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Introduction

The purpose of this thesis is the presentation of
the better algebraic methods of the segregation of real
roots of equations of lower orders and a brief historical
sketch of the advance made in the development of aléebra.
Mention is also made of a few of the men who have made
notable contributions to this field of mathematics and
the time, as nearly as it is possible to determine it,
when new ideas were discovered.

The solution of a problem by algebraic methods has
interested man through many ages. The clear skies of
Egypt made possible an early development in astronomy,
the annual flooding of the Nile valley, washing landmarks
away, provided the necessity for surveyihg and both of
these paved the way for the development of a form of
mathematics to help those people solve the problems
confronting them.

Down through the period of civilization of mankind
there have developed, and been passed on, new meathematical
ideas that have been helpful to man. There have also been
periods of inactivity when nothing constructive was pro-
duced, but out of which the mathematical thought would

awaken and go forward again, acquiring new ideas and lead-




ing 1n the advancement of civilization.

The Egyptians, the Greeks, the Arabs, the Romans and
in modern times the Europseans have all contributed to the
development of the methods for the algebraic solution of
thelr mathematical problems.

The writer has attempﬁed to present the different
methods in a chronological order beginning with the sim-
plest and advancing to the more difficult, therefore equa-
tions of the lowest order are considered first. 1In this
study, 'roots of lower orders' denotes roots of equations

of degree not beyond the fourth.




Chapter I
- History of Roots

The study of root segregation has interested mathemati-
cians for many centuries and they have learned much about it
that is of value, not only to fhemselves, but to all the
sciences that use mathematics as a tool. Before presenting
an account of this knowledge, a brief histofical sketch will
be given to provide a proper understanding of its develop-
ment. .

The earliest known document containing a reference to
roots is a papyrus, forming part of the Rhind collection in
the British Museum, believed to have been written by an
Egyptian priest named Ahmes. This papyrus written in
hieroglyphics more than a thousand years before Christ is
believed to be a copy, "with emendations",l of a treatise
more than a thousand years older, that treats of the pro-
cesses of arithmetic, geometry, and the "solutlon of simple
numerical equations".2 Of the many examples that Ahmes gave

relative to roots the following is a good illustration:

I, Ball, W. W. R. A Short Account of the History of Mathe-
A GICISRE IR 5 e
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He says, "heap, its seventh, its whole, it makes nineteen".l
The object here is to find a number which when added to its
seventh will equal nineteen. He gives 16 4+ 1/2 + 1/8 for
his answer, which is correct. Although the papyrus does
not contain theoretical results, theorems, general rules of
procedure, or mathematical knowledge one would expect from
the builders of pyramids, it does show "in several particu-
lars a remarkable advanced state of mathematics at the time
when Abraham visited Egypt".?

Nesselman® records three stages in the development of
algebra. The first stage he calls rhetorical slgebra, that
i1s, a method of finding the roots of an equation by a reason-
ing process expressed in words and not using algebraic sym-
bols. This method wes used by Ahmes, the earliest Arabians,
the Greek writers Iamblichus and Thymaridas, the early
Italian writers, and Reglomantanus. The ssescond period, in
which the solutions are syncopated in form, begins with the
later lestern Arebs and Diophantus of Greece and extends to
the middle of the seventeenth century with the exception
of the works of Vieta and Oughtred, whose work like that of
the Hindu's and the Europeans since the middle of the seven-
teenth century, form the third period, and are symbolic in

form.

1. Ball, W. W. R. A Short Account of the History of Mathe-
Hatiies; .D» D b S

2. Cajori, Florian. HTsEorz of Elementary Mathematics, p.1l9.

3. Heath, Sir Thomas L. Diophantus of _@—IIA exanderlia, p. 48.




The anclient Greeks were not original in their arithme-
tic and algebra. They acknowledged the Egyptian priests as
thelir teachers. It was not until the time of Nicomachus
and Diophantus in the fourth century A. D. that they made
substantial contributions to algebra. The nearest.approach
at this time to algebra is found where Thymaridus used a
Greek word meaning "unknown quantity", while some of the
work of Tamblichus, Theon of Smyrna and others were alge-
braic in meaning or principle. But in geometry they rose
to heights undreamed of by their predecessors. They were
acquainted with equations and could solve them geometrically.
It was shown by proportion how the root of an equation of
the first degree 1s found by the Intersection of two straight
lines. In the works of Heron and Archimedes are practical
problems to be solved by forming linear equations, while
quadratic equations are in the form of proportions. These
early Greeks could "represent by geometric figures, equations
of the form a'/a" x = b, a'/a" x +b'/p" y . . . = m. where
all quantities were linear."l They could also solve general
quadratic equations having different rational coefficients
and represent thelr positive roots geometrically. Euclid,
the great compiler of geometric knowledge, could solve
linear equations and incomplete quadratics geometrically.

"The three principal forms of egua-

tions first to be freed from geometric
statement and completely solved are,

l. Pink, Karl. A Brlef History of Mathematics, p. 78.




x2 = px + q,px = x2 + g, and x2 + px = q.
« « « In later times, with Heron and Dio-
phantus, the solution of equations of the
second degree was partly freed from the
geometric representation, and passed into
the form of an arithmetic computation pro-
per (while desregaiding the second sign in
the square root)."

Diophantus, who lived about the first part of the
fourth century, is reputed as being the greatest algebraist
of ancient Greece. He was one of the last of the Alexan-
drian mathematicians and had it not bden for his work there
would be no record of the Greeks making any notable accom-
plishment in the field of algebra. Before the discovery of
the Rhind Papyrus his "Arithmetica" was the oldest known
work on algebra. He worked with simple and quadratic equa-
tions, used algebraic synbols, and treated his problems
analytically, being completely separated from geomstry.
Although he knew how to solve equations, nowhere in his
"Arithmetica" does he explain the process. When his quad-
ratic was "of the form

ax2 4+ bx 4+ ¢ = 0, he seems to l.ave multi-

plied by 'a' and then 'completed the square!

in much the same way as is now done."
It is interesting to note that although both roots may be
positive he never gives but one of them, always taking the
positive value of the square. Should the root of the equa-

tion be negative or irrational, it was rejected as impossi-

ble. At that time the idea of a negative root had not bsen

l. Fink, Karl. A Brief History of Mathematics, p. 8l.
2. Ball, W. W. R. A Short Account 23 The History of Mathe-
matics, p. L10.




conceived by the Greek, but irrational numbers were known
by Pythagoras because he had discovered that the hypothenuse
of a right angled isosceles triangle was incomiensurable
with 1ts sides.

In the earliest period the Chinese ol rebra had one
thing in common with the Greek. ‘Ihey solved tielr quadretic
equations geometrically. The Chinese later developed a

method of approximation for solving hiiher al_jebraic egua-

tions. Py the seventeenth century the abscus had replaced
the computing rods for business purposes, in Japan, yet it
le

was desplised by mathematicians for they were at to solve

equations by use of the rcds. These rols were usually of
two colors, red and black. One color to designale nos
and the other negative nunbers.

"This distinction “etween positive
and negative s very old. In Chinese,
chery, was the positive and fu the ns.a-
tive, and the sane 1deo raphs are cumploy=d
In Japan today, only one of the terms "having
changed, sei Leing uscd ror cheng. fihese
Chinese terms are found in the Chiu-chang
Suan-ahu ws revised by Chenyg T':s ng in the
second century L. C., and lience 2are prob-
ably much more ancient even than the later
dats. The use of the red and black for pos-
itive and negative is found in Liu Ini's cowm-
mentary on the Chiu-chany, written in
263 A. D., but there is no reuson for
believin. that it ori . insted with him. It
1s probably one of the sarly matheuatical
inheritaunces of the Chinese the oriin of
which will never be ""nown. As applied to
the solution of egquetions, however, we
have no Jdescription of thelr use lLeTore
the work of Ch'ln Chiu-shao in 1247."

