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Surface expression of GABAA receptors in the rat nucleus 
accumbens is increased in early but not late withdrawal from 
extended-access cocaine self-administration

Anthony Purgianto, Jessica A. Loweth, Julia J. Miao, Mike Milovanovic, and Marina E. Wolf*

Department of Neuroscience, Rosalind Franklin University of Medicine and Sciences, 3333 Green 
Bay Rd, North Chicago, Illinois, USA

Abstract

It is well established that cocaine-induced changes in glutamate receptor expression in the nucleus 

accumbens (NAc) play a significant role in animal models of cocaine addiction. Far less is known 

about cocaine-induced changes in GABA transmission, despite its importance in regulating NAc 

output via local interneurons and medium spiny neuron (MSN) axon collaterals (GABA 

‘microcircuit’). Here we investigated whether GABAA receptor surface or total expression is 

altered following an extended-access cocaine self-administration regimen that produces a time-

dependent intensification (incubation) of cue-induced cocaine craving in association with 

strengthening of AMPA receptor (AMPAR) transmission onto MSN. Rats self-administered 

cocaine or saline (control condition) 6 h/day for 10 days. NAc tissue was obtained and surface 

proteins biotinylated on three withdrawal days (WD) chosen to span incubation of craving and 

associated AMPAR plasticity: WD2, WD25 and WD48. Immunoblotting was used to measure 

total and surface expression of three GABAA receptor subunits (α1, α2, and α4) that are strongly 

expressed in the NAc. We found a transient increase in surface, but not total, expression of the α2 

subunit on WD2 from cocaine self-administration, an effect that was no longer observed by 

WD25. The expression of α1 and α4 subunits was not altered at these withdrawal times. On 

WD48, when AMPAR transmission is significantly potentiated, we did not find any alteration in 

GABAA receptor surface or total expression. Our findings suggest that the strengthening of 

AMPAR-mediated glutamate transmission in the NAc is not accompanied by compensatory 

strengthening of GABAergic transmission through insertion of additional GABAA receptors.
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1. Introduction

The nucleus accumbens (NAc) is an important structure within the limbic system that 

modulates goal-directed behaviors including those related to drug addiction (Groenewegen 

et al., 1999; Kelley, 1999). The NAc itself is composed mainly (~95%) of medium spiny 

neurons (MSN), which are GABAergic projection neurons that send both intra-NAc axon 

collaterals and efferent projections to various areas outside the NAc, including the ventral 

mesencephalon and ventral pallidum (Meredith, 1999; Sesack & Grace, 2010). Most of the 

remaining neurons are GABAergic interneurons that can be divided into multiple classes 

based on protein expression and electrophysiological properties (Tepper et al., 2010; 

Silberberg & Bolam, 2015). Extensive studies have documented alterations in glutamate 

receptor expression on NAc MSN after cocaine exposure (Wolf & Ferrario, 2010; Wolf, 

2016). However, even though glutamatergic afferents are critical in shaping MSN activity 

(Meredith et al., 2008), the GABA microcircuit comprised by MSN collaterals and GABA 

interneurons also plays a major role (Wilson, 2007; Tepper et al., 2004; Silberberg & Bolam 

2015).

The importance of the GABA microcircuit for NAc function has been established through 

anatomical and electrophysiological studies. For example, one type of GABAergic 

interneuron, the parvalbumin-positive (PV+) fast spiking interneuron, has been shown to 

synapse with dorsal striatal MSN on proximal dendrites and perikarya, suggesting a strong 

modulatory effect on the MSN (Bennett & Bolam, 1994). Similarly, the connection between 

PV+ interneurons and MSN in the NAc has been established by both anatomical (Hussain et 

al., 1996) and electrophysiological studies (Taverna et al., 2007). This connection has 

physiological importance, as stimulation of these interneurons results in powerful inhibition 

of MSN (Pennartz & Kitai, 1991; Koos & Tepper, 1999; Gruber et al., 2009; Gittis et al., 

2010). NAc function is also regulated by GABAergic MSN-to-MSN synaptic connectivity 

(Tunstall et al., 2002; Taverna et al., 2004; Koos et al., 2004).

