Fort Hays State University

FHSU Scholars Repository

Master's Theses Graduate School

Summer 1950

Fourier Series and Some Applications.

Lawrence D. Marcotte
Fort Hays Kansas State College

Follow this and additional works at: https://scholars.fhsu.edu/theses

O‘ Part of the Algebraic Geometry Commons

Recommended Citation

Marcotte, Lawrence D., "Fourier Series and Some Applications." (1950). Master's Theses. 453.
https://scholars.fhsu.edu/theses/453

This Thesis is brought to you for free and open access by the Graduate School at FHSU Scholars Repository. It has
been accepted for inclusion in Master's Theses by an authorized administrator of FHSU Scholars Repository.


https://scholars.fhsu.edu/
https://scholars.fhsu.edu/theses
https://scholars.fhsu.edu/gradschl
https://scholars.fhsu.edu/theses?utm_source=scholars.fhsu.edu%2Ftheses%2F453&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/176?utm_source=scholars.fhsu.edu%2Ftheses%2F453&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.fhsu.edu/theses/453?utm_source=scholars.fhsu.edu%2Ftheses%2F453&utm_medium=PDF&utm_campaign=PDFCoverPages

FOURIER SERIES AND SOME APPLICATIONS
being

A thesis presented to the Graduate Faculty
of the Fort Hays Kansas State College in
partial fulfillment of the requirements for

the Degree of Master of Science

by

Lawrence D.Jgarcotte, B. S.

Fort Hays Kansas State College

Date J ApprovedﬁwZ_QMu/
Major Professor

Chairman Graduate Council




319
R6114

ACKNOWLEDGEMENTS

The author wishes to express his gratitude to Dr. E. C.
Stopher and Dr. W. Fleming for directing the thesis, to Dr. H. A.
Zinszer and Mr. W. Toalson for their many suggestions on the
problems, and to Dr. F. B. Streeter for his help in preparing
the bibliography.



5ol

TABLE OF CONTENTS

YR O CRTIGN RN R-N T e STl Sy o R e e posliee: 1

CRAHOGONATSHUNCINIONS! o MRS 0 1o, Bl B cm L 0 el e 2

IRERoCNCHiCyAlr i il Aeah. Sl 2840 el St Al . 2
SrpEiil IRAEEIE 5 s o & 0 6 0.0 0 0.0 0.0 0l bLoln ol ol B
Orthogonality of Trigonometric Functions . « . . . « . . & 3
FUNDAMENTAL IDEAS CONCERNING INFINITE SERIES « « « « & o + & L
Series With Constant Terms « « « « « ¢ ¢ ¢ o ¢ o o o o o & 4
Series With Terms Which Are Functions of X « « « ¢« « « .« & L
Homistenioeriteah Sl W ARCSRENLSIENCIr D & 500 Jarl T U ek 5
FOURIER SERIES ¢ ¢ ¢ o o o o o o o o o o o o o o o o o o s o 9
Formal Determination of Fourier Coefficients « « « ¢« « « & 5
BXampllies s folel SNy SIS el e e e MRl WA el e el 7

Convergence THEOTEM « « « o« s o o o = o o o o s o o o o o o« 12

Sine Series; Cosine Series « « « ¢ ¢« ¢« &+ ¢ o ¢« ¢« ¢« « + o o 13

PARTTIAL DIFFERENTIAL EQUATIONS '« o o o = 2 o o o o s o o o o 15
Definition of Partial Derivatives « « « ¢« o ¢ ¢ « « « o & 15
Introduction to Partial Differential Equations « « . « . . 17

Solutions of Certain Partial Differential Equations . . . . 18
TWO APPLICATIONS OF FOURIER SERIES ¢ o s v o s o o o o« « » o 19
Problem on Distribution of Heat « « « « ¢« ¢ ¢ o ¢ ¢« ¢ o & 19
Vibrating String Problem . « « « ¢« & ¢ o v ¢ ¢« s o o o o o 24
R R s hsl & 6] x o oq o o o e e 6 e sk W e . 28

ARSI e . « o e 2 e B e e s s e e e 30



IHLLCOUCTIVH

e object of broe author in writing this tnesis was to
make a compilation of material necessary to work certain prob-
lems in mathematical physics with che use of Fourier series.
altnough whole books have been written on wifferent asdects of
tnis tnesis, all haa some iatervening material winich was too
acvanced for the averagze student.

