
Rowan University Rowan University

Rowan Digital Works Rowan Digital Works

Open Educational Resources University Libraries

5-3-2019

Introduction to Computer Science with Java Programming Introduction to Computer Science with Java Programming

Seth D. Bergmann
Rowan University, bergmann@rowan.edu

Follow this and additional works at: https://rdw.rowan.edu/oer

 Part of the Computer Sciences Commons

Let us know how access to this document benefits you -
share your thoughts on our feedback form.

Recommended Citation Recommended Citation
Bergmann, Seth D., "Introduction to Computer Science with Java Programming" (2019). Open Educational
Resources. 2.
https://rdw.rowan.edu/oer/2

This Book is brought to you for free and open access by the University Libraries at Rowan Digital Works. It has been
accepted for inclusion in Open Educational Resources by an authorized administrator of Rowan Digital Works. For
more information, please contact rdw@rowan.edu.

https://rdw.rowan.edu/
https://rdw.rowan.edu/oer
https://rdw.rowan.edu/libraries
https://rdw.rowan.edu/oer?utm_source=rdw.rowan.edu%2Foer%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=rdw.rowan.edu%2Foer%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.lib.rowan.edu/rdw-feedback?ref=https://rdw.rowan.edu/oer/2
https://www.lib.rowan.edu/rdw-feedback?ref=https://rdw.rowan.edu/oer/2
https://rdw.rowan.edu/oer/2?utm_source=rdw.rowan.edu%2Foer%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:rdw@rowan.edu

Introduction to Computer Science with Java

Programming

Seth D. Bergmann

May 1, 2019

2

Preface

This book is intended to be used for a first course in computer programming.
No prior experience with programming should be necessary in order to use this
book. But this book is intended to be used with a course that teaches more
than computer programming; it is intended to be used with a course that teaches
Computer Science. The distinction is subtle, but important.

The author(s) believe that a breadth-first approach is the best way to intro-
duce the concepts of Computer Science to students. Rather than isolate topics
in courses (bits and bytes in a computer organization course; formal grammars
and languages in a theory course; lists, sets, and maps in a data structurs course;
etc) we believe that topics should be introduced in a brief and simple manner
at the starting level. Elaboration on these topics should occur in subsequent
courses. This breadth-first approach allows the student to build on existing
knowledge and retain a greater proportion of the material.

Our colleagues in the physical sciences have done this for over a century:
Physics I, Physics II, Physics III; Chemistry I, Chemistry II, Chemistry III.

Some examples of this breadth-first approach to Computer Science:

• We teach the rudiments of binary numbers. Is this necessary to learn
to program the solution to a simple problem? Probably not, but it will
become necessary at some later time, when studying hardware, or the
limitations of software.

• Every introductory programming book teaches the concept of an arith-
metic expression. We give a formal definition, and show the structure
of an expression by placing boxes around sub-expressions. The student
thinks we are teaching how to write a correct expression; we are actually
teaching recursion, formal grammars, and derivation trees.

• We advise the student, ”Program to an interface whenever possible”. The
student thinks we are teaching the correct usage of Java interfaces, but
we are actually teaching object-oriented design and software engineering.

The student thinks we are teaching programming, but we are actually teaching
Computer Science. Knowledge is not separated into compartments, and our
curriculum should not attempt to do so.

i

ii PREFACE

Several topics were recently addes to this book, in order that it be used as
the primary textbook for the Educational Testing Service’s Advanced Placement
course in Computer Science (CSA):

• More extensive discussion of arrays

• sorting

• binary search

The AP course includes a Marine Biology simulation case study which is not
included in this version of the book.1 The reader will notice an empty section
for this case study in several chapters of this book. The author invites current
instructors to participate in this project by providing these sections; those who
do so would be listed as a secondary author or contributor on the title page
and/or the preface, depending on the level of contribution. Those who are in-
terested in contributing should contact the primary author at the email address
shown below.

This book is an open source book. That means that not only is the pdf
version available (to potential students and teachers) for free download, but
that the original (LaTeX) source files are also available (to potential authors
and contributors). Based on the model of open source software, open source for
textbooks is a relatively new paradigm in which many authors and contributors
can cooperate to produce a high quality product, for no compensation. For
details on the rationale of this new paradigm, and citations for other open
source textbooks, see the journal Publishing Research Quarterly, Vol. 30, No.
1, March 2014. The source materials and pdf files of this book are licensed with
the Creative Commons NonCommercial license, which means that they may be
freely used, copied, or modified, but not for financial gain.

This book is available in pdf at rdw.rowan.edu /oer.
The source files are available at cs.rowan.edu/∼bergmann/books.
The author may be reached at bergmann@rowan.edu

Secondary Authors

Contributors

1The Marine Biology case study is no longer included on the AP exam. Thus, students
using this book are not penalized on the exam for not having seen the case study.

Contents

Preface i

0 Computers and Computer Programs 1

0.1 The CPU and machine language 1

0.2 High level languages and compilers 2

0.3 Data representation: bits and bytes 3

0.3.1 Whole numbers . 3

0.3.2 Other numbers . 3

0.3.3 Characters . 3

0.3.4 Images . 4

0.3.5 Sound . 4

0.3.6 Exercises . 4

1 Java classes, objects, object diagrams and methods 7

1.1 Classes and objects . 7

1.1.1 Exercises . 8

1.2 Variables and references . 8

1.2.1 Exercises . 9

1.3 Defining a Java class . 9

1.3.1 Exercises . 10

1.4 Object diagrams . 11

1.5 Methods . 11

1.5.1 Exercises . 13

1.6 Constructors and object creation 14

1.6.1 Exercises . 15

1.7 Getting started: IDE or command line 16

1.7.1 Using an IDE . 16

1.7.2 The BlueJ IDE . 17

1.7.3 Exercises . 20

1.8 Constructors and objects in the GridWorld case study 20

1.9 Projects . 20

iii

iv CONTENTS

2 Program Elements and Methods (revisited) 22

2.1 Data types . 22

2.1.1 Whole numbers: int . 23

2.1.2 Other numbers: float and double 23

2.1.3 Logical values: boolean 24

2.1.4 Character values: char . 25

2.1.5 Strings of characters: String 25

2.1.6 Other reference types . 26

2.1.7 Exercises . 27

2.2 Operations and expressions . 28

2.2.1 Arithmetic operations . 28

2.2.2 String operations . 28

2.2.3 Arithmetic Expressions 30

2.2.4 Exercises . 33

2.3 Declaration and initialization of variables 34

2.3.1 Declaration of variables 35

2.3.2 Iniitialization of variables 35

2.3.3 Exercises . 35

2.4 Assignment of values to variables 35

2.4.1 Type conversion in assignments 37

2.4.2 Type conversions and initializations 37

2.4.3 Assignment of references 38

2.4.4 Exercises . 39

2.5 Method definitions, signatures, and invocation 40

2.5.1 Method definition . 40

2.5.2 Method signature and body 41

2.5.3 Method invocation . 42

2.5.4 Methods From the Java Class Library 44

2.5.5 Exercises . 44

2.6 Recursive methods . 46

2.6.1 Exercises . 46

2.7 Printing the output . 46

2.7.1 Exercises . 47

2.8 Constants and class variables . 47

2.8.1 Constants . 47

2.8.2 Class variables . 48

2.8.3 Class constants . 48

2.8.4 Exercises . 49

2.9 Comments and readability . 49

2.9.1 Formatting a program . 49

2.9.2 Comments . 50

2.9.3 Exercises . 50

2.10 Program elements and methods in the GridWorld case study . . 51

CONTENTS v

3 Selection Structures 52

3.1 Comparison operators . 52

3.1.1 Exercises . 53

3.2 Boolean operators . 53

3.2.1 AND, OR, NOT . 53

3.2.2 Short circuit evaluation 56

3.2.3 De Morgan’s Laws . 56

3.2.4 Exercises . 57

3.3 One-way selections . 58

3.3.1 Exercises . 59

3.4 Two-way selections . 60

3.4.1 Exercises . 64

3.5 Compound statements and scope 66

3.5.1 Compound statements . 66

3.5.2 Scope of variables . 67

3.5.3 Java statements - revisiting a formal definition 68

3.5.4 Exercises . 68

3.6 Recursive methods revisited . 70

3.6.1 Exercises . 71

3.7 Comparing Strings and other reference types 73

3.7.1 Comparison for equality or inequality 73

3.7.2 Ordered comparisons . 73

3.7.3 Exercises . 75

3.8 Selection structures in the GridWorld case study 76

3.9 Projects . 76

4 Iteration Structures 80

4.1 Looping with while– pre-test loops 80

4.1.1 Infinite loops . 83

4.1.2 Exercises . 83

4.2 Looping with for – counter-controlled loops 85

4.2.1 Autoincrement and autodecrement 85

4.2.2 The for loop . 86

4.2.3 Exercises . 88

4.3 Equivalence of while and for loops 89

4.3.1 Exercises . 90

4.4 Nested loops . 91

4.4.1 Exercises . 91

4.5 Definition of Statement - updated 93

4.5.1 Exercises . 94

4.6 Iterations in the GridWorld case study 95

4.7 Projects . 95

vi CONTENTS

5 Collections, and Iteration Revisited 97
5.1 Lists . 97

5.1.1 Java packages and java.util 98
5.1.2 ArrayList . 98
5.1.3 Exercises . 105

5.2 Iteration revisited, with lists . 107
5.2.1 Exercises . 108

5.3 Sets . 109
5.3.1 Exercises . 111

5.4 Iteration through a collection with for-each, and extrema problems 113
5.4.1 Iteration through a collection with for-each 113
5.4.2 Extrema problems . 114
5.4.3 Exercises . 116

5.5 Iterators and selective removal from a collection 117
5.5.1 Iterators . 117
5.5.2 Selective removal . 118
5.5.3 Exercises . 119

5.6 Arrays . 121
5.6.1 Initialization of arrays . 123
5.6.2 Passing arrays as parameters 124
5.6.3 Vector product of numeric arrays 124
5.6.4 Exercises . 125

5.7 Matrices: Two Dimensional Arrays 126
5.7.1 Examples of Matrix Arithmetic 127
5.7.2 Exercises . 130

5.8 Collections in the GridWorld case study 133
5.9 Projects . 133

6 Abstraction, Inheritance, and Polymorphism 137
6.1 Software engineering . 137
6.2 Abstraction . 138

6.2.1 Duplicated code . 138
6.2.2 Method abstraction . 140
6.2.3 Object abstraction and encapsulation 143
6.2.4 Exercises . 144

6.3 Inheritance . 145
6.3.1 Is-a versus Has-a . 149
6.3.2 Factoring duplicated code and defining subclasses 150
6.3.3 Making use of inheritance 155
6.3.4 Exercises . 158

6.4 Polymorphism and dynamic method look-up 160
6.4.1 Dynamic method look-up 160
6.4.2 Polymorphism . 161
6.4.3 Exercises . 162

6.5 Overriding methods from the Object class 164
6.5.1 Overriding the toString() method 164

CONTENTS vii

6.5.2 Exercises . 166
6.6 Abstract methods and classes 167

6.6.1 Abstract methods . 167
6.6.2 Abstract classes . 168
6.6.3 Exercises . 168

6.7 Java Interfaces . 170
6.7.1 The need for Java interfaces – multiple inheritance 171
6.7.2 Interfaces which we’ve already been using 173
6.7.3 Exercises . 174

6.8 Inheritance and Polymorphism in the GridWorld case study . . . 176
6.9 Projects . 176

7 Maps, Collections Revisited 180
7.1 Fast look-up . 180

7.1.1 Exercises . 180
7.2 Sequential search . 181

7.2.1 Exercises . 182
7.3 Java maps . 182

7.3.1 Exercises . 186
7.4 Examples of methods which use maps 187

7.4.1 Exercises . 188
7.5 Instantiating maps . 189

7.5.1 HashMap . 189
7.5.2 Exercises . 193

7.6 TreeMap and Collections revisited: TreeSet and LinkedList . . . 195
7.6.1 TreeSets . 195
7.6.2 TreeMaps . 197
7.6.3 LinkedList . 198
7.6.4 Exercises . 200

7.7 Projects . 201

8 Exceptions - Handling Errors 205
8.1 Client/Server terminology . 206

8.1.1 Exercises . 207
8.2 Assertions . 207

8.2.1 Exercises . 210
8.3 Exceptions . 210

8.3.1 Run-time errors resulting in an Exception 210
8.3.2 Throwing exceptions in a server method 212
8.3.3 What to do when an Exception is thrown 213
8.3.4 Handling exceptions with try/catch in a client method . . 214
8.3.5 Defining your own Exception classes 218
8.3.6 Exercises . 221

8.4 Debuggers . 223
8.4.1 Exercises . 224

8.5 Debugging with print statements 225

viii CONTENTS

8.6 Projects . 225

9 Console Applications – Input and Output 226
9.1 Standard io files . 226

9.1.1 Exercises . 227
9.2 Output to stdout or stderr . 228

9.2.1 Output to stdout . 228
9.2.2 Output to stderr . 228
9.2.3 Exercises . 228

9.3 Input from stdin . 229
9.3.1 Exercises . 230

9.4 Data Files . 230
9.4.1 Opening a data file . 231
9.4.2 Input from Data Files . 231
9.4.3 Output to data files . 232
9.4.4 Exercises . 234

9.5 Running an Application from the Command Line 234
9.5.1 Compile and Test from the Command Line 235
9.5.2 public static void main (String [] args) 235
9.5.3 Exercises . 236

9.6 Projects . 237

10 Graphical User Interfaces 240
10.1 Packages java.awt and javax.swing 241

10.1.1 Exercises . 241
10.2 Starting out: Frame and ContentPane 242

10.2.1 Exercises . 244
10.3 Adding components to a container 244

10.3.1 Designing the GUI . 244
10.3.2 Adding components . 245
10.3.3 Exercises . 246

10.4 Layout managers . 246
10.4.1 Flow Layout . 247
10.4.2 Grid Layout . 247
10.4.3 Border Layout . 249
10.4.4 Nested containers and summary of layout managers . . . 250
10.4.5 University Information System - version 1 251
10.4.6 Exercises . 252

10.5 Actions and Listeners . 255
10.5.1 University Information System - version 2 257
10.5.2 Exercises . 258

10.6 Menus . 259
10.6.1 Adding menus to the frame 259
10.6.2 Listening for menu selection 261
10.6.3 Menus for the University Information System - version 3 . 261
10.6.4 Exercises . 262

CONTENTS ix

10.7 Projects . 263

11 Abstract Data Types 265
11.1 The Rational ADT . 265

11.1.1 Some problems with float and double 265
11.1.2 Defining the Rational ADT 266
11.1.3 Exercises . 270

11.2 MyFloat . 272
11.2.1 Constructor for MyFloat 273
11.2.2 Arithmetic operations for MyFloat 274
11.2.3 Exercises . 277

11.3 BigNumber . 280
11.3.1 Constructing BigNumbers 280
11.3.2 Adding BigNumbers . 281
11.3.3 Subtracting BigNumbers 282
11.3.4 Exercises . 287

12 Algorithms: Sorting and Searching 291
12.1 Searching: Binary Search . 292

12.1.1 Exercises . 296
12.2 Sorting a list . 297

12.2.1 Rationale for Sorting . 297
12.2.2 Selection Sort Algorithm 298
12.2.3 Insertion Sort Algorithm 298
12.2.4 Merge Sort Algorithm . 302
12.2.5 Exercises . 309

Glossary 314

x CONTENTS

Chapter 0

Computers and Computer
Programs

The first digital computers were developed in the early 1950’s. Since then the
capabilities of computers (and computer science) have increased at an amazing
rate. It has been said that if the automotive industry had seen similar progress,
that a Rolls Royce would get 3,000 miles per gallon, would have a top speed
approaching the speed of light, and would cost less than one dollar. Various
monikers for this amazing development include ”The Digital Revolution” and
the ”Information Age”. When we use the word digital we are talking about in-
formation which is composed of discrete atomic (i.e. having no sub-cmponents)
values, generally described as 0 or 1. Anything which is said to be digital, at
its innermost level, is nothing but lots of 0’s and 1’s. This includes not only
computers but telephones, cameras, music boxes, televisions, and the list goes
on. Today there are digital components in automobiles, household appliances,
roads, bridges, medical devices, medicines, and even people.

This book is an introduction to some of the things we have learned about
developing computer software. Software is the driving force in a computer sys-
tem; without software, computer hardware is not capable of carrying out the
simplest of tasks. In the process of learning to program a computer in a popular
language known as Java, we hope to expose many of the concepts and principles
which apply to the development of software in any language.

Computer Science has been defined as ”the design, analysis, and implemen-
tation of algorithms”, and in this book we introduce the notion of algorithm in
the hope that this will spark the student’s interest for further study of Computer
Science.

0.1 The CPU and machine language

A computer system is made up of hardware and software. The hardware consists
of the physical components:

1

2 CHAPTER 0. COMPUTERS AND COMPUTER PROGRAMS

• Semiconductor chips (CPU, memory, communications, etc)

• Wires and other conductors connecting the components

• Storage devices such as flash memory and disks

• Peripheral devices such as keyboards, mice, displays

The most fundamental hardware component is the Central Processing Unit
or CPU. This is the component which is capable of performing calculations and
making decisions. The CPU is capable of executing only instructions which
are coded in a binary format (consisting of only 0’s and 1’s). These binary
instructions, when stored in the computer’s memory, constitue a program. The
language of these binary instructions is called machine language

Consequently, if we write a ’program’ in Java, it is not a program in the
strict sense of the word, because it is not written in machine language.

0.2 High level languages and compilers

If we were to write our programs in machine language, the rate of software de-
velopment would be slow; the binary coded instructions of machine language
make it exceedingly difficult for use by humans. For this reason we have de-
veloped high-level languages, also known as programming languages which are
much easier to use for programming than machine language. Some examples of
high-level languages are:

• Java

• C++

• C

• Visual Basic

• Python

• Ruby

However, the CPU is not capable of executing the statements of a high-
level language directly, so it must first be translated into machine language.
This is done by a program known as a compiler. The compiler will examine the
statements in a program, check for syntax errors, and produce output consisting
of binary machine language instructions which the CPU is capable of executing.

In later chapters we speak of ’compile time’ versus ’run time’. An error
which is detected by the compiler is a compile-time error, whereas an error
which occurs when the machine language program is executing is a run-time
error.

0.3. DATA REPRESENTATION: BITS AND BYTES 3

1

20 = 1

1

21 = 2

0

22 = 4

0

23 = 8

1

24 = 16

Figure 1: The binary representation of 19 (19 = 16 + 2 + 1)

0.3 Data representation: bits and bytes

As noted above all digital devices, including computers, store information in
binary (0’s and 1’s). Each such binary digit is called a bit. This means that in
order for us to represent information, everything must be encoded in binary; this
includes not only numbers, but characters from the keyboard, sound, images,
colors, video clips, ... everything. In this section we offer some insight as to how
this is done. Further details on these data representation schemes are given in
later chapters.

0.3.1 Whole numbers

To represent a whole number we use base two. Whereas in a base ten (decimal)
number each digit represents a power of 10, in base two each digit represents a
power of 2, as shown in Fig 1 which shows the base two representation of 19.

Whole numbers may also be negative; to represent a negative whole number
we use two’s complement representation. In this scheme numbers, positive or
negative, can be easily added, always producing the correct result. We describe
two’s complement in more detail in chapter 2

0.3.2 Other numbers

Numbers which are not whole numbers (or are too big to be stored as simple
binary values) are stored in floating point format. This means that associated
with each number is an exponent to magnify (or diminish) the value. This kind
of number is similar to scientific notation: 6.02x1023

0.3.3 Characters

Any character from the keyboard (and others) can be represented with a binary
code. This includes the letters (a..z, A..Z) the numbers (0..9) and other char-
acters such as $!@#%^&. A binary code is assigned to each character. A 16-bit
code with characters from international alphabets is called Unicode. An older
code, using an 8-bit (byte) code called ASCII is a subcode of Unicode.

4 CHAPTER 0. COMPUTERS AND COMPUTER PROGRAMS

0.3.4 Images

A digital image is like a newspaper photograph, which consists of a matrix of
discrete dots. Each such dot is called a pixel, or picture element. For color
images each pixel is simply a whole number representing the red, green, and
blue components of the desired color.

0.3.5 Sound

Sound is made up of air pressure waves; when these waves enter our ears, our
brain receives a signal from the auditory nerves. To represent sound, all we need
do is store a digital version of the pressure waves. This is diagrammed in Fig 2,
in which the horizontal axis is time, and the vertical axis is the amplitude of the
pressure waves. The wave at top left of Fig 2 represents just one cycle of a sound
wave. The wave at top right represents a louder sound at the same pitch because
the amplitude is greater, but the frequency of the cycles is the same. The wave
at bottom left represents a higher pitch, because there are twice as many cycles
in the same time period; the loudness is the same as the sound at top left. The
quality of the sound is determined by the number of values sampled per unit
time. To represent sound with very high quality (high fidelity) requires many
numbers. Consequently a sound clip is merely a sequence of whole numbers
representing varying air pressure. Most sound clips are actually a compressed
format of these numbers. Some examples of compression formats are .wav and
.mp3.

0.3.6 Exercises

1. Show the following decimal numbers in base two (binary):

(a) 7

(b) 23

(c) 123

(d) 127

(e) 255

(f) 256

2. Read parts (a) and (b) below aloud so that they make sense.

(a) There are 10 kinds of people in the world: those who know binary
and those who do not know binary.

(b) There are 10 kinds of people in the world: those who know base three,
those who do not know base three, and those who have no idea what
I am talking about.

(c) Make up a similar statement for some number base greater than three
but less than 10.

0.3. DATA REPRESENTATION: BITS AND BYTES 5

Figure 2: Representing sound (i.e. air pressure waves) as discrete numbers. Top
right: a louder sound. Bottom left: a higher pitch.

6 CHAPTER 0. COMPUTERS AND COMPUTER PROGRAMS

3. Show your friends how to count from 0 to 31 using only the fingers on one
hand (tell them not to be offended when you get to 4).

4. Do an internet search to find the ASCII code for each of the following
characters:

(a) ’a’

(b) ’A’

(c) ’8’

(d) ’(’

5. How many pixels are there in a 8x8 square inch display which has 256
pixels per inch? Hint: Use powers of 2. 256 = 28.

6. Do an internet search to find sound data compression formats other than
.wav and .mp3.

Chapter 1

Java classes, objects, object
diagrams and methods

1.1 Classes and objects

Computer programs usually deal with concepts and problems selected from our
common environment and/or experiences. In order to represent these concepts
in software, the Java language introduces the concept of class. A class is like
a template, or an archtect’s blueprint; it allows one to specify the attributes
and behavior of objects. A class is the plan from which objects can be created.
Hence, an object is merely an instance of a class.

For example, we could have a class named Student which specifies all the
attributes of a student. These attributes could be things such as the student’s
name, social security number, and gpa. A diagram for a particular Student
object is shown in Figure 1.1.

The values of the object’s attributes are collectively known as the state of
the object.

Classes can also specify behavior of the objects. For example:

• We may ask a Student object to provide us with his/her name, gpa, or
social security number.

Student

name ”joe”

ssn ”183-22-4543”

gpa 3.5

Figure 1.1: An object diagram showing an instance of the class Student

7

8CHAPTER 1. JAVA CLASSES, OBJECTS, OBJECTDIAGRAMS ANDMETHODS

stud1

Student

name ”joe”

ssn ”183-22-4543”

gpa 3.5

Figure 1.2: An object diagram showing the value of the variable stud1 as a
reference to an object

• We may wish to change a Student’s gpa.

• We may allow a Student object to register for courses (which could entail
including a list of those courses as another attribute for Students), and do
any number of things that students in the real world normally do.

This behavior is specified with methods (more on this later). The compiler will
permit a class name to begin with a lowercase letter, however we will follow the
convention that all class names must begin with an uppercase letter.

1.1.1 Exercises

1. Show an object diagram for a Student whose name is ”mary”, and whose
ssn is ”999-99-9999” and whose gpa is 3.8.

2. Assume there is a class named University which stores a name and a
size (number of students enrolled). Draw an object diagram showing an
instance of this class; make up values for the state of this object.

1.2 Variables and references

A Java program may have many variables, and as we’ll see later, there are
various kinds of variables. For now, we’ll define a variable as a symbol which
can store a value. An example would be the symbol gpa in the Student class.
This kind of variable is called an instance variable, or field, because it is part of
an object which is an instance of a class. Figure 1.1 shows that the value of the
variable gpa is 3.5.

Variables can also store references to objects. A reference is merely an
indication of where an object can be found in the computer’s memory. Figure 1.2
shows a variable named stud1 which stores a reference to a Student object. The
compiler will permit a variable name to begin with an uppercase letter; however
we will follow the convention that all variable names begin with a lowercase
letter.

1.3. DEFINING A JAVA CLASS 9

math

Course

name ”Calculus”

credits 4

prof ”Einstein”

Figure 1.3: An object diagram

1.2.1 Exercises

1. Refer to Figure 1.3.

(a) What is the name of the object’s class?

(b) What are the names of the fields in the object?

(c) A reference to the object is stored in which variable?

2. Show an object diagram for a variable named univ which stores a reference
to a University object whose name is “Southern State” and whose size is
12000 students.

1.3 Defining a Java class

Figure 1.2 is an example of an object diagram. It shows that a variable named
stud1 stores a reference to an object which is an instance of the class Student.
It also shows all the fields (i.e. instance variables) and their values. Note that
the value of a variable is always shown in a rounded rectangle, whereas objects
are shown in ordinary rectangles.

The value of the variable stud1 in Figure 1.2 is a reference to a Student
object. This value is depicted with an arrow in the diagram. More accurately,
the reference is a memory address, or location of the object in memory.

In a Java program, we can specify the name of a class, and its fields, as
shown in Figure 1.4. This class definition begins with the key words public

class, and contains the field definitions within a set of curly braces. We note
that:

• The word public is used to indicate that the class being defined can be
accessed from any other class. The word class is used to indicate that
what follows is the definition of a class. The words public and class are
key words, which means that they can be used only for these purposes (i.e.
they cannot be used as variable names).

• After the name of the class there is an open brace.

• This is followed by a definition of each field in the class.

10CHAPTER 1. JAVACLASSES, OBJECTS, OBJECTDIAGRAMS ANDMETHODS

public class Student

{ // fields

private String name;

private String ssn;

private double gpa;

}

Figure 1.4: Java code defining a class named Student which has three fields

• Each field has a type (such as String or double - more on this later).

• The class is public, but the fields are private. This is called visibility (more
on this later).

• The class definition ends with a closed brace.

We also note that:

• Java is free format. This means that we are free to include spaces and
new lines anywhere in a java program. We will generally try to include
spaces so as to make the program easy to read. Conceivably, Figure 1.4
could have been written entirely on one or two lines:

public class Student {private String name;private

String ssn;private double gpa;}

Though the Java compiler would allow this, it is not considered good style,
and we will avoid it.

• Java is case sensitive. This means that you must pay attention to upper
case versus lower case letters. The word class is different from the word
Class.

1.3.1 Exercises

1. Show the Java code to define a class named University; it should have
two fields: name, which is a String, and size, which is an int (i.e. integer).

2. Refer to Fig 1.4.

(a) How many fields are in the class defined as Student?

(b) What is the type of the field ssn?

(c) What is the type of the field gpa?

3. Each class definition shown below contains, at most, one error; find the
error and correct it if there is one.

1.4. OBJECT DIAGRAMS 11

(a) public Class Car

{ private double cost;

private String make;

private String model;

}

(b) public class Vehicle

{ private double

cost; private

String make; private String model; }

(c) public class Vehicle

private double cost;

private String make;

private String model;

private int wheels;

4. Show the Java code to define a class named Ticket with three fields:

• A section (type is String)

• A row number (type is int)

• A seat number (type is int)

1.4 Object diagrams

This book will make extensive use of object diagrams, similar to the one shown
in Figure 1.2. The concept of an object diagram is one that is vital to a good un-
derstanding of Java programs and more advanced concepts in computer science,
such as data structures.

In an object diagram a reference (i.e. an arrow) will always refer to an
object, and never to another variable. As we will see later, the value of an
object’s field may be a reference to another object.