In electrophysiological studies mentioned above, GABAA receptors were implicated in 

mediating the action of GABA within the microcircuit based on the latency of inhibition and 

sensitivity to either picrotoxin or bicuculline (Pennartz & Kitai, 1991; Koos & Tepper, 1999; 

Gruber et al., 2009; Gittis et al., 2010). GABAA receptors are pentameric chloride channels 

composed mainly from various isoforms of α, β, and γ subunits (Olsen & Sieghart 2008), 

and the subunit composition determines receptor function, pharmacology, and location 

(Olsen & Sieghart 2009). In the NAc, the most commonly expressed GABAA receptor 

subtypes are α2βγ2, α1βγ2, and α4βδ (Pirker et al., 2000). Immunocytochemical studies 

have found that GABAA α2 subunits are preferentially expressed on MSN while GABAA α1 

subunits are preferentially expressed on interneurons (Schwarzer et al., 2001; Boyes & 

Bolam 2007). GABAA α4 subunits are located extrasynaptically on NAc MSN and are also 

expressed on several types of interneurons (Maguire et al., 2014). Supporting 

immunocytochemical studies, electrophysiological studies of MSN in the NAc have 

established that α2-containing GABAA receptors are present and mediate phasic inhibition 

of these cells (Dixon et al., 2010). Tonic inhibition of MSN through α4-ccontaining GABAA 

receptors (Santhakumar et al., 2010; Maguire et al., 2014) and the presence of α1-containing 
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GABAA receptor-mediated currents on interneurons have also been observed (Janssen et al., 

2011).

A number of studies have explored the role of GABAA receptors in the effects of non-

contingent cocaine administration in the NAc. It has been found GABAA receptors 

containing the α2 subunit are necessary for the expression of cocaine-induced behavioral 

sensitization (Morris et al., 2008; Dixon et al., 2010), while repeated experimenter-

administered cocaine, followed by withdrawal and a cocaine challenge, led to reduction in 

the expression of GABAA α2 subunits in the NAc shell (Chen et al., 2007). Studies of mice 

with deletion of the α4 subunit indicate that α4 GABAA receptors on D1 receptor-

expressing MSN act to oppose cocaine enhancement of conditioned place preference (CPP) 

(Maguire et al., 2014). Fewer studies have evaluated the effects of contingent cocaine 

exposure on GABAA receptor expression or function. However, available data indicate that 

GABA transmission in the NAc shell is differently affected by contingent and non-

contingent cocaine administration (Wydra et al., 2013). This is not surprising, given 

substantial differences in the effects of contingent and non-contingent cocaine exposure on 

glutamate transmission in the NAc (Wolf & Ferrario, 2010). Interestingly, one recent study 

found time-dependent changes in the balance between inhibitory and excitatory synaptic 

transmission in the NAc shell during withdrawal from limited-access cocaine self-

administration (Otaka et al., 2013).

After extended-access cocaine self-administration, cue-induced cocaine craving 

progressively intensifies (incubates) over the first 1–2 months of withdrawal and then 

remains high through at least withdrawal day (WD) 90 before declining slowly (Lu et al., 

2004; Pickens et al., 2011). Expression of incubated craving after 1–3 months of withdrawal 

depends upon strengthening of AMPA receptor (AMPAR) transmission in the NAc core 

through synaptic incorporation of Ca2+-permeable AMPARs (CP-AMPARs; Conrad et al., 

2008; Mameli et al., 2009; Loweth et al., 2014) as well as silent synapse formation and un-

silencing (Lee et al., 2013; Ma et al., 2014). The goal of the present study is to determine if 

incubation of cocaine craving is also associated with alterations in GABAA receptor levels in 

the NAc. We focused on three GABAA receptor subunits that are expressed at high levels in 

the NAc (α1, α2, α4; see above) and examined three withdrawal times spanning the period 

over which incubation of craving and associated alterations in glutamate transmission are 

occurring.