1. Smith, D. E. and Mikami Yoshio. LA !listory of Japanese
Jethematics, p. 43.




BPrahmagupta, a Findu mathematician, suoposed to have
been born in 598 A. D., wrote a book zmbout 860 entitled
"Rrahma-Sphuta-3iddhanta." Two chapters were devoted to
arithmetic, algebra, and sSeometry. IUils fora of writing
was entirely rhetorical. In his algebra he solved guad-
ratic equations.

The sarabian mathenatlclian, Alkarismi, who 1lved in the
ninth century A. U. wrote an algebra in which he solvsd
quadratic egquations, celliny the unknown guantity either
"the thing" or "the root" (tnhat is, of a plant). It wsas

I

from him that the word "root" for the solution of an egua-
tion was obtained. In the solution of ~is »Hrobleas he con-
sidered o-ly the rsal and positive roots, but ne admitted
the possibllity of there beinz two roots, which were unknown
to the Greeks.

WVhile the Zindu alzebvra is, in many respects, similar

to that of Heron aand Diophantus, 1t is also an improvenent

upon their work. Heron solved the juadratic « Juation

ax? bx = ¢ by a rule yielding, x = Vac - (9/2J° - b/2

and this was followed by the lindus uxntil the time of
Cridhara who simplified this by multizlyin by "4a" not

by "a" as did his predecessors and developed the rulc,

x = V/4ac - b® - b which is void of fractions under the
2a

radical. This also made possible the unifying of the three

TTe

1. BRall, %. &. R. A Short hccount of the Zistory of Mathe-
matics, p. 163.




2 .
cases, ax“+4 bx = ¢c; bx+4 c = axz; ax2-+ ¢ = bx, which were
considered as separate forms by the Greeks. Some nathema-
ticlans believe this to have been the -reatest innovation
in the theory of affected quadratic equatlons developed by
the dindus.
"The lindus were t-e first to reco,-
nize the existence o7 absolutely ne_ative
nuwabers and of irrational nunbers . . . .
Thus Phaskara gives x = 50 or -5 for the
roots of x2 - 45x = 250. ‘':ut', sayss he,
'the second value is in this case not to be
talten for 1t 1s inadequate; people do not
approve of negative roots'. Thus nosative
roots were seen, bnt not admitted."l
Altinough Ehaskara did not accept nejatbtive roots, he
did accept two positive roots. Ilis point of view iz eacsy to
understand when one considers that “is problens deanlt wilh
practical geometric form. Hls statesnsnt that "the sjynare of
a positive, as &also a negfative number, is jositive; that t'e
sguare root of a positive nunver is wo fold, positive and
ns-ative. There is no sguare root of a nerative numnber, for
it is not a square!", was far in advance at t at timne.
Leonardo of pPisa was one of the most travelad and
learned men of his time. He studicd thie uethods of calculu-
tion of Egyrt, Syria, idreece, Siclily and India. Of these he
found that of the Hindu to be ungusstionably the best. 1In

1202 he published a mathenatical book, "Liber Abaci”. This

book was for centurles the source of inforaation uvn arith-

1. Cajori, Florian. History of plewsentary .athemalics, ,,.101




metic and algebra for other writers. It was written in a
fluent and interesting style, containing the knowledge he
had gained from the countries in which he had studied. It
contained the best methods of calculation with integers and
fractions used at that time. This as well as other books
written by Leonardo, shows that he was a thinker, pressent-
ing his works in a new form free from conventions of the
past. He proposed the universal use of the "Arabic Nota-
tion", of which the zero was the portion first adopted by
the Christians. Leonardo also ave a thoroush explanation
of square and cube root, solved linear and guadratic egua-
tions by algebralc methods and although he realized that
two values were true for the gquadratic x2-+ ¢ = bx, he failed
to recognize negative or imaginary roots.

During the sixteenth century negative roots received
considerable attention, but it seems impossible to say who
first fully comprehended them. Cardan, in his treatise "Ars
Magna' published in 1545, discussed negative and imaginary
roots. Although Cardan mentioned negative roots and Eombelli
wrote of them, they never understood thelr real significance
and importance, speaking of them as being "false" or "ficti-
tious". f7There is no doubt Cardan =nd Rombelli were the out-
standing mathematliclans of the Henaissance, yet they were no
farther advanced on this phase than the Hindu, Phaskara, who
as was previously stated, found negative roots but would not

accept them. The expansion of the number system so as to

include negative gquantities was decidedly a slow, laborious
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process not fully conceived until well into the seventeenth
century. An lmportant contribution of Bombelli's was the
recognition of the connection between the change of sign and
the root of the equation.

Cardan's Ars Magna was a great advance over any algebra
at that time. One of the important new items was the solu-
tion of the cubic equation, whose revelation brought forth a
storm of protest from Tartaglia. Being famous as a mathema-
tician, Tartaglia, in 1635 accepted a challenge from a cer-
tain Antonio del Fiori to a contest. According to the chal-
lenge each was to deposit a speclfied sum of money with a
notary and the one to solve the most problems in a period of
thirty days, from thirty problems proposed by his opponent,
would be the winner. Fiori had learned from his 1lnstructor,
Scipione Ferreo, deceased, the solution of a cubic of the
type x34 qx = r. Tartaglla had perfected a solution for the
general equation, x3 4 px2 = r, so he prepared problems of
that type. He also knew Fiori had the above mentioned solu-
tion, and guessing Fiori would construct problems accordingly

he prepared a general solution for them. His guess was cor-

rect and he solved the thirty problems in less than two hours,

while Fiori failed to solve a problem.

When Carden heard of the contest he tried to get in
touch with Tartaglia but every effort falled, so he hit upon
the scheme of inducing the lather to visit him on the pretext
that a nobleman at his home wished very much to meet such a

learned man. Tartaglia succumbed to the flattery and went




to visit at the house of Cardan. The nobleman failed to
materialize but Cardan under the promise of strictest
privacy, prevailed upon Tartaglia to reveal his method of
solving the cubic, the promise being kept until the appear-
ance of the formula in "Ars Magna."

Ferrari, the most lllustrious student of Cardan, did
much for mathematics even to the solving of the biquadratic
equation, but since he was Cardan's pupil, Cardan appropri-
ated his work and published it in his "Ars Magna" without
giving note of its sourcs.

The eminent French mathematician Francia Vieta 1is
responsible for the theory of algebraic equations. He
enriched algebra by innovations in notations and in method
of solution. He swung away from the rule of "double false
position" used by Cardan and Burgi, developing a method
similer to that of ordinary root-extraction.

"The main principle employed by him
in the solution of equations is that of
reduction. He solves the quadratic by
making a sultable substitution which will
remove the term containing 'x' to the
first degree. Like Cardan, he reduces
the general expression of the cubic to the
form x5+ mx + n = 0; then, assuming

x = (1/3a - z2) and substituting, he gets

Z
z6 - bz6 - 1/2723 = 0. Putting z3 = y,

he has a quadratic. In the solutlon of bi-
quadratics, Vieta still remains true to his
principle of reduction. This gives him the
well-known cubic resolvent. He thus adheres
throughout to his favorite principle, and
thereby introduces into algebra a uniformity
of method which claims our lively admiration.
In Vieta's algebra we discover a partial
knowledge of the relation existing between
the coefficients and the roots of an equa-

R RRRRRRRRRRRRRRRRRRRR.




tion. He shows that if the coefficient

of the second term in an equation of the
second degree is minus the sum of two numbers
whose product is the third term, then the

two numbers are roots of the equation.