£y student interested in mathe ietics or paysics cannot
124l to see the iaportoance ol Fourier series. Ll'o mention a few
anplicutions, the series is use. in fiadinge the solution to
various nroblemas in heat distribution, electidlcal transaission,
and «ircraft coastruction.

e i.formation for this tiiesis was tuken from difrerent
books contwivdiny partial aiftersntial evuAations, ortno-o.al
runctions, eond infinite series. also, Gthe author!s seminar
notes were used to a rreat extent.

'he writer introduces orthogonal functions and infinite
series belore the discussion of uurier series. The exwzricles
help one to understand more co.idletely the wechanics ou tne
latter series. af'ter a uiscussion of certzin oartial differ-
-ntisal equations, tone autihor proceeds to some anslications of

#ourier series.



ORTHOGONAT, FUNCTIONS

In general, two functions u(x) and v(x) are said to be
orthogonal to each other over an interval (a, b) if the integral

of their product vanishes over this interval, that is

4
fu(x) * v(x) dx = O.
2

This concept of orthogonality is related, not obviously, to that
of perpendicularity in geometrfy.. Since the latter relations is not

needed in this paper, it will not be discussed further.
Periodicity

A function £(x) has a period p if f(x4p) = f(x) for all

values of x. Since sin (x#27%° ) = sin X, it follows that sin x

has a period 27/ . Likewise cos x has a period 27, and cos 3x
has a period 2 7]’/3. The period p may, or may not, be the smallest

value of the period.

If the functions f(x) and g(x) have p for a period, it is
obvious that the following have a period p:

£(x) + g(x),

£(x) - g(x),

£(x) * g(x)-.



| Special Integrals

It becomes necessary that the following special integrals

be mentioned. Assume p and q to be non-negative integers.

T
(619) jcos pxdx=0, p#0
~
=27 s p=0
7w
(2) jsin px dx = O,
-
7
(3) /sin px cos gx dx = O,
-7
7
(4) [ﬁgospxcosqxdxzo, P#£q
e
(5) j;OE2PXdX:”', P#£O
b ]
(6) [rsinszdX:'n’, p#£0O
= 0, =0
w
(7) /sin px sin gxd&x =0, p#aq.
~w

These special integrals will be used from time to time through-

out the paper. They will be referred to by number.

Orthogonality of Trigonometric Functions

It is obvious, from the special integrals (3), (4), and

(7), that the trigonometric functions sin px, p =1, 2, 3, * * °,

and cos gx, q =0, 1, 2, * , are orthogonal to each other

over the interval (-7r, 7). .




FUNDAMENTAL IDEAS CONCERNING INFINITE SERIES
Series With Constant Terms

A sequence is a succession of terms formed according to
some fixed rule or law.

A series is the indicated sum of the terms of a sequence.
When the number of terms is limited, the series is said to be
finite. When the number of terms is unlimited, the series is
called an infinite series.

An infinite series of constants would be

a, a a ¢ o e a « o o
a5 et T :
The above series is said to converge to a finite sum L if

nlj’;rgpsn = L, whereS 6 = lg (ai),

which is to say that the ] L= Sn ’ can be made smaller than
any other preassigned small positive quantity by taking n large

enough.

Series With Terms Which Are Functions of x
An infinite series whose terms are functions of x is
u(x) + wy(x) + wy(x) + - v Fy )+ ...,

For different values of x, the above series may diverge or

converge. Suppose that the series converges for a { x £ b;
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then the sum of the series is something which depends on x, say
a function of x, £(x). It is said that a series of this type

represents f(x) in the interval (a,b).
Fourier Series

Under certain conditions a given function f£(x) may be
represented in a certain interval (-77,77 ) by a series of

the form

(8) (X 2, + & COS X 4 ap cos2x + .« . .
=z

+ by sinx 4+ by sin2x + - ¢ .

Series (8) is called a Fourier series when the coefficients are
determined properly.

