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INTRODUCTION 

The object of the author in writing this thesis was to 

make a compilation of material necessary to work certain prob-

lems in mathematical physics with the use of Fourier series . 

lthough whole books have been written on different aspects of 

this thesis, all had some intervening material which was too 

advanced for the average student . 

1 

Any student interested in matha~atics or physics cannot 

fail to see the importance of Fourier series . To mention a few 

applications, the series is used in finding the solution to 

various problems in heat distribution, electrical transmission, 

and aircraft construction. 

The information for this thesis was taken from different 

books containing partial differential equations , orthogonal 

functions, and infinite series. Also, the author's seminar 

notes were used to a great extent. 

The writer introduces orthogonal functions and infinite 

series before the discussion of Fourier series . The examples 

help one to understand more completely the mechanics of the 

latter series . After a discussion of certain partial differ-

ential equations , the author proceeds to some applications of 

Fourier series . 



ORTHOGONAL FUNCTIOI'6 

In general, two functions u(x) and v(x) are said to be 

orthogonal to each other over an interval (a, b) if the integral 

of their product vanishes over this interval, that is 

.£, f u(x) • v(x) dx = O. 
q__ 
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This concept of orthogonality is related, not obviously, to that 

of perpendicularity in geometry. Since the latter relations is not 

needed in this paper, it will not be discussed further. 

Periodicity 

A function f(x) has a period p if f(x ,+. p) -:: f(x) for all 

values of x . Since sin (x+ 2 7T' ) == sin x , it follows that sin x 

has a period 2 7;. Likewise cos x has a period 2 ;;r, and cos 3x 

has a period 2 71"' /3 . The period p may, or may not, be the smallest 

value of the period. 

If the functions f(x) and g(x) have p for a period, it is 

obvious that the following have a period p: 

f (x) + g(x), 

f x) - g(x), 

f(x) · g(x) . 



Special Integrals 

It becomes necessary that the follow.i..ng special integrals 

be mentioned. Assume p and q to be non-negative integers. 

(1) 

(2) 

(3) 

(4) 

( 5) 

(6) 

(?) 

7r J__ cos px dx == O, 
-?r 

J 7;in px dx:::: O, 
-'71 

p ~ O 

7t J_ sin px cos qx dx == O, 
-r 

7f' 1 cos px cos qx dx-:::: O, p -;:/= q ./_-;r 

r r 2 ..,) . cos px dx = Jr , 
-?T 

:= 2 lt, 
7T' £ sin2px dx = 7T , 

-7r 

p ;i:O 

p::::: 0 

p i:' 0 

::: o, p::: 0 

7t f sin px sin qx dx = O, 
-77' 

p i=- q. 

rhese special integrals will be used from time to tDue through-

out the paper . They 1vill be referred to by number . 

rthogonality of Trigonometric Functions 

It is obvious, from the special integrals (3), (4), and 

(7), that the trigonometric functions sin px, p = l, 2, 3, 

and cos qx, q = O, 1 , 2, • 

over the inter val ( - 1t , 71) . 

, are orthogonal to each other 

3 



FUNDAMENTAL IDE.AS Cu1JCERNil~G Il'JFilJITh SERIES 

Series With Constant Terrns 

A sequence is a succession of terms formed according to 

some fixed rule or law. 

J series is the indicated sum of the terms of a sequence . 

vJhen the number of terms is limited, the series is said to be 

finite. When the number of terms is unlimited, the series is 

called an infinite series . 

An infinite series of constants would be 

a1 + a + a + • • • + a + 
2 3 n 

The above series is said to converge to a finite sum L if 

L, where Sn 

which is to say that the J L Sn J can be made smaller than 

any other preassigned small positive quantity by taldng n large 

enough. 

Series With Terms Which re Functions of x 

An infinite series whose terms are functions of x is 

For different values of x , the above series may diverge or 

converge . Suppose that the series converges for a < x < b; 

4 



then the sum of the series is something which depends on x, say 

a function of x, f(x) . It is said that a series of this type 

represents f(x) in the interval (a, b) . 

Fourier Series 

Under certain conditions a given function flx) may be 

represented in a certain interval ( - 7t, ff ) by a series of 

the form 

(8) f(x) ,v a0 + a.1 cos x + a2 cos 2x + • 
---z-

+ b1 sin x + b2 sin 2x + 

Series (8) is called a Fourier series when the coefficients are 

deter.:nined properly. 