Vieta rejected all except positive roots;
hence 1t was impossible for him to fully per-
ceive the relation in question."l

Although Vieta rejected the negative roots of an
equation, so did all other mathematicians before the Ren-
aissance. In fact very few even understood the meaning of
negative quantities. The German, Michael Stifel, wrote a
treatise on numbers in 1544, where he mentions the negative
quantities as being "absurd" or "fictitious below zero'.

There is an indication that Flbonaccl used them a very
little, and while Diophantus found the product of two bi-
nominials as (a - b) (¢ - d) it remained for Pacioll to give
the important rule "minus times minus gives plus," but used
it only in obtaining the product of two binominials as did
Diophantus. Pacioll's work does not show the use of purely
negative quantities.

Thomas Harriot, a celebrated English mathematician
born in 1560, was the first to begin separating a negative
quantity from the rest of the equation and setting it in
one member by 1ltself.

Desplite the assertion of Stifel that an equation could
not have but one root unless they were both positive, it was

stated by Alfred Glrard in 1629 that the degree of an alge-

braic equation and the number of roots are equal. This,

1. Cajori, Florian. A History of Mathematics, p. 138.




perhaps, was the beginning of the fundamental theorem of
algebra, which states that every rational integral equation
with real or complex coefficlents has at least one real root.
Descartes had a clearer concept of it than others of his
time. In the summation of the total number of roots he
distinguished between positive and negative real roots and
between real and Imaginary roots.

The first notable attempt to solve the theorem, of
which there 1s a record was by d'Alembert in 1746. This
proof seemed so true that it was accepted by most of the
leading mathematicians and the theorem came to be known
in France as d'Alembert's theorem.

It is believed that Gauss was the first to use the
term, "fundamental theorem", and 1t 1s he who the world
recognizes as filrst proving it. His first proof appeared
in 1797. In the words of Gauss, this proof "had a double
purpose, first, to show that all the proofs previously
attempted of this most important theorem are unsatisfactory
and illuéory, and secondly, to give a newly constructed
rigorous proof."l Gauss produced four proofs, the second
and third being published in 1816 and the fourth in 1850.

In the early part of the seventeenth century Johann
Huddle? developed a rule for finding equal roots.

Others who helped to enrich this phase of mathematics

by their fruitful discoveries were Newton, Budan, Horner,

l. D. E. Smith. A Source Book in Mathematics, p. 293.

2. Cajori, Florian. A History of Mathematics, p. 180.




and Sturm, so thelr work will be discussed in detail in the

following chapters.




Chapter II
Rational Roots

Before presenting the methods of obtaining roots of
equations a few of the terms used in this study will be
defined and these definlitions adhered to throughout the

discussion.
DEFINITIONS:

If an algebraic expression containing an unknown quan-
tity is equal, for only particular values af the -unknown,
to another expression differently constituted, the equality
thus formed 1s called a conditional equation or simply an
squation. An equation, then, 1s a statement of equality
which is true only for certain values of the unknown quan-
tity.

When the statement of equality between two expressions
which become the same by the use of the permissible mathemat-
ical operations, 1t 1s called an identity and is true for
all values of the unknown.

The root of an equation is any value of x that satisfies

the equation.




- {

An equation is of the nth degree 1in x when the highest
power of x 1is n.

A complete equation is one containing terms involving
x in all its powers from n to O, and is incomplete when
some of the terms are absent.

The term a,, which does not contain x, 1s called the
absolute term.

An expression involving one or several letters is called
a function of these letters.

If a quantity can have different values in an expres-
sion it 1s called a variable. The variable to which values
are assigned 1s called the independent variable or argument.

An absolute constant is a quantity whose value does not
change.

An arbitrary constant is a quantity whose value 1s con-

stant during the discussion.




NUMBER OF ROOTS OF AN EQUATION

The important theorem, every equation of the nth degree
has n roots and no more, will be discussed first because
after 1t 1s proved no mention will be made to the number of
roots of any perticular equation for the number will be
determined by the degree of the sguation.

If ®,1s a root of the equation f(x) = 0, then f(x) may
be divided by x - x giving

f(x) = (x - x1) #1 x+ T
But since x; is a root of the equation, X, may be substi-
tuted for x and f(xl) = r is obtained.

i

0, the divisor is contained an integral number
of times in the f(x) and it has been shown that x - X, 1s a
factor of f(x) when xj 1s a root.
Consider the given equation,
£(x) = x0 4 ayxB-1 + apx™2 4 ... 48, 1x + 8, =0
This equation must have a root which will be denoted by x;.
When f(x) is divided by x - xq the quotient will be deslg-
nated by ¢1 (x), giving the identical equation
£(x) = (x - x) #y (x).
Again the equation ﬁl(x) = 0, which is of the (n - 1)th
degree, must have a root which will be represented by xg.

Let the quotient obtained by dividing ¢l (x) by x - x5 be
¢2(X)-




Therefore

$1(x) = (x - x5) Fa(x)
and £f(x) = (x - x7) (x = xp) ¢2x
where ¢2(x) is of the (n - 2)th degree.

Continuing in this way it is proved that f(x) consists
of the product of n factors, each containing x to the first
degree, and a numerical factor ﬁn(x). The factor g,(x) is
of degree n - n, because as the n factors were removed, each
reduced the degree of f(x) by unity, also each time xT was
divided by x the coefficient remained one, s g.(x) =1,
completing the proof of the identity.

Blayes(zr="xyh fxi= x5) (x - xz5) « « o (x-x,4)
(x - Xn)e

It is evident that the substitution of any one of the
numbers Xj, Xgy, « » « Xp for x in the right member of this
equation will reduce that member to zero and will automati-
cally reduce f(x) to zero; that is the equation f(x) = 0
has for 1ts roots the n values Xy Xgs Xzy o o o X 95 Ko
That the equation cannot have any other roots can be plainly
seen for if any other value is substituted for x in the
right membér, the factors will all be different from zero;

therefore the product cannot vanish.




A d

LINEAR EQUATION

A simple equation in x, thet is one irn which the
unknown appeesrs only to the first power, is of the form,
ax+ b = 0O,

where a and b may have any rational positive or negative
value and a shall not equal zero. Its graph is a stralght
line parallel to the y-axls and the line crosses the x-axis
et the point where x = -b/a, which is the root of the equa-
tion. To prove that this is the only sclution, suppose
x-S el and xiu=*d.
Substitute ¢ in (1)

ac +b =0
Substitute 4 in (1)

ad+4+ b =0
Substracting

ac - ad = 0
Factoring

a(e - d) =0
By the previous statement a 1s not equel to O,

Sy="4'=0
op c = d.

Hence there 1s only one root.




QUALDRATIC EQUATIONS

A quedratic equation in x 1s &n equation which when
reduced to its simplest form may be written in the form,
axe 4+ bx + c = 0, (1)
where a, b, and ¢ may have any real rational positive or
negative value, except x cannot equal O.
When b = 0, the equation takes the form ax< ¢c = 0 and
is called a pure quadratic. When ¢ = 0, it becomes
axe 4+ bx = O and one root is zero. When a = 0 it is
simply a linear equation.
To solve the quadratic transpose the ¢ gilving,
axl + bx = -c (2)
Dividing by a and completing the square,
be/482 - c/a (3)
(b2 - 4ac)/4a%

x2 + bx/a + b2/482

Taking the root of both members,

x + b/2a =+ Vb? - 4ac/4a® (2)
Solving,
x, = (-b + Vb2 - Zac)/2a (5)

xg = (-b - Vo2 - Zac)/2a (8)
Adding the roots

x)+ x5 = -b/a
Multiplying,

Xy ¢ Xg = c/a




~~

Thus it is seen that the roots of an equation are a
function of the coefficients. That the sum of the roots is
equal to the coefficient of xn-1 with its sign changed
divided by the coefficient of xo,

The quantity, be - 48c, is known aslﬁ , the discrim-
inant, of the guadratic equation. When A = 0 the roots
are real, rational, and equal. When & > 0 the roots are
real, rational or irrationel and unequal. When A £ 0 the

roots are conjugete imaginaries.