The symbol ~U is used to mean that the series represents
f(x) or corresponds to f(x). The correspondence between f(x) and
its series may not always be an equality. In particular, the

series is likely not to converge to f(x) at a point of discontinuity.
FOURIER SERIES
Formal Determination of Fourier Coefficients

If it is assumed that the Fourier series converges in the
interval (-7r, 77), and that the series can be integrated term

by term, integration of (8) with the use of (1) and (2) gives

v T
(9) /f(X) dx = ag 7 » a,,:-%— £(x) dx.
A L ob
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Lach term of the series, with the exception of the constant term,

reduces to zero.
To determine a, when k # 0 let (8) be multiplied

through by cos kx, and prepare to integrate in the interval

(=77 , 77 ). This gives

v T
ff(x) cos kx dx — 2o fcos kx dx
2 it

s

- A

+ a3 /cosxcos]:cxd.x—}—a2 fcostcosk:xd.x-F"'
7 =7
e e

+bl Isinxcoslcxdx-l»b2 Isin2xcoslcxd.x+"'
= ~7

flopsleti="1, 25 3, * * %
Again, after integration, each integral on the right, with the
exception of one, reduces to zero because of (1), (3), and (4).

This one is the term containing cos kx co& kx or cos2 kx, and it

is found that

V.
ff(x)coskx-_—ak Icoszkxdx:akf.
Therefore
7
(10) a = _1 /f(x) ot e Gy, o= @ Al B et
T Ly

Similarly, if (8) is multiplied through by sin kx and

integrated, the resulting expression

o
(11) by— 1 /f(x) sin kx dx, k= 1,2, 3 °°*°
T Ly

can be obtained.
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After the coefficients are determined, one can insert them

into the series and investigate for convergence.
Examples

‘A few examples will help to get a better understanding of

the series.

bxample 1. Find the series corresponding to the function
f(x) = x, 7Tl X LT

and let f(x + 27 ) = f£(x). The graph of this function is as

follows:

J

27 37 w7 =7

0

Using (9) to find the coefficient a, gives

e
30:77{— xd.)(,
=75
a, = 0

From (10),




" S
—_ il ]
aNe= X cos kx dx =— X sin kx i kx]
K = JL cos
T Lo de [ - K2 -7
= |l L cos k -1 cos k
L [‘122 4 d
ak = 0
From (11),
’77” A
b, = L sin kx dx=1 |~ x cos kx 1 sinkx]
k -—X_ +
(4 7/’[ k K2 =

-

L
[__Z cos k777 - 7~ cosk?f] s
k k
by= -_2 cosk7.
k

The inspection of by shows that its value is positive when k is

odd, and negative when k is even. In general

b, = _2 -lk-l.
k = (1)

Hence,
f(x) v 2(sin x - _1 sin2x 4 _1 sin 3x
2

__l_sinl.;x+"‘+§—l)k—l sinkxk+ * " ° ).
L k

It will be shown later that the value of this series con-
verges to the value of the function for all x except at the points

of discontinuity.

Example 2. Let f(x) = -1, _7r{x{-7Z >
2
N M rLadz
= il ;%;  x é_7f .

The graph of this function is known as a square wave.




1+ /

0

|

-/

Formulas (9), (10), and (11) will be used in determining the

coefficients of the corresponding series.
-2z
2.

vt | [;"_‘;[5 Sl
= i,

~7
- DL, = i N S ar
= [ ) A rt o 7+ 5,
a, = 0.
’ = z T
ay =-L —-cos kx dx + cos kx dx + f—coskxd.x
7 —~ 2 f T
-z == T e
2L
:;’f-{_ 3 Sln]:QC] + {_J; sinkx] -—[ls:mkx] },
K = K il 7
ay = _k sin k7
k 2 .
T o
=i
bk"ﬁ’

- £ ar
[j-sinkxdx+ fsinkxdx+f— sin kx dx

r T -F z il 7
T leesdec | . T h= [_ZI; cos k}} ol cos k:x] }
k k K o

~T ‘%
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Hence,
fx) v b (cos x L cos3x 4 _1 9cos 5x
if 3 5
_ l1u eos 7x + 4oy !_1211—1 cos (2n - L)x + * * * ).
i 2n - 1

In order to present the next example, the limits of integration
will be changed. The integration will be performed over an interval
2 7r as previously; however, the interval = s, 37 ) is
going to be used in the place of(- 77 , 77 ). éince ail the func-
tions involved have the period 2 7 , each integral will be un-
changed by this change in the limits of integration.

