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Distribution of AMPA receptor subunits and TARPs in synaptic
and extrasynaptic membranes of the adult rat nucleus
accumbens

Carrie R. Ferrarioa,1, Jessica A. Lowetha, Mike Milovanovica, Xiaoting Wanga, and Marina
E. Wolfa
aDepartment of Neuroscience, Rosalind Franklin University of Medicine and Science, 3333 Green
Bay Road, North Chicago, Il 60064-3095

Abstract
We characterized the distribution of AMPA receptor (AMPAR) subunits and the transmembrane
AMPA receptor regulatory proteins (TARPs) γ-2 and γ-4 in adult rat nucleus accumbens (NAc)
using a method that separates plasma membranes into synaptic membrane-enriched and
extrasynaptic membrane-enriched fractions. We also measured GluA1 phosphorylated at serine
845 (pS845 GluA1) and serine 831 (pS831 GluA1). GluA1–3 protein levels and pS831 GluA1/
total GluA1 were higher in synaptic membranes. However, pS845 GluA1/total GluA1 was higher
in extrasynaptic membranes, consistent with a role for S845 phosphorylation in GluA1 insertion at
extrasynaptic sites. Homeric GluA1 receptors were detected in extrasynaptic membranes,
consistent with evidence for extrasynaptic Ca2+-permeable AMPARs in other systems. The TARP
γ-2 was enriched in synaptic membranes, whereas γ-4 was mainly found in extrasynaptic
membranes, suggesting distinct roles for these proteins in the NAc. These experiments provide
fundamental information that will aid in the interpretation of studies on AMPAR-related plasticity
in the NAc.
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Introduction
It is well established that alterations in glutamate transmission in the nucleus accumbens
(NAc) contribute to consequences of long-term cocaine exposure in animal models of
addiction. Recent work has focused on cocaine-induced changes in surface expression and
subunit composition of AMPA-type glutamate receptors (AMPARs) in the NAc [40]
because of the role these that such adaptations play in activity-dependent synaptic plasticity
[36]. The interpretation of studies on cocaine-induced AMPAR plasticity would be aided by
a better understanding of AMPAR properties in the NAc of adult, drug-naïve rats.

Recent studies have provided information about AMPAR subunit composition in the NAc.
Electrophysiological results indicate that synaptic AMPARs in the NAc are primarily
GluA2-containing (e.g., [4,21]). Supporting this, biochemical studies suggest that GluA1A2
receptors are the most common subtype in the NAc [4,33], similar to the hippocampus [24].
AMPARs lacking the GluA2 subunit, hereafter termed Ca2+-permeable AMPARs (CP-
AMPARs), comprise less than 10% of AMPARs in NAc membrane preparations; these CP-
AMPARs may be homomeric GluA1, homomeric GluA3 or GluA1A3 receptors [4,33]. We
are particularly interested in the regulation of CP-AMPARs in the NAc because they
mediate the intensified (“incubated”) cocaine craving that occurs after withdrawal from
extended-access cocaine self-administration [4,26].

Despite recent interest in AMPAR subunit composition, there is no information about
synaptic versus extrasynaptic AMPAR populations in the NAc. This is a significant gap in
current knowledge because of the important role of extrasynaptic AMPARs, particularly CP-
AMPARs, in supplying synaptic pools during plasticity (see Conclusions). There is also no
information available regarding transmembrane AMPA receptor regulatory proteins
(TARPs) in the NAc, despite their important role in regulating AMPAR trafficking, channel
properties and glutamate affinity [19]. The goal of this study was to characterize the synaptic
versus extrasynaptic distribution of AMPAR subunits and the TARPs y-2 and γ-4 in the
adult rat NAc using a previously described subcellular fractionation method [6,7,13].

