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1V 

I N T R O D U C T I O N 

Any student of mathematics is fa.miliar with the importance 

of the process of integration. Integration is as fundamental 

to analysis as the basic principles of the number theory are to 

arithmetical calculation. Some of the common applications of 

integration are, finding the distance a falling body has trav-

elled during a particular interval of time; to determine the 

equation of a curve, given different conditions (such as slope 

of the curve equal numerically to one-half the abscissa, or 

some similar problem); motion of a projectile; motion in a re-

sisting medium; finding areas and volumes of revolution; length 

of a curve; areas of surfaces of revolution; work of expanding 

gases; and numerous other practical uses. 

With these many useful applications in mind, the author 

chose the problem of studying the various methods of integra-

tion. It is his earnest desire to learn more about the theory 

of this interesting subject and to summarize briefly the more 

familiar definitions of the Riemann and Lebesgue integrals and 

then to consider less familiar modifications of these defini-

tions. Because of the wealth of material on these subjects, 

it will be necessary to reduce the discussion of each integral 



to a minimtnn. Several important existence theorems will be 

proven for the Riemann and Lebesgue integrals; followed by 

a comparison of these two definitions. In discussing the 

modifications of the above definitions, the author will show 

the difference between the modification and previous defini-

tions . Lastly, he will offer the opinions of several out-

standing Ill.athematioians of the present time regarding the 

possible trend of integration in the future. 

In examining the abstracts of theses available in this 

library and that of the University of Kansas, the author 

found only one thesis previously written on integration, and 

that was a Doctor's thesis written on the nstieltjes integral." 



CHAPTER I 

A Historical Development of Integration 

A historical development of Integration would be an in-

coherent treatise if the author tried to compile data on 

that subject alone without treating the related subject of 

differentiation . Because of the close correlation between 

the Integral and Differential Calculus, the author will at-

tempt to give a historical development of the tvro combined, 

stressing t he integration where this will not affect the con-

tinuity of the discussion. 

Zeno of Elea1 (450 B. C. ) was one of the first to intro-

duce problems that led to a consideration of infinitesimal 

magnitudes . He argued that motion was impossible for this 

reason: 

Before a moving body can arrive at its destination 
it must have arrived at the middle of its path; bef ore 
getting there it must have accomplished the half of 
that distance, and so on ad infinitum: in short, every 
body, in order to move from one place to another, must 
pass through an infinite number of spaces, which is im-
possible.2 

1 . Smith , History of Mathematics, II, 667. 
2. Ibid,, 677 taken from George J . Allman, Greek Geometry 

from Thales to Euclid, 55 . 



Leucippus (c 440 B. c.) and Democritus (460-370 B. c.) 

are generally considered as the founders of the atomistic 

school, 3 which taught that magnitudes are composed of indi-

visible elements in finite numbers. It was this philosophy 

that led Aristotle4 (340 B. c.) to write a book on indivisible 

lines in which he tried to show the mathematical and logical 

impossibility of this process. This book is also attributed 

to Theophrastus. 

Antiphon (c 430 B. C.) is one of the earliest writers 

whose use of the method of exhaustion is fairly well known 

to us. This method of emaustion was to inscribe a regular 

polygon in a circle and then, by bisecting the sides of the 

polygon and their subtended arcs, to double the ntmi.ber of 

sides until the perimeter of the polygon approached the cir-

cumference of the circle as its l..i.mit; thus exhausting the 

area between the polygon and the circle. This method of ex-

haustion was widely used by early Greek mathematicians. Later 

the polygon was circumscribed "to double" by continually doub-

ling the number of sides until the perimeter became a circle. 

This was an early idea in the theory of limits which later was 

so important in the development of the calculus. Eudoxus of 

Cnidus5 (408-355 B. c.) is probably the one who placed the 

3. Ibid., 677 et. seq. 
4. Allman, Greek Geometry from Thales to Euclid, 56. 
5. Smith, op . cit . taken from Heath, Euclid, II, 120. 



theory of exhaustion on a scientific basis. His method de-

pends on the proposition6 that ttif from the greater of two 

magnitudes there be taken more than its half, and from the 

remainder more than its half, and so on, there will at length 

remain a magnitude less than the least of the proposed mag-

nitudes." In his definition he excludes the relation of a 

finite magnitude to a magnitude of the s8l!le kind which is 

either infinitely great or infinitely small. It is in this 

definition and the related axiom that Dr. Allman finds a 

basis for the scientific method of exhaustion and discerns 

the probable influence of Eudoxus. 

It is to Archimedes himself (225 B. c.) that we owe the 

nearest approach to actual integration to be found among the 

ancient Greeks. 7 It would seem that Archimedes' mode of pro-

cedure8 was, to start with mecha ics (center of mass of sur-

faces and solids) and by his infinitesimal-mechanical method 

to discover new results for which later he deduced and pub-

lished the rigorous proofs. His first noteworthy advance to-

ward calculus was concerned with his proof that the area of a 

parabolic segment is 4/3 of a triangle with the same base and 
9 

vertex, or two-thirds of the circumscribed parallelogram. 

6. Ball, A short account of the history of Mathematics, 45. 

7. Ibid., 679 taken from Heath, Works of Archimedes, cxlii 

and other valuable references. 
8. Cajori, A History of Mathematics, 36. 
9. Smith, op. cit., 679. 



This was shown by continually inscribing in each segment be-

tween the parabola and the inscribed figure a triangle with 

the same base and the same height as the segment. If A is 

the area of the original inscribed triangle, the process 

adopted by hilll leads to the summation of the series 

A + ¼A -t- (¼)2A -t- (¼) 3A -r 

or to finding the value of 

A[} -t- ¼ + (¼)2 + (¼)3 -t --J, 
so that he really finds the area by integration and recog-

nizes, but does not assert, that (¼)n~ 0 as n-ltOO, this be-

ing the earliest e:xample that has come down to us of the sum-

mation of an infinite series. 

The only traces we have of an approach to calculus in 

the Middle Ages are those relating to mensuration and to 

10 graphs. The idea of breakiug up a plane surface into in-

finitesilllal rectangl~s was probably present in the minds of 

many of the mathematicians of the time , but it was never e-

laborated into a theory that seemed worth considering. Jehudah 

Barzilai, 11 a Jewish writer living in the thirteenth century, 

asserts that 

nrt has been said that there is no form in the world 
except the rectangle, for evel""J triangle or rectangle 

10. Ibid., 684. 
11. Ibid., 684, 685 taken from Safer Jezira, Connnentary by 

Judah ben Barzilai , 255. 



is composed of rectangles too small to be perceived 
by the senses." 

Oresme12 ( o 1360) took the next important step in the 

preparation for the calculus of the Middle Ages. His meth-

od of latitudes and longitudes gave rise to what we would 

now call a distribution curve or graph . This step is funda-

mental to the modern method of finding the area included be-

tween a curve and certain straight lines . 

Even as late as the middle or end of the sixteenth cen-

tury no marked progress in calculus had been made from the 

time of Archimedes . 13 Statistics (of solids) and hydrostat-

ics remained in much the state in which he had le.f't them, 

while dynamics as a science, did not exist. As is usual in 

such cases, it is impossible to determine with certainty to 

whom credit belongs, in modern times, for first making any 

noteworthy move in calculus, but it is safe to say that Simon 

Stevinus14 (1586) is entitled to serious consideration. His 

contribution is seen particularly in his treatment of the 

subject of the center of gravity of various geometric figures, 

anticipating, as it did, the work of several later writers. 

Following the time of Stevinus the brightest and most 

12. Ibid., 319. 
13 . Ball, .52• cit ., 244. 
14 . Smith, .2.E.• cit . , 685. 



br illiant mathe1natioians bent the force of their genius in 

a direction which finally led to the discovery of the infin-

itesimal calculus by Newton and Leibniz . 15 Kepler, Cavalieri, 

Roberval , Fermat , Descartes , Wallis and others had each con-

tributed to the new Cartesian geometry. So great was the ad-

vance made , and so near was their approach toward the inven-

tion of infinitesimal analysis , that both Lagrange and Laplace 

pronounced Fermat to be the first inventor of it . The differ-

ential calculus , therefore, was not so much an individual dis-

covery as the grand result of a succession of discoveries by 

different minds . 

What is considered by us as the process of differentia-

ting was known to quite an extent by Isaac Barrow16 (1663), 

a teacher of Isaac Newton. Barrow gave a method of tangents 

in which , in the annexed figure, ~ig . I, Q approaches Pas in 

our present theory, the result being an indefinitely small arc. 

Fig . I . 

T 

15 . Cajori, .2.E.• cit., 191 et . ~-
16. Smith,~· cit . , 690, 691 . 



It is quite probable that Barrow advised Newton of this fig-

ure as early as 1664. 17 Pascal had already published a fig-

ure of somewhat the same shape. The triangles given by both 

Barrow and Pascal were apparently known to Leibnitz and helped 

him in developing his own theory. 

In 1665 and 1666 Isaac Nevrton18 conceived the method of 

fluxions and applied them to the quadrature of curves. In 

his youth Newton studied Descartes' Geometry before he read 

Euclid. Thus, Descartes laid the foundation for Newton to 

build the calculus. Newton assumed that all geometrical mag-

nitudes might be conceived as generated by continuous motion; 

thus a line may be considered as generated by the motion of a 

point, a surface by that of a line, and so on. 19 The quantity 

so generated was defined by him as the fluent or flowing quan-

tity. The velocity of the movinc body was defined as the flux-

ion of the fluent. In accordance with Nevrton's treatment of 

the subject there are two kinds of problems. The object of 

the first is,the relation of the fluents being given, to find 

the relation of their fluxions. This is the equivalent to 

differentiation. The object of the second method of fluxions 

is, from the fluxioh, or some relations involving it, to de-

tennine the fluent. No account of Newton's method was pub-

lished until 1693, though its general outline was known by his 

17. Ibid., taken from Child, Leibniz Manuscripts, 11 . 
18. Cajori, .££• cit., 192. 
19. Ball,.££• ill•, 344 et.~· 



friends and pupils before that time. 

L G S . 20 t . t t. ao • JJD.ons presen s an in eres ing discussion of 

the adoption of the method of fluxions in American schools. 

His study shows the almost complete dominance of the great 

Nev.ton himself in .American schools as far as the subject of 

fluxions is concerned. By the end of the first quarter of 

the nineteenth century, the catalogue of at least one college, 

Yale., shows that fluxions had been accorded a place among 

electives for the student body. 

Leibniz21 observed, in the study of Cartesian geometry., 

the connection existing between the direct and inverse prob-

lems of tangents. In 1673, while working upon the problems 

of tangents and quadratures, he invented a notation which was 

original and at the same time was generally more usable than 

that of Newton.,--the "differe,1tial notation." He proposed to 

represent the sum of Cavalieri's indivisibles by t he symbol 

J ., the old form of s, the initial of summa, using this with 

Gavalieri's omn. (omnia), to represent the inverse operation 

by d . By 1675 he had settled this notation, writing f y dy = 
1 2 
2 y as it is written at present. He published this method 

in 1684 and 1686 in Acta Eruditorium., a Berlin Journal, speak-

ing of the integral calculus as the calculus sunnnatorius. In 

20. Simons, The adoption of the method of Fluxions in American 
schools, 207 et. ~ -

21 . Cajori, .2.E.• cit . , 207 . 