Example 3. Let f(x) —

%x’ ) éxé%’

= -Fx+ 2 o x (3.

The graph of this function represents an anti-symmetric saw-tooth

wave.

91

b

— 3o —7r =
=

0

N
/
)

To find the coefficients of the corresponding series of f(x), the

formulas (9), (10), and (11) will be used. =
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From (9),
Z 37
2 =
-~ ! 2 1 =
8 = 5 = x dx + (=2 + 2) @
o = —e dx
7 _/;" T s L
* 77
— 2
a5 = O
" usi: (lO),
Z 37
:LZ >
ST / o cos kxoawy 1 ( =2X_ 3 2) cos kx dx,
/77 7 Z
> A
- S
-:lk Q.
rormula (11) Adves
7 3
= 2
b, = L 2 x sin kx dx 4 1 =2X_ o 2, sin k=«
K™ ) -+ 5 »Z(_ng+ 2, sin kx dx,
2 2
= L (cos 3k _ cos Zk J_ 2 (3 siu X - sin 37k
77 k 2 2 7k 2 2
g b 7= Ly 2y 3y © > bne sun of' the coslie teras ecual zero.
‘hevefore,
b: = 5 \3sinZlK - sin 277 k_ Jo
Py 2 2

It can be seen

[

kence,

f(x). 1, S

/7

- £ 7

vhat for even values ol k, by recuces tc zzro.

sin x - L sin 3x
9

it

n—-1
1 i - . . -1, i (2 _l)x o o+ o .
4+ £ sin 5x + + A=l _ sin n -+
25 (2n-1)
wxanple L. wLet f(x) = 0, -7 L x L0,
=% 0Lx L7 s

then using (9, (10),

anG (11,




Q ’/'7'
ao:,-i.,— 0 dxy L x dx,
i / 7
77
7
a, = =t 5
o 2
© v
ap - L f() cos lot dw ¢ L X cos K dx,
7 v
7 Z
& = _ L (cos k7 -1).
7 [
© 7
By, = — 0 sin lx dx 4+ x sin kx dx,
&K 7 7
~ 77
b, ~ L cos k.
i K

Uhe lLuspectliui. oL a snows L..ab 1ts v.lde is zero Jhea k is even,
2N

“ud its vilue e uals —:-% when k is odd. .lso, ror o.d iutegers
«

N 1 o - -
L g, bk‘ ecals I ; Por evea lutegers, o eCu.ls L
! N =
i

«¢ice, the correshonoinz series ror f(x) is

flx) - /S [ Cos x + —(J'— cos 3x
b 7 7
X COS 5X + * * N S cos (2n - 1, x+
t o3 on - 1,2 T
+ sin x _ L sin 2x
2
. k-1
+%‘- sin 3% 4 ° 0 o _.tl‘]i__ sin kx + ° ¢ .

S nver cence [o.eoren

Tneorem. Let £(x) Ye a [uucbion defined arbitr.ril; in the
mterval ( - 77, 77 ), and outsiue tnis iutervel derined vy one

equation f(x + 2 77 ) — f(x) so that it is eriodic with »eriod
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2 7r. If f(x) has a finite number of points of ordinary discon-
tinuity and a finite number of maxima and minima in the interval
(-77y 77 ), then it can be represented by series (8), with the
use of (9), (10), and (11), which converges at every point

X = x, of the interval to the value

£(xn + )2+ flx, = ).

If f(x) is continuous at the point x = X, then f(x,+ ) =
f(xo - ) = f(x,), so that at all points of continuity the series
converges to f(x). At the points of ordinary discontinuity it
converges to the arithmetic mean of the values of the right-hand
and left-hand limits (Sokolnikoff, 1939).

As an illustration take example 1. The function f(x) = x
has a sine series, and was defined to be periodic. As the number
of terms is increased, the value of the series will approach the
value of the function as a limit for all values of x, ~77(X{ 7,
but not for x=% 7. Since the series has a period 2 777 , it
represents a discontinuous function with discontinuities at
x= *+ (2n + 1 )77 . At these points the series converges to
zero as a consequence of the convergence theorem. At points within

the period, the series converges to the value of f(x).
Sine Series; Cosine Series

From the examples given previously, one can notice that a

function £(x) may have a sine series or a cosine series. In general,




1
the series contains both sines and cosines. It is possible to deter-
mine beforehand whether the series will be a sine series or a cosine
series from the idea of odd and even functions (Churchill, 1941).

