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TN R QDT CETE T O RN

Any student of mathematics is femilier with the importance
of the process of integretiom. Integretion is as fundemental
to analysis as the basic principles of the number theory are to
arithmetical calculation. Some of the common applications of
integretion ares finding the distence a falling body has trav-
elled during a particuler intervel of time; to determine the
equation of a curve, given different conditions (such as slope
of the curve equal numerically to one-half the abscissa, or
some similar problem); motion of a projectile; motion in a re-
sisting medium; finding areas and volumes of revolution; length
of a curve; areas of surfaces of revolution; work of expanding
gases; and numerous other practical uses.

With these many useful applications in mind, the author
chose the problem of studying the various methods of integra-
tion. It is his earnest desire to learn more about the theory
of this interesting subject and to summarize briefly the more
femiliar definitions of the Riemann end Lebesgue integrals and
then to consider less femiliar modifications of these defini-
tions. Because of the wealth of material on these subjects,

it will be necessary to reduce the discussion of each integral

-1——————



to o minimum. Several important existence theorems will be
proven for the Riemsnn end Lebesgue integrals; followed by
e comperison of these two definitioms. In discussing the
modificetions of the above definitions, the author will show
the difference between the modification and previous defini-
tions. Lastly, he will offer the opinions of severel out-
standing mathematicians of the present time regarding the
possible trend of integration in the future.

In exemining the abstracts of theses aveilable in this
library and that of the University of Kensas, the author

found only one thesis previously written on integration, and

thet was a Doctor's thesis written on the "Stieltjes integrel."




CHAPTER I

A Historical Development of Integration

A historical development of Integration would be an in-
coherent treatise if the author tried to compile dete on
that subject alone without treating the related subject of
differentiation. Because of the close correlation between
the Integrel and Differential Calculus, the suthor will at-
tempt to give a historicel development of the two combined,
stressing the integration where this will not affect the con-
tinuity of the discussion.
fovo of Blee (450 B. C.) was one of the first to intro-
duce problems that led to a consideration of infinitesimal
magnitudes. He argued that motion was impossible for this
reasons
Before a moving body cen arrive at its destination
it must heve arrived at the middle of its path; before
getting there it must have accomplished the half of
that distence, and so on ad infinitum: in short, every
body, in order to move from one place to another, must

pess through an infinite number of spaces, which is im-
possible.”

1. Smith, History of Mathematics, II, 667.
2., Ibid,, 677 teken from George J. Allman, Greek Geometry
from Thales to Euclid, 55.




Leucippus (¢ 440 B. C.) and Democritus (460-370 B. C.)
are generelly considered as the founders of the atomistic
school,5 which teught thet magnitudes are composed of indi-
visible elements in finite numbers. It was this philosophy
that led Aristotle4 (340 B. C.) to write a book on indivisible
lines in which he tried to show the mathematical and logical
jmpossibility of this process. This book is also attributed
to Theophrastus.

Antiphon (¢ 430 B. C.) is one of the earliest writers
whose use of the method of exhaustion is fairly well kmown
to us. This method of exhaustion wes to inscribe a regular
polygzon in & circle and then, by bisecting the sides of the
polygon and their subtended arcs, to double the mumber of
sides until the perimeter of the polygon approeched the cir-
cumference of the circle as its limit; thus exhausting the
area between the polygon and the circle. This method of ex-
haustion was widely used by early Greek mathematicians. Later
the polygon was circumscribed "to double" by continually doub-
ling the number of sides until the perimeter became a circle.
This was an early idea in the theory of limits which later wes
so importaent in the development of the calculus. Eudoxus of

Cnidus® (408-355 B. C.) is probably the one who placed the

3., Ibid., 677 et. seg.
4, Allmen, Greek Geometry from Thales to Euclid, 56.

5, Smith, op. cit. taken from Heath, Euclid, II, 120.




theory of exhaustion on a scientific basise His method de-
pends on the proposition6 that "if from the greater of two
megnitudes there be taken more than its half, and from the
remainder more than its helf, and so on, there will at length
remain a magnitude less then the least of the proposed meg-
nitudes." 1In his definition he excludes the relation of a
finite megnitude to e magnitude of the seme kind which is
either infinitely great or infinitely small., It is in this
definition and the related axiom that Dr. Allmen finds a
basis for the scientific method of exhaustion and discerns
the probable influence of Eudoxus.

