
Journal of Business & Leadership: Research, Practice, and
Teaching (2005-2012)
Volume 7
Number 1 Journal of Business & Leadership Article 5

1-1-2011

Objects-First Vs. Structures-First Approaches To 00
Programming Education: A Replication Study
Richard A. Johnson
Missouri State University

Duane R. Moses
Missouri State University

Follow this and additional works at: http://scholars.fhsu.edu/jbl

Part of the Business Commons, and the Education Commons

This Article is brought to you for free and open access by FHSU Scholars Repository. It has been accepted for inclusion in Journal of Business &
Leadership: Research, Practice, and Teaching (2005-2012) by an authorized editor of FHSU Scholars Repository.

Recommended Citation
Johnson, Richard A. and Moses, Duane R. (2011) "Objects-First Vs. Structures-First Approaches To 00 Programming Education: A
Replication Study," Journal of Business & Leadership: Research, Practice, and Teaching (2005-2012): Vol. 7 : No. 1 , Article 5.
Available at: http://scholars.fhsu.edu/jbl/vol7/iss1/5

http://scholars.fhsu.edu/jbl?utm_source=scholars.fhsu.edu%2Fjbl%2Fvol7%2Fiss1%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholars.fhsu.edu/jbl?utm_source=scholars.fhsu.edu%2Fjbl%2Fvol7%2Fiss1%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholars.fhsu.edu/jbl/vol7?utm_source=scholars.fhsu.edu%2Fjbl%2Fvol7%2Fiss1%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholars.fhsu.edu/jbl/vol7/iss1?utm_source=scholars.fhsu.edu%2Fjbl%2Fvol7%2Fiss1%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholars.fhsu.edu/jbl/vol7/iss1/5?utm_source=scholars.fhsu.edu%2Fjbl%2Fvol7%2Fiss1%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholars.fhsu.edu/jbl?utm_source=scholars.fhsu.edu%2Fjbl%2Fvol7%2Fiss1%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/622?utm_source=scholars.fhsu.edu%2Fjbl%2Fvol7%2Fiss1%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/784?utm_source=scholars.fhsu.edu%2Fjbl%2Fvol7%2Fiss1%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholars.fhsu.edu/jbl/vol7/iss1/5?utm_source=scholars.fhsu.edu%2Fjbl%2Fvol7%2Fiss1%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages


Johnson and Moses Journal of Business & Leadership: Research, Practice and Teaching 
2011, Vol. 7, 37-41 

OBJECTS-FIRST VS. STRUCTURES-FIRST APPROACHES TO 00 PROGRAMMING 
EDUCATION: A REPLICATION STUDY 

Richard A Johnson, Missouri State University 
Duane R. Moses, Missouri State University 

One of the essential elements of a successful organization is information technology, which has as its basis effective and 
efficient software development. In turn the foundation of software development is computer programming. The last 
decade of computer programming education has been dominated by the object-oriented paradigm. While recent anecdotal 
accounts among computer science and computer information systems educators have often favored the objects-first 
approach to programming instruction (vis-a-vis the structures-first approach), very little empirical evidence has been 
offered. A field study by Johnson and Moses (2008) suggested that the objects-first approach is superior, but the 
experimental design was open to criticism. This replication study significantly improves upon the experimental design 
yielding results that indicate neither the objects-first or the structures-first approach is preferred. While an inconclusive 
result may seem unimportant, it does provide needed guidance to educators to make pedagogical decisions based on other 
perhaps more important factors to help ensure the students' success. On the positive side, the study does suggest that 
learning object-oriented programming is more difficult for novices than learning procedural programming, which is also 
important for programming educators. 

Virtually all kinds of organizations are heavily 
dependent on information technology for survival and 
success, and information technology is predicated on the 
efficient and effective application of computer programming 
techniques. These programming techniques are usually first 
developed to a high degree within computer information 
systems (CIS) and computer science (CSC) curricula. In the 
past twenty years, virtually all introductory programming 
courses have shifted from the procedural approach to the 
object-oriented (00) approach. Most beginning 
programming courses appear to be teaching Java, C++, or 
one of the Visual Studio .NET languages (Visual Basic, C#, 
or J#) as evidenced by the popularity of various computer 
programming texts. All of these programming languages are 
object-oriented, as contrasted with the purely procedural 
languages of Fortran, Pascal, COBOL, and C, which were 
highly popular prior to 1990. 

