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ANALYSIS OF THE FINANCIAL INDICES OF THE NAFTA MEMBER COUNTRIES

Rafiqul Bhuyan, California State University
Andrija Popovic, Department of Social Development
Yoshi Fukasawa, Midwestern State University

This paper analyzes the efficient markets hypothesis for the major NAFTA financial indices. The results

suggest that the simple return for all three indices is generally uncorrelated.

The non-linear

transformations of the simple return into its absolute and squared value behaved much differently

however. Here, the statistics

calculated provided considerable evidence

to suggest that these

transformations of the returns are predictable to a large degree. Ignoring the sign of the return helps
greatly in predicting the direction of the series. Also, all of the series in this transformation, but one, had
estimated fractional parameters that would indicate the presence of long memory. Thus, it could be
concluded that volatility is a long run predictable process.

INTRODUCTION

The weak form of the efficient markets hypothesis
states that given the information set at time period 7, one
can not predict the returns on financial assets at time
period £ +1, where the information set at time 7 1s just
the past return. More specifically, it states that the returns
from one period to another are independent and onc can
not use past returns to predict future returns. Other forms
of the theory include the “semi-strong”™ form where the
information includes all  publicly available
information and the “strong” form where the mformation
set includes all the available information. In general, the
“weak”™ defimition of the theory the most
commonly used for empirical testing and this 1s the
definition that will be tested in this paper.

Literature on this subject 1s exhaustive. In retrospect.

set

1S one

there is evidence both for and against the weak form of

the efficiency hypothesis. In early work on financial data,
Mandelbrot (1963) and Fama (1965) found that stock
prices tend to be independent over time however exhibit
clusters of volatility and tranquility which indicates a
possible dependence within higher moments. The Box-
Pierce, ILjung-Box and the varance ratio statistics
developed by Box and Pierce (1970). Ljung and Box
(1978) and Lo and MacKinlay (198%). respectively. are
used to test if there exists dependence of the returns of a
series n different moments of time.
Campbell, Lo and MacKinlay (1997)
statistics to test for normality and predictability of the
returns on the weighted CRSP (Center for Research m
Security  Prices) indices. They find that the
autocorrelations of daily. weekly and monthly index
returns are positive and significantly different from zero.

use these
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In effect, this is evidence against the weak form of the
efficiency markets hypothesis.

Given this result. one turns to the question of how to
model the returns of financial series. In standard Box and
Jenkins (1984) analysis, one often finds that financial
series look like white noise and one can come to the
conclusion that they follow Martingale processes. In this
case, modeling the returns in a linear framework becomes
uninteresting as most indices will look like random
walks. For these types of models, the autocovariance
function decays rapidly so that, as the time gap between
observations widens, the linear relation between these
observations decays rapidly. This begs the question of
whether financial indices have long memory properties.
Autoregressive Fractionally Integrated Moving Average
(ARFIMA) models. introduced by Granger and Joyeux
(1980) and Hosking (1981), exhibit long term properties.
That is, observations in the distant past are correlated
with observations n the far future. The autocorrelation
function for these models decays slowly and thus 1s
useful in modeling long term properties of time series
data.

Studies on long-memory properties for U.S. stock
prices include Greene and Fielitz (1977). Lo (1991) and
Barkoulas and Baum (1996). Cheung and Lai (1995) and
Crato (1994) reported results for several international
[he overall
memory

indices and the G-7 countries respectively
evidence that
generally absent from the U.S. stock markets and the

suggests stochastic  long 1S
international indices as well. However, there 1s evidence
that certain individual indices do have long memory
propertes.