Materials and methods
Experiments were approved by our institutional Animal Care and Use Committee. For
studies of TARP distribution, brain regions were dissected from male Sprague Dawley rats
(>PD60; Harlan Laboratories, Indianapolis, IN, USA; 275–300g), wild-type mice, and
stargazer mutant mice which lack γ-2 (B6C3Fe-a/a-Cacng2stg/J, Jackson Laboratory), and
homogenized in lysis buffer [10] prior to SDS-PAGE. All experiments compared fractions
from three independent samples, each obtained by pooling NAc tissue from two rats, except
for GluA2/3 immunodepletion experiments, which used four samples. Each sample was
processed to obtain fractions enriched for synaptic and extrasynaptic membranes, as
described previously [6,7,13]. This method relies on the insolubility of postsynaptic
densities (PSD) and synaptic junctions in Triton X-100. A crude membrane fraction (P2) can
therefore be separated, based on Triton X-100 solubility, into an insoluble fraction enriched
for synaptic membranes (TxP) and a soluble fraction enriched for extrasynaptic membranes
(TxS; Fig. 1A). Briefly, each NAc sample was homogenized in 6ml of sucrose
homogenization buffer (10mM HEPES, 0.32M sucrose, 1mM Na3VO4, 5mM NaF, 2mM
EDTA, pH 7.4) in a glass grinding vessel with rotating Teflon pestle (Wheaton Overhead
Stirrer; 3000 RPM, 12 passes). The homogenate was centrifuged (800 × g, 10 min, 4°C).
The resulting supernatant (S1) was centrifuged (10,000 × g, 15 min, 4°C) to yield a crude
membrane pellet (P2). In preliminary experiments, the supernatant from the P2 fraction (S2)
was collected and centrifuged (100,000 × g, 60 min) to yield the intracellular light
membrane fraction (P3), which was used for initial characterization studies. The P2 pellet
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was washed twice with sucrose homogenization buffer and re-suspended in 4ml of sucrose
homogenization buffer containing Triton X-100 (0.5%v/v) using a motorized pellet pestle
mixing/grinding rod (Kontes, Vineland, NJ). The suspension was then incubated with gentle
rotation (4°C, 20 min) and centrifuged (32,000 × g, 20 min) to yield the insoluble fraction
(TxP; this pellet was washed twice before use) and the soluble fraction (TxS). The TxS
fraction was concentrated by adding 8 volumes of cold acetone, incubating overnight
(−20°C), and centrifuging (3000 × g). The concentrated TxS pellet was solubilized in
sucrose-Triton buffer containing 1% SDS. The TxP fraction was solubilized in 200µl of the
same buffer using 30 passes of the motorized pestle. Samples were stored at −80°C.

To assess homomeric GluA1 receptors in the extrasynaptic fraction, GluA2 and GluA3 were
depleted from the sample using immunoprecipitation (IP). For these experiments, we used
the TxS fraction without acetone concentration. First, 3µg of GluA2/3 antibody (AB1506;
Millipore, Billerica, MA) or normal rabbit IgG (12–370; Millipore) was incubated (4 h, 4°C)
with 10µl of 50% protein A/G-agarose beads (20421; Thermo Scientific/Pierce, Rockford,
IL). Then, antibody-coated beads were added to an aliquot of TxS (~80µg in 400µl) and
incubated overnight (4°C) with constant rotation. The sample was then centrifuged, the
supernatant was collected, and the process was repeated to ensure complete removal of
GluA2 and GluA3. The supernatant, after the second round of IP, was termed the “unbound
fraction”.

Samples were heated (70°C, 10 min) in Laemmli sample treatment buffer with 100mM
dithiothreitol and then processed for SDS-PAGE and immunoblotting [10]. Protein
concentration was determined using the BioRad kit (BioRad, Hercules, CA). The following
antibodies were used: GluA1 (1:1000, Thermo Scientific/Pierce; PA1-37776), pS831 GluA1
(1:500, PhosphoSolutions, Aurora, CO; p1160-831), pS845 GluA1 (1:500,
PhosphoSolutions; p1160-845), GluA2 (1:200, UC Davis/NIH NeuroMab Facility, Davis,
CA; 75-002), GluA3 (1:500, Cell Signaling Technology, Danvers, MA; 3437), NR1 (1:300,
Novus Biologicals, Littleton, CO; NB300-118), NR2A (1:500, Santa Cruz Biotechnology,
Santa Cruz, CA; SC-1468), NR2B (1:1000, Calbiochem-EMD Chemicals, Gibbstown, NJ;
454582), y2 (1:1000, PhosphoSolutions; 1505-STAR), y4 (1:500, Millipore; AB5795),
PSD-95 (1:30,000, UC Davis/NIH NeuroMab Facility; 75-028), Calnexin (1:300, Santa
Cruz Biotechnology; SC-11397), CaMKIIα (1:20,000, Millipore; MAB8699), CaMKIIβ
(1:500, Abcam, Cambridge, MA; AB34703), Rab11 (1:500, Invitrogen, Carlsbad, CA;
71-5300). Paired t-tests (two-tailed) were used to compare the relative abundance of proteins
in synaptic versus extrasynaptic fractions.

