ o 

Then w = ,o ei'P= z 2 = (r eie )2 -= r 2 e2ie , 
1 / 1 1 1 1 

or P = r 2 d.. = 2e • / 1 1 ' 't' ' 
and w2 -= / 2. eiX= zl • (r2 ei~ 2. -= rl e2iW, 

or f 2_ = r/, ,>_ :::i 2. W 0 



in z2 is btained b r ating z tnroagh an angle a OU..1.. Z == 0, 

lz1I = I z2l, 0 r , 
-e ='f. 

e /\ = fz 2 rl, 

r I 11 = lw2I; 
)\ - s: ,.., 2 = 2 a , C. 

0 >..-¢ n 

e --onditic 

tha ..... w is obtained h ta"':;ing w thro1:::-h an angle 2 about 

o ta· e b t.a"tin.g C a.n an;; 0 about z = ,.... 
'--'• i: z 
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= 0 

_ _, 

ints o an ~., are points on c 2, whe i = ~, , ••o tne by 

"t!l r ta~ion 

ii Z2.;I and z2., = am; z 'f 0 - i 
nes -:.:::ts ar :..ntc t..t: OB:i.-'.:S WL a.."TJ.d ? • ., 

-1 

_ere ~, 2 , "o he =ro t.he e.uO e proof, 

~I I :.ii and W?. "½. + 2 0 - -:i.. 

Bu- these -in.ts, and W2~ _, :f - the c"U! es, _1 and 2 , tb.a+ are 

:iri.=.ges c= t.h.o C'C'. e"' a::i.c. n ,., '-'2 Sine lJhe a.Ir.D~uude of co!Tes ruii.ng 

no C 

ouine 
-, '.:!; an angle ? 

'Eran.sf :!T"..2.uion vJ = ., ca.:.. oe ooua.ine 
J~ ~de_ me same trans=c- :ia~ia~, tJ:::r 
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ROTATIONAL PROPERTIES OF Tllli TRANSFORMATION w = z2 

Suppose that: The points z1 and z2 are in the z-plane; z2 is obtained 

by rotating z1 through an angle ~ about z = O; 

amp z1 = 0 ; amp z2 = w ; w1 is the image of z1 and 
l 

w2 is the :image of z2 under the transformation w = z2; 

amp wl = r/> ; and, amp W2 = ">-. o 

z-plane 
y 

X 
0 

w-plane 
V 

u 

Figure 360 .±. Rotational properties of the transformation w • z2. 

1 
The transformation w = z2 may be written 

f' = -.Jr , ¢ = i + 1T'k; k = o, lo 
, d-. l - ~ l ,- [ 0 ,7 Then w1 = f i e1 r = z12 = (r1 e1 )2 = -vr1 exp i(2 + 1rk ~ , 

or ,f1 = , <P = f + 1rk; 

and w2 = / 2 ei ). = z2½ = (r 
2 

eiw)½ ""rr;_ exp [i(f + 1Tk~ , 

or f 2 = -.fri. , = + 1t'ko 



Since z2 is obtained by rotating z1 through an angle f about z o, 
lz1I = l z2J , or r1 = r 2 , 

and 

Whence, 

or 

and 

or 

<-v - e = 't' o 

/'1 =f 2 

lw1I = lw2l; 
A, u..l e w- e - -r = 2 + 7rk - 2 - rr k = -2-, 

)i - ¢ = 'f/2. 
The conditions 
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show that w2 is obtained by rotating w1 through an angle ,;2 about w = 0 0 

Now, consider two curves in the z-plane, c1 and c2• c2 is obtained 

by rotating c1 through an angle lf about z = o. 
on c1 and z2 . are points on c2, when i = 1, 2, 

J. 

Then, if z1 . are points 
J. 

•••, then by the rotation, 

\z1i\ = j z211 and amp z2i = amp z1i + lf 0 

These points are transformed into the points w1 _ and w2 _, 
J. J. 

where i = 1, 2, •• • o Then from the proc above, 

( w1i l = f wJ and amp w2i = amp w1i + o//2 0 

But these points, w1 _ and w2., form the curves, K1 and K2, that are the 
J. J. 

images of the curves c1 and c2• Since the amplit udes of corresponding 

points on the curves K1 and K2 differ by «f'/2, the result can be stated: 

If c2 is a curve in the z-plane which is obtained by rotating 
anotfier curve, c1, through an angle YJ,_ about z = o, then K2, the image 
of c2 under the transformation w = z2, can be obtained by rotating 
~;i., the image of c1 under the same transformation, through an angle 
't' /2 about w = o. 