In this paper. we propose to test the weak form of the
efficient markets hypothesis of the three major financial
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indices of North American Free Trade Agreement whether large swings in the return are clustered together
(NAFTA) members. Namely, the indices will be the and predictable.
Toronto Stock Exchange (TSE 300) for Canada, Standard The second part of the paper will introduce the
and Poors (S&P 500) for the United States and the  Autoregressive Fractionally Integrated (ARFIMA) Model
Mexican Stock Exchange for Mexico and the indices will — and the asymptotic results with a general interpretation.
be updated. The closing figure for all three series will be  The third part will address spectral analysis and the
collected from January of 1991 to December of 2000 ona  Geweke Porter-Hudak (GPH) semi-parametric estimator.
weekly basis and will be adjusted for dividends and stock — The fourth part of this paper will deal with the estimates
splits (this data is publicly available on the internet). This  of the fractional parameter for the returns of the series
analysis will be broken down into five parts. using the GPH estimator in both absolute and squared
The first part of the paper will test the normality  values of returns. Finally, the fifth part of the paper will
assumption of the data using the skewness and kurtosis — report some conclusion of the study.
statistics and the Ijung-Box and Variance Ratio statistics
are calculated to test for linear correlation between
returns. Along with these calculations, two simple non- In this part, it is assumed that if the market is efficient,
linear transformations of the data will also be analyzed in  then the price of the asset (nominal index of the series) is
the same context. More specifically the absolute and  unpredictable, so the best predictor of the next period’s
squared value of the returns will be analyzed. This  price will be this period’s price. Essentially, the log of the
analysis serves the purpose of verifying whether volatility  series will follow a random walk (1.1), where the errors
of the data 1s predictable. More intuttively, 1t tests are (NID, normally distributed) with a constant variance:

Part I: Normality and Tests of Efficient Markets

.
(1Y) pj, =pig+é&; & ~iidN[puoc”]
Inabove (1.1). p , is natural logarithm of index 7 at time 7. Also, the returns on the indices of the aforementioned

series will be formulated as (1.2) below.
. - . 2 7
(1.2) }1'1 _/)1,/ /)1'1 1 ~H, where a = Z (Bip= Py T =(Pgg = Pro L
t=1

In (1.2), ¢ 1s the deviation from the mean return of index 1 at time ¢. To check if returns satisfy the normality

assumption, statistics for the skewness § in (1.3) and kurtosis £ in (1.4) are calculated and used to define test
statistics in (1.5) and (1.6) respectively.

74
(L3) § //,'(’/'(fz)/Zr,’;.ri'f
=
1
() & =faqTet Iy b
t=]

I'he test statistics are then:

(15) S=+T/65~N(0,1).
(18 B=JTI24[& 3] ~N{l,1}.

In testing for normality. (1.5) gives evidence on how symmetric the underlying data are and (1.6) provides evidence
of kurtosis by examining how thick the tails of the distribution are. If | § > 7.96 it would be concluded with a 95%
confidence level that the underlying data are not normal by virtue of skewness. It is possible the distribution of the data
is symmetric but has fat tails or is not symmetric and has normal tails. For this reason, both of these calculaied
statistics should have a p-value less than or equal to .05 in order to suggest that the data are normally distributed at the
952 confidence level. To test against the weak form of the efficient markets hypothesis, the Ljung-Box (1.8) statistic
1s calculated on the basis of the autocorrelation function (1.7):

http://scholars.fhsu.edu/jbl/vol2/iss1/3 10 2



Bhuyan, Popovic, and Fukasawa Bhuyan et al.: Analysis of The Financial Indices ofThie NAFIA MembeérGountriesch, Practice, and Teaching

X7y plk)=-=——

This autocorrelation function is then used to form the Ljung-Box test statistic O

~m

- i a R
(18) 0, =T(T+2)Y p*(k)AT-k)~y, .
k=1
The statistic §  tests whether there is correlation between returns in different time periods. If there is correlation
between returns in different time periods, then the returns on the series are predictable. If returns are predictable, then
the hypothesis of a random-walk price model is rejected and this is evidence against the efficient markets hypothesis.
Here the null and alternative hypotheses are:

H_ :p(k)=0YV k=1,2,., m

o

H :k:J]p(k)::U

a

If the calculated Ljung-Box statistic 1s greater than the critical value of the appropriate chi-square value at
the 95% confidence level, then the null hypothesis would be rejected. This would be evidence of the existence
of correlation in the returns. Finally, the third statistic that is calculated 1s the variance-ratio statistic yz (4 )
given in (1.9). Like the Ljung-Box statistic, the variance-ratio statistic tests for uncorrelated returns but takes
into consideration that the series may not be homoskedastic. Often it is seen that the volatility of financial
data and returns changes over time. If the null hypothesis is rejected on the basis of heteroskedasticity this
would be misleading. Assume that the number of observations in the sample is 7+ 7/p, . p,.. p, /- Then:

(19) VR(q)=5,(q)/5,.
in which VR( q ) 1s the estimated variance ratio statistic, which is defined by the following:

)
A=(1/T)Y (px=pe1)=(1/T ) pr-p,)’
k=1

.
&a =(1AT=1)> (py-piy—i)>
k=1

oy =(1/m )Z]: (P = Pi—g = QA %
k=q
where m = g(T —qg+1)(1-(q/T ) -
The asymptotic distribution of the variance-ratio statistic is given by (1.10). This is then normalized in the test
statistic (1.11).
2 2q D) g 1)
3q .

(111 g, = [NT(VR(g)~1)] /0, ~ N(0,1).

(1.10) NT(VR(q) ~1)~N(0,0% ), oiy =

Table I gives the results of calculating S,k .0 and  square of the returns for the three series. The p-values in
w for the returns, the absolute value of returns and the ¢ach case are also reported. The skewness and kurtosis

Published by FHSU Scholars Repository, 2006
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calculations for the simple return show that the returns of
all three series are not normal at the 95% confidence
level. All of the series exhibit fat tails, but only the TSE
index shows evidence of being non-symmetric. For the
[jung-Box statistics it can be seen that: the null
hypothesis of zero correlation between the returns is
accepted both at the fifth and tenth lag for the SAP index;

for the TSE index, it is rejected for both of the calculated
lags; and the MSE index rejects the null hypothesis at the
tenth lag. In view of the results for the Box-Ljung
statistic it can be concluded that the SAP index is
consistent with efficient markets, but both the TSE and
MSE indices seem to have returns that are predictable to
some degree.

Table I: Summary, Autocorrelation and Variance Ratio Statistics

Simple =~ = A A - 7 7 ’
Return S K Q5 Q/{) Vo> Vy Vs Vie
SAP Index 0.058 0.912 9.394 16.508 -1.076 -0.971 -1.020 -1.026
[.641] | [.000] [.094] [.086] [282] | [331] | [308] | [.304)
I'SE Index -0.456 2.94 16.545 24.372 3.128 1.452 1.394 1.081
[.000] | [.000] [.005] [.007] [001] | [146] | [163] | [230]
MSE Index -0.068 1.348 12.130 15.821 3.123 3.093 1.589 1.356
[.580] | [.000] [.033] [.105] [001] | [002] | [112) | [175]
Absolute o = A 2! 7 2 2 2
Value S K Os O Yiz V4 Vs Yie
SAP Index 1.396 2.542 76.665 139.262 5.778 6.784 8.714 10.057
[.000] [.000] [.000] [.000] [.000] [.000] [.000] [.000]
TSE Index 2.070 6.902 48.5560 83.721 4.562 3.876 5.083 6.160
[.000] [.000] [.000] [.000] [.000] [.000] [.000] [.000]
MSE Index 1.628 4.242 40.047 56.738 2.083 4.633 5.894 6.200
[.000] [.000] [.000] [.000] [.037] [.000] [.000] [.000]
Squared o = A A e 2 5 =
Return S K QJ' Qlll Y2 V4 Vs Yie
SAP Index 3.902 21.467 63.340 125.284 5.502 6.027 7.897 9.064
1.000] [.000] [.000] [.000 [.000] [.000] [.000] [.000]
I'SE Index 5.843 45.731 71.412 134.813 5757 4.466 5.576 6.691
[.000] [.000] [.000] [.000] [.000] [.000] [.000] [.000]
MSE Index 5.000 37372 27.950 37.373 1.509 3.701 4.088 4.701
[.000] [.000] [.000] [.000] [.131] [.000] [.000] [.000]

I'he variance-ratio statistic yields approximately the
same evidence as the Ljung-Box statistic: for the SAP
index, the null hypothesis is accepted at all lags of the
calculated statistic; for the TSE index, the null hypothesis
is rejected at the second lag; and for the MSE index 1t 1s
rejected at the second and fourth lags. Again, it would
seem that the SAP index gives no evidence of
predictability of returns, but both the TSE and MSE
indices are predictable to some degree.