5 

The symbol /1/ is used to .!lean that the series represents 

f(x) or corresponds to f(x) . The correspondence between f(x) and 

its series may not always be an equality . In particular, the 

series is likely not to converge to f(x) at a point of discontinuity. 

FOURIER S:c:RIES 

Formal Determination of Fourier Coefficients 

If it is assum.ed that the Fourier series converges in the 

interval (-Jr, 7f) , and that the series can be integrated term 

by term, integration of (8) with the use of (1) and (2) gives 

(9) 
Tt 

/_r (x) dx 
- 71' 

I/ 
a

0
:::: _/_ f f(x) dx. 

Tf )_l; 
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~ach term of the series, with the exception of the constant term~ 

reduces to zero . 

To det ermine ak when k -./: 0 let ( 8 ) be multiplied 

through by cos kx, and prepare to integrate in the interval 

(- 71', 7() . This gives 

j ":cx) cos kx dx = re: kx dx 
-?r 2 l ;, 

+ al re: x cos kx dx + a2 ( c: 2x cos kx dx + · · • 
)_ ~ j_ r 

7r Jsin 2x cos kx dx + · · · 
-7; 

for k = 1, 2, 3, • 

gain, after integr at i on, each integral on t ne right, w:i. th the 

exception of one , recuces to zero because of (1), (3), and (4) . 

This one is the term conta·ning cos kx co~ kx or cos2 kx, and it 

is found that 

7Y 

}_f(x) cos kx 
-?r 

Therefore 

(10) ; :.x) cos kx dx, 

- 71 
k o, 1, 2, • • • 

Similarly, if (8 ) is multiplied through by sin kx and 

integrated, the resulting expression 

(11) 
71 f:_cx) sin kx dx, 

- '77 

k 1 , 2 , 3, · · · 

can be obtained. 
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After the coefficients are determined, one can insert them 

into the series and investigate for convergenc·e. 

Examples 

-A few examples will hel p to get a better understanding of 

the series . 

hxample 1. Find the series corresponding to the function 

f(x) 

and 1 et f ( x + 2 7( ) 

follows : 
y 

x, -7; (x(7f, 

f(x) . The graph of this function is as 

----.----=--¥------:----:::-:-:::--;.,&----3-::-:JT:::-:-I --=;:--7'---s--::=:::lT:-'- X 
-ff l I 

Using (9) to find the coefficient a0 gives 

From (10), 

I 
I 



7Y 

ak = Jj--- r X cos kx dx =-'- [_E_ )__7r 7r k 
sin kx + 1 

7 
cos kx ] -,-, 

- 7; 

- _!_ [ 1 cos k 7f - 1 
-ff~ 7 

ak =: 0 . 

From (11), 

cos k l( ] , 

7; 

bk = j x sin kx dx =:J...[- x cos kx + 1 
-7T' 7r k 7c,2 

o= ,J_ [ -r cos k 7T - -f- cos k 7(] 
bk = - 2 cos k 7{. 

T 
rhe inspection of bk shows that its value is positive when k is 

oad, and negative 1 ,hen k is even. In general 

Hence, 

2 
k 

f(x)/'L/ 2(sin x _ 1 sin 2x + _l_ sin 3x 
2 3 

_ _1_ sin 4:x + • 
4 

+ ( - l)k-1 
k 

sin kx + · · · ). 

It will be shown later that the value of this series con-

ver6es to the value of the function for all x except at the points 

of aiscontinuity. 

Example 2 . Let f(x) -1, _7r4 x ( _ _71'_ , 
2 

1 , -..IL { x-{_ I/ , 
2 -2-

-1, // ( x£7f · 2 

The graph of tnis function is known as a square wave . 

8 



y 

+I 

-----=------:----:---0,;;;..+ ___ _!_ _______ X 
-7r :-:r ¥. : 7T 

I 
I 
I 
I 
I 
I 

-I 

Formulas (9), (10) , and (11) will be used in determining the 

coefficients of the corresponding series . 

a0 =;,- [ J}x +J! + 1:dx] 
:=; { -[x]-~ ' J7[ - 2

'rx]"} 
- II t -~ [ .?£ .,_ -,__ 

-..L - If 
- 7; + ZL + U. 