Tt is to Archimedes himself (225 B. C.) that we owe the
nearest approach to actual integration to be found among the
ancient Greeks.7 It would seem that Archimedes' mode of pro-
cedur98 was, to start with mechenics (center of mass of sur-
faces and solids) and by his infinitesimal-mechanical method
to discover new results for which leter he deduced and pub-
1ished the rigorous proofs. His first noteworthy advance to-
werd celculus was concerned with his proof that the area of a
parabolic segment is 4/5 of a triangle with the seme base and

vertex, or two-thirds of the circumscribed par&llelogram.g

6. Ball, A short account of the history of Mathematics, 45.

7. TIbid., 679 taken from Heath, Works of Archimedes, exlii
and other veluable references. 5

8. Cajori, & History of Mathematics, 36.

9. Smith, ope cit., 679.




This wes shown by continually inscribing in each segment be-
tween the parabola and the inscribed figure a triengle with
the seme base and the seme height as the segment. If A is
the area of the original inscribed triangle, the process
adopted by him leads to the summation of the series

A+h+ @8+ @y -,
or to finding the value of

sE+i+ @F+F @+ -2l
so that he really finds the area by integration and recog-
nizes, but does not assert, that (£)™> 0 as n—*09, this be-
ing the earliest example that has come down to us of the sum-
metion of an infinite series.

The only traces we have of an approach to calculus in
the Middle Ages are those relating to mensuration and to
graphs.lo The idea of breaking up & plane surface into in-
finitesimal rectangles was probably present in the minds of
meny of the mathemeticians of the time, but it was never e-
laborated into a theory that seemed worth considering. Jehudah
Barzilai,l1 a Jewish writer living in the thirteenth century,
asserts that

"I+ has been said that there is no form in the world
except the rectangle, for every triangle or rectangle

R e e e R

10. Ibid., 684.

11. Ibid., 684, 685 taken from gefer Jezira, Commentary by
Judah ben Barzilai, 255.




is composed of rectangles too small to be perceived
by the senses."

Oresmel® (o 1360) took the next important step in the
preparation for the calculus of the Middle Ages. His meth-
od of latitudes and longitudes gave rise to what we would
now call a distribution curve or graph. This step is funda-
mental to the modern method of finding the area included be-
tween a curve and certain straight lines.

Fven as late as the middle or end of the sixteenth cen-
tury no marked progress in calculus had been made from the

ime of Archimedes.l5 Statistics (of solids) and hydrostat-
ics remained in much the stete in which he had left them,
while dynemics as a science, did not exist. As is usual in
such cases, it is impossible to determine with certainty to
whom credit belongs, in modern times, for first meking any
noteworthy move in calculus, but it is safe to say that Simon
Stevinus14 (1586) is entitled to serious consi ideration. His
contribution is seen particularly in his treatment of the
subject of the center of gravity of various geometrie figures,
anticipeting, as it did, the work of several later writers.

Following the time of Stevinus the brightest and most

e e T e o e e

12, Ibid., 319.
s BeIE o p e it
14. Smith, op. cit

t., 244,
1., 685
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It is quite probable that Barrow advised Newton of this fig-
ure as early as 1664.17 Pascal had alrsady published a
ure of somewhat the same shape. The triangles given by both
Barrow and Pascal were apparently kmown to Leibnitz and helped
him in developing his own theory.

In 1665 and 1666 Isaac Newtonl® conceived the method of
fluxions and applied them to the quadrature of curves. In
his youth Newton studied Descartes' Geometry before he read
Buclid. Thus, Descartes laid the foundation for Newton to
build the calculus. Newton assumed that all geometrieal mag-
nitudes might be conceived as generated by continuous motion;
thus a line may be considered as generated by the motion of a

point, a surface by that of a line, and so on.19

The quantity
so gemerated was defined by him as the fluent or flowing quan-
tity. The veloeity of the moving body wes defined as the flux-
ion of the fluent. In accordance with Newton's treatment of
the subject there are two kinds of problems. The object of

the first is, the relation of the fluents being given, to Iind
the relation of their fluxions. This is the equivalent %o
differentiation. The object of the second method of fluxions
is, from the fluxioh, or some relations involving it, to de-

termine the fluent. No account of Newton's method was pub-

lished until 1693, though its general outline was known by his

17. Ibid., taken from Child, Leibniz Manuscripts, 1l.
18. Cajori, op. cibt., 192.
19. Ball, op. cit., 344 et. seg.



friends and pupils before that time.

Lao G. Simonszo presents an interesting discussion of
the adoption of the method of fluxions in American schools.
His study shows the almost complete dominance of the great
Newton himself in American schools as far as the subject of
fluxions is concerned. By the end of the first guarter of
the nineteenth century, the catalogue of at least one college,
Yale, shows that fluxions had been accorded a place among
electives for the student body.

Leibnizzl observed, in the study of Cartesian geometry,
the connection existing between the direct and inverse prob-
lems of tangents. In 1673, while working upon the problems
of tangents and quadratures, he invented a notation which was
origiral and at the same time was generally more usable than
that of Newton,--the "differential notation." He proposed to
represent the sum of Cavalieri's indivisibles by the symbol
~/f, the old form of s, the initial of summa, using this with
Gavalieri's omn. (omnia), to represent the inverse operation
by d. By 1675 he had settled this notation, writimg‘/iy dy =

= as it is written at present., He published this method

1
=2
in 1684 end 1686 in Acta Eruditorium, a Berlin Journal, speak-

ing of the integral calculus as the calculus sumatorius. In

20. Simons, The adoption of the method of Fluxions in American

schools, 207 ete. seq.
21. Cajori, op. cit., 207.




