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TRANSFORMATTONS OF LINES AND CONICS IN THE z-PLANE

The purpose of the problem was to investigate the behavior of
curves under some simple complex transformations. The transformations
used were limited to w = zz, W= z%, and w = % « The curves considered
were limited to straight lines and conic sections. However, the general
cases of the conics were usually too complicated to be dealt with in
the thesis., Therefore, most of the conics considered were special cases
which were simpler and from which some indication of the behavior of
more general cases might be found,

Some interesting special cases of the more complicated trans-
formations were treated briefly, as were practical applications of
complex transformations., Sketches were included showing the results
of the transformations in graphic form.

It was noted that, in genmeral, subjection of a curve to a trans-
formation complicated that curve., Cases in which the curve was simplie

fied were less numerous, but usually had greater chance of application.
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CHAPTER I
INTRODUCTION

Early in his mathematical studies, the student encounters the
problem of expressing the square-root of a negative number. Such a
value is defined as an imaginary number. Then, for the sake of
simplification, the term~/=l is called i,

Later, numbers involving the sum of a real number and an imag-
inary number are met., These numbers may be written generally in the
form a + ib, where a and b are real numbers and i isv=l . Expressions
of this form are called complex numbers, and as such include all of
the real numbers and all of the imaginary numbers., The rules for
performing the fundamental operations of addition, subtraction,
multiplication, division, and extraction of roots as they apply to
complex numbers are established in algebra and are used extensively

in applications of the quadratic formmla.

Complex variables. If z is defined as a complex number such

that z = x + iy, and if x and y are real variables, then z is called
a complex variable, The real numbers x and y are known as the real
part and the coefficient of the imaginary part of z, respectively.
In some cases it is convenient to indicate these real and imaginary
components by the notation
R(z) = x, I(z) = y.
The common rules for operations with complex numbers apply to

the complex variable z.
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A1l complex numbers can be represented geometrically by means of
the Argand diagram. This is a set of rectangular coordinate axes in a
plane, Each complex number x + iy is represented by a point whose
rectangular Cartesian coordinates are (x,y). This coordinate system in
a plane is also referred to simply as the complex plane or the z-plane,

The complex number X - iy is commonly noted as z and is called
the conjugate of z.

At times it becomes necessary to think of the complex number z
as a vector from the origin of the coordinate system to the point (x,y).

The absolute value or modulus of z is defined as

2l = |x+ iy| =Vx% + 52 .

From a trigonometric standpoint, this value is the length of the vector
which represents z. Consequently, Izl - zal is the distance between

the points z. and Zys since

%
|2 = 2z} = |(xq=x,) + i(yl-yg)l =V(x1-x2)2 + (3/'1-572)2 .

The polar form of z is obtained by substituting
X=rcos®, y=r sin®,
Thus,
z = r(cos@+ i sine),
A1l points in the plane may be represented in polar coordinates without

using negative values of rjy so r is taken to be greater than, or equal

r=m,

to zero., Since

then,



The angle 6 is called the argument or amplitude of z and is commonly
expressed as
€ = arg z.
The value of © may be obtained from the relationship
tan€ = y/x ,
If e® is defined as
e? = eX(cos y + i sin y),*
the polar form can be written in the more compact exponential form,
z=re® .
If another complex variable, w = u + iv, is related to z so that
in some part of the z-plane a definite value or set of values of w
corresponds to each value of z, then w is a function of the complex
variable z, Thus,
w=f(z),
Two complex numbers, 2z = Xy + iyy and Zo = X + iy2, are
equal if, and only if, X =X, and Y1 = Yoo Therefore, a function
w = £(z)
may be represented by
u = w(x,y), v = v(x,y),
where u(x,y) and v(x,y) indicate functional relationships.

If u(x,y) and v(x,y), together with their partial derivatives

of the first order, are continuous and single valued and satisfy the

IRuel V. Churchill, Introduction to Complex Variables and
Applications (New Yorks McGraw-Hill Book Company, Inc., 19L8),
PPe 37-30,




Cauchy=-Riemann conditions,

3__“-?1 d 21_‘1— Q_'_V
?x a3y S o9y " ox ?

at some point, then the function f(z) = u + iv is said to be analytic
at that point. The study of analytic functions in complex variables is
of considerable importance,

Real functions of real variables, y = f£(x), may be exhibited
graphically as curves in the xy-plane. When the variables are complex,
such graphical representation is more complicated, since each of the
complex variables w and z is represented by a point in the z-plane, It
is generally simpler to use separate planes for the two variables, Thus,
corresponding to each point (x,y) in the z-plane for which f(x+iy) is
defined, there will be a point (u,v) in the w-plane where w = u + iv,
This correspondence between points in the two planes is called a
mapping or transformation of points in the z-plane into points in the
w-plane, The point in the w-plane which corresponds to a point (x,y)
in the z-plane is called the image of the point (x,y). This corre-
spondence of points may be extended to curves, and the terms mapping
and transformation are then applied in the sense that a curve in the
z~plane is mapped or transformed into another curve in the w-plane., The
curve in the w-plane is then the image of the curve in the z-plane,

It is convenient at times to think of the mapping as occurring in one
plane, even though two separate planes are used to represent w and z.
This permits the use of such terms as translation and rotation.

In the consideration of functions of complex variables as transfor-

mations it is possible to use the relationships



u = u(x,y), v = v(x,y)
as a real transformation with real variables, if the w=plane and the
z-plane are looked upon as ordinary rectangular Cartesian coordinates,
This method is commonly used in dealing with curves of higher degree
because the transformed equations encountered may be recognized more
readily when they are expressed in the way that is used in Cartesian

geometrye.

Notation. Several types of notation are found in texts on
complex analysis. The following is a summary of the notation used in
this thesis,
The complex variables:
z =X+ iy = r(cos®+ i sin®) = r eie,
w=u+iv =p,(cos$ + 1 sinfS) e ei¢,
where Xy ¥y Ts3©, U, Vy p, and ¢ are real variables,

The complex constants:
Woy Wiy W, Zys Z7s and Zoe

The real constantss
a, b, ¢, d, and the components of the complex constants,
Ugs Vos Xgs Yoo etc.

Any deviation from this notation or the introduction of supple=-

mentary notation is explained at the time of its occurrence.

The conics in terms of complex variables. A circle is the locus

of all points equidistant from a fixed point, This suggests the

representation



|z = 2q] =2

for the circle; that is, the point z moves so that the distance between
z and zq is a constant, a, In other words, z describes a circle with
center at z; and radius a.

Similarly, the equation of the ellipse is

|z - 2] + |z =3y =23, (22> |z - zzi).

Its foci are Zq and Z, and the length of the major axis is 2a.

The equation

|z = 29| - |z - zzl = z2a, (0<2a< lzl - zz‘)

represents a hyperbola, with the positive or negative sign applying for
the branch nearer the focus z, or for the branch nearer the focus z,,
respectively,

In Cartesian coordinates the equation of the ovals of Cassini is

(x2 + y2 + az)2 - ua%:z = ch.
This curve is the locus of a point which moves so that the product of
its undirected distances from two fixed points is a constant. This
relationship suggests the equation
|z - zll lz = Zgl =a, (a>0)

in complex variables,

These equations usually lead to difficulties under transformations,

but in a few cases they greatly simplify the work involved.