2 2 - 71 -t- 71 ] 2 , 

ao == o. 
7r 

ak _ _j_ ; : c~s kx d.x + j c~s kx d.x + - 71 :r [ 1,-:os kx dx] 
-77' 7T :;i.. r -[;sin kxr}, ==~{ - [ f sin kx T" + [t sin kx 2-

- -:E: k Jf -?T 

sin k 71 
2 

..,__ 

9 



Hence, 

f(x) rv .J±._ (cos x 
I/ 

1 cos 7x + 
T 

10 

1 cos 3x + 1 cos 5x T - 5-

• + (-l)n - l cos (2n - l)x + · · · ) . 
2n - 1 

In order to pres ent the next example, the limits of integration 

will be changed. The integration will be performed over an interval 

2 7'( as previously; however, the interval ( - 7T , 3 7r ) is -2-2 
going to be used in the place of( - If , 71 ) • Since all the func-

tions involved have the period 2 7t , each integral will be un-

changed by this change in the limits of integration. 

Ex;amnJe 3. Let f(x) = _g__ x, 
7( 

::::: - __£_ X + 2 , _:JI:_ .{ X {.___ 3 II • 
7; 2 ' " -r 

The graph of t his function represents an anti-sy:rnmetric saw-tooth 

wave. 

y 

I 1ff y:_ 
1 2-
1 
I 
I 

To find t he coefficients of t he corresponding series of f(x) , the 

formul as (9), (10) , and (11 ) will be used. 
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From (9), 

f ~: + 2) dx, 
7r 

fl 
'.l.. 

By using ( 10) , 
..37r 

cos kx dx + _l_ 
7r f (~- 2x + 2) 

7; 
cos kx dx, 

ale == O. 

Formula (11) gives 
7T 

bk ==- _/_ ( 2.. 2 x sin kx dx + 1 
7Y J-rr 7T 7T -i:-

u 
2.. 

'377' 

1( 2.-2x + 2) sin kx dx, 
% 7r 
2-

1 
7f k 

(cos 37rk -2- - cos 7t k }+-: 2 (3 sin~ - sin 377'k ). 
-2- !~ 2 2 

fork::: 1, 2, 3, • · · , the sum of the cosine terms equal zero. 

Therefore, 

bk :=- 2 ( 3 sin 7f' k - sin 3 l; k ) • 
/ I .2k2 2 2 

It can be seen that for even values of k, bk reduces to z ero . 

Hence , 

f(x)rv.JL [ 
7r2.. 

sin x - 1 sin 3x 
9 

+ sin 5x + 
25 

+ (-l)n-1 
(2n-1)2 

Example 4. Let f(x) o, 

then using (9), (10), and (11), 

sin (2n - 1) x + • • • J 
-71 ~ x { o, 



a - 1 0--::::::::::-
// 

7't -2-. 
0 

ak = 1 Jo 7f 
-77' 

ak = 1 
7t kz 

cos 

(cos 

0 

1 
7T f 7Y 

X dx, 
0 

kx dx + ..l_ 
I! 

k 7( - 1). 

f O sin kx dx + 1 
7r -7T 

- 1 bk = T cos k 7t • 

12 

71' f X COS kx dx, 

0 

Tl J x sin kx dx, 
(I 

The inspection of ak shows that its value is zero when k is even, 

and its value equals~ when k is odd. Also, for odd integers 
7T' k 

of k, equals½; for even integers, bk equals 

Hence, the corresponding series for f(x) is 

f(x) 0/ 11 
T 

1 
+ 25 

2 
7r 

cos 

[ cos 1 x + 9 cos 3x 

5x + • • • + 1 
(2n - 1) 2 

+ sin x 1 sin 2x -2 

+ 1 sin 3x + -f 
~-lJk-1 

3 k 

Convergence Theorem 

-1 
k 

cos (2n - 1) x+• 

sin kx + · · · 

Theorem. Let f(x) be a function defined arbitrarily in the 

interval ( - 7; , 71 ) , and outside this interval defined by the 

equation f(x + 2 7t ) = f(x) so that it is periodic with period 

. . ] 
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2 11 • If f(x) has a finite number of points of ordinary cliscon-

tinui ty and a finite number of maxima and minima in the interval 

( - If, 7T' ) , then it can be represented by series ( 8) , with the 

use of (9), (10), and (11) , which converges at every point 

x -= Xo of the interval to the value 

f(Xr, + ) + f(?Co - ) • 
2 

If f(x) is continuous at the point x = Xo , then f(x0 + ) = 
f(Xo - ) = f(x0 ), so that at all points of continuity the series 

converges to f(x) . At the points of ordinary discontinuity it 

converges to the arithmetic mean of the values of the right-hfind 

and left-hand limits (Sokoln.ikoff, 1939) . 