Results and discussion
Representative immunoblots from the synaptic membrane-enriched and extrasynaptic
membrane-enriched fractions are shown in Fig 1B. Consistent with previous results using
this approach [6,7,13], the synaptic markers CaMKII and PSD-95 were concentrated in
synaptic membranes and virtually undetectable in extrasynaptic membranes, whereas
calnexin was detected in extrasynaptic but not synaptic membranes (Fig. 1B), although it
was most enriched in the P3 fraction (data not shown). Calnexin’s presence in extrasynaptic
membranes is consistent with its expression in the plasma membrane (see [6]). We also
evaluated rab11 because of its role in the trafficking of recycling endosomes containing
AMPARs to the plasma membrane [31]. In cultured NAc neurons, AMPARs are initially
inserted into extrasynaptic regions of the plasma membrane [38]. Consistent with this, rab11
was enriched in extrasynaptic membranes (Fig. 1B). Finally, the NMDAR subunits NR1,
NR2A and NR2B were predominantly found in synaptic membranes (Fig. 1C), consistent
with prior results [6,7,13]. These results confirm that our fractions are enriched for synaptic
and extrasynaptic membranes.
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Next, we evaluated the relative abundance of AMPAR subunits GluA1–3 in synaptic and
extrasynaptic membrane fractions from the adult rat NAc. All AMPAR subunits were
significantly more abundant in synaptic than extrasynaptic membrane fractions (Fig. 1D).
Because of the potential role of NAc GluA1 phosphorylation in motivated behaviors (e.g.,
[5]), we used phosphospecific antibodies to evaluate levels of GluA1 phosphorylated on
serine 845 (pS845 GluA1) or serine 831 (pS831 GluA1). Serine 845 is phosphorylated by
PKA while serine 831 is phosphorylated by CaMKII and PKC [1,27,34,]. Fig. 2 (panels A
and B) shows the relative abundance of pS845 GluA1 and pS831 GluA1 and the ratio of
phosphorylated to total GluA1 protein in synaptic and extrasynaptic membranes. pS845
GluA1/total GluA1 was significantly higher in extrasynaptic membranes (Fig. 2A), as found
in hippocampus [7]. These results are consistent with evidence that PKA phosphorylation of
GluA1 facilitates AMPAR insertion into extrasynaptic membranes (see Conclusions). The
ratio of pS831 GluA1/total GluA1 was significantly higher in synaptic than extrasynaptic
membranes (Fig. 2B), consistent with evidence that synaptic GluA1 is phosphorylated at
serine 831 [1].

In light of the importance of extrasynaptic CP-AMPARs in the hippocampus [15,16,22], we
assessed their existence in the NAc. Using the extrasynaptic membrane fraction as starting
material, we used GluA2/3 antibody to IP AMPARs that contain GluA2 or GluA3, leaving
homomeric GluA1 receptors in the unbound fraction. Immunoblotting of the unbound
fraction confirmed that less than 5% of GluA2 and GluA3 remained after 2 rounds of IP
(Fig. 2C). Our previous work in a crude membrane fraction (containing synaptic and
extrasynaptic membranes) showed that ~7% of GluA1 in the NAc is not physically
associated with GluA2 or GluA3, and is therefore present either in homomeric GluA1
receptors (tetramers) or in GluA1 monomers or dimers [33]. Here we found that ~35 ± 8%
of the GluA1 protein originally present in the extrasynaptic membrane fraction remained
after IP of GluA2 and GluA3, consistent with the presence of homomeric GluA1 AMPARs
at extrasynaptic sites (Fig. 2D). Compared to the 7% value obtained in a crude membrane
fraction, this suggests an enrichment of homomeric GluA1 AMPARs in extrasynaptic
membranes. We also compared pS845 GluA1 levels in the extrasynaptic membrane fraction
(starting material for IP) and the unbound fraction that remained after GluA2/3 IP. Some
pS845 GluA1 signal was detected in the unbound fraction, although it was too low to
quantify reliably (data not shown). Nevertheless, these data suggest the existence of
extrasynaptic homomeric GluA1 AMPARs that are phosphorylated on S845.