1.5 Methods

The fields of a class specify the attributes, or collectively, the state of an object
of that class. Objects can also have behavior; the behavior of an object is
specified in the class with methods, or more properly instance methods1.

A method consists of a signature and a body. The signature defines how
the method is to be invoked, and the body defines exactly what it does. An
example of a method signature in the Student class could be

1C++ programmers would call these member functions.

12CHAPTER 1. JAVACLASSES, OBJECTS, OBJECTDIAGRAMS ANDMETHODS

public String getName()

• The visibility of this method is public. Methods may also be private -
more on this later.

• This method will return a String.

• The name of this method is getName. The compiler will permit a method
name to begin with an uppercase letter; however, we will follow the con-
vetion that every method name begins with a lowercase letter.

• This method has no parameters, though the parentheses are always re-
quired in the signature.

The method body consists of one or more Java statements enclosed in curly
braces. In the getName method, the body could be:

{ return name; }

The return statement defines what the method produces as a result when it
is invoked. It also terminates the method.

One more important feature (but not required by the compiler) is a group of
comments which help to describe the purpose and correct usage of the method.
These comments are ignored by the compiler, but can be very useful to us
humans as we attempt to define and use methods. These comments begin with
/** and end with */ . Comments of this form are used by a utility program,
javadoc to generate nicely formatted documentation for a class and its methods.
We call this documentation an Application Program Interface, or API. The
complete method definition, with comments, is shown below:

/** This method returns the name of this Student. */

public String getName()

{

return name;

}

Methods do not have to return any value (these are called void methods.
Also a method may have one or more parameters, specified inside the parentheses
in the signature. These are used to pass information into the method when it
is invoked.

/** This method changes the name of this Student. */

public void setName(String newName)

{

name = newName;

}

The setName method has one parameter, whose value is the new name for
a Student. It is a void method because it produces no explicit result.

We can now show the class definition, with fields and methods, in Figure 1.5

1.5. METHODS 13

public class Student

{ // fields

private String name;

private String ssn;

private double gpa;

/** This method returns the name of this Student. */

public String getName()

{ return name; }

/** This method changes the name of this Student. */

public void setName (String newName)

{ name = newName; }

}

Figure 1.5: Java code defining a class named Student which has three fields
and two methods

1.5.1 Exercises

1. Refer to the following class defining a University

public class Unviersity

{ private String name;

private int size;

}

(a) Include a method definition in this class to return the University’s
name.

(b) Include a method definition in this class to change the size of the
University to a given nuumber of students.

2. Refer to Figure 1.4. Each of the following method definitions contains, at
most, one error. Find and correct the error if there is one.

(a) public getGPA()

{ return gpa; }

(b) public void clearGPA()

{ gpa = 0.0; }

(c) public void setGPA(newGPA)

{ gpa = newGPA; }

14CHAPTER 1. JAVACLASSES, OBJECTS, OBJECTDIAGRAMS ANDMETHODS

1.6 Constructors and object creation

In this section we discuss how objects can be created. Java has an operator
called new whose sole job is to create new objects. When the new operator is
invoked, in the process of creating the object, a constructor is called to initialize
the fields in the object. The constructor is a peculiar kind of method with the
following properties:

• The name of the constructor is the same as the name of its class.

• The constructor has no return type not even void.

The student object shown in Figure 1.1 can be created as shown below:

new Student ("joe", "183-22-4543");

The values ”joe” and ”183-22-4543” are actual parameters for the construc-
tor. They are the initial values of two of the fields in the Student object being
created.

The constructor, defined as one of the methods in the Student class, is shown
below:

/** Constructor.

Initialize this Student’s name, ssn, and gpa

*/

public Student (String initialName, String initialSSN)

{ name = initialName;

ssn = initialSSN;

gpa = 0.0;

}

Note that when creating a new Student, no initial gpa is provided. Instead
the constructor initializes gpa to 0.0 for all new students.

The parameters in the constructor could have been the same as the fields
which they are initializing. In this case we need to distinguish between the field
and the parameter using the key word this as shown below:

/** Constructor.

Initialize this Student’s name, ssn, and gpa

*/

public Student (String name, String ssn)

{ this.name = name; // assign parameter value to field

this.ssn = ssn; // assign parameter value to field

gpa = 0.0;

}

We now have three kinds of entities in a class definition:

1. private field(s)

1.6. CONSTRUCTORS AND OBJECT CREATION 15

public class Student

{ // fields

private String name;

private String ssn;

private double gpa;

/** Constructor.

Initialize this Student’s name, ssn, and gpa

*/

public Student (String initialName, String initialSSN)

{ name = initialName;

ssn = initialSSN;

gpa = 0.0;

}

/** This method returns the name of this Student. */

public String getName()

{ return name; }

/** This method changes the name of this Student. */

public void setName (String newName)

{ name = newName; }

}

Figure 1.6: Java code defining a class named Student which has three fields,
one constructor, and two methods

2. public constructor(s)

3. public and/or private method(s)

These entities can be placed in the class definition in any order, but we
usually conform to the order shown above. Our updated class definition is now
shown in Figure 1.6.

1.6.1 Exercises

1. Show a constructor for the University class which will initialize the name
and size fields from constructor parameters (see Exercises above).

2. Each of the following constructor definitions for the Student class contains,
at most, one error. Correct each error, if there is one.

(a) public void Student ()

{ name = "joe";

16CHAPTER 1. JAVACLASSES, OBJECTS, OBJECTDIAGRAMS ANDMETHODS

ssn = "222";

}

(b) public StudentConstructor ()

{ name = "joe";

ssn = "222";

}

(c) public Student (String name, String ssn)

{ name = name ;

ssn = ssn ;

}

3. Show a constructor for the Student class with three parameters. The
parameter names should be name, ssn, and gpa. Each parameter should
be used to initialize the corresponding field.

1.7 Getting started: IDE or command line

Having seen some of the rudiments of defining a class, we can now see how to
work with these concepts on the computer. There are two basic ways to create
and test Java programs:

• Use an Integrated Development Environment or IDE.

• Run the java compiler and its runtime environment from the command
line prompt. This is covered in chapter 9.

Most beginning users will prefer to use a simple IDE, such as BlueJ, but other
IDEs are available for free download on the internet.

1.7.1 Using an IDE

Some examples of IDEs which can be used to develop Java software are:

• BlueJ - A fairly simple, yet powerful, IDE which can be used to edit and
execute Java source files, and inspect objects. It also allows the user to
test code snippets to find out what effect they have. BlueJ is available for
free download at www.BlueJ.org.

• NetBeans - This IDE began as a student project in Czechoslavakia and
was later acquired by Sun Microsystems (now Oracle). Like BlueJ it is
designed specifically for Java development. It differs from BlueJ in that it
has tools specifically for the automatic creation of graphical user interfaces.

• Eclipse - This IDE has so many features that it is rather difficult to learn.
The main advantage of Eclipse is that it can be used for many different
programming languages, not just Java. Once you learn Eclipse, you can
use it on many different projects. Another interesting feature of Eclipse
is that the debugger can step backwards.

1.7. GETTING STARTED: IDE OR COMMAND LINE 17

All three of these IDEs are free for download on the Internet; in addition,
they are all open source and have many optional plug-in features.

1.7.2 The BlueJ IDE

Since BlueJ is the easiest IDE for novices to learn, it is the one we choose to
look at here. After learning BlueJ, many users will opt for a more powerful IDE
at a later time.

1.7.2.1 Getting started with BlueJ

The basic development unit in BlueJ is the project. A project may consist of
several related classes (a project is really a folder, or directory, containing a
source file and related files for each class in the project). When starting up
BlueJ, use the menu to open a new project, or to open an existing project. Be
sure to save the project to a disk or storage device for which you have write
access. As you make changes to your source files, BlueJ will automatically save
the project.

To create a new class for your project, click the button New Class.... This
will bring up a dialog box allowing you to enter the name of the class (the name
should begin with an uppercase letter) such as Student. There will now be a file
with suffix .java in your project folder, such as Student.java.

An example of a BlueJ project window is shown in Figure 1.7 in which the
project has three classes, and one Student object has been created.

To edit a class, double click on the (tan) icon for the class. This brings up
the BlueJ editor window, showing the lines of Java code in the class. BlueJ will
provide a template of sorts for you to get started; you will want to modify or
delete most of what BlueJ has provided. Note that Java source files are plain
text documents (like Notepad documents), and the BlueJ editor is nothing more
than a text editor (like Notepad for Windows or TextEdit for MacOS).

To test your work two steps are needed:

1. Compile - Translate your source code to ‘byte code’, a language that can be
understood by the Java runtime environment. If there are syntactic errors
in your class, the compiler will advise you of these. You must correct these
errors before going further. BlueJ will draw hashmarks on classes which
need to be compiled. If there are no syntactic errors, the compiler will
create the byte code file, with a .class suffix, such as Student.class.
Do not try to examine a .class file; it will be unintelligible and is strictly
for Java’s use.

2. Test - Execute the byte code by invoking a method in one of your classes.
Right-click on a class:

• If the class has a static method, select it to run it directly from the
selected class. If that method has parameter(s), a dialog box will be
opened allowing you to enter the parameter value(s).

18CHAPTER 1. JAVACLASSES, OBJECTS, OBJECTDIAGRAMS ANDMETHODS

Figure 1.7: An example of a BlueJ project with three classes. One object of
class Student has been instantiated. The CodePad shows that the value of the
expression 2+3 is 5

1.7. GETTING STARTED: IDE OR COMMAND LINE 19

• Otherwise, instantiate a class (i.e. create an object of the class)
by selecting new If the class’ constructor has parameters, a
dialog box will allow you to enter the parameter value(s) at this
point (caution: remember the double quote-marks if the parameter
is a String). The object should appear as a red box in the object
window at the lower left. Right-click on the red object to inspect it
(look at the values of its fields) or to invoke an instance method. If the
method has parameters, a dialog box will allow you to enter values
for the parameters (caution: remember the double quote-marks if the
parameter is a String).

1.7.2.2 The BlueJ Terminal Window

If an executing method produces output, it will be sent to the BlueJ Terminal
Window. Some options available for the terminal window include:

• Unlimited Buffering. The window acquires a scroll bar on the right, and
will retain an unlimited amount of output. Use the scroll bar to view any
output.

• Clear. Clear the output window so that you do not confuse the output of
multiple executions.

• Clear Screen at Method Call. Clear the screen automatically each time
BlueJ starts up a method. This is often the preferred option.

• Record Method Calls. Show all methods which have been invoked from
BlueJ.

• Save to file... Open a dialog box to allow all output to be saved in a text
file.

1.7.2.3 The BlueJ Debugger

A debugger is a tool designed to help the programmer locate the source of a
logic error in the program. A debugger will not tell you where to find a bug,
nor will it correct the mistake for you; this is the programmer’s job. With a
debugger, the programmer can step throught the statements of a program, one
statement at a time, while watching the values of variable change. This kind of
tool is often essential in diagnosing an error. Debuggers are used at runtime,
not at compile time.

To start up the debugger, open a BlueJ Editor window, and click the mouse
in the left margin (on a line number). You should see a red stop sign appear;
this is known as a break point. When execution reaches this point, it will pause
and wait for you to direct the debugger to continue execution, either single-step,
or at full speed.

More details on the use of the BlueJ debugger are provided in chapter 8.

20CHAPTER 1. JAVACLASSES, OBJECTS, OBJECTDIAGRAMS ANDMETHODS

1.7.2.4 The BlueJ Codepad and inspections

The BlueJ Codepad is in the lower right corner of the project window. The
Codepad can be used to execute small code snippets to see how they work.
BlueJ will invoke the compiler and runtime environment to evaluate expressions
as you enter them in the Codepad. Figure 1.7 shows the expression 2 + 3 in
the Codepad, along with its result, 5. It is possible to instantiate classes in the
Codepad and inspect the objects which are created.

Any object on the object bench (lower left corner) can be inspected by
right-clicking on the object and selecting inspect. You will see the values of all
fields; if any are references to objects, you can select the reference and inspect
the object to which it refers.

1.7.3 Exercises

1. What is the full name of the source file for the University class?

2. What will be the name of the output file when compiling the University
class?

3. True or False: If the compiler produces no error messages, your program
must be correct.

4. Which of the IDEs mentioned in this section have a debugger?

1.8 Constructors and objects in the GridWorld
case study

1.9 Projects

1. Define a class named Course which is to store information on a university
course. Each Course object should store:

• A course title (a String)

• The number of credits for the course (an int)

• The name of the the prof teaching the course (a String)

• Course level – "Grad" or "Undergrad"

Your class should have public methods which provide access to each of the
fields and public methods which allow changes to each of the fields. Your
class should have two constructors, one with three parameters and one
with four parameters; the constructor with three parameters should as-
sume the course is an undergrad course. Each constructor should initialize
all four fields.

Test your solution:

1.9. PROJECTS 21

(a) Compile the class; it should compile without error messages

(b) Instantiate the Student class (i.e. create a Student object) using the
constructor with three parameters.

(c) Instantiate the Student class (i.e. create a Student object) using the
constructor with four parameters.

(d) Inspect both objects (if your IDE will permit this) and make sure
the values of the fields are correct.

Chapter 2

Program Elements and
Methods (revisited)

2.1 Data types

Java permits several kinds of data for use in a program. As described in chap-
ter 1, each data value can be represented by a sequence of bits (0’s and 1’s). In
this section we will explore some of the primitive data types available. In each
case we will take a quick peek at its binary representation.

All data types can be classified as either primitive or reference types (refer-
ence types are also known as object types). An easy way to distinguish these is
that all pirmitive types begin with a lower-case letter, whereas reference types
begin with an upper case letter (because they are class names). Examples of
data types are shown in Figure 2.1 In this section we explore some of the prim-
itive types, and a few reference types.

Primitive types Reference types
int String
float Student
double System
char
boolean
byte
short
long

Figure 2.1: Examples of data types. All primitive types begin with a lower-case
letter. All reference types begin with an upper-case letter.

22

2.1. DATA TYPES 23

2.1.1 Whole numbers: int

One of the simplest primitive data types, int, is used to represent (positive or
negative) whole numbers. Possible values that can be represented by an int are
124, 0, -9833, and 248888. Note that 2.43, 0.05, and even 3.0 are not ints. int
values do not contain a decimal point.

Figure 2.2 shows how the values -8 through +7 can be represented using
only 4 binary digits. (These are the only values that can be represented with
4 bits, because there are 24 = 16 different patterns of four bits.) This is called
twos complement representation. Note that:

• There are more negative numbers than there are positive numbers.

• All negative values begin with a 1.

• If a value begins with 0, it may or may not be positive.

• Odd numbers end with a 1, and even numbers end with a 0.

• -1 is represented by all ones. This makes sense; consider an automobile
odometer of a new car (circa 1970), initially at 000000. If you back up the
car one mile, the odometer will read 999999.

• You can add and subtract values, and throw away the bit carried out of
the high order digit.

0101 = +5

+1110 = -2

0011 = +3

In Java, the int data type is actually 32 bits in length, which places an upper
and lower bound on the magnitude of an int.

2.1.2 Other numbers: float and double

In programs where we need to work with numbers other than whole numbers,
or with numbers that are very large or very close to zero, there are two data
types available: float and double. Examples of floats (actually doubles) are:
2.43, 0.001, -34334.1, and 3.0

With these data types we must include the decimal point. It is also possible
to specify very large numbers and numbers that are very close to zero, using a
notation similar to the scientific notation used in your science classes. A value
can include an exponent of 10, written after an e or E:

2.04e5 = 2.04x105 = 204000
6.02e23 = 6.02x1023 (a very large number)

24 CHAPTER 2. PROGRAM ELEMENTS AND METHODS (REVISITED)

int value binary

-8 1000

-7 1001

-6 1010

-5 1011

-4 1100

-3 1101

-2 1110

-1 1111

0 0000

+1 0001

+2 0010

+3 0011

+4 0100

+5 0101

+6 0110

+7 0111

Figure 2.2: Representation of int values using a 4-bit word.

-1.0e-53 = −1.0x10−53 (very close to zero)
24.03E-2 = 24.03x10−2 = 0.2403
Note that:

• Each value consists of two parts, which we call the mantissa and exponent.

• These two parts are separated by an e or E.

• The mantissa and exponent can each be positive or negative.

• The exponent implies an exponent of 10.

• If the exponent is positive, slide the decimal point to the right the given
number of places.

• If the exponent is negative, slide the decimal point to the left the given
number of places.

The data type double is the same as float, but it permits more precision. We
will generally use double rather than float, simply because the cost (in memory
or processing time) is not excessive. Constant values, such as 1.3e-2, are actually
stored as doubles.

2.1.3 Logical values: boolean

Perhaps the simplest primitive data type is boolean. There are only two boolean
values: true and false.

This data type will be used extensively in chapters 3 and 4.

2.1. DATA TYPES 25

char value binary decimal

’A’ 01000001 65

’B’ 01000010 66

’C’ 01000011 67

’Z’ 01011010 90

’a’ 01100001 97

’b’ 01100010 98

’z’ 01111010 122

’0’ 00110000 48

’1’ 00110001 49

’2’ 00110010 50

’9’ 00111001 57

’\$’ 00100100 36

’\#’ 00100011 35

Figure 2.3: ASCII codes for some common characters.

2.1.4 Character values: char

We will need to work with data other than numbers in our programs, specifically
data made up of alphabetic characters and other characters (such as $, %, +,
...). Any character which can be typed on the keyboard (and other characters)
can be represented by the data type char. Examples of chars are ’a’, ’T’, ’8’,
’*’, ’ !’. Note that each value is enclosed in single quote marks. Figure 2.3 shows
how these data values are represented in binary using an 8-bit code known as
ASCII (American Standard Code for Information Interchange). When it became
necessary to accommodate other alphabets, a 16-bit code, known as Unicode
was introduced. ASCII is a sub-code of Unicode.

Note in Figure 2.3 that:

• The codes for numbers are smaller than the codes for upper-case letters,
which in turn are smaller than the codes for lower-case letters.

• The codes for upper-case and for lower-case letters are contiguous, i.e. ’a’
is ’b’-1, and ’b’ is ’c’-1, etc.

• If you subtract the code for a ’0’ from the code of any numeric digit, you
get that digit’s int value: ’7’ - ’0’ = 55 - 48 = 7

2.1.5 Strings of characters: String

Normally when working with character data, we wish to group several char-
acters into a single entity, known as a String. Examples of String data are
”joe”, ”dataSet314”, and ”3a09d	aw”. Note that the characters of a String
are enclosed in double quote marks. Each String may contain any number of
characters from the keyboard.

26 CHAPTER 2. PROGRAM ELEMENTS AND METHODS (REVISITED)

String length

"joe j" 5

"jim" 3

"jo" 2

"j" 1

"" 0

’j’ This is a char, not a String

’jo’ This is a mistake, a char must consist of

exactly one character

Figure 2.4: Examples of Strings and chars, showing the length of each String

Character to be Escape Example
included sequence
double-quote \" "Title: \"Pygmalion\", Shaw"

newline \n "line break \n here"

tab \t "\tcol1 \tcol2 \tcol3"

backslash \\ "\\root\\directory\\filename"

Figure 2.5: Escape sequences are used to include special characters in a String

The String data type is a reference type, not a primitive type (it begins
with an upper-case letter). As shown in Figure 2.4:

• each String has a length

• a space character counts as one of the characters in a String

• the length of a String can be 0

How can we include the double-quote character in a String constant? We
use what is called an escape sequence, using the backslash character:
"She said \"hi\" to me"

The escape chracter can also be used to quote a newline character (’\n’) or
a tab character (’\t’) as shown in Fig 2.5

Finally, we should be able to include the backslash in a String.

2.1.6 Other reference types

Because we have defined a class named Student, this may also be used as a
data type (it is a reference type). Thus there can be any number of data types,
corresponding to classes we have defined. Moreover, we have access to thousands
of classes that others have defined and can use them as data types. These classes
are available in what is known as the Java class library, and String is just one
example of the classes available there.

2.1. DATA TYPES 27

2.1.7 Exercises

1. Having defined Student as a class, can Student be used as a type? If so,
would it be a primitive type or a reference type?

2. Refer to Figure 2.2.

(a) Show a similar table for 5-bit words. (Hint: the value of zero is
00000).

(b) How many different numbers can be represented with 5 bits?

(c) What is the largest positive number that can be represented with 5
bits?

(d) What is the smallest negative number that can be represented with
5 bits?

3. Complete the following table:

word size number of largest positive smallest negative
(bits) different values value value
4 16 7 -8
5 ? ? ?
8 ? ? ?
16 ? ? ?
32 ? ? ?
64 ? ? ?
n ? ? ?

Hint: Sometimes it is easier to show a number as a power of 2.

4. What are the primitive types representing whole numbers which corre-
spond to the word sizes 8, 16, 32, 64, respectively? Hint: There are 8 bits
in a byte.

5. Write Avogadro’s number as a Java constant.

6. Arrange the following constants in order from smallest to largest: 99.0,
1405.3e-12, 1e2, -999.3e45

7. What is the length of each of the following Strings?

(a) "elephant"

(b) "my small cat"

(c) "$*&#@!("

(d) "x"

(e) ""

8. What is the value of each of the following?

28 CHAPTER 2. PROGRAM ELEMENTS AND METHODS (REVISITED)

Operator Meaning Example Result
+ Addition 7 + 4 11
− Subtraction 7− 4 3
∗ Multiplication 7 ∗ 4 28
/ Division (quotient) 7/4 1
% Mod (remainder) 7%4 3

Figure 2.6: Common arithmetic operations

(a) ’8’ - ’3’

(b) ’8’ - ’0’

(c) ’7’ - ’0’

(d) ’6’ - ’0’

(e) ’f’ - ’b’

(f) ’a’ - ’z’

2.2 Operations and expressions

Java statements make extensive use of operations (such as add and subtract)
and expressions (such as (a + b) − 3). But there are many more operations
available. This section will introduce some of the more common operations.

2.2.1 Arithmetic operations

The most common arithmetic operations are listed in Figure 2.6.
As an example of an operation, 3 + 4 would compute the value 7. If either,

or both, operands of an operation are floating point (i.e. float or double),
then a floating point operation is performed, producing a floating point result,
not an int result. In many cases this will appear to have no effect. For example,
3 + 4 produces the int result 7, but 3.0 + 4 produces the double result 7.0.

This behavior is most evident with division. Division of ints must produce
an int result, with no decimal places. Therefore, 7/4 produces the int result 1,
not 2, nor 1.75. Decimal places are truncated.

The modulus (or mod) operation, designated, perhaps surprisingly, by the %
operator, has nothing to do with percentages. It should be applied to ints only,
and the operation a%b produces as a result the int remainder when a is divided
by b. Mathematically, integer division has two results: a quotient (obtained by
the / operator, and a remainder (obtained by the % operator).

Examples of division and mod operations are shown in Figure 2.7.

2.2.2 String operations

Strings of characters can also be manipulated with operations. The simplest
String operation is called concatenation and is designated with a + operator.

2.2. OPERATIONS AND EXPRESSIONS 29

Example Result type of result remarks
15/8 1 int decimal places are truncated
15/8.0 1.875 double at least one operand is double
15.0/8 1.875 double at least one operand is double
15%8 7 int remainder after division
0%5 0 int
1%5 1 int
2%5 2 int
3%5 3 int
4%5 4 int
5%5 0 int
6%5 1 int
7%5 2 int
10%5 0 int mod serves as a circular counter

Figure 2.7: Some examples of division and mod operations

The + operator in this case does not mean addition; it means concatenation.
When an operator can take on different meanings, depending on its operands,
we say that the operator is overloaded. The arithmetic operators were already
overloaded because the operation could be either an int operation or a floating
point operation, depending on the types of the operands.

In the case of strings, concatenation allows us to form a new String from
two smaller strings:

• ”john” + ”son” produces the result ”johnson”

• ”no” + ”thing” produces the result ”nothing”

• ”no” + ” thing” produces the result ”no thing”

• ”john” + ” ” produces the result ”john ”

• ”john” + ”” produces the result ”john”

• ”%f*!3” + ”321” produces the result ”%f*!3321”

Recall that a space character counts as a character in a String, just like any
other character that you find on the keyboard. Also the String ”” represents a
String whose length is 0 (sometimes called a null String, though we will not do
so to avoid confusion with the null reference)

When one of the operands of the + operator is a String, but the other
operand is not a String, the non-String operand is automatically converted to a
new String, which is then used as the operand for the concatenation:

• 23 + ”skiddoo” produces the result ”23skiddoo”

• ”skiddoo” + 23 produces the result ”skiddoo23”

30 CHAPTER 2. PROGRAM ELEMENTS AND METHODS (REVISITED)

• ”17” + 23 produces the result ”1723”

• 17 + ”23” produces the result ”1723”

• 17 + 23 produces the result 40

The String class is part of the Java Class Library, and it provides us with a
multitude of features with which we can manipulate strings. To see the complete
documentation for the String class, point your web browser to a current version
of the API for the Java class library (docs.oracle.com/javase/7/docs/api).
We now give a few of the more useful operations on Strings. These are all
methods in the String class, and can be called by attaching them to any String
(which we call this String).

• int length() - returns the length of this String as an int.

• char charAt(int index) - returns the char at the given position of this
String. The first character is at position 0.

• int indexOf(String str) - returns the position of the first occurrence
of str in this String, or -1 if not found.

• String substring(int begin, int end) - returns a part of this String,
beginning with the character at position begin, and ending with the char-
acter at position end - 1.

• String substring(int begin) - returns a part of this String, beginning
with the character at position begin, and and continuing to the end.

• String toUpperCase() - returns a new String in which all lower-case
letters of this String have been converted to upper-case.

• int compareTo(String otherString) - returns a positive int if this String
follows otherString alphabetically, returns a negative int if this String
precedes otherString alphabetically, and returns 0 if the this String is
equal to otherString.

Examples of these methods are shown in Figure 2.8.

2.2.3 Arithmetic Expressions

Several operations may be combined into a single expression using parentheses
as needed to indicate the order of operations. Some examples of expressions are
shown in Figure 2.9.

The concept of expression is so fundamental to java programming, that we
give a more formal and precise definition for expressions involving ints here, in
which expression is abbreviated as expr :

An expr may be a:

1. number

2.2. OPERATIONS AND EXPRESSIONS 31

Method signature Example Result
int length() "and how".length() 7

char charAt(int index) " and how".charAt(5) ’h’

int indexOf(String str) "jonson".indexOf("on") 1

"jonson".indexOf("on.") -1

String substring(int begin, int end) "and how".substring(4,7) "how"

String substring(int begin) "and how".substring(2) "d how"

String toUpperCase() "AnD HoW23!!".toUpperCase() "AND HOW23!!"

int compareTo

(String otherString) "john".compareTo("sam") a positive int
"john".compareTo("johnson") a negative int
"john".compareTo("john") 0

"John".compareTo("john") a negative int
"99".compareTo("100") a positive int

Figure 2.8: Examples of some String operations

Expresssion Value
4 ∗ 7 + 3 31
(4 ∗ 7) + 3 31
4 ∗ (7 + 3) 40

((7− 2) ∗ (7 + 3))/4 12
((7 − 2.0) ∗ (7 + 3))/4 12.5

Figure 2.9: Examples of arithmetic expressions

32 CHAPTER 2. PROGRAM ELEMENTS AND METHODS (REVISITED)

3 4 7+() *

Figure 2.10: Applying the definition of expression to (3 + 4) ∗ 7

2. expr + expr

3. expr - expr

4. expr * expr

5. expr / expr

6. expr % expr

7. (expr)

We now suggest an exercise in which we apply the definition given above, to
determine whether a piece of code constitues a valid expression. We apply the
rules of the definition, one at a time, by putting a box around each expression
(or subexpression) noting that nothing is an expression until there is a box
around it. Figure 2.10 shows how the definition can be applied to the expression
(3 + 4) ∗ 7. Note that each box represents a subexpression, and shows which
rule of the definition is applied.

Note that our definition of expr involves the word expr. We call this a
recursive definition, and this is valid and legitimate as long as:

• At least one rule does not involve the usage of expr. This is called the
base case.

• Rules that use the word expr contain other text as well. I.e. a rule should
not define an expr to be merely an expr.