1696 he adopted the term calculus integralis, which neme was
decided upon with the help of Johann Bernoulli.22 Leibniz!
method of differences eventually supplanted, both in concepts
and symbols, the fluxions of Newton.z5

The early distinction between the systems of Newton and
Leibniz lies in this, that Newton, holding to the conception
of velocity or fluxion, used the infinitely snall increment
as a means of determining it, whide with Leibniz the relation
of the infinitely small increments is itself the object of de-
terminatirm.24 The difference between the two rests mainly
upon a difference in the mode of generating quantities.

The dispute between the friends of Newton and those of
Leibniz as to priority of discovery was bitter and profitless.
Even after the deeth of Leibniz in 1716 the controversy was
bitterly debated for many years later. During the eighteenth
century the prevalent opinion wes against Leibniz but today
the majority of writers are inclined to think that the inven-
tions of Newton and Leibniz were independent.25 An unfortunate
result of this controversy was that until about 1820 the Brit-
ish mathematicians were ignorant of the brilliant mathematical
discoveries on the continent. In 1813 the "Analytical Society"

founded by Peacock, Herschel, and Babbage eliminated the flux-

22. Smith, op. cit., 696.
23, Simons, op. cit., 207.
24. Cajori, op. cit., 197.
25. Ball, op. cit., 361.



ional notation of the calculus and opened to English students
the vast storehouses of the continental discoveries.

In the seventeenth century a native calculus, IEEEE?G
(circle principle), was developed in Japan. This native cal=-
culus thought to have been invented by the great Seki Kowa weas
an application of series to the ancient method of exhaustion.

Outstanding mathematicians of the period from 1730 to
1820 were Euler, Lagrange, Laplace and Legendre.z7 Briefly
Euler extended, summed up and completed the work of his prede-
cessors; while Lagrange developed the infinitesimal calculus
and theoretical mechanics, and presented them in forms similar
to those in which we now have them. At the seme time Laplace
made some additions to the infinitesimal calculus and applied
that calculus to the theory of universal gravitation; he also
created a calculus of probabilitises. Legendre published three
works of elliptic integrals.

Men of note in the field of calculus for the period fol-
lowing 1820 might include Cauchy, Abel, Riemann, Velerstrass,
DeMorgan and many others. Due to the increasing number of
mathematical contributors in the latter part of the nineteenth
century and early part of the twentieth century, the author
will not attempt to trace the calculus further historically.

Any further historical material needed in the development of

26. Smith and Mikeami, A History of Japanese lMathematics,
143 __e_to s8Q.
27. Ball, op. cit., 392.




this thesis will be added with the corresponding modification

of the definition of integration.




CHAPTER II

Integration Defined and Explained

The differential and integral calculus have to do
with three fundamental notions28 associated with func-
tions, to which ere due most of the applications of
the function theory in geometry, mechanics, and phys-
ies, as well as other branches of science. These
three conceptions are called the derivative, the anti-
derivative or indefinite integral, and the definite
integral.

Two main types of problems of the differential calculus
are construction of tengents to curves, and determination of
the rate of change of a guentity. The fundamental chsfinitionz9
of the differential calculus is:

The derivetive of a function is the limit of the ra-
tio of the increment of the function to the increment of
the independent variable, when the latter increment var-
jes and approaches the limit zero.

When the 1limit of this ratio exists, the function is
said to possess a derivative. The above definition may be
given in a more compact form symbolically as follows: Given
II - 1 y = £(z)

and consider x to have a fixed value. Let x teke on an in-

28, Young, Monographs on topics of modern Mathemetics relevant
to the elementary field, 285, article by Gilbert A. Bliss.

29. Granville, Elements of the Differential and Integral Cal-

culus, 21, 22.




crement Ax; then the function y takes on an increment Ay,
the new value of the function being
II - 2 y+ Ay = £f(x+ Ax).

To find the increment of the function, subtrect II - 1
from II - 2 giving
11 - 3 Oy = P(x + Ox) - £(x)

Dividing by the increment of the variable, Ax, we get

Ay _ f(x + Ax) - £(x).
11 - 4 e A e
Ax Ax
The limit of this ratio when Ax approaches the limit
zero is, from our definition, the derivative which is denoted

by the symbol dy/dx. Therefore

dy _ limit f(x+ Ax) - £(x)

II-5 dx — x—0 Ax

defines the derivative of y Cr f(x:)] with respect to x if
the limit exists.

From II - 4 we also get

_cly_ wk 1imit‘é~y_
dx = x—7Y0Ax

The process of finding the derivative of a function is
celled differentiation. It should be carefully noted that
the derivative is the limit of the ratio, not the ratio of
the limits. The latter ratio would assume the form 0/0, which

is indeterminate., Since Ay and Ax are always finite and

have definite values, the expression _%% is really a fraction.