In looking at the results for the absolute value of
returns and the square of returns, it is obvious that results
are drastically different. Unlike the results for the simple
return, which show sparse evidence of predictability, the
calculated  statistics  for the simple non-linear
transformations of the return show overwhelming
evidence of predictability. The returns of all the series in
the both absolute and squared values suggest rejection of
the null hypothesis of nermality for both the skewness
and kurtosis. In regard to the Ljung-Box test. it would
seem that all of the series for both transformations of the
data have significant correlation for all lags. The
variance-ratio statistics for all the series transformations

http://scholars.thsu.edu/jbl/vol2/iss1/3

are significant, except for the squared return of the MSE
index.

The results indicate that large swings in the returns are
persistent for all the series, so that volatile periods are
clustered together. Even though the simple returns
themselves are predictable to some degree for the TSE
and MSE indices, the null hypothesis for the simple
return is not rejected at an overwhelming margin thus
making only crude predictions possible. This result is not
surprising. If a consistent arbitrage is possible in the
return of large indices, buyers would be attracted to these
markets quickly and the arbitrage opportunities would
vanish.

Part II: Autoregressive Fractionally Integrated
Models

In standard time series analysis of the Box and Jenkins
(1984) type., one is concerned in identifying an
Autoregressive Integrated Moving Average (ARIMA)
model. When these models are estimated, they posses
autocorrelation functions that decay exponentially. Thus,
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observations that are far apart become almost
independent. This is known as short memory. It would be
interesting to determine whether the data has long
memory, but this is not possible with standard ARIMA
models. Fractionally integrated models posses long-range
dependence (long memory), primarily because their
autocorrelation functions decay hyperbolically. In this
case, observations that are far apart are still dependent on
one another. This type of model 1s particularly interesting
because of its prediction properties. (A comparison of

(2.

1) X =X +g[ =

these two autocorrelation functions is illustrated in table
I13). If the return on a series 1s predictable for the long
term, this 1s evidence against the efficient-markets’
hypothesis, simply because the return can be forecast into
the future. Returns on financial time series often follow
random walks ARIMA (0,1,0) processes and are non-
stationary so, first differences must be taken to achieve
stationarity. This type of model can be characterized by
(2.1) where x , 1is the series in consideration and ¢, is

the error term of the model:

& ~N[0,67].

To achieve stationarity, x, must be differenced once and can be formulated as (2.2). In (2.2). B is the backward-

shift operator where Bx, = x,_;:

(2.2)

(I—BJ)xy =&

& ~N[0,67].

Although this model usually represents financial returns well, it is not an interesting model because accurate

forecasts of the returns in the future are usually poor. Also, when the series has an autoregressive
representation as in (2.3), the autocorrelation function of the series decays exponentially and long-term
dependence is not possible:

(23) ¢(B)x, =¢,5¢(B)=(1-¢,B-¢,B° — . ~¢,B" ).

The rapid decay of the autocorrelation function can be seen most easily in a general autoregressive (AR) model,
where the AR autocorrelation function can be formulated as (2.4):

24) p(k)< 4 o~

O0=7<l.

For the AR model to be stationary, it is required that| r |< /. Also, , — where 4¢,~7)=0 and

max | r; |
i

represents all the roots of (2.3). In this case, as & — o, the autocorrelation function . ¢ approaches 0 very quickly.
This is the short-memory property of regular autoregressive moving-average (ARMA) models. By this result,
observations in the distant past are independent of observations in the future so making very long-term predictions is
often inaccurate and unreliable. To introduce an Autoregressive Fractionally Integrated Moving  Average
(ARFIMA) model we ma write (2.2) in the more general format:

(25) (1-B)%x,=¢,, & ~N[0,c"].

In this model, we may think of the d parameter as taking any real value. If ¢ 1s integer valued. this is just a
special case of a regular ARMA model. If the d parameter has a value between 0 and 1, then the model is an ARFIMA
model. To know what happens to the formulation of (2.5). a Taylor series of (1 - B)?expansion is taken around
B=0.

i d(d—1
fw B == g 4 201

24

(2.6)

d(d —1)(d -2)
3

B — B? 4,

From (2.6) it can be seen that the differencing operator (/ — B )¢ is an infinite polynomial expression in  and 5.
Granger and Joyeux (1980) and Hosking (1981) demonstrate that, by the binomial theorem for non-integer powers.
(2.6) may be also expressed as (2.7):

: " [ d )
5%«

! - /)
(27) ([7[{)1‘:2( /}A[;

k=0 4

(1'((/—//-"((/7/\’1*7_/‘)
k!