The problem and its limitations. The purpose of the problem was
to investigate the behavior of curves under some simple complex trans-

formations,



The transformations used were limited to

and w=1/z,

These are basic transformations, but in many cases the job of analyzing
a complicated transformation may be made easier by expressing it as a
sequence of successive transformations of these basic forms,

The curves considered were limited to straight lines and conic
sections. However, the general cases of the conics were usually too
complicated to be dealt with in this thesis, Therefore, most of the
conics considered were special cases which were simpler and from which
some indication_of the behavior of more general cases might be found,

Some interesting special cases of the more complicated transfor-
mations are treated briefly in Chapter V. In Chapter VI the practical
applications of complex transformations are discussed,

Within the discussions of the various curves and their transforms,
sketches appear showing the appearances of the curve in the z-plane and
of its image in the w-plane. 'he equations of the curves in each plane
are given below the sketches. Pertinent points, such as the intercepts
on the axes, are labeled only when that information is necessary to
clarify some aspect of the transformation.

Appendix A contains the proofs of certain properties of each
transformation, called here rotational properties or rotational char-
acteristics., Appendix B consists of an outline of the procedure used

in analyzing cubic and quartic equations in order to sketch the curves.



CHAPTER II

THE TRANSFORMATION w = 22

The transformation w = z° is easily described in terms of
polar coordinates, When z = r et® and w = 2 ei¢; it becomes
p eif o p252i6

and when the real and imaginary components are equated,
/a=r2, ¢g= 20,

That is, the point (r;,8;) in the z-plane is transformed into the point
in the w-plane whose polar coordinates are / = rl2 and ¢ = 261.

Geometrically then, the length of the radius wector of the point
in the w-plane is equal to the square of the length of the radius
vector of the point in the z-plane, and its argument is twice the
argument of the point in the z~-plane,

In rectangular coordinates, the transformation is
u+4 iv = x2 - y2 + 2ixy
or u=x° - y2, Vv = 2X¥,

A rotational property of this transformation can be stated as
followsst
If Co is a curve in the z-plane which is obtained by rotating
another curve C% tprough an ang}e ¥ about zTO, then Ko, the image

of C,, can be obtained by rotating K,, the image of C;, through
an angle 2¥ about w=0,

Use of this property allows the determination of the transforms of

many curves, if, and when, the transform of one such curve is known.

Irhe proof of this property is given in Appendix A, p. 62.



The straight line. The transformation of the line
ax + by = c,

can be made by noting that

When this value is substituted into the expressions for u(x,y) and v(x,y)

Mt (02-a2)x? + c(2ax~c)
b2 ?

V= Xy = 23&%:&52 .

Lol f=d 2.

These equations essentially are the parametric equations of the
transformed curve, the parameter being x, If these equations are
rewritten as

(a2-b2)x2 - 2acx + c? + b2u = 0,

and Zaxz

- 2cx + bv = 0,
Sylvester!s Me thod? may be used to eliminate the parameter,
Thus, the equation of the image of ax + by = c¢ becomes
12?2 - hab(aa-bz)uv + (az-b2)2v2'+ ucz(aa-bz)u + 8abcv = hch = 0,
When this conic is compared with the general conic
Av? + 2Huv + BvZ +2Gu + 2Fv + C = O,
the valuel
H - AB = 0,

This is the condition which indicates that the conic is a parabola.

2Nelson Bush Conkwright, Introduction to the Theory of Equations
(Boston: Ginn and Company, 1941), pp. 162=16L,

3p1an D. Campbell, Advanced Analytic Geometry (New York: dJohn
Wiley & Sons, Inc., 1938), p. O. N
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Further, when the d:i_scr:'LminantLL of this parabola is evaluated, it is
seen that
AHG

P=‘HBF

GFC

= o hch(a2+b2)h,

and [ = 0 only when ¢ = 0, This shows that the image of ax + by = ¢
will be degenerate only when ¢ = O, or when the line passes through the
origin,

2

In summary, under the transformation w = z“, all straight lines

are transformed into parabolas as is shown in Figure 1 and in Figure 2,

Z-plane w-plane
Y Y
{x:c]
[x=-<]

2 9}

i x

X 0
[+ o

X=¢CyX==cC vl = hcz(c2-u)

Figure 1, Transformation of x = ¢ and X = -c under w = Z2.

thid., Pe 260



z=-plane
Y
Y=e
Y
) (o]
Y=~
y=¢C, ¥y =-=C v = hcz(u+c2)
Figure 2, Transformation of y = ¢ and y = -c under w = z2.

Figure 3 shows the case in which c

erates into a pair of coincident straight

= 0 and the parabola desgen=-

lines,

z-plane w=-plane
y v
v=0, (N 20
x=7]
Y
S ;
U=9, (ve O>
[x= 4

X =Y, X= -~y

Figure 3. Transformation of x

u=20; (v20, v<0)
2

y and X = ~y under w = z°,

AL
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The circle. From the equation
| 22+ 32 = a2
it is seen that
2. P,
or x = :\/az - y2 °
Substitution into the rectangular coordinate form of the transformation

gives

u=x2-y2=a2-2y2,

v=21w=t2y¢az-y2 °
Elimination of the parameter y results in the equation

w2 + v2 = alt,

Seemingly, this equation simply represents a circle about w = 0, whose
radius is the square of the radius of the eircle in the z-plane.
However, upon examination of the parametric equations of the circle,

x=acos¥Y, y=a sin¥Y,
it is seen that the transformation results in

zsinzq" y viis 2alcos "]’ sinY s

2

u = alcos?Y - a

2

or u = a“cos 2Y , v = a“sin 2%,

To be sure, the curve is a circle with radius a2

s but the parameter 2y
indicates that, while the circle in the z-plane is being generated
once, the circle in the w-plane is generated twice, This conclusion
follows from the condition that, to generate the circle x2 + y'2 = a? s
¥ must take all values in the interwval

o=¥< 2y,
and hence, 2¥ must take all the values in the interval

0s2¥<h,



i3

Figure L shows the physical appearance of this transformation.

z=plane w=plane
y v

(DN (.
AT

B3 o o0 Ko !

Figure L, Tfansformat.ion of x2 + y2 = a? under w = 2.2.

An interesting circle which illustrates the use of the polar

form of the transformation is |

x% + y2 - 2ax = Qo
This is a circle whose center is on the x-axis at (a,0) and which
passes through the origin, In polar coordinates the equation is

r = 2a cos €,
When this equation is transformed
P = r2 = ha2cos?O = 2a2(1+cos 2e),

but @ = 26 ;3 so the transformed equation becomes

P o= 2a2(l+cos $).

This curve is the cardioid shown in Figure 5.



zZ=plane w~plane

Y } v

\_/

r = 2a cos@ P = 232(1+cos $)

Figure 5, Transformation of r = 22 cos® under w = z2.