Next we evaluated TARP distribution, focusing on γ-2 because it is the prototypical TARP
and is expressed in the NAc and on γ-4 because it is abundant in the striatum; γ-3 is also
expressed in the striatum, but a reliable antibody was not available [11,20,35,39]. Specificity
of the γ-2 antibody was confirmed in tissue from stargazer mutant mice which lack γ-2 (data
not shown). As expected, γ-2 was found in homogenates from all regions, with high
expression in cerebellum and cortex (Fig. 3A). We could not obtain γ-4 knockout mice;
however, the γ-4 antibody recognized a band slightly larger than γ-2, as predicted (e.g. [35]).
Consistent with prior results [35,39], γ-4 immunoreactivity was detected in homogenates
from all regions except the cerebellum (Fig. 3A). In NAc synaptic and extrasynaptic
membrane fractions, γ-2 and γ-4 showed opposite expression patterns. γ-2 was more
abundant in synaptic membranes, whereas γ-4 was more abundant in extrasynaptic
membranes (Fig. 3B,C). To confirm these results, we measured γ-4 in a classical PSD
fraction from NAc [14] and found that γ-4 was nearly undetectable whereas the γ-2 signal
was strong (data not shown). Our results are the first to link γ-4 to an extrasynaptic function.
However, a prior study in hippocampal and cortical neuronal cultures indicated a
predominantly synaptic role for γ-2 whereas γ-8 seemed to have both synaptic and
extrasynaptic roles [18]. We have observed that γ-8 is not highly expressed in cultured NAc
medium spiny neurons (data not shown). Although type Ia TARPs (γ-2 and γ-3) and Type Ib
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TARPS (γ-4 and γ-8) both enhance ion flow through AMPARs by altering glutamate affinity
and channel properties, the Type Ib TARPs produce a more robust enhancement of AMPAR
transmission [19]. Thus, the preferential expression of γ-2 synaptically and γ-4
extrasynaptically may suggest relatively greater ion flow through extrasynaptic AMPARs.

In conclusion, our results demonstrate that GluA1–3 are mainly detected in synaptic
membranes but are also present in extrasynaptic membranes. When we specifically analyzed
GluA1 phosphorylated at the PKA site (S845), we found a relative enrichment in
extrasynaptic membranes. In cultured NAc neurons, GluA1-containing AMPARs are
incorporated into synapses through a two-step process involving insertion onto the cell
surface at extrasynaptic sites followed by NMDAR-dependent translocation into the
synapse; the first step is accelerated by PKA activation, most likely via phosphorylation of
GluA1 at S845 [2,3,29,38,41]. These in vitro results are consistent with the observed in vivo
enrichment of pS845 GluA1 in extrasynaptic membranes. Studies in other brain regions also
support a role for extrasynaptic surface AMPARs in supplying the synapse (e.g.,
[17,23,25,32,42,44]) and similarly indicate that PKA phosphorylation of GluA1 primes
AMPARs for synaptic insertion [8,12,28,30,37]. Interestingly, we found that homomeric
GluA1 CP-AMPARs are present in extrasynaptic NAc membranes. Taken together with the
enrichment of pS845 GluA1 in this fraction, these data suggest PKA phosphorylation of
GluA1 located within homomeric GluA1 receptors. In the hippocampus, perisynaptic CP-
AMPARs are important for increasing synaptic strength during LTP [15,43] and PKA
phosphorylation of GluA1 stabilizes this pool of CP-AMPARs [16]. If the same regulatory
mechanism operates in the NAc, then the stabilization of extrasynaptic CP-AMPARs (via
increased PKA phosphorylation) could help explain their accumulation in NAc synapses
after prolonged withdrawal from extended-access cocaine self-administration [4,26].
Consistent with this idea, we recently found increased pS845 GluA1 levels in extrasynaptic
NAc membranes prepared on withdrawal day 45 from such a regimen [9]. Finally, our
results raise the exciting prospect that, in the NAc, the TARPs γ-2 and γ-4 are preferentially
involved in regulating synaptic and extrasynaptic AMPARs, respectively.