1696 he adopted the term calculus integralis, which name was 

decided upon with the help of Johann Bernoulli. 22 Leibniz' 

method of differences eventually supplanted, both in concepts 

and symbols, the fluxions of Newton. 23 

The early distinction between the systems of Newton and 

Leibniz lies in this, that Newton, holding to the conception 

of velocity or fluxion, used the infinitely small increment 

as a means of determining it, while with Leibniz the relation 

of the infinitely small increments is itself the object of de-

termination.24 The difference between the two rests mainly 

upon a difference in the mode of generating quantities. 

The dispute between the friends of Newton and those of 

Leibniz as to priority of discovery was bitter and profitless. 

Even after the death of Leibniz in 1716 the controversy was 

bitterly debated for many years ater. During the eighteenth 

century the prevalent opinion was against Leibniz but today 

the majority of writers are inclined to think that the inven-

tions of Newton and Leibniz were independent. 25 An unfortunate 

result of this controversy was that until about 1820 the Brit-

ish mathematicians were ignorant of the brilliant mathematical 

discoveries on the continent. In 1813 the "Analytical Society" 

founded by Peacock, Herschel, and Babbage eliminated the flux-

22 . Smith, .QE.• cit . , 696. 
23 . Simons, .2.E.• cit., 207. 
24 . Cajori, .2.E.• cit . , 197 . 
25. Ball, op. cit., 361. 



ional notation of the calculus and opened to English students 

the vast storehouses of the continental discoveries. 

In the seventeenth century a native calculus, yenri26 

(circle principle), was developed in Japan. This native cal-

culus thought to have been invented by the great Seki Kowa was 

an application of series to the ancient method of exhaustion. 

Outstanding mathematicians of the period from 1730 to 
27 

1820 were Euler, Lagrange, Laplace and Legendre. Briefly 

Euler extended, summed up and completed the work of his prede-

cessors; while Lagrange developed the infinites imal calcu l us 

and theoretical mechanics, and presented them in forms similar 

to those in which we now have them. At the same time Laplace 

made some additions to the infinitesimal calculus and applied 

that calculus to the theory of universal gravitation; he also 

created a calculus of prob bilities. Legendre published three 

works of elliptic integrals. 

Men of note in the field of calculus for t he period fol-

lowing 1820 might include Cauchy, Abel, Riemann, Weier strass, 

DeMorgan and many others. Due to the increasing number of 

mathematical contributors in the latter part of the nineteenth 

century and early part of the twentieth century, the author 

will not attempt to trace the calculus further historically. 

Any further historical material needed in the development of 

26. Smith and Mikami, A History o~ Japanese Mathematics, 
143 et. ~· 

27. Ball, .2.P.• cit., 392. 



this thesis will be added with the corresponding modification 

of the definition of integration. 



CHAPTER II 

Integration Defined and Explained 

The differential and integral calculus have to do 
with three fundamental notions 28 associated with func-
tions, to which are due most of the applications of 
the function theory in geometry, mechanics, and phys-
ics , as well as other branches of science . These 
three conceptions are called the derivative, the anti-
derivative or indefinite integral , and the definite 
integral. 

Two main types of problems of the differential calculus 

are construction of tangents to curves, and determination of 

the rate of change of a quantity. The fundamental definition29 

of the differential calculus is: 

The derivative of a funct·on is the limit of the ra-
tio of the increment of the function to the increment of 
the independent variable, when the latter increment var-
ies and approaches the limit zero. 

When the limit of this ratio exists, the function is 

said to possess a derivative. The above definition may be 

given in a more compact form symbolically as follows: Given 

II - 1 y = f(x) 

and consider x to have a fixed value. Let x take on an in-

28 . Young , Monographs on topics of modern Mathematics relevant 
to the elementary field, 285, article by Gilbert A. Bliss . 

29. Granville , Elements of the Differential and Integral Cal-
cull!!_, 21 , 22 . 



crement Ax; then the function y takes on an increment A y, 

the new value of the function being 

II - 2 y + ~ y = f(x + Ax). 

To find the increment of the function, subtract II - 1 

from II - 2 giving 

II - 3 

II - 4 

/l y = f(x + Lh ) - f(x) 

Dividing by the increment of the variable, .Ax, we get 

A y _ f(x + tl x) - f(x). 
A x t;,. x 

The limit of this ratio when l:lx approaches the limit 

zero is, from our definition, the derivative which is denoted 

by the symbol dy/dx . Therefore 

II - 5 
dy 
dx 

limit f(x + 6 x) - f(x) 
x -+o Ax 

defines the derivative of y Gr f(x] with respect to x if 

the limit exists. 

From II - 4 we also get 

dy limit Ay 
dx x -=t o ~ x 

The process of finding the derivative of a function is 

called differentiation. It should be carefully noted that 

the derivative is the limit of the ratio, not the ratio of 

the limits . The latter ratio would assume the form o/o, which 

is indeterminate . Since A y and A x are always finite and 

have definite values, the expression !tis really a fraction. 



The symbol dy/dx is to be regarded not as a fraction but as 

the limiting value of a fraction. 

Derivative is best brought out by considering the con-

struction of the tangent to a curve. 3° Constructing the 

Fig. II 

Q 

parabola y = x~ Fig. II, we wish to show the construction of 

a tangent to this curve at the point P. Let Q be any point 

on the parabola distinct from P. Join P to Q by a straight 

line, secant. Now let Q come closer and closer to P without 

reaching it . As Q approaches P the secant will rotate about 

P and will tend to coincide with a line through P which touches 

the parabola at P without cutting across the parabola. This 

line is tangent to the parabola at P. Q cannot come in coin-

cidence with P, otherwise there could be no straie;ht line. 

By the slope of a line we mean the trigonometric tangent 

of the inclination of the line. The slope of the secant PQ 

has for a limit, as Q approaches P, the slope of the tangent 

30. Ritt, Differential and Integral Calculus, article in En-
cyclopedia Britannica Vol. IV, 555, 556. 



at P. If PM and QM are perpendicular~ Fig. II, the slope of 

QM 
PQ is N· 

This brings us to a further conception of the derivative. 

Let y = f(x) be any continuous function of x which is graphed 

in Fig. III. We choose any value for x and keep it fixed. To 

the fixed 
Q 

AY 

Fig. III y 

X 

value of x corresponds a fixed value of Y• This gives a fixed 

point Pon the graph of coordinates (x,y). Now take any point 

Q of coordinates (:x + Ll x, y -t- A y). As Q approaches P, the 

ratio ~ will approach a definite limit, the slope of the tan-
A x 

gent to the graph at P. The limit of~ is called the deriva-

tive of f(x) for the value of x. Thus the deriva.tive is the 

slope of the tangent to the graph. The derivative of the con-

tinuous function y = f(x) is represented, for any value of x, 

by dy/dx. 

Various treatises on calculus show how to differentiate 

all types of expressions by using formule.s. The general form-



ula for differentiating a problem of type y = x2 is 

Derivative of~= ruc:11-i, , for all values of n. 

If y is a constant, then , for every (1 x, y -t-A y = y, so 

that Ay = O. Hence ~ is always zero, so that according to 

the definition of the limit of a constant quantity, dy/dx is 

also zero . This is brought out geometrically by the fact that 

the graph of a constant is a horizontal line, so that the tan-

gent to the graph at any point which is the graph itself , has 

a zero slope. We see that two functions which differ by a 

constant, for instance x2 and x2 + 2, have the same derivative. 

This is fundamental in connection with integration. 

One of the more important applications of differentia-

tion is the solution of problems of mixima and minima. Con-

sider the continuous function y = f(x) which has a derivative 

for every x, Fig . IV. At . point such as A, at which the con-

tinuous function is a maximum, or at e. point such as B, where 

A 

Fig . IV 

B 

the function is a minimum, the tangent is horizontal, the slope 

of the tangent is zero . This fact could be proved as follows: 



Let the abscissa of A, be a, and suppose that dy/dx is not 

zero for x = a. Let us suppose that dy/dx is positive to a. 

When Ll x is small, is very nearly equal to dy/dx. If 

Ax. is small, ~ ; is positive, like dy/dx. If ~ xis small 

and positive, 4 y must be positive, for if Ay were zero or 

t . AY ld b t· nega ive, A x wou e zero or nega ive. Since the function 

is continuous and has a continuous derivative, dy/dx can't be 

infinity. Therefore a point on the graph to the right of A 

must have a greater ordinate than A, so that y cannot be a 

maximum for x = a. This absurdity shows that dy/dx = O for 

X = a. 

We next undertake a study of the second fundamental no-

tion of the calculus, that of the anti-derivative or indefin-

ite integral. In differential calculus we were chiefly con-

cerned in finding the derive Jives of given functions. We shall 

now consider the inverse operation; 31 that is, having given a 

function f (x), to find another function f(x) such that Dx f(x) 

= 'f'x. This inverse operation is called the anti-derivative 

or integral of the given function. The function integrated is 

called the integrand. 

Literally the word integration comes from the Latin "in-

tegratio" meaning a renewing , a restoring. Webster's diction-

ary defines integration as 

31. Townsend and Goodenough , Essentials of Calculus, 101. 



the inverse of the differentiation or derivation; also 
the doctri:ri.e of the limit of a sum of infinitesimals of 

which the ntunber increases while the magnitude of each 
decreases; both without limit, but according to tome 
law. 

J. I. Hutchinson32 defines integral calculus as 

a branch of infinitesimal calculus treating of the 
methods of deducing relations between finite values of 
variables from given relations between contemporaneous 
infini tesima.l elements of those variables. Its object 
is to discover the primitive function from which a 
given differential coefficient has been derived. This 
primitive function is called the integral of the pro-
posed differential coefficient, and is obtained by the 
application of the different principles established in 
finding differential coefficients and by various trans-
formations. To illustrate: with the integral calculus 
one may discover the relations connecting finite values 
of variables, as x and y, from the relation connecting 
their differentials, as dx and dy. Thus, integral cal-
culus is the doctrine of the limit of the sum of infin-
itesimals of which the number increases while the :mag-
nitude decreases, both without limit, yet according to 
some law ••••• The sign of integration is "f II which is 
a form derived from the old or long "s." It is the in-
itial of the word ''sum, 11 and came into use owing to the 
conception that integrat: ?n is the process of summing 
an infinite series of infinitesimals ••••• With the in-
tegral calculus a mathematician endeavors to transform 
the given expressions into others which are differen-
tials of known functions and thus deduce formulas which 
may be applied to all similar forms. 