Published by FHSU Scholars Repository, 2006



e I’opn\n, nal g l{%11\435\1{:655 & Leadership: Research, Practice, and Teaching (20032002 Yol12 47096} NRedre Bradtice, and Te aching

If this expression is applied to the x, variable, expression (2.5) becomes:

(28) 1-B)'=x = Z (71)‘[:]3‘,\-, =Y A%, =&
k=0 k=0
Further, the autoregressive component of (2.8) can be expressed in terms of the gamma function (2.9). Also, x, can
be expressed as an infinite moving average as in (2.10) and expressing the infinite-order moving average polynomial in
terms of the gamma function (2.11):
29) 4, = (-1* ){ ¢ ] P

T(-d)C(k+1)

(2.10) (= B) lj«‘fJ = Z BA‘(:( kT

k=0
iy p - L)
C(d)T(k +1)

Granger (1980), Granger and Joyeux (1980), and Hosking (1981) show that the characteristics of these models are
very useful in modeling time series. This is because the autocorrelation function of the ARFIMA model decays
hyperbolically and x, is stationary for values for , _ £ L, (see Hosking, 1981). In particular, the autocorrelation
function can be approximately formulated as (2.12):

(=d ) j2d-1

-d)!

To compare the long-memory autocorrelation function  called the antipersistence case and ¢ > 0 , the long-range
to that of an AR(1) model, Table II is reproduced from dependence case.) From this it can be seen that, when a
Campbell, Lo and MacKinlay showing with the decay of  series exhibits long-range dependence, observations are
an AR(1) model with ¢ = 5., 4 and 4 _ ! Here. correlated with one another even at large lags. This being

; 3 the case, it becomes clear why such a process is useful in

both the fractionally differenced series ¢ — / and the modeling returns. When modeling returns with regular

4 ARMA  models, the autocorrelation function decays

very quickly and thus predictions are only useful for

. B the short run. When considering the ARFIMA model the

‘/_\R( 1 Jmos] l,u‘“\‘ a correlation of 0.000 at the 25™ lag, lhc‘ autocorrelation function decays close to zero only after a

fractionally differenced model, 4 - / has a value of long time. thus making predictions becomes possible in
0.173 at the 25" lag. (Note when ¢ < ¢ this may be the long run.

(212) pr(k)~

AR(1) models have an autocorrelation of 0.5 for the first
lag, but after this, they behave very differently. While the

Table II: Autocorrelation function for a fractionally differenced process and an AR(1)

Lag K P, (k) Pyrlk) p(k)
d : : [

1 0.500 -0.250 0.500

2 0.400 -0.071 0.250

3 0.350 -0.036 0.125

4 0.318 -0.022 0.063

5 0.295 -0.015 0.031

10 | 0235 -0.005 0.001

25 0.173 -0.001 2.98x10°
S0 0.137 -3.24x10™ 8.88x10"°
100 0.109 -1.02x10™ 7.89x107"

A series that 1s stationary exhibits a variance that is positive and finite. Considering a simple AR(1) model such as:

(213) x, =¢x, ,+¢,, &, ~N[0,67].

http://scholars.thsu.edu/jbl/vol2/iss1/3 6
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If we take the unconditional variance of (2.13) and solve for the variance of X, . we obtain (2.14):

(2.14) (l'ar( X, )= ¢:l'ar( Xy )+ Var(e, ), Var(x, )=

5

=

1-¢°

If expression (2.14) is looked at, it becomes clear that the variance of x, is both positive and finite if and only if

¢ e (-1.+1)- By the same token, we can calculate the variance of x

.- when «x, is a fractional process. First, to

calculate the variance of x, conveniently, the series can be first expressed as an infinite moving average process as in

(2.10). Granger (1980) expresses the moving average (MA) weights as (2.15) for large & and an appropriate

constant 4 :

(2.15) B,

~ Ak for k> 1.