Research highlights

• AMPAR subunits are more abundant in synaptic than extrasynaptic rat NAc
membranes

• GluA1 in NAc extrasynaptic membranes shows relatively greater S845
phosphorylation

• GluA1 in NAc synaptic membranes shows relatively greater S831
phosphorylation

• Homomeric GluA1 AMPARs are found in NAc extrasynaptic membranes

• TARP y2 is enriched in NAc synaptic membranes; y4 is predominantly
extrasynaptic

Acknowledgments
These studies were supported by DA015835, DA000453 and DA029099 to M.E.W. and postdoctoral NRSA
DA024502 to C.R.F. We thank Dr. Makoto Itakura (Kitasato University School of Medicine, Kanagawa, Japan) for
generously supplying the γ-8 antibody and Dr. Susumu Tomita (Yale University, New Haven, CT) for helpful
discussions.

Ferrario et al. Page 5

Neurosci Lett. Author manuscript; available in PMC 2012 March 3.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



References
1. Barria A, Muller D, Derkach V, Griffith LC, Soderling TR. Regulatory phosphorylation of AMPA-

type glutamate receptors by CaM-KII during long-term potentiation. Science 1997;276:2042–2045.
[PubMed: 9197267]

2. Chao SZ, Ariano MA, Peterson DA, Wolf ME. D1 dopamine receptor stimulation increases GluR1
surface expression in nucleus accumbens neurons. J. Neurochem 2002;83:704–712. [PubMed:
12390532]

3. Chao SZ, Lu W, Lee HK, Huganir RL, Wolf ME. D(1) dopamine receptor stimulation increases
GluR1 phosphorylation in postnatal nucleus accumbens cultures. J. Neurochem 2002;81:984–992.
[PubMed: 12065610]

4. Conrad KL, Tseng KY, Uejima JL, Reimers JM, Heng L, Shaham Y, Marinelli M, Wolf ME.
Formation of accumbens GluR2-lacking AMPA receptors mediates incubation of cocaine craving.
Nature 2008;454:118–121. [PubMed: 18500330]

5. Crombag HS, Sutton JM, Takamiya K, Holland PC, Gallagher M, Huganir RL. A role for alpha-
amino-3-hydroxy-5-methylisoxazole-4-propionic acid GluR1 phosphorylation in the modulatory
effects of appetitive reward cues on goal-directed behavior. Eur. J. Neurosci 2008;27:3284–3291.
[PubMed: 18598267]

6. Davies KD, Alvestad RM, Coultrap SJ, Browning MD. αCaMKII autophosphorylation levels differ
depending on subcellular localization. Brain Res 2007;1158:39–49. [PubMed: 17559813]

7. Davies KD, Goebel-Goody SM, Coultrap SJ, Browning MD. Browning, Long-term synaptic
depression that is associated with GluR1 dephosphorylation but not amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid (AMPA) receptor internalization. J. Biol. Chem 2008;283:33138–33146.
[PubMed: 18819923]

8. Esteban JA, Shi SH, Wilson C, Nuriya M, Huganir RL, Malinow R. PKA phosphorylation of
AMPA receptor subunits controls synaptic trafficking underlying plasticity. Nat. Neurosci
2003;62:136–143. [PubMed: 12536214]

9. Ferrario CR, Loweth JA, Milovanovic M, Ford KA, Galiñanes GL, Heng L-J, Tseng KY, Wolf ME.
Alterations in AMPA receptor subunits and TARPs in the rat nucleus accumbens related to the
formation of Ca2+-permeable AMPA receptors during the incubation of cocaine craving.
Neuropharmacol. (in revision).

10. Ferrario CR, Li X, Wang X, Reimers JM, Uejima JL, Wolf ME. The role of glutamate receptor
redistribution in locomotor sensitization to cocaine. Neuropsychopharmacol 2010;35:818–833.