It is the universal custom to denote integration by 

placing the symbol f before the differential. Since 

d(x3 ) = 3x2 dx 

we write J3x2 dx = x3 +- C where C is an arbitrary 

constant. The differential dx indicates that xis the inde-

pendent variable. 

32. Hutchinson, Integral calculus, article in Encyclopedia 

Americana Vol. XV, 202 . 



33 
Our problem now becomes: "Having given the differ-

ential of a function , to find the function itself . " Since 

i ntegration and differentiation a.re inverse operations it 

follows that 

since = 3x2 dx , we have [ 3x2 dx = x3. , 

since d(x3 + 2) - 3x2 dx , we have J 3x2 dx - x3 + 2; 

since d(x3 - 7) - 3x2 dx, we have J 3x2 dx - x3 - 7. 

In fact, since d(x3 +- C) = 3x2 dx where C is any arbitrary 

constant, we have 

J 3x2 dx = x3 -t C 

where C is a constant of integration independent of the var-

iable of integration. Since we can give C as many values as 

we please, it follows that if a given differential expression 

has one integral, it has infinitely many differing only by 

constants . Hence 

f f' (x) dx : f(x) -t- C; 

and since C is unknovm and indefinite, the expression 

f(x) + C 

is called the indefinite integral of f'(x) dx. 

If cf> (x) is a function the derivative of which is f(x), 

then f (x) + C , where C is any constant whatever, is likewise 

a function the derivative of which is f(x). Hence the theorem: 

If two functions differ by a constant, they have 

the same derivative. 

33 . Granville, .2.£• cit., 189 et.~· 



The word indefinite refer s to the fact that an arbitrary 

constant is involved in the integral . 

Our discussion next brings up the definite integral. Be-

fore beginning the eJCl)lanation of the definite integral it is 

necessary to prove 

that the differential of the area bounded by any eu:rve, 
the x-axis , and the two ordinates is equal to the product 
of the ordinate terminating the area and the differential 
of the corresponding abscissa . 34 

Consider the continuous function t/' (x) and let 

y = </> (x) 

be the equation of the curve AB, Fig . V. 

Let CD be a fixed and W.tP a variable ordinate, and 
let u be the measure of the area CMPD. When x takes on 

y 

Fig . V 

X 

a sufficiently small increment A x, u takes on an in-
crement Au(= area MNQP) . Completing the rectangles 
:MNRP and MNQS, we see that area MNRP < area MNQP area 
MNQS 

34 . Ibid . , 237- 239 . 



or , MP. 6 x <A u< NQ. A.x; 
and dividing by llx, 

MP < Au <NQ ,a x 
If MP happens to be ') NQ , we simply reverse the inequality 
signs . 

Now let L).x -Jt O as a limit; then since MP remains fixed 
and NQ approaches MP as a limit (since y is a continuous func-
tion of~., we get 

du/dx : y (=MP), 
or using differentials , 

du: ydx . 
which proves the theorem. 

II- 6 

Now if y : <p (x) 
then du= ydx, or 

du = </> (x) dx., 
where du is the differential of the area between the curve, 
the X- axis , and any two 07inates . Integrating II-6 we get 

u = 'f> (x) dx 
j 'f (x) dx exists as an area, we denote it by Since 

f(x) -t C 
II- 7 Therefore u = f(x) + C 

We may determine C if we know the value of u for some 
value of x . If we agree to reckon the area from the axis of 
y, that is, Fig . VI, when 

y 

p 

Fig . VI 
G 

X 
0 a --,C M E 

b 

II - 8 X = a, u = area OCDG 
and when X = b, u = area OEFG, etc., it follows that 
II - 9 if X = O, then u = o. 
Subst ituting II-9 in II- 7 we get 

0:f(0)+c, or C = -f(O) 
Hence from II-7 we obtain 
II - 10 u = f(x) - f(O) 



giving the area from the axis of y to any ordinate 
(as MP) . 

To find the area between the ordinates CD and EF, 
substitute the values II- 8 in II- 10, giving 
II - 11 area OCDG : f(a) - f(O). 
II - 12 area OEFG = f(b) - f(O). 

Subtracting II - 11 ·from II - 12, 
II - 13 area CEFD = f(b) - f(a) 
Theorem: 

The difference of the values of f y dx for x = a and 
x = b gives the area bounded by the curve whose ordinate is 
y, the X-axis and the ordinates corresponding to x: a and 
X: b. 
This difference is represented by the symbol 

II - 14 f: y dx, or </> (x) dx, 

and is read "the integral from a to b of y dx . 11 The oper-
ation is called integration between limits, a being the 
lower and b the upper limit. 

Since II - 14 always has a definite value, it is called 
a definite integral. (.For if 

Jf (x) dx - f(x) + C, 

then fa f (x) dx = lf(x) -r fl~ 
- fr(b) -t- gJ - U-(a)-t- ~, ra f (x) dx = f(b) - f(a) 

the constant of integration having disappeared. 
We may accordingly define the symbol 

.?a <p (x) dx o1 y dx 

as the numerical meaJure of the area bounded by the curve 
y : </> (x). the X- axis, and the ordinates of the curve at 
x = a, x = b . This definition presupposes that these lim-
its bound an area, that is, the curve does not rise or fall 
to infinity, and both a and bare finite. 

The process of calculating the definite integral may be 

sunnned into two steps, first to find the indefinite integral 

of the given differential expression, and secondly to substi-

tute in this indefinite integral first the upper limit and 

then the lower limit for the variable, and subtract the last 

result from the first . The constant of integration need not 



be introduced, because it always disappears in subtracting. 

Woods35 gives a graphical discussion of the method of 

obtaining the definite integral and then proves the existence 

of the limit under certain conditions . The graphical discus-

sion only wi l l be taken up in this treatise . 

In the interval a ~ x b, Fig . VII, assume n points 

ing (a , b) into 

Fig. VII 

n smaller intervals . In each interval take x = Ei, where xi-1 

< - Ei = xi, and fonn the sum 

II - 15 f(Ei+l) (xi+l - xi) = f(E1 ) (x1 - a) + f(E2 ) 

(x2 - x1 ) ;- •• • ;- f(En) (b - "n-l). 

Now let n increase indefinitely while each of then in-

tervals (xi~l - xi) approaches zero. If II - 15 approaches a 

limit independent of the choice of x1 or Ei, that limit is 

called the definite integral of f(x) between a and band is de-

noted by fa f(x) dx 

It may be ma.de graphically plausible that the limit ex-

ists if f(x) is continuous and a and bare finite . If f(x) is 

expressed as a graph, we have a figure like Fig . VIII. 

35 . Woods, Advanced Calculus , 134-137. 



y 

Fig . VIII 

0 b X 

The sum II - 15 represents the sum of the rectangles 

of the figure, and it seems obvious that the limit of the 

sum is the area bounded by the curve, the X-axis, and the or-

dinates x: a, and x: b. 

Also, if f(x) has a finite number of finite discontinu-

ities, but a and bare finite, as in Fig. IX, the area and 

the integral seem to exist. 

y 

Fig . IX 

0 a b X 

As in the differential calculus different authors give 

formulas for integration . In some cases they represent an i n-



tegral which has already been evaluated, and in other cases 

they are the result of an integration by parts. In all cases 

they can be varified by differentiating both sides of thee-

quation. 

The integral calculus treats of two classes of problems. 36 

It first deals with problems as: the amount of area enclosed by 

a curve, the length of a curve, or the amount of volume enclosed 

by a surface; and secondly the determination of a variable quan-

tity when the law of its change is known. 

A:n example of the first class of problems has already 

been worked out in this treatise in connection with Fig . VI. A 

good example of the second type would be the problem of finding 

a formula for the distance through which a body, under the in-

fluence of gravity , falls, in any period of time . Let the body, 

initially at rest, be allowed to fall. If g is the acceleration 

of gravity, (32 ft./ sec. 2 ) the body will, int seconds, acquire 

a speed of gt feet per second. Let S be the distance through 

which the body falls int seconds. Then 

ds - gt Qt -

s - f gt dt 

2 
s = ~+-C 

2 

To find the constant C, we observe that S: 0, when t = O. 

Then 
2 

o = go +c so that c - o. 
2 

36. Ritt, op. cit., article in Encyclopedia Britannica Vol. IV, 

557,558. 



Hence, = gt2 
S - 2- for every t. 

Ba1137 gives a very excellent summary of the preceding 

discussion: 

Wherever a quantity changes according to some contin-
uous law--and most things in nature do so change--the dif-
ferential calculus enables us to measure its rate of in-
crease or decrease ; and, from its rate of increase or de-
crease, the integral calculus enables us to find the or-
iginal quantity. Formerly every separate function of x 
such as (1 +x)n, log (1 -t- x), sin x, tan-lx, etc. could 
be expanded in ascending powers of x only by means of such 
special procedure as was suitable for that particular prob-
lem; but by the aid of the calculus, the expansion of any 
function of x in ascending powers of xis in general reduc-
ible to one rule which covers all cases alike. So again, 
the theory of maxima and minima, the determination of the 
lengths of curves and the areas enclosed by them, the de-
termination of surfaces, of volumes, and of centers of mass, 
and many other problems, are each reducible to a single 
rule. The theories of differential equations, or the cal-
culus of variations, of finite differences, etc., are the 
developments of the ideas of the calculus. 

37. Ball, .QE.• cit., 265. 



CHAPTER III 

The Riemann Integral 

As stated in Chapter II, the integral calculus arose 

from attempts to find the lengths of curves, the area of 

curved or convex surfaces and the volume of irregular solids . 

The elementary properties of an integral show the integral 

first considered as the inverse process of differentiation 

and later as the limit of the sum of an indefinitely large 

number of small elements . The first notion38 was used to 

evaluate the integral, the latter was best used in setting 

up an integral from given data 

A rigorous treatment of the integration notion dates 

from the time of Cauchy and Riemann . The definition of Cau-

chy covered the case for continuous functions . Riemann ex-

tended the Cauchy definition to bounded functions, and he al-

s o set up the condition for the existence of such an integral . 

Later the definitions of Lebesgue , Stieltjes, Young and oth-

ers extended the Cauchy-Riemann definition to make it appli-

cable to unbounded functions and to integration over unbounded 

38 . Townsend, Functions of Real Variables, 198. 



intervals. The Cauchy-Riemann definition is the one commonly 

employed in elementary analysis and in the applications to the 

physical sciences. The Riemann integral will probably contin-

ue to be the basis upon which practical applications of the in-

tegral calculus rest . 39 

The author will set up the definition of the Riemann in-

tegral and prove some existence theorems for this integral. 

Let f(x) be a bounded function, defined for the interval (a,b). 40 

Suppose this interval to be divided by the insertion between 

a( = x0 ) and b( = Xn) of the intennediate points 

Fonn the sum 

n 

where Ek is any point in the interval (xk - ~-l) = 6 kx . 

