
Fort Hays State University Fort Hays State University 

FHSU Scholars Repository FHSU Scholars Repository 

Master's Theses Graduate School 

Spring 1939 

The Segregation of Real Roots of Lower Orders The Segregation of Real Roots of Lower Orders 

Ross W. Bland 
Fort Hays Kansas State College 

Follow this and additional works at: https://scholars.fhsu.edu/theses 

 Part of the Algebraic Geometry Commons 

Recommended Citation Recommended Citation 
Bland, Ross W., "The Segregation of Real Roots of Lower Orders" (1939). Master's Theses. 286. 
https://scholars.fhsu.edu/theses/286 

This Thesis is brought to you for free and open access by the Graduate School at FHSU Scholars Repository. It has 
been accepted for inclusion in Master's Theses by an authorized administrator of FHSU Scholars Repository. 

https://scholars.fhsu.edu/
https://scholars.fhsu.edu/theses
https://scholars.fhsu.edu/gradschl
https://scholars.fhsu.edu/theses?utm_source=scholars.fhsu.edu%2Ftheses%2F286&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/176?utm_source=scholars.fhsu.edu%2Ftheses%2F286&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.fhsu.edu/theses/286?utm_source=scholars.fhsu.edu%2Ftheses%2F286&utm_medium=PDF&utm_campaign=PDFCoverPages


THE SEGREGATION OF REAL ROOTS 

OF LOWER ORDERS 

being 

A thesis presented to the Graduate Faculty of 

the Fort Hays Kansas State College in partial 

fulfillment of the requirement for the degree 

of Master of Science 

by 

Ross W. Bland, B . S . in Education 

Fort Hays Kansas State Colleg e 

~/;(gD;/.:;z:f 
Chairman Graduate Counci 

Date 'vtut+,, / 1 'f 



Acknowledgment 

The writer of t his paper wishes to acknowledge 

all sources of information used in its preparation and 

is especially indebted to the head of the mathematics 

department, Professor E. E. Colyer, for his criticisms 

and advice; to Dr. W. G. Warnock for his inspiration 

and consistant encouragement; to Dr . F . B. Streeter 

for the he lp in securing material and the many other 

tasks he so courteously performed; and to Dr . C. P . Baber 

of the Kansas State Teacher's College of Empor ia , who so 

willing ly granted permission of the library facilities 

of Ke llogg Library; without whose aid this study would 

not have been possible. 



Introdu tion 

Chapter I 

C NTENTS 

1 

Hi s tory of oots 

C apter II 

- - - - - - - - - - - - - - - - - 3 

R ti nal R ots 

Definitions 

Num er of Rots of an E uRtion -

Linear Equation 

}uadratic Eq ntions 

Relationship of C effici nts t R ts 

The Cubic Equation - -

The uartic Equation 

1ewton 1 s 1e t o for Integral R ts -

Chap ber III 

Irrational Roots 

Descartes ' Rule of Sins 

Upper Limi t of Ro ts -

Graphic Sol tion 

St rm ' s The rem 

Bud an I s The or em 

Horner ' Method 

Newton I s Me thod 

Con lus:lon - -

Bibliogr phy - -

- 16 

- 16 

- 18 

- - - 20 

- - - :..1 

- 23 

- .... 6 

- ~2 

- - - 35 

- 3 

- 4 

- - 4..., 

- - 44 

5 

- - - - 5..,. 

5 

- - - 65 

- 66 



Introduction 

The purpose of this thesis is the presentation of 

the b etter algebraic me thods of the segrega tion of real 

roots of equations of lower orders and a brief historical 

sketch of the advance made in the d evelopment of algebra. 

Mention is also made of a few of the men who have made 

notabl e contributions to this field of ma thema t ic s and 

the time , as nearly as it is possible to determine it, 

when new ideas were discovered . 

The solution of a problem by a l g ebraic methods has 

interested man through many ages. The clear skies of 

Egypt made possible an early development in astronomy, 

the annual flooding of the Ni le valley, washing landmarks 

away , provided the necessity for surveying and both of 

these paved the way for the development of a form of 

mathematics to he l p those people solve the problems 

confronting them. 

Down through the period of civilizat i on of mankind 

there have developed, and been passed on, new ma themat ical 

ideas that have been helpful to man . There have also been 

period s of inactivity when nothing constructive was pro-

duc ed, but out of which the mathematical thought would 

awaken and g o forward again, acquiring new ideas and lead-



ing in the advancement of civilization. 

The Egyptians , the Greeks, the Arabs , the Romans and 

in modern times the Europeans have all contributed to the 

development of the methods for the alg ebraic solution of 

their mathematical problems . 

The writer has attempted to present the different 

methods in a chronolog ical order beginning with the sim-

plest and advancing to the more difficult, therefore equa-

tions of the l owest order are considered first. In this 

study, 'roots of lower orders' denotes roots of equations 

of degree not beyond the fourth. 



Chapter I 

. History of Root s 

The study of root segregation ha s interested mathemati -

cians for many centuries and they have learned much about it 

that is of value, not only to themselves, but to all the 

sciences that use mathematics as a tool . Before presenting 

an account of this knowledge, a brief historical sketch wil l 

be given to provide a proper understanding of its develop-

ment . 

The earliest known document containing a reference to 

roots is a papyrus, forming part of the Rhind collection in 

the British Museum , believed to have been written by an 

Egyptian priest named Abrnes . This papyrus written in 

h i erog lyphics more than a thousand years before Christ is 

be l ieved to be a copy, flwith emendations 11 , 1 of a treatise 

more than a thousand years older, that treats of the pro -

cesses of arith.metic, g eometry, and the "solution of simple 

numerical equati ons 11 • 2 Of the many examples that Abme s g ave 

relative to roots the following is a good illustration: 

1. Ba l l , W. W. R. 

2. Ibid . 

A Shor t Account of the History of Mathe -
matics , p. 5 . 



He says, "heap, its seventh, its whole, it makes nineteen".l 

The object here is to find a number which when added to its 

seventh will equal nineteen. He g ives 16 + 1/2 + 1/8 for 

his answer, which is correct . Alth ough the papyrus does 

not contain theoretical results, theorems, general rules of 

procedure, or mathematical knowl edge one would expect from 

the builders of pyramids, it does show "in several particu-

lars a remarkable advanced state of mathematics at the tL~e 

when Abraham visited Egyp t". 2 

Nesselman3 records three stag es in the development of 

algebra . The first stage he calls rhetorical algebra, that 

is, a method of finding the roots of an equation by a reason-

ing process expressed in words and not using algebraic sym-

bols . This method was used by Abrnes , the earliest Arabians , 

the Greek writers Iamblichus and Thymaridas , the early 

Italian writers, and Regi omantanus . The second period, in 

which the solutions are syncopated in form , beg ins with the 

later f'estern Arabs and Diophantus of Greece and extends to 

the middle of the seventeenth century with the exception 

of the works of Vieta and Oughtred, whose work like that of 

the ~indu 1 s and the Europeans since the middle of the seven-

teenth century, form the third period, and are symbolic in 

form . 

1. Ball, W. W. R . A Short Account of the History of Mathe-
matics, p. 5. - -- --

2 . Cajori , Florian . History of Elementary Mathematics, p.19. 
3 . Heath, Sir Thomas L . Diophantus of Alexanderia, p . 48. 
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The ancient Greeks were not orig inal in t heir arithme-

tic and algebra . They acknowledg ed the Egyptian priests as 

t heir teachers . It was not until the time of Ni comachus 

and Di ophantus in the fourth century A. D. t hat t h ey made 

substantial contr i butions to a l g e bra. The nearest approach 

at t his time to alg ebra is found where Thymaridus used a 

Greek word mean i ng "unknown quantity", wh ile some of the 

work of Iamb lichus, Theon of Smyrna and others were alge -

braic in me ani ng or principle . But in g eometry they rose 

to heights undreamed of by their predecess ors. They were 

ac quainted with equations and could solve them g eometrically. 

It was shown by proportion how the root of an equation of 

the fir s t d egree is found by the intersection of two straight 

lines . In the works of Heron and Archimedes are practical 

problems to be solved by forming linea r equations, while 

quadratic equations are in the fo rm of proportions. The se 

early Greeks could "represent by geometri c figures , equations 

of tl'ie fo rm a 1/a" x = b, a 1/a" x + b 1 /b" y • = m. where 

all quantitie s were linear. 11 1 They could a l s o solve g eneral 

quadratic equations having different rational coefficients 

and r epresent the ir positive roots ge ometrically. Euclid, 

t h e g reat compil er of g eometric k nowledge , could solve 

linear equations and incomplete quadrat ics geome trically . 

"The three principal forms of equa-
tions first to be freed from g eome tric 
statement and completely solved are, 

1 . Fink, Karl . A Brief History of Mathemat ics, p . 78. 



x2 = px i q,px = x2 + q, and x2 + px = q • 
. • . In later times, with Heron and Dio-
phantus, the solution of equations of the 
second degree was partly freed from the 
geometric representation, and passed into 
the form of an arithmetic computation pro-
per (while desregaiding the second sign in 
the square root)." 

t> 

Diophantus, who lived about the first part of the 

fourth century, is reputed as b eing the greatest algebraist 

of ancient Greece . He was one of the last of the Alexan-

drian mathematicians and had it not been for his work there 

would be no record of the Greeks making any notable accom-

plishment in the field of algebra . Before the discovery of 

the Rhind Papyrus his "Arithmetica" was the oldest known 

work on alg ebra. He work ed with simple and quadratic equa-

tions, used algebraic synbols, and trea te d his problems 

analytically, being completely separated from g eometry. 