RELATIONSHIP OF COEFFICIENTS TO ROOTS

In the preceding paragraph it was proved that the
roots of a linear or of a guadratic equation were a func-
tion of the coefficlients. It shall now be established that
this principle holds for equations of higher degree.
Consider the equation where
£lx) g
agx, 1 81x%°1 4 8,x0"2 4 azx0-3 4 . . . &,
and ag # 0. If in the egquation ( f(x) - O) the coefficient
ag of the term xB 1s not unity, each term must be divided by
ag, which merely expresses the relationship in fractional
form.
If the equation has the n roots xj, Xg, Xz, « « « Xp
then
£x) 2 (x = x)(x - ) (x - x5) . . . (x- x,)
Taking n successively equal to 2, 3, and 4, the following is
obtained by actual multipligation:
When n = 2
£x) = (x - x1)(x - xg) = x2 - (x4 x3)x+ x7 x5 0
When n = 3
£(x) = (x - x3)(x - x3)(x - x5) =
x5 - (x)+ Xp+ Xgz) x2 + (X% + X Xz + xzxs)x -X XXz =0
When n = 4

f(x) = (x’— x)(x = x5)(x - xz)(x = x,) =




<4

x4 - (x4 Xot+ Xzt x,) x5 4+ (xyx5+ x Xz + x x,+
XoXg+ XX, + xzxy) 22 - (xyxpxzt XXX+ X XX,
XoXzXy )t X XgXgx, = 0
Thus 1t 1s seen that

al - -(xl+ x2+ XZ) SRl xn)

a‘2 = (X1X2 + XIXS + x2x5+- o . xn-lx'n)

as = = (x1x2x5 + x1x2x4 -+ XzX3X4‘f- . e xn_zxn_lxn)
an - ( -1 )n X1X2X5X4 o " ¥ X.n

The precedling statements may be summarized in the following

menmer:

In the equation f(x) = O, when x is of degree n and the
coefficient of x 1s unity, the coefficient of xN~1 is the
negative of the sum of the roots, the coefficient of xn-2
is the sum of the products of the roots taken two at a time,
the coefficlent of x™ 5 is the negative of the sum of the
products of the roots taken three at a time, and in such
manner until the last term 1s reached which is the product
of the roots, being positive or negative, depending upon
whether n is even or odd.

"It might appear that the n distinct
relations existing between the coeffilicients
and roots of an equation of the nth degree
should offer some advantage in the general
solution of the equation, that one of the
n roots could be obtained by the elimination
of the (n-1) roots from the n equations.

But this process offers no advantage, for

on performing this elimination we merely
reproduce the proposed equation . . .

While the equations expressing the relations




between roots and coefficients offer no
adveantage in the general solution of equa-
tions, they are of service in the solution
of numerical egquatlons when some special
relation 1s known to exlst among the roots.
Moreover 1n any algebraic equation they
enable us to determine the relations between
the coefficlents which correspond tf some
given relations between the roots."

1. CcCajorli, Florian. Theory of Equatlons, p. 1lZ2.
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THE CUBIC EQUATION

There are many different solutions of the cubic egua-
tion, but the method glven is essentially the same as that
given by Vietal in 1591.

In the general cubic equation,

x5 +bx2 $cx +da =0, let x =y - b/3 (1)
Substituting this value for x the followling reduced cubic
is obtained where the unknown asppears only to the first and
third powsr.

y° - by2+ b2y/3 - b3/27 + bye - 2b2%y/3 + ©3/9 + cy

+cb/3+4d =0,

or y3 + (¢ - b2/3)y + 2b5/27 - ¢b/3 4+ 4 = O (2)
The equation is simplified by letting,

pREACEE b2/3
and q = 2b5/27 - ¢b/3+ 4,
which puts it in the form,

y3+ py +q = O. (3)
To solve this equation, let

y = z - p/3z, (2)
obtaining,

2726 + 27923 - p3 = 0
or z6 + qz3 - p®/27 = 0. (5)

l. Dickson, L. E. First Course in Theory of Equations, p.45.
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Since thls equation 1s in quadratic form it can be solved

for z9 by using the quadratic formula.

25 = (-q t V¥4 4p3/27)/2
or = -q/2 * Y(a/2)% - (p/3)°. ' (6)
Then 2y = °Y-q/2 + W(a/2)% + (p/3)° (7)
and  z3 = H/-a/2 - V(a/2)% + (p/3)°

Since there are three cube roots of any number, the
cube root and the product of it by the imaginary cube roots
of unity, w = -3 +3 /5 1, and w8 = -3 -3 V3 1, there will
be six values of the above which are the roots of (5). Zy,
Z1W, zlwz, Zg, ZoW, and z2w2. These must be paired so that

the product of the two so paired 1s equal to -p/3, that is

g . zow = -p/3.

2129 = =p/3; zqW ° zzwz = -p/3; zqw
To each root z is paired a root equal to -p/3z; there-
fore the sum of the two 1s equal to y, from (4), and the
three values of y will be,
Y, T2+ 25 3 T T Wt z2w2 ; yO = z1w2+ zow. (8)
These values of the reduced cubic (3) are known as
Cardan's formula. It was concerning this solutlon that
Cardan and Tartaglia had such a controversy.
The discriminent of the cubic is deflned as the product
of the squares of the differences of the roots where the

term containing the third power of the unknown has unity for

its coefficient. That 1s




RS - )2 (g - wgIF (y5 - y5)2
To express this In terms of the reduced cubic the
values of yy, yg, and yz, from (8), will be substituted for
them.
¥ - Vg T 2]+ 25 - z,W - 22w2

= zl(l -w) - wlz_(1 - w)

o
= (1 - w)(z - wzzz)
¥ YOWE =i ey e zlw2 - ZoW
= zl(l - w2)- Wzg {2 )
= (1 - w2)(zq - wzp)
Yo = ¥z = 7w + 22w2 - zlw2 - ZgoW
= zq (w - we) - zg (w - we)
= (w - w2)(z) - 2p)

To obtain the product of these equivalent values of the
differences of the roots it is easier to find the products
of parts before obtaining the final product.

Since the cube root of‘unity is 1, w, and w<,

Solg =l (xa-rwilx s W) = x5 -1,

Letting x = zi‘/z2

(z1 - zz)(zl - wzz)(zl = w2z2) - zl5 - 223
= 2 /(q/2)% - (p/3)°
(1 -w)(l-w2) =23; (w-wl) = V31,

(v - 73 (3, - ¥5)(3g - 75)

3« 2V(a/2)% - (5/3)° * )/3 1 and
(73 -~ 7508 (73 - 7502 (35 - v5)2 = -279% - 4p°




Since p and q are expressgd in terms of the coefficients
of the cublc equation one can obtain the value of A\ without
solving the cubic.

When the three roots of the cubic are real, sguaring
the difference of any two gives a positive result, there-
fore A\ is positive.

Should two of the roots be conjugate imaginaries, the
square of their difference is negative. If the third root
is real, the square of the difference of 1t with each of the
others gilves a negative result, therefore the final product
or /A 1is negative.

Should two of the roots be equel and one of them
imaginary, the third root would be its conjug;te and they
would be thé roots of a real guadratic. The other equal
root, helping form the third factor of the cubic, would have
real coefficients, therefore the two equal roots must be
real and L\ is zero.