The symbol dy/dx is to be regarded not as a fraction but as
the limiting value of a fraction.
Derivative is best brought out by considering the con-

. A 6) 2
struction of the tangent to a curve.”” Constructing the

s II, we wish to show the construction of

parabola y = “? Fi
8 tangent to this curve at the point P. Let Q be any point
on the parabola distinet from P. Join P to Q by a straight
line, secant. Now let Q come closer and closer to P without
reaching it. As Q approaches P the secant will rotate about
P and will tend to coincide with a line through P which touches
the parabola at P without cutting across the parabola. This
line is tengent to the parabola at P. | cannot come in coin-
cidence with P, otherwise there could be no straight line,

By the slope of a line we mean the trigonometric tangent

of the inclination of the line. The slope of the secant PQ

hes for a limit, as Q approaches P, the slope of the tangent

30. Ritt, Differential and Integral
oyclopedia Britannica Vol. IV, 5!




et P. If PM and QM are perpendicular, Fig. II, the slope of
e i)
PQ is e
This brings us to a further conception of the derivative.
Let y = f(x) be any continuous function of x which is graphed

in Fig. III. We choose an value for x and keep it fixed. To
g y P

the fixed

AY

Fig. III y

value of x corresponds a fixed value of yv. This gives a fixed

point P on the graph of coordinates (x,y). Now teke any point

Q of coordinates (x + 4x, y+ Ay). As Q approaches P, the

ratio‘gi'will approach a definite limit, the slope of the tan=-

Ax

gent to the graph at P The limit of AY i callec
o

u
+
;
5
)

tive of f(x) for the value of x. Thus the deriv is the
slope of the tangent to the graph. The derivative of the con-

tinuous function y = £(x) is represented, for any velue of x,

by dy/dx.

Various treatises on calculus show how to differentiate

all types of expressions by using formules. The general form-




ule for differentiasting a problem of type y = x? is
Derivative of x = nxn'l, for all values of n.

If y is a constant, then, for every dx, vy +4y =y, so
that Ay = 0. Hence-f%% is always zero, so that according to
the definition of the limit of & constent quantity, dy/dx is
also zero. This is brought out geometrically by the fact that
the graph of a constant is a horizontal line, so that the tean-
gent to the graph at eny point which is the graph itself, has

a zero slope. We see that two functions which differ by e

a

o
constent, for instance x“ and xz-f 2, have the same derivativ

This is fundemental in connection with integration.

=

erentia-

£

o)
e

One of the more important applications of
tion is the solution of problems of mixime end minima. Con=
sider the continuous function y = £(x) which has a derivative
for every x, Fig. IV. At point such as A, at which the con-

tinuous function is & meximum, or et e point such as B, where

the function is & minimum, the tangent is horizontal, the slope

of the tengent is zero. This fact could be proved as follows:




Let the abscissa of A, be &, and suppose that dy/ﬂx is not

zero for x = a. Let us suppose that dv/dx is positive to a.
I 3/

A
Then Ax is smell, f%é’ is very nearly equal to dy/dx. Tife

Ax is smell, Ay is positive, like dy/dx. If Ax is small
ax p Y.

and positive, Ay must be positive, for if Ay were zero or
negetive, é%% would be zero or negative. Since the function
is continuous end has a continuous derivative, dy/ﬁx can't be
infinity. Therefore & point on the graph to the right of A
must have a grester ordinate than A, so that y cennot be e
meximum for x = a&. This absurdity shows that dy/ﬁz = 0 for
X = Bl

We next undertake a study of the second fundamental no-
tion of the calculus, that of the anti-derivative or indefin-
ite integral. In differential calculus we were chiefly con-
cerned in finding the derivealives of given functions. We shall

Z1
now consider the inverse operation;®~ that is, having given &

= ¢x. This inverse operation is called the anti-derivative
or integral of the given function. The function integrate
called the integrand.

Literally the word integration comes from the Latin "in-

tegratio" meaning & renewing, & restoring. Webster's diction-

ary defines integration as

31, Townsend and Goodenough, Essentiels of




the inverse of the differentiation or derivation; also
the doctrine of the limit of a sum of infinitesimals of
which the number increases while the megnitude of each
decreases; both without limit, but according to some
law,.

Jo I Hutchinson32 defines integral calculus as

& branch of infinitesimel calculus treating of the
methods of deducing relations between finite values of
variebles from given relations between contemporaneous
infinitesimel elements of those variables. Its object
is to discover the primitive function from which &
given differential coefficient has been derived. This
primitive function is called the integral of the pro-
posed differentiel coefficient, and is obtained by the
application of the different principles established in
finding differential coefficients and by vaerious trans-
formetions. To illustrate: with the integral calculus
one may discover the relations commecting finite values
of variables, as x and y, from the relation commecting
their differentisls, as dx and dy. Thus, integrel cal-
culus is the doctrine of the limit of the sum of infin-
jtesimals of which the number increases while the mag-
nitude decreases, both without limit, yet according to
some 18W.....The sign of integration is "f " which is

o form derived from the old or long "s." It is the in-
itial of the word "sum," and came into use owing to the
conception that integretion is the process of summing
an infinite series of infinitesimalse....With the in-
tegral calculus a mathemetician endeavors to transform
the given expressions into others which are differen-
tials of kmown functions and thus deduce formulas which
mey be applied to all similar forms.