Algebraically the general circle presents a complicated problem
when the transformation is applied., However, in the Dictionary of

Conformal Representationss, it is shown that, in general, a circle is

transformed into a limagon with the cardioid and circle as limiting cases,

The parabola. When the parabola

y2 = 2px

is transformed under w = 22,
u = X% - 2px, V = +2xV2px
since Y = &V2pxX o

Elimination of the parameter x reduces these equations to

vh - 6hpuv2 - h8p20v2 - 6hp2u3 = 0,

5H. Kober, Dictionary of Conformal Representations (New Yorks
Dover Publications, InC., 1952), De 30e
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A procedure established in Cartesian geome’cry6 is followed to
determine the appearance of the transformed curve,

First, it is noted that the curve is symmetric with respect to
the u-axis and that its intercepts on the axes are
\ v =0, thz when u=20
and u=0 when v = 0o

Second, if p is considered greater than zero, the equation is
solved for v2 in terms of u, and the resulting expression is examined
for limits of extent. Thus, the following conditions which affect the
appearance of the curve are determineds

v has four real values, when -p2_<.u£0;
v has two real values, when O< p<ee;
and v has no real value, when -oa<u<-p2.

Then, if the equation of the transformed curve is solved simul-
taneously with the equation of a line v = ku, and k is allowed to
approach zero, it is seen that the curve forms a cusp at the origin,

This combined information is sufficient to allow a sketch of
the curve to be made as in Figure 6, The images of parabolas, where
p is less than zero, along with the rotated forms of the parabola
y2 = 2px, may be determined by use of the rotational property of this

transformation as stated on page 8.

6A.n outline of that procedure is presented in Appendix B, p. 68.



z-plane w=-plane
y \2
M);-ya'
AN
Z2p X \\n Y
o 7
y2 = 2px vh - 6uphv2 - 48p2uv2 - 6lg,p2u3 =0

Figure 6, Transformation of y2 = 2px under w = z2.

The ellipse., If the ellipse

2 2
.)i..,.L:l
a2 }-2

is transformed under w = zz, then

i a2b2 - (a2+b2)y2
= b2

tZavaz-vz
5 ’

vV =

After elimination of the parameter, these equations become

2 ..2\12
o[- o5

+
a2b2 (a2+b2)2

L

= 1,

This equation is obviously the equation of the ellipse which is

illustrated in Figure 7.

16



Z-plane w-plane

v

7

2

=3 = w2e
== =
/—-—'*\/ N f '\/i‘; // u
~° 7 \° ' ]
(a2-b2) 2
x2 2 2 N - —F=
X L =1 Z + e = 1
a2 b2 a"bz (a.2+b2)£
Iy
x2 2
. - . VA D
Figure 7, Transformation of =3 + == 1 under w = 2%,
a b

The hyperbola.

the ellipse, it can be shown that the hyperbola

is transformed into the curve

- e

Now, when a # b, it is permissible to simplify this further to

(a2_b2)2

(:3.2+b2
- n

(a2-b2)2y2
2 — =

hazb2

[ (a2+b2)] 2
u-—s" 2
- 7 = ],
(a2_b2)2 S
L

This equation is obviously the equation of the hyperbola shown

Pigure 8,

In a manner similar to that usecd in transformiag

in



Z~plane w-plane
y v
ek’
/
2:=a " /’
(o] o !
2,,24]2
(a%+b7)
ECE - LZ = 1 [11 B 2 J - 'V'2 =1
2 P2 (3202)° 2252
U
2 2
x
Figure 8. Transformation of > - I = 1 under = z°,
a b

2
When a = b, the curve 2 ZE = 1 becomes
a b2

x2-y2=a2,

the rectangular hyverbola, and its image, as seen in Figure 9, is the

straight line u = a2°

2

If the rectangular hyveroola x2 - 52 = a“ is rotated through an
>3 o >

angle ¥ = W/, it becomes the rectangular hvperoola

)
22X = as,

v

. . . c s . 2
Then by the rotational characteristics of the transformation w = z°,

the image of this hyperbola will be the line u = a2, after it has been
rotated through an angle A = 24 = %/2, That curve (Figure 10) is the

straight line v = a°,



z~plane w-plane
Yy v
2
=z=d4 w:=3
X J
O (=]
x2 - y2 = a2 u = a2
Figure 9, Transformation of x° - y2 = a2 under w = zz.
z-plane w-plane
Y i
T
v=4
X J
1
o 2cd ©
2
2xXy = a2 v = a®
Figure 10, Transformation of 2xy = a under w = 22,
Some other interesting curves, Sone special curves have inter=

esting properties under the transformation w

4
= Z °

19



For instance, the littuus,
2 2
r-@ = ac,
is transformed into
2
2.2
f B =2 -
But ¢= 28, so
= 942
Pé=2a 3

which is a hyperbolic spiral as seen in Figure 11,

z=plane w-plane

Y - ""_7”‘ ——————
o /

@;\- D\
% ’ \JV/

rée = 32 /’¢= 22°

2 2

Figure 11, Transformation of r29 = a® under w = z°,

Figure 12 illustrates the transformation of the logarithmic

spiral

r = e2® |
There P = ¥? = e22@ >
and ¢ =28,
Hence, P ea¢

which is another logarithmic spiral exactly the same as the origsinal,

20



but transferred from the z-plane to the w-plane,

z~plane w-plane
, v

)
r=¢?

p= et

. - e
Figure 12, Transformation of r = ¢®® under w = 22



CHAPTER IITI

1

THE TRANSFORMATION w = 22

i
The function w = 22 is a double-valued function; that is,
w assumes two values for each assigned value of 2z

The transformation in polar coordinates is

P exp (if) =+F exp [1—(6—*2'@]

where k=0,1
and ¥T is the principle square=root of r.l

Geometrically, this transformation changes the length of the
radius vector of z by the factor 1/1/::_." and rotates it through an angle
~ ©/2 to obtain the corresponding point in the w-plane,

The transformation w = z% can be thought of as the inverse of
the transformation w = za. Comparison of these two transformations in
this way indicates that w = z% might be expressed as

x-uz-vz, y = 2uv.
This form can be shown to be correct, and it simplifies the algebraic
computations involved in determining the equation of the image of a
curve in the z-plane,

In some cases it is necessary to return to the polar form in

order to avoid confusion because of the double-valued property of the

transformation.

]"I‘he notation exp m is equivalent to M.
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A useful rotational characteristic is connected with this

transformation, also. It may be stated: 2

If Cp is a curve in the z-plane which is obtained by rotating
another curve Cq through an angle ¥ about z=0, then Ko, the image
of Cp, can be obtained by rotating Ky, the image of Gy, through
an angle Y/2 about w=0,

The straight line., When the general line

ax + by = ¢

2,
is transformed according to the function w = %2

aua + 2buv = a.v2 -c = 0,

s it becomes

Comparison of this equation and the equation of the general conic and
the evaluation of>

H? - AB = b2 + a2>0,
AHG

HBF
GFC

and M= = -0(32+b2):

shows that the curve is a hyperbola which becomes degenerate only
when ¢ = O,

Cases of degeneracy stem from lines which pass through the
origin. These cases indicate the need for caution arising from the use

of a double~valued function as a transformation,

I~

In transforming the line x = O by the transformation w = 22 in

the rectangular form, the degenerate hyperbola
u2 - v2 =0

2The proof of this property is given in Appendix &, p. 6hL.