Alth ough he knew how to solve equations,nowhere in his 

"Aritbmetica" does he explain the process. VVben h is quad -

ratic was "of the f orm 

ax2 + bx + c = O, he seems to Lave multi -
plied by 'a' and then 'completed the square' 
in much the same way as is now done. 11 2 

It is interesting to note that a lthough both roots may be 

positive he never gives but one of them, always taking the 

positive value of the square . Should the root of the equa-

tion be negative or irrational, it was rejected as impossi-

ble . At that time t h e idea of a negative root had not been 

1. Fink, Karl. A Brief History of Mathemat ics, p . 81. 
2 . Ball, W. W. R~ A Short Account of the History of Mathe-

matics, p . 110. 
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c onceive d by t h e Gr eek , bu t irrational nuinbers were known 

by Pyt h a g oras becaus e he had discovered that t he hypo t henuse 

of a r i gh t angl ed isos c e les tr i angl e was incommensurable 

with it s sides . 

In the earliest period t he Chinese algebra had one 

thi ng in common with the Greek . They solved their quadratic 

equations geometrical l y . The Cb inese l a ter developed a 

me t hod of approximation for solving higher algebraic equa-

t ions . By the seventeenth century the abacus had replaced 

the computing r ods for business purposes, in Japan, yet it 

was despised by mathematicians for they were able to solve 

equations by use of the rods. These rods were usually of 

t wo col ors , red and black. One color to designate positive 

and the other negative numbers. 

1. 

"This d istinction between positive 
and negative is very old. In Chinese, 
cheng was t he positive and fu the nega-
tive, and t he same i deographs are employed 
in Japan today, only one of the t e rms having 
chang ed, sei being used for cheng. These 
Chinese terms are found in the Chiu-ch ang 
Suan- ahu a s r evised by Chang T I s ng in the 
sec ond century B. C. , and hence ar e prob-
ably much more ancient even than the later 
date . The use of t he red and black for pos -
itive and nega tive is found in Liu Hui 's com-
mentary on the Chiu-chang, written in 
263 A. D. , but t here is no reason for 
bel ieving that it orig ina ted with him . It 
is probably one of the early mathematical 
inherltances of the Chinese t he orig in of 
which will never be k nown . As applied to 
the solution of equa tions , however, we 
have no description of t helr use before 
the work of Ch ' in Chiu-shao in 1247 . 11 

Smith, D. E . and Mikami Yo shie . History of Japanese 
Ma t hema tics, p . 48. 



Brahrnagupta, a Hindu mathematician, supposed to have 

been born in 598 A. D. , wrote a book about 660 entitled 

"Brahma- Sphuta- Siddhanta . " Two chapters were devoted to 

arithme t ic , a l gebra , and g eometry . His form of writing 

was entirely rhetorical . In his algebra h e solved quad-

ratic equations . 

The Arabian mathematician, Alkarismi, who lived in the 

ninth century A. D. wrote an algebra in which he solved 

quadratic equations, calling the unknown quantity either 

"the t h ing" or "the root 111 (that is, of a plant). It was 

from him that the word "root" for the solut i on of an equa-

tion was obtained . In the soluti on of his problems he con-

sider ed only the real and positive roots, but he admitted 

the possibi l ity of there being two roots, which were unknown 

to the Greeks. 

While the Hindu algebra is, in many respects, similar 

to that of Heron and Diophantus, it is also an improvement 

upon their work . Heron solved the quadratic equation 

ax2 bx = c by a rule yielding, x = \lac""- (b /2 )2 - b/2 
a 

and this was followed by the Hindus u ntil the time of 

Gr id.hara who simplified t h is by multip l y i ng by "4a 11 not 

by "a " as did his predecessors and developed the rule, 

x = V 4ac - b 2 - b which is void of fractions under the 
2a 

r adical. This also made possible the unifying of the three 

1. Ball , W. W. R . A Short Account of the History of Mathe-
matics , p . 163 . 



cases, ax2 + bx = c; bx + c = ax2; ax2 + c = bx, which were 

considered as separate forms by the Greeks . Some mathema -

ticians believe this to have been the greatest innovation 

in the theory of affected quadratic equations developed b y 

the Hindus . 

"The Hindus were t h e first to recog -
nize the existence of absolutely negative 
numbers and of irrational numbers ..•• 
Thus Bhaskara gives x = 50 or -5 for the 
roots of x2 - 45x = 250. 1 But 1 , says he, 
'the second value is in this case not to be 
taken for it is inadequate; people do not 
approve of negative roots'. Thus negative 
roots were seen, but not admitted. 11 1 

Although Bhaskara did not accept negative roots, he 

did accept two positive roots. His point of view is easy to 

understand when one considers that his problems dealt with 

practical geometric form. His statement t ha t "the square of 

a positive, as also a nega tive number, is p ositive; that the 

square root of a positive number is two fold , positive and 

negative. There is no square root of a neg ative number, for 

it is not a square", was far in advance at t h at time . 

Leonardo of Pisa was one of the most traveled and 

learned men of his time . He studied t h e ~nethods of calcula-

tion of Egypt , Syria, Greece, Sicily and India . Of t hese he 

found that of the Hindu to be unquestionably the best. In 

1202 he published a mathematical book, "Liber Abaci" . This 

book was fo r centuries the source of information on arith-

l. Cajori, Florian. His tory of Elementary Mathematics, p .1 01 
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metic and algebra for other writers. It was written in a 

fluent and interesting style, containing the knowledge he 

had gained from the countries in which he had studied. It 

contained t h e best me thods of calculati on with integers and 

fractions used at that time. This as well as other books 

written by Leonardo, shows that he was a thinker, present -

ing his works in a new form free from conventions of the 

past. He proposed the universal use of the "Arabic Nota -

tion", of which the zero was the portion first adopted by 

the Christians. Leonardo also gave a thorough explanation 

of square and cube root, solved linear and quadratic equa-

tions by algebraic methods and although he realized that 

two values were true for the quadratic x 2 + c = bx, he failed 

to recognize negative or imaginary roots. 

During the sixteenth century negative roots received 

considerable attention, but it se ems i~possible to say who 

first fully comprehended them. Cardan , in his treatise "Ars 

Magna 11 published in 1545, dis cussed negative and imaginary 

roots. Although Cardan men tioned negative roots and Bombelli 

wrote of them, they never understood t heir real significance 

and importance, speaking of them as being "false" or "ficti-

tious 11 • '11here is no doubt Cardan and Bombelli were the out-

standing mathematicians of the Renai ssance, yet they were no 

farther advanced on this phase than the Hindu, Bhaskara, who 

as was previously stated, found negative roots but would not 

accept them. The expansion of the number system so as to 

include negative quantities was decidedly a slow, laborious 



process not fully conceived until well into the seventeenth 

century. An important contribution of Bombelli's was the 

recognition of the connection between the chang e of sign and 

the root of the equation. 

Cardan's Ars Magna was a great advance over any algebra 

at that time. One of the important new items was the solu-

tion of the cubic equation, whose revelation brought forth a 

st orm of protest from Tartag lia. Being famous as a mathema-

tician, Tartaglia, in 1635 accep ted a challenge from acer-

tain Antonio del Fiori to a contest . According to the chal-

lenge each was to deposit a specified sum of money with a 

notary and the one to solve the most problems in a period of 

thirty days, from thirty problems proposed by h is opponent, 

would be the winner. Fiori had learned from his instructor, 

Scipione Ferreo , dec e ased, the solution of a cubic of the 

type x3+ qx = r. Tartaglia had perfected a solution for the 

g eneral equation, x3 + px2 = r, so he prepared probl ems of 

that type . He also knew Fi ori had the above entioned solu-

tion, and guessing Fiori would construct problems accordingly 

he prepared a g eneral solution for them. His g uess was cor-

rect and he solved the thirty problems in less than two h ours, 

while Fiori f ailed to solve a problem. 

When Car dan heard of the contest he tried to get in 

touch with Tartaglia but every effort failed , so he hit upon 

the scheme of inducing the l atter to visit him on the pretext 

that a nobleman at h is home wished very much to meet such a 

l earned man. Tartaglia succumbed to the f l attery and went 



to visit at the house of Car dan . The nobleman failed to 

materialize but Cardan under the promise of strictest 

privacy, prevailed upon Tartag lia to reveal h is method of 

solving the cubic, the promise being kept until the appe ar-

ance of the formula in "Ars Magna." 

Ferrari, the most illustrious student of Cardan, did 

much for mathematics even to the solving of the biquadratic 

equation, but since he was Cardan's pupil , Cardan appropri-

ated his work and published it in h is "Ars Mag na" wi thout 

giving note of its source. 