It is interesting to note that any precise definition of expression must be
recursive. This results from the fact that an expression is inherently recursive.
If you continue to study Computer Science, you will learn the importance of
recursion.

A better version of Figure 2.10 is shown in Figure 2.11. Here we show the
rule number from the definition of expression each time a rule is applied with a
box. For example, rule 2 of our definition is:

2. expr + expr
Thus, in Figure 2.11 there is a small number 2 in the upper right corner of the
subexpression, 3 + 4.

Another example is shown in Figure 2.12, in this case for the expression
3+4 ∗ 7. Here we note that there is an alternate solution, shown in Figure 2.13.

This is a serious problem. There appear to be two different ways of applying
the rules of our definition. The solution shown in Figure 2.12 suggests that 3+4

2.2. OPERATIONS AND EXPRESSIONS 33

3
1

4
1

7
1+

2

()

7

*

4

Figure 2.11: Include rule numbers from the definition of expression when ap-
plying the definition to (3 + 4) ∗ 7

3
1

4
1

7
1+

2

*

4

Figure 2.12: Applying the definition of expression to 3 + 4 ∗ 7

is a subexpression, and that therefore the addition is done before the multipli-
cation. On the other hand, Figure 2.13 suggests that 4 ∗ 7 is a subexpression,
and that therefore the multiplication is done before the addition.

These two solutions produce different results for the same expression, 49 in
the first case and 31 in the second case. This is not good; an expression must
have a single consistent value. The reason for this problem is that our original
definition is ambiguous. This means that it allows for different interpretations
of the same expression.

One way to resolve this ambiguity is with precedence rules :

• Multiplication, division, and mod always take precedence (are performed
first) over addition and subtraction. For example 3 + 4 ∗ 7 = 3 + (4 ∗ 7),
as shown in Figure 2.12. If one wishes to do the addition first, one must
use parentheses: (3+4)∗ 7. We now see that Figure 2.12 does not suggest
a true interpretation of the given expression, but that Figure 2.13 does
suggest a true interpretation.

• If there is more than one operation at the same level of precedence, they
are executed left-most first. For example, 9 − 4 − 2 = (9 − 4) − 2 and
12/2/3/2 = ((12/2)/3)/2

2.2.4 Exercises

1. Show the value and type of each of the following expressions.

(a) 2 * 8.0

3
1

4
1

7
1

*
4

+

2

Figure 2.13: An alternate solution when applying the definition of expression
to 3 + 4 ∗ 7

34 CHAPTER 2. PROGRAM ELEMENTS AND METHODS (REVISITED)

(b) 17 / 5

(c) 17 % 5

(d) 17 / 5.0

(e) 234884173 % 10

(f) "some" + "body"

(g) ("some" + "body").length()

(h) "somebody".charAt(2)

(i) "SomeBody".toUpperCase()

(j) "somebody".indexOf ("me")

(k) "somebody".indexOf ("Me")

2. Find the value of each arithmetic expression shown below. They should
all be ints.

(a) 4 + 2 * 3

(b) (4 + 2) * 3

(c) 8 / 2 / 3

(d) (9999 / 10000) * (192 - 383)

(e) 94528 % 5 + 9 / 10

3. Draw boxes around each of the expressions in the previous problem, as
shown in Figure 2.11. Show the rule number applied in each box, and be
sure to obey the Java precedence rules.

2.3 Declaration and initialization of variables

In Java a variable may be used to store, or remember, a value. A variable may
be a single letter or it may consist of many letters, underscore characters, and/or
numeric digits, but it must begin with a letter. Some examples of variables are
x, total, birthDay2014, sum total. Note that:

• These are NOT strings (they are not in double quote marks).

• As usual, these are case sensitive, so the variable sumOfProducts is dif-
ferent from the variable sumofproducts.

• The compiler will permit a variable to begin with an upper-case letter,
but we will not do this (only class names should begin with an upper-case
letter).

2.4. ASSIGNMENT OF VALUES TO VARIABLES 35

2.3.1 Declaration of variables

Before a variable can be used, its type must be declared:
type variable− list;

For example, the declarations:

int x, sum, result;

String name;

mean that the three variables x, sum, and result all will be used to store int
values, and the variable name will be used to store a (reference to a) String.

2.3.2 Iniitialization of variables

Before a variable can be used in an expression it must have a value. We can give
a value to a variable in the same statement which declares the variable. This is
known as initialization, and the format is:

type variable = expression;
Examples of variable initializations are shown below:

int x=0;

double sum=0.0, tolerance=0.0001;

boolean done=false, ok;

String name = "joe";

The above gives initial values to the variables x, sum, tolerance, done, and
name but it leaves the variable ok uninitialized.

2.3.3 Exercises

1. Which of the following are not valid names for variables?

(a) flummox33foo22

(b) 3x

(c) var(ok)

2. Show how the variables salary, tax, and fica can all be declared to
be of type double and initialized to the values 99,000, 345.53, and 150,
respectively, all in one statement.

2.4 Assignment of values to variables

Variables are used to store, or remember, values. A value can be assigned to a
variable using the assignment operator, =, as shown below:

variable = expression
For example, result = 3 + 4 ∗ 7 means that the value 31 will be stored in the
variable result. The assignment operator can be summarized:

36 CHAPTER 2. PROGRAM ELEMENTS AND METHODS (REVISITED)

1. The expression on the right side of the operator is evaluated.

2. The value of the expression is stored in the variable.

3. The type of the expression should match the type of the variable. If they
are of different types, in some cases the expression can be converted to
the appropriate type (as described in the next section).

The = operator does NOT mean equals and should not be read that way.
We suggest reading it as ’is assigned the value of’ or ’gets the value of’. Here
are a few examples to clarify the requirement that types match:

int x = 8;

String city = "Boise";

x = x + city.length(); // x is now 13

city = "New York";

x = city; // ERROR - types do not agree

city = 18; // ERROR - types do not agree

18 = x; // ERROR - left operand must

// be a variable

We can now add another rule to our definition of expression:

An expr may be: 8. variable.
This means that we can include a + b ∗ 28 as a valid expression. When it is
evaluated, the current values of a and b are used. (Values should have been
assigned to these variables before attempting to use this expression)

We are now able to form an executable Java statement. A Java statement
may be:

variable = expression;

Java statements are written sequentially, and are executed in the order in
which they are written. We will have a more extensive definition of statement
in chapter 3. Figure 2.14 shows an example of a series of statements, along with
the values stored in variables as the statements are executed. Note that:

• The value of a variable can change as the statements are executed.

• When an expression involving variables is evaluated, the current value of
each variable is used.

• The statement x = y; does NOT imply a comparison of the value of x
with the value of y. It means find the value of y and store that value into
the variable x.

Students are often confused by the sequential nature of expressions and
statements, but careful attention to these examples should help alleviate the
confusion.

2.4. ASSIGNMENT OF VALUES TO VARIABLES 37

Program code Value of a Value of b Value of c
int a,b,c;
a = 3; 3
b = 2; 3 2
c = a+b*2 3 2 7
a = b; 2 2 7
c = (a+b)*5 2 2 20
b = 8; 2 8 20
b = a; 2 2 20
b = b+1; 2 3 20

Figure 2.14: Examples of assignment statements, and their effect on variables

2.4.1 Type conversion in assignments

An int may be assigned to a float or double variable:

int total, count;

double average;

total = 10;

count = 3;

average = total / count;

In this example, the division produces an int result, 3, which is then con-
verted to double 3.0 when assigned to the variable average.

The compiler will not allow a float or double to be assigned to an int:
total = 3.0; The compiler will produce an error message: ”Possible loss of

precision” even though the value being assigned is a whole number.
The programmer can assure the compiler that this possible loss of precision

is acceptable by using a cast, in which case the decimal places are truncated:
total = (int)3.9;
The variable total is assigned the int value 3

A char may also be casted to yield its numeric ASCII code:

char ch = ’x’;

int code = (char) ch; // code is 120

2.4.2 Type conversions and initializations

At this point we caution the student to be careful when initializing variables;
consider the following example:

double x = 5 / 3;

The intent here is to initialize the variable x with the value 1.6666666667,
the result of the division. However this is not what happens. The division
will be an int division because both of its operands are ints, producing an int

38 CHAPTER 2. PROGRAM ELEMENTS AND METHODS (REVISITED)

s1

Student

name ”joe”

ssn ”121-33-8493”

gpa 0.0

Figure 2.15: An object diagram showing a variable storing a reference to a
Student object

result: 1 which is then converted to 1.0 when assigned to the variable x. There
is an important lesson to be learned here: the components of a statement are
executed separately and sequentially; they are not executed ’all at once’.

2.4.3 Assignment of references

The assignment operator will always evaluate the expression on the right side,
and assign that value to the variable on the left side. This is straightforward
for variables of primitive type. However, for variables of reference type we need
to take a careful look at the behavior of the assignment operator.

Recall that a variable of reference type does not store the actual data; rather
it stores a reference to the data. For example, the declaration

int gpa;

means that gpa stores an int; however the declaration
Student s1;

does not mean that s1 stores a Student. Rather, it means that s1 stores a
reference to a Student (initially a null reference). We can change that reference
as shown below: s1 = new Student ("joe", "121-33-8493");

Figure 2.15 shows the object diagram which would result. The reference stored
in the variable s1 is actually a memory location for the Student object to which
it refers, and this is depicted in the diagram with an arrow.

Suppose we declare another Student variable:
Student s2;

Now, however, instead of creating a new Student object, we use the assignment
operator thus:

s2 = s1;

This simply means to copy the reference which is in s1 into s2. Consequently
the variables s1 and s2 will be storing the same reference, and will refer to the
same object, as shown in Figure 2.16 .

This becomes interesting if we were to make a change to the data:
s1.setName("jim");

changing the name of the Student. The result is shown in Figure 2.17 . We
then access the name of Student s2:

System.out.println ("The name of s2 is " + s2.getName());

which will print ”jim”. Since s1 and s2 refer to the same object, a change to

2.4. ASSIGNMENT OF VALUES TO VARIABLES 39

s1

Student

name ”joe”

ssn ”121-33-8493”

gpa 0.0
s2

Figure 2.16: An object diagram showing the effect of assignment of a reference
to a variable: s1 = s2;

s1

Student

name ”jim”

ssn ”121-33-8493”

gpa 0.0
s2

Figure 2.17: An object diagram showing the effect of a change to the variable
s1. The name of s2 is now "jim".

the object referred to by s1 will also change the object referred to by s2 even
though we never made an explicit change to the variable s2.

2.4.4 Exercises

1. Show the final values of the variables x,y,z after the code shown below
has executed.

int x = 3,y,z;

y = x + 2;

z = y;

x = 14;

y = y + 1;

2. Show the final values of the variables x and i after the code shown below
has executed.

int i;

double x;

i = 4;

x = i;

i = i + 1;

3. Which of the statements shown below will cause a syntax error from the
compiler?

40 CHAPTER 2. PROGRAM ELEMENTS AND METHODS (REVISITED)

int i = 7;

double x = 2.5;

double y = 2.0;

i = x;

i = y;

x = i;

4. Show the final values of the variables i,j and y after the code shown
below has executed.

int i = 7;

double x = 2.99, y = 11 / 12 * 2;

i = (int) x;

j = ((int) ((3.5 / 4) * 4)) % 7

5. Refer to the University class introduced in the exercises from chapter 1.

University u1, u2, u3;

u1 = new University ("Slippery Rock",1000);

u2 = u1;

u2.setSize(900)

System.out.println ("Size of u1 is " + u1.getSize());

(a) What will be printed by the code shown here?

(b) Draw an object diagram showing the values of u1, u2, and u3 after
the code shown here is executed.

2.5 Method definitions, signatures, and invoca-

tion

We introduced the notion of a Java method in chapter 1. Methods, more prop-
erly known as instance methods, are used to define the behavior of objects in a
class.

2.5.1 Method definition

A method definition consists of an API, a signature and a body.
The API (Application Program Interface) is ignored by the compiler, but

is very useful to the programmer. It defines the purpose of the method, what
it expects from the calling method (preconditions), and what it produces as a
result, or what changes it makes to objects (postconditions). Hence the API
provides all information needed for someone to write a call to the method. The
API begins with / ∗ ∗ and ends with ∗/. This API is processed by a utility
program known as javadoc which produces html for a nice looking description
of the method’s purpose, preconditions, and postconditions in the form of a web
page.

2.5. METHOD DEFINITIONS, SIGNATURES, AND INVOCATION 41

/** Calculate this student’s gpa.

* Precondition: Both parameters are positive.

* Postcondition: This student’s gpa is set

* as the result of dividing

* the grade points by the credits

*/

public void calculateGPA(int gradePoints, int credits)

{ double creditsAsDouble;

creditsAsDouble = credits;

gpa = gradePoints / creditsAsDouble;

}

Figure 2.18: Method which calculates, and sets, this Student’s gpa, given total
number of grade points and total number of credits

2.5.2 Method signature and body

The method signature consists of:

1. Visibility, i.e. public or private: Private methods can be invoked only
from another method in the same class, whereas public methods may be
invoked from a method in any class.

2. Return type: This is the type of the explicit result of the method. In this
case we think of the method as being similar to a mathematical function
which produces a single result. If the method produces no result, the
return type is void.

3. Method name: The name of the method, as with variables, may consist of
1 or more alphabetic and/or numeric characters, but it must begin with
an alphabetic character. Note that the method name is case sensitive.

4. Parameter list: 0 or more variables, with types specified, separated by
commas. The list must be enclosed in parentheses, even if there are no
parameters. We call these parameters formal parameters to distinguish
from actual parameters, described below. Parameters are used to pass
data into a method.

The method body consists of Java statements, such as assignment state-
ments, all enclosed in one set of curly braces.

Figure 2.18 shows an example of a method which could be included in the
Student class. The purpose of this method is to calculate, and change, the
student’s gpa, given the total number of grade points, and the total number of
credits.

Note that we do not wish to do a floating point division in this method, so
we assign the int value of credits to a double variable, creditsAsDouble.
Then the division is a floating point division, producing a floating point result.

42 CHAPTER 2. PROGRAM ELEMENTS AND METHODS (REVISITED)

2.5.3 Method invocation

How and when are methods executed? Generally, they are called, or invoked,
from another method. In the method call, the name of the method being called
is attached to an object on which the method is being invoked. Also, actual
values of parameters are included in the parameter list. These actual parameters
may be constants, variables, or more complex expressions, but their types must
correspond to the types of the corresponding formal parameters in the method
signature.

As an example, we could invoke the calculateGPA method in the Student
class from a method in some other class as shown below:

Student s1;

int calculus, comp, stats;

calculus = 3;

comp = 4;

stats = 2;

s1 = new Student ("jim", "240-33-4321");

s1.calculateGPA (calculus*4 + comp*3 + stats*2,

4 + 3 + 3);

When a method is invoked:

1. The actual parameters, which are expressions, are evaluated, and these
values are copied to the corresponding formal parameters in the method
definition.

2. The statements in the method being invoked are executed in sequential
order.

3. When the final statement has been executed (or a return statement is
executed), control returns to the calling method.

Be sure that actual parameters in a method call correspond in number and
type with formal parameters in the definition of the method being called. Fig-
ure 2.19 illustrates some valid and non-valid method calls.

Also note that the following code is not correct:

Student s2;

s2.calculateGPA(20,6);

When the variable s2 is declared, its value is null, a reference which refers
to nothing. A Student has not been instantiated, and no valid value has
been assigned to the variable s2. This will produce a run-time error called a
nullPointerException, 1 meaning that your program will come to a crashing

1It is unfortunate that this exception is named nullPointerException in the java class
library, rather than nullReferenceException Other programming languages use pointers which
are similar to references, but it is possible to do arithmetic with pointers.

2.5. METHOD DEFINITIONS, SIGNATURES, AND INVOCATION 43

Method signature Method invocation Remarks
public void
meth(int a, char b) s1.meth(3); Incorrect: there are two formal parameters

and only two actual parameters
s1.meth(3, 4); Incorrect: The type of the second actual parameter

must be char, to agree with the second formal
parameter

s1.meth(3,’b’); ok
x = s1.meth(3,’b’); Incorrect: The method is a void method

and has no explicit result for assignment to x.
public int
evenOdd (int a) int result;

result = evenOdd(17); ok
evenOdd(17); The compiler will accept this, but it is probably

not what is desired; the explicit result is discarded.

Figure 2.19: Examples of correct and incorrect method calls. Actual and formal
parameters must have a one-to-one correspondence. Void methods have no
explicit result.

halt. This is to be avoided. In general, when your program halts unexpect-
edly with a nullPointerException, check the variable to the left of the dot. It
should not be null; make sure you have assigned a value to it.

Figure 2.20 shows a method named getRoundedGPA which will return the
student’s gpa, rounded to two decimal places. It may be invoked from another
class:

double roundedGPA;

Student s1;

s1 = new Student ("jim", "123-33-3222");

... Statements establishing a GPA for s1, not shown here

roundedGPA = s1.getRoundedGPA();

Note that:

• The method getRoundedGPA returns an explicit result, which is then
stored in the variable roundedGPA.

• The method getRoundedGPA has no parameters but the parentheses are
still needed, both in the method definition and in the method call.

• When the method’s return statement is executed, the method terminates
execution (even if there are more statements after the return statement),
and the explicit result of the method is available to the calling method.

44 CHAPTER 2. PROGRAM ELEMENTS AND METHODS (REVISITED)

/** Postcondition: return this Student’s gpa,

* rounded to the nearest one

* hundredth.

*/

public double getRoundedGPA()

{ int gpaAsInt;

gpaAsInt = (int) (gpa * 100 + 0.5);

return gpaAsInt / 100.0;

}

Figure 2.20: Method which returns a Student’s gpa, rounded to the nearest
hundredth

2.5.4 Methods From the Java Class Library

2

There are many methods which are predefined and ready for use, in the Java
class library. Here we discuss a few methods in the Math class. These methods
all happen to be static methods, otherwise known as class methods. To invoke
a class method it must be preceded by the name of its class.

To find the absolute value of a number, use the abs method. Its parameter
may be an int or a double, in which case it returns an int or a double,
respectively.3 For example, Math.abs(-3) would return 3, and Math.abs(12.05)

would return 12.05.

There is a method in the Math class which raise a number to a given power
(i.e. exponent). It’s name is pow and it is defined for double precision floating
point only.4 For example, Math.pow(4.0,3) would return 4.03 = 64.0.

Another method is used to find the (positive) square root of a number.
It is abbreviated sqrt. For example, Math.sqrt(16) would return 4.0 and
Math.sqrt(0.01) would return 0.1.

The Math class also has a method which will return a random floating point
value. It has no parameters and always returns a random double in the range
0.0 .. 1.0. For example, Math.random() might return 0.32803492. 5

These methods are summarized in Fig 2.21.

2.5.5 Exercises

1. Describe the error in each of the following method signatures:

2This section may be omitted without loss of continuity, but note that the methods de-
scribed here are in the AP subset of the Java language.

3Also available are float and long.
4 If provided with an int or float parameter it will automatically convert the parameter to

type double and will always return a result of type double.
5There are other useful random number methods in the java.util package (see chapter 5).

2.5. METHOD DEFINITIONS, SIGNATURES, AND INVOCATION 45

Method signature Example Result
int abs(int x) Math.abs(99) 99

double abs(double x) Math.abs(-9.09) 9.09

double pow(double base, Math.pow(-2.0, 3.0) -8.0

double exponent)

double sqrt(double x) Math.sqrt(100.0) 10.0

double random() Math.random() 0.771107

Figure 2.21: Examples of some class methods from the Math class

(a) public myMethod ()

(b) public int void myMethod()

(c) public void myMethod (x, y, z)

(d) int myMethod(double x)

2. Define a method for the Student class which will return the student’s gpa
as a percentage of 100. For example if the student’s gpa is 2.5, the result
should be "62.5 %". The name of the method should be gpaAsPct, and
it should have no parameters (don’t forget to include the API).

3. Define a method which could be included in any class to return the average
gpa of three students. The name of the method should be average3, and
there should be three parameters (all students).

4. Consider the following method definitions, which could be included in any
class:

/** Change the name of the given Student to "jim"

*/

public void meth1(int x, Student s)

{ x = x + 1;

s.setName ("jim");

}

/** This method is used to expose passing of

parameters.

*/

public void meth2()

{ int x = 7;

Student s1 = new Student ("joe", "999-99-9999");

meth1 (x,s1);

System.out.println ("x is " + x);

System.out.println ("name of s1 is " + s1.getName());

}

46 CHAPTER 2. PROGRAM ELEMENTS AND METHODS (REVISITED)

Show the what would be printed by a call to meth2()

Hints:

• The value of an actual parameter is copied into the corresponding
formal parameter. They are separate and distinct variables, even if
they have the same name.

• When a parameter is a reference type, the reference, not the object
to which it refers, is copied to the actual parameter.

2.6 Recursive methods

Methods can call themselves. These are called recursive methods, and the
concept is similar to our recursive definition of expression. We will take a more
careful look at recursive methods in chapter 3.

2.6.1 Exercises

1. In the definition of expr given earlier in this chapter, which of the rules
do not make use of the word being defined?

2. In the definition of expr, which of the rules do make use of the word being
defined?

2.7 Printing the output

Up until now we have considered computations that occur when a program
executes. At some point, however, we may wish our program to display in-
formation for the user. The way this is done can vary considerably. In most
modern applications a graphical user interface or GUI is used to display results
in a multitude of different forms. We will introduce GUIs in chapter 10, but for
now we will simply display plain text strings for the user to view. Depending on
the development environment you are using this could appear in a few different
ways:

• If using an IDE such as BlueJ, NetBeans, or Eclipse, the IDE will open
a window or pane in which the text is displayed. BlueJ calls this the
terminal window.

• If running the program from a unix or Windows command line, the text
will be displayed in that terminal window.

In any case, the output is produced by a print or println method in the
System class. Each of these methods has one parameter - a String. When calling
these methods, we must provide a String value. This can be a String constant,
a String variable, or any more complex expression which evaluates to a String.
Figure 2.22 shows some examples of calls to the print methods.

2.8. CONSTANTS AND CLASS VARIABLES 47

String name = "joe";

int total = 99;

Method call output
System.out.println ("hello"); hello

System.out.println (name); joe

System.out.println ("hello " + name); hello joe

System.out.print ("hello ");

System.out.println (joe); hello joe

System.out.println ("The total is " + total); The total is 99

Figure 2.22: Examples of calls to print methods

Note that the println method prints its output on a separate line, whereas
the print method does not. Students who have programmed in other languages
are cautioned that the print methods have just one parameter. Other languages
may utilize a sequence of expressions separated by commas, but not Java.

2.7.1 Exercises

1. Show what would be printed by the following code segment. Be careful in
regard to newlines.

int x = 3;

String str = "foo";

System.out.print (str + "bar");

System.out.println ("foobar");

System.out.println (x + 2 + " is the result.");

System.out.println ("The result is " + x + 2);

2.8 Constants and class variables

2.8.1 Constants

There are many cases where we need to use a value in a program repeatedly.
For example, in a mathematical application we may wish to use the value of Pi,
3.14159... in many parts of a class or method. It is best to use a named constant
in cases like this, as opposed to the actual value. This can be done with the
keyword final. A variable which is declared to be final can be initialized, but
can never be changed after its initialization. An example would be:

final int PI = 3.14159;

whereupon we would then use the variable PI instead of the number 3.14159
throught the scope of that variable. This has a few advantages:

• The program is easier to read and understand; presumably the name of
the variable provides a clue as to the meaning or intent of the value being
used.

48 CHAPTER 2. PROGRAM ELEMENTS AND METHODS (REVISITED)

• If the value is incorrect, it needs to be corrected in one place only, the
initialization of the constant.

For historic reasons constants are usually written in all upper-case letters,
and we will conform to this practice despite the fact that it contradicts our
convention that only class names begin with upper-case letters.

2.8.2 Class variables

We’ve seen that classes can have fields (also known as instance variables). Each
object of the class has its own copy of the values for those fields; these make
up the state of the object. In situations where all objects are to share the same
value for a field, we can make use of class variables. A class variable can be
declared with the static keyword. This means that there is only one copy of
the variable, shared by all objects of that class. Our Student class could have a
class variable to designate the maximum number of credits which can be taken
by any Student:

public static int maxCredits = 18;

This declaration would generally be placed with the other fields. A static field
is a class variable, and a non-static field is an instance variable. Since the field
maxCredits is public and not final, some other class (such as University) could
change its value, in which case all student objects would see the new value of
maxCredits.

A public class variable can be accessed from any other class, but the name
of its class needs to be specified:

System.out.println ("Max credits is " + Student.maxCredits);

2.8.3 Class constants

Constants and class variables are most often used together, as shown below:

public static final int MAX_CREDITS = 18;

The variable MAX_CREDITS is both a class variable (static) and a constant (final).
This is often referred to as a class constant. In this case all Student objects would
share it value, which can never be changed during execution of the program.

Many students confuse static with final, and understandably so, because
of the normal usage of ‘static’ in the English language – “Having no motion; at
rest”. The Java keyword static does NOT mean that the variable cannot be
assigned a new value.

There are many class constants in the Java class library, most notably the
constant PI in the class Math. We can use it as shown below:

double area = Math.PI * radius * radius;

2.9. COMMENTS AND READABILITY 49

2.8.4 Exercises

1. You are given the following class definition of MyClass (this class has no
constuctors, so the compiler supplies a default constructor which does not
initialize any of the fields):

public class MyClass

{ private int x = 3;

public static int var = 7;

public final int VAR = 8;

public static final int MAX = 99;

}

Which of the following statements in a method of some other class would
cause syntax errors?

MyClass mc = new MyClass();

mc.x = 4;

mc.var = 18;

MyClass.var = 9;

mc.VAR = 0;

MyClass.VAR = 9;

System.out.println (mc.MAX);

System.out.println (MyClass.MAX);

2.9 Comments and readability

It will soon become evident that programs can be arbitrarily complex, difficult
to read, and difficult to understand completely. Even if a program produces
correct output, its value is limited if people, including the original programmer,
find it difficult to read, understand, and make modifications. For this reason it
is extremely important that the programmer make efforts to explain and clarify
all aspects of the program.

2.9.1 Formatting a program

One way of clarifying a program is by formatting it in a readable way. Notice in
Figure 2.20 that the statements of the method are placed on separate lines. As
far as the compiler is concerned, these statements could be written on 1 line, or
any number of lines; Java is free format. However, it is in our best interest to
format the program in what we consider to be a readable style. We will discuss
this further in chapter 3.

Also notice that the statements in a method are indented. Again, this is not
required by the compiler, but we do it anyway to make the program easier to
read. In the next few chapters indentation becomes increasingly important.

50 CHAPTER 2. PROGRAM ELEMENTS AND METHODS (REVISITED)

2.9.2 Comments

Another way of improving the clarity of a program is to provide comments. Com-
ments are ignored by the compiler, but are helpful to programmers (including
the original programmer) trying to understand the program. Java allows for
two kinds of comments: single-line comments and mult-line comments.

Single-line comments begin with // and end at the end of the line. Some
examples of single-line comments are shown below:

// Calculate the gpa

gpa = gradePoints / credits; // This should be a floating point division

Note that a single-line comment can stand alone by itself on a line. It can
also be tacked on to a statement (or even part of a statement). It ends at the
end of the line.

Multi-line comments allow for a single comment to span across several lines.
A multi-line comment begins with /* and ends with */ as shown below:

/* Calculate the gpa by dividing

grade points by the total number

of credits. Be sure that this

is a floating point division.

*/

gpa = gradePoints / credits; /* Do NOT divide by zero! */

Be sure to include the */ which terminates the multi-line comment. If this is
omitted, the remainder of the program will be viewed as one long comment! It
should now be clear that the specifications of pre-conditions and post-conditions
(the API) in Figure 2.18 is really a special kind of multi-line comment; it begins
with /** instead of just /*.

A good programmer will include a liberal dose of comments throughout a
program. Rarely is a software project declared to be finished, complete, and
fixed. Rather, there will always be corrections, enhancements, extensions, etc.
Whether these modifications are to be made by the original programmer or
by a maintenance programmer, the comments will guide the way through the
existing code.