3Ga:npbell, op. cite, pp. 8, 28.



is obtained. This degenerate curve is the same as the two lines
u=v and u = =V,
However, if the half=line
X=0, 0sSy<oo
is considered in its polar form
® = /2, r=0,

it is seen that, when it is transformed, it becomes

_es2n
¢ 2 b

+ k¥, k = 0,1;
L= r220,
This is the complete line ¢= % or u = Vv,
Similarly, the half-line
X = 0, =0o<y<0

is transformecd into the complete line u = -v,

These straight lines are shown in T -~ure 13,

z=plane w-plane
Y
ER 'V U=V
x=0,{r=9 Lx=o, (v=9) k=0, &rxa)
X
(=]

x=0, (Y4 ©0)

x=0, y20; x = 0, y£0 us=v;u= =v

L
Figure 13. Transformation of x = 0 under w = 2=,

2L
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This same reasoning applies to other lines through the origin,
Although an analysis of this sort is necessary to determine the pointe
wise correspondence of curves in the z-plane and in the w=plane, the
rectangular representation of the transformstion will suffice to
establish the corresondence of entire curves in each of the nlznes,

Thus, the application of the transformation to the lines x = c
and y = ¢ obviously results in the rectangular hyperoolae

wl - v2 = @ and 2uv = ¢

as illustrated in Figure 1,

z~plane w-plane
v
Y
J
[ v
)N u
¢ x
Y=
X
d
¥=-<
2
X = 4C3 ¥y = #C us -

Figure 1y, Transformation of x = ¢ and y = ¢ under w

The circle, The equation of the circle
2 o y2 o e
in polar coordinates is

r=a, 050<27%,
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Transformed, this circle becomes
P =va , wk< P <(k+l)w s (k=0,1).

The limitations on ¢ may also pe stated

0% P<w
and w<b<ow,
They are interpreted to indicate that each point on the circle r = a
is transformed into two points on the circle‘/’=1éf. Thus, while the
circle r = a is generated once by a moving point, the upper and lower
halves of the circle g2 =+a are generated simultaneously.

The general circle offers an opportunity for demonstrating the
use of the complex variable notation. In this form the equation of
the general circle

|z - Zol = a
is transformed into
2 - 2 = a
This equation may then be factored and written
[w = w| | + w,) = a, where w, = xv/z, &
In Chapter I such an equation was shown to be the equation of the

ovals of Cassini. The Dictionary of Conformal Representationsh

distinguishes three separate cases and provides sketches drawn for
circles whose centers lie on the x~axis,
Figure 15 shows the first case, in which an<|zo’; that is, the

origin is outside the circle,

bsee Ppe 36-39,



27

z=plane w-plane
Y v

—We

% /-\ o
AN/ AT R

lw - wol lw + Nol =a

- 55 a<la

lz - Zo‘

L
Figure 15, Transformation of ‘z - Zol =a, a< 'zol under w = 22,

The second case, a>]z s 1s shown in Figure 16, There the

ol

origin is contained within the circle.

z-plane w-plane
y N

Pl
-:v)
>3

0\/ T~

|z = 20| = a, a> |z i = wol fw + wo| = a

1
Figure 16. Transformation of [z - zy] = a, a> |z,| under w = z2,
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If the circle passes through the origin, then a = |z{,

This is the third and final case and is illustrated in Figure 17,

z-plane w=plane
3 ;

\_/

Y
=

|z = 2o =a, a = |z fw - wyl o+ w) =a

Figure 17, Transformation of |z = z)| = a, a = |z} under w = =

The same results as shown with the use of com-lex variable
notation may be obtained by using the rectangular representations, but

the process is very cumbersome.

X
The paratola. When the transformation w = z2 is applied to the

parabola

(y-k)? = 2p(x-h),
it becomes necessary to investigate at least eight specific cases,
depending upon the relationships of h, k, and p, to obtain results
which may be used to draw any conclusions. This paratola is, therefore,

an example that is best omitted here,

Now, consider the simpler parabola

y2 = 2pXo



Transformed, it becomes the curve
2u%v? « g2« 1wl = D,

When p20, this curve is symmeiric with respsct to the w-axis, the
T~axis, and the dorigin, Tbs intercepts on the axes are

u=20, v =D
and v=20, u= D
Bse of the procsdure cutlinsd in Appendix B roweals that the curve

v = afo/2

asymptotically. Murthermore, the curve is Timited to puints between
these asympitotes, and Ffor 201 such walues of w, u assumes btwo values.
Tt may =lso be moted that v assumes two velues Yor g1l Piuite walues

af u. Hemes, the curve mEy be sketched vs shown in Figure 18,

Bep e w-plane
y v
i
s TN _
'J( E?P % L
e e e T
# = Py MR - 2 2 = D

o

Pigure 15, Transfomptiion ©f = 25X under w =



The ellipse. If the ellipse

2

is transformed according to the transformation w = z%, it becomes
b2(u2-v2)2 o bazuzvz o a2b2,
or p2ult + 2(2a2-b2)u2v-2 + b2 o 22,2 - 0,
Use of the established method® for analyzing this curve, shows
that the curve is symmetric with respect to the u-axis, the wve-axis,
the origin, and the lines u = v and u = -v. The intercepts on the

axes are

v O,u=:|:\/a—

O"v:tfa-o

and u
The curve is limited to the intervals

-/ASu<sva
and -fagv</a ,

The intersections of the curve and the line u = v are found by
solving the equation of the curve simultaneously with that of the
line, This process yields the points (\/‘B_/E,\/‘JE) and (-575,-\/]07'2_),
and by the symmetry of the curve it is then known that the pcints
(\/';375,-@) and (—\/E]E,\/ETZ-‘) are also on the curve,

Al]l of these facts considered together permit a sketech of the

curve such as that in Figure 19,

5See Appendix B, p. 68,
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zZ-plane w=plane
y v

2
§§ + X; =1 ‘bzu’4 + 2(2az-b2)u2v2'+ b2yl - a%? = 0
a b
i 2 1
Figure 19, Transformation of — ¥ iﬁ = 1 under w = z2,
a b

The hyperbola, When transformed, the hyperbola

2

becomes
pylt - 2(2a2+b2)u2v2 + b2l - a%o? = 0,
Determination of the physical characteristics proceeds as before.6
The transformed curve is symmetric with respect to the u-axis,
the v-axis, the origin, and the lines u = v and u = ~v, It intersects
the axes at
v =0, u=z/a

and u=0,v==xva,

Ssee Appendix B, p. 68,
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No real solutions are obtained when the equation of the transe
formed curve is solved simultaneously with the equation of the line
u = v, This situation indicates that there are no real points of
intersection of those two curves, Considerations of symmetry show that
a similar situation exists concerning intersections of the transformed
curve and the line u = -v,

Examination of the limitations of u and v shows that there are
no real points of the curve within a square bounded by the four lines

u = %@ and v=iva .
Now it is possible to sketch the curve that is the image of the

L
hyperbola under the transformation w = z%, (Figure 20)

z=plane w=-plane

y v

n

2
- L2 =1 b2uh - 2(2512+b2)u2v2 + bzvu - 2%? = 0
b "

Sl’ml ]

%2 ﬁ L
Figure 20, Transformation of S -5 1 under w = gz=,
a b



CHAPTER IV
THE TRANSFORMATION w = %

In the language of complex variables, a transformation in which
w = f(z) and 7 = f(w)

is called an involutory transformation. The transformation

=1
W=z

is such a transformation.