11. Fukaya M, Yamazaki M, Sakimura K, Watanabe M. Spatial diversity in gene expression for
VDCCgamma subunit family in developing and adult mouse brains. Neurosci. Res 2005;53:376–
383. [PubMed: 16171881]

12. Gao C, Sun X, Wolf ME. Activation of D1 dopamine receptors increases surface expression of
AMPA receptors and facilitates their synaptic incorporation in cultured hippocampal neurons. J.
Neurochem 2006;98:1664–1677. [PubMed: 16800848]

13. Goebel-Goody SM, Davies KD, Alvestad Linger RM, Freund RK, Browning MD. Phospho-
regulation of synaptic and extrasynaptic N-methyl-D-aspartate receptors in adult hippocampal
slices. Neurosci 2009;158:1146–1159.

14. Goel A, Jiang B, Xu LW, Song L, Kirkwood A, Lee H-K. Cross-modal regulation of synaptic
AMPA receptors in primary sensory cortices by visual experience. Nat. Neurosci 2006;9:1001–
1003. [PubMed: 16819524]

15. Guire ES, Oh MC, Soderling TR, Derkach VA. Recruitment of calcium-permeable AMPA
receptors during synaptic potentiation is regulated by CaM-kinase I. J. Neurosci 2008;28:6000–
6009. [PubMed: 18524905]

16. He K, Song L, Cummings LW, Goldman J, Huganir RL, Lee H-K. Stabilization of Ca2+-
permeable AMPA receptors at perisynaptic sites by GluR1-S845 phosphorylation. Proc. Natl.
Acad. Sci. USA 2009;106:20033–20038. [PubMed: 19892736]

17. Heine M, Groc L, Frischknecht R, Béïque J-C, Lounis B, Rumbaugh G, Huganir RL, Cognet L,
Choquet D. Surface motility of postsynaptic AMPARs tunes synaptic transmission. Science
2008;320:201–205. [PubMed: 18403705]

Ferrario et al. Page 6

Neurosci Lett. Author manuscript; available in PMC 2012 March 3.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



18. Inamura M, Itakura M, Okamoto H, Hoka S, Mizoguchi A, Fukazawa Y, Shigemoto R, Yamamori
S, Takahashi M. Differential localization and regulation of stargazin-like protein, gamma-8 and
stargazin in the plasma membrane of hippocampal and cortical neurons. Neurosci. Res
2006;55:45–53. [PubMed: 16516319]

19. Kato AS, Gill MB, Yu H, Nisenbaum ES, Bredt DS. TARPS differentially decorate AMPA
receptors to specify neuropharmacology. Trends Neurosci 2010;33:241–248. [PubMed: 20219255]

20. Klugbauer N, Dai S, Specht V, Lacinová L, Marais E, Bohn G, Hofmann F. A family of gamma-
like calcium channel subunits FEBS Lett. 2000;470:189–197.

21. Kourrich S, Rothwell PE, Klug JR, Thomas MJ. Cocaine experience controls bidirectional synaptic
plasticity in the nucleus accumbens. J. Neurosci 2007;27:7921–7928. [PubMed: 17652583]

22. Leonoudakis D, Zhao P, Beattie EC. Rapid tumor necrosis factor α-induced exocytosis of
glutamate receptor 2-lacking AMPA receptors to extrasynaptic plasma membrane potentiates
excitotoxicity. J. Neurosci 2008;28:2119–2130. [PubMed: 18305246]

23. Lin D-T, Makino Y, Sharma K, Hayashi T, Neve R, Takamiya K, Huganir RL. Regulation of
AMPA receptor extrasynaptic insertion by 4.1 N, phosphorylation and palmitoylation. Nat.
Neurosci 2009;12:879–887. [PubMed: 19503082]

24. Lu W, Shi Y, Jackson AC, Bjorgan K, During MJ, Sprengel R, Seeburg PH, Nicoll RA. Subunit
composition of AMPA receptors revealed by a single-cell genetic approach. Neuron 2009;62:254–
268. [PubMed: 19409270]

25. Makino H, Malinow R. AMPA receptor incorporation into synapses during LTP: The role of
lateral movement and exocytosis. Neuron 2009;64:381–390. [PubMed: 19914186]

26. Mameli M, Halbout B, Creton C, Engblom D, Parkitna JR, Spanagel R, Lüscher C. Cocaine-
evoked synaptic plasticity: persistence in the VTA triggers adaptations in the NAc. Nat. Neurosci
2009;12:1036–1041. [PubMed: 19597494]