The Riemann integral may now be defined as the limit 

III - 1 L n 
A--l Ok ~ l 

providing the value of this limit is independent of the manner 

of inserting the intennediate points o, and ti. is the largest 

of the A kx's, frequently called the norm of the given set of 

39 . Hobson , The Theory of Functions of a Real Variable and 
the Theory of Fourier's Series, 1 1 460. 

40. Townsend , op. cit . , 198, 199. 



intervals. As A approaches zero, n becomes infinite. Sym-

bolically the Riemann integral is represented by f ~ f(x) dx. 

In passing to the limit, we note that the number of points in-

serted in each subinterval increases indefinitely as the norm 

l!:,. approaches zero. 

This definition is equivalent to saying that for every 

arbitrarily small positive number e there exists a positive 

number d, depending one, such that for every choice of Ek in 

the interval .6 0 and for every subdivision whose norm satis-

fies the condition /1 <. d, we have 

\J~ f(x) dx - l! f(Ek) l1 kx <. e 

The function f(x) as defined is bounded in the given in-

terval and the limits of integration are both finite. Integrals 

arising under these conditions are called finite or proper in-

tegrals. 

The investigation of the necessary and sufficient condi-

tions that the bounded function f(x) may have an R-integral in 

(a,b) is simplified by the introduction of the upper and lmver 

R-integrals of the function f(x) in the interval (a,b). 

Darboux first introduced the upper and lower integrals 

and rigorously defined them. 41 Denote by Lk and lk respective-

ly the least upper bound and the greatest lower bound of f(x) 

in the interval ~kx : ( - xk-l). Form the two sums 

41. Ibid., 200 footnote et. ~· 



The values of S(o), li(o) depend upon the manner in which the 

given interval (a , b) is subdivided by the insertion of the 

intermediate points o. However for every method of subdi-

vision we have 

III - 2 S(o) l(b - a) , .§_(o) } L(b - a), 

where L, 1 are respectively the least upper bound and the 

greatest lower bound of f(x) in (a,b) . The aggregate of val-

ues which S(o) may have by all possible methods of subdivision 

of (a,b) by the insertion of intermediate points has a great-

est lower bound which we call the upper integral of f(x) in 

the interval (a,b) . Likewise the sum ~(o) has for all possible 

subdivisions of (a,b) a least upper bound which is called the 

lower integral of f(x) in (a,b) . We shall denote these inte-

grals by 

Jba f(x) dx, 5: f(x) dx, respectively 

Theorem: If f(x) is bounded in the interval (a,b), then 

s(o) = s~ f(x) dx, L 2_(0) : s: f(x) dx. 

A~ o 

By different ways of inserting the intermediate points o 

in the given interval (a,b) we have different sets of subinter-

vals l1 k and may obtain different sums S( o) . As mentioned be-

fore , the aggregate of values S(o) has the upper integral 

5: f(x) dx for its greatest lower bound . We show that 



-
III - 3 L S(o) 

t:J.~ o -- J ba f(x) dx, 

A being the norm of the Ak' s for any method of subdivision. 

Since s: f(x) dx is the greatest lower bound of s(o) for 

all possible method of subdivision of the given interval, it 

follows that we can find a particular method of subdivision for 

which the sum 

satisfies the relation 

S( o ) <Sb f(x) dx +- e/2 
0 a III - 4 

where e is an arbitrarily small positive number and dk is the 

length of the subinterval. 

Taking any other method of subdivision, we can so select 

the points o, and hence ll. k = xk - xk-l' that for this new meth-

od of subdivision the norm /l. shall be small enough to satisfy 

the inequality 

III - 5 (m + l) L • A< e/2, 

where as before Lis the least upper bound of f(x) in (a,b). 

Some of the resulting intervals Ak may lie wholly within a dk 

interval while others may contain portions of two or more of 

the dk intervals. Those A. k intervals falling in the first 

class contain no end-points of a dk interval, while those of 

the second class each contain at least one end-point of a dk 

interval . There can not be more than (m +- l) of the k inter-

vals of the second class and from the above inequality these 



contribute less than e/2 to the sum S(o0 ) . For each of the 

d k intervals of the first class we obtain a product ½c /l k' 

which is less than the corresponding product that enters into 

the sum S(o0 ) . Consequently from III - 4 we have for all meth-

ods of subdivision of (a,b) and for every arbitre.ril;y- small 

value e 

S(o) 5~ f(x) dx 

But since Jba f(x) dx is the gree.test lower bound of S( o), this 

relation is equivalent to the saying that 

L S(o) = 5-b f(x) d.x. 
A....:t o a 

Since this limiting value is independent of the method 

by which the given interval is subdivided by the insertion of 

intermediate points , the theorem follows . A similar proof 

would establish the existenc€ of the lower integral. 

We shall next consider the conditions which must be im-

posed upon the function f(x) in order that the limit 

. t 42 may exis. 

L 
A~o 

Theorem (a) . Given a function of f(x) which is bounded 

in the interval (a,b) . 

that the integral Sba 

42 . Ibid., 209, 210 . 

.A necessary and sufficient condition 

f(x) dx exists is that 



J b f(x) dx = J b f(x) a _ a dx. 

This condition is sufficient because on consideration 

of the inequality, 

III - 6 ~(o) S(o) S(o), 

where ~(o), S(o), S(o) have the values given them earlier in 

the chapter. Since by any subdivision we have 

L S(o) = Sb f(x) dx, L S(o) - S ba f(x) dx., 
L}.-...+,Q - - a d-to 

and since by hypothesis the upper and lower integrals are e-

qual., it follows from the theorem43 

If "/"' (x) and 'P (x) have the srune limiting value A as 
x approaches a, and if for e.11 values of x in a sufficient-
ly small neighborhood of a, we have 

-Y,-(x) f(x) 'P (x)., 
then it follows that 

L f(x): A. 
x~ a 

Since the limits of L ,Y(x) ., L 'l' (x) exist and are equal 
x.-+a x -, a 

to A, we have for x suffieiently near a 
Y (x) =A ± e1 

'/> (x) = A ±" e2 
where e1 ., e2 are arbitrarily small positive numbers. Hence , 

for values of X sufficientlt near a, we have 
A ±. e1 f(x) = A ±. e 2 , 

or e1 f f(x) - A( ~ e2• 

Since this inequality holds for all values of x sufficient-
ly near a ( say for x such that Ix - af < d, it follows that 

f(x) - Af < e for Ix - a f< d, 
where e is an arbitrarily small number, and hence 

L f(x) = A. 
x~ a 

that the limit L S(o) 
A~ o 

exists and f(x) is integrable., the integral J: f(x) dx being 

the corronon value of the upper and lower integrals. 

43 . Ibid, 90., 91 . 



The given condition is also necessary. To show this, 

we have the condition that the limit 

L 
Ll40 

exists for all methods of subdivision of the given interval 

and for all values of Ek in A. 0 · It follows that the limit 

still exists if f(Ek) is replaced by the least upper bound Lk 

or by the greatest lower bound lk of f(x) in l1kx . When these 

values are substituted, we have the upper and lower integrals 

f(x) dx, J: f(x) dx, respectively, and their existence 

and equality follow as a consequence of the fact that they are 

special cases of the given limit . 

Theorem (a) could be stated a little differently by ad-

ding several definitions . The difference between the maximum 

and minimum of a function f(x, in an ~nterval (a,b), is called 

the oscillation off in (a,b). 44 It cannot ever be negative. 

Let n be any division of (a ,b) into subintervals of dk' of 

length dk. Let wk be the oscillation off in dk. 

i wk dk = J1.n (f, ab) 

The sum 

is called the oscillatory sum off for the division n. 

We have 

III - 7 S(o) - ~(o) . 

44 . Pierpont, Lectures on the Theory of Functions of Real Var-
iables, I , 341, 342 . 



Theorem (b) . In order that the limited function of f(x) 

be integrable in (a , b) , it is necessary and sufficient that 

III - 8 L fl (f , ab) = O. 
/1 -+O n 

For by III - 7 J1 ( f, ab) = S( o) - S ( o) . 
n -

By theorem (a), f(x) is integrable only when 

L S(o): L s(o) 
a -, o - D. o 

or when and only when 

L s(o) - L f(o): o. 
/j. 4 0 A--+o 

which proves III - 8. 

Theorem (c) . Given a function f(x) which is bounded in 

the interval (a,b) . A necessary and sufficient condition that 

the R- integral of f(x) exists in (a,b) is that this interval 

may be divided into partial intervals such that the sum of the 

lengths of those subintervals in which the oscillation of f(x) 

is equal to or greater than any arbitrarily chosen positive 

number N may be made as small as one pleases. 

Denote by S~ the sum of the lengths of the subintervals 

of (a,b) in which the oscillation of f(x) is equal to or great-

er than N, and let C(S 1 ) be the sum of the lengths of the re-
m 

maining subintervals of (a,b); that is, the sum of the lengths 

of those subintervals in which the oscillation is less than N. 

We may then write 

III - 9 Jl, n {I, ah}< N(b - a)+ s~. w, 



where w is the greatest value of the oscillation wk of f(x) 

in those subintervals included in S 1 • The value of w is finite 
m 

and cannot increase as the size of the intervals is decreased 

by making the norm A to approach zero. We have given 

si:i .(. e, 

where e is positive and_may be chosen arbitrarily small. We 

then have from III - 9 

where e1 is arbitrarily small. Since this relation holds for 

every arbitrary choice of N and e1 however small, we have 

L Jl [r, afil : O. 
A -+o n 

and f(x) is integrable by theorem (b). 

To show that this condition is also necessary, we assume 

that f(x) is integrable in ( ,b), and hence we have from the-

orem (b) 

III - 10 L IL I!, e.~ = o. 
~ ->to n 

However we may write 
n 

wkAkx ! N.S' + w.c(s 1 ) N.S' k't 1 m m m 

where w is the smallest value of wk for then subdivisions of 

(a,b). Substituting III - 10 in the last equation, we have, 

by passing to the limit, 

L fl fr, a~ -
6~o n L-



While N is arbitrarily chosen, it is greater than zero. Since 

both N and S~ are positive we must have 

L S~ = O; 
A~o 

that is, we have 

where e is arbitrarily small. 

Theorem (d). The necessary and sufficient condition that 

a bounded function may be integrable (R), in the interval for 

which it is defined, is that the points of discontinuity of the 

function form a set of measure zero. 45 

It is convenient to express this condition in the fonn 

that the function must be continuous almost everywhere in the 

interval. 