2. Results

After extended-access self-administration of cocaine or saline (6 h/day for 10 days), rats 

were killed at 3 different withdrawal time-points. The time-points were chosen based on the 

development of AMPAR plasticity in NAc core during withdrawal from this regimen: 

withdrawal day (WD) 2 (before any changes in AMPAR subunit composition are detected), 

WD25 (when CP-AMPARs start to accumulate), and WD48 (when stable elevation of CP-

AMPARs has been achieved) (Wolf & Tseng, 2012). This design was chosen so as to test the 

hypothesis that compensatory alterations in GABA transmission accompany changes in 

AMPAR transmission, as well as to encompass the period of withdrawal when cue-induced 

cocaine craving is progressively increasing (Lu et al., 2004). At each time-point, NAc tissue 
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(mainly core) from cocaine and saline self-administering rats was collected, biotinylated to 

selectively label surface-expressed proteins, and then analyzed by immunoblotting.

We first assessed the GABAA α2 subunit, which is preferentially expressed on MSN (see 

Introduction). We detected a significant increase in the bound fraction on WD2 in the 

cocaine group compared to the saline group, indicating increased surface expression of α2-

containing GABAA receptors (t(22) = 2.48; *p<0.05) (Fig. 1b). This increase in surface 

expression was transient, as it was no longer detected by WD25 (t(21) = 0.17, p>0.05) (Fig. 

1d) or WD48 (t(19) = 0.78, p>0.05) (Fig. 1f). There was no alteration in the total expression 

of the α2 subunit at any of the three withdrawal times (WD2: t(22) = 0.81, p>0.05; WD25: 

t(17) = 0.01, p>0.05; WD48: t(19) = 0.48, p>0.05) (Fig. 1a,c,e). Two-way ANOVA revealed 

no significant difference between cocaine and saline groups over different withdrawal times 

(surface: F(1,59) = 1.99, p>0.05; total: F(1,53) = 0.01; p>0.05).

We then examined the expression of the GABAA α4 subunit, which is a component of 

extrasynaptic receptors expressed on MSN but is also expressed by interneurons (see 

Introduction). There was no alteration in total (WD2: t22 = 0.76, p>0.05; WD25: t19 = 0.84, 

p>0.05; WD48: t19 = 0.64, p>0.05) or surface (WD2: t22 = 0.11, p>0.05; WD25: t19 = 0.77, 

p>0.05; WD48: t19 = 0.75, p>0.05) expression of the GABAA α4 subunit at any of the 

withdrawal time-points examined (Fig. 2). Two-way ANOVA revealed no significant 

difference between cocaine and saline groups over different withdrawal times (surface: 

F(1.57) = 0.13, p>0.05; total: F(1,55) = 0.27, p>0.05).

Finally, we examined the expression of the GABAA α1 subunit, which is preferentially 

expressed on interneurons (see Introduction). There was no alteration in total (WD2: t20 = 

0.34, p>0.05; WD25: t20 = 0.67, p>0.05; WD48: t19 = 0.30, p>0.05) or surface (WD2: t22 = 

0.79, p>0.05; WD25: t16 = 0.31, p>0.05; WD48: t19 = 0.32, p>0.05) expression of the 

GABAA α1 subunit at any of the withdrawal time-points examined (Fig. 3). Two-way 

ANOVA revealed no significant difference between cocaine and saline groups over different 

withdrawal times (surface: F(1,54) = 0.06, p>0.05; total: F(1,56) = 0.21, p>0.05).

3. Discussion

The state of drug addiction results from complex neuroplasticity including homeostatic 

cascades that can both promote and oppose drug craving (Koob & Volkow, 2010; Huang et 

al., 2011). We chose to investigate potential plasticity of GABA transmission using the 

‘incubation of cocaine craving’ model. This model is relevant to a common pattern of human 

drug abuse in which users undergo a period of heavy drug-taking that is followed by a period 

of abstinence (imposed by hospitalization or incarceration); during abstinence, incubation of 

cue-induced cocaine craving may occur and increase vulnerability to relapse (Reichel & 

Bevins, 2009; Pickens et al., 2011). In fact, incubation of craving has been observed in 

clinical studies of humans addicted to nicotine (Bedi et al., 2009), methamphetamine (Wang 

et al., 2013) and alcohol (Li et al., 2015).