AS an illustration take example 1 . The function f(x)-= x 

has a sine series, and was defined to be periodic. s the number 

of terms is increased, the value of the series ,ill approach the 

value of the function as a limit for all values of x, - 71 ( x ( 7/, 

but not for x = 7(. Since the series has a period 2 11 , it 

represents a discontinuous function with discontinuities at 

x= + (2n + 1 ) 71 . At these points the series conver0 es to 

zero as a consequence of the convergence theorem. At points within 

the period, the series converges to the value of f(x) . 

Sine Series ; Cosine Series 

From the examples given previously, one can notice that a 

function f(x) may have a sine series or a cosine series . In general, 
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the series contains both sines and cosines . It is possible to deter-

mine beforehand whether the series will be a sine series or a cosine 

series from the idea of odd and even functions (Churchill , 1941) . 

An even function is defined as a function of x for which 

f( - x) = f(x) . 

An odd function is defined as a function of x for which 

f(-x) =- -f(x) . 

If f(x) is an even function, it has the following property: 

7t f f(x) dx == 2 
-7( 

77' f f(x) dx , 
D 

If f(x) is an odd function, it has the following property: 

7r j_ f(x) dx = O. 
-7! 

If f(x) is an even function, then f(x) cos kx is even. The 

proof of this is simple . Let 

then 

or 

so 

odd. 

t:.hen 

or 

or 

so 

g(x) == f(x) cos kx, 

g( - x) =- f( - x) cos (-kx), 

g( - x) == f(x) cos kx, 

g( - x) = g(x) . 

Similarly, if f(x) is an even function, then f(x) sin kx is 

s proof, let 

g(x) f(x) sin kx, 

g( - x) f( - x) sin ( - kx) , 

g( - x) f(x) (-sin kx), 

g( - x) - f(x) si n kx, 

g(-x) - g(x) . 
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It becomes obvious that if f(x) is an even function in 

the interval ( - 7/ , II ) the Fourier series for f(x) would 

contain only cosine terms , and the coefficients would be given 

by 

2 
7( 

Tr f f(x) cos kx dx, 
D 

Simil~rly, if f(x) is odd, then f(x) sin kx is even and 

f(x) cos kx is odd. The proof for each would be similar to the 

previous proofs . In this case tne rourier series WJuld contain only 

sine terms, and the coefficients would be given by 

b -k -

o. 
7(" ; f f(x) sin kx dx, 

0 

PARTIAL DIFFERENTIAL E .UATI01S 

Definition of Partial Derivatives 

Let u be given as a function of t wo independent variables 

x and y, 

u f(x,y) . 

If' y is given sorre fixed value, u will vary only when x changes . 

Ihen x takes on an increment 6 x, u will change by an amount 

,6 u such that 



,6. u f(x + .6:... x , y) - f(x,y). 

and .6 u _ f(x + .6. x ,y) - f(x,y) 
L\ x - .6. x 

Now if ts x is allowed to a 1.Jproach zero as a limit, the quotient 

may a .1::>proach a limit . 1Jhen this limit exists, it is called the 

partial derivative of u with respect to x : 

f(x -t- x , y) - f(x,y) 
.6 X 

Simil arly , if xis given some fixed value and y given an in-

c1·el!lent ..6. y, one is led, in general, to the limit 

f (x,y -+- .6 y) 
..6 y 

- f(x,y) , 

which is the partial derivative of u with respect toy (Miller, 

1941). 

16 

If u = f(x,y), its first partial derivatives with respect 

to x and y are functions of x and y. These functions may also be 

dif ferentiated partially to obtain the four partial derivatives of 

second order; namely, 

(~~ ) ?-

( du ) := J"u , d ~, 0 
o X cl x;z... o y d Y J Y'J-, 

( o u ) _ iu ( 
,_ 

cJ a dU 
d X -c)Xa Y 0 y JyJx 

dhen the two second-order derivatives clu/ d X c) y and 



2 
d u/ d Y c) x are continuous .1.'unctions of x and y , they a re 

identical; therefore the order of differentiation is immaterial 

(Miller, 1941) . 

u 

1xample . Find the second partial derivatives of 

f(x,y) = '22-y 

d u 2 ~=4xy-4y, 

2.. 