Tt is the universel custom to denote integration by
placing the symbol .f.befors the differentisl. Since
d(xs) = 3x% dx
we write J{éxz dx = x2 4+ C where C is an arbitrary
constant. The differential dx indicetes that x is the inde-

pendent variable.

39, Hutchinson, Integral calculus, article in Encyclopedia
Americana Vol. XV, 202.




Our 1'31'0blem33 now becomes: "Heving given the differ-
ential of a function, to find the function itself." Since
integration and differentiation are inverse operations it
follows that

since d(x5) = 3x2 dx, we have f5x2 dx = %%;

since d(x5 + 2

3%x% dx, we have f%xz dx = x°+ 23
since d(x® - 7) = 3x% dx, we have ISXZ dx = x® - 7.

In fact, since d(x°+ C)

2 ~ . -
3x2 dx where C is any arbitrary
constant, we have

foz dx = x°4 C

where C is & constent of integration independent of the var-
jable of integration. Since we can give C as many velues as
we please, it follows that if a given differential expression
res one integral, it has infinitely meny differing only by
constants. Hence
ff‘ (=)ldx = f(x) + €
and since C is unknown and indefinite, the expression
Bt

is celled the indefinite integral of £r(x) dx.

1f P(x) is a function the derivative of which is f(x),
then ?(y) 4+ C, where C is any constent whatever, is likewise
s function the derivative of which is f(x). Hence the theorem:

1f two functions differ by & constant, they have
the seme derivetive.

33, Granville, op. cit., 189 et. seq.



The word indefinite refers to the fact that an arbitrary

constant is involved in the integral.

Our discussion next brings up the definite integrsl. Be-

£

fore beginning the explanation of the definite inte

it is

necessary to prove

be the equation of the curve AB,

.
Let CD be a fixed and MP a variable
let u be the measure of the aree CMPD. on
Z‘) =
B
A
Fiﬁ). v A4
D
C X
0 - T
V k——a—) M 1
e——————x—————*A:l
a ‘ficiently

nt Au( NQP)»

= area ! )
we see that area VNRP £ area MNQP £ area




or, MP. Ax ¢ Au< NQ. Ax;
and dividing by 4x,

.
Now let Ax—>0 as a limit; then since NP remeins
and NQ approaches MP as a limit (since y is a continuous func-
tion of %, we get
du/dx = y ( = MP),
or using differentials,
du = ydx.
which proves the theorem.
Now if y = @(x)
then du = ydx, or
1I-6 du = @(x) ax,
where du is the differential of the area between the curve,
the X-axis, and any two ordinates. Integrati:
f?\y dx

nce f‘f’(x' dx e:r,l.sts as an area, we denote it by

il 2 ra o
IT-6 we get

Therefore u

We may determine C
value of x. If we agr
y, that is, Fig. VI,

f we lmow the value of

the area from

Fig. VI )
= G
X
@ e ——— 0 1 i
ya T'\
!
II - 8 X = :
and when X = it follows that
II - 9 D=
I

Substituting II-9 in II-7 we get

0O

Hence from II-7 we obtain
IT - 10 w=




giving the area from the axis of y to any ordinate
(as MP).

To find the area between the ordinates CD and EF,
substitute the values II-8 in II-10, giving

IT1 - 11 area 0CDG = £(a) - £(0).
II - 12 area OEFG = £(b) - £(0).
Subtracting II - 11 from IT - 12,

II - 13 area CEFD = £(b) - £(2)

Theorem:

The difference of the values of “fﬁ'dx fior = =laiand
x = b gives the area bounded by the curve whose ordinate is
y, the X-axis and the ordinates corresponding to x = a and
x.= be
This difference is represented by the symbol

II - 14 g ¥ dx, or 2 ¢ (x) dax,

and is read "the integral from a to b of y dx." The oper-

ation is called integration between limits, & being the
lower and b the upper limit.

Since II - 14 always has a definite value, it is called
e definite integral. For if

Fi(x) dx

then 5 ?(x) dx

P(x) +C,
Ex +d2
- k) +d - Bt d,
JP#(x) ax = £(v) - £(o)
the constant of integration having disappeared.
We may accordingly define the symbol

jb ¢(F) dx ogjb y dx
a

a
as the numerical measure of the area bounded by the curve
= ¢ (x). the X-axis, and the ordinates of the curve at
= a, x = be This definition presupposes that these lim=-
+ts bound an area, that is, the curve does not rise or fall
o infinity, and both a and b are finite.

il

i

S
e
e
e

The process of celculating the definite integral may be
summed into two steps, first to find the indefinite integral
of the given differential expression, and secondly to substi-
tute in this indefinite integral first the upper limit and

then the lower limit for the verisble, and subtract the last

result from the first. The constant of integration need not




pears in subtracting
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r will be taken up in this treatise.
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«» VII, assume n points