Using an extended-access cocaine self-administration regimen leading to incubation of 

craving, our lab previously discovered that CP-AMPAR levels increase in excitatory 

Purgianto et al. Page 4

Brain Res. Author manuscript; available in PMC 2017 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



synapses onto NAc core MSN after ~1 month of abstinence and thereafter mediate the 

expression of incubated cocaine craving (Conrad et al., 2008; Loweth et al., 2014). Since 

CP-AMPARs exhibit higher conductance compared to Ca2+-impermeable AMPARs, it is 

expected that the NAc response to afferent glutamatergic excitation will be enhanced (for 

review, see: Isaac et al., 2007; Lee et al., 2012). In fact, we found a significant increase in 

the responsiveness of NAc core MSN to synaptic stimulation after withdrawal periods 

sufficient to lead to increased synaptic levels of CP-AMPARs (Purgianto et al., 2013). Other 

work, mainly focused on glutamate inputs to NAc shell MSN, has demonstrated pathway-

specific plasticity after withdrawal from cocaine self-administration (Suska et al., 2013; Lee 

et al., 2013; Ma et al., 2014; Pascoli et al., 2014; Terrier et al., 2015).

Based on the observations described above, it is reasonable to ask whether there is a 

homeostatic response to enhanced glutamate drive in the NAc of “incubated rats”, perhaps 

mediated by alteration of the GABAergic microcircuit. We focused on NAc core, where a 

causal relationship between elevated CP-AMPAR levels and incubation of craving is well 

established (Conrad et al., 2008; Loweth et al., 2014). Other evidence also implicates NAc 

core MSN in the incubation of cocaine craving (Hollander et al., 2005; Hollander et al., 

2007; Guillem et al., 2014). We began by studying two GABAA α receptor subunits (α2 and 

α4) that are expressed by NAc MSN (Schwarzer et al., 2001; Boyes & Bolam 2007; 

Maguire et al., 2014).

We discovered that there was an elevation of GABAA α2 subunit surface expression on 

WD2 but not WD25 or WD48, suggesting a transient increase in inhibitory tone onto MSN 

early in withdrawal. This could contribute to low levels of cue-induced cocaine seeking in 

early withdrawal. Our results on GABAA α2 subunit expression may also be suggestive of a 

failure of homeostasis, both at long withdrawal times (when we failed to observe an increase 

in GABAA receptor surface expression that might compensate for increased AMPAR 

transmission) and at short withdrawal times as well. Thus, on WD1, biochemical evidence 

indicates that the responsiveness of NAc core MSN to excitatory inputs may be decreased 

due to a reduction in cell surface GluA1 levels (Conrad et al., 2008). The increase in 

GABAA α2 surface expression observed on WD2 would serve to further reduce NAc 

responsiveness. Another potential interpretation is that the up-regulation of α2 expression is 

a protective mechanism. Dixon et al. (2014) observed that the level of cocaine intake in 

wild-type animals decreased over the course of 10 self-administration sessions, while the 

level of intake of global GABAA α2 knock-out animals stayed constant. Extrapolating from 

these behavioral data, our observed increase in α2 surface expression may represent a 

compensatory mechanism that limits drug intake. However, behavioral data from knock-out 

animals may not be directly comparable to data from wild-type animals, since genetic 

deletion of the subunit may lead to compensatory mechanisms not seen on WT animals.

Our findings indicate that the surface and total expression of the GABAA α4 subunit was not 

altered during withdrawal from extended-access cocaine self-administration. No prior 

studies have examined the effect of cocaine on α4 subunit expression in the NAc, although 
Heiman et al. (2008) found a significant increase in GABAA α4 gene expression in dorsal 

striatum soon after (~4h) the last of fifteen of daily cocaine injections. Functionally, α4-

containing GABAA receptors exert a tonic inhibitory influence onto MSN of the NAc and 
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appear to be important in suppressing the rewarding effect of cocaine, since pharmacological 

stimulation of this receptor blocks cocaine-induced enhancement of CPP while their genetic 

deletion enhances cocaine-induced CPP (Maguire et al., 2014). Two microdialysis studies 

found that NAc levels of extracellular GABA, which is the most likely source for GABAA 

α4 activation, are altered after discontinuing cocaine exposure (Xi et al., 2003 – core/shell 

placements; Wydra et al., 2013 – shell) and adaptations in the expression of GABAA α4 

might therefore be expected. However, depending on the regimen, different changes in 

GABA levels were observed (Xi et al., 2003; Wydra et al., 2013). Our cocaine regimen 

differs in many respects from these prior studies, making it difficult to predict whether any 

alterations in extracellular GABA levels would be expected under our experimental 

conditions.