The basis of any type of computer programming (00 or 
procedural) involves the three programming 'structures': (I) 
sequence (do A, do B, doC, ... ), (2) selection (if ... else 
decisions), and (3) repetition (while or for loops). 00 
programming includes these structures but extends them by 
creating classes that serve as templates for instantiating 
software objects in computer memory. Objects, 
characterized by attributes (instance fields) and behaviors 
(instance methods), often represent entities in the real world 
(such as students, products, or airline reservations). While 
learning the basics of procedural programming with 
structures (sequence, selection, and repetition) is often 
difficult for most beginning students, it is the general 
consensus that learning 00 programming concepts and 
techniques may be even more challenging (Sheetz, et al., 
1997; Robins, et al., 2003). 

Therefore, one of the most relevant questions regarding 
programming education should be whether to teach 

37 

procedural programming concepts and techniques first, 
followed by 00 programming concepts and techniques, or 
vice versa. Many authors claim it is better to follow an 
objects-first (OF) approach ('early objects') in order to 
ingrain within the student the ability to think in terms of 
objects (Thramboulidis, 2003; Ragonis & Ben-Ari, 2005). 
Although the OF approach may sound more plausible than a 
structures-first (SF) approach, there appears to be little 
empirical evidence to support the claim. 

An original study by the authors of this paper (Johnson 
& Moses, 2008) was conducted to test the hypothesis that 
there is no difference in an OF and a SF approach to 
teaching 00 programming to beginning students. The OF 
approach was used in one section of introductory Java 
programming by one instructor while the SF approach was 
used by another instructor in a different section of the same 
course. The student populations of the two sections were 
statistically identical, but the OF group significantly 
outperformed the SF group on identical final exams, which 
consisted of writing a challenging 00 application. While 
great care was taken to teach the OF and SF sections in 
much the same way (similar combinations of lecture and lab) 
and grade the final exams similarly, each instructor had his 
own unique teaching style and grading technique, which 
may have contributed to the differences in student 
performance on the final exam. 

The current study seeks to greatly reduce any threats to 
validity by having just one instructor teach two separate 
sections of introductory Java programming, one section 
following the OF approach and the other following the SF 
approach. This way the background and teaching style of the 
instructor is the same for both sections. Any bias in grading 
the final programming application was also eliminated by 
having the other author (an experienced 00 programming 
instructor) grade the exams from the two sections (in random 

1

Johnson and Moses: Objects-First Vs. Structures-First Approaches To 00 Programming E

Published by FHSU Scholars Repository, 2011



Johnson and Moses 

order) without knowing which section (OF or SF) served as 
the source of the exams. 

METHOD 

Procedures 

The research question driving this study is: What effect 
does teaching an OF approach (vis-a-vis a SF approach) 
have on the performance of novice programming students in 
an 00 programming course? The hypothesis being tested is 
that there is no difference in the performance of novice 
programming students who are provided with an OF or a SF 
approach to 00 programming. 

To test this hypothesis, one of the authors of this study 
taught two sections of introductory 00 programming (CIS 
260), each with 24 students, at Missouri State University 
(MSU). The following steps were taken in the administration 
of these two sections: 

1. The instructor used two different texts written by the 
same author (Gaddis, 2008a; Gaddis, 2008b ), one using 
the term "Early Objects" in its title and the other using 
the term "Late Objects" in its title. The only significant 
difference between the two texts is the ordering of the 
chapters. Both texts have the same first two chapters. 
The Early Objects text presented objects and classes 
beginning with Chapter 3 (we call this the OF approach) 
while the other Late Objects text continued after 
Chapter 2 with decisions, loops, and methods before 
introducing classes and objects in Chapter 6 (e call this 
the SF approach). These two texts were designed 
specifically by Gaddis to support either an OF or a SF 
approach to teaching introductory 00 programming 
using Java. The reading material, programming 
examples, and end-of-chapter problems throughout the 
texts are essentially the same, although located within 
different chapters. 

2. Both sections were taught in the same lab setting using 
identical lecture/discussion/demonstration techniques by 
the same instructor. The instructor also assisted students 
with writing programs during specified lab time. No 
graduate assistants or other instructors were used in the 
delivery of these two sections. 

3. Students in both sections took the same first exam 
covering Java programming basics (Chapters 1 and 2 in 
both Gaddis texts) and the same final exam consisting 
of writing complete Java code for a challenging 00 
application. 

4. To avoid bias, the other author of this paper (not the 
instructor of the two sections) graded all final exam 
programs. The exams were completely randomized so 
that the grader did not know which students belonged to 
the OF section or the SF section. 