The eminent French mathematician Francia Vieta is 

responsible fo r the theory of al g ebraic equations . He 

enr i ch ed algebra by innovations in notations and in method 

of sol uti on. He swung away from the rule of " double false 

position" used by Car dan and Burgi , developing a method 

similar to that of ordinary root-extraction. 

"The main p rinc iple employed by him 
in t he solution of equations is that of 
reduction. He solves the quadrati c by 
making a suitable sub stitut i on ''Vhich will 
remove the term containing 1x 1 to the 
first degree. Like Cardan , he reduces 
the g eneral expression of the cubic to the 
form x3 + 1'.!L""C + n = O; then, assur.iing 
x = (l/3a - z2J and substituting , he g ets 

z 
z6 - b z6 - l/27a3 = O. Putting z3 = y, 
be ha s a quadratic. In the solution of bi-
quadratics, Vieta still remains true to his 
principle of reduct i on . This g ives him the 
well-known cubic resolvent. He thus adheres 
throughout to his favorite principle, and 
thereby introduces into a l g ebra a uniformi ty 
of method which claims our lively admiration. 
In Vieta 1 s alg ebra we discover a partial 
knowledg e of the relation e x isting between 
t h e coefficients and the roots of an equa-



tion . He shows that if the coefficient 
of the second term in an equation of the 
second degree is minus the sum of two numbers 
whose product is the third term, t h en the 
two numbers are roots of the equation. 
Vieta rejected all except posi t i ve roots; 
hence it was impossible for him to fully per-
ceive the relation in question. 11 1 

Although Vieta rejected t h e negative roots of an 

equation, so did all other mathematicians before the Ren-

aissance. In fact v ery few even understood the meaning of 

neg ative quantities. The Oerman, Michael Stifel, wrote a 

treatise on numbers in 1544, where he mentions the negative 

quantities as being "absurd" or "fictitious below zero". 

There is an indication that Fibonacci used them a very 

little, and while Diophantus found the product of two bi -

nominials as (a - b) (c - d) it rema ined for Pacioli to give 

the i~p ortant rule "minus ti ":11es minus g ives plus," but used 

it only in obtaining the product of two binominials as did 

Diophantus . Pacioli 1 s work does not show t h e use of purely 

negative quantities. 

Thomas Harriot, a celebrated Englis~ mathematician 

born in 1560 , was t he first to begin s eparating a negative 

quantity from the rest of the equation and setting it in 

one member b y itself. 

Despite the assertion of Stifel that an ~quation could 

not have but one root unless t h ey were both positive, it was 

stated by Alfred Girard in 1629 that the degree of an alge-

braic equation and t he nwnber of roots are equal. This, 

1. Cajori, Florian. A History of Mathema tics, p . 138 . 



perhaps, wa s t h e beginning of t he fundamental theorem of 

a l g ebra, which states that every rational integral equation 

with real or complex coe f f ic ients has at least one real root. 

Descartes had a cl earer concept of it than others of his 

time. In the sum:.nation of the total number of roots he 

di stingu ished between positive and negative real roots and 

between real and imaginary roots. 

The first notable attempt to solve the theorem, of 

whi ch there is a record was by d 1 Alembert in 1746 . This 

proof s eemed so true that it was accepted by most of the 

leading mathematicians and the theorem came to be known 

in France as d 1 Alembert 1 s theorem . 

It is believed t hat Gauss was the first to use the 

term, " fundamental theorem", and it is he who the world 

recognizes as first proving it . His first pr oof appeared 

in 1797 . I n the words of Gauss, .this proof "had a double 

purpose , first, to show that all the proofs previously 

attempted of this most importan~ theorem are unsatisfactory 

and illusory, and secondly, to g ive a newly constructed 

r igorous proof . 111 Gauss produced four proofs, the second 

and third being publi shed in 1816 and the four t h in 1850. 

In the early part of the seventeenth century Johann 

Huddle 2 developed a rule for finding equal roots . 

Others who helped to enrich this phase of mat hematics 

by their fruitful discoveries were Newton, Budan, Horner, 

1. D. E . Smith. Source Book in Mathema tics, p . 293 . 
2. Cajori , Florian. A Hi story of Mat h ematics, p . 180 . 
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and Sturm, so their work will be discussed in detail in the 

following chapters . 



Chapter II 

Rational Roots 

Before presenting the methods of obtaining roots of 

equations a few of the terms used in t h is study will be 

defined and these definitions adhered to throughout the 

discussion . 

DEFINITIONS: 

If an alg ebraic expression containing an unknown quan-

tity is equal, for only particular values of the ·unknown, 

to another expression differently constituted, the equality 

thus formed is called a c onditional equation or simply an 

equation . An equation, then, is a statement of equality 

which is true only for certain values of the unknown quan-

tity. 

When the statement of equality between two expressions 

which become the same by the use of the permissible ma themat-

ical operations , it is called an identity and is true for 

al l value s of the unknown . 

The root of an equation is any value of x that satisfies 

t he equation. 



An equation is of the nth degree in x when t he highest 

power of xis n . 

A complete equation is one containing terms involving 

x in all its powers from n to O, and is incomplete when 

some of the terms are absent. 

The term an, which does not contain x, is called the 

absolute term. 

An expression involving one or several letters is called 

a function of these letters. 

If a quantity can have different values in an expres-

sion it is called a variable. The variable to which values 

are assigned is called the independent variab le or argument . 

An absolute constant is a quantity whose value does not 

change. 

An arbitrary constant is a quantity whose value is con-

stant during the discussion. 
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NUMBER OF ROOTS OF AN EQUATION 

The important theorem, every equation of the nth degree 

has n roots and no more, will be discussed first because 

after it is proved no ment ion will be made to the number of 

roots of any par ticul a r equation for the number will be 

determined by the degree of the equation. 

If x~is a root of the equat ion f(x) = O, then f(x ) may 

be divided by x - x 1 giving 

f ( x) = ( x - x1 ) ¢1 x -+- r 

Eut since x 1 is a root of the equation, x 1 may be substi -

tuted fo r x and f(x1 ) = r is obtained. 

If r = 0, t e divisor is contained an integral number 

of times in the f(x) and it has been shown that x - x 1 is a 

factor of f(x) whe n x 1 is a root . 

Consider tbe given equation, 

This equation illUSt have a root which will be denoted by x1 • 

hen f(x) is div ided by x - x 1 t he quotient will be desig-

nated by ¢1 (x), g iving the identical equation 

f( x ) = (x - x1) ¢1 (x) . 

Again the equation ¢1 (x) = O, which is of the (n - l)th 

degree, must h ave a root which will be represented by x 2 . 

Let the quotient obtained by di viding ¢1 (x) by x - x 2 be 

¢2 ( X) • 
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Therefore 

¢1 (x) • (x - x 2 ) i 2 (x) 

and f(x) = (x - x1 ) (x - x2) l2x 

where i 2 (x) is of the (n - 2)th degree . 

Continuing in this way it is proved t hat f(x) consists 

of the product of n factors, each containing x to the first 

degr ee , and a numerical factor in(x). The factor ln(x) is 

of de ·ree n - n, because as then factors were removed, each 

r educed the degree of f(x) by unity, also each time xr was 

divided by x the coefficient remained one, 

comple ting the proof of t he identity . 

f(x) = (x - x 1 ) (x - x 2 ) (x - x 3 ) ... (x - xn_1 ) 

(x - xn). 

It is evident t ha t the substitution of any one of the 

nu.mbers x 1 , x 2 , ... xn for x in the ri ght member of this 

equation will reduce that member to zero and will automati-

cally reduce f (x) to zero; that is the equation f(x) = 0 

has for its roots then values x 1 , x 2 , x 3 , ..• xn-l' xn. 

That the equation cannot have any other roots can be plainly 

seen for if any other value is substituted for x in the 

right ~ember, t he factors wil l all be different from zero; 

therefore the product cannot vanish. 



LINE E1ctU TON 

A simple equ t i on in x, t ha t is one i 1 wh ich the 

unknown ap p e ars only to t h e f irst p ower, is of the form , 

ax + b = O, 

where a and b may hav e ny r a t ional p os i t i v e or negative 

v lue and a shall not equal zero . Its g r aph is a s t raigh t 

line par allel to t h e y-axis and t e l i ne cros s e s t he x-axi 

at the p oint where x = - b/a, whi ch is t h e r o ot of the equa -

tion . To prove tha t th i s 1 t he onl y so l ution, suppose 

X = C and X :: d . 

Substitu te c in (1) 

ac + b = 0 

Substitute d i n (1) 

ad + b = 0 

Subs tr a cti 

ac - ad = 0 

Factoring 

a(c - d) = o 

By the pr e vi ous s t a t ement a i s no t equ 1 to O, 

C - d = 0 

or c = d . 

Hence t here is only one root . 



QUADRATIC EQUAT I ONS 

A quadratic equation in xis an equation which when 

reduced to its simplest form may be written in the form, 

ax2 + bx + c = O, ( 1) 

where a, b, and c may have any real rational positive or 

negative value, except x cannot equal O. 

When b = O, the equat i on tak es t h e form ax2 c = 0 and 

is called a pure quadratic . When c = O, it bec omes 

ax2 + bx = 0 and one root is zero . When a = 0 it is 

simpl y a linear equation . 