We also did not find any alteration in GABAA α1 subunit surface expression after our 

cocaine self-administration regimen. In the NAc, it has been suggested that this type of 

receptor is mainly expressed on interneurons (Schwarzer et al., 2001). The most likely pre-

synaptic GABA sources to NAc interneurons are either MSN axon collaterals or projection 

neurons from globus pallidus (Tepper et al., 2010). Although the amount of GABA 

neurotransmitter released from these sources may be altered by cocaine exposure (Xi et al., 

2003; Wydra et al., 2013), our study suggests GABA receptors expressed on interneurons in 

the NAc do not undergo an adaptation in response to such changes. We have also failed to 

find evidence for altered activity of GABAergic interneurons after >48 days of withdrawal 

from the same cocaine regimen used herein (Purgianto et al., 2014). No study has been done 

to evaluate the functional role of the GABAA α1 subunit in the context of cocaine self-

administration.

While our study focused on tissue obtained primarily from the NAc core, a recent study of 

NAc shell found evidence for dynamic changes in the balance of GABA and glutamate 

transmission during withdrawal from limited-access cocaine self-administration (Otaka et 

al., 2013). On WD1, they observed a decrease in the relative weight of excitatory to 

inhibitory synaptic inputs to NAc shell MSN (defined operationally as the ratio of the peak 

amplitude of EPSCs divided by the peak amplitude of IPSCs). If the decrease in GABAA α2 

subunit surface expression that we detected in core on WD2 also occurs in shell, this could 

help explain their WD1 results. On WD21, Otaka et al. (2013) found that the excitatory/

inhibitory ratio in NAc shell was increased, probably reflecting a combination of decreased 

amplitude of GABAAR mIPSCs and enhanced AMPAR transmission detected at this 

withdrawal time (Otaka et al., 2013). It will be important to conduct similar recording 

studies in NAc core MSN.

Overall, two main conclusions can be drawn from our study. First, surface expression of the 

GABAA receptor subunits α1, α2, and α4 is not altered during the late withdrawal period 

when we have previously demonstrated enhanced AMPAR transmission in the NAc and 

elevated cue-induced cocaine craving. These results suggest the absence of homeostatic 

changes involving GABA transmission. Therefore, it may be of interest to investigate 

whether enhancement of GABA transmission during abstinence can attenuate cocaine 

craving and prevent relapse by offsetting increased AMPAR transmission. Many studies 

have shown that the GABAB agonist baclofen attenuates cocaine-related behaviors in animal 

Purgianto et al. Page 6

Brain Res. Author manuscript; available in PMC 2017 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



models of addiction, including tests of drug seeking during abstinence (Filip et al., 2015), 

and some results of clinical trials suggest that baclofen may be of greater benefit during 

abstinence as compared to during active cocaine use (Shoptaw et al., 2003; Kahn et al., 

2009). Second, our observation of a transient elevation in α2 subunit surface expression in 

early withdrawal (WD2), which returned to normal levels by WD25, could help explain low 

levels of cocaine seeking in early withdrawal, although its functional significance remains to 

be examined. More generally, it may serve as a component of maladaptive processes that 

pave the way for incubation of cocaine craving and accompanying adaptations observed later 

in withdrawal.

4. Experimental Procedures

4.1. Jugular catheterization surgery and self-administration

Our procedures for jugular catheterization surgery and cocaine self-administration have been 

described in detail previously (Conrad et al., 2008). Briefly, adult male Sprague-Dawley rats 

(250–275 g on arrival; Harlan, Indianapolis, IN) were housed singly in standard rat cages 

(lights on at 1900 hours, off at 0700 hours; food and water available ad libitum). After ~1 

week to acclimate to the colony, rats were surgically implanted with a jugular catheter 

(PlasticsOne, Roanoke, VA) under ketamine-xylazine anesthesia (80–10mg/kg, i.p., 

respectively) to enable intravenous drug self-administration. Rats received the analgesic 

flunixin meglumine (2mg/kg, s.c; Henry Schein, Melville, NY) before surgical procedures. 