.) u a x :2- = 4y, 

::: 

= 2x?- - 8:xy, 
dY 

l-o u 
cJ yJ- -8x, 

,:: 4:x - 8y. 

Introduction to Partial Differential Equations 

A partial differential equation is a relation between any 

number of independent variables x1 , x2, x
3

, • • • X , a 
n 

17 

dependent variable u depending upon them, and the partial deriv-

atives of u with respect to the independent variables . The order 

of the equation is that of the derivative of highest order con-

tained in it . Thus two partial differential equations of the first 

order are 

and 



partial differential equat ion of the second order would be 

- o. 

Solutions of Certain Partial Differential Equations 

Taking the partial differential equation 

a u-==~ 
.;l X ;;J y 

from the last paragraph, one can see that a solution w:iuld be 

u = x + y. For 

cl u 
J X 

= 1, 1 , 

satisfies the equation . Other solutions are u = sin(x + y), 

18 

u = ex + y, n u = (x + y) , and, in general, u = f (x + y) . 

l'he equation 

x~ + y du 
J x d y 

0 

is satisfied by the particular solution u 

s proof, 

-y , 
x~+ y-:i-

c) u 

therefore -xy + 
x?- + y ..,__ xy -= o. 

x ..,_+ Y~ 

- 1 / tan y x . 

X 
x:2-- + ye,... 
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T':rO PLIC TIO~S OF FOlIBIER SERIES 

Problem on Distribution of Heat 

Now it is possible to work a proble~ with the application of 

Fourier series . s an illustration take a thin rectangular plate 

of infinite length and width equal to 71 . Let the long edges of 

the plate be kept at constant temperature zero , and one of the short 

edges be the base with temperature equal to some function f(x) . The 

temperature decreases with increasing distances from the base to the 

temperature zero at an infinite distance from the base . Assume that 

the temperci..ture has reached a steady state. The problem is to find 

the temperature at any point on the plate (Byerly, 1893) . 

It is convenient to use the rectangular coorainate system 

for this problem. Let the base be on the x- axis with one end at 

the origin, and let the long edges of the plate extend in the 

direction of the y-axis. 

To solve a problem of two- dimensional steady- state heat flow, 

one has to deal with Laplace's equation (Miller, 1941). The 

equation has the form 

(12) J .,_ u + 
a x "L-

;:;J-,_ u _ O 
J y-.i.- - • 

Also the following boundary conditions will be needed to 3et the 

temperature u(x, y) : 

(1) 
( 2) 

u ( O,y) = O, when y ) O, 

u( 7; , y) = O, when y > O, 
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(3) lim 
Y-·+t-<::P u(x, y) o, 0 X 7;, 

(4) u(x,O) = f(x), 

where f(x) is a given function assigned in advance. 

Using the method of separation, one can assume that a 

particular solution of (12) is some function u(x,y) of the form 

X(x) · Y(y), where X(x) is a function of x alone, and Y(y) is 

a function of y alone . If the assumption is correct, it will 

lead to a solution; otherwise it is not justifiable. Beginning 

with u(x,y) :::::: X • Y and tald.ng partial deriva~ives with respect 

to x and y, the following 

cl u 
d x 

7-

= X' • Y, 

= x11 . Y, ;;; x1.. 

. y,, 

X • y11 

is obtained. Substitution in (12) gives 

XII • y + 

or 

• y 11 = 0 

y 11 
-y-

Since the left member is independent of yam the ri 6ht member is 

independent of x , each member must be equal to the same constant . 

s far as equation (12) is concerned the constant could be positive 

or negative. However, to satisfy the boundary conditions of this 
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problem it is necessary to have the constant positive, in which 

case it might be represented by + '),._2, )\. being assumed to be real 

(Jackson, 1941). This can be seen by setting 

- X" =·~= - ~ -x- y 

and solving for Y. Then 

Y _ c1 sin >-., y + C 2 cos A y; 

lim but tnis cannot satisfy boundary condition (3) , Y-"t oP u(x, y) = O. 