2.9.3 Exercises

1. Rewrite the following code segment to be more readable without altering
the meaning:

int sum = 0; double average; sum

=

first +

2.10. PROGRAMELEMENTS ANDMETHODS IN THE GRIDWORLD CASE STUDY 51

second + third; average =

((

double) sum

)/ 3; System

. out.println (

average)

;

2. Show what would be printed by the following code segment:

// int x = 3;

double x = 1, y = 2;

/*

y = 4; // x = y+3;

System.out.println (x + y);

*/

y = x / y; // x = 17;

System.out.println (x + y);

2.10 Program elements and methods in the Grid-
World case study

Chapter 3

Selection Structures

We have seen that the statements in a method are executed sequentially, in the
order in which they appear in the method definition. However, it is often that
we might wish to alter this flow of control. For example, we may wish to execute
a statement only if certain conditions are satisfied; or we may wish to skip over
a statement if certain other conditions are satisfied. For this purpose, Java
provides selection structures. We have one-way selection structures and two-
way selection structures, which permit us to execute statement(s) conditionally.
But first we need to discuss comparison operators and boolean operations.

3.1 Comparison operators

Java numbers may be compared with operators similar to those you’ve seen in
math courses. These operators operate on two numbers, and always produce a
boolean result: true or false. The six comparison operators are described in
Figure 3.1.

It is important to note that comparison for equality is a double equal sign,
==. Do NOT confuse this operator with the assignment operator which is a
single equal sign, =. a = b + c can change the value of a, but a == b + c can
not change the value of a.

operation returns
x == y true only if x is equal to y
x < y true only if x is less than y
x > y true only if x is greater than y
x <= y true only if x is less than or equal to y
x >= y true only if x is greater than or equal to y
x! = y true only if x is not equal to y

Figure 3.1: Definitions of the comparison operators

52

3.2. BOOLEAN OPERATORS 53

Also note that Java provides slightly different versions of the following com-
parison operators that you may have seen in your math courses: ≤,≥, 6= .

These comparison operators have lower precedence than the arithmetic oper-
ators. Hence, the expression 3 == 4 + 5 is the same as 3 == (4 + 5). The
addition is done before the comparison.

Comparison for equality (or inequality) may be applied to reference types
and to booleans:

myStudent == null // true only if myStudent stores a null reference

myStudent != null // compare for inequality

(x < 3) == false // same as x >= 3

3.1.1 Exercises

1. What is the value of each of the following (assume x has been declared as
an int variable)?

(a) 3 != 4

(b) -99 <= 3

(c) 7 - 7 == 2 / 3

(d) x = 3

(e) (2 < 5) == (3 > 5)

2. Rewrite the following expression more succinctly without changing its
meaning:

(x > 3) == (x < 3)

3.2 Boolean operators

In chapter 1 we exposed the boolean type. This type consists of only two values:
true and false. Do not think of these as strings of characters, nor as variables;
they are constants, in the same way that 23 and -302 are constant values of type
int.

3.2.1 AND, OR, NOT

Just as there are operations on numbers, there are operations on booleans. The
basic operations are or, and, and not. These operations are represented by the
operators ||, &&, and !, respectively, and are defined in Figure 3.2. Note that:

• The or operation produces a false result only when both operands are
false.

• The and operation produces a true result only when both operands are
true.

54 CHAPTER 3. SELECTION STRUCTURES

• The not operation is a unary operation; it has only one operand, to its
right. It produces as a result the logical complement of its operand.

Figure 3.3 shows some examples of logical statements in English to further
describe the meanings of these logical operations. These logical operations are
fundamental to computer science and will be used extensively in writing Java
programs.

Just as we had a formal definition of arithmetic expressions, we can provide
a similar definition for boolean expressions:

A boolExpr may be:

1. false

2. true

3. boolean variable

4. expr comparison expr

5. boolExpr || boolExpr

6. boolExpr && boolExpr

7. ! boolExpr

8. (boolExpr)

in which comparison represents any of the six comparison operators shown
in Figure 3.1, and expr is an arithmetic expression as defined in chapter 2.
Again we have a definition in which we use the word we are defining, boolExpr
in this case. As with arithmetic expressions a boolean expression is inherently
recursive, and consequently there is no other way to define a boolean expression.
An example of a boolean expression is:

!a || b && c

in which a, b and c are assumed to be declared as boolean.
Figure 3.4 and Figure 3.5 show how this boolean expression can be dia-

grammed as we did with arithmetic expressions in chapter 2. Once again we
have an ambiguous definition: there are at least two different ways of diagram-
ming the same expression.

This ambiguity is resolved as follows:

• ! not is executed before && and

• && and is executed before || or

As usual, parentheses may be used to effect the desired order of operations.
When you cannot remember these precedence rules, parentheses can be used
even if not needed.

3.2. BOOLEAN OPERATORS 55

The logical or operation is designated by the Java operator ||
x y x || y

false false false
false true true
true false true
true true true

The logical and operation is designated by the Java operator
x y x && y

false false false
false true false
true false false
true true true

The logical not operation is designated by the Java operator ! and is a unary
operation

x ! x
false true
true false

Figure 3.2: Definitions of the logical operations or, and, and not.

Statement true or false
This book is written in French or elephants have 6 legs false

This book is written in French or elephants have 4 legs true

This book is written in French and elephants have 4 legs false

This book is written in French and elephants have 4 legs false

This book is written in English and elephants have 4 legs true

This book is not written in French true

Figure 3.3: Examples of logical statements in English

a 3

b
3 c 3

!
7

&&
6

||
5

Figure 3.4: Applying the definition of boolean expression to: !a||b&&c

a 3

b
3 c 3

!
7

||
5

&&

6

Figure 3.5: An alternative application of the definition of boolean expression
to: !a||b&&c

56 CHAPTER 3. SELECTION STRUCTURES

We now see that Figure 3.4 represents the desired interpretation for the given
boolean expression. In other words,

!a || b && c

is the same as
((!a) || (b && c)

All three of these boolean operators have lower precedence than the com-
parison operators:

x < 3 || y == 0

is the same as
(x < 3) || (y == 0)

3.2.2 Short circuit evaluation

If b represents any boolean expression, then we have the following identities:

• true || b is always true

• false && b is always false

To see this look at Figure 3.2 and substitute true (or false) for the operand
x.

Java can make use of these identities to optimize the evaluation of boolean
expressions (and provide a convenience for the programmer). When evaluating
a boolean expression, the left operand of a logical operator is always evaluated
first. If the operator is an OR (||) and the left operand is true, the result must
be true; hence, there is no need to evaluate the right operand, and Java will
not attempt to evaluate the right operand. Likewise, if the operator is an AND
(&&) and the left operand is false, the result must be false; hence, there is no
need to evaluate the right operand, and Java will not attempt to evaluate the
right operand. This is called short circuit evaluation.

Note that this allows for an easy way to check, and avoid, possible run-time
errors:

student != null && student.getGPA() === 4.0

The call to student.getGPA() will cause a null pointer exception if student is
a null reference. But we avoid that error by checking for a null reference first,
and the right operand of the && is not evaluated.

The following would not work correctly:
student.getGPA() == 4.0 && student != null

because the left operand of the && is always evaluated first; in this case it would
cause a null pointer exception.

3.2.3 De Morgan’s Laws

There are other logical identities which, in some cases, can simplify boolean
expressions. Here we examine the two identities known as De Morgan’s Laws.
They can be expressed concisely, for boolean expressions x and y:

3.2. BOOLEAN OPERATORS 57

x y !(x && y) (!x || !y) !(x || y) !x && !y

false false true true true true
false true true true false false
true false true true false false
true true false false false false

Figure 3.6: Proof of De Morgan’s Laws

• !(x && y) = !x || !y

• !(x || y) = !x && !y

For example, the following two boolean expressions shown below are perfectly
equivalent:
! (salary < 100000 && status==FULL_TIME)

salary >= 100000 || status!=FULL_TIME 1

The second version is perhaps a little simpler, and therefore preferable, though
both versions would behave the same.

A proof of De Morgan’s Laws is shown as a truth table in Fig 3.6. A truth
table shows the evaluation of a boolean expression for all possible values of the
variables. In this case there are two variables and therefore four rows in the
truth table. The first of De Morgan’s Laws is proved by noting that columns 3
and 4 are the same. The second of De Morgan’s Laws is proved by noting that
columns 5 and 6 are the same.

3.2.4 Exercises

1. Find the value of each of the boolean expressions shown below:

(a) 4 > 3 && 4 < 2

(b) (3 < 2 || 2 - 2 == 0) && 5 > 3

(c) ! true || 3 >= 2

(d) ! (x < 2 || 3 > 1) || (x == 0 || true)

2. Draw boxes around each boolean expression from the above problem, as
shown in Figure 3.4. Be sure to show the rule numbers, and adhere to the
precedence rules for boolean expressions.

3. Simplify the following boolean expressions (assume x and y have been
declared as ints):

(a) (x == 0 || x != 0) && y < 0

(b) y < 0 || (x == 0 || x != 0)

(c) (x > 0 && x < 0) || y == 3

1Note that the logical complement of < is >=

58 CHAPTER 3. SELECTION STRUCTURES

(d) y == 3 && (x > 0 && x < 0)

4. Assume x and y have been declared as ints. Which, if any, of the following
expressions will cause a run-time error when the value of x is 0 (division
by 0)?

(a) y/x > 3 || x == 0

(b) x == 0 || y/x > 3

(c) y/x > 3 && x != 0

(d) x != 0 && y/x > 3

5. Which of the following boolean expressions is equivalent to:
!(name.length()>12 && gpa < 1.0) ?

(a) name.length()>12 && gpa < 1.0

(b) name.length()<12 || gpa > 1.0

(c) name.length()<=12 && gpa >= 1.0

(d) name.length()<=12 || gpa >= 1.0

6. For each of the following boolean expressions use one of De Morgan’s Laws
to show an equivalent boolean expression.

(a) !(name.equals("joe") && gpa <= 3.5)

(b) name.equals("susie") && gpa == 3.5

(c) name.equals("susie") || gpa == 3.5

(d) !(name.equals("sue") || gpa > 3.5)

3.3 One-way selections

One-way selections are used when we want to execute a statement, but only if
a certain condition holds. The Java keyword if is used for this purpose. The
general form is:

if (boolean expression) statement

The statement is executed only if the boolean expression is true. For exam-
ple:

if (credits > 0)

gpa = gradePoints / credits;

In this example, the value of the variable gpa will be changed to the result
of the division, but only if the value of the variable credits is greater than 0.

A flow diagram for the one-way selection is shown in Figure 3.7 in which
Condition represents the boolean expression in parentheses.

A few remarks on one-way selections:

3.3. ONE-WAY SELECTIONS 59

Condition
false

true

Statement

Figure 3.7: Flow diagram for a one-way selection structure

• The parentheses are always needed.

• The consequence of the if must be a single statement. If it is desired that
several statements be executed when the condition is true, we will use a
compound statement, defined later in this chapter.

• The condition in the parentheses must produce a boolean result, i.e. it
must evaluate to either true or false.

The student should be cautious when using boolean expressions; a boolean
expression which ’sounds ok’ in English is not necessarily correct. For example,
suppose we wish to calculate a student’s gpa, but only if the number of credits
is positive and less than 200. We may be tempted to write it as:

if (credits > 0 && < 200) gpa = ...

The compiler would reject this as incorrect. To see why, try to box the
boolean expression using the rules of our definition; it cannot be done. This
statement should be written as:

if (credits > 0 && credits < 200) gpa = ...

3.3.1 Exercises

1. Which of the following if statements contain syntax errors (assume x and
y have been declared as int variables and b has been declared as a boolean
variable)?

(a) if x==0

y = 3;

(b) if (b)

y = 3;

60 CHAPTER 3. SELECTION STRUCTURES

(c) if (x > 0 && < 100)

y = 3;

(d) if (b = true)

y = 3;

2. Show what would be printed by each of the following if statements (as-
sume x and y are declared as int variables, and b is declared as a boolean
variable):

(a) x = 3;

y = 4;

if (x == y)

System.out.println(x);

System.out.println(y);

System.out.println ("done");

(b) x = 3;

y = 5

b = x + y < 8;

if (b == true)

System.out.println(x);

System.out.println ("done");

(c) x = 3;

y = 5

b = x + y < 8;

if (b = true)

System.out.println(x);

System.out.println ("done");

3. Show a better way of writing this if statement (which would prevent the
slip-up exposed in part (d) of the above exercise):

if (b == true) ...

3.4 Two-way selections

Two-way selections are similar to one-way selections. The main difference is
that two statements are provided in a two-way selection, exactly one of which
must be executed. The general format is :

if (boolean expression)

Statement1

3.4. TWO-WAY SELECTIONS 61

Condition
truefalse

Statement1Statement2

Figure 3.8: Flow diagram for a two-way selection structure

else

Statement2

As with one-way selections, the boolean expression is evaluated. If it is true,
Statement1 is executed. If it is false, Statement2 is executed.

A diagram of two-way selections is shown in Figure 3.8.
Note that (many of these have been noted previously with respect to one-way

selections):

• The parentheses are always needed.

• The true consequence of the if must be a single statement. If it is desired
that several statements be executed when the condition is true, we will
use a compound statement, defined later in this chapter.

• The false consequence of the if must also be a single statement. This
is the statement which comes after else. If it is desired that several
statements be executed when the condition is false, we will use a compound
statement, defined later in this chapter.

• The condition in the parentheses must produce a boolean result, i.e. it
must evaluate to either true or false.

• Exactly one of the two statements must be executed because the boolean
expression must evaluate to either true or false.

An example of a two-way selection is shown below:

if (credits > 0)

gpa = gradePoints / credits;

else

gpa = 0.0;

62 CHAPTER 3. SELECTION STRUCTURES

if(credits > 0)

gpa = 2.0;

2

1

Figure 3.9: Applying the definition of Statement to:
if(credits > 200)gpa = 2.0;

In this example the variable gpa is set to the result of the division only if
the variable credits is positive, and the variable gpa is set to 0.0 only if the
variable credits is not positive. Notice that we have carefully indented both
the true and false consequences of the if. This is not required by the compiler,
but is done to make the program easier to read and maintain. The indentation
of the two assigment statements is supposed to clarify the fact that they are
part of the if statement.

We can now provide a preliminary definition of a Java statement, abbreviated
stmt:

A Java stmt may be:

1. variable = expression ;

2. if (boolean expression) stmt

3. if (boolean expression) stmt else stmt

Once again, we have an inherently recursive construct; there is no way to de-
fine statement without using the word statement in the definition. Fortunately,
rule 1 does not use the word statement, providing a base case.

Figure 3.9 shows how the definition can be applied to the one-way selection:

if (credits > 0)

gpa = gradePoints / credits;

Figure 3.10 shows how the definition can be applied to the two-way selection:

if (credits > 0)

gpa = gradePoints / credits;

else

gpa = 0.0;

The definition of Stmt shown above indicates that both the true and false
consequences of an if can be any Stmt, which would include if statements.
In other words if statements may contain if statements, which in turn may
contain other if statements, ... to any number of levels in depth. In other
words if statements may be nested as deeply as you may wish. We now look
at a more interesting example:

3.4. TWO-WAY SELECTIONS 63

if(credits > 0)

gpa = gradePoints/credits;

else

gpa = 2.0;

3

1

1

Figure 3.10: Applying the definition of Statement to: if credits > 0) gpa =
gradePoints / credits; else gpa = 0.0;

if(credits > 0)

if(gradePoints > 0)

gpa = gradePoints/credits;

else

gpa = 2.0;

2

3

1

1

Figure 3.11: Applying the definition of Statement to an if statement which
contains another if statement

if (credits > 0)

if (gradePoints > 0)

gpa = gradePoints / credits;

else

gpa = 2.0;

The indentation in this example is not good, but we will improve it after
some discussion. Figure 3.11 shows how we can box all the statements using
our definition of statement. However, Figure 3.12 shows a different way to box
the statements. In Figure 3.11 we have a two-way selection inside a one-way
selection; i.e. the else goes with the second if. This means that gpa will be
set to 2.0 only if either credits or gradePoints is not positive.

In Figure 3.12 we have a one-way selection inside a two-way selection; i.e.
the else goes with the first if. This means that gpa will be set to 2.0 only if
credits only is not positive.

The fundamental question here is ’which if is matched with the else?’
Could it be that once again we have an ambiguous definition? Yes, that is the

64 CHAPTER 3. SELECTION STRUCTURES

if(credits > 0)

if(gradePoints > 0)

gpa = gradePoints/credits;

else

gpa = 0.0;

3

2

1

1

Figure 3.12: An alternate application of the definition of Statement to the same
if statement containing an if statement

case, because there are two different interpretations for the same statement.
This is a classic ambiguity problem in computer science, known as the dangling
else. To resolve the ambiguity we state the following rule:

• Each else is matched with the nearest preceding unmatched if.

This means that the else should be matched with the second if, and we
have a two-way selection inside a one-way selection. The correct interpretation
is shown in Figure 3.11.

3.4.1 Exercises

1. Which of the following if statements contain syntax errors (assume x and
y have been declared as int variables and b has been declared as a boolean
variable)?

(a) if (x >= 17)

y = 2;

else

y = 3;

(b) if (x >= 17)

y = 2;

else

y = 3;

else

y = 0;

3.4. TWO-WAY SELECTIONS 65

(c) if (x >= 17 && < 25)

y = 2;

else

y = 3;

(d) if (b)

b = false;

else

b = true;

(e) if (x > 0)

x = 2;

y = 3;

else

b = true;

2. Show what would be printed by each of the following if statements (as-
sume x and y have been declared as int variables and b has been declared
as a boolean variable):

(a) x = 7;

y = 3;

if (x >= y+4)

System.out.println (x);

else

System.out.println (y);

System.out.println ("false case");

(b) x = 7;

y = 3;

if (x < 0)

System.out.println (x);

else

System.out.println (y);

System.out.println ("false case");

(c) x = 7;

y = 3;

b = x < y;

if (b)

System.out.println (x);

else

System.out.println (y);

66 CHAPTER 3. SELECTION STRUCTURES

(d) x = 7;

y = 3;

if (x > y)

if (x <= y)

System.out.println (x);

else

System.out.println (y);

else

System.out.println (x + y);

(e) x = 7;

y = 3;

if (x < y)

if (x <= y)

System.out.println (x);

else

System.out.println (x + y);

3. Draw a box around each statement in the previous problem, as shown in
Figure 3.11. Show the rule number applied, and be sure to resolve the
dangling else correctly.

4. You are given a variable declared as:

Student stu;

Show a single if statement which will print stu’s gpa if stu is not null,
and will print "null" if stu is null.

3.5 Compound statements and scope

3.5.1 Compound statements

We noted in the previous section that the consequence(s) of an if in a one-
way selection or in a two-way selection must be a single statement. However,
it is often the case that we wish to execute (or not execute) more than one
statement, i.e. a whole group of statements. The solution here is to use a
compound statement. A compound statement is 0 or more statements enclosed
in curly braces. This compound statement is treated as one big statement in a
selection structure. For example:

double creditsAsDouble;

boolean active; // true only if this Student is active

int tuition; // current tuition in whole dollars

active = true;

if (credits > 0)

3.5. COMPOUND STATEMENTS AND SCOPE 67

Program code value of a value of b value of c
int a,b;
a = 3; 3
b = 7; 3 7
{ // compound stmt 3
int b; 3
int c; 3
b = 5; 3 5
a = 9; 9 5
c = 11; 9 5 11
} 9 7

Figure 3.13: Scope of local variables

{ creditsAsDouble = credits;

gpa = gradePoints / creditsAsDouble;

}

else

{ tuition = 0;

active = false;

}

In this example, a group of two statements is executed if the condition is
true and another group of two statements is executed if the condition is false.

Note that it is possible to have just one statement in a compound statement.
Moreover, many instructors recommend this practice, because students often
omit the curly braces when they are actually needed.

3.5.2 Scope of variables

Variables declared inside methods are called local variables, as opposed to in-
stance variables (described in chapter 1). When a variable is declared inside
a compound statement, the scope of that variable is limited to that compound
statement; it is not known outside the compound statement. We say the vari-
able is local to that compound statement. The scope of an instance variable is
the entire class. It is possible to redefine a local variable in a separate scope
as shown in Figure 3.13. When a method terminates, all local variables and
parameters declared in that method are disposed from memory; they no longer
exist.

Care must be taken to distinguish between local variables (or parameters)
named the same as fields. Field names may be prefixed with this. to distin-
guish them from a local variable or parameter with the same name. A very
common (and nasty) error is shown below:

// This method is in the Student class which has a field

// named gpa.

68 CHAPTER 3. SELECTION STRUCTURES

public void someMethod ()

{ int gpa = 3.4;

System.out.println ("This student’s gpa has been changed to 3.4");

...

}

The student’s gpa has not been changed to 3.4 because the variable gpa is a
local variable; it is declared in the body of the method. It is not the field gpa.
When this method executes there are two, different, variables named gpa; one is
a field and the other is a local variable. To refer to the field gpa, use this.gpa.
To correct the problem, do not declare gpa as an int; do not declare it at all,
and you will have just one occurrence of the variable gpa. The error described
here is rather nasty because the compiler will not produce an error message;
instead there will likely be a runtime error, a crash, or incorrect output. It may
take several hours of work with the debugger to track down this problem.

3.5.3 Java statements - revisiting a formal definition

We can now expand our definition of statement to include compound statments.
A Java stmt may be:

1. variable = expression ;

2. if (boolean expression) stmt

3. if (boolean expression) stmt else stmt

4. method call, such as System.out.println()l

5. { stmt stmt stmt ... }
Figure 3.14 shows a diagram for the statement given above using this defi-

nition.

3.5.4 Exercises

1. Which of the following statements contain syntax errors (assume x has
been declared as an int variable)?

(a) if (x > 0)

{ System.out.println ("positive");

else

System.out.println ("negative");

}

(b) if (x > 0)

{ System.out.println ("positive"); }

else

{ }

3.5. COMPOUND STATEMENTS AND SCOPE 69

if(credits > 0)

{ creditsAsDouble = credits;

gpa = gradePoints/credits;

}

else

{ tuition = 0;

active = false;

}

3

5
1

1

5
1

1

Figure 3.14: Applying the definition of Statement to an if statement containing
compound statements

(c) if (x > 0)

System.out.println ("positive"); }

x = 0;

(d) { int y = 0;

x = x + 1;

y = x + 2;

}

2. Show what would be printed in each of the following:

(a) { int a = 7, b = 8;

{ char b = ’$’;

System.out.println ("a is " + a);

System.out.println ("b is " + b);

}

System.out.println ("a is " + a);

System.out.println ("b is " + b);

}

(b) { int a = 7, b = 8;

{ char b = ’$’;

a = 3;

70 CHAPTER 3. SELECTION STRUCTURES

System.out.println ("a is " + a);

System.out.println ("b is " + b);

}

System.out.println ("a is " + a);

System.out.println ("b is " + b);

}

(c) int x = 7;

if (x >0)

{

x = x + 1;

System.out.println (x);

}

else

x = x - 1;

System.out.printn (x);

(d) x = 12;

if (x > 20)

x = x + 1;

System.out.println (x);

System.out.println ("done");

3. Draw a box around each statement in the previouis problem, as shown in
Figure 3.11. Show the rule number for each statement. For purposes of
this problem, you may ignore variable declarations such as int a = 7;

3.6 Recursive methods revisited

As we mentioned earlier, methods can call themselves. Such a method is a
recursive method. In order for this to work correctly, there are two criteria:

• There must be a path through the method which does not involve a call
to itself. This is called the base case.

• The input(s) to the method, i.e. the parameter(s) must be reduced, in
some way, when the method calls itself.

The mathematical function factorial(n) is defined to be the product of all
whole numbers from 1 through n:

factorial(n) = 1 · 2 · 3 · ... · n
Sometimes this function is written with an exclamation point: n! For exam-

ple, factorial(4) = 4! = 1 · 2 · 3 · 4 = 24
Here is another definition of factorial:

3.6. RECURSIVE METHODS REVISITED 71

factorial(1) = 1
factorial(n) = n · factorial(n− 1)

This definition can be used to write a recursive method which will return
the value of factorial(n).

/** @param n is greater than or equal to 0

* @return the value of n!

*/

public int factorial(int n)

{ if (n<2)

return 1; // base case, 1! = 1

return n * factorial(n-1); // recursive case

}

We should note a few aspects of this method:

• The API at the top has a few javadoc keywords :

– @param is used to describe valid value(s) for any parameter to the
method. This is a precondition. If the parameter n is less than 1,
this method is not guaranteed to work.

– @return defines what this method will return as its explicit result.
This is an example of a postcondition (there could be others).

• The if statement checks for the base case; the case where the parameter’s
value is 1. In this case this call to the method is terminated immediately,
returning the value 1.

• If the if condition is false, control falls through to the next statement,
which is the recursive call, and the result of the multiplication is returned,
terminating this call to the method.

• We could have used an else with the if but in this case it isn’t needed
because the return terminates the method.

Figure 3.15 depicts what happens when factorial(3) is called. It calls fac-
torial(2), which in turn calls factorial(1), which returns a value, enabling the
other calls to factorial to return values. The final result is 6.

This is our first example of a recursive method, and we will see others. It
may surprise the student to learn that there are some problems in computer
science which must be solved with recursive methods.

3.6.1 Exercises

1. Insert a print statement in the factorial method to print the value of
the parameter, before the if statement. What is the output, when the
parameter value is 5?

72 CHAPTER 3. SELECTION STRUCTURES

fact(3) = 3 * fact(2)

fact(2) = 2 * fact(1)

fact(1) = 1

fact(2) = 2 * fact(1) = 2 * 1 = 2

fact(3) = 3 * fact(2) = 3 * 2 = 6

Figure 3.15: Execution of factorial(3)

2. The fibonacci sequence is

1, 1, 2, 3, 5, 8, 13, 21, 34, ..
Note that each number in this sequence is the sum of the two previous
numbers. If fib(n) returns the nth value in the sequence, we can say
that:

fib(1) = 1

fib(2) = 1

fib(n) = fib(n-1) + fib(n-2) for values of n >= 3

(a) What are the next two numbers after 34 in the fibonacci sequence?

(b) Write a recursive method named fib which will return the nth value
in the fibonacci sequence. Use the definition given above.

/** @return The nth value in the fibonnaci sequence.

* @param n must be greater than or equal to 1.

* This is a recursive method.

*/

public int fib(int n)

3. Write a recursive method named mult with two int parameters (the second
parameter must not be negative). It should return the product of the two
parameters. Do not use the * or / operators; instead use the following:

x * 0 is 0, for any value of x

x * y is x + x*(y-1), for any positive value of y

The API is:

** @return the product x*y, without using * or /

* @param y is not negative

*/

public int mult(int x, int y)

4.

3.7. COMPARING STRINGS AND OTHER REFERENCE TYPES 73

3.7 Comparing Strings and other reference types

Up to this point all of the comparison operations have involved primitive types.
We now wish to discuss the comparison of reference types.

3.7.1 Comparison for equality or inequality

When comparing Strings or other reference types for equality, one should not
use the == operator, nor the != operator. Instead one should use the method
.equals (this method is defined in the String class), as shown below:

if (name.equals("joe") && gpa == 4.0)

System.out.println ("joe is perfect");

The compiler will permit you to write the comparison as name == "joe"

but in this case you are comparing the references, not the objects to which they
refer. With Strings the == comparison will often work, but we can find cases for
which it will not work correctly. A good habit is always to use .equals() when
comparing reference types, unless you really mean to compare the references:

if (name == null) ... // check for null reference

To compare for inequality, use the logical NOT operator (!):

if ((! name.equals("joe")) && gpa != 4.0)

System.out.println ("Somebody other than joe is not perfect");

The usage of .equals presumes that the class of the object to which the
method is applied defines the meaning of .equals (the String class and most
other classes in the Java class library take care of this for us). However, our
Student class could define two Students to be equal if and only if they have the
same name and same ssn.

Figure 3.16 shows object diagrams and the results of the two kinds of compar-
isons when applied to reference variables. In this object diagram the variables
s1 and s2 refer to the same object; consequently they store the same value
(the same reference), and the comparison s1 == s2 will be true. However, the
variables s1 and s3 refer to separate objects; consequently they store different
references, and the comparison s1==s3 will be false. The objects to which s1
and s3 refer are, presumably, equal since the corresponding fields are all equal
(this assumes that the Student class provides a .equals() method, and the
comparison s1.equals(s3) is true, as is the comparison s2.equals(s3).