To solve t h e quadratic transp ose t h e c g iving , 

ax2 + bx = -c 

Divid ing by~ a nd completing the square, 

x2 + bx/a + b2/4a2 = b2/4a2 - c/a 

= (b2 - 4ac)/4a2 

Taking the root of both members , 

X + b/2a = ":! vbz - 4ac/4aZ 

Solving , 

xl = (-b + \/b2 4ac )/2a 

X2 - (-b v'b 2 4ac)/2a -
Adding the roots 

xl + x2 = -b/a 

Multiplying , 

Xl . X2 = c/a 

( 2 ) 

( 3) 

( 4) 

( 5 ) 

( 6 ) 



Thus it i s seen tha t the roots of an equ ation are a 

function ·o f the coefficients. That the sum of t h e roots is 

equal to the coeff icient of xn-1 with its si gn changed 

divided by the coefficient of xn . 

The quantity , b2 - 4ac, is known as L:,., t h e di scrim-

inant, of the quadrati c equation . When A= 0 t h e roots 

are real, rational, and equal . 1 1/hen C::::,. > 0 t h e roots are 

real, rational or irrational and unequal . · n en A< 0 t h e 

roots are conjug ate imaginaries. 



RELATIONSHIP OF COEFFICIENTS TO ROOTS 

In the preceding paragraph it was proved t h at the 

r oots of a linear or of a quadratic equation were a fun c-

tion of the coefficients. It sh all now be established t hat 

this principle holds for equations of higher degree. 

Consider the equation where 

f (x) = 
aoxn + a1xn-l + a2xn-2 + a3xn-3 + . an, 

and a 0 i O. If in the equation ( f(x) - O) the coe f ficient 

a 0 of the term xn is not unity, each term must be divided by 

a0 , which merely expresses the relationsh ip in fractional 

form . 

If the equation has then roots x 1 , x 2 , x 3 , ... xn 

then 

f ( x) = ( x - xl )( x - X2) ( x - X3) . • • ( x - xn) 

Taking n successively equal to 2, 3, and 4, the following is 

obtained by actual multiplication: 

When n = Z 

f(x) = (x - x 1 )(x - x 2 ) = x2 - (x1 + x 2 )x+ x 1 x 2 • 0 

When n = 3 

f ( X ) = ( X - X 1 ) ( X - X2 ) ( X - X3 ) = 
x3 - (x1 + x 2 + x 3 ) x2 + (x1x 2 + x 1x 3 + x 2x 3 )x -x1x 2x 3 =o 

When n = 4 



x4 - (xl -t- x2 + x3 + X4) x3 + (x1x2 + x1x3+ xlx4+ 

X2X3 + X2X4 1- X3X4) x2 - (xl X2X3 + xl X-2.X:4 + xl X3X4 

X2.X.3X4 ) + XlX2X3X4: 0 

Thus it is seen that 

al = - ( x 1 i- x2 + X3 • • • xn) 

a2 = - ( 4 1 X2 + X1 X3 + X2X:3+ • • • Xn-1.xn ) 

a3 = -( x 1x2x3 + x1x2x4 + x2x3x4+• •• xn- 2xn-1Xn) 

• Xn 

The preceding statements may be summarized in the following 

manner: 

In t he equation f(x) = O, when xis of degree n and the 

coefficient of x is unity, t he coefficient of xn-1 is the 

negative of t he sum of the roots, the coefficient of xn-2 

is the sum of the products of the roots taken two at a time, 

t he coefficient of xn- 3 is the negative of the sum of t h e 

products of the roots taken three at a time, and in such 

manner until the last term is rea ched which is t h e product 

of t he roots, being positive or negative, depending upon 

whether n is even or odd . 

"It might appear tha t then d istinct 
re l ations existing between the coefficients 
and roots of an equation of the nth degree 
should offer some advantage in theg eneral 
solution of the equation, that one of the 
n roots could be obtained by the elimination 
of the (n-1) roots from then equations . 
But this process offers no advantage, for 
on performing t h is elimination we merely 
reproduce the proposed equation • •• 
While t h e equations expressing the relations 



between roots and coefficients offer no 
advantag e in the general solution of equa -
tions , they are of service in the solution 
of numerical equations when so".Tle special 
relation is known to exist among the roots . 
Moreover in any a l g ebraic equation t h ey 
enable us to determine the relat ons between 
t he coefficients whi ch correspond to some 
g iven relations b etween the roots . 111 

1 . Cajori, Florian . Theory of Equations, p . 12 . 
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THE CUB I C EQUATION 

There a re many different so l utions of the cubic e qua-

tion, but the method g iven is essentially t h e s ame as t hat 

given by Vieta1 in 1 591. 

In the g eneral cubic equation, 

x3 t bx2 + ex+ d = O, let x = y - b/3 ( 1) 

Substituting this value for x the f ollowing r educed cubic 

is obtained where the unkn own appears only to the first and 

t hird power. 

y3 - by2 + b2y/3 - b3/27 + by2 - 2b2y/3 + b3/g + cy 

+ cb/3 -t d = O, 

or y3 + (c - b2/3)y + 2b3/27 - cb/3 + d = 0 

The e qu a tion is s implified by letting , 

p : C - b2/3 

and q = 2b3 /27 - cb/3 + d, 

which puts it i n the form, 

y 3 + PY i- q = 0 . 

To s olve thi s equa tion , let 

y = z - p/3z, 

obtai ning, 

27z6 + 27qz3 - p3 = O 

or z 6 + qz3 - p P/ 27 = O. 

( 2) 

( 3) 

( 4 ) 

( 5) 

1 . Dick son , L . E . First Cour s e in Theory of Equa t i ons, p . 45 . 



Since this equation is in quadratic form it can be solved 

for z3 b y using the quadratic formula. 

z3 = (-q t V q2 + 4p3/27 )/2 

or = -q/ 2 !. Y ( q/2 ) 2 - ( p / 3 ) 3 • 

Z1 - 3 V-q/2 + V(q/2 )2 -j- (p/3 )3 

( 6) 

Then ( 7) 

and z2 = ~-q/2 - V(q/2) 2 + (p/3)3 

Since there are t h ree cube roots of any number, the 

cube root and the product of it by the i mag inary cube roots 

of unity, w = -½ + ½ V3' i, and w2 = -½ -½ \/3 i, there will 

be six values of the ab ove which are the roots of (5). z1 , 

z1w, z1w2 , z2 , z 2w, and z 2w2 • These must be p aired so that 

the product of the two so paired is equal to -p/3, that is 

z1z2 - -p/3; Z1W • z2w2 = - p/3; z1w2 • Z2W = -p/3. 

To each root z is paired a root equal to -p/3z; there-

fore t h e sum of the two is equal to y, from ( 4)' and the 

t hree values of y will be, 

Y1 = zl + z2 Y2 = z1w + z 2w2 ; y3 = z1 w2+ z 2w. 

These values of the reduced cubic ( 3) are known as 

Cardan 1 s formula. It was concerning this solution that 

Cardan and Tartaglia had such a controversy. 

( 8) 

The discriminant of the cubic is defined as the produ ct 

of t he squares of the differences of the roots where the 

term containing the third power of t h e unknown has unity for 

its coefficient. That is 



,::,o 

= (yl - y2)2 (yl - Y3)2 (y2 - Y3)2 

To express this in terms of t he reduced cubic t h e 

values of y1 , Y2, and y3 , from (8 ), will be subs ~ituted for 

them. 

Y1 - Y2 = zl + z2 - z1w - z w2 2 

= z1 (1 - w) - w2z (1 w) 2 

= ( 1 - w) ( z1 - w2z2) 

Y1 - Y3 = zl + z2 - zlw2 - Z2W 

= z1 (1 - w2)- WZ2 (1 w2) 

= (1 - w2) ( zl - wz 2 ) 

Y2 - Y3 = ZlW + z2w2 - zlw2 - Z2W 

= zl (w - w2) z2 (w - w2) 

= (w - w2) ( zl z2) 
To obtain the product of these equivalent values of the 

differences of the roots i t is ea sier t o find t he p roducts 

of parts before obtaining the final product. 

Since the cube r oot of unity is 1, w, and w2 , 

( X - 1 ) ( X - W ) ( X - w2 ) : X 3 -1 . 

Letting x = z1/ z2 
(z1 - z2 )(z1 - wz 2 )(z1 - w2 z 2 ) = 

( 1 - w ) ( 1 - w2 ) = 3 ; ( w - w2 ) = 

(y• - Y2)(yl - Y3)(y2 - Y3) = 

3 • 2 V ( q/ 2 ) 2 - ( p / 3 ) 3 • V3 i and 

3 3 zl - z2 

2 V(q/2) 2 

V3' i. 

(p/3)3 



Since p and q are expressed in terms of the c oefficients 

of t he cubic equation one can obtain the value of~ without 

s olving the cubi c . 

When the t h ree roots of t he cubic are real, squaring 

t he differ ence of any two g ives a posit ive result, t h ere -

fore 6. is positiv e . 

Should two of the roots be conjugate imagin aries , the 

square _of their difference is negati v e . If t he third root 

i s real, the square of the differ ence of it with each of the 

others gives a nega tive result, therefore the final product 

or A is negative . 