In rectangular coordinates this transformation may be expressed

as
O X =1y
X + iy x2+y2’
or X -y
U B ——me— vV =
%% + y2’ x2+y2°
Its inverse, z =% s is then
X =t yE—
wé 4 ve ’ wl + ve

In polar coordinates the transformation is

or P =
Upon further consideration of this polar form, it is seen that the
transformation can be expressed as the product of two successive

transformations,

s dy -]; ie
i¢ e

wl:fle

and W= w =/i' e"iﬁ'.
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By the first of these successive transformations, a point z is
transformed into a point w'! which is collinear with z and the origin,

The distance of w' from the origin is

ol

lwl‘ T ‘Z' ol

This equation may be written
bwt| jz| = 1.
Therefore, the product of the distances of w! and z from the origin is
a constant. This property and the property of collinearity, satisfy
the conditions of the definition of inversion with respect to a circle.l
The radius of the circle of inversion is the square-root of the constant
product of the distances of the points from the origin, These factors
indicate that the transformation
w! = %— ei®
is an inversion with respect to the unit circle,
This inversion is then followed by the second transformation,
which is easily recognized as a reflection with respect to the x-axis.
It may be said that the transformation w = EZ: maps the point
z =0 into the point w = O, But the behavior of a function at z =
means, precisely, the behavior of the function at z! = O when z = %'-'— °
Thus it can be said that

W= =Z'a

1.1
z 1/t
Consideration of this relationship when z! = O shows that w = O when

]‘Ievi S. Shively, An Introduction to Modern Geometry (New York:
John Wiley & Sons, Inc., 1939), pe 00.
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z =0, The same reasoning process is used in showing that, under this
transformation z = 0 is transformed into w =0,

The concept of an infinite point is, of course, an abbreviation
for a limiting process, and in case of doubt the direct use of limits
should be applied.

In much the same manner as was used in the discussions of the
2 2

. : S
transformations w = z“ and w = %2, it can be shown that:

If Cp is a curve in the z-plane which is obtained by rotating
another curve Cq through an angle ¥ about z=0, then Ko, the image
of Cp, can be obtained by rotating Ky, the image of Cq, through
an angle =¥ about w=0,

Straight lines and circles.3 Consider the equation

a(x2+y2) + bx+cy+de= 0,
This equation represents a circle if a # O or a line if a = O, Under

x i
the transformation w = = it becomes

a[ u2 + v2 ] L bu A
(w2+v2)%  (uP+v2)2]|  wP 4 vP w4 vP
or d(u2+v2) 4 bu - cv+ a=0,
The new equation is, in turn, a circle or a line, depending now upon
whether d # O or d = 0, respectively,

The following illustrations show some particular cases of this

sort.

2See Appendix A, p. 66
3churchill, op. cite, ppe 5L-55.
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In Figure 21, if a # 0 and d ¥ 0, both the curve in the z-plane

and its image are circles, and neither of them passes through the oricin,

zZ-plane w-plane
Y, Y

/S @) B

a(x2+y2) +bx+cy+d=0 d(u2+v2) +bu=cv+ac=0

Figure 21, Transformation of a(x2+y2) +bx+cy+d=0
under w = 1/z,

If ¢ = 0 and a ¥ 0, the z-plane curve is a circle through

]
i

= 0, and its image is a straight line which does not pass through

=
n

Oe This case is shown in Figure 22,
Figure 23 shows the case where a = 0 and d # O, There the
z-plane curve 1s a straizht line which does not pass through z = O,

and its image is a circle through w = O,
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z~plane w=-plane
Y v

a(x2+y2) + bx +cy =0 bu=cv+a=0

Figure 22, Transformation of a(x2+y2) + bx + cy = O under w =

SEE

z-plane w~-plane
Y v
. X o U

~C

bx + cy+d=0 d(ue+v2) + bu = cv = 0

Figure 23, Transformation of bx + cy + d = O under w = = o
Z
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The case in which a = 0 and d = O is shown in Figure 2, Under

these conditions, both the curve in the z-plane and its ima»e are

straight lines which pass through the origin in their respective nlanes,

z~-plane w-dlane
y v
o X u
o
bx + cy =0 bu = cv =0

. . . 1
Fioure 2L, Transformation of bx + cv = 0 under w = =

2

. . 1. .
The line x = a ig transformed by w = o into the circle
w4 2 2= Oo
a

This circle has its center at (%E’O) and is tanzgent to the v-axis at
the origine.

Similarly, the line y = b transforms into the circle wiose center

1 . . . . -

is at (0, EE) and which is tangent to the u-axis at the oricin, The
equation of such a circle is

u2+v2
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The circle
242 = a2
is transformed into the circle

L
a

In case a = 1, the circle in the z-plane is the unit circle, and its
image is the unit circle in the w-plane.

A1l of these results of transforming lines and circles under the
transformation w = % may be summed up as follows: If lines are con=
sidered as limiting cases of circles (that is, circles of infinite

radii), then the transformation w = %‘- transforms circles into circles,

The parabola, When the parabola
y2 = 2px
is transformed by the transformation w = % s it becomes
v2 - 2puv2 - 2pu3 = 0,

This curwe is symmetric with respect to the u-axis. It intersects the

axes only at the origin, and approaches the line
u = %
asymptotically.
Then, considering only the cases where p2 0, it is found that
the real values of u which satisfy the equation of the curve are

limited to the interval

%) uz 0.
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The first derivative of v with respect to u, from the function
v - 2puv2 - 2pu3 = 0,
vanishes when u = 0, which indicates that the curve forms a cusp at
the origin,

Now, the curve can be sketched as shown in Figure 25,

z-plane w=plane

Y g I
I
I
I
I

I

X !// ‘nﬁu
) o |
|
|
|
|
I
y2 = 2pxX v - Zpuv2 - 2pu3 =0
Figure 25, Transformation of y2 = 2px under w = % o

Application of the property of rotated curves for the trans-=
formation w = % permits the examination of the images of all parabolas

that have their vertices at the origin,

The ellipse. Next to be considered is the ellipse

2 2
a b

When this ellipse is transformed, its image is found to be the curve

o2 2

+ =
2 (2r2)2 T DR (2?2

1.
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The left-hand member of this equation becomes undefined as u and v
approach zero simultaneously. That shows that the origin is not included
in the curve,
If the equation is expanded, it becomes
512192uLL + 2ab2uly? + a.2b2V)'L - b2u? - av? = O
The point (0,0) satisfies this equation, but the original equation of
the transformed curve shows that this point is excluded. Therefore,
in the following discussion the origin will not be considered a real
noint on the curve,
The quartic
a2b2uLL + 2a2b2u2v2 + a2b2vLL - b2u2 - a2V2 =0
is symmetric with respect to the u-axis, the v-axis, and the origin,
It intersects the u-axis at the two points (%,O) and (- %,O)° Its
v=intercepts are at v = & % o
When the limits of extent of the curve are determined, it is

found that when v is in the interval

1 1
- -BSVS'B' g

u assumes two real values, and when

= <oz
vZp Or V<=%T,

1u has no real value,
When the same process is used to determine the limits on u which
will give real values of v, three distinct cases appear. These cases

depend upon the relationships between a and b,

O 1
a

Po’aBbp? I

o |-
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These relationships may ne expressed in terms of the eccentricity of the

ellipse in the z-plane. ''hen the three cases become dependent upon

e< - e = = and e> =
V2 9 Ve 2
respectively.
When e <,f-';- s the following conditions are founc:
v assumes two real values when = %s us%— 5