3.7.2 Ordered comparisons

To compare primitives for ordering, we can use one of the comparison operators
given earlier in this chapter:

int x,y; ...

if (x < y) ...

if (x >= y) ...

74 CHAPTER 3. SELECTION STRUCTURES

s1

Student

name ”joe”

ssn ”183-22-4543”

gpa 3.5
s2

s3

Student

name ”joe”

ssn ”183-22-4543”

gpa 3.5

Figure 3.16: An object diagram showing the difference between comparison with
== and comparison with .equals(): s1==s2 is true and s1==s3 is false and
s1.equals(s3) is true

This cannot be done with boolean types; The comparison true < false will
produce a syntax error at compile time.

The standard comparison method for reference types is compareTo, which
has one parameter. It will compare this object with the parameter which should
be an instance of the same class. The compareTomethod will return an int which
is:

• negative if this object is less than the parameter

• zero if this object is equal to the parameter

• positive if this object is greater than the parameter

If you have trouble remembering these return values, imagine that the re-
turned value is like the result of the subtraction this - parameter.

When comparing Strings, the internal codes of the characters of the two
Strings are compared, left to right. As soon as a discrepancy is found, the
result is determined by the two characters being compared. In other words,
comparison of Strings is essentially an alphabetic comparison: the String s1

is less than the String s2 if s1 precedes s2 alphabetically. Examples of values
returned by compareTo are shown in Figure 3.17. We will have more to say
about compareTo in chapter 6.

3.7. COMPARING STRINGS AND OTHER REFERENCE TYPES 75

comparison result
"abc".compareTo("def") negative
"abc".compareTo("abc") zero
"def".compareTo("abc") positive
"abc".compareTo("aba") positive
"abc".compareTo("abaci") negative
"abc".compareTo("Bbc") positive
"99".compareTo("100") positive

Figure 3.17: Returned values for the compareTo method, applied to Strings

3.7.3 Exercises

1. Which of the following contains a syntax error (assume the variables s1
and s2 have been declared as Strings)?

(a) if (s1 == s2)

System.out.println ("equal");

(b) if (s1 < s2)

System.out.println ("smaller");

(c) if (s1.compareTo(s2))

System.out.println ("smaller");

(d) if (3.equals(4))

System.out.println ("smaller");

2. What will be printed by each of the following (assume the variables s1

and s2 have been declared as Strings)?

3. (a) s1 = "john";

s2 = "John";

if (s1.equals(s2))

System.out.println ("equal");

else

System.out.println ("not equal");

(b) s1 = "john";

s2 = "johnson";

if (s1.equals(s2))

System.out.println ("equal");

else

System.out.println ("not equal");

76 CHAPTER 3. SELECTION STRUCTURES

(c) s1 = "john";

s2 = "johnson";

if (s2.equals(s1 + "son"))

System.out.println ("equal");

else

System.out.println ("not equal");

(d) s1 = "john";

s2 = "johnson";

if (s2 == s1 + "son")

System.out.println ("equal");

else

System.out.println ("not equal");

(e) s1 = "john";

s2 = "johnson";

if (s2.compareTo(s1) < 0)

System.out.println ("smaller");

else

System.out.println ("not smaller");

3.8 Selection structures in the GridWorld case

study

3.9 Projects

1. The greatest common divisor of two whole numbers, x and y, is the largest
divisor which they share. For example, if x=70 and y=30, the divisors of
x are 2, 5, 7, 10, 14, 35 and the divisors of y are 3, 5, 10, 15. The greatest
common divisor is 10.

The Euclidean algorithm will find the greatest common divisor of two
positive whole numbers efficiently. The algorithm can be summarized as
follows:

(a) Let r be the remainder when x is divided by y.

(b) If r is 0, the greatest common divisor is y.

(c) If r is not 0, the greatest common divisor is the greatest common
divisor of y and r.

Use this algorithm to define a method named gcd with two parameters,
both of which should be positive integers. The method should return the
greatest common divisor of its two parameters.

3.9. PROJECTS 77

/** @return The greatest common divisor of x and y.

* @param x is positive.

* @param y is positive.

*/

public int gcd (int x, int y)

2. Because there are not exactly 365 days in a solar year, the calendar must
be corrected every four years by inserting an extra day. This is called a
leap year. This is done in years which are divisible by 4 (2008, 2012, 2016,
...). However, this is not a perfect correction. Every hundred years we
skip a leap year. 2100, 2200, 2300 will not be leap years even though they
are divisible by 4. Yet another correction is necessary; every millenium
will be a leap year even though it is divisible by 100 (2000, 3000, 4000,
....).

Define a method named leapYear with one parameter, an int representing
a year. The method should return a boolean – true only if the given year
is a leap year.

Hints:

• Use the mod operator (%) to test for divisibility.

• Check for least frequently occurring cases first: 1000, then 100, then
4.

• Terminate the method with a return statement as soon as the result
has been determined.

3. Roman numerals are often used to indicate the year that a movie was
made; they are also sometines used in outlines. The Roman letters and
their decimal equivalents are shown below:

Roman symbol Decimal equivalent
I 1
V 5
X 10
L 50
C 100
D 500
M 1000

Some examples of roman numerals are shown below:

78 CHAPTER 3. SELECTION STRUCTURES

Roman symbol Decimal equivalent
III 3
IV 4
V 5
VI 6
VIII 8
IX 9
X 10
LXIV 64
MMDCXXIX 2629

Write a method named toRoman with one parameter, an int. The method
should return a String representation of the given int as roman numerals.

/** @return The Roman numeral representation of n.

* @param n is in the range 1..3999

*/

public static String toRoman (int n)

Hint: Write a private helper method named roman with 4 parameters
which returns a String:

• an int in the range 1..10

• The Roman symbol for 1, 10, 100, 1000

• The Roman symbol for 5, 50, 500

• The Roman symbol for 10, 100, 1000

If the helper method call is roman (7, "X", "L", "C"), its result will be
"LXX".

4. A circle in the x-y plane can be represented by three numbers: its radius
and the x,y coordinates of its center. Two different circles in a plane can
intersect in 0, 1, or 2 points. Define a method with 6 parameters, the
specs for two circles, which will return the number of points in which the
two circles intersect.

/** @return the number of intersection points of the two given circles.

* @param r1 is the radius of the first circle.

* @param x1 is the x coordinate of the center of the first circle.

* @param y1 is the y coordinate of the center of the first circle.

* @param r2 is the radius of the second circle.

* @param x2 is the x coordinate of the center of the second circle.

* @param y2 is the y coordinate of the center of the second circle.

* The parameters represent two different circles.

*/

public static int intersection (double r1, double x1, double y1,

double r2, double x2, double y2)

3.9. PROJECTS 79

Because floating point numbers are not exact, you may use a tolerance
value when comparing floating point values, e.g. double epsilon = 1e-12.
Rather than comparing two distances for exact equality, compare for
equality within this tolerance.

Hint: Define a private helper method which will calculate the distance
between two points: d =

√

(x1 − x2)2 + (y1 − y2)2

The method sqrt in the Math class will be helpful here.

Chapter 4

Iteration Structures

The computational power of computers lies in their ability to repeat a group
of instructions a number of times. If it were not for this capability, computers
would be as useful as old time 4-function calculating machines.

We call the section of code containing statements to be repeated a loop,
probably because a diagram depicting the sequendce in which statements are
executed would form a closed loop. Every loop has a loop control section and a
loop body. The body is the statement to be repeated. The loop control section
determines the number of times the body is repeated. There are several kinds
of loop control, and we discuss two of them in this chapter - while loops and for
loops.

4.1 Looping with while– pre-test loops

The while loops are most useful when the number of times a loop repeats cannot
be calculated; it may depend on complex conditions arising as the loop body
executes.

The format of a while loop is shown below:

while (boolean expression)

statement

The intent here is that the statement forms the body of the loop; it is the part
which is repeated. The body is performed repeatedly but only if the boolean
expression evaluates to true. If the the boolean expression evaluates to false,
the loop terminates, and control falls through to the next statement after the
loop. A flow diagram depicting the flow of control for a while loop is shown in
Figure 4.1.

An example of a loop is shown below:

credits = getCredits();

while (credits > 0)

80

4.1. LOOPING WITH WHILE– PRE-TEST LOOPS 81

{

totalCredits = totalCredits credits;

credits = getCredits();

}

In this example we presume there is a method, getCredits(), which will
return the number of credits for a student (perhaps for one semester). Each
time it is called it returns the number of credits for successive semesters. The
value returned is added to totalCredits and the result is stored back into
totalCredits. The variable totalCredits is used as an accumulator ; i.e. it
accumulates the total number of credits taken be a Student as the loop repeats.

We point out that:

• The loop body consists of one statement. If it is desired to have sev-
eral statements in the body of the loop, a compound statement would be
needed, as with selection structures; this is the case in the example shown
above.

• The loop shown above will continue to execute as long as the variable
credits is positive; when this variable is not positive, the condition is
false, and the loop terminates.

• If the first call to getCredits() returns 0, the loop condition will be false,
and the loop body will be executed 0 times.

• A while loop is often called a pretest loop because the test for continuation
is done before the first execution of the loop body, as shown in Figure 4.1.

Notice that in the above example we have carefully indented the body of the
loop so that it is clear what belongs to the loop and what does not belong to
the loop. We did the same thing in chapter 3 with selection structures. It is
important that the appearance of the program properly exposes the meaning,
or semantics, of the program.

We now present another example of a pre-test loop. This is a mathematical
example, taken from Calculus, though this example is accessible to those who
have not yet had Calculus. The exponential function is often abbreviated as
exp(x) or as ex (where the constant e is approximately 2.71828182846). Using
Calculus we can derive an infinite series to calculate this function:

exp(x) = ex = 1 + x/1 + x2/2! + x3/3! + x4/4! + ...
To calculate this function exactly, we would need an infinite number of terms,

something we really don’t have the patience for. Consequently we will be sat-
isfied with an approximation to the correct result by limiting the number of
terms. The method is shown below:

/** Calculate exp(x) with a Taylor series

* @param x is not negative.

* @param epsilon is the tolerance to which the

* result should approximate exp(x).

82 CHAPTER 4. ITERATION STRUCTURES

Condition
false

true

Statement

Figure 4.1: Flow diagram for a pretest loop structure

* @return exp(x), to within tolerance epsilon.

*/

public double exp(double x, double epsilon)

{

double result = 1.0;

double term = 1.0;

int ctr = 1; // counter for the denominator

while (term > epsilon)

{ term = term * x / ctr;

result = result + term;

ctr = ctr+1;

}

return result;

}

}

Note that:

• The parameter epsilon determines the degree of accuracy desired, since
we are forced to return an approximation of the correct result.

• Each term is calculated using the value of the previous term. This is done
by multiplying the numerator by x and multiplying the denominator by a
counter (actually by dividing the term by the counter).

• When the value of term is sufficiently small (i.e. less than epsilon, it
cannot provide a significant change to the result, and the loop terminates.

4.1. LOOPING WITH WHILE– PRE-TEST LOOPS 83

4.1.1 Infinite loops

The purpose of the loop control is to ensure that the body of the loop repeats the
correct number of iterations. Care must be taken to make sure this is correct.
It is possible that the loop control, if not correct, will cause the loop to repeat
forever, with no termination. In other words, the boolean expression evaluates
to true and never evaluates to false. This situation is called an infinite loop
and is generally to be avoided.

An example of an infinite loop is shown below:

int x = 0;

while (x < 100)

{ System.out.println ("x is " + x);

}

In the loop shown above the boolean expression x < 100 is true, so the print
statement is executed. But the value of x is not changed in the body of the loop,
so the boolean expression will continue to be true, and the loop will continue
executing forever (or until the user intercedes by terminating execution with the
IDE or by a system interrupt such as ctrl-alt-delete for Windows or ctrl-c for
Mac OS). One way to correct this error would be to include a statement such
as

x = x + 1;

in the body of the loop.
If your program contains several loops, and one of them is caught in an

infinite loop, it will not be clear where the problem lies. In this case rely on a
debugger to step through the statements of the program until the guilty loop
control is detected.

Because of the complexity of software development, infinite loops can occur
even in software which has been well tested. If you have ever noticed that your
computer has “frozen”, and moving the mouse or typing on the keyboard has
no effect, the program (or operating system) is probably caught in an infinite
loop, and is failing to accommodate input of any kind.

4.1.2 Exercises

1. Which of the following contain syntax errors (assume the variable x has
been declard as an int)?

(a) while (x > 2) x = x - 3;

(b) while (x > 2 && < 10)

{ x = x - 3;

System.out.println (x);

}

84 CHAPTER 4. ITERATION STRUCTURES

(c) while (x > 2)

if (x < 0)

System.out.println (x);

(d) while (x > 0)

x = x - 1;

System.out.println (x): }

2. Show what would be printed by each of the following (assume the variable
x has been declard as an int):

(a) x = 4;

while (x >= 0)

{ System.out.print (x);

x = x - 1;

}

(b) x = 16;

while (x > 0)

{ System.out.print (x + " ");

x = x / 2;

}

(c) x = 1;

while (x < 5)

{ System.out.print (x);

x = x + 1;

}

(d) x = 10;

while (x < 5)

{ System.out.print (x);

x = x + 1;

}

3. Which of the following is an infinite loop (assume x and y have been
declared as ints)?

(a) x = 12;

while (x > 0)

{ System.out.println ("x is " + x);

y = y + 1;

}

4.2. LOOPING WITH FOR – COUNTER-CONTROLLED LOOPS 85

(b) x = 12;

y = 99;

while (x > 0 && y < 100)

{ System.out.println ("x is " + x);

x = x + 1;

}

(c) x = 12;

while (x == 0)

{ System.out.println ("x is " + x);

x = x + 1;

}

(d) x = 12;

while (x != 0)

{ System.out.println ("x is " + x);

x = x + 1;

}

4. Define a method named range with two parameters which will print, on
one line, all the whole numbers in the range from the first parameter to
the second parameter. For example, range(2,5) should print 2 3 4 5.

/** Print, on one line, all whole numbers from

* low thru hi, inclusive.

*/

public void range (int low, int hi)

4.2 Looping with for – counter-controlled loops

In situations where we know, when writing the program, exactly how many
times the loop should repeat, a for loop, or counter-controlled loop can be
used.

4.2.1 Autoincrement and autodecrement

Before looking at the for statement, we would like to introduce an easy short
cut which is frequently used in for statements.

A numeric variable can be incremented by 1 very easily by using the ++

notation, which is called autoincrement. The expression
x++;

is equivalent to
x = x+1;

This autoincrement operator increases the value of x by 1. When the following
code has executed, the value of x will be 5;

86 CHAPTER 4. ITERATION STRUCTURES

int x;

x = 4;

x++;

It is possible to use the result of the autoincrement operator as part of a larger
expression, but we do not recommend this usage.

Autodecrement is similar to autoincrement, but uses a -- rather than ++.
x--;

is equivalent to
x = x-1;

This autodecrement operator decreases the value of x by 1. When the following
code has executed, the value of x will be 3;

int x;

x = 4;

x--;

4.2.2 The for loop

The format of a for loop is shown below:

for (declaration ; boolean expression ; expression)

statement

As with while loops the statement forms the body of the loop, which is repeated.
The control, however, is quite different. The loop control is achieved by the
following sequence of events:

1. The declaration is established; it typically is a declaration of an int vari-
able used to count the iterations. This variable is normally called the loop
variable. This step is done just once, at the start, and never again for this
execution of the loop.

2. The boolean expression is evaluated. If it is false, the loop terminates
and control falls through to the next statement after the for loop. This
boolean expression typically involves a comparison of the loop variable
with some predetermined limiting value.

3. At this point the boolean expression is true, the statement (i.e. the loop
body) is executed once.

4. The expression shown after the second semicolon in the for statement is
evaluated. This expression typically involves an assignment to the loop
variable.

5. Control returns to step 2 above to determine whether the loop body should
be executed yet another time.

An example of a for loop which repeats the body exactly 10 times is shown
below:

4.2. LOOPING WITH FOR – COUNTER-CONTROLLED LOOPS 87

initilization

condition
false

true

increment

statement

Figure 4.2: Flow diagram for a for loop structure

int sum = 0; // declare and initialize an accumulator

for (int i=0; i<10; i++)

sum = sum + i;

In this example when the loop terminates, the variable sum will contain the
sum of the first 10 whole numbers (zero included). We note that:

• The loop variable is i. It is initialized to 0.

• The boolean expression i<10 determines whether the body of the loop
should be executed.

• The expression i++ adds 1 to the value of i and stores the result back
into i. It effectively increases i by one; we say that it increments i.

• In the loop body the statement sum = sum+i adds the value of i to the
value of sum and stores the result back into sum.

• Since the loop variable is declared in the for statement, it is local to the
loop. It is distinct from any variable of the same name declared outside
the loop, and it will be disposed of when the loop terminates.

Figure 4.2 depicts the flow of control for a for loop.
Another example of a for loop is shown below.

88 CHAPTER 4. ITERATION STRUCTURES

int semesters = 7;

for (int sem=0; sem<7; sem++)

totalCredits = totalCredits + getCredits(sem);

In this example it is known that the student attended for exactly 7 semem-
sters, so the loop should repeat exactly 7 times. Since the loop variable, sem
is initially 0, and the loop continues to execute as long as the loop variable is
strictly less than 7, the loop will repeat 7 times. Each time the loop repeats
a method, getCredits(int), is called; presumably that method returns the
number of credits for a given semester (beginning with semester 0).

4.2.3 Exercises

1. Which of the following statments contain syntax errors?

(a) for (int i=0; i<20; i++)

System.out.println (i);

(b) for (int i=0; i<20; i++)

{ System.out.println (i); }

(c) for (int i=0; i<20; i++)

if (i > 10)

(d) for (int i=0; i<20)

System.out.println (i);

2. Show what would be printed by each of the following statements:

(a) for (int i=0; i<5; i++)

System.out.print (i-1 + " ");

(b) for (int i=0; i<10; i++)

if (i>5)

System.out.print (i + " ");

(c) for (int i=0; i<10; i++)

System.out.print (i + " ");

System.out.println ("again");

(d) for (int i=0; i<10; i = i + 3)

{

System.out.print (i + " ");

System.out.println ("again");

4.3. EQUIVALENCE OF WHILE AND FOR LOOPS 89

}

3. Write a method named showRange, with two int parameters which will
print on one line all the whole numbers in the given range. Use a for

statement.

/** Print all the whole numbers from low to hi, inclusive

* @param low The low end of the range.

* @param hi The high end of the range.

*/

public void showRange (int low, int hi)

4. Write a method named roots, with one int parameter. It should print a
table of whole numbers from 1 to the given parameter, showing the square
root of each of those whole numbers. Use a for statement.

/** Print a table of square roots for all whole numbers in the

* range 1..max, inclusive.

* @param max Should be positive

*/

public void roots (int max)

5. (a) Write a method named sumInts, with one int parameter, max. It
should return the sum of all the whole numbers from 1 through max,
inclusive. Use a for statement.

/** @return The sum of the whole numbers 1..max

* @param max Is positive

*/

public int sumInts (int max)

(b) Use the internet to find a simple algebraic formula to do the same
calculation without using a loop.

4.3 Equivalence of while and for loops

Every for loop can be written as an equivalent while loop which does exactly
the same thing. The for loops are provided as a feature of Java (and most
other programming languages) merely as a convenience for the programmer.
Figure 4.3 shows how any for loop can be rewritten as an equivalent while

loop.

90 CHAPTER 4. ITERATION STRUCTURES

init ;

for (init ; boolean expr ; expr) while (boolean expr)

body { body

expr ;

}

Figure 4.3: Equivalence of for and while loops

4.3.1 Exercises

1. Show a while loop which is equivalent to each of the following for loops:

(a) for (int i=0; i<10; i++)

System.out.println (i);

(b) for (int i=17; i>=0; i = i - 1)

System.out.println (i);

(c) int i=3, x;

for (x=10; i>=0; x--)

System.out.println (i+x);

(d) for (;i>=0; i--)

System.out.println (i);

2. Show a for loop which is equivalent to each of the following while loops:

(a) int i=0;

while (i < 10)

{

System.out.println (i);

i++;

}

(b) int i=0;

while (i < 10)

{

System.out.println (i);

i = i * 2;

}

(c) int i=0;

while (i != 10)

4.4. NESTED LOOPS 91

System.out.println (i);

4.4 Nested loops

In our original definition of the while and for loops we stated that the loop
body consisted of a single statement. This statement is not necessarily an
assignment statement; it could be an if statement or another for or while

statement. The loop body could also be a compound statement containing any
number of assignment, if while , and for statements. In other words
the body of a loop can itself be a loop; we call this a nested loop.

An example of a nested loop is shown below:

int sumOfProducts = 0;

for (int i=1; i<10; i++)

for (int j=1; j<10; j++)

sumOfProducts = sumOfProducts + i*j;

In this example we add up the values
1 ·1+1 ·2+1 ·3+ ...1 ·10+2 ·1+2 ·2+2 ·3+ ...2 ·10+10 ·1+10 ·2+ ...10 ·10
There is another shortcut called assignment operators. For any operator ◦,

the statement
x = x ◦ y

is equivalent to
x◦ = y

This means that the statement shown above,
sumOfProducts = sumOfProducts + i*j;

can be written more succinctly as
sumOfProducts += i*j;

4.4.1 Exercises

1. Which of the following contain syntax errors?

(a) int x = 3;

while (x < 10)

for (int i=0; i<5; i++)

System.out.println (i+x);

(b) int x = 3;

while (x < 10)

{

for (int i=0; i<5; i++)

System.out.println (i+x);

x += 2;

}

92 CHAPTER 4. ITERATION STRUCTURES

(c) {

for (int i=0; i<10; i++)

for (int j=0; j<10; j++)

}

(d) for (int i=0; i<10; i++)

for (int i=0; i<10; i+)

System.out.println ("i is " + i);

2. Show what would be printed by each of the following:

(a) for (int row=0; row<2; row++)

{

System.out.println ("row " + row);

for (int col=0; col<3; col++)

System.out.print (col + " ");

System.out.println ();

}

(b) int sum = 0;

while (sum < 20)

{

for (int i=0; i<4; i++)

sum = sum + i;

System.out.print (sum + " ");

}

(c) for (int row=0; row<5; row++)

{

for (int col=0; col<5; col++)

System.out.print ("*");

System.out.println ();

}

(d) int i=0, j=10

while (i+j < 12)

while (i < 3)

{ j++;

i++;

}

System.out.println ("i is " + i ", j is " + j);

4.5. DEFINITION OF STATEMENT - UPDATED 93

3. Define a method named trianglewith one int parameter, which will print
asterisks in the shape of a triangle with the given size. For example, if the
size is 5, the output should look like this:

*

**

/** Print a triangular shape of asterisks

* @param size Number of rows, and length of base

*/

public void triangle (int size)

4. Repeat the previous problem, but make the triangle upside-down. Name
the method triangleInv

5. Define a method named mult which will display a multiplication table of
the given size.

/** Print a multiplication table

* @param size Number of rows and columns, must be positive.

*/

public void mult (int size)

4.5 Definition of Statement - updated

Now that we have seen iteration structures, we can update our formal definition
of a Java statement:

A Java stmt may be:

1. variable = expression ;

2. if (boolean expression) stmt

3. if (boolean expression) stmt else stmt

4. method call (e.g. System.out.println ())

5. { stmt stmt stmt ... }

6. while (boolean expr) stmt

7. for (declaration ; boolean expr ; expr) stmt

94 CHAPTER 4. ITERATION STRUCTURES

{

while(y < 10)

if(y > 0)

y = y ∗ 2;

else

y = y + 1;

x = y;

}

4

5

3

1

1

1

Figure 4.4: Applying the definition of Statement by drawing a box around each
statement

As we have already noted our definition is recursive, and that allows state-
ments to contain other statements, which in turn contain other statements, ...
to any depth of containment levels.

Figure 4.4 shows how the definition of statement can be applied to the fol-
lowing:

{

while (y < 10)

if (y > 0)

y = y * 2;

else

y = y + 1;

x = y;

}

4.5.1 Exercises

1. Using the definition of a Java statement given in this section, draw a box
around each statement shown below. Be sure to include the rule number
in each box.

(a) while (i < 10)

i = i+1;

4.6. ITERATIONS IN THE GRIDWORLD CASE STUDY 95

(b) while (i < 10)

if (x > 3)

i = i+1;

(c) if (x > 6)

while (i < 10)

System.out.println (i);

else

{ x = x - 1;

System.out.println (x);

}

4.6 Iterations in the GridWorld case study

4.7 Projects

1. (a) Rewrite the fib method from chapter 3 using a loop instead of a
recursive method. fib(n) should return the nth number in the fi-
bonacci sequence.

(b) Which appears to run faster, the looping version of fib or the recursive
version?

(c) What is fib(15)? fib(100)?

(d) How can you explain the result of fib(100)?

2. A prime number is a whole number greater than 1, which is divisible only
by 1 and itself. Some examples of prime numbers are: 2, 3, 5, 7, 11, 13, ...
Define a method named isPrime. It should have one parameter, an int,
and should return a boolean – true if the parameter is a prime number.

/** @return true only if x is prime

* @param x is positive

*/

public boolean isPrime (int x)

Hint: Use the mod operator(%) to determine whether the given number
is divisible by some other number.

3. The Taylor series expansion of the function sin(x) is shown below:

sin(x) = x− x
3

3!
+ x

5

5!
− x

7

7!
+ ...

Define a Java method to return the sin of a given value, to within a given
tolerance.

96 CHAPTER 4. ITERATION STRUCTURES

/** @return sin(x)

* @param epsilon is the tolerance.

*/

public double sin (double x, double epsilon)

4. Write a method named inBinary which will return the binary represen-
ation of a non-negative int as a String of 1’s and 0’s. For example if the
parameter value is 18, it should return the String "10010".

/** @return The binary representation of x as a String

* of 0’s and 1’s.

* @param x is not negative.

*/

public String inBinary (int x)

Hint: Work from right to left in the binary representation of the given
number. The mod operator (%) can tell you whether the low order bit is
0 or 1. The integer divide operator (/) can remove that bit.

5. Write a method to find an approximation to the square root of a dou-
ble which is at least 1.0, to within a given accuracy, using a bisection
algorithm:

(a) Call the parameter x. Establish low and high boundaries for the
result; low is 0 and hi is x.

(b) Repeat the following as long as the result is not sufficiently accurate.

i. An approximation to the result will be the average of low and
hi.

ii. If this approximation is too high, assign it to hi.

iii. If this approximation is too low, assign it to low.

/** @return an approximation to square root of x

* @param x is at least 1.0

* @param epsilon is tolerance for correct result

*/

public double sqrt(double x, double epsilon)

Chapter 5

Collections, and Iteration
Revisited

Thus far we have written programs which deal with small quantities of data.
Each variable stores a single value, or a reference to a single object. However,
most applications have a need to deal with large quantities of data; we do
not wish to define a new variable for each data item that we need to store.
Consequently we desire the capability of defining one variable which stores a
reference to a collection of data items. These collections can be organized in
a multitude of different ways, depending on how we wish to optimize the time
required to access a particular value. In this chapter we examine a few different
ways of organizing, and working with, collections of data items. We also begin a
discussion of time efficiency, comparing the relative speeds of various operations.

5.1 Lists

A list, in mathematics and computer science, is defined as a collection of items
with the following properties:

• Items may be added to, and removed from, a list; its size may be changed.

• The items have a particular order - the order in which they have been
added to the list (though it may be possible to insert an item in the
middle). The ordering of the items in a list is maintained.

• Each element has an index or position number associated with it. The
index of the first item in the list is 0 (as with the positions of the characters
in a String).

• There may be duplicated items in a list (some other collections do not
have this property).

97

98 CHAPTER 5. COLLECTIONS, AND ITERATION REVISITED

• Lists, as with other kinds of collections, are homogeneous – all items in a
list are of the same type (we’ll see considerable flexibility here, however,
after we discuss inheritance).