Should two of the roots be equal and one of them 

imag inary, the third root would be its conjug ate and they 

would be the root s of a real quadratic . The other equal 

r oot , h elping form t he third factor of the cubic, would have 

real coefficients , t herefore the two equal roots must be 

real and .6 is zero. 

These results lead to the v ery useful theorem, if 6. 
is positive t h e roots are real, if is negative , one root 

is real and t he other two conjuga te imag i naries , if 6 is 

zero, two roots are real and equal . 

To illustrate this ~ethod of solut i on consider t he equa-

t ion 

x3 f- 4x2 + 4x + 3 = 0 

where a = 1, b = 4, C = 4, d = 3. 

Let x = y - b/3 . Then in the equation 



y3 + PY + q = 0 

p = C - b 2/3; 

= 4 16/3 

= -4/3. 

q d - cb/3 - 2b3/27 

= 3 16/3 128/27 

= 65/27. 

Which g ives, 

Then 

y3 = 4y/3 - 65/27 - o. 

z1 = 1/-65/54 + 11 ( 65/54) 2 + ( - 4/9) 3 

= o/-65/54 -t 63/54 

= -1/3 

z2 = y'-65/54 63/54 

= -4/3 

Y1 = -1/3 - 4/3 

= -5/3 

Y2 = ( -½ 1- ½ \/3 i) ( -1/3) -,. (-½ - i }'3 i) 

= 5/6 t ½ \/3 i. 

Y3 = (-½ -½ V3 i) (-1/3) + ( -½ -t ½ y'3 i ) 

= 5/6 1 v- . - 2 3 l. 

Therefore, 

Xl = -5/3 - 4/3 

= -3 

x2 '::, 5/6 + ½ V3 i - 4/3 

\.JV 

(-4/3) 

(-4/3) 



0.L 

- -½ t ½ )/3 i -
= w. 

X3 = 5/6 - l vs i 4/3 2 -
= l V3 i - 2 -
= w2. 



THE QUARTIC EQUATION 

The solution of the quartic equation g iven here is due 

to Ferrari and was first published by Cardan in his 11 Ars 

Magna" . 

The g eneral quar tic equation is of the form , 

x4 + bx3 + cx2 -+ dx + e =- 0 • ( 1 ) 

Add ing (mx n)2 to both members of the equation g ives, 

x4 + bx3 -t ( c -t rn2 ) x2 + ( d + 2mn) x + e -t n2 = 

(mn + n)2 (2) 

Let us assume the identity, 

x4 -;- bx0 + ( c -+ m2 ) x2 -t ( d + 2mn) x + e + n2 = 
(x2 + bx/2 + p )2 • ( 3) 

It i s now possible to equate t h e coefficients of the like 

powers of x, 

C - m2: b 2/4 - 2p 

d - 2mn = bp 

e - n2 = p2 

Elimi nat i ng m and n from ( 4) , (5), a n d (6), 

m2 = b2/4 T 2p - c 

m = (bp - d) /2n 

n2 = p2 - e . 

( 4) 

( 5) 

( 6) 

b2/4 + 2p - C: (b2p2 - 2bdp + d2) / {4p2 - 4e). 

Removing fract ions g ives, 

8p3 - 4cp2 + ( 2bd + Se )p t 4ce - b 2 e - d 2 =o ( 7) 
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This is a cub ic in p whose solut ion wa s given in t he pr eced-

ing paragraph ; therefore, a s ol ution may be a s sumed for p. 

Knowing the value of p , one may readi l y obtain the value of 

m and n f rom (4) and (6 ). Fr om (2) and (3) one may write 

(x2 - bx/2 - p )2 - (mx - n)2 ( 8 ) 

which may be written in the following identical way, 

x2 -t bx/2 + p - mx - n = 0,. and 

x2 -t bx/2 + p + mx + n = 0 . 

The four roots obtained from these two equations are the 

solutions of (1). 

This solution may be illustrated wi th the equation, 

x.4 + x3 - x2 - 7x - 6 = 0, in which b = 1; c = -1; 

d = - 7; e = - 6 . ( 1) 

Adding (mx-,.. n )2 to both members of the equation, 

x4 -t x3 -t (m2 - 1 )x2 + ( 2mn - 7 )x - 6 - n2 = 
(mx + n)2 . (2) 

Assuming the identity, 

x4 + x3 + (m2 - 1) x2 + ( 2mn - 7) x - 6 + n2 _ 

(x2 + ½x+ p)2 . 

Squaring the right member, 

= x4 + x3 -t ( ¼ + 2p) x2 + px + p2 • 

Equating coeffic i ent s, 

m2 - 1 = ¼ - 2p. 

2mn - 7 = p. 

m2 - 6 = p2 . 

Eliminating m and n from t hese three equations, 

(3) 

( 4) 

( 5) 

( 6) 



m2 = 5/4 + 2p, from (4) 

m2 = (p 7)2/(2n)2, or ( p2 + 14p + 49)/4n2, from (5). 

n2 = p2 + 6, from (6) 

Equating values of m2 , 

(p4 + 14p + 49)/(4p2 i"" 24) = 5/4 + 2p 

8p3 + 4p2 + 34p - 19 = 0 . 

Solving this cub ic for p, ½ is found to b e a re a l root. 

Substituting this value for pin (4) and (6) g ives, 

m2 = 5/4 - 1 

m = 3/2. 

n2 = ¼ - 6 

n = 5/2. 

From (2 ) and (3), 

(x2 - ½x - ½)2 = (3/2x - 5/2) 2 . 

Taking the square root of b oth members g i ves, 

x2 + ½x + ½ + 3/2x + 5/2 = 0 and 

x2 -+ ½x -t ½ + 3/2x 5/2 = o. 
x2 + 2x + 3 = 0 x2 - X - 2 

X = -1 + y2 i X = 2 

X = - 1 v2 i X = -1. 

= 0 

( 7) 



NEWTON I S METHOD PtJR l NTBGR1.L H. OTS 

Si r Is sac Newton discovered a very convenient method of 

obtaining the integral roots of an equatlon when the coeffi-

cient s are integers. 

Consider the equat i on, 

aoXn + alxn-1 + ... + an-lx + an = O ( 1) 

Transposing t he last term, divlding by -1 and factoring the 

l ef t Tnember g ives , 

x(aoxn-1 - a l xn- 2 - ... an-1) = an ( 2) 

vhen t his equation is di vided by x, the xis found to be an 

exac t divis or of an , because the integer in the parenthesis 

is t he quotient . Tha t is, an int egral root is a divisor of 

t he c onstant term . 

Transposing the last two terms of (1) and repeating the 

above process g ives , 

x2(-aoxn- 2 - alxn- 3 - ..• an-2) = an-lx + an . ( 3 ) 

Tl-i6 rig,ht member must be d ivisib l e by x2 or an-l + an/x 

divisible by x . Transpo sing the last three terms and repe t-

ing t he process gives, 

x3 (-aoxn-3 - alxn-4 - ... -an-3) = 
a 2x2 + a 2x + an n- n-

( 4) 

whose sum must be divisible by x 3 or ad_2 + an_1/x -t- an/ x 2 

is divlsib e by x . By continuing t he proce ss t he last sum 
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is not only divisible by x but i equ 1 to 

0 , since it is the quotient of (l) by xn . T~us a series of 

condi t ions of divisibility is produced that must be satisfied 

by an integral r oo t of the equation . As an illustration 

take the equation, 

x4 + 4x3 + 8x + 32 = 0. ( 1) 

The divisor , 16 , of the constant terM is not a root 

since 8 + 32/1 6 = 10 is not divisible by 16 . Neither is 

root as 8 32/8 = 1 2 , ~1ich is not divisible by 8 . To 

prove that - 2 and -4 are roots and that none of the dlvislon 

tests fail, the work is arranged in a systematic order . 

Taking the sum of the coefficients, replacing the missine; 

term with O gives , 

1 -t- 4 + 0 + 8 + 32 ( -2 
-1 - 2 + 4 -16 

0 - 2 + 4 - 8 

( 2) 

First the constant term 32 is divided by - 2, place the quo-

tient under the preceding term, a + 8 , and add . Dividing 

their sum g ives 4 , place it under the o, add, dividing 

their sum g ives a - 2 , place it under the 4, add, dividing 

t r eir sum g ives -1, wh ich when added to the 1 .; ives o, 
vrhich meets all the conditions given in the proof . 

The second line of ( 2) is the negative of the coeffi-

cients of the quotient of (1) divided by x - 2, so the 

quotient is an equation of one degree lower than (1). 

To show that -4 is a root, take line 2 of (2), with 

signs cr1anged which is the coefficients of the depressed 



equations, 

1 +- 2 - 4 +- 16 
- 1 + 2 - 4 

0 + 4 - 8 

6'1 

(-4 

Dividing 16 by -4 gives -4, add to the preceding term 

g ives -8, d ividing , gives 2, add to the preceding term, 

dividing their sum g ives -1, add to the first term g ives 0. 

The quotient is the polynomial x 2 - 2x + 4, which when set 

equal to zero has the imaginary roots, 1 -t-),C°3 and 

1 - V-3, being obtained by using the quadratic formula . 