Vv assumes no real value when u>% or when u<- % a
This case is illustrated in Figure 26,

z-plane w-planc
Y v

_}_{E . ﬁ 1. e< 1 a2b2(uz+v2)2 - b8 = a%v? = 0
22 p2 > ¢S5 (0,0) not included
2
Figure 26, Transformation of L ﬁ =1, e<l under w = = .
a2 12 2 z

If e :% s & similar set of conditions is:

3

1 1
v assumes two real values when - =<u<= j
a a

o [

v assumes four real values when u = +

1 1
vV assumes no real value when u>-£ or when u<~ 3
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Physically, this curve is similar to the curve in Figure 26, except that
the values of u where the curve intersects the u-axis provide four real
values of v rather than two such values. These four values are all
equal to zero,

Finally, the case in which e:>4% is shown in Figure 27, There
the conditions which limit the extent of the values of u on the curve
ares

2l a
v assumes four real values when =<u$ ’
A

-,

al
or when = =2u H
a oVetabe

1 1
Vv assumes two real values when =>u>- = ;
a a
-3

a
v assumes no real value when u» ———=—== or when ul—m———— ,
2bvhZ b2 obvh2.p2

z~plane w-plane

y v

oy
S

( w:—k— W;.ﬂ_afﬁm‘\.
\/}:3 " & / U

X2 ﬁ - 5 1 a?b2(u?+v2)2 - bu2 - 2292 = 0
i Bl St (0,0) not included

: =  # 1 1
Figure 27, Transformation of = + 7 =1, e>_,z under w = = .
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The hyperbola. Under the transformation w = %‘ s the hyperbola
2
X
7'%‘1
a b

becomes
a202ul + 222020272 4 22b2v4 - p2u2 4 222 = 0,
This quartic is symmetric with respect to the u-axis, the v-axis, and
the origin. Its only point of intersection of the v-axis is at the
origin, and the u~intercepts are at the origin and at the points (%,O)
and (- %,O).
Investigation of limits of extent establishes the following set

of conditions:

-k b
u assumes four real values when ————<v<

]
2a a2+b .’?.a.v/a.z+bi

b =b
u assumes no real value when V>» ——=e————— or when v<

2a Vaz-sz Zam ’

1 I
v assumes two real values when - ESuﬁg 3

1 1
v assumes no real value when u> y or when ud - 2 °

Consideration of all of this information permits the curve to

be sketched as in Figure 28,
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Z=plane w=nlanz
)’ v
X U
o G
2 2
X_Z - X_2_ = 1l a2b2(112+v2)2 _ b2u2 o @ = 0
a b
2
Tirure 20, Transformation of E— »y-i- = 1 uncer w = -i'- o
b




CHAPTER V
OTHER TRANSFORMATIONS

The expression of a complicated transformation as the product of
several successive transformations of a simpler nature often requires

the use of functions other than

1 1L
w=z2,w=22, andw=—z-.

Two of these other basic transformations are

w=ez

and W = s5in z.
Although they are usually more difficult to work with, they are still
important.

2

The transformation w = €%, If P and ¢ are the polar coordinates

of the point w, as before, the transformation
w = e?
can be written
/ ei¢ = ¥ 17,
Then, upon the equation of the real and imaginary parts of that
expression
p = by
Therefore, the line x = ¢ is transformed into the circle,
P e
In rectangular coordinates, the equation of the circle is

112 + 'V'2 =82co

The line y = ¢ is mapped into a ray, ¢= cly /)O,
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which, in rectangular coordinates, is the half-line
v = u tan ¢, 0<u<e° ,

These curves appear in Figure 29,

z=plane
Y
9 ¢:le>0
n
x [y-el
Y=e
% v
(+]
X=c,yc=c f"ec; ¢=c,/0>0

Figure 29. Transformation of x = ¢ and y = ¢ under w = &2,

The transformation w = sin 2z, It can be shown that

sin z = sin x cosh y + i cos x sinh y.

Thus the transformation

can be written
u = sin X cosh y, v = cos X sinh y,
Ghurchi]ll mentions several elementary examples of transformations

by the function w = sin ze

T0p. cites pp. 6970,
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lthe line x = O is transformed into the line u = O in the w~plane,
The line x = 7//2 is mapped into the part of the u-axis in the w-plane
where u2l, The line segment
y =0, =W/ 2<x£%/2,
is transformed into the segment of the u-axis where
-1<ufl,
As illustrated in Figure 30, the line segment
y=a -%/22x£7/2,

is transformed into the upper half or the lower half of the ellipse

2
u N v2 -1
2 2 E
cosh®a sinh®a

depending upon whether a is greater than or less than zero, respectively,

The foci of this ellipse are the points w = tl, independent of the value

of a.
z=plane w-plane
Y v
y=a Vv>o
O-
27 =1 S i
. o TR = ) ¥
Y=-3
v&<o
[r=-dl
2 a
s LI =1, [v>0, v<0
(= m/22x£%/2) P Rl i [->o, ]

Figure 30, Transformation gf y=aand y = =a under w = sin 2z,
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The 1line x = b, where ~ 7/2<b< ®W/2 is transformed into the

right-hand branch of the hyperbola (Figure 31),

2 o2

sinb N cos?b =i
when b is greater than zero., When b is less than zero, the line is
transformed into the left~hand branch of the same hyperbola,

Ze=plane w=plane
Y v

1“,'1:': z=1 X U
b = : =
2
X=Dby, x = b u
-— = > £
(= /2 <b< w/2) sin®b  cos®b ts [u 0> u O]

Figure 31, Transformation of x = b and X = «b under w = sin z.

Jahnke and Emde show in their Tables of Functions with Formulae
2

and Curves™ that the curve
cos x sinh y = ¢, =-7/2< x< 12,
as shown in Figure 32, is transformed into the line v = c¢ by the

function w = sin gz,

2Eugene Jahnke and Fritz Emde, Tables of Functions with Formulae
and Curves (New York: Dover Publications, 19L3), Addenda, p. 67e




Z-plane w=plane
Y \4

\\\\\\\\\-~——‘529/////// v=e, (e >0)
2=-0 e x5 v

T o A o

v:g,(C<°)

/‘\

cos X sinh y = ¢, (¢>0, ¢<0) v=2c, (c>0, ¢c<0)

Figure 32, Transformation of cos x sinh y = c vnder w = sin z,

Further, they show that the curve sin x cosh v=4d, - T/2&x<W?
is transformed into the line u = d (®icure 33), The variation of share
of the curves in the z-plane is a consequence of the conditions

0<d<1l, d =1, or d>1,

z=vlane w=-plane
v
Ps) -

ol I I R =
- A
; )Il ! v % o
N ] \ o -
- 1 R R = ©
i ¥ -~ o 0

Q 1 n "
3 o 2 = e

v
5]
sin x cosh y = d u=d

Ficure 33, Transformation of sin x cosh y = ¢ under w = sin gz,
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The Schwarz-Christoffel transi‘ormation.3 Practical applications

of transformations in the z-plane often require the use of a generalized

transformation which can be adjusted to satisfy the conditions of a

certain problem, One such transformation that is used in many cases is

the Schwarz-Christoffel transformation. The Schwarz-Christoffel

transformation was named in honor of the two German mathematicians,

H. S. Schwarz and E. B. Christoffel, who discovered it independently.,
This transformation maps the entire x-axis of the z-plane into

a polygon in the w=plane and is commonly written
w = A;/(z-xl)'kl(z-xz)'kao-o(z-xn_l)'kn-l dz + B.