The constants c1 and c2 would have to be zero . This cannot happen 

for a proper solution to the problem at hand. Therefore setting 

both 'TI.embers of 

equal to 

- X" =-1.:!.__ 
X y 

2 
+ .A ' and not to - ;/, is the best policy •. 

Then X and Y separatelJ satisfy the differential equations 

X11 (x) = 2 A X(x) , y11(y) )\2 Y(y) . 

l'he first has the solutions cos ,,\ x and sin x; whereas the 

second has solutions l"Y and e- ">-.y • Hence, four possibilities 

for u(x, y) == X(x) • Y(y) are: 

( a) >-.y e sin ,>-,x, 

(b) /'Y cos }\ x , 

(c) e->..y sin ,\x, 

(d) e->--r cos AX• 
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Of the four possibilities, functions (a) and (c) satisfy 

boundary condition (l); however functions (b) and (d) do not . Func-

tion (a) does not satisfy boundary condition (3), but function (c) 

does. Now, that leaves only e )...} sin A x to work with. It can be 

seen that this function will satisfy boundary condition (2) if /\ is 

any integer . Therefore e-Ysin x, e-2Ysin 2x, e-3ysin 3x, 

e-ny sin rue, (n ::;- 1, 2, 3, • · • ), are solutions of 

o, 

and they satisfy boundary co nditions (1), (2), and (3), 

It follows that if kn is any co nstant for nan integer 

is a solution. This follows from the f _ d that a solution of a 

homogeneous differential equation multiplied by a constant is also a 

solution (Byerly, 1893) . 

Assuming convergence, the following is true: 

( ) k - y · + k - 2Y · 2 + • · • + k e- nYsi· n nx + • · • ux,y == 1e sinx 2e sin x n 

This follows from the fact that if one has several solutions of a 

homogeneous differential equation the swn of such solutions is also 

a solution (Byerly, 1893) . 

By using the boundary condition u(x, O) f(x), one can 

determine the coefficients or k's . 
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f(x) ::::. u(x,O) = k1 sin x + k2sin 2x + · · · + kn sin nx + • • •. 

The above series will represent f(x) if the coefficients are 

given by 

7r' 
kn :::: J f(x) sin nx d.x, 

0 

(n = l, 2, 3, • • •). 

Finding this expression for the coefficients is accomplished 

by taking 

7T Tr' fs:n J f(x) sin nx d.x :::: kl f sin x sin rue dx + k2 2x sin nx d.x 
0 

7T 
0 

t . . + k f sin nx sin nx dx, n 
7r 

0 
7r 

or f f(x) sin rue dx = kn f sin
2 

nx d.x = ¥· 
0 D 

Therefore 

I{ 

k = -3._ f f (x) sin rue d.x • • 'TI 7T . 
0 

This system consisting of the partial differential equation 

d u 
r} y '-

= 0 

and the four boundary conditions then has the solution 

where 
--,,--f f (x) sin nx dx, (n = 1, 2, 3, . . . ) . 

0 



24 

Vibrating Str ing Problem 

The vibrati ns of a stretched uniform elastic string fasten-

ed at both ends are described by a second- order partial differential 

equation. 

Let the string have a length of II units for simplicity in 

working the problem. Assume that one end of the string is at the 

origin, arrl that the string is along the x-axis . Asswne further 

that the motion of the plucked string is in the (x,y)-plane. The 

problem is to get a function y(x,t) which wi.11 give the displacement 

y from the equilibrium position for any x and t. Again Fourier series 

can be applied. 

The function y(x,t) must satisfy the partial differential 

equation of the vibrating string (Churchill, 1941), 

(14) 
,.__ 

LL= d V--

where a is a positive constant depending on the units of measm~ement 

and the physical properties of the string . 

If the string is displaced initially into the shape y = f(x) 

at time t 

conditions 

(1) 

(2) 

(3) 

(4) 

o, the function y(x,t) must also satisfy the boundary 

y( 0 , t) :::. 0, 

y( 71 , t) ::=.. o, 

..2.__X (x, O) ::: O, 
a t 

y (x , O) = f(x), 

0 < x(7;, 
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where f(x) is assigned in advance . Boundary condition (3) states 

that the velocity is zero at the initial displacement . 