5. The grading was performed in great detail for each 
exam. The evaluation was broken down into 17 specific 

38 

Journal of Business & Leadership: Research, Practice and Teaching 
2011, Vol. 7, 37-41 

programming tasks within each of two broad categories 
of 00 programming (such as creating instance fields or 
instantiating objects) and structured programming (such 
as writing loop structures or writing methods). 

6. Percentage scores on the final exam were determined 
for each student within the broad categories of 00 
programming and procedural programming based on the 
17 tasks within each category. The means of these 
scores were compared for the OF an SF groups to test 
the null hypothesis of this study (i.e., no difference in 
the performance of the OF and SF groups). 

Student Backgrounds and Demographics 

Data about the students were collected during the first 
week of class to determine if both groups (OF and SF) had 
similar backgrounds and abilities. Students completed a 
survey to provide demographic data such as gender, age, 
college class, prior experience in programming, and 
motivation to learn computer programming. The college 
GPA and ACf scores (composite and math) were also 
collected for all students. 

Performance Measures 

The first exams in each section were identical, being 
based on the identical first two chapters in both Gaddis texts 
(Early Objects and Late Objects). These two chapters 
covered the very basics of Java programming (variables, 
data types, type casting, strings, etc.) with practically no 
emphasis in 00 programming. This first exam, consisting of 
multiple choice questions and writing a short Java program, 
was scored by the same instructor for both the OF and SF 
sections. 

After Chapter 2 in the Gaddis texts, the sequence of 
topics was totally different. A second exam was 
administered in both sections approximately half way 
through the course but the sections could not be compared 
due to the different topics covered. 

After both sections completed their respective courses, a 
final exam was administered. Students were asked to write 
(using paper and pencil) a complete syntactically and 
logically correct 00 application in the Java language. The 
authors believed it would be better to have the students write 
programs on paper instead of on a computer so that credit 
could be given for code that was close to correct. The 
authors understood that incorrect syntax or logic on the 
computer would result in early failure of the program to 
compile or run which would perhaps lead to undo frustration 
on the part of the student and less likelihood of writing a 
complete program. 
Following is the fairly challenging programming problem on 
the final exam (the students had two hours to write the 
application): 

2

Journal of Business & Leadership: Research, Practice, and Teaching (2005-2012), Vol. 7 [2011], No. 1, Art. 5

http://scholars.fhsu.edu/jbl/vol7/iss1/5



Johnson and Moses 

Write two Java programs, Book.java and 
BookApp.java. Use JOptionPane for input and 
output. The Book class has three instance fields: 
booklD (int), bookTitle (String), and bookPrice 
(double). The Book class has a static field, 
TAX_RATE = 0.05, which is a named constant, 
and a static field, count. The count should be 
increased by 1 every time the constructor is 
invoked. The Book class has two constructors: one 
has two parameters only (theld and theTitle) while 
the other has three parameters (theld, theTitle, and 
thePrice). The Book class has a method called 
calculateTax() which uses TAX_RATE and 
bookPrice to return the tax on a book. The Book 
class has a method called calculateFinalCost(), 
which calculates the final cost of the book to the 
customer (bookPrice +tax). The Book class has get 
and set methods for all instance fields. The 
BookApp class first declares all variables to be 
used in that class. Include a DecimalFormat object 
to format numbers to two decimal places with a 
dollar sign. T he BookApp class has a while loop 
that allows the user to continue to create new book 
objects until the user chooses to stop. Within the 
while loop, the BookApp class gets input from the 
user for bookld, bookTitle, and bookPrice, creates a 
Book object, calculates the tax using the 
calculateTax() method and calculates the final cost 
using the calculateFinalCost() method. Within the 
while loop, the BookApp class displays, in a 
JOptionPane window, all the information about the 
book object created including the 10, title, price, 
tax, final cost, and number of books processed. 

Journal of Business & Leadership: Research, Practice and Teaching 
2011 , Vol. 7,37-41 

The researcher who graded these fi nal exams (not the 
instructor of the sections) identified 17 key 00 
programming tasks (such as correct class declaration in the 
Book class, correct declaration of three private instance 
fields in the Book class, correct instantiation of a 
DecimalFormat object in the BookApp class, etc.) and 17 
key procedural (or non-00) programming tasks (such as 
correct definition of the calculate Tax() method in the Book 
class, correct while loop in the BookApp class, correct 
conversion of String input to numeric data in the BookApp 
class, etc.). This instructor then carefully evaluated each 
exam based on these 34 criteria, deducting 0 points for 
correctly performing the task, 0.5 points for a minor error in 
performing the task, and 1.0 point for a major error in 
performing the task. The result was a percentage correct for 
the 00 tasks and a percentage correct for the procedural 
(non-00) tasks for each student within the OF and SF 
sections. 