These results leaa to the very useful theorem, SR AN
is positive the roots are real, if A\ is negative, one root
is real and the other two conjugate imaginaries, 1.0 W2
zero, two roots are real and equsal.

To illustrate this method of solution consider the equa-
tion

x3 4 4xB 4 4x+ 3 =0
where a=1, b=4, ¢c =4, d = 3.

Let x =y - b/3. Then in the equation




¥+ py+q =0
p = c - b2/3;
=14 = 16/3
= -4/3,
q = d - ¢cb/3 - 20°5/27

3 - 16/3 - 128/27

65/27.
Which gives,
y3 = 4y/3 - 65/27 - O.

z) = &/-65/54+ V(65/54)2 + (-4/9)°
= 3/765/55 ¥ 63/5%

= -1/3

Zg 3/-65/52 - 63/54

= -4/3
Then ¥y, = -1/3 - 4/3
= -5/3
y2 = (-5 + 2V3 1) (-1/3) + (-3 -3 V3 1) (-4/3)
= 5/6+ V3 1.
vz = (-3 -3 V3 1) (-1/3)+ (-3 + 35 1) (-4/3)
=5/6 -%)31

wj

Therefore,

x; = -5/3 - 4/5

= -3

x5 = 5/6 2V31-4/3




3

xR R

5/6 - V31 - 4/3
-4 - )31

wzl



THE QUARTIC ZQUATLON

The solution of the guartic equetion iven here is due
to Ferrari and was first published by Cardan in his "ars
Vagna'.

The general quartic equation is of the form,

X4-+ bx3-+ cx2-+ dx + e = 0. (1)
Adding (nx + n)? to both members of the equation .ives,

x4-+ bx2+ (¢ + e ) x2 + (&4 + 2mn) x + € + ne =

(nn 4+ n)@ (2)
Let us assume the identity,

x4-+ bx3 + (c + me) x2-+ (8 + 2on) x + e + ne =

(x2+ bx/2 + p)<e. (3)
It is now possibkle to equate the coefficlents of tre like

powers of x,

o=

c - m° = be/4 - 2p (4)
d - 2mn = bp (5)
e - n< = p< (8)

%lininating m and n from (4), (5), a.d (6),

me = be/4 + 2p - ¢

m (bp - d4) /2n
ne = p2 - e.
b2/4 + 2p - ¢ = (b2p2 - 2bdp + d%) / (4p° - 4e).

Removing fractions gives,

8p3 - 4cp? + (2bd + 8e)p t+ 4ce - b2e - d° =0 )




This 1s a cublc in p whose solution was given in the preced-
ing paragraph; therefore, a solution may be assumed for o)l3
Knowing the value of p, one may readily obtain the value of
m and n from (4) and (6). From (2) and (3) one may write
(x2 - bx/2 - p)2 - (mx - n)2 (8)

which may be written in the following identical way,

x2 4+ bx/24+ p - mx - n = 0, and

0.

x2 4 bx/2+ p + mx + n

The four roots obtained from these two equations are the
solutions of (1).
This solution may be illustrated with the equation,
24+ x3- x2 - 7x - 6 =0, dn whichb = 1; ¢ = -1;
d Sy i Ne. 5 =B (1)
Adding (mx -+ n)2 to both members of the equation,
x4+ x5+ (@ - 1)x® + (2mn - 7)x - 6 - n® =
(mx + n)Z2. (2)
Assuming the identity,
x4+ x3 4 (m2 - 1) x®4 (2mn - 7) x - 64+ n®
(x2 + 3x + p)2. (3)
Squaring the right member,
= x4+ x3+ (3 + 2p) x4+ px + p°.

Equating coefficients,

m? - 1= 2 - 2p. (4)
2mn - 7 = p. (8)
me - 6 = p<. (6)

Eliminating m and n from these three equations,

— =S .




B
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5/4 + 2p, from (4)

8
[AV]
1

= (p + 7)%/(2n)2, or (p® + 14p + 49)/4n2, from (5).
n® = p2+ 6, from (6)

Equating values of m2,
(p% + 14p + 49)/(4p% + 24) = 5/4 + 2p
8pS + 4p° 4+ 34p - 19 = O. (7)

Solving this cuble for p, & 1s found to be a real root.

Substituting this value for p in (4) and (6) gives,

m = 5/4 - 1

m = 3/2.

n® = % -6 |
ai+=48§7/2. J

From (2 ) and (3),
(x8 - 2x - %)% = (3/2x - 5/2)2.

Taking the square root of both members gilves,

%2 + 3x+ 2 +3/2x+ 5/2 = 0 and _
%%+ 3x+ & +3/2x - 5/2 = O.
2+ 2x+3=0 X2 - x-2=0 '
x=-1 +Y21 x =2

x=-1- Y21 o |




NEWTON'S METHOD FOR INTEGRAL ROOTS

Sir Issac. Newton discovered a very convenient method of
obtaining the integral roots of an equation when the coeffi-
cients are integers.

Consider the equation,

apx, +.alxn‘1.+ c « « $8y1%X 8, =0 (1)
Transposing thellast term, dividing by -1 and factoring the
left member gives,

x(aoxn'1 - alxn'2 slidensnd, ) Fray (2)
When this equation is divided by x, the x is found to be an
exact divisor of 85 because the integer 1n the parenthesis
is the quotient. That 1s, an integral root is a divisor of
the constant term.

Transposing the last two terms of (1) and repeating the
above process gives,

x2(-a. xN"2 - 8 xP=3 — . . L8, ) = ey gx 4 ey, (3)
The right member must be divisible by x2 or e, i ; a,/x
divisible by x. Transposing the last three terms and repeat-
ing the process gives,

x5 (-a,.xB"3 - alxn'4 = . s =By _a) Z

an_zxz.;- 8 %+ 8, (4)
whose sum must be divisible by x° or &y ot an_l/xf-an/kz

is divisible by x. By continuing the process the last sum




8y + 81/X 4 . . . 1s not only divisible by x but is equal to
0, since it 1s the quotient of (1) by x®. Thus a series of
condltions of divisibility is produced that must be satisfied
by an integral root of the equation. As an illustration
take the equation,

x4 4 4x3 +8x + 32 = 0. (1)

The divisor, 16, of the constant term is not a root

since 8 + 32/16 = 10 is not divisible by 16. Neither is 8 a
root as 8 + 32/8 = 12, which is not divisible by BEMIEe
prove that -2 and -4 are roots and that none of the division
tests fall, the work is arranged in a systematic order.
Teking the sum of the coefficlents, replacing the missing
term with 0O gives,

1+ 4 +4+0+8 +32_(-2 (2)

-1 -2 +4 -16
o= d =&

Pirst the constant term 32 is divided by -2, place the quo-
tient under the preceding term, a + 8, and add. Dividing
their sum gives 4, place it under the 0, add, dividing
their sum glves a - 2, place it under the 4, add, dividing
treir sum gives -1, which when added to the 1 gives O,
which meets all the conditions given in the proof.

The second line of (2) is the negative of the coeffi-
cients of the quotient of (1) divided by x - 2, so the
quotient 1s an equation of one degree lower than (1).

To show that -4 is a root, take line 2 of (2), with

slgns changed which is the coefficlents of the depressed




equations,

l+2-44+16 (-4

-1 +£2 - 4

N

Dividing 16 by -4 gives -4, add to the preceding term
gives -8, dividing, gives 2, add to the preceding term,
dividing their sum gives -1, add to the first term gives O.
The quotient is the polynomial x2 - 2x + 4, which when set
equal to zero has the imaginary roots, S V—_.’S- and

1l - V-_IS-, being obtained by using the quadratic formula.