03

Xy = B, Xy, Xgy Xgyeesees, X 4o where

S8 Xj-1
SRS ~ .
= E; = x3, and form the sum
1 = n=1
1 = n=l - 5
IT =15 - o (xie=
T e A

.
Now let n
tervals X approaches e 8
limit ependent of the choice Xy
a and b and is de-

5

noted by

sts if

("N

express

(0]

35, Woods, Advenced Calculus, 134=-1







tegral which has already been evalueted, and in other cases
they are the result of an integration by perts. In all cases
they can be varified by differentiating both sides of the e-
quation.
The integral calculus treats of two classes of problems.36
Tt Pfirst deals with problems as: the amount of area enclosed by
a curve, the length of a curve, or the amount of volume enclosed
by a surface; and secondly the determination of a variable quan-
tity when the law of its change is known.

An exesmple of the first class of problems has already
been worked out in this treatise in connection with Fig. VI. A
zood exsmple of the second type would be the problem of finding
o formula for the distance through which a body, under the in-

fluence of gravity, fells, in any period of time.

initially at rest, be allowed to fall, If g is

5
of gravity, (32 £t./ sec.”) the body will, in t seconds, acquire

1)

a speed of gt feet per second. Let S be the distance through

which the body falls in © secondss Then

w0
A%
<

To find the constant C, we observe that S = 0, when t = O.

i e
then 0= E-+cC so that C = 0.

e —————— o e -

%26. Ritt, op. cite., erticle in Encyclopedia Britannica Vol. I¥,
567,558,



ot

1]
0

Hence, S ) for every te.

Ba1137 gives & very excellent summary of the preceding

>

discussion:

3

7
i e

Wherever a quantity changes according to some contin-
uous lew--and most things in nature do so change--the dif-
erential calculus enables us to measure its rate of in-
crease of decrease; and, from its rate of increase or de-
crease, the integral calculus enables us to find tThe or-
iginal quantity. Formerly every separate function of x
such as (1 + x)%, log (1 + x), sin x, tan-1x, etc. could
be expanded in ascending powers of x only by means of such
special procedure as was suiteble for that icular prob-
lem; but by the aid of the calculus, the exp
function of x in ascending powers of x is i
ible to one rule which covers all cases al
the theory of maxima and minime, the dete:
lengths of curves and the areas enclosed by
termination of surfaces, of volumes, and of
and meny other problems, are each reducible
rule. The theories of differential equation
culus of variations, of finite differences,
developments of the ideas of the calculus.

Ball, op. cit., 265.




CHAPTER III

The Riemann Integral

As stated in Chapter II, the integral calculus arose
from attempts to find the lengths of curves, the area of
curved or convex surfaces and the volume of irregular solids.
The elementary properties of an integral show the integral
first considered as the inverse process of differentiation
and later as the limit of the sum of an indefinitely large
number of small elements. The first notion®® was used to
evaluate the integral, the latter was best used in setting
up an integral from given data

A rigorous treatment of the integ

from the time of Cauchy end Riemamn. The definition of Cau-

chy covered the case for continuous functions. Riem

tended the Cauchy definition to bounded functioms, and he al-

L)

so set up the condition for the existence o

Later the definitions of Lebesgue, Stieltjes, Young and oth-

+
C

tion to make i

e

ors extended the Cauchy-Riemann defin appli-

cable to unbounded functions and to integration over unbounded

38, Tovmsend, Funetions of Real Variables, 198.

i




intervels. The Cauchy-Riemann definition is the one commonly
employed in elementary snalysis and in the aepplications to the
physical sciences. The Riemenn integral will probably contin-
ue to be the basis upon which practical applications of the in-
e = 59
tegral calculus rest.

The author will set up the definition of the Riemann in-
tegral and prove some existence theorems for this integral.

40

Let £(x) be a bounded function, defined for the interval (a,b).

Suppose this interval to be divided by the insertion between

1l

Form the sum

S (0) = (% - xo) f(El} + (x, - xl) f(i)z) + oot (x, - xn_l) f(il)

5 : ( 4 \
where E. is any point in the interval (X, = X, .)

k . X k=1
The Riemann integral may now be defined as the limit
n 2
I1T -1 L 2 £(Ey) 4, x,
A=0 k=1

providine the velue of this limit is independent of the menner
of inserting the intermediate points o, and A is the largest

5

of the Z),x's, frequently called the norm of the given set of
K 1 .

29. Hobson, The Theory of Fu
the Theory of Fourier's
40. Townsend, op. cit., 198, 199.




intervals. As A approaches zero, n becomes infinite. Sym-
bolically the Riemann integral is represented by J’ £(x) dx.
In pessing to the limit, we note that the number of points in-
serted in each subinterval increases indefinitely as the norm
A approaches zero.

This definition is equivalent to saying that for every

arbitrarily smell positive number e there exists &

number d, depending on e, such that for every choice
the interval Zﬁkx and for every subdivision whose norm satis=-

fies the condition A < d, we have

\j £(x) dx - Zf(Ek) A xl¢ e

X

The function f(x) as defined is

arising under these conditions are called fiz

tegrals.