To show that the condition is necessary, let us consider 

the closed set Gk at which the saltus w(x), of f(x) is! k, 

where k is a positive number. If an interval d contain a point 

of Gk within it, the fluctuation of f(x) ind is~ k. If a 

point of Gk is the common end-point of two intervals, of equal 

length, the fluctuation of f(x) in one at least of these inter-

vals is? ½k; hence the part which these two intervals contrib-

ute to the sum 2! dF(d) is ½kd. If we have a net with equal 

meshes fitted on to (a,b), the contribution of all those meshes 

45. Hobson, op. cit., I, 465, 466. 



which conta.in , within them or at an end- point, a point of Gk, 

is not less than the product of ¾le into the sum of the breadth 

of these meshes . Unless the content of Gk is zero, the sum of 

the breadths of these meshes is greater than some fixed posi-

tive number, for all the nets of a synnnetrical system. It is 

therefore necessary for the existence of the R-integral that 

the content of Gk should be zero; and this must be the case for 

every positive value of k. The set of points of discontinuity 

of the function is the outer limiting set of Gkn, where~ is 

a sequence of diminishing values of k that converges to zero. 

It follows that the set of points of discontinuity of the func-

tion must have measure zero . 

To show that the condition is sufficient, we observe 

that, if the content of Gk is zero, all the points of Gk are 

contained within the intervals ~fa finite set the sum of 

whose lengths is < e. The intervals complementary to this 

finite set have a total measure > b - a - e , and at every 

point in each of them w(x) < k. In accordance with the the-

orem46 

If f(x) is bounded in the interval (a,b), and if 
k be a number greater than the upper boundary of w(x) 
in (a ,b), there exists a positive number alpha, such 
that in every closed sub-interval in (a,b) of length 
not exceeding alpha, the fluctuation f(x) is <. k. 

each of these complementary intervals can be divided into a 

46 . Ibid., 311 et . ~ -



number of parts, in each of which the fluctuation is < 2k. 

Let this be done for each of the complementary intervals. We 

nov, have a net fitted on to (a,b), such that the sum of the 

breadths of those meshes in which the fluctuation is? 2k is 

<. e. 

For this net l dF(d) < e(S - §_) + 2k (b - a - e),; and 

since k and e are both arbitrarily small, a net can be deter-

mined for which 2 dF(d) has an arbitrarily sma.11 value. The 

condition of integrability is therefore satisfied if, for ev-

ery value of k, Gk has content zero, that is, if the set of 

points of discontinuity of the function has measure zero. 

Theorem (e). If f(x) is continuous in the closed in-

terval (a,b), then the integral J~ f(x) dx exists. 47 

Since (a,b) is a closed interval, f(x) is bounded and 

the foregoing theorems apply. There are no points of discon-

tinuity, so the conditions of Theorem (c) are satisfied and 

the theorem follows. 

Theorem (f). A bounded function f(x) having a finite 

or enumerably infinite number of discontinuities is R-integ-

rable. 

As previously proven, every enumerable set is of meas-

ure zero. 

tegrable. 

It then follows from Theorem (d) that f(x) is in-

This theorem shows that a bounded function may be 

47. Townsend, op. cit., 213, 214. 



discontinuous at the set of rational points and still be in-

tegrable, providad it is continuous at the irrational points. 

Theorem (g). A function f(x) of limited variation in 

the closed interval (a,b) is integrable in the P~emann sense. 

The given function is bounded and by the theorem48 

The points of discontinuity of a f~ction of limited 
variation form at most an enumerable set. A function of 
limited variation can have only ordinary discontinuities, 
and the points of a given interval (a,b) at which f(x) 
has ordinary discontinuities fonn at most an enumerable 
set . 

Its points of discontinuity fonn at most an enumerable set. 

Consequently by Theorem (f) it follows that f(x) is integrable. 

Theorem (h). A bounded function f(x) having only or-

dinary finite discontinuities in the given interval (a,b) is 

R-integrable. 

By the above-quoted theorem, it follows that the points 

where the given function has ordinary discontinuities fonn an 

enumerable set. From Theorem (f) it follows that f(x) is in-

tegrable in the interval for which it is defined. 

Theorem (i). If f(x) be bounded and monotone in (a,b); 

then f(x) is integrable in (a,b). 49 

If f(x) is constant, the theorem is obvious. If we 

show that for each e ) 0 there exists a division n for which 

J1,n (f, ab) <. e 

48 . Ibid., 134, 206. 
49. Pierpont, op. cit., I, 343-346. 



then by the theorem that 

In order that the limited function of f(x) be in-
tegrable in (a,b), it is necessary and sufficient that, 
for each e 0, there exists at least one division n 
for which Sl.n (f, ab) <. e 
This latter condition is necessary from Theorem (b). 
It is sufficient. For by III - 7, for the division 
n 

S(o) - S(o) < e 

By Theorem (a) f~ f(x) ~x - s~ f(x) dx <. e 

But J: f(x) :: : S: f(x) dx 

(Since, if' we had two numbers A, B :- that I A - BI < e how-
ever small e '> 0 is taken; then A = B; for if A # B, say 
A > B, then A - B is a definite positive rational num-
ber, say D. But / A - BI is not < D, which contra.diets 
the hypothesis and A= B. ) 

Therefore by Theorem (a) f(x) is integrable. As a spec-

ific example, suppose f(x) is increasing. Let us divide (a,b) 

into equal intervals of length. 
e 

III - 11 d f(b) - f(a) • 

Then 

J1n ( f, ab) - d If cal )-f(a)} + f (a2 )-f( al J)-r .. ·+- {r(b )-f(an_Jl 

- d ff(b) - f(a)J 

< e, by III - 11 



CHAPTER IT 

The Lebesgue Integral 

In Chapter III the author defined the Riemann Integral 

and proved some existence theorems for this type of integral . 

Riemann integrability of f(x) implies boundedness of f(x) . 

To say that a function is Riemann integrable means that cer-

tain appropriately fanned approximating sums have a limit 

which is called the integral . Many bounded discontinuous 

functions are Riemann integrable , but there are quite a num-

ber which are not Riemann integrable . For this reason the 

Lebesgue definition of an in~egral has been introduced. 

The Lebesgue definition of an integral together with the 

definitions of Stieltjes, Young, and others, which will be 

discussed in Chapter V are of importance in scientific dis-

cussion because they admit a larger range of integrable func-

tions than the Riemann definition which is connnonly used in 

elementary analysis and in the applications to the physical 

sciences . 50 In some instances, the Riemann and Lebesgue in-

tegrals exist in the same interval while in others a Lebesgue 

50 . Townsend, op . cit . , 198 . 



integral of a bounded function may exist in the interval while 

the Riemann integral does not exist . A theorem of this type, 

the converse of which is not true, will be given later in this 

chapter in connection with the comparison of the two types of 

integrals mentioned. In accordance with Lebesgue's definition 

then, functions which possess a definite integral, form a 

class of functions that are integrable in accordance with Rie-

mann's definition. 

The Lebesgue theory of integration has as its foundation 

the conception of the measure of a set of points, according to 

the Lebesgue interpretation. In Lebesgue integration the do-

main over which the integral is taken is divided into a number 

of measurable sets of points, having a certain property rela-

tive to the function to be integrated, and the integral is de-

fined as the limit of a cert~in sum taken for all these meas-

urable sets of points, as the number of sets is indefinitely 

increased. 51 The essential difference between the two defin-

itions of the integral rests upon the difference between the 

two modes of dividing the domain of integration into sets of 

points. 

A function f(x), defined in any interval (a,b), is said 

to be measurable, provided that, for every value of A, the 

set of points x, of (a,b), at which f(x) > A, is a measurable 

51. Hobson,~· cit., I, 562-564. 



set of points . A can be any r eal number . This definition is 

appl icable , whether x be a point of a linear set , or a point 

(x1 , x2 , ••• xP) , in any number p , of dimensions . 

Theorem (1) . If f(x) be a measurable function, defined 

at each point of e. given domain ., the sets of poi nts for which 

A f(x) B; 
<. 

A : f(x) < B; A f(x) i B; f(x) <. A; 

<. 
f(x) A 

are all measurable, whatever real numbers A and B denote, pro-

vided A <. B. 

In the first pl ace , the domain for which f(x) is defined ., 

and for which it has a definite value at such point, is meas-

urable . If A were given values - N1 , -N2, ••• -Nn, ••• succes-

sively, of a sequence such that Nn increases indefinitely as 

n ~oo . The set En• for which f(x) > - Nn, is measurable, by 

hypothesis ., for every value of n . The domain for which f(x) 

is defined is the outer limiting set of the sequence En, of 

measurable sets , and is therefore itself measurable . The set 

of points for which f(x) A, is relatively complementary52 to 

52 . All point sets e which we consider are supposed to lie on a 

finite interval ab . The sum e1 + e 2 of two sets e1 , e 2 is 

the totality of their points , the difference e1 - e 2 is the 

set of points which are in e1 but not in e 2, and the product 

of e1e 2 is the totality of points which e1 and e 2 have in com-

mon . Addition and multiplication are commutative and associ-

ative , and satisfy the relations (e1+ e 2)e3 : e 1e3-t e 2e3 , 

(e - ~~ e2)e3 : e1e3 - e 2e3• The complement Ce of a set e is 

th~ total i ty of points of the interval ab which are not in e. 

The difference and product of two sets e1 , e 2 are expressible 

in terms of addition and complements . For 
C(e1 - e2) : Ce1 -t e 2 , Ce1e 2 : Ce1 + ce2• 



the domain of the function to the measurable set for which 

f(x) > A. '-Therefore f(x): A is measurable. If An is a mon-

otone increasing sequence of numbers converging to A, then all 

the sets for which f(x) i An are measurable, and their outer 

limiting set, for which f(x) < A, is consequently measurable. 

< 
Since the sets for which f(x) < A and f(x) = A are measurable, 

it follows that the set for which f(x): A is measurable. 

Because f(x) < B, and f(x) < A, are measurable, their 

difference, the set for which A ~ f(x) < B, is also measur-

able. From these properties the other results in the theorem 

follow. 

Theorem (2). A function f(x) is measurable if the set 

of points xis measurable, for which A < f(x) < B, for every 

pair A, B, of real numbers which belong to a given set, every-

where dense in the indefinite interval (- oo, 00 ). The given 

set may be taken to be enumerable. 

Let A and B be any pair of real numbers such that A< B. 

The number A can be expressed as the upper limit of a s equence 

Q'n of increasing numbers, all of which belong to the given set 

which is everywhere dense; and the number B can be expressed 

as the lower limit of a si:rnilar sequence /3 of diminishing num-n 

bers. The set e for which ft <. f(x) < fl is measurable, for 
n n n 

each value of n; the inner limiting set en, of the sequence, is 

<. < 
the set for which A: f(x) = B; and this set is consequently 

measurable . Since this is the case whatever values A and B may 



have, it is seen that f(x) is measurable. 

Theorem (3). A function f(x) is said to be measurable 

(B), if the set of points for which f(x) > A is measurable 

(B) whatever value A may have. 

The above proofs show that the sets for which 

A < f(x) < B; A f(x) < B; <. < 
A : f(x) : B; f(x) < A; 

are all measurable (B). 