RESULTS 

Table 1 shows various demographic data for the OF and 
SF groups. Table 2 presents the results from the first exam 
and the final exam. The mean scores for the first exam in the 
two sections (OF and SF) are compared. For the final exam 
the mean 00 programming scores are compared and the 
mean non-00 programming scores are compared for each of 
the two sections (OF and SF) using t-tests. Finally, Table 3 
compares the difference in scores for non-00 and 00 
programming by student within each of the two sections (OF 
and SF) using paired sample t-tests. Finally, Table 4 
provides the means of the differences in non-00 vs. 00 
programming performance for the OF and SF sections. 

TABLE ! 

Demographic Data for the Objects-First (OF) and Structures-First (SF) Sections 

OF SF P value Ho: !!OF = !!sF n 
(two-tailed) =0.10 

1 #Male 22 21 
2 #Female 2 3 
3 Total students 24 24 
4 Age 21.5 20.5 0.113 FTR H0 

5 Previous college GPA 3.09 3.01 0.325 FTRH0 
6 ACf score (composite) 24.8 25.0 0.858 FTRH0 
7 ACf score (math) 25.0 24.3 0.572 FTRH0 

8 Semesters of programming experience 1.29 1.25 0.933 FTRH0 

9 Course is important to my career 3.88* 3.75* 0.664 FTRH0 

*Used a Likert scale of 1-5 for strongly disagree to strongly agree 

39 

3

Johnson and Moses: Objects-First Vs. Structures-First Approaches To 00 Programming E

Published by FHSU Scholars Repository, 2011



Johnson and Moses Journal of Business & Leadership: Research, Practice and Teaching 
2011, Vol. 7, 37-41 

TABLE2 

Programming performance data for the objects-first (OF) and structures-first (SF) sections 

1 Exam 1 (beginning programming basics) 
2 Final Exam: 00 tasks 
3 Final Exam: Non-00 tasks 

OF 

89.1% 
73.4% 
83.3% 

SF 

88.8% 
73.9% 
87.5% 

P value 
(two-tailed) 

0.878 
0.926 
0.271 

Ho: ~-tor = 1-tsr a 
= 0.10 
FfRH0 
FfRH0 
FfRH0 

TABLE3 

Difference in programming performance by student, Non-00 score- 00 score (using paired t -test) for OF and SF 
sections 

1 Final Exam: Non-00 score - 00 score 
2 Final Exam: Non-00 score - 00 score 

OF 

9.9% 

SF 

13.6% 

P value 
(two-tailed) 

<0.001 
<0.001 

Ho: 
f..tNon-00 = !-too 

a=O.lO 
Reject Ho 
Reject H0 

TABLE4 

Comparison of mean differences in Non-00 and 00 scores between OF and SF sections 

1 Final Exam: Non-00 score - 00 score 

DISCUSSION 

Table 1 demonstrates that demographically the OF and 
SF sections are virtually identical. However, the SF section 
is slightly younger (Line 4), almost but not quite statistically 
significant. 

Table 2 provides strong evidence that the OF and SF 
sections had nearly equal basic programming skill (Line 1). 
Both sections had nearly the same prior experience in 
programming (about one semester), presumably either in 
high school or junior college. Both sections also 
demonstrated nearly equal abilities in 00 programming 
(Line 2). However, the SF sections did score slightly higher 
on the non-00 programming tasks on the final exam, 
although not statistically significant. The most striking 
finding of Table 2 is that both sections scored higher on the 
non-00 programming tasks than the 00 programming 
tasks. While some early practitioners claim that the 00 
approach is more natural and easier (Booch, 1994), most 
recent research suggests that 00 programming is in fact 
more difficult than structured programming (Robins, et a!., 
2003). 

The natural question from Table 2 is whether these 
differences in non-00 and 00 scores for each section are 

40 

OF SF Pvalue 
(two-tailed) 

9.9% 13.6% 0.246 

Ho: ~-tor = 1-tsr a 
= 0.10 
FfRH0 

indeed significant. Table 3 concludes that these differences 
are highly statistically significant. Regardless of the 
approach to 00 programming (OF or SF), students perform 
much better on non-00 programming tasks. And these 
differences in non-00 vs. 00 performance appear to be 
greater for the SF section. However, Table 4 shows that the 
difference in the two sections is not statistically significant. 
But there is the suggestion that students exposed to 
structures early perform slightly better on structured 
programming tasks at the end of the course. The major 
conclusion of this study is that an OF or SF approach to 00 
programming made essentially no difference in 00 
programming performance. This finding is important 
because it can free educators to explore other opportunities 
to improve programming education without necessarily 
being tied to an OF or SF approach. 