The investig

tions that the bounded function f(x) may have an

(a,b) is simplified by the of the upper end lower
. / . { 1
R-integrals of the function £(x) in (a,b).
Derboux first introduced the upper and lower integrals
2 0na 1 4.-‘ m U
and rigorously defined them. Denote by L,

X

ly the leas + upper bound and the greatest lower bound of

ppPe

in the interval Ayx = (xk - x_ ,)s Form the two sums

4

41, Ibid., 200 footnote et. seq.



Ela) = zlﬁrﬂkx,ih)z ZlkAgm

S(0), S(o) depend upon the manner in wi

civen interval (a,b) is subdivided by the insertion of th

(0]

intermediate points o. However for every method of

vision we have
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where L, 1 are respect

+h e
N - . / N Jo S it
greatest lower bound of f(x) in (a,b). The aggreg

ues which S(o) may have by all possible

< W a
by the insertion of

est lower bound which we call the upper

-

the interval (a,b).

1€ sum

~

subdivisions of (a,b)

lower integral of f£(x)

grals by

Theorem: If f(x) is bounded in the interval (a b)

in the given interval (a,b) we have different

5 s pp = RS A A ARG S
vals Ay and may obtain different sums S(o). As mentioned be

fore, the aggregate of values S(o) has the upper integ

f(x) dx for its createst lower bound. We show that
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The given condition is also necessary. To show this,

we have the condition that

)

end equality follow as & conseq

G : : X : A e S
and minimum of a function f£(x) in an interval (a,b), is

Vil

length

44,
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where w is the greatest value of the oscillation

s
=
ot
=3
(o]
7}
D
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hintervals included in S'. The value

where e is positive and mey be chosen arbi

then have from III - 9

where ©, is erbitr

(=]

every erbitrary choice

1ver
o1
sme.i

and f(x) is integrable by (b).

To show that this condition is necessar
that f(x) integrable in (2,1 and hence we have
orem (b)

111 - 10 G L
D~
However we may write
W. 15‘

Sl [, e =

2 v - <1 3 £ o £Ar +he n su
where w is the smallest value of w, for the n su

(a,b)s Substituting III - €
the 1
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is arbitrarily chosen, it is greater than zero.

have

measure ZzZero.

tuation of

45.




which contain, within them or at an end-point, & point of G
is not less than the product of %k into the sum of the breadth
of these meshes. Unless the content of G, is zero, the sum of

the breadths of these meshes is greate

tive number, for all the nets

therefore necessary for
the content of G,

every positive value of

of the function is the outer

8 sequence of diminishing values of k that converges to zero.

It follows that the set of points

tion must have measure zero.

To show that the condition is su

that, if the content of @y is zero, all the G,. are
contained within the intervals of a finite set sum of

whose lengths is < e.

finite set have a totel measu

point in each of them w(x) & k.
46
orem
1f £(x) is bounded in the interval
k be e number greater than the upper

in (a,b), there exists a positive numb
that in every closed sub-interval in
not exceeding alpha, the fluctuation

each of these complement

46, Ibid., 311 et. seg.




number of parts, in each of which the fluctuation is £ 2k.

Let this be done for each of the complementary intervals. We

now have e net fitted on to (a,b), such that the sum of the
bresdths of those meshes in which the fluctuation is :g 2k is
For +

this net JdF(d) ¢ o(S - 8) +2k (b - 2 - e); and

[y

since k and e are both arbitrarily smell, a net cen be deter=-

mined for which JLdF(d) has an

condition of integrability is

ery value of k, Gy has content zero, t

points of

are no

(f)e A bounc

number of d

As previously proven, every

ire zero. It then follows from Tt

tecrable., This theorem shows that a bounded




discontinuous at the set of rational points end still be in-

tegreble, provided it is continuous at the irrational points.
Theorem (g). A function f£(x) of limited verietion in

the closed interval (a,b) is integrable in the Riemann sense.
The piven function is bounded and by the theorem

The points of discontinuity of a fymection of limited
variation form at most an enumersble set. A function of
limited variation can have only ordinary discontinuities,
and the points of a given interval (a,b) at which f£(x
has ordinery discontinuities form at most an enumera
set.

Its points of discontinuity form at most an enumerable set.
Consequently by Theorem (f) it f ws thet £(x) is integrable.

having only or-

do

dinerv finite discontinuities in the given intervael (a,b) is

D,

F

R-integrable.