The efficiency, or time required, for the operations of accessing, adding, remov-
ing items can vary depending on the particular implementation of the list; we
shall discuss a few different implementations, noting their relative advantages
and disadvantages.

The Java class library provides us with several kinds of lists. We’ll begin by
considering a particular implemenation called ArrayList.

5.1.1 Java packages and java.util

There are thousands of classes in the Java class library. Fortunately they are
grouped and organized in such a way that we can deal with the ones we need
and not worry about the others. A group of classes which share a common
purpose or use can be grouped into a package. Packages, in turn, with similar
purposes may be grouped together, forming a recursive hierarchy of packages.
The package which deals with lists is named java.util. In order to use any of the
classes in this package, those classes must be specified in an import statement
at the beginning of your program. For convenience, we can have access to all
classes in that package as follows:

import java.util.*;

5.1.2 ArrayList

The ArrayList class can be used if it is imported from java.util using the import
statement given above.

5.1.2.1 Declaring and instantiating an ArrayList

There are actually a few different kinds of lists in the Java class library, though
we are limiting our discussion to ArrayLists. To declare a variable which is
capable of storing a reference to a list of Students, we should declare it as
follows:

List <Student> roster;

This means that the variable roster can store a reference to any kind of list,
including ArrayLists 1. The value of the variable roster at this point is a
null reference. It is a reference which refers to nothing at all; we have not yet
even created the ArrayList. Because of the word Student, in angle brackets,
this variable is capable of storing a reference to a List which stores references to
Students only. This satsifies our requirement that all lists must be homogeneous.

In order to instantiate (i.e. to create an ArrayList instantiation instance of)
the ArrayList we will use the new operator (as we did with the Student class):

1Technically, List is an interface which we cover in chapter 6, but since we believe in
establishing good habits early on, we use it here

5.1. LISTS 99

roster null

(a)

roster

ArrayList < Student >

size 0

(b)

Figure 5.1: An object diagram showing the value of the variable roster (a)
when it is declared and (b) after it has been assigned a value

roster = new ArrayList <Student>();

Notice that:

• Once again we specify the kind of objects (Student, in this case) to be
stored in the ArrayList being created (recent versions of Java have relaxed
this requirement).

• When we instantiate a list, we must specify what kind of list it is, in this
case ArrayList.

• At this point the variable roster is no longer storing a null reference.

We now have an ArrayList containing zero items; its size is 0.
Notice also that Figure 5.1 depicts the process of declaring the variable

roster and instantiating the ArrayList with an object diagram. In an ArrayList
object we always show the size of the ArrayList as an int field, and the size is
initially 0.

5.1.2.2 Adding or inserting items to an ArrayList

Once an ArrayList has been instantiated, items can be added using the add
method. To add an item at the end of the list, supply one parameter, the item
to be added:

Student s;

s = new Student ("joe", "256", 3.5);

roster.add (s);

This will add the new Student to the ArrayList referred to by roster. Note
that lists, and all collections, do NOT store objects; they store references to
objects as shown in the object diagram in Figure 5.2. Every time we add another

100 CHAPTER 5. COLLECTIONS, AND ITERATION REVISITED

roster

ArrayList < Student >

size 1

0

Student

name ”joe”

ssn ”256”

gpa 3.5

Figure 5.2: An object diagram showing the value of the variable roster after a
Student has been added

student to the ArrayList, another reference is included in the ArrayList, and
its size is automatically updated. Since we haven’t looked at the source code
for the ArrayList class, we’ll simply make up our own field names and draw the
diagram accordingly. For each reference added to the ArrayList, we show its
position number (0 in Figure 5.2).

Figure 5.3 shows the object diagram for roster after a total of three students
have been added to it.

Items can also be inserted at any position in an ArrayList, using the same
method, but with an additional parameter. The first parameter is an int spec-
ifying the index, or position, at which the item is to be added. This form of
the add method is really an insertion. The example below shows how a new
Student can be added (inserted) at position 1:

roster.add (1,new Student ("joe", "304", 3.5));

Since it is not possible to have two items at the same position, all items with
larger indices are automatically given higher index numbers. In other words,
when adding at position 1 to a list of 3 items, the items formerly at positions 1
and 2 will be now be at positions 2 and 3.

Care needs to be taken when using this form of the add method. The index,
or position, of the inserted item must be less than or equal to the current size
of the list. If the index is negative, or greater than the size, a run-time error
will occur, causing your program to come to a crashing halt. To insert an item
at the beginning of the list, use an index of 0, and to insert at the end you can
use an index equal to the current size (but its easier, and less risky, to use the
add method with only one parameter).

Incidentally, this is our first example of two different methods with the same
name. That’s ok, as long as they have different parameter lists. They can
be distinguished in a method call by the number (and types) of parameters.
However, you cannot use differing return types to define two methods with the
same name and same parameter types.

5.1. LISTS 101

roster

ArrayList < Student >

size 3

0

Student

name ”joe”

ssn ”256”

gpa 3.5

1

Student

name ”jim”

ssn ”222”

gpa 2.5

2

Student

name ”mary”

ssn ”252”

gpa 4.0

Figure 5.3: An object diagram showing the value of the variable roster after
three Students have been added

102 CHAPTER 5. COLLECTIONS, AND ITERATION REVISITED

5.1.2.3 Accessing or changing items in a list – get and set

After instantiating an ArrayList and perhaps adding several items to it, we may
wish to discover the current value of some item in the list, or we may wisht to
change the reference at a particular position. These operations are accomplished
with the methods get and set.

To access the item at position 4 in our list, we could use the get method as
shown below:

Student s;

s = roster.get(4);

This presumes that there are at least 5 Students in the list (remember, the
first one is at position 0). The get method returns the reference which is at
position 4, and the assignment stores that reference into the variable s. Again,
we need to be careful that the given index is in the correct range: 0..size-1,
otherwise a run-time error will occur.

The get method API is shown below:

/**

* @param ndx The position of the item to be returned,

* must be non-negative and less than size.

* @return The reference at the given index.

*/

E get (int ndx)

The notation E in the code shown above is supposed to stand for the type
of the items in the ArrayList. If it is an ArrayList of Students, E represents
Student.

The set method is used to store an item at a given position in a list. For
example,

Student s = new Student ("jim", "323", 3.2);

roster.set(12,s);

This code will replace the reference at position 12 with a reference to the new
Student, jim, at that position. The indices of other items in the list will be
unchanged. The compiler will insist that the type of the second parameter
matches the type specified when creating the ArrayList, Student in this case.

The first parameter for both get and set must be an int in the range 0..size-
1, otherwise a run-time error will result.

Note that there is an important difference between set(int,E) and add(int,E).
The set method does not change the size of the list, but the add method always
increases the size of the list by one.

5.1. LISTS 103

Primitive type Wrapper class
int Integer
float Float
double Double
boolean Boolean
char Character

Figure 5.4: Wrapper classes for primitive types

5.1.2.4 Collections of primitives

We’ve seen that collections, such as ArrayLists, store references to objects.
But suppose we wish to store a collection of primitives, such as ints, floats,
doubles, booleans, or chars? Java provides a ’workaround’ for this situation,
called autoboxing and autounboxing, using wrapper classes. The wrapper classes
for the primitive types are shown in Figure 5.4. Each wrapper class is a simple
class whose only purpose is to store a primitive value of the corresponding type.
For example, an Integer object has a field with stores an int value, a Float object
has a field which stores a float object, etc. When you wish to create a collection
of primitives, use the wrapper class instead. For example, the code shown below
will create an ArrayList to which int values can be added:

List <Integer> grades = new ArrayList <Integer>();

grades.add(100);

grades.add(90);

grades.add(75);

grades.add(100);

int first = grades.get(0);

System.out.println ("The first grade is " + first);

Note that when we add a primitive value (an int) to the ArrayList, Java
automatically converts it to the corresponding wrapper class (Integer) so that
the reference to it can be stored in the ArrayList. This is called autoboxing.
Also, the get method returns a reference to the wrapper class (Integer), but we
can store it into an int. This is called autounboxing.

A simpler way of restating the above paragraph is that you can have collec-
tions of primitives, but use the name of the corresponding wrapper class (shown
in Figure 5.4) when declaring the collection.

We can now create a list of the first ten multiples of 10, using a for loop
quite easily:

List<Integer> multiplesOf10;

multiplesOf10 = new ArrayList <Integer> ();

for (int i=0; i<10; i = i + 1)

multiplesOf10.add (i*10);

104 CHAPTER 5. COLLECTIONS, AND ITERATION REVISITED

5.1.2.5 A note on wrapper classes

Wrapper classes also provide other information on the corresponding primi-
tive type. For example the Integer class has class variables MAX_VALUE and
MIN_VALUE which store the largest possible int and the smallest possible int,
respectively. Since they are class variables, the variable is preceded by the class
name:
Integer.MAX_VALUE

Integer.MIN_VALUE

The wrapper classes are in the java.lang package, and do not need to be
imported. See the API for more information on these wrapper classes.

5.1.2.6 Other operations on lists

The Java class library provides several other operations on lists; we will discuss
a few of them here. For a complete list of operations see the API for List or
ArrayList at docs.oracle.com/javase/7/docs/api.

We can remove the item at a given position from a list using the method
shown below:

/** Removes the item at the given index from this list.

* @param ndx is a valid index for this ArrayList,

* ndx is not negative, and ndx is less than the size of this ArrayList.

* @return a reference to the item removed.

*/

E remove (int ndx)

As an example, we could remove the item at position 7 from a list named
roster, and store the reference to the removed item in a variable:

Student s;

s = roster.remove(7);

// s now stores a reference to the removed student

The indices of all subsequent items in the list are decremented by one (no ’gap’
is left in the list), and the size is also decremented by one. The remove method
returns a value, but if we are interested in the removal only, and don’t need the
item that was removed, we can ignore the value returned:

roster.remove(7);

// the size of the list is decreased by 1.

In general, the value returned by a method can be used as part of an expression,
or it can be ignored. If ignored, we say that we are using the method only for
its side effects - in this case the removal of an item.

We can obtain the size of a list:

5.1. LISTS 105

/**

* @return the size of this list.

*/

int size()

We could print the size of a list as shown below:
System.out.println ("We have " + roster.size() + " students.");

We could use the size() method to determine whether a list is empty (if its
size is 0), or we could use the isEmpty method:

/**

* @return true only if this list is empty.

*/

boolean isEmpty()

The isEmpty method could be used as shown:

if (roster.isEmpty())

System.out.println ("No students enrolled");

The isEmpty method returns a boolean, and therefore it can be used where
a boolean expression is expected, as in an if, while, or for statement.

Many novice programmers would code the example shown above as:

if (roster.isEmpty() == true)

...

This would work, but we advise against this form. 2

We can print out an entire list, simply be giving its name:
System.out.println (students);

All items in the list will be printed on one line, separated by commas, and
enclosed in square brackets.

5.1.3 Exercises

1. Which of the following have syntax errors, and which will result in run-
time errors (assume that the ArrayList class has been imported)?

(a) List <Student> kids;

kids = new Student();

(b) List <Student> kids;

kids = new ArrayList<Student>();

kids.add ("jim");

2 if the example had been boolean b; if (b == true)... then if the == operator is
mistakenly typed as = (meaning assignment instead of comparision), the compiler will accept
it, but the program will not work correctly, and many hours of debugging effort may be
required to find the error.

106 CHAPTER 5. COLLECTIONS, AND ITERATION REVISITED

(c) List <Student> kids = null;

kids.add (new Student ("jim", "234"));

(d) List <Student> kids;

kids = new ArrayList<Student>();

kids.add (new Student ("jim", "234"));

2. Show what would be printed by each of the following (assume the Ar-
rayList class has been imported):

(a) List <Student> kids = null;

System.out.printlin (kids);

kids = new ArrayList <Student> ();

System.out.printlin (kids);

(b) List <Student> kids = new ArrayList <Student> ();

kids.add (new Student ("joe", "222"));

kids.add (new Student ("jim", "333"));

System.out.printlin (kids.size() + " kids");

(c) List <Student> kids = new ArrayList <Student> ();

kids.add (new Student ("joe", "222"));

kids.add (new Student ("jim", "333"));

System.out.println (kids.get(0).getName());

kids.remove(0);

System.out.println (kids.get(0).getName());

(d) List <Student> kids, roster;

kids = new ArrayList <Student> ();

roster = kids;

kids.add (new Student ("joe", "222"));

kids.add (new Student ("jim", "333"));

System.out.println ("size of roster is " + roster.size());

3. If roster is storing a reference to a list of at least 10 Students,

(a) show how to print the name of the student at position 8 in the list.

(b) show how to insert a new Student whose name is ”alice” and whose
ssn is ”234” at the end of the list.

(c) show how to insert a new Student whose name is ”alice” and whose
ssn is ”234” at the beginning of the list.

(d) show how to insert a new Student whose name is ”alice” and whose
ssn is ”234” at position 3 in the list.

5.2. ITERATION REVISITED, WITH LISTS 107

(e) show how to change position 7 of the list to refer to a new Student
whose name is ”jim” and whose ssn is ”321”.

(f) show how to remove the Student at position 7, and print that stu-
dent’s name, using just one statement.

4. Draw an object diagram showing the values of the variables num1, num2,
num3, and num4 after the code shown below has executed:

List <Integer> num1, num2, num3;

num1 = new ArrayList <Integer> ();

num2 = num1;

num3 = new ArrayList <Integer> ();

num1.add (17)

num2.add (3);

5.2 Iteration revisited, with lists

Now that we have discussed loops and lists, we will see how to use a loop in
conjunction with a list. This is a very common construct in programs: We have
a list, or some other kind of collection, and we wish to ’visit’ each item in the
list, perhaps to examine it for certain properties, print it in a certain way, or
even possibly to change it. Whatever the reason for visiting each item may be,
it can be done easily with a loop, and a for loop is usually most amenable for
this purpose.

For example, if the name of our list is roster, its original declaration might
be:

List <Student> roster;

Suppose this list has been instantiated as an ArrayList, and many Student
objects have been added to it, and we wish to print the name of each student.
The loop can be controlled with a for statement as follows:

Student s;

for (int i=0; i<roster.size(); i++)

{ s = roster.get(i);

System.out.println (s.getName());

}

Note that:

• We use a local variable, s, to store a reference to a Student obtained from
the list with the get method.

• The loop variable is initialized to 0, the position of the first item in the
list.

• The loop will be terminated when the loop variable is equal to the size of
the list (the last item in the list is at positon size-1).

108 CHAPTER 5. COLLECTIONS, AND ITERATION REVISITED

• The loop variable is incremented by 1 each time the loop repeats

• The body of the loop is a compound statement in which we obtain a
reference to a list item and print the name of the Student object to which
it refers.

As a second example, we show a complete method which will determine
whether a given list has at least one student with a perfect 4.0 gpa. This
method uses a while loop, but it could also have been done with a for loop.

/**

* @return true only if there is a perfect student in the

* given list, students.

*/

public boolean hasAperfectStudent (List <Student> students)

{

int i=0; // position of first item

while (i<students.size())

{ s = students.get(i);

if (s.getGPA() == 4.0)

return true; // terminate the method

}

return false; // no perfect students found

}

In coding this method we are careful to make sure that it always returns
the correct result, but we are also careful to make sure that it doesn’t waste
time needlessly. As soon as one student with a 4.0 gpa is encountered, we know
the result should be true, and we terminate the method with return true.
There is no need to continue looping. For small lists, the distinction may not
be significant; even if we continue looping after finding a perfect student, it
may take a small fraction of a second to complete its work. However, for large
lists the time could be significant, and if the call to the method is itself inside
a loop, the time could be very significant. We encourage the programmer to
think about efficiency even at this early stage in learning to program.

If the loop runs to completion (all students in the list have been visited),
we know that there could not have been any perfect students in the list, and
the result should be false. In this case we terminate the method with return

false.

5.2.1 Exercises

1. Define a method named perfect with one parameter, a list of Students.
It should return the number of students in the list who have a perfect gpa
of 4.0.

/** @return The number of students who have a 4.0 gpa

5.3. SETS 109

* @param students Is not null

*/

public int perfect (List <Student> students)

2. Define a method named average with one parameter, a list of Integers.
It should return the average of those integers, as a double.

/** @return The average of the given integers

* @param numbers Is not null and is not empty

*/

public int average (List <Integer> numbers)

3. Define a method named sameName with two parameters which will return
a new list of students consisting of all those in the given list who have the
same name as the second parameter.

/** @param students Is not null

* @param name Is the name to be matched

* @return List of all students with the given name

*/

public List <Student> sameName (List <Student> students,

String name)

5.3 Sets

We now discuss a different kind of collection known as the set. Sets are different
from lists in two important aspects:

• The items in a set are not maintained in any particular order. The order
in which items are obtained from the set may be completely different from
the order in which they were added. The items could conceivably be
reordered at any time.

• There are no duplicate items in a set. When an item is added to a set, if
an item with the same value is already in the set, the size of the set is not
changed. The new item is not added.

This means there will be no indices, or position numbers, for the items in a set.
As with lists, a set will have a size - the number of items in the set, and sets
must be homogeneous - the items in a set must all be of the same type.

The Java class library provides a few implementations of sets; we will limit
our discussion to the one called HashSet. Like ArrayList, this class must be
imported from java.util.

import java.util.*;

We will declare a variable to be of type Set, without specifying what kind
of Set it may be. When instantiating it, however, we must specify the kind of
Set, such as HashSet. We could create a set of whole numbers, and add several
values to it:

110 CHAPTER 5. COLLECTIONS, AND ITERATION REVISITED

grades

Set < Integer >

size 3

Integer

value 96

Integer

value 100

Integer

value 92

Figure 5.5: An object diagram showing a set of Integers after three items have
been added. The items are stored in no particular order.

Set <Integer> grades;

grades = new HashSet <Integer> ();

grades.add (92);

grades.add (96);

grades.add (92);

grades.add (100);

grades.add (92);

At this point the size of the set would be 3 (the value 92 is added only once).
In the next section we will see how we can obtain each item from a set, in a loop,
possibly to print the values; in this case we would have no control over the order
in which the values are printed, for example - 100,96,92. The implementation
of the set controls the order. Figure 5.5 shows an object diagram for the set
named grades created in the code segment shown above. Since we have not
seen the source code for the HashSet class, we will simply show the references
in a set in a nonlinear fashion, with no position numbers, to imply the lack of
order in a set. As with ArrayLists, we will always show the size of the set, even
if the size is 0.

Object diagrams can become rather large and complex. To alleviate this we
will allow a slight ’shortcut’: String objects and objects of wrapper classes (see
Figure 5.4) may be treated as primitives; i.e. for a variable whose type is String,
Integer, Double, Character, etc. we are permitted to show the value directly in
the oval box, rather than as a reference to an object (which it really is). This

5.3. SETS 111

grades

Set < Integer >

size 3

92

100

96

Figure 5.6: A simplified object diagram showing a set after three items have
been added. Since the type of the items is Integer (a wrapper for int), they can
be treated like primitives.

shortcut is possible only because the String class and the wrapper classes are
immutable; i.e., it is not possible to change objects of these classes once they
have been created. Figure 5.6 shows a simpler version of the object diagram in
Figure 5.5.

Since sets do not have position numbers, the question may arise: How can
we access individual items from a set – there are no get nor set methods? We
will defer the answer to this quesion until the section on iterators. However, we
can create a String representation of all the items in a set, and print it if we
wish, very easily:

System.out.println ("The grades are " + grades);

This will convert each item in the set named grades to a String, concatenate
them all together, separated by commas, into one long String inside square
brackets. This is a nice feature of the HashSet class (and most other classes
in the Java class library), and we will see how to provide the same feature for
classes that we build ourselves.

One final remark with regard to sets is in order. If we were to create a set of
Students, or some other class which we have defined ourselves, a few methods
are required in that class: equals(Object) and (for HashSets) hashCode().
We will cover these in a later chapter. These methods are already provided in
the String, Integer, and other classes in the Java Class Library, so they work
fine.

5.3.1 Exercises

1. Which of the following contain syntax errors and which contain run-time
errors (assume all classes from java.util have been imported)?

(a) Set <Integer> numbers = new Set <Integer> ();

numbers.add(18);

112 CHAPTER 5. COLLECTIONS, AND ITERATION REVISITED

System.out.println (numbers);

(b) Set <Integer> numbers = new HashSet <Integer> ();

numbers.add(18);

numbers.add(3);

System.out.println (numbers.get(1));

(c) Set <Integer> numbers = new HashSet <Integer> ();

numbers.add(18);

numbers.add(3);

System.out.println (numbers);

(d) Set <Integer> numbers = new HashSet <Integer> ();

numbers.add(18);

numbers.add(3);

numbers.remove(0);

System.out.println (numbers);

2. Show what would be printed by each of the following (assume all classes
from java.util have been imported):

(a) Set <Student> others, kids = new Set<Student> ();

others = kids;

kids.add (new Student ("jim", "321"));

kids.add (new Student ("joe", "333"));

System.out.println ("size is " + others.size());

(b) Set <Integer> numbers;

for (int i=0; i<100; i++)

numbers.add (i/10);

System.out.println ("size is " + numbers.size());

(c) Set <Student> others, kids = new Set<Student> ();

kids.add (new Student ("jim", "321"));

kids = others;

System.out.println (kids);

3. Define a method named copyToSetwith one parameter, a List of Students,
which will return a Set of all the Students in the given List.

/** @return a Set of all Students in the List students.

* @param students, May be empty but not null.

*/

public Set <Student> copyToSet (List <Student> students)

5.4. ITERATIONTHROUGHACOLLECTIONWITH FOR-EACH, AND EXTREMAPROBLEMS 113

5.4 Iteration through a collection with for-each,

and extrema problems

The need to visit every item in a collection is very common in computer pro-
grams. As we have seen in a previous section, this can be done with a while

or for loop when working with a list.

5.4.1 Iteration through a collection with for-each

In this section we introduce an easier, and better, way to visit every item in a
collection. It is called a for-each loop (though the word each does not appear
anywhere in this construct). The general format is:

for (type variable : collection)

statement // loop body

An example is:

for (Student s: roster)

System.out.println ("The student’s name is " + s.getName());

Here we are assuming that roster is a list of Students. The loop control
will ensure that the variable, s, will be assigned the next item in the ArrayList
roster each time the loop repeats, beginning with the first Student in the list
and ending with the last student in the list. If we read the loop control as:
“for each Student s, in roster”, even though the words ‘each’ and ‘in’ appear
nowhere in the code, we have a fairly good understanding of the intent.

We now see how to obtain a reference to each item in a set. We can use a
for-each loop (with sets there is no other way since sets do not have indices).
The following example is a method with one parameter, a set of integers, which
will return the average value of those integers, as a double.

/** @return the average value of the given numbers

* @param numbers A Set of Integers to be averaged.

*/

double average (Set <Integer> numbers)

{ int sum = 0;

for (int i : numbers)

sum = sum + i; // accumulate the sum

return sum / (double) numerss.size(); // divide by size to get average

}

In the example above, we accumulate the sum of the numbers in an accumu-
lator, sum, in the loop body. When the loop terminates, we calculate the average
by dividing the sum by the number of numbers. Since we wish the division to
be a floating point division, we cast the result of the size() method to a double,
ensuring a floating point division, and return the result of the division.

114 CHAPTER 5. COLLECTIONS, AND ITERATION REVISITED

We should take a little more care, however, in this example. It is always a
mistake to divide by 0, even if the dividend is 0. In this example the size of
the set could be 0 (the API doesn’t specify that the set must not be empty).
Therefore we need to check for an empty set before doing the division. Also,
the API should warn us what the result will be if the parameter is an empty
set. Here is an improved version of the above example:

/** @return the average value of the given numbers, or 0 if the

* the set is empty.

* @param numbers A Set of Integers to be averaged.

*/

double average (Set <Integer> numbers)

{ int sum = 0;

if (numbers.isEmpty())

return 0; // terminate the method

for (int i : numbers)

sum = sum + i; // accumulate the sum

return sum / (double) nums.size(); // divide by size to get average

}

The API now clarifies what will be returned if the given set is empty, and
there is no possibility of dividing by 0.

When working with sets, it is necessary to use a for-each loop rather than
while or for loop. Moreover, we encourage the programmer to use for-each
loops whenever possible, even if not required, for a few reasons:

• As you become familiar with for-each loops, it becomes clear that the
syntax and logic is much more simple and clear than when using a while

or for loop.

• We will see later that there are other list classes in addition to ArrayList;
in this case for-each loops can be much more efficient.

For-each loops are easy and convenient; however they have one important
drawback. The size of the collection involved cannot be changed in the body of
the loop. This means that items cannot be added or removed.

5.4.2 Extrema problems

One very common task we will encounter in programming is the problem of
finding the largest (or smallest) of a collection of values. This is called an
extremum (singular) or extema (plural) problem. We suggest the follow strategy
to find the smallest value in a list of values (with some simple modifications it
can be used to find the largest):

1. Check to see whether the collection is empty, and handle this as a special
case.

5.4. ITERATIONTHROUGHACOLLECTIONWITH FOR-EACH, AND EXTREMAPROBLEMS 115

2. Initialize a local variable to the value of the first item in the collection.
We will call this a ‘candidate’ for the smallest; it is the smallest we have
seen thus far.

3. Set up a loop in which each item in the collection is visited.

4. If a visited item is smaller than the candidate, then the new value of the
candidate should be the value of the visited item. This is now the smallest
we have seen thus far.

5. When the loop terminates, we have visited all items in the collection, and
the candidate will be the smallest

Here is a code segment in which we try to find the smallest number in an
ArrayList of ints:

List <Integer> grades = new ArrayList <Integer> ();

// Assume the ArrayList grades has been assigned values

//

int smallest;

if (!grades.isEmpty()) // Check size of the list

{ smallest = grades.get(0); // there is at least one number

for (int grade : grades) // for each grade

if (grade < smallest)

smallest = grade; // new candidate for smallest

}

// smallest grade is stored in the variable ‘smallest’.

For our next example, we will define a method which will return a reference
to the best student in a given set of students. Using the same strategy as the
previous example, we examine the gpa of each student, maintaining a candidate
for the best as we cycle through the loop:

/** @return the student with the highest gpa from the given Set of

* students, or null if the set is empty.

*/

public Student getBest (Set <Student> school)

{ Student best = null; // candidate for best student

for (Student st : school) // for-each

{

if (best == null) // first student in the set

best = st; // is the best seen so far

if (st.getGPA() > best.getGPA())

best = st; // new candidate for best student

}

return best;

}

116 CHAPTER 5. COLLECTIONS, AND ITERATION REVISITED

In chapter 2 we discussed null references in connection with object diagrams,
but in this example we are making use of a null reference to indicate that the
method could not return anything meaningful in the case where it is given an
empty set. This is a very common usage of a null reference; it is a reference
which refers to no object at all. Note that the local variable best is initialized
to a null reference. If there are no students in the given set, the loop will not
execute, not even once, and the value of best will be null when the return
statement is executed. Also note that we can compare a variable against null
with an == comparison, as though we are comparing primitives (we are actually
comparing references). The logic in the example above is slightly different from
the logic used in the previous example, because sets have no get(int) method.
If you define a method which may return a null reference, be sure to clarify in
the API under what circumstances this will actually occur.

5.4.3 Exercises

1. Which of the following contain syntax errors?

(a) Set <Integer> roster = new HashSet <Integer> ();

for (Student st : roster)

System.out.println (st);

(b) Set <Student> roster = new HashSet <Student> ();

for (int i=0; i < roster.size(); i++)

System.out.println (roster.get(i));

(c) List <Student> roster = new ArrayList <Student> ();

for (Student st : roster)

System.out.println (st);

(d) Set <Student> roster = new HashSet <Student> ();

for (Student st : roster)

System.out.println (st);

2. Define a method named showPositive with one parameter, a Set of In-
tegers, which will print all the values in that set which are positive.

/** Print all numbers which are positive.

*/

public void showPositive (Set <Integer> numbers)

3. Define a method named trueBits with one parameter, a List of Booleans,
which will return the number of Booleans in the list which are true. Use
a for-each loop.

5.5. ITERATORS AND SELECTIVE REMOVAL FROMACOLLECTION 117

/** @return The number of true values in the parameter, bits.