Particular solutions of (14) may be found by the method assumed 

for the heat problem. Therefore 

y(x,t) X(x) • T(t) , 

~=X' • T, 
rJ X 

II • T, 

i!J_ = 
a t 

-,_ 

qJ_= J t'-

Substitution in (14) gives 

X • T" a2 X 11 • T 

or Tll II 

a?-- T X 

·T' 

• T" . 

Since the first member is independent of x and the second 1nember is 

independent oft, the quantity must be equal to a co11Stant , say 

,\ 2 , ,;\ being assumed to be real. positive constant would 

not be useful for the ~resent problem (Jackson, 1941) . This can be 

seen by setting 

T" X" ~ 2. a-,_ T 

The soluti on 

)I X C - ).. X = c1e + 2e 
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will not satisfy the boundary co nd:i.. tions (1) and (2) . rhere are 

no values of c1 and c2 for which.,_ (0) = 0 and X( 11 ) :;::: o. There-

fore, one must use the negative constant - \ 2 ( Churchill, 1941) . 

Now X and T se:;,arately satisfy the differential equations 

X11 (x) = - >-- 2x(x). 

Tne first has the solutions sin A at and cos )\at; whereas the 

second has solutions sin ,\ x and cos A x. Hence, the four possible 

solutions for y(x,t) ::= X(x) • T(t) are: 

(a) sin ;\ x sin >-. at, 

(b) sin A x cos >-, at, 

(c) cos )'. x sin x at, 

( d) cos Ax cos Aat . 

As in the last problem, it may be supposed that /\ is a positive 

number . 

Of the four possible solutions, (a) and (b) satisfy boundary 

condition (l); whereas functions (c) and (d) do not . Function (a) 

does not satisfy boundary condition (3) , but function (b) does. Now 

function (b) will satisfy (2) if )\ is an integer . Then 

sin x cos at, sin 2x cos 2at, sin rue cos nat , 

(n==-1, 2, 3, ··•) , 

are solutions to (14 ), and they also satisfy the boundary conditions 
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(1), (2), and (3). If kn is any constant for nan integer 

kn sin nx cos nat 

is a solution (Byerly, 1893). Furthermore, assuming conver~ence, 

the followi.ng is true (Jackson, 1941) . 
\ 

y(x, t) = k1 sin x cos at + k2sin 2x cos 2at + • • • 

+ knsin nx cos nat + · · • 

By using the boundary condition (4), one can determine the coefficients 

or k's. 

f (x) _ y(x, 0) 

The above series wi.11 represent f(x) if the coefficients are 

given by 

k =2 n ff f l! 
f(x) sin nx dx, 

0 

(n - 1, 2, 3, . . . ) . 

Findinis this expression for the coefficients is done by taking 

7r J f (x) sin nx dx = k1 
0 

7( y, f sin x sin nx + k2 f sin 2x 
0 7, 0 

or 

+ • • • -f kn J sin rue sin nx dx, 
0 

'T(' j f(x) sin nx dx = kn 
0 

! 7:2 
sin nx ctx = 

0 

sin nx 



Therefore k =2_ 
n 7T 

7T f f(x) sin kx dx. 
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0 

This system consisting of the partial differential equation 

d x.,__ 

and the four boundary conditions then has the solution 

(15) y(x,t) k1 sin x cos at + k2sin 2x cos 2at 4-- • • • 

+ knsin nx cos nat + · • • 

where 
7f ff (x) sin nx dx, (n =l, 2, 3, . . . ) . 

0 

SUMMARY 

The representation of a function f x) by a Fourier series 

within a certain interval is not uncommon. Although the writer has 

taken the interval (- 7f, ff) as his limits in integration, it 

is not necessary to do so. The limits depend on the period of the func-

tion at hand. The period 2 7J may be replaced by one of arbitrary 

length; however the formulas wiLl not be as simple . 

One should notice that the solution to the heat problem 

contained exponential functions of y and sine functions of x . 

Since the plate was assumed to have reached a steady state, the 

tlme element did not enter into the solution. Other pro blerns of 

tbis type could be worked where the time element is a factor . In 

fact one could have a different surface with different boundary 

conditions . 
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The vibrating string problem presents a very interesting 

case for the individual interested in vibratory motion. Using a 

special function f(x), one could find the amplitude and period for 

a fixed x . For other functions, a person might be interested in the 

nodes and overtones . When the string is struck instead of plucked, 

the boundary conaitions would be different than those given. 
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