An even function is defined as a function of x for which
£f(=x) = f£(x).

An odd function is defined as a function of x for which
f(=x) = ~f(x).

If £f(x) is an even function, it has the following property:

Vi 7

ff(x) dx = 2 fi‘(x) dx.
"

If f(x) is an odd function, it has the following property:

7
f(x) dx = O.
=0

If f(x) is an even function, then f(x) cos kx is even. The

proof of this is simple. Let

g(x) = f(x) cos kx,
then g(~x) = £(-x) cos (-kx),
or g(=x) = f(x) cos kx,
s0 g(-x) = g(x).

Similarly, if f(x) is an even function, then f(x) sin kx is

odd. As proof, let

g(x) = f£(x) sin kx,
then g(=x) = f(-x) sin (=kx),
or g(=x) = f(x) (~sin kx),
or g(-x) = -f(x) sin kx,

so g{—x) = -g(x).
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It becomes obvious that if f£(x) is an even function in
the interval ( - 777, 77°) the Fourier series for f(x) would

contain only cosine terms, and the coefficients would be given

by
™

a’k:% ff(x) cos kx dx,

(»]

bk: 0.

Similarly, if £(x) is odd, then f(x) sin kx is even and
£(x) cos kx is odd. The proof for each would be similar to the
previous proofs. In this case the Fourier series would contain only

sine terms, and the coefficients would be given by

ak: (0
—77/

b= 2 /f(x) sin kx dx.
7

(=]

PARTTAL DIFFERENTIAL EQUATIONS
Definition of Partial Derivatives

Let u be given as a function of two independent variables

x and y,

u = £(x,y).

If y is given some fixed value, u will vary only when x changes.
When x takes on an increment A X, u will change by an amount

2 u such that .
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Al = (ot LAy = £(x,5).

and Au _ f(x + Axy) - £(x,y) .
AN A x

Now if A x is allowed to approach zero as a limit, the quotient
may approach a limit. When this limit exists, it is called the
partial derivative of u with respect to x:

3 u _ lim f(x + Axy) - £f(xy) .
d X Ax—o - AL

Similarly, if x is given some fixed value and y given an in-

crement Ay, one is led, in general, to the limit

du - lim f(x,y + Ay) - f(xy),
B L AT Ay

which is the partial derivative of u with respect to y (Miller,

1941).

If u = f(x,y), its first partial derivatives with respect
to x and y are functions of x and y. These functions may also be
differentiated partially to obtain the four partial derivatives of

second order; namely,

d D u :a}u, d A u :alu,
d x o X o x* 27y &) S

] d
ax ( ) Bxay DY ( >9Y9X

fhen the two second-order derivatives Bzu/ 2 X Oy and




L7
2
d u/?B ¥y O x are continuous functions of x and y, they are
identical; therefore the order of differentiation is immaterial
(Miller, 1941).
Example. Find the second partial derivatives of

u = £(x,y) = 2% - Lxy2,

u =22 -k,

2 X y
kR
Q u _ 3L u
3 x"_ hy’ > y)—- —83(,
D u - S u 1
2 xdy syax'hx-sy'

Introduction to Partial Differential Equations

A partial differential equation is a relation between any
number of independent variables X5 X, X, ** X, a
2 3 n
dependent variable u depending upon them, and the partial deriv-
atives of u with respect to the independent variables. The order
of the equation is that of the derivative of highest order con-

tained in it. Thus two partial differential equations of the first

order are

and du — 2u




e oartial cilievential ejuation of the secona order would be

du 3 S u -0
J x? Dy ’

Solutions of Certein rarticl viffercuatial houations

Taxi.x the nartial dirverential ecuation

VW

W
s e
< |e

ast oara raci, one call see that a soluction "oula be

4= X + J. tor

DU = 1, éu:l’
& \

b4 1;:

sinLiclies tue ejuavion. Uther solutions ure u

u =

'ne =cuation

Qv
L=
o7
~

L . . . -1
is sutisrfied o7 bie varticular solution u = tan v/ %e

& proof,

d u = = 5 o u = X >
S x X4 y* 3y X7+ 77
Lherelore —&Y 4 Xy - 0.