< 
f(x) = A 

Note: When the exterior and interior measures of a set 
G or points in p dimensions, are equal to one another, 
~he set G is said to be measurable, and the number me(G) 
= mi(g) is defined to be the measure of G. When G is 
measurable its measure is denoted by m(G). All sets 
which are shown to be measurable, are obtained from the 
single point, the single interval, or cell, open or 
closed, by taking the complements of the sets so obtain-
ed . All sets defined in this manner are said to be meas-
urable (B), since they are the only kind of measurable 
sets contemplated by Borel in his original treatment of 
metric properties.53 

Theorem (4). If c/>1, <f,2 , ••• <f n be a finite set of 

functions that are measurable in a measurable domain G, linear, 

or of higher dimensions, and if F(1>1 , 'f>2 , ••• , n) be a function 

that is continuous relatively to ( 4> 1 , <j,2 , •.• </>n), for all val-

ues of t/> 1 , <p 2 , ••• f n, then F( (/'1 , (/>2, ••• '/'n) is measurable 

in the given domain. 

Fi!'st, let us assume that all the functions tp1 , '} 2 , ••• 

f'n are bounded in the given domain for which they are defined; 

suppose their values to be in the interval (-N, N). Let a net 

53. Hobson, op. cit . , I, 174-179. 
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(co, c1, ••• cm) be fitted on to the linear interval (-N, N) 

where c0 = - N, cm: N, and suppose the width of each mesh, 

cr - cr-1 to be less than the positive number Nu . Let the 

function Ys be defined, corresponding to each function q, s 

(s: 1, 2, 3, ••• n) by the conditions "lfs: cr-l at every 

< 
point at which cr-l: <fs < cr' for r: 1, 2, 3, ••• m, and 

1/rs : cm where t/> 8 = cm. We then have 

0 ~- "' 'llr N T s - r s <. 1 u, 

and the function 1/1, taking only the values in the finite set 

c0 , c1 , ••• cm, this function is measurable in the given do-

main. 

Since F( f 1 , tf,2 , ••• 'f n) is continuous in the closed 

domain, ( - N, - N, ••• ; N, N, ••• ), 

we have 

if Nu be ta.ken sufficiently small; the number being chosen 

arbitrarily. The function F(,Y l' 1jl' 2 , ••• 1Jr n) has only a 

finite set of values, and is measurable. If U and Lare its 

upper and lower boundaries, we have 

L- E < F( t/' p <1' 2, •.• </' n) < u -t-E. 

in the whole domain. If A and Bare any two numbers in the 

interval (L, U), then the set of points for which A < F(1Vi_ , 

1Jr2 , •• • 1/l'n) B is measurable. 

Now let E'. have successively the values in a sequence '-t 

which converges to zero, then there exists a corresponding 

sequence Nut, of values of Nu , which converges to zero. 



The set of point s Et , for which A "- F(1/lj_ , 1/('2 , •• • 1// n) 

< B, is measurable , for each value of Nut, in Nut sequence. 

Each point of the set for which 

belongs to all the measurable sets Et, from and after some 

particular value oft . Since the complement of the set is 

measurable, the set itself is measurable . 54 Thus F( <p 1 , ep 2, 

</J n) is measurable in the domain for which the functions 

are defined . 

Now let the functions <j:,1 , <p 2 , •• • 'Pn be unbounded . 

We define 'f /T oy the conditions 'f / : <fr' when N 'f r - ; 
'PrN: N, when 'Pr > N; and cp /T = -N, when fJ r < -N. From the 

proof above we see that F( <p1N, ••• <fnN) is measurable. If N 

were given successively the values in a divergent sequence Nt 

of increasing numbers; each point of the set for which A < F( <fJ 1 , 

</> 2
, • •• tp n) "'- B belongs to all the measurable sets for which 

A l.. F( tp1 
Nt, • • • </' n N-'..,) <, :6, from and after some particular val-

ue oft. Then the set is measurable and the theorem holds when 

tp1 , ¢2 , • • • <:/'n are unbounded. 

General theorem (5). The sum, or the product, of any 

finite number of measurable functions, defined in a measurable 

domain of any number of dimensions, is a measurable function. 

If all the functions cp 1 , <p2 , ••• 'fn are measurable (B), 

ffi4. Ibid., 177, 178 . 



the function F( </\, fj 2, ••• </J n) is measurable (B), because 

all the sets used in above proofs are measurable (B). 

This preliminary discussion brings us to the definition 

of the Lebesgue integral . Let f(x) be a single-valued, bounded 

measurable function defined for the interval (a ,b). 55 Let 

y =candy= d be the lower and the upper bounds, respective-

ly, of f(x) in the given interval. Now instead of dividing 

the X- axis into subintervals as in the Riemann integral, we 

divide the interval (c,d) on the Y- axis into n subintervals by 

the insertion of the intennediate points y1 , y2 , Yn-1 as 

shown in Fig . X. Let Ek be the set of points in the interval 

Yn = d 

Yk 
Fig. X. Yk-1 

Yi= C 

y 

0 a 11 k 2 p k . b 
, ,1 

X 

(a,b) for .which yk-l f(x) < yk. The Lebesgue integral may 

be considered as the measure of a two-dimensional point set. 

Let Nuk denote any value of yin the interval (yk-l' yk) . Al-

55 . Townsend , op . cit., 285- 289 . 
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so 

IV - 1 € > (yk - yk- l)., k = 1, 2, • • • , n. 

The Lebesgue integral may be analytically defined for the posi-

tive interval (a , b) by the relation 

IV - 2 

where in this case , 

f~ f'(x) dx = L 
€.~o 

n 

k : 1 

As E approaches zero ., the value of n increased indef'initely 

a l though the converse may not be true . 

To complete the def'inition for bounded, measurable func-

tions, we set up the convention that 

s: f(x) dx = -s~ f(x) dx . 

Instead of defining f(~) for the interval (a,b) it might be 

defined for any measurable set E of points on the X-axis. In 

the definition m(Ek) is the measure of the subset of E for 

which 

yk-1 i f(x) <. yk 

If the function f(x) satisfies this definition , it is said to 

be integrable in the Lebesgue sense over the set E, where 

The Lebesgue integral will be indicated by the symbol 

( f'(x) dx . 
) E 



The Lebesgue integral is more effective than the inte ra.l 

of Riemann because the former may be associated in its applica-

tions with functions which are defined for a set of points in-

stead of an interval. 

It is not necessary that f(x) have only positive values 

as in the foregoing proof. All we need to do is to consider 

separately the set of points in the set x for which f(x) is 

negative and then take the algebraic sum of this result and the 

one for the positive values of f(x). 

Theorem (6). The Lebesgue integral.( f(x) dx exists if 

f(x) is measurable and bounded on the point set E. 

We must show that the limit 0·iven in IV - 2 exists under 

the conditions set forth in the theorem and that the limiting 

value is independent of the manner in which the point set yk is 

chosen. Let 
n n 

IV - 3 <f (n) _ I! yk_1m(Ek), 1Jr (n) :: L, yk m(Ek). 
k =l k=l 

n 
Then IV - 4 'f (n) < L Nuk m(Ek) 'lf' (n) • 

k = 1 

tp (n) is bounded and monotone increasing while 1/r(n) is bound-

ed and monotone decreasing as the length of the intervals 

Conse-(yk_1 , yk) decreases by inserting intermediate points . 

quently, each function has a limit as n increases indefinitely 

in such a manner that > yk - yk-l approaches zero. These 

limits are equal; for 



Since E is arbitrarily small and E is measurable and hence 

m(E) is finite, it follows that € .m(E) is arbitrarily small. 

We get 

IV - 5 L {~n) - <f (nj : o. 
€~o 

By the theorem on page 31 of this thesis, it follows that IV - 4 

L 
€"'0 

n 

k : 1 

exists as a limit and is equal to the common limit 

IV - 6 f (n) =A= L 1/f(n). 
n -=:tOO 

It must yet be shown that the value of this limit is independ-

ent of the choice of the set of values Yk• Let yk be any other 

set of points in the interval (c,d). When the set y' is super-
k 

imposed upon the set yk, some of the points of the two sets co-

incide . The points of yk remaining may be regarded as the points 

inserted earlier in the discussion when the limits of IV - 6 

were established. If the ~notions '/> '(n) and 1/"' (n) be formed 

with reference to the set y~ as we formed for yk set, it follows 

that f '(n), 1./" '(n) will differ at most by E 1::n(E), where ~, is 

arbitrarily small. This method may be continued by forming func-

tions 4' 11 (n) and 1jr" (n) with reference to the set yk and so on. 

As the functions approach the coincidence the functions tf, ' (n), 

7/l '(n) must approach the same limiting value A. Since the val-

ue of the limit is not dependent upon the manner in which the 

set of points yk was chosen, the theorem is established. 



When it is lmovm the integral exists , its value may be 

determined from either of the limits in IV - 6. 

The above theorem proves the existence of the Lebesgue 

integral when f(x) is defined for all values of x in an in-

terval (a ,b), to be continuous throughout this interval and 

has only a finite number of minima and maxima . From IV - 2 

we may see that the two integrals are equal . Nuk can be re-

placed by f(Ek) , where yk- l 1 f(Ek) yk , and in this case the 

measure m(Ek) is the sum of the x- i ntervals composing Ek. f!; 
in the Riemannian notation is really Epsilon; E was substituted 

to facilitate typin!j Upon substituting we can get 

Thus for the special class of functions the Riemann and Le-

besgue integre.ls are ·the same , and for bounded functions which 

are Riemann integrable there is a Lebesgue integral . The con-

verse of this theorem is not true. 

The Lebesgue double integral may be defined with respect 

to Eby the relation 

JJE f(x,y) dxdy = 

As a further comparison of the Rand L integrals the fol-

lowing theorem might be stated . 

Theorem (7) . Let f(x) be defined for the interval (a,b) 

and for this interval suppose it to be single-valued, bounded, 

and integrable in the Riemann sense . It is then integrable in 



(a,b) in the Lebesgue sense and the two integral are equal. 

The converse, however , is not necessarily true. 56 

Because of limited space the proof for this theorem will 

be omitted. The reader will find this proof in the source re-

corded in the footnote . A brief consideration will be given 

to the converse of the theorem. 

The converse of theorem (7) is not true . A Lebesgue 

integral of a bounded function may exist in an interval (a,b), 

while the Riemann integral does not exist . For example, let 

f(x) be defined for the interval (0,1) as follows: 

f(x) = 1, for rational values of x, 

= O, for irrational values of x . 