CONCLUSION 

Learning programming is not an easy task for the novice 
student. Learning 00 programming is an even more 
daunting task (Robins, et a!., 2003). This study compared the 
performance of two nearly identical groups of novice 
programming students. One group studied objects and 

4

Journal of Business & Leadership: Research, Practice, and Teaching (2005-2012), Vol. 7 [2011], No. 1, Art. 5

http://scholars.fhsu.edu/jbl/vol7/iss1/5



Johnson and Moses 

classes very early in the semester (the objects-first, or OF, 
group) while the other group studied the basic programming 
structures (sequence, selection, and repetition) before objects 
and classes (the structures-first, or SF, group). Both groups 
took the same first exam (covering only the most basic Java 
programming tasks) before they diverged into either the OF 
or SF approaches: Then both groups took the same final 
exam which covered complete elementary 00 development. 
The OF and SF groups were statistically identical in their 
performance on the first exam. Surprisingly, both groups 
also scored the same on the 00 programming tasks on the 
final exam and statistically the same on the non-00 
programming tasks on the final exam. However, both groups 
performed at a statistically higher level on structured 
programming tasks than object-oriented programming tasks, 
suggesting that 00 programming is indeed more difficult 
regardless of the approach. These experimental results 
suggest that the approach taken to teaching 00 
programming does not affect programming performance, 
especially 00 programming performance. 

REFERENCES 

Booch, G. (1994). Object Oriented Analysis and 
Design With Applications, 2"d ed. Redwood 
City, CA: Benjamin/Cummings. 

Journal of Business & Leadership: Research, Practice and Teaching 
2011, Vol. 7,37-41 

Gaddis, T. (2008a). Starting Out with Java: Early Objects, 
3rd ed. Boston, MA: Pearson. 

Gaddis, T. (2008b ). Starting Out with Java: From Control 
Structures through Objects, 3rd ed. Boston, MA: 
Pearson. 

Johnson, R. & Moses, D. (2008). Objects-First vs. 
Structures-First Approaches to 00 Programming 
Education: An Empirical Study. Academy of 
Information and Management Sciences Journal, 11 , 95-
102. 

Ragonis, N. & Ben-Ari, M. (2005). A Long-Term 
Investigation of the Comprehension of OOP Concepts 
by Novices. Computer Science Education, 15, 203-221. 

Robins, A , Rountree, J . & Rountree, N. (2003). Learning 
and Teaching Programming: A Review and Discussion, 
Computer Science Education, 13, 137-172. 

Sheetz, S., Irwin, G., Tegarden, D., Nelson, J. , & Monarchi, 
D. (1997). Exploring the Difficulties of Learning 
Object-Oriented Techniques. Journal of Management 
Information Systems, 14, 103-131. 

Thramboulidis, K., (2003). A Constructivism-Based 
Approach to Teach Object-Oriented Programming. 
Journal of Informatics Education and Research, 5, 1-
14. 

Richard A. Johnson is a Professor of Computer Information Systems at Missouri State University - Springfield where he 
has been teaching web application development and Java programming for the past fourteen years. Dr. Johnson received an 
MBA degree from Missouri State University, a Master of Engineering degree from North Carolina State University, and a 
Ph.D. in Business Administration from the University of Arkansas. He has been published in the Communications of the 
ACM and IEEE Transactions in Engineering Management and has authored several books on Java and Visual Basic 
programming. 

Duane R. Moses is an Associate Professor of Computer Information Systems at Missouri State University - Springfield. He 
has been teaching Java programming, as well as, Management Information Systems in the Executive MBA program. In 
2009, Dr. Moses taught Web Development at the Missouri State University branch campus in Dalian, China. Dr. Moses 
completed his BS and MS degrees at Oklahoma State University and his Ph.D. at the University of Missouri - Columbia. He 
has been published in the Academy of Information and Management Sciences Journal, Journal of Information Systems as 
well as the College Student Journal. 

41 

5

Johnson and Moses: Objects-First Vs. Structures-First Approaches To 00 Programming E

Published by FHSU Scholars Repository, 2011


	Journal of Business & Leadership: Research, Practice, and Teaching (2005-2012)
	1-1-2011

	Objects-First Vs. Structures-First Approaches To 00 Programming Education: A Replication Study
	Richard A. Johnson
	Duane R. Moses
	Recommended Citation


	Objects-First vs. Structures-First Approaches to 00 Programming Education: A Replication Study