Chapter III

IRRATIONAL ROOTS

The purpose of this chapter is the explanation of the
different methods used to obtain the irrational roots of
equatlons.

Conslderation will first be glven to the location of
roots between two stated points. Let the interval be from
a to b. If a polynomial f(x) has real coefficients and if
when a and b are substituted for x in the f(x) they produce
opposite signs, the equation f(x) = O has one or more odd
number of roots in the interval from a to b, when a multiple

root 1s counted m times.

O 1s the polnt where

A real root of an equatlon f(x)
the graph of the equation crosses the x-axis. Taking & and
b as polnts on opposite sides of the x-axls, f£{(x) will change
its sign in passing from f(a) to f(b) while f(x) varles con-
tinuously with x. As f(x) passes through all the intermedi-
ate points while changing from a to b 1t will pass through
the zero value which causes f(x) to disappear and is a real
root of the equation f(x) = 0. But f(x) need not cross the
x-axls only once in going from f(a) to f(b), but may cross

it any number of odd times. Also if f(x) does not change




in sign when a and b are substituted for X, they represent
points on the same side of the axis and the graph does not
cross the axis in going from a to b, or else crosses it an
éven number of times. Therefore there are no roots between

a and E or there is an even number of them.




DESCARTES' RULE OF SIGNS

" Descartes' rule of signs cannot be used to segregate
the roots of an equation but it is of value in giving some
1dea of the number of real roots the equation possesses.

When two or more successive signs of the coefficients
of a real equation f(x) = 0, or any polynomial, are alike,
there is said to be a continuation of sign, but if a pair of
successive signs are unlike there is a variation of sign.

In the polynomial,

f(x) = 3x° + 4x2 - 6x + 2 (1)
there is one continuation of signs and two variations of
signs. This can be shown more clearly by writing only the
signs of the coefficients. + + — +.

Descartes! Rule states: The number of positive real

roots of any equation f(x) = O with real coefficients does
not exceed the number of its variation of sign of f(x) or
is less than that number by a positive even integer. A
multiple root 1is counted as m roots.

Thus (1) has two or no positive roots. Increasing the
number of positive roots of (1) by multiplying by x - 2
glves

ax? - 2x% - 14x% + 14x - 2
in which there are three variations; therefore there are

three real roots or only one.




The number of negative roots of f(x) O can be reck-

oned by substituting (-x) for (x) in f(x)

0. The negative
roots being equal to the variations of sign of f(-x) or less

by a positive even integer.




Edand

UPPER LIMIT OF ROOTS

In the segregation of roots much time can be saved if
one knows that the root lies between some definite values.
To accomplish this purpose there have been developed two
general theorems. The first theorem gives a better limit
in some equations than the second, while in other equations
the reverse is true.

Theorem 1. In the equation

f(x) = x2 + alxn'l +8,x0°2 ¢ . . .48 (X 48 0
if the first negative term is preceded by r coefficlents
which are positive or zero and if the greatest negative
coefficlent be pL then g/;; 1 is a superior limit of
the positive roots.l

For example, in the equation

x% - 45z° +40x +84 = 0
r = 2 and i 45. According to the theorem each root is
less then \/45 + 1 and therefore less than 7.7. Although
the constant term 1s 84, and the product of the roots, know-
ing that the upper limit of the roots is 7.7 will prevent
one from wasting time with the larger factors of 84.

Theorem 2. If in any equation each negative coeffl-

cient be taken positively and divided by the sum of all

1. The proof of this theorem is given by Dickson in First
Course in Theory of Equations, p. 21.
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the positive coefficlients which precede it, the greatest
quotient thus formed increased by unity is a superior limit
of the positive roots.1

The preceding example had the upper limits 7.7 by
theorem one. Applying the principle of theorem 2 the upper
limit is 46, showing that theorem one gives a better upper
Tmtt for this equation. But for

4x% +12x3 - 17x2% - 3x +4 = 0

theorem one gives \ﬁf7 - 1 = 5.12 while theorem two gives
17 #+ 16 4 1 = 2.06 a much better upper limit.

1. This theorem is proven by Cajori in his Theory of
Equations, p. 44. |




GRAPHIC SOLUTION

The segregating of the real roots of a real equation
f(x) = O by constructing its graph glves a geometric inter-
pretation that 1s easy to comprehsnd. On an x, y axls
construct the graph of the function y = f(x) and measure the
distance from the origlin to the polnts of Intersection of
the curve with the x-axils.
To 1llustrate, consider the equation,
x5 - 3x% -x~-3=0 (1)
Equate the left member to y,
Yy = x5 - 3x% - x - 3,
end find by synthetic division the values of the function
corresponding to the various assigned values of x. When the
division of f(x) by the assigned posltlve values of x pro=-
duce pertial remainders that are all positive, no grenter
positive values of x need be consldered us these velues
only produce inereasing values for y. 3imilarly, when the
assigned negetive values of x produce partial remalnders
that are alternately positive and negative, no greater negs-
tive vslucs need be used as they would produce increasing

values for y.

_L -~
1T x 1, 0 EL_. U
Thon y = L5, 0,=8, 0, 7, 0,-TF




For the assigned integral values of x the table gives
the corresponding values for y which makes the curve shown
in Fig. 1, and the roots of the equation are 1, -1, and -3.
This must not be interpreted to mean that the random selec-
tion of abscisses, however numerous, will always give the

true curve and all the roots of an equation.

12

-12{

Fig. 1.




For example analyze the equation,

¥y 8x4 + 6x5 - 7x2 - 6x - 1. Assigning integral

values to x produces the accompanying tabls.

It x W T

Then y = 131, 0, -1, O, 63

The graph of these values is shown in Fig. 2, a
U-shaped curve which indicates that the equation has but
two real roots and only one bend point. However, such a
conclusion is false, because on further solving -% and -%
are both roots of the equation and the true graph 1s shown
in Pig. 3.

To mvoid such erroneous conclusions it is best to use
the method of the calculusl which shows that the first
derivative of a function will cut the x-axis, if it has
real roots, at a point whose absclssa is equal to the
abscissa of a bend point of the graph of the function. For
example take the equation,

f(x) = x° - 3x° - 9x + 2. (1)
Taking the first derivative,

£1(x) = 3x2 - 6x - 9. (2)
Setting this equal to zero and solving 1n order to find the
critical values of the variable.

3x2 - 6x - 9 = 0
-1 and 3.

X

1. Granville, Smith, and Longley. Elements of the Differen-
tial and Integral Calculus, p. 52.
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By finding the second derivative the critical values
obtained from (3) can be tested to see if they are a maximum
or minimum of the function. If a critical value substituted
in the f"(x) produces a negative result, the function is
8 maximum or there 1s a bend point concave downward, but if
the result 1s positive the function is a minimum and thers
is also a bend point but it is concave upward.

£"(x) = 6x - 6.
Substituting the critical value -1
£"(-1) = -12.
Substituting -1 in f(x).
£ (-1) =17.
Therefore there is a bend polnt or a maximum of the function
concave downward at the point (-1, 7). Examining the other

critical value, 3,

#¥{a) = 12

£ (3) = 25
There 1s another bend point or a minimum at the point

(3, 25). Arranging a table of values and making a graph
of the function gilves Fig. 4. The curve must cross the
x-axis three times as determined by the bend points of the

function. The roots being -2, and approximately, .2 and 4.8.