Now an MA() model (2.16) can be expressed with B, . k > /. given exactly by (2.15):

216) x, =3 4k s, ,
k=0

x
AZ k‘i’la‘,,,\ +&, -
k=1

If the variance of (2.16) is taken on the assumption that the error term has a mean of 0, a constant variance (2.17)

results:

(2.17) l"'m(x,):l'm(Aikd rew

k=1

In this case, for the variance of x, to be finite and positive z ;
T

the theory of infinite series, it 1s know that Z i
k=1 S

finite variance —2(d - /) > I, so the result is that ¢ <

1
o

Thus it follows if

+¢, ):.fl:o"(ZkZ”' e, +1)-
k=1

k°(4=1) must converge to a finite number. From

I converges to a finite number for s > /. and thus for v, to have a

. /., the variance of x, diverges and

becomes infinite so implying that the series would be non-stationary. Hosking (1981) also demonstrates that when

~ L <4 <o. x, is invertible with infinite order moving average representation (2.8) and when ¢ < 4 -
5

,» X; 18 a

toi s

stationary process and has infinite moving average representation (2.10).

Part III: Geweke Porter-Hudak Special Regression

Since the fractional model (2.6) is a polynomial in d
and B it is not obvious how d should be estimated. A
proposed method is the classical rescale range (R/S)
method, but this does not have a well-defined
distribution. Moreover the distribution is sensitive to
changes in the underlying data generating process. The
R/S method finds the existence of long-memory too
often. Geweke and Porter-Hudak (1983), GPHS83.
proposed the spectral regression method and Lo (1991)
proposed the modified R/S statistic, these are both semi-
parametric methods of estimating . Both of these
estimators are consistent and have well-defined
distributions. In this paper the Geweke Porter-Hudak
(GPH) estimator will be used because it 1s a consistent
estimator which has a sound distribution and
computationally non-intensive. It is necessary to switch

18
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attention from the time series domain to the frequency
domain. The GPH estimator uses properties of the
periodogram and spectral density to estimate the d
parameter. An ¢ umate of the ¢ parameter is found by
regressing the periodogram on a constant and an
explanatory variable that is a function of the sin of
angular frequencies, for specific frequencies (see (3.7)-
(3.9). An introduction to spectral analysis will first be
described to introduce frequency domain analysis.
“Spectral Analysis™ 1s equivalent to time domain analysis
based on the autocovariance function, but provides an
alternative way of looking at a series which 1s helpful in
identifying certain characteristics of the data. This
method is especially useful in looking at filters for the
data such as the fractional model. Suppose x, 1s a series

that is stationary with a mean of 0. then the spectral

density of x, can be expressed as:
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(3.1 /(/U—— Zws( —kA)y(k)-

Z o
Similarly, the autocovariance function may also be expressed as a particular function of the spectral density:

s
B2 y(r)= jcos( kA )f(A)dA -
The spectral density also has certain properties that are similar to the autocovariance function such as
f(A)=f(-2).Also, for f(A)=0 on the interval (— 7,7 ] the function is unique. If f and g are two spectral

densities corresponding to the autocovariance function y(-), then:
2 ‘ S I
y(k)= ff”c'os(l\i)f(l)d/l =[Z ycos(kA)g( A )dA .

To understand how the spectral density models a particular series, an example of white noise is taken. Assume that
x, ~ N(0,6” ).then y(0)= o7 and y(k )= 0 for all | k[> 0. Then the spectral density is:

3.3) - AR < o’ —g<isnx.
Fl) = — Z Pl ==
27 2
It can thus be seen that the spectral density of a white noise process is a constant. This means that each frequency in

the spectrum contributes equally to the variance of the process. When the process that generates x, is a stationary
AR(1) model, x, =¢x, ; +&, with 0 <@ </, then the spectral density is given by (3.4). This is dominated by

primarily low Irgquenues. because the autocorrelation function (ACE) is positive and large at the first lag:

B8 rra=="— = :
2 (1+¢~° - 2¢cos( 1))
When — 7 < ¢ < 0, then the AFC 1s large and negative at the first lag and the spectral density is dominated by high

frequencies. In this manner, the spectral density has specific characteristics for each process that is generated by the x,
variable. The model v, = (/- B ) “u, can be expressed in the frequency domain by (3.5), where u, is a stationary
linear process, which is bounded away from zero, finite and continuous on the interval [— 7,7 |.

d

(3.5 f(A)w(e” ) u, =w(e” )wie™ u,, wie™)=(1-e")
Equation (3.5) may be expressed as:
(36) f(A)= <= [ 2[1—cos(A)]}7%.
GPH83 rearrange (3.6) and express the spectral density function of x, as:

(3.7)

){ 4 sin 2ot )y~ in which
)

A/ Z

2[1—cos(A)] = 2fsin’(A/2)].
Taking the natural logarithm of (3.7) yields:

38) Inf f(4)] = /n( )—(//n, 4 sin - (i)(.

Suppose that series x, is [/ x; x5, xp /. Let the harmonic ordinates be Ajp=2m/T (j=0,..T~-1) and
[(A; ) denote the periodogram at these ordinates. From this, Geweke and Porter-Hudak rearrange (3.8), then

evaluate it at A ;7 yielding:

http://scholars.thsu.edu/jbl/vol2/iss1/3 16 8
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2 i o ™ /{’ )
ln{z——f“(O)}7dln{4sm'(/1/,)/‘2}+1n:‘/“( Loy b T
= :

/.(0) F(A;r)
where f,(A) is the spectral density of u,. Equation (3.9) appears like a least squares equation with /n/ I( A

(39) In{I(A,;)}

being the dependent variable, Inf(c” /27)f,(0)} the intercept, //1,’4‘\‘111:(417«)/_’,‘ the explanatory variable and
lrz{](/le)/f(/le}} the disturbance term. Further, the term in/ S A7)/ 1, (0} becomes very small and can be

ignored when the harmonic frequencies are near to 0. In this case, GPH83 propose an estimator of —d as the slope
coefficient of the regression of In{IMjT),' on In;nm:M}T)/_’/ and a constant for a sample of size G(1')
where G(T ) is a function of 7' [see Geweke and Porter-Hudak, 1983]. In considering the validity of (3.9), it must be
noted that the distribution of in{ 7, (2; 1)/ f, (%, )} 1s i.L.d of the Gumbel type which has a mean of ~C and a variance
9 . N _ . . . -
of 77 /6 . The value of C is Euler’s constant, .57721. This argument is based on asymptotic theory which leads to
certain restrictions on G(7T ) if the sample is to be used to estimate the slope coefficient [see Geweke and porter-
Hudak, 1983]. The regression equation (3.2) can be expressed as:

(3.10) In{I(A;p }=By+B;In{4sin”(A;r )} +u;r. j=1..G(T).
In this regression, B, is the ordinary least squares estimator and In/ (A, ; )/ is the periodogram at the frequencies
A T=27/T in a sample of size T. Assuming that the properties of ((7) are satsfied,
a
then,(B, +d )/ \/{var( B, )} > N(0,1). where var(B; ) is the usual estimated variance of B;. Also, the known

theoretical variance of the error term in the spectral regression (3.10) 1s 7° /6 . In addition to proving asymptotic
normality, GPH83 prove consistency for d < 0. [Later, Robinson (1990) proved consistency for d € (0,0.5)]. To test

their method, Geweke and Porter-Hudak choose ordinate values that were consistent with the theory of G( 7). To this

end, they found that 7", v =.5 is a relatively good choice for estimating the slope. If v is too large, then the
contribution of /n/ ,/;‘(/l/ 7)/1,(0)} can no longer be neglected. In regards to the experiments that were conducted,

GPH83 found that using the theoretical value of the error term, 7~ /6, 1s considerably more rehiable than the
estimated variance. Also, they suggest that 100 observations are sufficient for reliable estimation.