Immediately after surgery and each day during the recovery period (5–7 days), intravenous 

antibiotic was administered (Cefazolin; 100mg/ml, 0.15ml; Moore Medical, Farmington, 

CT) and the catheters were flushed with sterile saline solution to ensure patency. After this 

recovery period, rats began self-administration training in operant chambers (MED 

Associates, St Albans, VT). All self-administration sessions were conducted during the dark 

cycle. Nose-poking in the inactive hole had no consequences, whereas nose-poking in the 

active hole delivered an infusion of saline or cocaine (0.5 mg/kg in a 100 µl/kg volume over 

3 s), paired with a 20 s light cue inside the nose-poke hole. All procedures were performed 

in accordance with the USPHS Guide for Care and Use of Laboratory Animals and EC 

Directive 86/609/EEC, and were approved by the Rosalind Franklin University of Medicine 

and Sciences Institutional Animal Care and Use Committee.

4.2 Biotinylation

All samples were collected and processed as described previously (Ferrario et al., 2011). 

Briefly, animals were decapitated and brains were rapidly removed. The NAc (mainly core, 

but sometimes including a portion of lateral shell; see diagram in McCutcheon et al., 2011) 

was punched from a 2 mm coronal section obtained using a brain matrix. Bilateral pieces of 

NAc tissue from each rat were minced with a scalpel. Tissue was then added to eppendorf 

tubes containing ice-cold aCSF with 1mM sulfo-NHS-S-S-Biotin (Thermo Scientific, 

Rockford, IL) and incubated at 4°C with gentle agitation for 30 min. Samples were 

incubated with 100mM glycine at 4°C for 10 min to quench the reaction. They were then 

pelleted, re-suspended in ice-cold lysis buffer [25mM HEPES pH 7.4, 500mM NaCl, 2mM 

EDTA, 20mM NaF, 10mM NaPPi, 1mM PMSF, 0.1% NP-40 (v/v), 1mM NaOV, 1µM 

okadaic acid, 1µM microsystin-LF, 1× protease inhibitor cocktail (Calbiochem 539131, 
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EMD Millipore, Billerica, MA)], sonicated, and stored at −80°C. An aliquot of each sample 

(100µg) was added to 37.5 µg of high capacity NeutrAvidin agarose beads (Thermo 

Scientific, Rockford, IL) and incubated overnight at 4°C on an end-over-end rotator. 

Biotinylated proteins bound to NeutrAvidin beads (bound fraction) were isolated from the 

nonbiotinylated (unbound) fraction by centrifugation (3000 RPM, 1min) and washed several 

times with 1× PBS. The biotinylated fraction was then dissolved in Laemmli sample buffer 

with DTT (100mM) and heated at 97°C for 3 min to release the biotinylated protein from the 

beads. The samples were then spun at 10,000 RPM for 5 min on a centrifugal filter unit 

(0.45µm, UFC30HV00, EMD Millipore, Billerica, MA) to remove the NeutrAvidin beads 

from the solution. Samples were used for immunoblotting as described below.

4.3 SDS-PAGE and immunoblotting

Samples were heated to 70°C in Laemmli sample treatment buffer and electrophoresed on 

4–12% bis-tris gradient gels (Cat# 345-0125; BioRad, Des Plaines, IL) under reducing 

conditions. Proteins were then transferred to PVDF membranes (Amersham Biosciences, 

Piscataway, NJ). Using the SNAP-ID 2.0 protein detection system (EMD Millipore, 

Billerica, MA), PVDF membranes were incubated with blocking solution (0.5% non-fat 

milk and 1% goat serum in TBS-Tween20 (TBS-T); 10 min), which was followed by 

incubation with primary antibodies for GABAA receptor subunits α1 (1:333; 75–136; 

Neuromab, Davis, CA), α2 (1:333; AB72445; ABCAM, Cambridge, MA), or α4 (1:10; 73–