Ii X = 5, Z, 3, 2, 1, O’ "l, "2, ‘:3
Then y = 7,-18,-25,-20, -9, 2, 7, 0,-25

]

]
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STURM'S THEOREM

"Let f(x) = O be an equation with real coefficients and
without multiple roots. Modify the usual process of seeking
the greastest common divisor of f(x) and its first derivative
f;(x) by exhibiting each remainder as the negative of & h
polynomial f; \

f = qlfl » [ 30f§= qpfp = fgy £ = q5f3 - f4, > 213 s ﬁ

fn-2 : %1 fn-l fn;
Where f, is a constant # O. If a and b are real numbers,
& < b, neither a root of f(x) = 0, the number of real roots
f(x) = 0 between a and b is equal to the excess of the num-
ber of varliations of sign of

£(x), £,(x), fo(x), « « o« ,f 4, £, (2)
for x - a over the number of variatlons of sign for x - b.
Terms which vanish are to be dropped out before counting the
variations of si'gn."1

The purpose of this theorem 1s the isolation of the
roots between consecutive integers, or narrower liults
should there be more than one root between two consecutive
integers. Then the root can be found to as many decimal

places as are required by the use of Horner's or Newton's

method.

»

1. Dickson, L. C. Flrst Course in the Theory 3{ Equgﬁiqgg,
3 TP, T




To 11llustrate Sturm's theorem take the equation
f(x) = x5 - 3x2 - 4n +13 (3)
fl(x)= 3x2 - 6x - 4
Dividing f(x) by f;(x) there is a remainder of
-14x/3 + 35/3 which is designated by -f,
Dividing fl(x) by fo there is a constant remainder of
-1, designated by -fz, therefore;
£(x) = x5 - 3x8 - 4x +13 = (x/3 - 1/3) £y-f
£1(x) = 3x® - 6x - 4 = (9x/14) £, - f
fo = 14x/3 - 35/3
fz = 1/4

3

From Descartes! rule (3) has two or no real positive
roots and if has 3 or one real negative root.

For x = - oo, the signs of f, fl, f2, f3, are - + - <+,
showing 3 variations of sign. For x = 0, the signs are
+ - -+, showing two variations. From the theorem there
must be 3-2 = 1 real root between - o© and 0. Therefore
according to Descartes' rule if there are any more real
roots they must be two positive ones. For when x = oo
the signs are <+ + + ¥ showing no varlation. For x = O to
x = + o= there 1s a difference of two in variation of signs;

therefore there are two positive roots between those values.

S T T P Tt
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Arranging a tabular form for the

s signs veriations
-3 -4+ - 4 3
-2 -+ -+ 3
1 root
-1 + - 4 2
0 + - - 4 2
il + - - + 2
= + - - + 2
2.2 + - - ¢ 2
1 root
204 -"-+ al
2n6 -4+ + + 1
1l root
2.8 + 4+ #+ + (o)
5 ++++ 0

Values of x, the signs of f, fl’ f2, fS’ and the varia-

tions of sign, there is seen to be a change in

of variations for the values of x = -2 and x

xf= 208 and ixi= A 2L 4, and forix =1 2.6 and x

the number
-1 for

2.83; there-

fore there are three real roots between those values, and

they are isolated between integers according to the state-

ment of the theorem.




BUDAN'S THEOREM

"Let & and b be real numbers, a <« b,
neither a root of f(x) = 0, an equation of
degree n with real coefficients. Let |/a
denote the number of variations of sign of

) TSR (X, & p p TR{x] (1)
for x = a, after vanishing terms have been
depleted. Then Va - Vb is either the num-
ber of real roots of f(x) = O between a and
b or exceeds the number of those roots by a
positive even integer. A root of mEltipli—
city m is here counted as m roots."

The purpose of this Theorem 1s the same as that of
Sturm's, the isolatlon of real roots betwesn integers. The
fundamental difference lies in the process of obtaining
functions to obtain variations of signs. With Sturm's
method one would find the first derivative, there by the
process of division obtain the remainders until the last
one was a constant, while with this method of Budan's one
merély takes the successive derivatives until the last one
1s a constant. Whlle this method of obtaining the functions
is the less laborious, it is not as specific in determining
the number of roots. The roots may be equal to the varia-
tion of sign or less by an even integer.

For example,

x° - 3x -1

Rll)
Rt {x)

3x2 - 3

1. Dickson, L. C. First Course in the Theory of Equations,

p. 83. The proof of this theorem is given by Dickson.




f"(.X)

6x

"(x) 6

Uslng Descartes' rule thépe is one positive and two or
no negative roots.

Arranging the values of x in a tabulated form with the

signs of f, f', £", f™ and their variations.

x ik Bl SR variations
B + + + o+ )
2 + + + + 0

1l root
a - - ¢+ + 1
0 = = 1

1l root
-1 + + -+ 2

1 root
-2 - 4+ - + 3
-3 - + - + 3

There is seen to be a change in the number of variations
between the values where x = 2 and x = 1, where x = O and
x = -1, and where x = -1 and x = -2. Therefore since there
was a difference of one in the variastion of sign, there is
one positive root and two negative roots between the above

values of x.




HORNER'S METHOD

The approximation of irrational roots mey be determined
to as many decimal places as required, after the root has
been isolated by one of the preceding methods, by & process
perfected by Horner and named for him.

A geometric interpretation will be given to help clar-
ify the salgebralc explanation of Horner's Method.

It is assumed that the equation f(x) = O has been
graphed and found to cross the x-axis in the unit interval
between &nd from & and b, as shown in Fig. 1, and passes
through the points P and Pl whose coordinates are (a, h)

and (b, k) respectively.

Y Y P Y
Py
k
k,
X
g a . \ .b a+4+.6 i 4t [at.7
h ]
) P
3
B, L h,
1

Fig. 1. B, Fig. 2. P, Fig. 3.

The secant is drawn from P to P1 and the unit from
8 to b 1s enlarged and separated into tenths as shown in
Fig. 2. The point a is used as the origin or it may be I

thought of as moving the y-axis a units to the right. This




is accomplished algebraically by dividing f(x) = O by x - a,
by synthetlc division, giving the first transformed equa-
tion, f(xl) = 0.

The graph is now seen to cross the x-axis between .6
and .7. The secant is drawn from P2 to P5 and by computing
the f(a + .6) and the f(a 4+ .7) the ordinates of P, and Pg
are found to be h; and ky respectively.

The unit from .6 to .7 (Fig. 3) is enlarged and divided
into ten segments which correspond to hundredths in Fig. 1.
8 4 .6 is used as the origin, or the y-axls is moved again
which means, algebraically, that the f(xl) is divided by
x - (& + .6) giving the second transformed equation f(xz).

The root of the equation is now seen to be a + .67 and
as the approximation becomes closer the secant keeps drawing
closer to the root of the equation, the points P and Pl
become closer and closer together, until eventually they
can be made to coincide on the x-axis.

Should it be necessary to secure an approximation
closer than hundredths, the process of enlarging the units
could be repeated and obtain a value to as many decimal
places as desired. In actual practice it is usually neces-
sary to carry the approximation only to hundredths or
thousandths.

For the algebraic solution consider the equation men-
tioned in a previous parsagraph,

f(x) = x5 - 3x2 - 4x + 13 (1)

where a real root was located between 2.2 and 2.4 by Sturm's




method.
The root of the equation is first decreased oyl
which means moving the graph of the equation so that it
crosses the x-axis between .2 and .4. This is accomplished
by synthetic division.
W= 3t 4 +13 210

N

|

2.2- 1.76 -12.672

l1- .8-5.76 + .328
2.2+ 3.08

1+ 1.4- 2.68
WP Ha
Is £.546
The transformed equation is
x5 + 3.6x2 - 2.68x + .328 (2)
which has a root between .2 and .4. It is important that
the sign of the known term in each transformed equation be
the same as that of the original equation.
To obtain an approximation to the root of (2) ignore
the terms x5, and 3.6x2. Then if -2.68x; - .328 = O,

X .1+, but before accepting this it must be verified.