Chap t er III 

IRRATIONAL ROOTS 

The purpose of this chapter is the explanation of the 

different methods used to obtain the irrational roots of 

equations . 

Consideration will first be given to the location of 

roots between two stated points. Let the interval be from 

a to b . If a polynomial f (x) has real coefficients and if 

when a and bare substituted fo r x in the f(x) they produce 

opposite signs, the equation f(x) = 0 has one or more odd 

number of roots in the interval from a to !2_, when a multiple 

r oot is' count ed m times. 

A real root of an equation f(x) = 0 is the point whore 

the g raph of the equat i on cro s ses tbe x-axis . Taking a and 

as points on opposite sides of the x-axis, f(x) will change 

its sign in passing f rom f ( a ) to f(b ) whlle f(x) varies con-

tinuously with x . As f(x) passes through all the intermedi-

ate points while changing from~ to bit will pass t hroueh 

the zero value which causes f (x ) to disappear and is a real 

roo t of the equation f(x) = 0 . But f(x) need not cross the 

x - axis onl y once in going from f(a) to f(b), but may c r oss 

it any number of odd times . Also if f (x ) does not change 
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in sign when~ and£ are substituted for x, they represent 

points on the same side of t h e axis and the graph does not 

cross the axis in going from a to£, or else crosses it an 

even number of times. Therefore there are no roots between 

a and b or there is an even number of them . 



'±U 

DESCARTES ' RULE OF SIGNS 

Descartes' rule of signs cannot be used to segregate 

t he roots of an equation but it is of value in g iving some 

idea of the number of real roots the equation possesses . 

Vhen two or more successive signs of the coeffic ients 

of a real equation f(x) = O, or any polynomial, are alike, 

there is said to be a continuation of sign, but if a pair of 

successive signs are unlike t here is a variation of sign. 

In the polynomial, 

f ( x ) = 3x3 + 4x2 - 6x + 2 ( 1) 

there is one continuat i on of signs and two variat i ons of 

signs. This can be shown more clearly by writing only the 

signs of the coeffic ients . + + - +. 
Descartes' Rule states: The number of positive real 

roots of any equation f(x) = 0 with real coefficients does 

not exceed t he number of its variation of sign of f(x) or 

is less than t hat number by a positive even integer . A 

~ultiple root is counted as m roots . 

Thus (1) has two or no positive roots. Increasing the 

number of positive roots of (1) by multiplying by x - 2 

gives 

3x4 - 2x3 - 14x2 + 14x - 2 

in which there are three vari a tions ; therefore there are 

three real roots or only one. 



The number of neg ative ro ots of f(x) = O can be reck-

oned b y sub stituting ( - x) for (x) in f(x) - O. The negative 

roots b eing equal to t he v ariat i ons of sig n of f(-x) or l e ss 

by a positive even integ er. 



UPPER LIMIT OF ROOTS 

In the s eg regation of roots much time can be saved i f 

one k nows that t r e root lies b etween some definite values. 

To accomplish this purpose t here have been developed two 

general t h eorems. The first t heorem gives a better limi t 

in some equations than the second, while in other equations 

t he reverse is true. 

Theorem 1. In the equation 

f(x) = xn + a 1xn-l + a 2xn-2 + ... +an _1 x + an = 0 

if t h e first negative term is preceded by!:. coefficients 

which are positive or zero and if t he g reatest nega tive 

coefficient be -a, t hen~;-s s 1 is a superior limit of 

t h e p osi tive roots.l 

For example, irr the equation 

x4 - 45x2 + 40x t- 8 4 = 0 

r = 2 a nd as= 45. According to the theorem each root is 

l e ss t han V45 + 1 and t her efore l es s t h an 7 .7. Although 

t h e cons tan t term is 8 4 , and the product of the roots, know-

ing t ha t the upper limit of the roots is 7.7 wil l prevent 

one from wasting t ime with the l arger factors of 84 . 

Theorem 2 . If in any equa t i on each negative coeffi-

cient be taken positively and divided by t he· sum of all 

1. The proof of t h is t he orem is g iven by Dickson in First 
Course in Theory of Equations, p. 21. 



the positive coefficients which precede it, t h e greatest 

quotient thus formed increased by unity i s a sup erior limit 

of the positive roots. 1 

The preceding example had t h e u pper limits 7.7 by 

theorem one . Apply ing the principle of t h eorem 2 t h e upper 

limit is 46, showing that theorem one g ives a better upper 

limit for this equation. But for 

4x4 12x3 - 17x2 3x + 4 = 0 

theorem one g ives \/17 - 1 = 5 .12 wh ile t h eorem two g ives 

17 f 16 + 1 = 2 . 06 a much b etter u pper limit. 

1. This t h eorem i s proven b y Ca j ori in h i s The ory of 
Equations, p. 44. 
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The seg eg ting oft . re o t of re qun io1 

f(x) = 0 by construct inv 1Ls grtph giv~d g om tri it ·-

pr tatlon that is easy to compl' h nd . Jn n x, y axi 

cons truct t e graph of tht fun tony= (x) and 1 usu tl 

distance from the oriJin to the pints of int rsectio of 

t he curve w:..th the x- x1 . 

To illustr·!:lte, con id r th equation, 

x3 - 3x2 - X - 3 = 0 ( 1) 

""quate the left .nember to y, 

y = x3 - 3x2 - X - 3, 

nd fj nd by synth tic div1 ion th V ln s of he fun tion 

corre~ponding to tle v rious t bSi n d values of x. h th 

div·~1on of (x) by th ssir_,necl posi t:l v v 111e s of x qro-

riuce p rti 1 em inners th t 1 e , 11 po i tive, no gr ,t t 1• 

positive v lu,s of x ne db onsid ~dust,~ V ] u I 

only p1• oc4uc lncr 11sing V< ues for y. 3j_mllt1 J'ly, wt en the 

rwo uce 1--urti 1 1.• m,~inde1 

th, t, re altern, t ly positiv und neg Live, no g It r neg -

ti ve v 1 u .., ne6d be u · ed us thoy would p..roduc(; nc1·eusii 

v lu s for~ y. 



For the assigned integral values of x the table g ives 

t he corresponding values for y which makes the curve shown 

in Fig . 1, and the roots of the equation are 1, -1, and -3. 

This must not be interpreted to me an t ha t the random selec-

tion of abscisses, howev er numerous, will always g ive the 

true curve and all the roots of an equation. 

y 

X 

Fig . 1. 
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For example analyze the equation, 

y = 8x4 + 6x3 - 7x2 - 6x - 1. As s igning integral 

values to X produces the accompanying table. 

If X = 2, 1, o, -1, -2 
Then ¥. = 131, 0, -1, o, 63 

The graph of these values is sho~n in Fig . 2, a 

U-shaped curve which indicates that the equation has but 

two real roots and only one bend point . However , such a 

conclusion is false , because on further solving - ½ and - ¼ 

are both roots of the equation and the true graph is shown 

in Fig. 3. 

To avoid such erroneous conclusions it is best to use 

the me t hod of the calculus1 which shows that the first 

derivative of a function will cut the x-axis, if it has 

real roots, at a point whose abscissa is equal to the 

abscissa of a bend point of t h e g raph of the function . For 

example take the equation, 

f(x) = x3 - 3x2 - 9x + 2. 

Taking the first derivative , 

f' (x) = 3x2 - 6x - 9. 

( 1) 

( 2) 

Setting this equal to zero and solving in order to find the 

critical values of the variable. 

3x2 - 6x - 9 = 0 

x = -1 and 3. 

1 . Granville, Smith, and Longley. Elements of the Differen-
, tial and Integral Calculus, p . 52. 
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-2 2 

Fig . 2 . 

X 
- 2 

Fig . 3 . 



By finding the second derivative the critical value s 

ob t ained from (3) can be tested to see i f t h ey are a maximum 

or minimum of the function . If a critical value substituted 

in the f"(x) produces a negative result, the functi on is 

a maximum or t h ere is a bend point concave d ownward, but if 

the result is positive the function i s a mi nimum a nd t h ere 

is also a bend p oint but it is con cave upwa r d . 

f 11 
( X ) = 6X - 6 • 

Substi tuting t he c r i ti cal value -1 

f"(-1) = -12. 

Substitu ting -1 in f(x). 

f ( -1) = 7. 

Therefore t he r e is a bend po i n t or a maximum of t he funct ion 

concave downward a t t h e p oin t (-1, 7). Examining t h e other 

cri tical v a l u e, 3, 

f 11 (3) = 12 

f ( 3) = 2 5 

Ther e is ano t he r bend po i n t or a minimum at t he point 

(3, 25). Arrang i ng a tab l e of v a l ues and making a g r aph 

of the f u nction giv e s ,ig . 4. The curv e must cross the 

x- axi s three time s as de t e r mined by the bend po i nts of the 

func tion . The roots beine; - 2 , and appr oximately , . 2 and 4. 8 . 