*/

public int trueBits (List <Boolean> bits)

4. Define a method named longestName, with one parameter, a Set of Stu-
dents. It should return the name of the Student in the given list who has
the longest name, or null if the list is empty.

/** @return The longest name of all students in roster, or null

* if roster is an empty list.

*/

public String longestName (Set <Student> roster)

5. Define a method named smallestPositive, with one parameter, a List
of Doubles. It should return the smallest positive number in the given list,
or null if the list is empty. Use a for-each loop.

/** @return The smallest positive number in the given list,

* or null if the list is empty.

*/

public Double smallestPositive (List <Double> numbers)

5.5 Iterators and selective removal from a col-
lection

If you have been looking at the API for ArrayList and HashSet, you may
have noticed that there are several remove methods available, which enable you
to remove an item from a collection. These methods can be used if you read
the API carefully. However, we may wish to remove some of the items from a
collection as we visit all items in a loop. In this case we cannot use a for-each
loop, since a removal would change the size of the collection. Instead we will
use an Iterator.

5.5.1 Iterators

An Iterator is a class3 in the Java class library which is designed to help you
visit all items in a collection. An Iterator object needs to be obtained, after
which it can be used to:

• Obtain the next item from the collection. The method signature is E Next().
It returns the next item in the collection (the return type, E, must match
the type of the items in the collection).

3Iterator is actually an interface which is similar to a class; we will discuss interfaces in
chapter 6.

118 CHAPTER 5. COLLECTIONS, AND ITERATION REVISITED

• Check to see if there are more items in the collection. The method signa-
ture is boolean hasNext(). It returns true only if there are more items
in the collection which have not yet been visited since the Iterator object
was created.

• Remove the last item obtained from the collection. The method signature
is void remove(). This is the best way to selectively remove items from
a collection

.
Since Iterator is in the package java.util, it must be imported at the beginning

of your source file:
import java.util.Iterator

One unusual aspect of Iterators is that they cannot be instantiated with the
new operator; rather we use a method from one of our collection classes called
iterator() which returns an instance of the Iterator class. Once we have the
Iterator object, we can use it to control the loop as shown in the following
example, in which we print the names of all students in the ArrayList roster:

Student s;

Iterator <Student> itty; // itty is an Iterator object

itty = roster.iterator(); // instantiate with a method call

while (itty.hasNext()) // are there more students in the list?

{ s = itty.next(); // yes, get the next student in the list

System.out.println (s.getName());

}

// All student names have been printed

Notice that we must specify the type of the iterator in angle brackets – it
must match the type of the collection with which it is associated, in this case,
Student. This is called a generic type. The above example could have been done
(and probably should have been done - for clarity) with a for-each loop. It also
could have been done with a for loop, using the get(int) method. However,
as mentioned previously, there are other list classes, in addition to ArrayList

which do not have efficient implementations of the get and set methods. For
this reason, we are advised to use a for-each loop or an Iterator when possible.
The next example, however, points out a stronger need for Iterators.

5.5.2 Selective removal

Often we wish to visit every item in a collection, and change the collection by
removing some of the items as we cycle through the collection. In the following
example, we are writing a method which is supposed to remove all the failing
students from a given list of students.

/** Remove all students with gpa under 1.0 from the given list

*/

5.5. ITERATORS AND SELECTIVE REMOVAL FROMACOLLECTION 119

public void flunkOut (List <Student> roster)

{ Iterator <Student> it;

it = roster.iterator();

while (it.hasNext())

{ s = it.next();

if (s.getGPA() < 1.0)

it.remove(); // the iterator does the remove

}

}

In this example we are removing some of the students, and not removing
others; we call this removing selectively. We could not have used a for-each loop
since we are changing the size of the list. Conceivably, we could have done this
without using an Iterator, but the logic is so convoluted and difficult that you
would probably not get it correct; we will not even show you how to do this –
instead use an Iterator.

Notice in this example that we use the iterator to remove; this is easy to
forget. The remove() method in the Iterator class will remove the last item
obtained by a call to next. The remove() method can be called only once per
call to next.

5.5.3 Exercises

1. Which of the following contain syntax errors, and which contain run-time
errors?

(a) Set <Student> school = new Set <Student> ();

school.add (new Student ("Jim", ""));

for (Student st : school)

if (st.getSSN().length() == 0)

st.remove();

(b) Set <Student> school = new Set <Student> ();

school.add (new Student ("Jim", ""));

Iterator <Student> it;

it = school.iterator();

while (it.hasNext())

{ Student st = it.next();

if (st.getSSN().length() == 0)

remove(st);

}

(c) Set <Student> school = new Set <Student> ();

school.add (new Student ("Jim", ""));

Iterator <Student> it;

it = new Iterator (school);

120 CHAPTER 5. COLLECTIONS, AND ITERATION REVISITED

while (it.hasNext())

{ Student st = it.next();

if (st.getSSN().length() == 0)

it.remove();

}

(d) Set <Student> school = new Set <Student> ();

Iterator it;

it = school.iterator();

while (it.hasNext())

{ Student st = it.next();

if (st.getSSN().length() == 0)

it.remove();

}

2. Define a method named retrieveStudent with two parameters, a Set of
Students, and a String representing an ssn. The method should return the
Student in the set whose ssn matches the given ssn. If no students match
the given ssn, the method should return a null reference. Use an Iterator
to control the loop.

/** @return Any Student whose ssn matches the parameter ssn,

* or null if no such Student is found in the list.

*/

public Student retrieveStudent (Set <student> students, String ssn)

3. Define a method named removeNegative which will remove all the nega-
tive values from a given list of Integers.

/** Remove all negative values from nums.

*/

public void removeNegative (List <Integer> nums)

4. Define a method named removeByName with two parameters, a List of
Students, and a student’s name. It should remove all students with the
given name from the List.

/** Remove all students with name given as parameter.

*/

public void removeByName (List <Student> roster, String name)

5. Consider the following method to print Students who have a GPA of 3.0
or greater:

/** Print students with GPA of at least 3.0

5.6. ARRAYS 121

*/

public void showDeansList (List <Student> students)

{ Iterator <Student> itty = students.iterator();

while (itty.hasNext())

if (itty.next().getGPA() >= 3.0)

System.out.println (itty.next() + " is on the Dean’s List");

}

(a) Point out a subtle logic error in this method.

(b) Give an example of a list of students, for which this method will
cause a run-time error.

(c) Give an example of a list of students, for which this method will not
crash, but will produce incorrect output.

(d) Give an example of a non-empty list of students, for which this
method will not crash, but will produce correct output.

(e) Show how this error can be corrected.

5.6 Arrays

The notion of ArrayList is actually a fairly recent invention in programming
languages (late 1990’s); ArrayLists are built upon a more primitive kind of
collection called an array. The array dates back to the earliest days of program-
ming languages; arrays provide a means for mapping the items in a collection
directly to the computer’s memory, for quick access to any item. Aside from
some very different syntax in the usage of arrays, they differ from ArrayLists in
the following ways:

• The size of an array cannot change, whereas an ArrayList can grow and
shrink as a program executes.

• Arrays can be used without involving the Java class library (though there
are classes designed to be used with arrays).

• No import statement is needed to use arrays.

To declare a variable as an array, use the following format:

type [] variable;

This means that the variable being declared does not store a single item, but
a reference to an array of items, each of the same type. Then we can instantiate
the array; it is at this point that we determine, once and for all, the size (or
length) of the array:

variable = new type [length];

122 CHAPTER 5. COLLECTIONS, AND ITERATION REVISITED

As an example we can create an array of ints, with length 12 as follows:

int [] grades;

grades = new int [12];

The length of the array can be determined when the program is run, but
once the array is created, its length may not be changed:

int len;

len = getLength(); // get the length from a method call

int [] grades;

grades = new int [len];

The type of an array need not be a primitive type; we could create an array
of 23 Student objects as shown below:

Student [] roster;

roster = new Student [23];

In this example each position in the array is storing a reference to a Student
object. How would these Student objects be initialized? We would need to
provide the Student class with a constructor that has no parameters, a default
constructor :

// Default constructor for Student class

public Student ()

{ name = "";

ssn = "";

gpa = 0.0;

}

Once we have created the array, we can store a value of the appropriate type
into any position of the array. As usual the position numbers begin at 0. The
position of the last item in the array is length-1. This is done using square
brackets, and the syntax is:

array-name [index] = expression;

For example:

grades[2] = 95;

This would mean that the value 95 is stored into position 2 (third item) of the
array. Figure 5.7 shows an object diagram for the variable grades. Notice that
since it is an array of ints, positions which have not been assigned an explicit
value are given a default value of 0 (Warning: other programming languages
might not be so kind as to do this for us).

To access a value from an array, again put the index in square brackets:
System.out.println ("The fourth grade is " + grades[3]);

Note that the index in square brackets can be any expression which evaluates

5.6. ARRAYS 123

grades

0

0

0

1

95

2

0

3

0

4

0

5

0

6

0

7

0

8

0

9

0

10

0

11

Figure 5.7: An array of ints, showing values and position numbers.

to an int. Be careful that the index is in the range 0..length-1, otherwise a run-
time exception, ArrayIndexOutOfBoundsException, will cause your program
to come to a crashing halt.4 We have been using the word length instead of size
with respect to arrays, because the length of an array can be obtained using
the field name length (it is not a method name). An example which finds the
average value of numbers in an array of ints is shown below:

// assume the array has been assigned values

int sum = 0;

double average;

for (int i=0; i<grades.length; i++)

sum = sum + grades[i];

if (grades.length > 0)

average = sum / (double) grades.length;

Because of the flexibility afforded by ArrayLists (they can grow and shrink),
we will be using ArrayLists rather than arrays for most of our work. There are
a few reasons, however, that programmers need to be aware of arrays:

• The ArrayList class is built using arrays; to understand how the class
works one really needs to understand arrays.

• Some methods in the Java Class Library work with arrays rather than
ArrayLists.

• When working as maintenance programmers, particularly when working
with older, or so-called legacy, code, we will encounter arrays and should
be able to read and understand the code.

• Arrays are closely associated with the hardware; arrays are mapped di-
rectly to the computer’s memory. When you study computer organization
or computer architecture you will gain a greater appreciation for arrays.

5.6.1 Initialization of arrays

Java offers a convenient way to initialize the elements of an array. The declara-
tion can be followed by a list of items in curly braces, and separated by commas.
Example:

4Other languages, such as C/C++ do not check for proper array indices; hence, they are
vulnerable to buffer over-run attacks.

124 CHAPTER 5. COLLECTIONS, AND ITERATION REVISITED

int []nums = {4, 83, -5, 0};
The length of the array is determined by the number of initial values in curly
braces, 4 in this example.

An array of Strings can also be initialized in this way:
String [] names = {"joe", "jim", "sally"};

The length of this array is 3.

5.6.2 Passing arrays as parameters

A reference to an array may be passed into a method. As usual it is just the
reference which is passed, not the entire array. This means that if the called
method makes a change to the array, the calling method will see this update in
the array; i.e. there are not two separate copies of the array.

To pass an array as a parameter, simply provide the name of the array as
the actual parameter in the calling method, The formal parameter in the called
method should include the type and empty brackets to show that it is an array,
as shown in the example below.

void callingMethod ()

{ int [] numbers = new int[100];

...

calledMethod(numbers);

// numbers[2] is now -3

}

...

void calledMethod (int [] nums)

{ nums[2] = -3;

}

Note that, as usual, the name of the actual parameter (numbers in this case)
does not have to be the same as the name of the formal parameter (nums in this
case).

5.6.3 Vector product of numeric arrays

Arrays are often referred to as vectors. To find the vector product of two arrays
which have the same length we simply multiply corresponding elements and sum
the products. For example:

[2 5 7] x [3 -1 2] = 2 x 3 + 5 x -1 + 7 x 2

= 6 + -5 + 14

= 15

A method to find the vector product of two arrays is shown below:

/** @return the vector product of two arrays of int

* @param a1 and a2 have the same length

5.6. ARRAYS 125

*/

int vectorProduct(int [] a1, int [] a2)

{ int [] result = new int [a1.length];

int sum = 0;

for (int i=0; i<a1.length; i++)

sum = sum + a1[i]*a2[i];

return sum;

5.6.4 Exercises

1. Which of the following contain syntax errors and which contain run-time
errors?

(a) int grades;

grades = new int [15];

grades[2] = 90;

grades[3] = 10;

grades[4] = grades[2] + grades[3];

grades[grades[3]] = 17;

(b) int [] grades;

grades[2] = 90;

grades[3] = 10;

grades[4] = grades[2] + grades[3];

grades[grades[3]] = 17;

(c) int [] grades;

grades = new int [15];

grades[2] = 90;

grades[3] = 10;

grades[4] = grades[2] + grades[3];

grades[grades[2]] = 17;

(d) int [] grades;

grades = new int [15];

grades[2] = 90;

grades[3] = 10;

grades[4] = grades[2] + grades[3];

grades[grades[3]] = 17;

2. int [] nums = new int [10];

for (int i=0; i<10; i++)

nums[i] = i * 10;

Assuming the code shown above has been executed, show what would be
printed by each of the following:

126 CHAPTER 5. COLLECTIONS, AND ITERATION REVISITED

4 8 −3 0 4
0 0 3 0 2
14 0 −3 1 1

Figure 5.8: An example of a matrix of numbers with 3 rows and 5 columns

(a) for (int i=0; i<10; i++)

System.out.print (nums[i] + " ");

(b) for (int i=1; i<10; i++)

System.out.print (nums[i] + nums[i-1] + " ");

(c) for (int i=1; i<10; i++)

nums[i-1] = nums[i];

System.out.println (nums[3]);

(d) for (int i=1; i<10; i++)

nums[i] = nums[i-1];

System.out.println (nums[3]);

3. Given an array of Students named students, show the code which could
find the average GPA for those students.

4. Given an array of Students named students, show the code which could
be used to find the position of the Student with the highest GPA.

5. Given an array of ints named fib, show the code which could be used to
fill that array with the numbers in the fibonacci sequence.

5.7 Matrices: Two Dimensional Arrays

In mathematics we define a matrix to be an arrangement of values into rows
and columns, in which all rows have the same number of values (and all columns
have the same number of values).5 Fig 5.8 shows a matrix of numbers, as you
might see it in a mathematics textbook.

In Java we can implement matrices as two-dimensional arrays. To declare a
two-dimensional array of ints, use two pairs of square brackets:
int [][] myMatrix;

Then to instantiate the array, specify the number of rows in the first pair of
brackets, and the number of columns6 in the second pair of brackets. For ex-

5In Java this restriction does not apply, as the number of columns in each row may vary,
but we will not be concerned with this capability.

6Alternatively, one could think of the first dimension as the number of columns, and the
second dimension as the number of rows.

5.7. MATRICES: TWO DIMENSIONAL ARRAYS 127

ample, to work with a matrix of ints with 3 rows and 5 columns:
myMatrix = new int[3][5];

As with one-dimensional arrays, two-dimensional arrays can be declared and
initialized in one statment (and the sizes need not be specified):

int [] [] myMatrix = {{2,3,4},

{7,2,0}};

In this example the array has 2 rows and 3 columns.
To access a particular value from a two-dimensional array, provide integer

expressions for both the row and column:
myMatrix[0][1]

For this example, the value would be 3.
To change a value in a two dimensional array, one also needs to provide

integer expressions for the row and column numbers:
myMatrix[1][0] = 19;

In this example, the 7 would be clobbered, and replaced by 19.

5.7.1 Examples of Matrix Arithmetic

5.7.1.1 Multiplication by a scalar

As an example of arithmetic involving two-dimensional arrays, we discuss the
multiplication of a two-dimensional array of numbers by a single number. The
single number, mathematically, is called a scalar. The product of a matrix
multiplied by a scalar is simply a matrix of the same dimensions in which each
element is multiplied by the scalar. For example:

4 8 −3 0 4
0 0 3 0 2
14 0 −3 1 1

× 3 =

12 24 −9 0 12
0 0 9 0 6
42 0 −9 3 3

To do this in Java, we will use a nested loop. The outer loop will repeat once
for each row in the matrix, and the inner loop will repeat once for each column
in a row. In the inner loop we multiply each element of the given matrix by the
given scalar to produce the corresponding element in the result. A method to
multiply a matrix by a scalar is shown below:

/** @return the product resulting when the given matrix is

* multiplied by the given scalar.

* @param matrix is not empty

*/

public static int[][] multByScalar(int[][]matrix, int scalar)

{ int rows = matrix.length;

int cols = matrix[0].length;

int[][]result = new int[rows][cols];

128 CHAPTER 5. COLLECTIONS, AND ITERATION REVISITED

for (int row=0; row<rows; row++) // outer loop

for (int col=0; col<cols; col++) // inner loop

result[row][col] = matrix[row][col] * scalar;

return result;

}

In this method, note that to obtain the number of rows and columns in the
given matrix, we use the length variable:
rows = matrix.length;

cols = matrix[0].length;

Also note that the result matrix must have the same dimensions as the given
matrix

5.7.1.2 Addition of matrices

To add matrices we simply add corresponding elements of the two matrices to
produce the sum matrix. The two matrices being added must have the same
dimensions. Below we show the mathematical sum of two matrices:

4 8 −3 0 4
0 0 3 0 2
14 0 −3 1 1

+

0 −4 3 2 −1
99 0 −9 0 0
14 1 9 3 2

 =

4 4 0 2 3
99 0 −6 0 2
28 1 6 4 3

To calculate a matrix sum in Java we use a nested loop, as in the previous
section on multiplication by a scalar. In the body of the inner loop, we add
corresponding elements of the two given matrices, to produce one element of
the result matrix. A Java method to add two (non-empty) matrices is shown
below:

/** @return the matrix sum of the two given matrices.

* @param The given matrices have the same dimensions, and

* neither of the given matrices is empty.

*/

public static int[][] add (int[][] m1, int[][] m2)

{ int rows = m1.length;

int cols = m1[0].length;

int[][]result = new int[rows][cols];

for (int row=0; row<rows; row++)

for (int col=0; col<cols; col++)

result[row][col] = m1[row][col] + m2[row][col];

return result;

}

5.7.1.3 Multiplication of matrices

Matrix multiplication is a bit more complicated than the other operations we
have discussed. In order to multiply two matrices they must be conformable, i.e.

5.7. MATRICES: TWO DIMENSIONAL ARRAYS 129

Dimensions of A Dimensions of B Dimensions of A×B
A[2][3] B[3][5] Product[2][5]

A[7][4] B[4][9] Product[7][9]

A[2][3] B[5][3] Not conformable
A[3][3] B[3][3] Product[3][3]

Figure 5.9: Matrices must be conformable in order to be multiplied

2 5 3
3 0 7
2 0 3
1 1 4
6 6 6

×

1 3
2 1
4 2

 =

2 · 1 + 5 · 2 + 3 · 4 = 24 .
. .
. .
. .
. .

Figure 5.10: Calculation of the value at row 0, column 0 in the multiplication
of two matrices

they must have the correct dimentsions. If A and B are matrices, and we are to
find the matrix product A×B, then the number of columns in A must equal the
number of rows in B. The number of rows in the result would equal the number
rows in A, and the number of columns in the result would equal the number of
rows in B. Fig 5.9 shows the dimensions of the result for several examples of
matrix multiplication. Note that matrix multiplication is not commutative; i.e.
A×B = B ×A is not always true.

We now explain how to find the matrix product A×B, assuming the matrices
are conformable. To find the value of row 0, column 0, in the product, we use
the vector product of row 0 of A with column 0 of B, as shown in Fig 5.10

To find the value at row r, column c, of the product we use the vector product
of row r in A with column c in B. The complete product of the two matrices
shown in Fig 5.10 is shown in Fig 5.11.

A Java method to multiply nonEmpty matrices is shown below. We use a
loop within a loop within a loop to calculate the product.

/** @return the matrix product of the two given matrices.

* @param The number of columns in m1 must equal the number

* of rows in m2.

* @param Neither of the given matrices are empty.

*/

2 5 3
3 0 7
2 0 3
1 1 4
6 6 6

×

1 3
2 1
4 2

 =

24 17
31 23
14 12
19 12
42 36

Figure 5.11: Multiplication of matrices

130 CHAPTER 5. COLLECTIONS, AND ITERATION REVISITED

public static int[][] mult (int[][] m1, int[][] m2)

{ int rows = m1.length; // rows in the result

int cols = m2[0].length; // columns in the result

int n = m2.length; // conforming dimension

int[][]result = new int[rows][cols];

for (int row=0; row<rows; row++)

for (int col=0; col<cols; col++)

{ int sum = 0;

for (int i=0; i<n; i++) // find vector product

sum = sum + m1[row][i] * m2[i][col];

result[row][col] = sum;

}

return result;

}

Matrix multiplication has many applications in simulations, weather forecasting,
statistics, economics, and engineering. Researchers are always looking for fast
ways of multiplying huge matrices.

5.7.2 Exercises

1. Given the matrix, m, show the value of each expression shown below:

int [][] m = {{2,5,7},

{3,0,-2}};

(a) m[1][0]

(b) m[0][1] - m[1,2]

(c) m[m[1][0] + m[1][2]][1]

2. Using the matrix given in the previous problem, show the matrix (as in
Fig 5.8) after each of the following statements has executed.

(a) m[0][1] = 17;

(b) m[0][1] = m[0][0];

(c) m[0][m[1][1]] = m[0][0];

3. Given the matrix, names, show the value of each expression shown below:

String[][] names = {{"sal","jim"},

{"flo","Joe"},

{"ann","sal"}};

(a) names[1][1]

(b) names[0][1] + names[1][0]

5.7. MATRICES: TWO DIMENSIONAL ARRAYS 131

(c) (names[1][1] + names[2][0]).charAt(4)

4. Given the following matrices, show the result of each operation shown
below, if possible:

A =

4 8 −3 0 4
0 0 3 0 2
14 0 −3 1 1

B =

2 5 0 2 −1
9 0 −9 0 0
4 3 −3 1 1

C =

1 3
3 1
2 2
0 −1
−2 5

(a) A · 3
(b) A+ B

(c) A+ C

(d) A× B

(e) B × C

(f) C ×B

5. Write a java method to find the sum of a scalar plus a matrix. Simply
add the scalar to each element of the matrix:

/** @return the sum of the given matrix and the given

* scalar.

*/

int[][] addScalar (int[][] m, int scalar)

{ . . . }

6. Given the java code shown below, show what would be printed.

int m[][] = new int[3][4];

for (int r=0; r<3; r++)

for (int c=0; c<4; c++)

m[r][c] = r+c;

System.out.println (m[1][1]);

for (int r=0; r<3; r++)

for (int c=0; c<4; c++)

m[r][c] = m[r][(c+1)%4];

System.out.println (m[1][1]);

System.out.println (m[0][3]);

7. A Latin square is a square matrix of numbers in which:

• The first row has no duplicate values.

132 CHAPTER 5. COLLECTIONS, AND ITERATION REVISITED

• All values in the first row of the square appear in each row of the
square.

• All values in the first row of the square appear in each column of the
square.

Implement the methods shown in the API given below in the class ArrayTester.7

/** Exercise on two dimensional arrays

* @author ...

* @version (Feb 2019)

*/

public class ArrayTester

{

/**@return an array containing the elements of column c of

* arr2D in the same order

* Pre: c is a valid column index in arr2D

* Post: arr2D is unchanged

*/

public static int[] getColumn (int [][]arr2D, int c)

{

// put your solution here

}

/** @return true iff every value in arr1 is also in arr2

* Pre: arr1 and arr2 have the same length.

* Post: arr1 and arr2 are unchanged.

*/

public static boolean hasAllValues(int[] arr1, int[] arr2)

{

// put your solution here

}

/** @return true iff arr contains any duplicates */

public static boolean containsDuplicates (int[] arr)

{

// put your solution here

}

/** @return true iff the given matrix is a Latin Square

* @param: square has equal number of rows and columns.

* square has at least one row.

*/

public static boolean isLatin (int [][] square)

{

7This was a free-response question on the 2018 Advanced Placement CS exam.

5.8. COLLECTIONS IN THE GRIDWORLD CASE STUDY 133

// put your solution here

}

}

5.8 Collections in the GridWorld case study

5.9 Projects

1. Implement the following Set operations:

(a) Define a method named union which has two parameters, each of
which is a Set of Strings. The method should return a new set con-
sisting of all Strings which occur in either, or both, of the given sets.

/** @return a new set which is the union of set1 and set2.

*/

public Set <String> union (Set <String> set1, Set <String> set2)

(b) Define a method named intersection which has two parameters,
each of which is a Set of Strings. The method should return a new
set consisting of all Strings which occur in both of the given sets.

/** @return a new set which is the intersection of set1 and set2.

*/

public Set <String> intersection (Set <String> set1, Set <String> set2)

(c) Define a method named difference which has two parameters, each
of which is a Set of Strings. The method should return a new set
consisting of all Strings which occur in the first set, but not in the
second set.

/** @return a new set which is the difference, set1 - set2.

*/

public Set <String> difference (Set <String> set1, Set <String> set2)

(d) Define a method named concat which has two parameters, each of
which is a Set of Strings. The method should return a new set con-
sisting of all Strings which result from concatenating each String in
the first set with each String in the second set. For example, if the
two sets are: {jim, tom, john} and {my, son}. The result would
be {jimmmy, jimson, tommy, tomson, johnmy, johnson}.

/** @return a new set which is the concatenation of set1 with set2.

*/

public Set <String> concat (Set <String> set1, Set <String> set2)

2. Poker.

134 CHAPTER 5. COLLECTIONS, AND ITERATION REVISITED

(a) Define a class named Card with two fields, rank and suit, both of
which are Strings. Include public accessor methods for these fields.
Also define a method named toString() which returns a String rep-
resenting a Card. For example, if the rank is "Jack" and the suit is
"hearts", this method would return "Jack of hearts".

(b) Define a class named Deck with at least one field, a List of Cards.
The constructor should initialize the field to the 52 different cards
in a deck of playing cards. The suits are "spades", "hearts",

"diamonds", "clubs". The ranks are "Two", "Three", ... "King",

"Ace".

Define a method named getCard with one parameter, an int rep-
resenting the position of a card in the deck. This method should
remove the card at the given position from this deck, and return the
removed card.

/** Remove the Card at position ndx from this Deck.

* @return the removed Card

* @param ndx is not negative, and less than the size of this Deck.

*/

public Card getCard(int ndx)

Define a method which returns the size of this Deck (i.e. the number
of cards currently in this Deck).

(c) Define a class named Poker with at least one field storing a Deck.
This class should have a method named dealHand(int n) which will
return a List of n cards from its deck. Those cards should also be
removed from the deck, in case dealHand is called more than once.

/** Deal a poker hand.

* @return n cards from the deck.

* These cards are removed from the deck.

*/

public List <Card> dealHand (int n)

Help: To deal cards randomly from the deck, use a random number
generator from java.util, Random:

Random rand = new Random();

Each time you call the nextInt(int n) method, it will return a
random int in the range [0..n-1].

Write a method to test your work by dealing 4 Poker hands, with 5
cards in each hand (there should be no duplicate cards).

(d) Change the Deck class so that it uses an array of Cards instead of
a List of Cards. You should not need to change any other classes
because the API for the Deck class is not changing, only the im-
plementation is changing. This is an example of object abstraction
which is discussed in chapter 6.

5.9. PROJECTS 135

3. Sorting a list of numbers

(a) Define a class named Sorter. The purpose of this class will be to
store a List of numbers, and to arrange them in increasing order.
This is called sorting and is one of the most important applications
of computers. This class shold have one field, a list of Doubles.

(b) Include a constructor which will initialize the list of Doubles, perhaps
using a random number generator (see previous project).

(c) Define a private method named swap with two int parameters. This
method will exchange the values in the given positions of the array
of Doubles.

/** Exchange positions j and k in the list of numbers

*/

private void swap (int j, int k)

(d) Define a method named posSmallest with one parameter. It should
return the position of the smallest value in the list, beginning at the
given start position.

/** @return The positon of the smallest value in numbers,

* beginning at position start.

*/

private int posSmallest (int start)

(e) Define a method named sort. It should arrange the values in the
list in ascending order. It can do this with one easy loop in which it
calls posSmallest and swap. For each position, p, in the list, swap it
with the position of the smallest from p to the end of the list.