This function is totally discontinuous in the given interval 

and hence has no integral in the Riemann sense; because the 

necessary and sufficie t condition of the R-integral is that 

the points of discontinuity shall form at most a set of meas-

ure zero . In this case the measure of the set of points of 

discontinuity is one . The function f(x) is bounded and meas-

urable on the set E1 of rational points and also on the set 

E2 of irrational points . Consequently, by theorem (6) both 

the Lebesgue integrals J: f(x) dx, J f(x) dx exist. The 
El E2 

Lebesgue integral J~ f(x) dx taken over the interval (0,l) 

57 
must exist because of the theorem 

56. Ibid., 295-297. 
57 . Ibid., 290, 291. 



If f(x) is bounded and measurable on a finite num-
ber or an infinite sequence of distinct, measurable 
point sets En whose sum is E, then 

J f(x) dx : f f(x) dx -t- J_ f(x) dx + •• • + f f(x) dx-t- ••• 
E E1 Ez En 

This discussion would not be complete without mention of 

Lebesgue integrals for non-bounded functions. 58 Let f(x) be 

any positive, measurable, non-bounded function defined on the 

bounded measurable set of points E. Let k be any one of the 

sequence of positive real numbers, 

IV - 7 

having no upper bound. The auxiliary function fk(x) is defined 

fk(x) - f(x), where f(x) k. 

= k, where f(x) > k. 

Thus the function fkx is bounded and measurable on the set of 

points E. Consequently , the Lebesgue integral J fk(x) dx ex-
E 

ists for all values of k, Fig. XI. If the limit J fk(x) dx 
E 

y 
f(x) 

y = k 

Fig. XI. 

X 
0 a b 

58. Ibid., 297, 298. 



exists ask becomes infinite, then we say that the integral 

f f(x) dx exists, and write 
E f f(x) dx = 

E 

If f(x) is negative for all points of E, the Lebesgue 

integral exists on E if the limit L i ffk(x) / dx exists 
k~OO E 

ask becomes infinite . 

If f(x) is negative for some points of E and positive 

at others we may define the Lebesgue integral by the relation 

IV - 8 j f ( x) dx = f f 1 ( x) dx - f f 2 ( x) dx, 
E E E 

where r1 (x) = f(x), if f(x) ! O, f 2(x) = f(x), if f(x) O, 

- O, if f(x) O, - O, if f(x) O. 

It is assumed that the functions f 1(x), f 2(x) are measurable 

and that their integrals exist in accordance with the fore-

going definition . 

If the function f(x) satisfies the above definition 

IV - 8, it is said to be sum.~able on the set of points E. 

Sometimes this term is applied to bounded functions satisfy-

ing the conditions of a Lebesgue integral. Thus, summability 

in the Lebesgue integral serves the same purpose as integra-

bility does in the Riemann integral . Summability can be ex-

tended to the case where f(x) is defined for non-bounded sets 

E. 



CHAPTER V 

Other Modifications of the Definition of Integration 

The definitionsof integration which have been suggested 

by Riemann and Lebesgue are the definitions which hold the 

central position in the theory of definite integration. These 

definitions have been considered in the last two chapters. 

Aside from these two definitions, there are various others . 

Some of these definitions are related to the R- and L- inte-

grals , while others are equivalent to or extensions of these 

two definitions . In the present chapter the author will make 

brief mention of these modifications of the definition of in-

tegration. Some of the proofs for these definitions are too 

lengthy f or this treatise . Where this is the case, the proof 

may be obtained by reference to the authority quoted. 

W. H. Young gives the following definition of integration59 

Divide the interval (a,b) into a finite or a denumer-
ably infi nite number of measurable sets Ei of measure di. 
Let Mi be the least upper bound and~ the greatest lower 
bound of f(x) on Ei, and fonn the swns 

59 . Hildebrandt, On Integrals related to and extensions of 
the Lebesgue Integrals, article in the Bulletin of the 
.American Mathematical Society, Vol . 24 (1917-18), 120-
123 . 



S = ,i!iMidi a.nd s = i imidi , 

Then the greatest l ower bound of Sand the least up-
per bound of x for a l l possible divisions of (a , b) 
into measurable sets are defined to be the Young or 
Y upper and lower integrals· of f(x) on (a,b) . f(x) 
is said to be Y-integrable if the upper and lower 
integrals are finite and equal , that is, if 

(Y) j = (Y) J : (Y) J. 
This definition is applicabl e in case the interval 

(a , b) is replaced by any measurable set of points E. The Y 

definition was originally sug~ested for functions f(x) bound-

ed on (a , b), but the definition will apply if f(x) is not 

bounded , provided that f(x) is such that there exist parti-

tions of (a ,b) into a denumerable infinity of measurable sets 

on each of which f(x) has a finite upper and lower bound. 

From the equation 

it follows that if f(x) is Riemann integrable, it is also Y-

integrable . Because it is possible to find a definition of 

the Lebesgue integral by replacing in the Darboux definition 

intervals by measurable sets, which Young did, we find the 

Young and Lebesgue definitions of integration are equivalent, 

and the values obtained by the two definitions are the same. 

James Pierpont offers a definition of the integral which 

is an extension of the Lebesgue integral . In his definition 

Pierpont changes the definition of Lebesgue only in using an 

infinite number of cells instead of a finite number. 

Lebesgue considered functions such that the points Eat 



which a § f(x) b, for all (a,b) form a measurable set. He 

defined his integral as 

<. < 
where yk-l: f(x): yk in the set Ek whose measure is m(Ek), 

and each Yk - Yk-l ~ O as E-:t oo . Pierpont60 has shown that 

if the metric field A be divided into a finite number of met-

ric sets d1 , d2 , ••• of norm D, then 

J f = Max ~ midi, 
- A 

where mi, Mi are the minimum and maximum off in di. If the 

cells d1 , d2 are infinite instead of finite in number we 

get a theory of L-integrals which contains the Lebesgue inte-

grals e.s a special case. The relation of the new integrals 

to the Riemannian integrals is obvious and the form of reason-

ing used in Riemann's heory may be taken over to develop the 

properties of the new integrals. Hildebrandt61 gives a brief 

definition of the Pierpont integral. When the set Eis meas-

urable the definition is identical with that of Young. 

When the number of points in the vicinity of which f(x) 

is not bounded, becomes infinite, then there are two types of 

definition. 62 One of them gives a definition by means of a 

60. Pierpont,~· cit . , II, vi, vii. 
61 . Hildebrandt, Q.P..• cit . , 127. 
62. ~-, 130, 131, et . seq. 



single limitinc process, the other by a denumerable set of 

such processes . The first of these leads to the Harnack-

Jordan-Moore and Borel types of integration, the other to 

the Dirichlet, extended by Hoelder and Lebesgue, and Denjoy 

definitions of integration. 

The set of points in every vicinity of which f(x) is 

not bounded constitute a closed set . Harnack calls this set 

the set of singularities, z. The Harnack definition is as 

followss 

Suppose the set z of singularities of f(x) is of 
zero content . Enclose them in a finite set of inter-
vals of total lengthE. . Let f 1 (x) be zero in the in-
terior of the enclosing intervals, and equal to f(x) 
everywhere else and suppose that s~ f1(x) dx exists . 

If this integral approaches a finite limit as €. ap-
proaches zero, this limit is said to be the integral 
of f(x) from a to b. 

Jordan has a definition equivalent to that of Harnack 

in case the content of z is zero . The Jordan definition is: 

Divide (a,b) into any finite number of intervals of 
maximum length d. Exclude the intervals containing 
points of the set Z, and suppose that the (Riemann) in-
tegrals of f(x) exist on the remaining intervals. If 
the sum of these integrals approaches a definite limit 
when d approaches zero, this is defined to be the in-
tegral of f(x) from a to b. 

E. H. Moore observed that the Harnack definition could 

be applied when the set Z is replaced by another z0 contain-

ing it, and that the resulting integral is a function of the 

set z
0

• Also, that in case the set of singularities Z is 

nonexistent then the integral of f(x) on the basis of the set 



z0 is equal to the ordinary integral of f(x) if the set z
0 

is 

of content zero . For that reason it is desirable to restrict 

consideration of these integrals to sets Z of content zero. 

63 
Borel's definition of integration reads as follows: 

f(x) is Borel integrable in case (a) there exists a 
set of singularities Z denumerable or even of measure 

zero, such that for every E. and for every set of in-
tervals which has total length at most € and is such 

that each interval of the set contains at least one 

point of Z, the Riemann integral of f(x) on the com-
plementary set Pe exists, and (b) these Riemann inte-
grals approach a finite limit as ~ approaches zero. 

This limit is the Borel integral of f(x) on (a,b). 

Townsend64 writes that the Borel definition of integra-

tion is more restricted in its applications for bounded func-

tions than the Lebesgue integral and that this definition can 

be applied to non-absolutely convergent integrals for non-bound-

ed functions, which is not the case with the Lebesgue integrals. 

Also that when both the Borel and Lebesgue integrals exist, they 

have the same value. 

The Denjoy integral is a generalization of the Lebesgue 

integral . Before stating the integral one must state certain 

principles of construction which are as follows: 65 

1. In any subinterval (A,B) of (a,b) in which the 

given measurable function f(x) is summable in the Lebesgue 

sense the Denjoy integral shall be identical with that of 

Lebesgue. The same shall also be true on any perfect set. 

2. If the integral DJ! f(x) dx is knovm for all val-

63. Ibid., 201. 
64 . Townsend, .2.E.• cit., 331. 
65. Ibid., 328-330. 



ues of A' <. B' contained in (A, B) , then we have 

D 5B f(x) dx : L nf B' f(x) dx. 
A A1--t A A' 

B 1-=t B 
3 . If the Denjoy integral is knovm for a finite num-

ber of consecutive intervals (A1 , A2 ) (A2 , A3 ) ••• (¾_1 , 
A ) , then 

n JA A ¾_ 
D n f ( x) dx = D 

2 f ( x) dx ;- • • • ;- D J f ( x) dx 
Al Al An-1 

4 . Let Ebe a perfect set of points contained in a sub-
interval (A,B) of (a,b), and suppose that f(x) is summable 
on the set E. Let it be supposed that the D integral has 
been defined on every subinterval (A' ,B') of (A,B) which 
contains no points of E as inner points. Let (A1,B~) n : 1, 

2, 3 • •• be the set of intervals complementary to E with 
respect to (A,B). Denote by~ the upper limit of 

jD J;,_,B
1
f(x) dxf for all intervals (A' ,B') in (Au,Bn). It 

is assumed that the series I! M converges. 
The Denjoy integral for (A,BJ is defined by 

nl B f(x) dx = Dh Bn f(x) dx r L f f(x) dx. 
n = 1 ·-:n -'E 

The Denjoy integral is then said to exist for the (a,b) 
interval by application of the foregoing principles of con-
struction, if f(x) satisfied the following conditions. 

I. If Eis any perfect set contained in (a,b), the 
points of E in whose neighborhood f(x) is not summable shall 
form a subset which in no portion of (a,b) is everyvrhere 
dense with respect to E. A function is not st.U!'.mable in the 
neighborhood of a point, if there exists no subinterval con-
taining the point on which the function is summable. 

II. If DJ A,B' f(x) dx, A' < B' is known for all values 

of A' ,B' in (A,B), then f(x) must be such that the limit 

L D h,B' f(x) dx shall exist. 
A' ..-Jr A 
B1 --"P B 
III. If Eis a perfect set in no subinterval everywhere 

dense and if D /4 Bn f(x) dx is known in those subintervals 
n 

(~,Bn) which are free from points of E, then f(x) shall be 

such that the points of E in the neighborhood of which the 

series r, DJ: En f(x) dx does not converge absolutely 
n = 1 ¾ 



shall not be everywhere dense with respect to E in any sub-
interval. 