= sin(x + y),

1

R ’ n . > >
e +J, u = (x+ y) G, in -eneral, u = f(x + 7).
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TWO APPLICATIONS OF FOURIER SERIES
Problem on Distribution of Heat

Now it is possible to work a problem with the application of
Fourier series. As an illustration take a thin rectangular plate
of infinite length and width equal to 7/ . Let the long edges of
the plate be kept at constant temperature zero, and one of the short
edges be the base with temperature equal to some function f(x). The
temperature decreases with increasing distances from the base to the
temperature zero at an infinite distance from the base. Assume that
the temperature has reached a steady state. The problem is to find
the temperature at any point on the plate (Byerly, 1893).

It is convenient to use the rectangular coordinate system
for this problem. Let the base be on the x-axis with one end at
the origin, and let the long edges of the plate extend in the
direction of the y-axis.

To solve a problem of two-dimensional steady-state heat flow,
one has to deal with Laplace's equation (Miller, 1941). The

equation has the form

(12) 2 u L 2 u — 0.
9 xX* DN

Also the following boundary conditions will be needed to get the
temperature u(x,y):

(1) u(0,y) = 0, wheny > O,
@2) uw 77 ,y) =0, wheny » O, i
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(3) j]jinen u(x,y) = 0, OL ¢ e & 77

(4) nES O ="rGJl;
where f(x) is a given function assigned in advance.

Using the method of separation, one can assume that a
particular solution of (12) is some function u(x,y) of the form
X(x) * I(y), where X(x) is a function of x alone, and Y(y) is
a function of y alone. If the assumption is correct, it will
lead to a solution; otherwise it is not justifiable. Beginning

with u(x,y) = X * Y and taking partial derivatives with respect

to x and y, the following

2 u _ . du _ .
>x 1 ay"X I,
;u_ 3 u _ d
R M T

is obtained. Substitution in (12) gives
MY+ X" =0

or T M

X ¥l

3ince the left member is independent of y amd the right member is
independent of X, each member must be equal to the same constant.

As far as equation (12) is concerned the constant could be positive

or negative. However, to satisfy the boundary conditions of this
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problem it is necessary to have the constant positive, in which
case it might be represented by + >\2, )\ being assumed to be real

(Jackson, 1941). This can be seen by setting

Sy e ¥E N o
N »

and solving for Y. Then
Y= € sin Ay + 02 cos AY;

but this cannot satisfy boundary condition (3), yiimo., u(x,y) = 0.
The constants C; and 02 would have to be zero. This cannot happen
for a proper solution to the problem at hand. Therefore setting

both members of

Xn v

X A

equal to + )\2, and not to -~ )\2, is the best policy.

Then X and Y separately satisfy the differential equations
{1 2 n 2
mx)= - XN Xx), ™y = X 3.

The first has the solutions cos Ax and sin A\ x; whereas the

A

L5
second has solutions e and e . Hence, four possibilities

for u(x,y) = X(x) « I(y) are:

(a) e)‘j SN
(b) &Y cos Ax,
(¢) e sin Ax,

(a) e N cos Ax.




Of the four possibilities, functions (a) and (c) satisfy
boundary condition (1); however functions (b) and (d) do not. Func-
tion (a) does not satisfy boundary condition (3), but function (c)
does. Now, that leaves only e—’k)( sin Ax to work with. It can be
seen that this function will satisfy boundary condition (2) if A is
any integer. Therefore e Jsin x, e"zysin 2%, e_'3y SRURL Sbe, O 90 g

eW sinnx, (n = 1, 2, 3, * * °), are solutions of

and they satisfy boundary conditions (1), (2), and (3).

It follows that if kn is any constant for n an integer
ky, eV sin nx

is a solution. This follows from the fact that a solution of a
homogeneous differential equation multiplied by a constant is also a
solution (Byerly, 1893).