If x = 5 , 4 , 3 , 2 , 1 , 0 , - 1 , - 2 , -3 

Then y = 7 , - 18 ,-25,-20 , - 9 , 2 , 7 , 0 ,-25 



-4 

y 

15 

10 

Fig . 4. 
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STURM I S T ll.tWHEM 

"Le t f (x ) = 0 be an equa t ion with real c oef f1 ci.ents ·· nd 

withou t multipl e r oots . Modify the usu 1 process o eeklng 

t he grea t est common divisor of f(x) and i ts first d rlvat1ve 

f 1 (x) by exhibiting each remainder s the negative f 

po l ynomial f; 

( l) 
fn - 2 = ~ - 1 fn-1 fn ; 

Where fn is a constant 1 0. If a and b re r e 1 num rs, 

a < b, neither a root of f(x ) = O, the number of real roots 

f(x) = 0 be t ween a and£ ls equal to the excess of th num-

ber of variations of si~n of 

.• , f l' f ' n - n 
( 2 ) 

for x - a over t he number of variations of sign for x - b . 

Terms w Jch vanish are to be dropped out before counting the 

varia tlons of si.gn . ul 

The purpose of this theorem is the isolation of the 

roots between consecutive i ntege1·s, or n rower 11ml ts 

should there be nore th none root betwee1 two consecut v 

ntegers . Then the root can be found to as many nee r1 al 

places as -re requ·rec1 by the u e of 1Torner 1 s or MowLon •s 

me thod . 

1. Dickson, L. r, . F"rst Course 
p. 76 . 

in th Theory of quations, 
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To i llustr a t e Sturm' s t heor em t ake t he equa t ion 

f( x ) = x 3 - 3x2 - 4n -t-1 3 ( 3 ) 

r1 (x )= 3x2 - 6x - 4 

Dividing f (x ) by f 1 (x ) there is a remainder of 

- 14x/3 + 35/3 which is designated by - f 2 
Dividing f 1 (x) by f 2 there is a constant remainder of 

-¼, designated by - f 3 , therefore; 

f(x) = x3 - 3x2 - 4x + 13 = (x/3 - 1/3) f 1 -f2 

f 1 (x) = 3x2 - 6x - 4 (9x/14) r2 - r 3 
f2 = 14.x/3 - 35/3 

f3 = 1/4 

From Descarte si rule (3) has two or no real positive 

r oots and it has 3 or one real negat ive root . 

For x = - DO , the signs of f , f 1 , f 2 , f 3 , are - + - t- , 

showing 3 variations of sig n . For x = O, the signs are 

+ - - t, showing two variations . From the theorem t here 

must be 3 - 2 = 1 r eal root between - oD and O. The r efore 

according to Descartes ' rule .i.f t here are any more real 

roots t hey must be two positive ones . For when x =+ OO 

the signs are + + + -t showing no variati on . For x = 0 to 

x = +oo there is a difference of two in variation of signs; 

therefore t here are two positive roots between t hos e values. 



Arranging a tabul a r form for the 

X signs variations 

-3 - + - + 3 

-2 - + - + :} 1 root 
-1 + + - f 

0 + - - + 2 

1 -4- - - + 2 

2 + - - + 2 

2 . 2 +- + :} 1 root 
2 . 4 + 
2.6 - + t + :} 1 root 
2 . 8 +..,. r +-
3 + +++ 0 

Values of x, t he signs off, f 1 , f 2 , f 3 , and the varia-

tions of sign, t here is seen to be a change in the number 

of variations for the values of x = -2 and x = -1 for 

x = 2 . 2 and x = 2 . 4, and for x = 2 . 6 and x = 2 . 8; there-

fore t here are three real roots between those values, and 

t h ey are isolated b etween integer s a~cording to the state -

ment of the theorem. 



BUDAN 1 S THEOREM 

"Let a and b be real numbers, a <:: b, 
neither a root of f(x) = O, an equation of 
degree n with real coefficients. Let Va 
denote the number of variat ions of sign of 

f(x), f 1 (x) , f 11 (x), ..• , fn(x) (1) 
for x = a, after vanishing terms have been 
depleted . Then Va - Vb is either the num-
ber of real roots of f(x) = 0 between a and 
b or exceeds the number of those roots by a 
positive even integer . A root of mflt ipli -
city mis here counted as m roots . " 

The purpose of this The orem is the s~me as that of 

Sturm's, the isolation of real roots between integ ers . The 

fundamental difference lies in the process of obtaining 

functions to obtain variat i ons of signs . Wi th Sturm's 

method one would find the first derivative, there by the 

process of division obtain the remainders until the last 

one was a constant, while with this method of Budan 1 s one 

merely takes the successive derivatives until the last one 

is a constant. While tlis method of obtaining the functions 

is the less l aborious, it is not as specific in determining 

the number of roots . The roots may be equal to the varia-

tion of sig n or l es s by an even integ er. 

For example, 

f(x) = x 3 - 3x - 1 

f' (x) = 3x2 - 3 

1 . Dickson, L . C. First Cour se in the Theory of Equations, 
p . 83 . The ~roof of this t heorem is given by Dickson . 



f" (x) = 6x 

f' 11 (x) = 6 

Using Descar tes' rule theIJe is one positive and two or 

no negative roots. 

Arrang ing t he values of x in a tabulated form with the 

sig ns off, f', fl! , f'" , and their variations . 

X f f l f" fflf variat ions 

3 + + + + 0 

2 + + + + :} 1 root 
1 + t 
0 + + :; 1 root 

- 1 + .,.. + 
1 root 

- 2 + +-
- 3 + + 3 

There is seen to be a change in the number of variations 

between the values where x = 2 and x = 1, where x = 0 and 

x = -1, and where x = -1 and x = -2. Therefore since there 

wa s a difference of one in the var i ation of sign, there is 

one positi ve root and two negative roots between the above 

values of x . 
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HORNER 1 S METHOD 

The approximation of irrational roots may be determined 

to as many decimal p l aces as required, after the root has 

been isolated by one of t he preceding methods, by a process 

per fected by Horner and named for him. 

A geometric interpretation will be g iven to help clar-

ify the alg ebraic explanation of Horner's Method. 

It is assumed that the equation f(x) = 0 has been 

g raphed and found to cross t h e x - axis in the unit i n terval 

be tween and from a and£, as s h own in Fig . 1, a nd pas ses 

throu0 h the points P and P1 whose coordinates are (a, h) 

and (b, k) resp ectively . 

y y p y 

P.i, 

V , ,. 

P, h 

Fig . 1. P, Fig . 2 . Fig . 3. 

The secant is drawn fr om P to P1 and t he unit from 

a to£ is enl arg ed and sep arated into ten t h s as shown in 

Fig . 2 . The point a is used as the orig in or it ma y b e 

t h ough t of as moving the y - axis a units to t h e right . This 
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is accomplished algebraically by dividing f(x) = 0 by x - a, 

by synthetic d ivision, giving t he first transformed equa -

t ion , f (x1 ) = 0. 

The graph is n ow seen to cr oss t he x - axis between . 6 

and .7. The secant is drawn from P2 to p3 and by computing 

t he f(a +- .6) and the f(a + ~7) t he ordina tes of P3 and P2 
are found to be h 1 and k 1 respectively . 

The uni t from .6 to .7 (Fig . 3) is enlarged and divided 

into ten segments which correspond to hundredths in Fig . 1 . 

+ .6 is used as the orig in, or t he y-axis is moved again 

which means, al g ebraically, that the f(x1 ) is divided by 

x - (a + .6) g iving t he second transformed equat ion f(x2 ). 

The root of the equation is now seen to be -r • 67 and 

as the approximation becomes closer the secant keeps drawing 

c loser to the root of the equation, the points P and P1 
become closer and closer tog ether, until eventually they 

can be made to coincide on the x-axis . 

Should it be necessary to secure an approximation 

clo ser t han hundredths , the process of e nlar ging the units 

could be repeated and obtain a value to as many decimal 

places as de sired. In actual practice it is usually neces-

sary to carry the approximation only to hundredths or 

thousandths . 

For the algebraic solution consider the equation men-

tioned in a previous paragraph, 

f(x) = x3 - 3x2 - 4x r 13 ( 1 ) 

where a real root was loc ated between 2.2 and 2 . 4 by Sturm's 



method . 

The r oot of the equati on is first decreased by 2.2 

which mean s moving t h e g raph of the equation so that it 

crosses the x - axis between . 2 and . 4. Thi s is accomplished 

by synthetic division . 

1 - 3 - 4 +13 

2 . 2- 1.76 -12.672 

1 - . 8 - 5 . 76 + .328 

2 . 2 -t- 3. 08 

1 + 1. 4 - 2 . 68 

+ 2 . 2 

1 + 3 . 6 

The transformed equat i on is 

2 . 2 

x3 + 3 . 6x2 - 2. 68x + . 328 ( 2) 

which ha s a root between . 2 and . 4. It is important that 

the sign of the known term in each transformed equation be 

the same as that of the original equation . 

To obtain an approximation to the root of (2) ignore 

the terms x3, and 3 . 6x2 . Then if -2.68x1 - . 328 = O, 

x = .l+, but before accepting this it must be verified. 1 
When it is tested the result is just positive; therefore it 

is acceptable . 