27. Mammen AL, Kameyama K, Roche KW, Huganir RL. Phosphorylation of the alpha-amino-3-
hydroxy-5-methylisoxazole4-propionic acid receptor GluR1 subunit by calcium/calmodulin-
dependent kinase II. J. Biol. Chem 1997;272:32528–32533. [PubMed: 9405465]

28. Man HY, Sekine-Aizawa Y, Huganir RL. Regulation of {alpha}-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid receptor trafficking through PKA phosphorylation of the Glu receptor 1
subunit. Proc. Natl. Acad. Sci. USA 2007;104:3579–3584. [PubMed: 17360685]

29. Mangiavacchi S, Wolf ME. D1 dopamine receptor stimulation increases the rate of AMPA
receptor insertion onto the surface of cultured nucleus accumbens neurons through a pathway
dependent on protein kinase A. J. Neurochem 2004;88:1261–1271. [PubMed: 15009682]

30. Oh MC, Derkach VA, Guire ES, Soderling TR. Extrasynaptic membrane trafficking regulated by
GluR1 serine 845 phosphorylation primes AMPA receptors for long-term potentiation. J. Biol.
Chem 2006;281:752–758. [PubMed: 16272153]

31. Park M, Penick EC, Edwards JG, Kauer JA, Ehlers MD. Recycling endosomes supply AMPA
receptors for LTP. Science 2004;305:1972–1975. [PubMed: 15448273]

32. Passafaro M, Piech V, Sheng M. Subunit-specific temporal and spatial patterns of AMPA receptor
exocytosis in hippocampal neurons. Nat. Neurosci 2001;4:917–926. [PubMed: 11528423]

33. Reimers JM, Milovanovic M, Wolf ME. Quantitative analysis of AMPA receptor subunit
composition in addiction-related brain regions. Brain Res. 2010 in press.

34. Roche KW, O'Brien RJ, Mammen AL, Bernhardt J, Huganir RL. Characterization of multiple
phosphorylation sites on the AMPA receptor GluR1 subunit. Neuron 1996;16:1179–1188.
[PubMed: 8663994]

35. Sharp AH, Black JL III, Dubel SJ, Sundarraj S, Shen J-P, Yunker AMR, Copeland TD, McEnery
MW. Biochemical and anatomical evidence for specialized voltage-dependent calcium channel y
isoform expression in the epileptic and ataxic mouse, stargazer. Neuroscience 2001;105:599–617.
[PubMed: 11516827]

36. Shepherd JD, Huganir RL. The cell biology of synaptic plasticity: AMPA receptor trafficking.
Annu. Rev. Cell Dev. Biol 2007;23:613–643. [PubMed: 17506699]

37. Sun X, Zhao Y, Wolf ME. Dopamine receptor stimulation modulates AMPA receptor synaptic
insertion in prefrontal cortex neurons. J. Neurosci 2005;25:7342–7351. [PubMed: 16093384]

Ferrario et al. Page 7

Neurosci Lett. Author manuscript; available in PMC 2012 March 3.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



38. Sun X, Milovanovic M, Zhao Y, Wolf ME. Acute and chronic dopamine receptor stimulation
modulates AMPA receptor trafficking in nucleus accumbens neurons co-cultured with prefrontal
cortex neurons. J. Neurosci 2008;28:4216–4230. [PubMed: 18417701]

39. Tomita S, Chen L, Kawasaki Y, Petralia RS, Wenthold RJ, Nicoll RA, Bredt DS. Functional
studies and distribution define a family of transmembrane AMPA receptor regulatory proteins. J.
Cell Biol 2003;161:805–816. [PubMed: 12771129]

40. Wolf ME, Ferrario CR. AMPA receptor plasticity in the nucleus accumbens after repeated
exposure to cocaine. Neurosci. Biobehav. Rev. 2010 Epub Jan 28. PMID: 20109488.

41. Wolf ME. Regulation of AMPA receptor trafficking in the nucleus accumbens by dopamine and
cocaine. Neurotoxicol. Res 2010;18:393–409.