The integral sign denotes any one of the indefinite integrals of the
integrand. The values

XLoXas 0t 5 X
are the points on the x~axis which are transformed into the vertices of
the polygon in the w-plane, and each kj is a real constant, A and B
are complex constants which depend upon the conditions imposed upon the

transformation.

The linear fractional transformation, The transformation

*z +
= v:+a' 3 %8-BY £ 0,

where «, 8, ¥, and § are complex constants, is called the linear

fractional, or bilinear transformation, Like the transformation w = % s

3Churchill, op. cite, ppe 171-175.



which is actually a special case of it, the bilinear transformation
always transforms circles into circles, with lines as limiting cases,

Another property of this transformation, which makes it a

general tyve, is that it maps any three distinct vnoints in the z->lane

into any desired three points which are distinct in the w-nlane,
y p




CHAPTER VI

PRACTICAL APPLICATIONS

The theory of transformations in the z-plane has a very definite
application in the fields of engineering and physics. The engineer or
physicist is more often concerned with problems which involve areas or
volumes than with purely mathematical considerations of points and
curves. However, it is a relatively simple step from consideration of
curves to areas bounded by curves, This consideration of areas leads

to several applications of transformations.

Types of problems. In general, transformations in the z-plane

can be helpful in solving all boundary value problems associated with
the Laplace equation in two independent variables,

.aif+.a£‘l=o
Ix2 ay2 e
or the more general Poisson equation,

2 2
gxz_v +g—y%’ = g(x,5).

Problems in hydrodynamics, aerodynamics, thermodynamics, and
electricity and magnetism often make nse of these equations. Trans-
formations are not a method of solution of such problems, but rather
a means of simplifying them, Thus, boundary value problems which

involve considerations of oddly shaped areas may be transformed into

similar problems involving considerations of much simpler areas.




As an example, consider the airfoil, A, in Figure 3hot

z=plane w=plane
y v
£e]
%
LAl v=k
Y V]

Figure 3li, Transformation of an airfoil under a specialized
transformation.
The shape of this airfoil is determined by the angles X and ,9 and the
value of ce

Under the transformation

sprife + 3| "
w=ce AR 3 ¢>0, £>0, 0K X <Lx48 4N,

the area of airfoil A, in the z-plane, is transformed into the entire
area above the line v = k in the w-plane, where k depends upon the
values of X, B, and ¢, The area of a particular airfoil such as

airfoil B is transformed into a circle by this same transformation.

lKOber, 92. EE.-_'E-, Po 500
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If the problem is to determine the behavior of a current of air
passing around airfoil B under certain conditions, the boundary
conditions can be transformed algebraically by the transformation.

The problem is then reduced to the simpler study of air currents around
a cylinder. When results are obtained and conclusions drawn for the
case of the cylinder, they can again be transformed algebraically by
the inverse of the original transformation, thus yielding results and
conclusions relative to the original airfoil. While the transformation
of boundary conditions may be quite complicated, the possibility of
simplifying the shape of the area being studied usually overbalances

these complications,

Applications of basic transformations. Most physical problems

involve quite complicated transformations, but the simpler basic
transformations find application in some special cases.

In problems of fluid mechanics. the two=-dimensional steady-state
type of flow is often considered; that is, the motion of the fluid is
assumed to be identical in all planes parallel to the z-plane.2 The
velocity of the fluid is parallel to that plane and is independent of
the time, Then it suffices to consider only the motion of the fluid
in the z-plane,

If a problem concerns such a uniform flow to the right in the
upper-half of the z-plane, its results may be transformed by the

1
transformation w = 22 to obtain results for a similar flow of fluid

2Churchill, ope Cite, ppe 161-166,
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in a quadrant of the w-plane. Reference to Figure 1li, page 25, shows
that the lines representing the fluid flow in the z~plane are transformed
by this transformation into the branches of the equilateral hyperbolae in
the first quadrant of the w=-plane. These hyperbolae represent the path
of a fluid flowing around a corner,

Transformations are not always used as applications to physical
problems. One common use is found in the manufacture of maps for
navigational purposes, If the north pole of the earth is used as a
center of projection, and the surface of the sphere is projected upon
a plane, a representation of the surface is obtained in which the
meridians appear as rays through a single point and the parallels
appear as concentric circles about the same point. If then, the
inverse of the transformation w = €% is applied to these concentric
circles and rays, reference to Figure 29, page L7, indicates that they
will become two sets of parallel lines that are perpendicular to each
other., Such a map of the earth's surface is the familiar Mercator!s
projec-l::'.on.3

Since these maps show great distortion of areas, most maps are
compromises produced by a sequence of perhaps thirty transformations,

each of which can be written as a transformation in the z-plans,

3E. Jo Townsend, Functions of a Complex Variable (New York:
Henry Holt and Company, 1915), DPe 137




CHAPTER VII

SUMMARY

In the brief discussions of the behavior of some lines and conics
under various transformations, it was noted that the complexity of the
algebraic operations involved increased greatly as curves of higher
degree were transformed. In all cases considered, lines were trans=
formed into conics, while conics were generally transformed into

quartics., One exception to the latter case was seen when the parabola

2 g
y© = 2px
was transformed into a cubic by the transformation
S
z,.

and the hyperbola

and resulted in an ellipse and a hyperbola, respectively.
Several further investigations are suggested by the results of
this research, First, the general forms of the conics and some

representative cubics and quartics should be studied under the basic

transformations. Second, a study might be made of the behavior of
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lines and conics under other, more conplicated  ransTormations.

Lastly, invesii-ations of the results obtained here should Le wacde in

order %o estarlish prac~ical as~lications ol ther,
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ROTATIONAL PROPERTISS OF THu '"RANSFORITION w = g2

Suppose that: The points 2, and z, are in the z-nlare; Z5 is obtained
by rotating 29 through an ancle ¥ about z = Cs
amp zq =©; amp Z2; =@®3 Wy is the image of z1 and

W2 is the imare of 22 uncer the transformation w = '2.2,-

amp Wy =¢; and arp 1, = No

z-plane w-plane
Yy v
tl VOI
z, wa
Y
P
w X < — ¢ v
(=]
No

Tigure 3%. Rotational properties of the transformation w = 22,

The transformation w = 2.2 may be written

p=r2, ¢=26,

. i} ig_ 2 _ iBy2 _ 2 _2i0
Then W, =P e 24 (rl e™) r,“e o
or /Dl = 1\12, ¢= 29;

and Wy = fs ethe 222 = (rp e1®)2 = r22 g2l

or /02=r2 A= 2w,
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is obtained by rotating %, throngh an angle Y about z = G,