Assuming convergence, the following is true:
w(x,y) = kle"'ysin o b kze_zysin Fhe JU O 00T kne"anin 95 e SROICIICIS

This follows from the fact that if one has several solutions of a
homogeneous differential equation the sum of such solutions is also
a solution (Byerly, 1893).

By using the boundary condition u(x,0) = f(x), one can

determine the coefficients or k's.
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f(x) = u(x,O) = klsin X + k2sin 2x 4+ 4 ksinnx ¢ ¢ -,
n

Ine avove series will revresent fix) if tne coeificients are

Jlven by

7
k = —ﬁ-— /f\;{) sin nx dx, (n - 1, <2, 3, * * *).
©

Finaing tais exdression for the coefficients is accomvlished

ov laking

7 77’ 7
f(x) sin nx dx — ky /sin X sin nx dx + kp sin 2% sin nx dx
© o T,
7 )

Foeoe ey kn f sin nx s.n nx dx,
(el

7 a
N .2
or /f(;\, sin ni ux = kj / sin™ nx o3 — _Eﬂl7
(2]

O

inereLore

uis systra consistin, ol bie .wrti:l ciierenticl e uation

o u_ 2B =0
D x* Dy

and the Jour bourdars co.ritions cuen nas the so.ution

(13) ulx,y) = kje™sin x + KZe"'fzy sin 2x + r{Be_jysin 3x

A 000 a Lcne"]n;'rsinnx—yL TR
where
o
k, = 2 F(x)sin nx X, (n = 1, 2, 3, * * *).




Vibrating String Problem

The vibrations of a stretched uniform elastic string fasten-
ed at both ends are described by a second-order partial differential
equation.

Let the string have a length of 7y units for simplicity in
working the problem. Assume that one end of the string is at the
origin, and that the string is along the x-axis. Assume further
that the motion of the plucked string is in the (x,y)-plane. The
problem is to get a function y(x,t) which will give the displacement
y from the equilibrium position for any x and t. Again Fourier series
can be applied.

The function y(X,t) must satisfy the partial differential

equation of the vibrating string (Churchill, 1941),

(14) g_.y_. - a _9.._1_ ’
2 t* &) 2e

where a is a positive constant depending on the units of measurement
and the physical properties of the string.
If the string is displaced initially into the shape y = £(x)

at time t — O, the function y(x,t) must also satisfy the boundary

conditions

L) A@F) =0

(2) y(77 ,8) = 0,

(3) g—% (x,0) = 0, 0< x{ 77

(&) y(x,0) = £(x), 0L x<£L 77
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where f(x) is assigned in advance. Boundary condition (3) states

that the velocity is zero at the initial displacement.

Particular solutions of (14) may be found by the method assumed

for the heat problem. Therefore
y(x,t) = X(x) * T(t),

2Y¥ =X T, 2L = X-T
SIS dt

2. S
S X —qvep, 2L =X
J x> o t*

Substitution in (14) gives
X+ —a®x« T

or T" . x" -
H2 TS ¢

Since the first member is independent of x and the second member is
independent of t, the quantity must be egual to a constant, say

- )\2 » )\ being assumed to be real. A positive constant would
not be useful for the present problem (Jackson, 1941). This can be
seen by setting

T _ bl 2
U T S

The solution
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will not satisfy the boundary conditions (1) and (2). There are ‘
no values of C, and C, for which X(0) = 0 and X( 777 ) = 0. There-
fore, one must use the negative constant - )\2 (Churchill, 1941).

Now X and T separately satisfy the differential equations
- - 2 2 2
T'(t) = - N"a"T(t), XM(x) = - XX(x).

The first has the solutions sin M\ at and cos xat; whereas the
second has solutions sin A x and cos A x. Hence, the four possible

solutions for y(xst) = X(x) * T(t) are:

(a) sin A x sin X ab,
(b) sin ) x cos xat,
(e) cos N x sin nat,
(d) cos XX cos Aate.

As in the last problem, it may be supposed that » is a positive
number.