42. Yang Y, Wang XB, Frerking M, Zhou Q. Delivery of AMPA receptors to perisynaptic sites
precedes the full expression of long-term potentiation. Proc. Natl. Acad. Sci. USA
2008;105:11388–11393. [PubMed: 18682558]

43. Yang Y, Wang X-B, Zhou Q. Perisynaptic GluR2-lacking AMPA receptors control the
reversibility of synaptic and spines modifications. Proc. Natl. Acad. Sci. USA 2010;107:11999–
12004. [PubMed: 20547835]

44. Yudowski GA, Puthenveedu MA, Leonoudakis D, Panicker S, Thorn KS, Beattie EC, von Zastrow
M. Real-time imaging of discrete exocytotic events mediating surface delivery of AMPA
receptors. J. Neurosci 2007;27:11112–11121. [PubMed: 17928453]

Ferrario et al. Page 8

Neurosci Lett. Author manuscript; available in PMC 2012 March 3.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 1.
Characterization of fractions enriched for synaptic membranes (TxP) and extrasynaptic
membranes (TxS) and distribution of NMDAR and AMPAR subunits in the adult rat NAc.
A) Schematic of the fractionation procedure. B) Representative Western blots demonstrating
levels of marker proteins in TxP and TxS fractions. C) Relative abundance of NMDAR
subunits in each fraction. NR1 and NR2B were significantly more abundant in synaptic
membranes (*p≤0.05). A similar difference, which approached significance, was seen for
NR2A (p=0.06). D) Relative abundance of AMPAR subunits in each fraction. GluA1–3
were detected in both fractions, but were significantly enriched in synaptic membranes
(*p≤0.05). Data are presented as mean ± SEM (N=3) normalized to values for the synaptic
membrane fraction, with representative blots shown below each bar. Protein loaded per lane:
5µg.
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Figure 2.
GluA1 phosphorylation in synaptic and extrasynaptic membrane fractions and detection of
extrasynaptic CP-AMPARs in the adult rat NAc. A) Relative levels of GluA1, pS845 GluA1
and pS845 GluA1/total GluA1. The ratio of pS845 GluA1/total GluA1 was significantly
greater in extrasynaptic membranes compared to synaptic membranes (*p≤0.05). B)
Relative levels of GluA1, pS831 GluA1, and pS831 GluA1/total GluA1. The ratio of pS831
GluA1/total GluA1 showed the opposite pattern to pS845 GluA1/total GluA1, with
significantly lower relative phosphorylation in extrasynaptic versus synaptic membranes
(*p≤0.05). C) Using NAc extrasynaptic membranes as starting material, an
immunodepletion strategy was used to determine if homomeric GluA1 receptors are present
in extrasynaptic membranes. Immunoprecipitation (IP) was performed with GluA2/3
antibody or control IgG antibody (IP IgG control). The unbound fraction remaining after IP
was immunoblotted (IB) to detect remaining AMPAR subunits. IP with GluA2/3 antibody
removed >95% of GluA2 (upper blots) and GluA3 (data not shown) but a portion of GluA1
remained (lower blots). D) The amount of GluA1 remaining in the unbound fraction after IP
with GluA2/3 antibody shown as percentage of the IP IgG control. Approximately 35%
(±8.5%) of GluA1 protein remained after depletion of GluA2-and GluA3-containing
AMPARs, consistent with an extrasynaptic population of homomeric GluA1 AMPARs.
Data are presented as mean ± SEM (N=3 for panels A and B; N=4 for panels C and D), with
representative blots shown beneath each bar. Protein loaded per lane: 5µg (panels A–B);
7.5µg (panels C–D).
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Figure 3.
Expression of the TARPs γ-2 and γ-4 in synaptic and extrasynaptic membranes. A)
Immunoblots of γ-2 (upper) and γ-4 (lower) protein in homogenates from the indicated brain
regions (note different order of brain regions for upper and lower images). γ-2 was abundant
in cerebellum (CB), hippocampus (Hipp) and prefrontal cortex (PFC) and present in both
nucleus accumbens (NAc) and caudate putamen (CPu) whereas γ-4 was not present in the
CB but was found in all other regions examined. B) The relative abundance of γ-2 and γ-4
protein in each fraction was quantified for adult rat NAc tissue; γ-2 was more abundant in
synaptic membranes whereas γ4 was more abundant in extrasynaptic membranes. Data are
presented as mean ± SEM (N=3) normalized to values for the synaptic membrane fraction,
with representative blots shown beneath each bar. Protein loaded per lane: 20µg (panel A)
and 5µg (panel B).
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