By the above-quoted theorem, it follows that

continuities fo

where the given function

enumersble set. From Theorem (f)

tegrable in the interve. for which

Theorem (i). If f(x) be bounded and

then f(x) is

1f £(x) is constant, the theorem is obvious. If we

for which

show that for each e 7 O there exists &

IL (£, ab) < e

(
n \

Tbid., 134, 206.
. Pierpont, op. Cit., I, 343-346.
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then by the theorem that
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This latter
It is sufficient.
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where in this case,

As € approaches zero, the value of n increas
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although the converse

43 L i == Lo T et
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the definition m is neasure of f E for
which

:P tidig to
be

m
=
o

i

5

be

The Lebesgue integral will

" A
e symbol




separately the set of points

and then tak

one for the positive

Then IV -

¢(n7 is bounded and
ed and mono

(v yv. ) decreases
\ J — 3 J “V
1 ¢

quently, each function

a manner that

limits are equal; for

%]

o

H
—
=

(s

value

monotone

we

to

” o




were

with

upon the

The points of y'! remaining may be regarded as

reference

()
(o]
H
:i
=)
@
=
e
=]

earlier in the di

as chosen, the theorem is

co=-

17 =

not dependent upon the manner in which the




7 1
f 8 3
1 ra
€t <
o5 iy -3in
1
Arx =
e
,  and
« c { S,
[
e
+
1 ) \

- 0o
g Y -
= 2. Je T o
: ; .
Pt ]
o
1 y °
=
.
"2 1
U
21




(a,b) in the Lebesgue sense and the two integral are equal.
The converse, however, is not necessarily true. 26

Because of limited space the proof for this theorem will
be omitted. The reader will find this proof in the source re-
corded in the footnote. A brisef consideration will be given
to the converse of the theorem.

The converse of theorem (7) is not true. A Lebes;
integral of a bounded function may exist in an interval (a,b),
while the Riemann integral does not exist. For example, let
f(x) be defined for the intervel (0,1) as follows:

f(x) = 1, for rational values of x,
= 0, for irrational values of x.

This function is totally discontinuous in the given interval

and hence has no integral in the Riemann sense; because the

necessary end sufficiert condition of the R-integ
the points of discontinuity shell form at most a set of meas-
ure zero. In this case the measure of the set of points of
discontinuity is one. The function f(x) is bounded and meas-
urable on the set El of rational points and also on the set
Bo of irrational points. Consequently, by theorem (6) botl

the Lebesgue integrals ‘{ (=) dx, _; f(x) dx exist. The
",\‘ B

G 2

Lebesgue integral ,fé £(x) dx taken over the interval (0,1)

|~
. 2 oD ‘)
must exist because of the theorem

56. Ibid., 295-297.
57. 1bid., 290, 29l.



If £f(x) is bounded end measurable on a finite num-
ber or an infinite sequence of distinct, measurable

point sets E_ whose sum is E, then

This discussion would not be complete without mention of

. B8 2 ,
Lebesgue integrals for non-bounded functions.”® Let f(x) be

any positive, measurable, non-bounded function defined on the

bounded measurable set of points E Let k be any one of the

IV =7 sk, Tk

heving no upper

Thus is he set of
points E, »nsequently, the Lebe ix ex-
ists for all values of k, Fig. 2 ¢) dx
iYa
- AL
A =8 )
v =k
Fig. XI.
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s &I 298.




g 1

as k becomes

i
finite, then we say that

pifieN 3
£ and write
£
(%) 4% = T )
L\ o LA - ] ,‘

some pPOolrY of & pPoOs
e - £ Ar ( =
- Llaq RL - 2
id 1 \ )
o L ‘
W \ — ./m 2 » £ \ - Do\ / 2
i ) + i A s )




CHAPTER

)ther Modifications of the Definition of Integration

The definitionsof integration which have been suggested

D a

by Riemann and Lebesgue are the definitions which hold the
central position in the theory of definite integration., These

definitions have been c

Some of these definitions are releted to the R- and L-inte-

grals, while others are equivalent to or extensions of the

two definitionse ake
in-

brief mention of

tegration. Some of the proofs for these definitions are too

Ve Ile

Young

Divide the
ably infinite
Let M: be the
bound” of f£(x)

Hildebrandt, On Integrels related to
the Lebesgue Integrals, ar icle in the Bu ) .
n ) Vol. 24 (1917-18), 120-

American Mathematical Societ;
123.
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ZO is equal to the ordinary integral of f(x) if the set Z, is

of content zero. For that reason it is desirable to restrict

consideration of these integrals to sets Z of content zero.

63

Borel's definition of integrat

£(x) is Borel integrable in case (a) there
set of singularities Z demumerable or even of .
zero, such that for every € and for every set of in-
tervals which has totel length at most € and is such
thet eech interval of the set conteins at least one

point of Z, the Riemann integrel of f(x) on the com-
plementary set Pe exists, and (b) these Riemann inte-
grals approach a f
This 1limit is the B

—

64

O4%

Townsend writes
tion is more restricted

tions than

o]
ct
o
[0}
=)
@
o'
(0]
(9]

be applied to non-absolutely convergent

ed function

o ,

which is not the case with

Also that when both the Borel and Lebes

have the seme value.

The Denjoy integral is a

interral. Before stating the

orinciples of construction whi

1. In any subinterval
~iven measurable function
sense the Denjoy inte al
Lebesgue. The same sheAl

2, If the integral D

63. Ibid., 201.
64. Townsend, op. cite., 331.
5. Ibid., 328-330.
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