If f(x) satisfies these conditions, then by the aid of 
the foregoing principles of construction the Denjoy inte-
gral can be calculated by means of an enumerably infinite 
set of Lebesgue integrals and passage to the limit. 

There exist functions which have no Lebesgue integral, 

but which have a Denjoy integral . The Denjoy integral of the 

absolute value of the function does not exist , that is, it is 

not absolutely convergent. For the Denjoy integrals, as in the 

case of the Lebesgue integrals , the indefinite integral of f(x) 

is continuous and has f(x) as a derivative with the exception 

of at most a set of points of measure zero . 

The Stieltjes integral is the integral of a continuous 

function with respect to a monotone increasing function. 

Young66 proves the following theorem and then states his def-

inition of the Stieltjes integral as follows: 

Theorem. If an ascending sequence of simple L-func-
tions and a descending sequence of simple U-functions 
have the same limiting function, the limit of t heir inte-
grals is the sa.me.67 

Suppose all the functions defined in the closed in-
terval (a,b). The theorem is then an immediate conse-
quence of the theorem of bounds. 

66. Young, The Theory of Integration, 23. 
67. A U-i'unction is a function which is upper semicontinuous in 

an interval • .An L-function is a function which is lower 
semicontinuous in an interval. f(x) is upper semicontinu-
ous at the point x0 if, given any positive quantity e, there 
is an interval having x0 as middle point throughout which if 
f(x0 ) is finite f(x) f(X0 ) -t- e, while, i.f f(x0 ) is - oo, 

f(x) -1/e. The same is true of lower semicontinuity with 
the inequality sign in the opposite direction and the signs 

of Oo and 1/e positive . 
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The difference between corresponding functions form a 

monotone descending se~uence of simple U- functions 
c1(x) , c2(x) •• • 

having the limit zero. By the theorem of bounds their 

upper bounds un also have the limit zero . From the prop-

erty, if f 1 is greater than or equal to f 2 throughout (a,b), 
then 5: f 1 dg 5! f 2 dg 

it follows that s: cn(x) . dg(x) ~ Un • s: dg(x) ~ O. 

The theorem follows because the integral of the sum of two 

functions is equal to the sum of their integrals . 

Definition. Given any continuous function we can al-

ways construct a monotone ascending sequence of simple 

L-functions and a monotone descending sequence of simple 

U functions of which it is the limit. The limit of the 

integrals is , by the above theorem, independent of the 

choice of these sequences . (Given two pairs of sequences, 

we need only compare the U-sequence of one pair vrith the 

1- sequence of the other . ) This limit is defined to be 

the integral of the given continuous function. 

Stieltjes considered only the case of one variable . The 

method of monotone seq· ences is independent of the number of 

variables concerned . When the integrator is the product of 

these variables, area or volume, the definition reduces to that 

of the multiple integral used for special types of Cauchy and 

Riemann functions . 

Frechet68 suggested a definition of integration which 

includes the Lebesgue, Young, Pierpont, and Stieltjes integrals 

as special cases by properly assigning the function . 

Hellinger's definition of an integral is closely related 

68 . Hildebrandt, £.E.• cit., 189-194 • 
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to that of Stieltjes . 69 He considers two functions ~(x) , 

which i s continuous in (a , b) , and cp (x) which is continuous 

and monotone incr eas i ng . He further assums that the function 

f(x) is constant in any portion of (a , b) where f (x) is con-

stant . Then if {t(x2 ) - <; (x1IJ is zero , {!(x2
) - f(x

1
] is 

zero . He next di vided (a , b) into a finite number of intervals 

and formed the sum 
n r 

k = 1 

the quotient being defined as zero whenever the denominator 

is zero . The least upper bound of this sum for all methods 

of subdivisi on of the given interval is called the Hellinger 

integral and is denoted by 

5: Ulf' (x] 2 

d , (x) 

The Hellinger integral may be expressed in terms of a 

Lebesgue integral and conversely. 

Radon has modified the definition of i ntegrat ion by a 

generalization of the Hellinger integral . 

Perron introduces a different notion of integration when 

he considered integration as the inverse process of differen-

tiation . He introduces the adjoined upper and lower functions 

and thus is able to formulate a definition of integration which 

69 . Townsend , .2.E.• cit., 328 . 



for bounded functions is identical with the Lebesgue integral, 

but for non- bounded functions leads to a more general class 

of integrable functions . Under certain restrictions the 

Perron integral for non- bounded functions becomes identical 

with that of Lebesgue . The Perron function can be readily ex-

t d d t f t . f t . bl 70 
en e o unc ions o wo or more varia es . 

Another mode of defining the integral of a function in 

a finite interval has been developed by Tonelli. His method 

is independent of the general theory of the measure of sets 

of points . 71 

Authors differ as to their opinions regarding different 

methods of integration. Hobson72 writes 

The Riemannian integral is not only of interest from 

a historical point of view, but it still possesses great 

intrinsic importance in Analysis, and will probably con-

tinue to be the basis upon which practical applications 
of the integral calculu s rest . 

Agnew says 73 

The theory of Lebesgue integration, depending as it 
does on the theory of Lebesgue measure of point sets, 
appears to be more complicated than the theory of the 
definite integral of the elementary calculus, that is 
the Riemann integral. This is the only reason why the 
Lebesgue integral has not completely supplanted the in-
tegral of Riemann which de la Vallee Poussin74 once de-
scribed as having only historical interest . The Lebesgue 

integral is in fact a far more elegant and useful tool 
than that of Riemann . It is to be regretted that those 

who recognize the beauty and utility of the Lebesgue 

70. Ibid ., 330, 331 . 
71 . Hobson, .2.E.• cit ., II, 380-382 . 
72. Ibid., I, 460 . 
73 . Agnew, Convergence in Mean and Lebesgue Integration, ar-

ticle in the American Mathematical Monthly, Vol. XLIV, 4. 

74. De la Vallee Poussin, Cours d'Analyse , 250 . 



integral have done so little to popularize it and its ap-
plications . 

Bliss 75 seems to sum the argument correctly when he argues 

In the field of integration the classical integral of 
Riemann, perfected by Darboux, was such a convenient and 
perfect instrument that it impressed itself for a long time 
upon the mathematical public as being unique and final. The 
advent of the integrals of Stieltjes and Lebesgue has shak-
en the complacency of mathematicians in this respect, andJ 
with the theory of linear integral equations, has given the 
signal for a reexamination and extension of many of the 
types of processes which Volterra calls passing from the 
finite to the infinite •• • ••••• The definitions of Lebesgue, 
Young and Pierpont , and those of Stieltjes and Hellinger , 
fonn two rather well defined and distinct types, while that 
of Radon is a generalization of the integrals of both Le-
besgue and Stieltjes . The efforts of Frechet and Moore have 
been directed toward definitions valid on more general rang-
es than sets of points of a line or higher spaces, and which 
include the others for special cases of these ranges. Le-
besgue and Hahn , with the help of somewhat complicated trans-
fonnations , have shown that the integrals of Stieltjes and 
Hellinger are expressible as Lebesgue integrals. •••• ••••• • 

The conclusion seems to be that one should reserve judg-
ment, for the present at least, as to the final form or 
fonns which the integration theory is to take. It is prob-
able that the outcome J.0.y be a general theory of the type 
of those of Frechet and Moore , having not one but a number 
of special instances with forms more adaptable to problems 
of various special types . However this may be, there can be 
no question as to the wide influence which the work of Borel, 
Lebesgue and their followers is having upon the mathematical 
thought of the present time , and no question as to the not-
able advances which have been made in the many domains of 
real function theory to which the Lebesgue form of integral 
is especially adapted . 

75 . Bliss, Integrals o~ Lebesgue , article in the Bulletin of 
the .American Mathematical Society , Vol . XXIV , 1- 3. 



CHAPI'ER VI 

Summary 

The Riemann or common integral implies boundedness of 

f(x). Riemann integrability means that certain appropriately 

formed approximating sums have a limit which is called the in-

tegral . Many bounded discontinuous functions are Riemann in-

tegrable, but there are quite a number which are not Riemann 

integrable. Essentially Riemann integration means summing a-

long the X- axis . 

Where there are bounded discontinuous functions which 

are not Riemann integrable, ,1e Lebesgue integra.l is used. 

Lebesgue integration has as its foundation the conception of 

the measure of a set of points and is taken along the Y-axis . 

The domain over which the integral is taken is divided into 

a number of measurable sets of points , having a certain prop-

erty relative to the function to be integrated, and the in-

tegral is defined as the limit of a certain sum taken for all 

these measurable sets of points , as the number of sets is in-

definitely increased. The essential difference between the 

Riemann and Lebesgue definitions rests upon the difference be-

tween the two modes of dividing the domain of integration into 



sets of points. Lebesgue integrals besides being applicable 

to bounded discontinuous functions, exist for unbounded func-

tions . In neither of these two cases are Riemann integrals 

applicable . In accordance with the Lebesgue definition func-

tions which possess a definite integral, form a class which 

is markedly wider than, and includes the class of functions 

that are integrable in the Riemann sense . 

Modifications of the definitions of integration just 

mentioned, which have been discussed in Chapter V are of im-

portance in scientific discussion because they admit a larger 

range of integrable functions than the Riemann and Lebesgue 

definitions . In most cases, however, they lead to results 

which would have been the same had they been obtained by means 

of these two commoner definitions. There are many cases which 

could not be solved by the Rivma.nn and Lebesgue integrals be-

cause of certain specifications introduced. Often a transfor-

mation in the problem will change the modification of the def-

inition to a problem which is Riemann or Lebesgue integrable. 
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able . Very fine summary of the definitions of calculus. 
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11 

Bliss, Gilbert Ames. The function concept and the fundamental 
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Cajori, Florian. A history of mathematics. 2nd edition, re-

vised and enlarged. New York, The MacMillan Company, 

1919. 486 P• 

A very excellent history of calculus from its 
early development. 
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Mathematical Society. vol . 24, p . 113-144; 177-202 . 
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York, The University Press, 1929, IV, 555-558). 

A short but helpful history and explanation of 
integration and differentiation, with applications. 

Simons, Lao G. The adoption of the method of fluxions in 

American schools. (In Scripta Mathematica . vol. 4, 

P• 207-219. July, 1936) • 

.An interesting report of early work in the field 
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The best and most readable reference used. 
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2nd edition , revised . New York, Henry Holt and Company, 
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A condensed treatise on elements of differentiation 
and integration . 
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Company, 1926. p . 134- 137 . 
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the definite integral . 

Young , L. C. The theory of integration. London , Cambridge 
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Very fine discussion of the Stieltjes integral 
and the definitions of upper and lower semicontinuity. 
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