383; Neuromab, Davis, CA) for 30 min. Membranes were washed 4 times with TBS-T, 

followed by incubation with secondary antibodies (HRP-conjugated anti-rabbit or anti-

mouse; 1:3000; Invitrogen, Carlsbad, CA). Membranes were then washed 4 times with TBS-

T and immersed in chemiluminescence (ECL) detecting substrate (GE Healthcare, 

Piscataway, NJ). Images were acquired with an Amersham Imager 600 (GE Healthcare, 

Piscataway, NJ) and quantified with TotalLab software (TotalLab; Newcastle, UK). Data 

were excluded if there were problems that interfered with band analysis such as bubbles. A 

background value was obtained and diffuse densities for bands of interest in each lane were 

determined. For data obtained from starting material, diffuse densities were normalized to 

either total protein in the lane as determined by Ponceau staining (P7170-1L; Sigma-

Aldrich, St. Louis, MO) or a loading control (GAPDH; CB1001; EMD Millipore, Billerica, 

MA). Controls were performed to verify that intracellular proteins such as tyrosine 

hydroxylase were not detected in the bound fraction.

4.4 Statistical analysis

Results are expressed as mean ± SEM. Two-tail unpaired t-tests were used to assess group 

differences (cocaine vs. saline) in GABAA subunit expression at each withdrawal time-point. 

Two-way ANOVA was used to analyze differences (cocaine vs. saline) through the course of 

withdrawal (WD2, WD25, and WD48).
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Highlights

• Cocaine craving incubates during withdrawal from cocaine self-administration 

(SA).

• GABA is critical for regulating NAc output but its role in incubation is 

unknown.

• GABAAR α1, α2, and α4 subunits were measured during withdrawal from 

cocaine SA.

• In early withdrawal (day 2), α2 surface expression was increased in NAc core.

• No alterations in GABAAR subunits were found in late withdrawal (25 or 48 

days).
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Figure 1. 
Effect of extended-access cocaine administration and different periods of withdrawal on the 

expression of GABAA α2 receptor subunits in the NAc. (a,b) On WD2 after discontinuing 

cocaine self-administration, total expression of GABAA α2 subunits was unchanged (t-test, 

p>0.05), while there was a significant increase in surface expression of this subunit (t-test, 

*p<0.05). (c,d) On WD25, total expression of GABAA α2 subunits remained unchanged 

while surface expression of the subunit returned to a level comparable to saline controls (t-

tests, p>0.05). (e,f) On WD48, total and cell surface levels of GABAA α2 subunits did not 
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differ between cocaine and saline groups (t-tests, p>0.05). Two-way ANOVA revealed no 

significant difference between cocaine and saline groups over different withdrawal times 

(p>0.05). Representative blots show data from 4 different animals: 2 cocaine animals and 2 

saline animals. Numbers within the bars indicate the number of rats in each experimental 

group.
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Figure 2. 
Effect of extended access cocaine administration and different periods of withdrawal on the 

expression of GABAA α4 subunits in the NAc. Saline and cocaine rats did not differ in 

either surface or total expression of GABAA α4 subunits on WD2 (a,b), WD25 (c,d), or 

WD48 (e,f) (t-tests, p>0.05). Two-way ANOVA revealed no significant difference between 

cocaine and saline groups over different withdrawal times (p>0.05). Representative blots 

show data from 4 different animals: 2 cocaine animals and 2 saline animals. Numbers within 

the bars indicate the number of rats in each experimental group.
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Figure 3. 
Effect of extended access cocaine administration and different periods of withdrawal on the 

expression of GABAA α1 subunits in the NAc. Saline and cocaine rats did not differ in 

either surface or total expression of GABAA α4 subunits on WD2 (a,b), WD25 (c,d), or 

WD48 (e,f) (t-tests, p>0.05). Two-way ANOVA revealed no significant difference between 

cocaine and saline groups over different withdrawal times (p>0.05). Representative blots 

show data from 4 different animals: 2 cocaine animals and 2 saline animals. Vertical line in 

the surface blot in the middle panel indicates that lanes were not adjacent in the original 
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immunoblot. Numbers within the bars indicate the number of rats in each experimental 

group.
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