Of the four possible solutions, (a) and (b) satisfy boundary
condition (1); whereas functions (¢) and (d) do not. Function (&
does not satisfy boundary condition (3), but function (b) does. Now

function (b) will satisfy (2) if N is an integer. Then

sin x cos at, sin 2x cos 2at, * ° °, sin nx cos nat,

(n =ity 25y '):
are solutions to (14), and they also satisfy the boundary conditions




(L), (2), end (Ji. If k, is any coustant for n an integer

kny sin nx cos nat

Ls & corution (nyerly, 1593). rurtheruore, assunin; COuver e.ice,

‘v oolowdic s true (Jackson, 1941).
ylz,L) = klsin X cos at + }c2sin 2x cos 2at + + « o
+ kgsin nx cos nat + ° * *.

wsin. the Lounders condition (4), one can deterniie the coerficiciis

I w's.
(1) = T(x,0) — kisin x + kysin 2x + kasin 3% 4 ¢ <+ e
+ kpsin ax oo v e

Ihe avLove series will reoresent f£(x, if the coeificientes zr

Clven by

o
f£(x) sin nx éx, (n = 1, <, 3, * * °J.

a 7 77
Fx) sin ax ax = kl sin & £in Nx + <5 siit 2% sl X
@ @ o /&)
¥ 2 °° k sin nx sin ax dx,
o
oar
o A
o 2 .
f(x) sin nx ax = X sin® i dx — _kn /7
2
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Therefore k — 2 /f(x) sin kx dx.

n
77
o

This system consisting of the partial differential equation

dy _ .2 Oy
& = D x>

and the four boundary conditions then has the solution

(15) y(x,t) = kpsin x cos at + k,sin 2x cos 2at + -« -« -
+ kpsin nx cos mat + * ¢
7
where kj= 2 ff(x) sinmx dx, (n =1, 2, 3, °°* °).
7
o
SUMMARY

The representation of a function f(x) by a Fourier series
within a certain interval is not uncommon. Although the writer has
taken the interval (- 77 , 77°) as his limits in integration, it
is not necessary to do so. The limits depend on the period of the func-
tion at hand. The period 2 7/ may be replaced by one of arbitrary
length; however the formulas will not be as simple.

One should notice that the solution to the heat problem
contained exponential functions of y and sine functions of x.

Since the plate was assumed to have reached a steady state, the
time element did not enter into the solution. Other problems of
this type could be worked where the time element is a factor. In
fact one could have a different surface with different boundary

conditions.
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The vibrating string problem sresents a very intercsting
case I'or the irdividual interested in vibratory motion. Usia~ a
soecial function f(x), one could findg the anplituce widé deriow for
a fixed x. TIor other functions, a derson ai 'ht be int:rested in the
nodes and overtones. .lhen tihe strin is struck instead of “luckeu,

the boundary couaclitions would be ¢ Ll'ferent tnan tnose given.
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3I5LI0 X APHY

syerly, silliam Elwood, Fourier's Series and Soherical darmonics.
sjoston: tinn and Cowpany, [c. 1893.J FD. 2=5

I'nis book contains many problems in mathematical physics
solved Ly Fourier series.

shurcnill, suel V., ourier Serics and soundary Value froblems.

rirst eaition: !ew fork ana london: wctraw-Hill 3ook
Jomnany, Inc., 1941. Po. 21-20, 53-60.

s 200d book on the theory and application oi lourier

serles.

J-cksoin, wvunham, Fourier Series anc urtho, wnal Folynomials.

t.enasha, .isconsin: The rathematical ..ssociacvcun of
America, 1941. Tp. 1-100. [he ¢ -us mathematical
tonosranhs, lo. 6).

an excellent book on tne theory of Fourier series s
the treatment of orthosgonal functions.

riller, !‘vreceric H., Partial Differential Zcuatiuns. e

fork: Jonn .Jiley and Sons, Inc., 1941. Pp. 31-34, 200-

207.

45 the name simifies, this book ic a discussion of the
methods of solving partial cifferential eguations.



31
5. Sokelnikoff, Ivan S., Advanced Calculus. New York and London:

McGraw-Hill Book Company, Inc., 1939. Pp. 385-399.
Gives a discussion on the limits, continuity, and

convergence of sequences and series besides the theory of
Calculus.

6. "Fourier Analysis Engineering 272-273", Harvard University,
Cruft Laboratory, Officers Training Course, mimeographed.
Lecture Notes: Electronics and Cathode Ray Tubes, 1943.
p. 1l1.

Has many examples of graphs corresponding to functions
of x.
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