‘z]J = ‘zzl, orry =T, ,

a w-e=‘f).
hence, Fave™ les
“’1‘ = I‘TQ‘B
A== 2w- 20= 2/ w-8),
A== 2¥,

The conditions
ol = el A= 2¥
ow that W, is obtained by rotating w, through an angle 24 about w = G,

oW, consider two curves in the z-plane, U7 and Cz. Up is

tained bv rotating Gl throngh an angle ¥ about z = U, Then, if 2,
are noints on Gy, and zzi are points on 02. when 1 = 1, 2, eee, then by
rotation,
'le_‘ = tz2il and amp Zci —— Zli +‘r°
ines:s points are transforme: imto the ncints Wli and Wo_
where i = 1, 2, e Then from the above proof
’nli]= ‘i‘andampwzi=ampw]i+c‘f’,
these points w:‘_i and wzi, form the curves, Xy and K,, tha' are

mares of the curves and C,. Sinee the amplitudes of corresponding

im the curves 7. and ¥.. d@iffer b= 2¥ ., the resul: can e =+at
I is a curve in the B-plame which 1s ootained & rotatins
fier eurve, C,, through an angle Y about z = ther ¥., the imape
i3 under the transformation v = z“, can be cotaimed = rotating
1 image ol C- under the same tramsformation, thro an angle
¥ a W=l
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HOTATTONAL PROPERTIES OF THi 1RAVSFORIATION w = z=2
Suppose thats The points 2q and z, are in the z-plane; z, 1s ootalned
by rotating 21 throuch an ancle Y about z = O3

amp 27 =©; amp z, =w; Wy is the imare of z9 and

q . . . . 1
w2 is the imare of 22 under the transformation w = z:;
amn Wy =¢; and, amp wy, = A,

z-plane w-plane

b/ Y

=,

Z, W,
¥ W,
w x A J

.

“icure 36, Rotaticnal properties of the transformation w = z~,

L ;
The trans{orration w = 22 mayv be written

p=V=, $=3+wk; k=0, 1,

Then W =/ﬂ1 ei¢ = zl?% = (r:L eie)%- = '\/}z exp [i(-g +1rk)},
- R e
and W, =/2 ei>‘= z;“ = (r2 eiw)% =w/;; exp [i(%)+ ﬂ‘kﬂ c
or /O2=1/§, A=‘§+'Nko
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Since Zy is obtained by rotating zZ) through an angle ¥ about z = 0,

lzl‘ . '22], or I‘l - r2 9

and w=-0=Y,

Whence, L1 =Pa=VNT] »

or (wl| = ‘WQ‘;

and ).-¢=‘-é—’+1rk-§-rrk=w;e,
or ) -¢=Y/2,

The conditions
‘Wl‘ — ’Wz‘, ?\-¢= "P/2
show that w, is obtained by rotating wy through an angle Y/2 about w = 0,

Now, consider two curves in the z-plane, Cl and 02. 02 is obtained

by rotating Cl through an angle ’*P about z = 0, Then, if %y, are points
at

on Cl and zzi are points on Cps when i =1, 2, eeo, then by the rotation,
v = |z and Zn = Zy  +
Pal = fra) et o g, -, Y.

These points are transformed into the points w]_i and LoV

i
where i = 1, 2, e+o, Then from the proof above,

W, | =(w,| and amp w, = amp w, + ¥/2,

ey | =) Y

But these points, wli and wzi, form the curves, Kl and KZ’ that are the
images of the curves Cl and 02. Since the amplitudes of corresponding
points on the curves Ky and K2 differ by ¥/2, the result can be stateds

If G, is a curve in the z-plane which is obtained by rotating
another curve, Cy, through an angle ¥ about z = 0, then K,, the image
of C, under the transformation w = z2, can be obtained by rotating

> %he image of Cy under the same transformation, through an angle
'1}/2 about w = O,




ROTATIONAL PROPERTIES OF 'I'HE TRANSFORMATION w = %

Suppose that: The points 2y and 2z, are in the z-plane; z, 1s obtained
by rotating 27 through an ancle Y about gz = O3

amp 2 =©; amp Zy =Wj3 w; is the imare of 2, and

Wo is the ima-e of Z, under the transformation w = % 5
amp wy =¢; and, amp wy = N,
Z=r:1ane w-plane
Y v
St
%l
q
w u
X
[3) o ¢
A
e o
w’l—

Figure 37, Rotational properties of the transformation w = %— °

P

The transformation w = % may be written

1

LP=T ¢='6°

T p -1 L1 -ie
Then Wy fl € Z, © T € s

1
or /01 = Ty 0 = - 03

iN_ 1 1 W
and Wy =Pp etN=2 =2 e s

2 Z5 Tp

or /2 = ‘l s )= -U-)o
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Since z, is obtained by rotating z; through an angle Y about z = 0,

lzll = |z2|, orry =T, ,

and w =Q= Y.
1
EPun, L1722 "F »
i bl = bwyl;
and >\—¢= -w-(- e) = -(m— e),

or X=g= -y,

The conditions
\wql = |W'2\: M@= -9
show that W is obtained by rotating Wy through an angle -‘Pabout W= O

and C C, is obtained

1 &
by rotating Cq through an angle ¥ about z = 0, Then, if 2z, are points
i

Now, consider two curves in the z-plane, C

on Cy, and 2z, are points on Cyy when i = 1, 2, ees, then by the rotation,
i
‘zlll = ‘zzil and amp zzi = amp Z:Ll + Y,
These points are transformed into the points w]_l and Wy 4 Where
51

i=1, 2, e, Then from the above proof,
lw’lj_| . .WQi\ ERE i g = ISR | = $.

But these points, wll and wzi, form the curves, K; and K5, that are the

images of the curves Cj and Cp. Since the amplitudes of corresponding

points on the curves Ky and K, differ by -, the result can be stated:
If Cp is a curve in the z=plane which is obtained by rotating
another curve, C;, through an angle Y about z = 0, then K,, the
image of Cp under the tramnsformation w = 1/z, can be obtalined by

rotating Ky, the image of C; under the same tramsformation, through
an angle - Y about w = O,
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A METHOD OF ANALYZING AN EQUATION

Step One. Axes of symmetry are determined by the following

characteristics:

1. If the equation obtained by replacing v by =v is identical
with the original equation, the curve is symmetrical with respect
to the u-axis,

2., If the equation obtained by replacing u by =u is identical
with the original equation, the curve is symmetrical with respect
to the v-axis,

3. If the equation obtained by replacing both v by ~v and
u by =u is identical with the original equation, the curve is
symmetrical with respect to the origin.

h. If the equation obtained by replacing u by v and v by u is
identical with the original equation, the curve is symmetrical
with respect to the line u = v,

Step Two. The intercepts can be found by setting v = 0 and

solving for u, and setting u = O and solving for v,

Step Three. The equations of any vertical asymptotes can be
found by equating to zero the real linear factors of the coefficient
of the highest power of v. The equations of any horizontal asymptotes
can be found by equating to zero the real linear factors of the

coefficient of the highest power of u,

Step Four, If the equation of the curve can easily be solved fer
one variable in terms of the other, it may be possible to establish
limits of extent. With this determination of limits of extent it is
also possible to ascertain the number of real values of one variable

that cerrespond to certain values of the other,
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Step I'ive, Special points on the -urve are located and the

—

nature of the curve is investimated at those noints; that is, ooints

of inflection, cus»s, etc., are fonnd,
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