Table III: Estimated Long Memory P~ rameter

Simple Return i S.D

SAP Index -0.098 0.112
TSE Index -0.317 0.112
MSE Index -0.441 0:112
Absolute Value u} SD

SAP Index 0.478 0.112
I'SE Index 0.679 0.112
MSE Index 0.205 0.112
Squared Return d‘ SD

SAP Index 0.488 0.112
TSE Index 0.463 0.112
MSE Index 0.157 0112

Part IV: Estimation Results error of the coefficients is the true asymptotic value given

in (4.1) below. The estimated d parameter along with the
In estimating the long-run parameter for the data,  gtandard deviation for the simple. absolute and squared

the G(7 ) function is set to 7 and the reported standard  returns are reported in table 11

Published by FHSU Scholars Repository, 2006 9
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(4.1) I’(ll‘((/‘) =

NG

The term d is estimated to be significantly different
from 0 in all three cases. The estimated  for the simple
return of all of the series is negative which may indicate
that some anti-persistence exists in the data. The return
on the SAP index has an estimate of d that is close to
zero. This would suggest that the returns on the Standard
and Poors Index very closely resemble a white noise
process and the market is efficient. The returns on the
TSE and MSE dices, however, show a much larger
negative persistence. This could possibly be some
indication that the simple returns on these indices may be
predictable, evidence that would be against the efficient
markets hypothesis. However, this is very difficult to
reconcile with efficient markets theory. If returns are
predictable on such a large scale, arbitrageurs would
notice such an opportunity and take advantage of the
market and the arbitrage opportunity would
disappear. Even though the standard deviations of the
estimates indicate that negative persistence of the TSE
and MSE indices 1s significant, the results could be due to
small sample bias.

If the behavior of the absolute
simple returns are looked at, they have quite different

S00Nn

value and squared

results. For the absolute value of the simple return, all of

the three estimates of  are positive. Both the SAP and
MSE index have a parameter value that would suggest
that the absolute value of the return possesses a long
memory property. The TSE index,
estimated value of d that is above

however, has an
.5 and this 1s evidence
that the series, when transformed n this way,
stationary. Also, the TSE
close to .5 so a case for non-stationarity cannot be ruled
out as a possibility. The MSE index, 1s however, the only

value of d that is both significantly

1S not

index has a value of d that is

index that has a
above 0 and below .5 so it would seem to possess long
memory property.

When the simple return is squared, all of the indices
S. The
indices have parameter values that are

have an estimated d that is positive and below
SAP and TSE
again close to .5 5o a case for non-stationarity cannot be
ruled out. Again, in this case, the MSE index 1s the only
one that has an estimated  parameter that is both
significantly above 0 and below .5, so the square of the
return possess long memory properties.

http://scholars.thsu.edu/jbl/vol2/iss1/3
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By these results, it would seem that the simple
return  on the SAP index has no long memory
properties; however the TSE and MSE indices have

results that suggest they could possibly possess negative
persistence. When the sign of the return is ignored,
then most of the series seemed to possess long
memory properties.

CONCLUSION

This paper analyzed the efficient markets hypothesis
for the major NAFTA financial indices. The results of the
first part of the paper shows that the simple return for all
three mdices 1s generally uncorrelated, although some of
the test statistics support the rejection of this hypothesis
by a very slim margin. In estimating the fractional
parameter for the three series, there was no evidence of
any long memory 7 tterns for the S&P index. However
the estimates for the TSE and MSE indices indicate that
the simple return on these two indices might possess anti-
persistence. This 1s probably due to small sample
bias. In general, the three series seem to support the
“weak™ form of the “Efficient Markets™ theorem and
there 1s most likely no arbitrage opportunity in the
indices.

The non-linear transformations of the simple return
nto absolute and squared value behaved much
differently  however. the statistics  calculated
provided considerable evidence to suggest that these
transformations of the returns are predictable to a large
Ignoring the sign of the return helps greatly in
predicting the direction of the series. Also, all of the
in this transformation, but one, had estimated
fractional parameters that would indicate the presence of
I'hus 1t could be concluded that volatility 1s
a long run predictable process.

Future on series  should perhaps
concentrate competitions  between
standard time series and fractional models. This type of
research could indicate whether the negative persistence
found 1 the TSE and MSE indices 1s useful for
prediction. Another arca of future research may include
the effect on market efficacy of the implementation of the
NAFTA 1tself. One would expect an increase in market
but are currently

s
Here,

degree.
series

long memory.
these

studies

on forecasting

cefficiency., no results

available.

empirical

10
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