If the result was negative it would mean that the p oint 

was on the left side of the orig in; therefore that value 

would be too large . The coefficients of the transformed 

equations appear on the f irst lines of the following scheme 

which shows t he procedure for obtaining the approximate 



root to six decimal p laces . Since t he root i s t ~·en to n l y 

six decimal p laces, the fractions a r e r oun d ed off at the 

sixth place . 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

-+-

+ 

+ 
+ 
t 

-+-

+ 

3 . 6 - 2 . 68 + 

. 1 + .37 -
3 . 7 - 2. 31 + 

.1 + .38 

3. 8 - 1. 93 

.1 

3 .9 

. 328 

.231 

. 097 

.1 

. 097 

1. 93 

t 3 . 9 1. 93 + . 097 = • 05 

+- . 05 + .1 97 5 - . 086625 

+ 3 . 95 - 1 . 7325 + . 010375 

+ . 05 + . 20 

+ 4. 00 - 1. 5325 

+ . 05 

+ 4. 05 

+ 4 . 05 - 1.5325 + . 010375 

+ . 006 + . 024336 - . 009049 ----
+ 4 . 056 - 1 . 508164 + . 001:126 

+- . CJ06 + . 024372 

+ 4 . 062 - 1 . 483792 

+ . 006 

+ 4 . 068 

. 010375 

1 . 5325 

= . 006 



. 001 326 

. 483792 
1 + 4 . 068 - 1. 483792 + . 001326 = . 0008 

+ . 0008 f . 003255 - . 001184 

1 + 4 . 06J8 - 1. 430537 + . 000142 

+ . 0008 + . 003256 

1 + 4 . 0696 - 1.477281 

+ . 0008 

1 + 4 . 0704 

. 000142 

1 . 477281 

1 + 4 . 0704 1.477281 + . 000142 = . 00009 

+ . 00009 + . 000366 - . 000133 

1 + 4 . 07049 - 1. 476915 + . 000009 

+ . 0000Q + .000366 

1 + 4 . 07058 - 1 . 476549 

+ . J0009 

1 + 4 . 07049 

Taking the sum of the roots of the transformed equa-

tions, the approxinate value of the root of (1) is 

X : 2 . 215689 + 

The other two roots of (1) could be approximated in 

like manner . If the root is negative a -x can be substi-

tuted for x in f(x) and the procedure for positive roots 

followed . 



NEWT N' S Mb:THUD 

There is a great deal 01 sinilarity between the methods 

of Newton and H rner . In both a r tis is 1 ted before 

t eir respective methods are used . Also there is quite a 

difference in pnrt of the plan of procvdu e. Newt n ' s 

method is more applicable than '"1"orner 1 s in that it an be 

used t solve other types Lf equations, w1ile Horner 1 s is 

nly for al 0 e raic equations. 

It is taken fo1' granted that a real ro t f the equa-

tion f(x) = 0 has been isol ted between a and b on the x-axis 

where O a < b . These values of a and must be taken 

so close together that the f 1 (x) = O does not huve a root 

between! end~' because fit did there would be a bend 

point in the f(x) = y . Also the f 11 (x) = 0 must not 11ave a 

root bl3tween the li n1 ts and ~' for if it id tl1ere would 

be an inflexion point 11 the ~r ph f f(x) = y . 

S.lnce nej the1· f 1 (x) nor f" (x) h ve 1. root b tween t.l e 

limits ml £., f"(x) wi)l have tl1o sam s g n l11'oughout th 

interv 1, while f(x) change sign ; theref re tbey will 1 oth 

have the ·aH1e sign 1. t one encl of tl:e interv 1 11nd hat v tlue 

should be taken to worl from in a1)proxlma lng the root of' 

f(x) = o. If this value is~, then better a.ppro .. drnntjon 

will be .,.. h. •10 find h Newton1 used 'r ylor I s 'l11 eo1~em, 

J . Burnside nd Panton . Theory of Equations, p . 226 . 



substituting ~ for x so 

f ( a + h ) = f ( a ) + f ' ( a ) h -t- f 11 ( a ) h 2 / 2 ! t- f' 11 ( a ) h 3 / 3 ! . • 

I gnoring t h e powers of h2, h3, and taking 

f(a) f 1 (a)h = O, h = -f(a) / f'(a). 

To obtain the next approximation he let a
1 

= a r h 

in the first transformed equation and found h
1

. 

h1 = -f(a1 ) / f 1 (a1 ) . 

Perhap s a graphi c pre sentation will h elp give a better 

understanding of the dis cussion. Consider the graph of 

y = f(x) as shown in Fig . 1 where the point P ha s the 

abscissa OM = a and the tangent at P and th'e graph cut the 

x-axis at T and N respectively. 

Let the subtangent MT = hand '"P = f(a). Sinc e the 

first der iva tive of the function equals the tangent 

f ' (a) = tan XTP 

= - MP/h 

= - f(a) /h 
h = -f(a)/f 1 (a) 

A better approximation to the root ON is OT = a~ h . 

A still closer approximation would be OT ', which is bring-

ing t be tangent nearer to N as t he approximation comes 

nearer to the root . 



By way of il l ustra.tion take the equatlon 

f (x) = x 3 - 2x2 - 2 

where a root has been .lsol ted between 2 nd 3 . rvl-1.i h of 

the values to use for a. will first be de termined . 

f 1 ( x) = 3x2 - 4x 

f " (x) = 6x - 4 

f ( 2) = a - value . f (3) = a + value. 

f" ( 2 ) = a. + value . f" ( 3 ) = a + v 1 ue . 

Since the f ( 3) nd the f" ( 3) h ve t he same si 1·n, 3 will 

be used for a . To find t he first approximation transf rm 

f(x) by dividing it by 3 by synthetic division 

giving 

1 - 2 ..,.. 0 - 2 3 

+ 3 + 3 -+- 9 

1 + 1 +- 3 + 7 

+ 3 .,.. 12 

1 -t 4 + 15 

+ 3 

1 t 7 

f (x1 ) = x 3 f- 7x2 + 15x -r 7 

f ' (x1 )= 3x2 t- 14x -,. 15 

h::: -f(3)/ f"(3) = -7/15 = - . 4 

The process of perfor111ing the s 1.bstitutions to obtain the 

transformed equ tins is done by yntl1etic division just 

as in Horner 1 s m thod, ex ept orne of the values of h, h1 , 

h 2 , ... will be negative instead of lw ys poslt"ve . 



1 + 7 t 15 

. 4 - 2 .64 

1 -+ 6 . 6 t 13 . 36 

. 4 - 2 . 48 

1 + 6 . 2 .,. 9 . 88 

. 4 

1 + 5 . 8 

1 + 5.8 + 9 . 88 

. 2 - 1 .12 

1 -#- 5 . 6 + 8 . 76 

. 2 - 1 . 08 

1 + 5 . 4 t 7 . 68 

. 2 

1 + 5.2 

1 + 5 . 2 -r 7. 68 

.,. 7 

- 4.944 

+ 2 . 056 

+ 2 . 056 

- 1.752 

+ . 304 

.,. . 304 

-.4 

- 2 . 056 

9 . 88 

= -.2 

-. 304 

7 . 68 

= -.04 

. 04 - .2064 - . 298 944 

1 -r 5 .16 -f 7.4736 + . 005056 

.04 - .2048 

1 + 5 . 12 + 7 . 2688 

. 04 

1 + 5 . 08 



1 + 5 . 08 + 7 . 2 88 + 

1 + 5 . 07 2 -+ 7 . 2 . 52414 - . 0 

. 0007 -

1 + 5 . 0786 + 7 . G 1 8917 

. 0007 

1 + 5 . 07?9 

5 r.: 

g . 000029671143 = • )000011 
7. 2616894.7 

"It an 
frRction O wh n e pr 

s k zeros betwe nth 
the fir t sleniflc nt 
may be fel carr d 

? • ' . 0 

= - . ()07 

In tl1 s problem k i 5; th rof r l:ho1 1 no n d r 
further c1 l vi j on and t.h r ot of h SLlU tlon Lo B v n 

declmal plf ·es i 

3 - . 4 - . 2 - . 01 - . 0007 + . 0000041 '9' 041 

1 . l j l :1 J , L. (, CoL.1.·ou in p . f . 



Conc lusion 

Th e different metho s of segregation of roots have 

their advantages as well as their disadvantages . There is 

not much difficulty encountered in equations of the second 

degree, for the quadratic formula will obtain the solution 

regardless of whether the root is rational or irrational, 

real or imaginary . 

In the solution of cubic and quartic equations Newton 's 

:Method for integral roots is convenient when the roots are 

integers . ~.hen solving a cubic with Tartaglia 1 s Method 

some equations are solved v ery easily but when the discrim-

inant is positive it requires the solution of the cube root 

of a complex number , which in most cases must be done 

trigonometrically . Ferrari's Me thod of solving the quartic 

equation is a laborious task . 

When isolating the roots , Budan 1 s Me thod is the most 

convenient , but Sturm ' s Me thod often gives the best result . 

The approximation of the root may be accomplished very 

accurately with Horner 1 s or Newton's Me thod but they are 

long and laborious, and when the approximation is not required 

beyond one or two decimal places it can be accomplished more 

quickly and easily by the graphic method. 
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