1
When it is tested the result is just positive; thersfore it
is acceptable.

If the result was negative it would mean that the point
was on the left side of the origin; therefore that value
would be too large. The coefficients of the transformed

equations appear on the first lines of the following scheme

which shows the procedure for obtaining the approximate




i

root to six decimal places. Since the root i1s taken to only

six decimal places, the fractions are rounded off at the

sixth place.

l+4 3.6 - 2.68 +

. 528 il

. Galetl WO, 2 2231
eSS S IR DR (0] e/
+ 2.b0#E 38
1IN 5580l . 95
4 i
i1 B R . 097
.93
1+ 3.9 -1.93 + .097 Eiaelb
+ .06 4 .1975 - .086625
1 '+ B98I =01:7326"+ 010375
+ ,05 4 .20
1l + 4.00 - 1.5325
+ ,05
1l + 4.05 .010375
1.5325
1+ 4.05 - 1.5325 + .010375 = ,0086
+ .006 + ,024336 - .009049
1 4+ 4.056 - 1.508164 + .001326
+ .006 + .024372
1 + 4,062 ~ 1.483792
I 000
1l + 4.068




.001326
. 483792
14+ 4.068 - 1.483792 + .001326 = , .0008
+ .0008 # .003255 - ,001184
1 + 4.0688 - 1.480537 + .000142
+ .0008 + .003256
1l ¢+ 4.0696 - 1.477281
+ .0008
1 4 4.0704
.000142
1.477281
1+ 4.0704 - 1.477281 4+ .000142 = .00009
¢+ .00009 + .000366 -~ .000133
1+ 4.07049 - 1.476915 + .000009
+ .00009 4+ .000366
1+ 4.07058 - 1.476549
+ .00009
1l + 4.07049
Taking the sum of the roots of the transformed equa-

tions, the approximate value of the root of (1) is

x = 2.215689+

The other two roots of (1) could be approximated in

like manner.

If the root is negative a

-Xx can be substi-

tuted for x in f(x) and the procedure for positive roots

followed.




NEWTON'S METHOD

There is a great deal of similarity between the methods
of Newton and Horner. In both & root is 1solated before
thelr respective methods are used. Also there 1s quite a
difference 1n part of the plan of procedure. Newton's
method 1s more applicable than Horner's in that it can be
used to solve other types of equationsz, while Horner's 1is
only for algebraic equatilons.

It 1s taken for granted that a real root of the equa-
tion f(x) = O has been isolasted between a and b on the x-axis
where 0 = a < b. These values of a and b must be taken
so close together that the f'(x) = O does not have a root

between a and b, because if it did there would be a bend

point in the f(x) = y. Also the f"(x) = O must not have a
root between the limits & and b, for if 1t did there would
be an inflexion point in the greph f f(x) = y.

Since neither f'(x) nor f"(x) have a root between the
limits a and b, £"(x) will have the same sign throughout the
interval, while f(x) changes sign; therefore they wlll voth
have the same sign at one end of the interval and that value

should be taken to work from in approximating the root of

£(x) 0. If thils value 1s a, then a better approximation

will be a +h. To find h Newtonl used Taylor's Theorem,

1. Burnside and Panton. Theory of Equations, p. 226.




substituting a for X 80
f(a +h) = f(a) +£'(a)h +"(a)hR/21 +£"(a)nd/3 1..
Ignoring the powers of h2, h3, . . . and taking
f(a) f'(a)h =0, h=-f(a) / £1(a).
To obtain the next approximation he let a, = a+ h
in the first transformed equation and found hl'
hy = -f(ay) b f'ay).
Perhaps a graphic presentation will help give a better
understanding of the discussion. Consider the graph of
¥ = f(x) as shown in Fig. 1 where the point P has the

abscissa OM = a and the tangent at P and the graph cut the

x-axis at T and N respectively.

|

1] ¥

6] i Uy f; \\\

Let the subtangent MT = h and P = f(a). Since the

first derivative of the function equals the tangent

ft(a) = tan XTP
= -MP/h
= -f(a) /h
h = -f(a)/f'(a)

A better approximation to the root ON is OT = a + h.
A still closer approximation would be OT', which is bring-
ing the tangent nearer to N as the approximation comes

nearer to the root.

-r

T —

-

e
—

S — = NS
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By way of 1llustration take the squation
f(x) = x3 - 2x2 - 2
where a root has been 1solested between 2 and 3. Which of

the values to use for a will first be determined.

fr(x) = 3x2 - 4x
f"(x) = 6x - 4
f () =a - value. f (3) = a + value.

£f"(2) = a + value. f£"(3) & + value.

Since the f(3) and the f"(3) have the same sign, 3 will
be used for a. To find the first approximation transform
f(x) by dividing it by 3 by synthetic division

l1-2+ 0=-2 _3

+ 3 + 3 +9

I &l + B+
+ 3 + 12

l+ 44 15
+ 3
Ay

glving
f(xl) = x5 £ 7x2% +15x + 7
£1(xq)= 3x2 + 14x +15
Y & 2=eia)/ pliElE <T/16 = =4
The process of performing the substitutions to obtaln the
transformed equations is done by synthetic divislion just
as in Horner's method, except some of the values of h, hl’

hz, « +» « Will be negative lnstead of always positive.




+ 15 ) -.4

-2.056

- .4 - 2.64 - 4.944
+ 6.6 + 13.36 + 2.056
- .4 - 2.48

+ 6.2 + 9.88

e

+ 5.8

+ 5.8 + 9.88 + 2.056 =
S I T g O
+ 5.6 + 8.76 + .304
= = 108

+ 5.4 +7.68

]

+ 5.2

¥+ 548 ¥'7.68 + .304

- .04

- .2064 - .298944

9.88
-.2

+ 5.16 + 7.4736 + .0050566

- .04 - .2048
+ 5.12 + 7.2688
- .04
+ 5.08

|
W
n

|




-.005066
7.2688
1l +5.08 + 7.2688 + .005056 = -.0007
- 0007 - .00355551 - . 005085671143
1 + 5.0792 -+ 7.26524449 - ,000029671143

- .0007 - ,00355502

1l + 5.0786 + 7.26168947
- .0007
1l + 5.0779
g = .000029671143 = .0000041

"It can be proved that if the final
fraction g, when expressed as a decimsl,
has k zeros between the decimal polint and
the first algnificant figure, the division
may be safely carried to 2 k decimal places."

In this problem k 1s 5; therefore there is no need of
further divislon and the root of the equatlon to seven
decimal places is

x = 3~ .4- .2 - .04 - ,0007 # .0000041 = 3.3393041

1. Dickson, L. C. BLleumentary Course ln Equations, p. 95.




Conclusion

The different methods of segregation of roots have
thelir advantages as well as their disadvantages. There 1is
not much difficulty encountered in equations of the second
degree, for the quadratic formula will obtain the solution
regardless of whether the root is rational or irrational,
real or imaginary.

In the solution of cubic and quartic equations Newton's
Method for integral roots 1s convenlent when the roots are
integers. When solving a cubic with Tartaglia's Method
some equations are solved very easily but when the discrim-
inant is positive it requires the solution of the cube root
of a complex number, which in most cases must be done
trigonometrically. TFerrari's Method of solving the quartic
equation is a laborious task.

When isolating the roots, Budan's Method is the most
convenient, but Sturm's Method often gives the best result.
The approximation of the root may be accomplished very
accurately with Horner's or Newton's Method but they are
long and laborious, and when the approximation is not required
beyond one or two decimal places 1t can be accomplished more

quickly and easlily by the graphic method.
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