ROTATIONAL PROPERTIES OF THE TRANSFORMATION w • ¼ 

Suppose that: 'l'he points z1 and z2 a:re in the z-plane; z2 is obta:ined 

by rotating z1 through an angle ~ about z = O; 

amp z1 = e ; amp z2 = w ; w1 is the image of z1 and 

w2 is the image of z2 under the transformation w a½; 
amp WJ.. • ¢; and, amp W2 = >,_ . 

z--plane 
y 

e 

w-plane 
V 

0 

Figure 37. Rotational properties of the transformation w = ¼ o 

The trans£ormation w = .! may be writ ten z 

Then 

or 

and 

or 

11 ... i, 4-= - e ., 
·"- 1 1 ·e w:i "" ~ l el.'f' = ;l • il e-1 , 

f 1 = il ' 'f = - e ; 

ei~ = ,! -= ,! 6 -iw, 
z2 r2 

/'2 s: i2 , >- = - w o 
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Since z2 is obtained by rotating z1 through an angle ~ about z = o, 
\z1 I = Jz2 I, or rl = r2, 

and w - e= 't'o 
Whence, 

or 

]L 
.11 "'/°2 = r1 , 

lw1l = lw2 I; 
and "'-- ¢= - w -(- e ) = -(w - e ), 
or "'- -'f c: - '/>. 

The conditions 

show that w2: is obtained by rotating w1 through an angle - 'f about w c: o. 
Now, consider two curves in the z-plane, c1 and c2• c2 is obtained 

by rotating c1 through an angle Cf about z so. Then, if z1 . are points 
l 

on c1, and z2 . are points on c2, when i • 1, 2, •o•, then by the rotation, 
l 

These points are transformed into th~ points w1 . and w2 ., where 
l l 

i = 1, 2, • 0 • 0 Then from the above proof, 

But these points , w1i and w2i_, form the curves, K1 and K2, that are the 

images of the curves c1 and c2• Since the amplitudes of corresponding 

points on the curves K1 and K2 differ by - lf, the result can be stated: 

If c2 is a curve in the z-plane which is obtained by rotating 
another curve, c1, through an angle 'f about z = o, then K2, the 
image of c2 under the trwnsformation w = 1/z, can be obta:i.ned by 
rotating K1, the image of c1 under the same t ransformation, through 
an angle - f about w = o. 



APPENDIX B 



Ml!..'l'HOD OF NALl'ZIN U TION 

Step One . Axe of s rnnnetry e detormined by the f llowing 

characteristics: 

1 . If the equation obtained by replacing v by-vis identi ul 
with the original equation, the curvP is synnnetrical with respect 
to the u- a.tis o 

2o If the equation obtained by replacing u by u is identi al 
with the original equation, th curve is symrretrical 1dth respect 
to the v- axis . 

3. If the equation obtained by replacing both v by -v and 
u by - u is identical with the original equn.t.ion, the cur1Te is 
symmetrical with respect to the origin. 

4. If the equation obtained by replacing u by v and v by u 1 
identical with the original equation, the curve is symmetri ·9.l 
with respect to the line u v. 

Step Two . 'l'he intercepts can be found by setting v • 0 and 

solving for u, and setting u 0 and solving for Vo 

Step ~ • The equations of any v rt,ical asymptot s can be 

found by equating to zero the real linear factors of the coefficient 

of the highest power of v . 'l'he equations of any horizontal asymptotes 

can be found by equating to zeTo the real linear factors of the 

coefficient of the highest power of u. 

Step Four . If the equation of t,h curve can easily be solved for 

one variable in terms of the other, it may be possible to establish 

limits of extent. With this determination of limits of extent it is 

also possible to ascertain the number of rel values of oue v riable 

tha~ correspond to certain values of the other. 

- - - - -------~---- - - - - ------~~- - --



Step Fiveo Special points on the curve are located and the 

nature of the curve is investigated at those points; that is, points 

of inflection, cusps, etc., are found. 
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