/** Sort the list of numbers in ascending order

*/

public void sort ()

This project describes an algorithm known as selection sort. If you con-
tinue to study computer science, you will learn many other (sorting) al-
gorithms.

4. Build a simulation for weather forecasts. Use several two dimensional
arrays (all of which have the same dimensions):

• Amatrix in which each cell stores the temperature, in degrees Fahren-
heit, at that location in the simulation

• A matrix in which each cell stores the barometric pressure, in mm of
mercury, at that location in the simulation

• A matrix in which each cell stores the relative humidity, as a per-
centage, at that location in the simulation

136 CHAPTER 5. COLLECTIONS, AND ITERATION REVISITED

Your simulation should update these arrays in a series of steps, enabling
you to predict the air temperature, pressure, and humidity at some loca-
tion any time in the future.

Work on the assumption that if the pressure is lower in a cell, than in a
neighboring cell, that will cause air to flow from the high pressure cell to
the low pressure cell. This will effectively change the pressure, tempera-
ture, and humidity in both cells. The extent to which these things change
depends on how much air move, which is determined by the difference in
pressure in the two cells.

Chapter 6

Abstraction, Inheritance,
and Polymorphism

In this chapter we return to the process of class design. We deal with the ques-
tion, How can we design classes which which work correctly and are easy to use
and maintain? We also deal with issues related to duplicated code (undesirable),
code reuse (desirable), encapsulation (desirable), and object-oriented design of
software.

6.1 Software engineering

In the early days of software development the immense complexity of software
was not well understood. People assumed that by putting enough programmers
on a project, and by testing the software which they produced, a large and
reliable software system could be produced in a reasonable time. However, this
was not the case; there were many failed projects, and many projects were
not reliable or were otherwise faulty. In cases where the software performed
adequately, it was rarely delivered on time and within budget. In the meantime
huge advances have been made in the field of computer hardware. The speed
and memory capacity of computers have both improved at an amazing rate,
along with improved reliability of hardware.

It has been said that if the automotive industry had accomplished technical
developments on par with the developments of the computer hardware industry,
a Rolls-Royce would have a top speed of 200 miles per hour, fuel economy of
500 miles per gallon, and would cost $13.50.

When your own personal computer crashes, it is almost always the result
of a software error, and rarely the result of a hardware failure. Why has the
field of computer software lagged so far behind the field of computer hardware?
We feel it is largely due to the complexity of software. In order to deal with
this problem, a discipline known as Software Engineering was established to
apply engineering principles to the design and development of software. This

137

138CHAPTER 6. ABSTRACTION, INHERITANCE, AND POLYMORPHISM

Useful tool

Interface
(Exposed)

What you need to
know to use this

tool
(API)

Implementation
(Hidden from view)

Details:
How this tool is
constructed

Figure 6.1: Abstraction: There is no need to know the implementation details
of the tools being used.

chapter is essentially an introduction to software engineering, and in particular,
object-oriented software engineering.

6.2 Abstraction

Because of the complexity of software, it is important that we be able to deal
with a portion of a software system without having a detailed understanding
of how the complete system works. Our goal will be to build tools (the Java
Libary is a good example) which can be used to build other useful tools, which
in turn are used to build other tools.... In the process we would like to be able
to use a tool without worrying about its internal details – all we need to know
is what the tool is supposed to do for us, and how can we use it properly. This
is an example of abstraction and is depicted in Figure 6.1. Abstraction, in a
more general sense, is the process of separating ideas from specific instances of
those ideas.

6.2.1 Duplicated code

Suppose there is a segment of code in our program which seems to serve a useful
purpose, and we find a need for this code segment in several other places in the
program. For example, we are finding the average GPA of a set of Students:

// roster is a set of students

double average;

int sum = 0;

for (Student s : roster)

sum = sum + s.getGPA();

average = sum / (double) roster.size();

Assume we have tested this code and it seems to be correct. Now we discover
other places in the program where we need to find the average GPA of the

6.2. ABSTRACTION 139

students in roster. It would be easy to copy and paste this code where it is
needed.

Alternatively, we could write a method to accomplish this task, and simply
call the method when needed. Clearly, that would make our program shorter
(fewer lines of code), but memory and storage are cheap – this is not a problem
(also, some programmers get paid by the line of code produced).

Suppose that rather than writing a method to find the average, we have
copied and pasted this code segment in over 50 different places in our program.
We now learn that sometimes the set of students, roster, might be empty.
The code that we have introduced will not work when the set of students is
empty, because we would divide by 0 to calculate the average gpa – this is a
bug. By using copy and paste we have introduced over 50 bugs in our program.
In many cases this cannot be fixed with a simple editor command to find and
replace. Instead the programmer will have to search and find every place this
code segment was used and correct it manually. This is even more of a problem
if the faulty code had been pasted in many different source files. This is a serious
problem resulting from duplicated code.

Now consider the alternate strategy; instead of using copy and paste, we
define a method to find the average GPA:

/** @return the average gpa of the given set of students

*/

public double average (Set <Student> roster)

{

int sum = 0;

for (Student s : roster)

sum = sum + s.getGPA();

return sum / (double) roster.size();

}

We need to correct the mistake in one place only, the method which calcu-
lates average GPA. The corrected version is shown below:

/** @return the average gpa of the given set of students

* or 0.0 if roster is an empty set.

*/

public double average (Set <Student> roster)

{

int sum = 0;

if (roster.isEmpty()) // avoid division by 0

return 0.0;

for (Student s : roster)

sum = sum + s.getGPA();

return sum / (double) roster.size();

}

140CHAPTER 6. ABSTRACTION, INHERITANCE, AND POLYMORPHISM

In every place where we need to find the average GPA we simply call the
method which returns the average. This has two clear advantages over the copy
and paste strategy:

• When the bug surfaces, we need to make the correction in only one place:

• It is now easy to find the average GPA for any set of students, not just
the one named roster:

double avg = average (someRoster);

This example points out the potentially disastrous pitfalls that can result
from duplicated code. Try to avoid duplicated code if at all possible. The
avoidance of duplicated code is one example of an abstraction.

6.2.2 Method abstraction

If we were to view the API for the average method in the previous section,
without looking at the method body, this would be another example of abstrac-
tion, which we call method abstraction and is also called control abstraction.
The API tells us how to use the method and what it returns; there is no need
to look at the details of how it works.

Another example of method abstraction would involve using methods to
build other methods. A generalized version of this concept would be the building
of software tools to be used in the construction of other software tools. This
idea is depicted in Figure 6.2.

As an example we consider the problem of arranging a list of items in correct
order. For example, we may wish to arrange the items in a particular subse-
quence of a list in ascending order (a more general version of this problem is
called sorting and was introduced as a project in chapter 5). In other words
if we are given the list [4,0,9,2,1,6,-2] and we wish to arrange the sequence at
positions 2,3,4 in order, the list would become: [4,0,1,2,9,6,-2].

We now define a method to arrange an arbitrary subsequence of length 3 in
ascending order. Here is version 1:

/** Arrange the 3 items in the given list, at positions start, start+1,

* start +2 in ascending order.

* @param start The first position of the subsequence to be arranged

* order; start must not be negative and start must be less

* than numbers.size()-2.

* @param numbers A list of numbers, size is at least 3.

*/

public void sort3(ArrayList <Integer> numbers, int start)

{ int tmp;

if (numbers.get(start) > numbers.get(start+1))

{ tmp = numbers.get(start); // swap first and second

numbers.set(start, numbers.get(start+1));

numbers.set(start+1, tmp);

6.2. ABSTRACTION 141

Useful tool

Implementation

Details:
How this tool is
constructed

Older
Tool

Older
Tool

Older
Tool

Older
Tool

Older
Tool

Figure 6.2: Abstraction: Build useful tools in order to build other useful tools

}

if (numbers.get(start+1) > numbers.get(start+2))

{ tmp = numbers.get(start+1); // swap second and third

numbers.set(start+1, numbers.get(start+2));

numbers.set(start+2, tmp);

}

if (numbers.get(start) > numbers.get(start+1))

{ tmp = numbers.get(start); // swap first and second

numbers.set(start, numbers.get(start+1));

numbers.set(start+1, tmp);

}

}

In order to swap, or exchange, the values at two positions in the list, we use a
local variable, tmp:

1. Store the first item in tmp.

2. Store the second item into the position of the first item.

3. Store tmp into the position of the second item.

Does the method shown above actually accomplish what we claim? We
would recommend extensive testing before actually using this method – the
logic is not simple (and many students have attempted this problem with much

142CHAPTER 6. ABSTRACTION, INHERITANCE, AND POLYMORPHISM

more complicated logic). Rather than addressing this issue, we are going to use
method abstraction to simplify this method.

The first thing we notice is that we have some code which is not perfectly
duplicated code, but pretty close to it. Look at the sections where we are
swapping the values at two positions in the list. Method abstraction suggests
that this operation be done in a method, which is then invoked when needed;
we’ll call this method swap. Here is version 2:

/** Arrange the 3 items in the given list, at positions start, start+1,

* start +2 in ascending order.

* @param start the first position of the subsequence to be arranged

* order; start is not negative and start is less

* than numbers.size()-2.

* @param numbers A list of numbers, size is at least 3.

*/

public void sort3(ArrayList <Integer> numbers, int start)

{ if (numbers.get(start) > numbers.get(start+1))

swap (numbers, start, start+1);

if (numbers.get(start+1) > numbers.get(start+2))

swap (numbers, start+1, start+2);

if (numbers.get(start) > numbers.get(start+1))

swap (numbers, start, start+1);

}

/** Exchange the values in positions first and second in the given list

*/

private void swap(ArrayList <Integer> numbers, int first, int second)

{ int tmp;

tmp = numbers.get(first);

numbers.set(first, numbers.get(second));

numbers.set(second, tmp);

}

We have abstracted the process of swap to its ownmethod. Our sort3 method
is now easier to read (it is shorter), and if we had an error in our swapping, it
would occur only once, in the swap method. Incidentally we have made swap

a private method because we see no immediate need for this method outside of
the class in which it exists. Here we are hiding details that are not needed by
someone who is using the sort3 method. The private swap method is sometimes
called a helper method.

We see version 2 as a considerable improvement over version 1, but we can do
better. In version 3, shown below, we will define another private helper method
to sort a subsequence of length 2. Then we can use that in our sort3 method:

/** Arrange the 3 items in the given list, at positions start, start+1,

* start +2 in ascending order.

6.2. ABSTRACTION 143

* @param start the first position of the subsequence to be arranged

* order; start is not negative and start is less

* than numbers.size()-2.

* @param numbers A list of numbers, size is at least 3.

*/

public void sort3(ArrayList <Integer> numbers, int start)

{ sort2(numbers, start);

sort2(numbers, start+1);

sort2(numbers, start);

}

/** Arrange the 2 items in the given list, at positions start and

* start+1 in ascending order.

* @param start the first position of the subsequence to be arranged

* order; start is not negative and start is less

* than numbers.size()-1.

* @param numbers A list of numbers, size is at least 2.

*/

private void sort2 (ArrayList <Integer> numbers, int start)

{ if (numbers.get(start) > numbers.get(start+1))

swap (numbers, start, start+1);

}

.... swap method same as in version 2.

Method abstraction has once again provided a nice solution to this problem.
Version 3 has some distinct advantages over version 2:

• We have shortened the sort3 method considerably by introducing another
helper method.

• If we needed to define a sort4 method, to sort subsequences of length 4, it
would be a fairly easy extension to what we have done; we could use just
three calls to sort3.

6.2.3 Object abstraction and encapsulation

We would now like to address the issue of abstraction with respect to objects.
Objects consist of state (fields or instance variables) and behavior (methods).
Abstraction tells us to hide unnecessary details, so in designing a class we will
make the fields private. This will have several advantages:

• Any programmer who needs to use our class will look at the API. They
will not see anything which is private, and moreover they should not need
to see anything which is private. The details are hidden from view.

144CHAPTER 6. ABSTRACTION, INHERITANCE, AND POLYMORPHISM

• Any method in some other class (call it a foreign method) which tries
to access a field in our class will not compile. This affords the following
advantages:

– Foreign methods are not able to store erroneous or non-valid values
into our fields. If the field gpa in our Student class were public,
a method in some other class would be able to assign it a negative
value, which is clearly not appropriate.

– We now have the freedom to change our mind about field names and
types. Changing things which are public would require users of our
class to recompile and retest – a major inconvenience.

• The fields constitue the internal state of an object of our class; all access
from foreign classes should be through public methods.

The practice of making fields private is often referred to as encapsulation.
Our fields are ‘protected’ from the abuse of foreign classes, just as the capsule
of a pill protects the contents from the external environment.

6.2.4 Exercises

1. Define the method sort4 which will arrange a subsequence, of length 4,
of a list in increasing order. Use calls to the sort3 method.

/** Arrange the 4 items in numbers at positions start through

* start+3 in ascending order.

* @param numbers A list of whole numbers with length at least 4.

* @param start A position in the the list; not negative and

* less than size of the list - 3

*/

public void sort4 (ArrayList <Integer> numbers, int start)

2. We have defined a method which will print the best Student in each of
four lists of Students (see ch6/TopStudents.java in the code repository).

Use method abstraction to eliminate duplicated code from the method
topStudents.
Hint: Define a private helper method to return the best Student in a List
of Students.

3. We wish to find the prime factors of a given int. We will do this by building
some useful tools first.

(a) Define a method named isPrime()which determines whether a given
int is prime.

/** @return true if n is a prime number

*/

private boolean isPrime (int n)

6.3. INHERITANCE 145

(b) We can now produce a list of prime numbers fairly easily. Define a
method named primeList() with an int parameter, which returns a
list of all prime numbers less than or equal to the given parameter.

/** @return list of primes less than or equal to n

*/

private List <Integer> primeList (int n)

(c) Use the primeList method to find the prime factors of a given int.
Define a method named primeFactors which returns all the prime
factors of a given int in a list.

/**

* @return a list of the prime factors of n.

* @param n > 0

*/

public List <Integer> primeFactors (int n)

6.3 Inheritance

We now wish to extend our Student class example. We have graduate students
and undergraduate students, and there are some differences between these two
kinds of students:

• Undergraduate students are allowed to participate in intercollegiate sports.
Graduate students are not permitted to do so (NCAA rules).

• All graduate students hold a bachelor’s degree; undergraduate students
generally do not.

• Graduate students are permitted to register for courses at the 600 level;
undergraduate students are not permitted to do so.

• All graduate students are registered for a 3-credit ‘Thesis’ course, which
is not included in their GPA.

We could replace our Student class with two new classes, Undergrad and
GradStudent:

/** An Undergraduate student has a name, an ssn, and a gpa.

* Also, undergrads are permitted to play sports.

*/

public class Undergrad

{

private String name;

private String ssn;

private double gpa;

private boolean athlete;

146CHAPTER 6. ABSTRACTION, INHERITANCE, AND POLYMORPHISM

/** Construct a new Undergrad with the given name

* and ssn. gpa is initially 0.0

*/

public Undergrad (String newName, String newSSN)

{ name = newName; // initialize fields from parameters

ssn = newSSN;

gpa = 0.0; // initialize field to default value

athlete = false; // initialize to default value

}

// accessor methods

/** @return The name of this Undergrad

*/

public String getName()

{ return name; }

/** @return The ssn of this Undergrad

*/

public String getSSN()

{ return ssn; }

/** @return The gpa of this Undergrad

*/

public double getGPA()

{ return gpa; }

/** @return true only if this Undergrad is an athlete

*/

public boolean getAthlete()

{ return athlete; }

// mutator methods

/** Change the name of this Undergrad to the given name

*/

public void setName (String newName)

{ name = newName; }

/** Calculate the gpa of this Undergrad, if

* if the number of credits is positive

*/

public void calcGPA (int gradePoints, int credits)

{ if (credits > 0)

gpa = gradePoints / (double) credits;

}

6.3. INHERITANCE 147

/** Change the ’athlete’ status of this Undergrad

*/

public void setAthlete(boolean ath)

{ athlete = ath; }

}

We also have a Java class for graduate students:

/** A GradStudent student has a name, an ssn, and a gpa.

* Also, GradStudent has an undergrad degree

*/

public class GradStudent

{

private String name;

private String ssn;

private double gpa;

private String degree;

/** Construct a new GradStudent with the given name

* and ssn. gpa is initially 0.0

*/

public GradStudent (String newName, String newSSN, String degr)

{ name = newName; // initialize fields from parameters

ssn = newSSN;

gpa = 0.0; // initialize field to default value

degree = degr;

}

// accessor methods

/** @return The name of this GradStudent

*/

public String getName()

{ return name; }

/** @return The ssn of this GradStudent

*/

public String getSSN()

{ return ssn; }

/** @return The gpa of this GradStudent

*/

public double getGPA()

{ return gpa; }

/** @return This the degree of this GradStudent

*/

148CHAPTER 6. ABSTRACTION, INHERITANCE, AND POLYMORPHISM

public String getDegree()

{ return degree; }

// mutator methods

/** Change the name of this GradStudent to the given name

*/

public void setName (String newName)

{ name = newName; }

/** Calculate the gpa of this GradStudent, if

* if the number of credits is more than 3.

* Assumes this GradStudent is registered for Thesis

* which is excluded from GPA.

*/

public void calcGPA (int gradePoints, int credits)

{ if (credits > 3)

setGPA (gradePoints / (double) (credits-3)); // exclude Thesis

}

}

This may seem like a lot of work for some minor changes to our program,
but with copy and paste it does not take long. The problem, as noted earlier
in this chapter, is that there is a lot of duplicated code here (it’s so easy to do
that with copy and paste). Much of these two classes are identical. Fortunately,
object oriented languages such as Java give us a way to eliminate this duplicated
code; it is called inheritance. We can define a new clss which inherits the (non-
private) fields and methods of an existing class, in the same way that a person
might inherit the traits of their parents.

Inheritance allows us to define a new class using an existing class. The
existing class is sometimes called a base class or a superclass. The new class is
called a subclass. The subclass automatically has access to all fields and methods
from the superclass which are not private. This means that we will be able to
eliminate the duplicated code by using Student as a superclass, and Undergrad
and GradStudent as subclasses. A superclass may itself be a subclass of some
other class; moreover, a class may have more than one subclass, but may have
only one superclass. There is an existing class called Object which is, directly
or indirectly, a superclass of all classes.

A simpler way of restating the above paragraph is that inheritance forms a
tree-like hierarchy of classes with a class named Object at the root (i.e. at the
top). This hierarchy is depicted in Figure 6.3. Take note of a few aspects of
this class diagram:

• The arrows always point from subclass to superclass, and never from
superclass to subclass.

• The arrowheads are hollow (unfilled) triangles.

6.3. INHERITANCE 149

Object

Subclass Subclass
. . .

Subclass

SubSubclass SubSubclass

Figure 6.3: Class diagram showing Object at the root

• The format of a class diagram is specified in some detail by the Unified
Modeling Language (UML) which we will not go into further at this time.

6.3.1 Is-a versus Has-a

To clarify the notion of inheritance we say that every instance of a subclass is-an
instance of its superclass. In this case every Undergrad is-a Student, and every
GradStudent is-a Student. But it is NOT the case that every Student is-an
Undergrad; nor is it true that every Student is-a GradStudent. Inheritance is
clearly a one-way street.

We should be careful to distinguish between inheritance and composition.
Composition refers to the fields of a class. To describe the composition of
the Undergrad class we would say that every Undergrad has-a name, every
Undergrad has-an ssn, every Undergrad has-a gpa, and every Undergrad has-
an athlete status.

Figure 6.4 shows some examples to help distinguish between is-a (inheri-
tance) and has-a (composition).

When designing classes for your program, if it makes sense that every X
has-a Y, then you should make Y a field in the X class. If it makes sense that
every X is-a Y, then X should be a subclass of Y. As you’ll see if and when
you study object-oriented design in more depth, there will be cases where it is
not clear whether inheritance or composition is appropriate; in such cases it is
usually better to use composition.

150CHAPTER 6. ABSTRACTION, INHERITANCE, AND POLYMORPHISM

Inheritance Composition
Every UnderGrad is-a Student Every Student has-a name
Every GradStudent is-a Student Every GradStudent has-a degree
Every Car is-a Vehicle Every Car has-an Engine
Every Whale is-a Mammal Every Whale has-a Habitat
Every HashSet is-a Set Every HashSet has-a size
Every ArrayList is-a List Every ArrayList has-an array of items

Figure 6.4: Distinguishing between Inheritance (is-a) and Composition (has-a)

Student

UnderGrad GradStudent

Figure 6.5: Class diagram showing relationship of Student classes

6.3.2 Factoring duplicated code and defining subclasses

To define a subclass in Java we use the keyword extends. This conveys the intent
that the subclass consists of everything in the superclass, in addition to other
fields and/or methods. The general format, when defining a subclass is:

public class subclass-name extends superclass-name

{ ... fields, constructors, methods ... }
Note that there can be only one superclass name after the keyword extends

because a class can have only one superclass.

We can now redefine our Student classes using inheritance. Student will be
the superclass; GradStudent and Undergrad will be the subclasses. Figure 6.5
shows the class diagram which will result.

In order to decide which fields and methods are to be placed in which classes,
we return to the notion of factoring duplicated code. All fields and methods
which are identical in GradStudent and Undergrad will be factored into the
Student class, whereas all fields and methods which are different will be retained
in GradStudent and Undergrad.

Figure 6.6 shows which fields of GradStudent and Undergrad are identical
and therefore can be factored to the Student class. Fields or methods which
occur in one class but not the other are indicated by a

√
. For fields and

methods which occur in both classes, the figure shows whether they are the
same or different.

Using the information in Figure 6.6 we can now define our three classes. All
fields which are the same in the GradStudent and Undergrad classes will be fac-

6.3. INHERITANCE 151

Fields UnderGrad GradStudent
name same same
ssn same same
gpa same same

athlete
√

degree
√

Methods UnderGrad GradStudent
getName() same same
getSSN() same same
getGPA() same same

getAthlete()
√

setName() same same
calcGPA() different different
setAthlete()

√

getDegree()
√

Figure 6.6: Fields and methods which are the same in UnderGrad and
GradStudent can be factored to the Student super-class

tored to the Student class: name, ssn, gpa. All methods which are the same
in both classes will be factored to the Student class: getName(), getSSN(),

getGPA(), setName(). Note that the method calcGPA(int,int) occurs in
both the GradStudent and Undergrad classes; however, it cannot be factored
to the Student class because the method body (i.e. the implementation) is
different in GradStudent and Undergrad.

/** A Student has a name, an ssn, and a gpa.

* This class serves as a superclass for various

* kinds of students.

*/

public class Student

{

private String name;

private String ssn;

private double gpa;

// accessor methods

/** @return The name of this Student

*/

public String getName()

{ return name; }

/** @return The ssn of this Student

*/

152CHAPTER 6. ABSTRACTION, INHERITANCE, AND POLYMORPHISM

public String getSSN()

{ return ssn; }

/** @return The gpa of this Student

*/

public double getGPA()

{ return gpa; }

// mutator methods

/** Change the name of this Student to the given name

*/

public void setName (String newName)

{ name = newName; }

/** Change the gpa of this Student to the given gpa

*/

public void setGPA (double newGPA)

{ if (newGPA >=0) // check for valid value

gpa = newGpa;

}

}

We now handle the two subclasses, GradStudent and Undergrad. In the
Undergrad class we will exclude those fields and methods which have been
factored to the Student class:

/** Every Undergrad is a Student

* Undergrad is a subclass of Student.

* Every Undergrad has an Athlete status (boolean).

* Undergrads are not registered for Thesis.

*/

public class Undergrad extends Student

{

private boolean athlete;

/** @return true only if this Undergrad is an athlete

*/

public boolean getAthlete()

{ return athlete; }

/** Calculate the gpa of this Undergrad, if

* if the number of credits is positive

*/

public void calcGPA (int gradePoints, int credits)

6.3. INHERITANCE 153

{ if (credits > 0)

setGPA (gradePoints / (double) credits);

}

/** Change the ’athlete’ status of this Undergrad

*/

public void setAthlete(boolean ath)

{ athlete = ath; }

}

In the GradStudent class we will exclude those fields and methods which
have been factored to the Student class:

/** Every GradStudent is a Student.

* GradStudent is a subclass of Student.

* A GradStudent has a degree.

* All GradStudents are registered for 3-credit Thesis,

* which is not part of the GPA.

*/

public class GradStudent extends Student

{

private String degree;

/** @return This the degree of this GradStudent

*/

public String getDegree()

{ return degree; }

/** Calculate the gpa of this GradStudent, if

* if the number of credits is more than 3.

* Assumes this GradStudent is registered for Thesis

* which is excluded from GPA.

*/

public void calcGPA (int gradePoints, int credits)

{ if (credits > 3)

setGPA (gradePoints / (double) (credits-3));

}

}

6.3.2.1 Constructors

The reader may have noticed that constructors are absent from the code pre-
sented thus far. Constructors require careful attention when using inheritance.
We will include constructors in all three of our classes, and each constructor will

154CHAPTER 6. ABSTRACTION, INHERITANCE, AND POLYMORPHISM

be responsible for initializing the fields of its own class. In the Student class the
constructor is the same as shown previously:

/** Initialize the fields of this Student

* @parm ssn Must be a valid ssn.

* gpa is initially 0.0

*/

public Student (String name, String ssn)

{ this.name = name;

this.ssn = ssn;

gpa = 0.0;

}

In the Undergrad class, keep in mind that every Undergrad has a name
and an ssn. Therefore when an Undergrad is created, the creator will have to
provide a name and an ssn. The constructor will then call the constructor in the
superclass to initialize the appropriate fields. This is done with a call to super.
A call to super in a constructor is a call to the constructor in the superclass, and
the actual parameters in the call should correspond to the formal parameters in
the superclass’ constructor. This call to super must be the first statement in
the subclass’ constructor. After calling super, the Undergrad constructor will
then initialize the athlete status to a default value, false. The constructor for
Undergrad is:

/** Initialize the fields of this Undergrad.

* @param ssn Must be a valid ssn.

* Athlete status is initially false.

*/

public Undergrad (String name, String ssn)

{ super (name, ssn); // call constructor in Student class

athlete = false;

}

We use a similar strategy for the constructor in the GradStudent class. In
this case the constructor will need another parameter for the GradStudent’s
degree:

/** Initialize the fields of this GradStudent.

* @parm ssn Must be a valid ssn.

* @param degree should include degree title and institution

*/

public GradStudent (String name, String ssn, String degree)

{ super (name, ssn); // call constructor in Student class

this.degree = degree;

}

6.3. INHERITANCE 155

6.3.3 Making use of inheritance

We close this section with a brief example showing how these classes can be
used. Some other class, call it the client, could have a method containing the
following code segment:

UnderGrad younger = new GradStudent("jim", "322-23-3234");

GradStudent older = new GradStudent("sue", "240-44-2222");

younger.setAthlete(true);

older.setDegree ("B.A. from Penn State");

System.out.println ("Our new students are " +

younger.getName() + " and " +

older.getName());

Conceivably, we could also create a Student who is neither an UnderGrad
nor a GradStudent, but just a plain Student:

Student stud = new Student("joe", "223-98-1782");

This student would be neither a GradStudent nor an UnderGrad, and this
begs the question: does it make sense to have this kind of student in our pro-
gram? We’ll come back to this question later.

6.3.3.1 Assignment of references to variables

Once we have declared variables which store references to various kinds of stu-
dents, we can instantiate those classes and assign the reference to the appropri-
ate variable. A reference to an Undergrad can be assigned to a variable declared
as Undergrad, and a reference to a GradStudent can be assigned to a variable
declared as GradStudent, and a reference to a Student can be assigned to a
variable declared as Student.

Moreover, since every Undergrad is-a Student and every GradStudent is-a
Student, we can do the following:

Student stud1, stud2;

stud1 = new Undergrad("jim", "322-23-3234");

stud2 = new GradStudent("sue", "240-44-2222");

It would be a mistake to go the other way:

Undergrad younger = new Student ("jim", "322-23-3234"); // ERROR

The compiler will not allow this because it is not true that every Student is-an
Undergrad.

The variables stud1, declared to be of type Student is now storing a refer-
ence to an Undergrad, and stud2, also declared to be of type Student is storing
a reference to an GradStudent. Also note that these can change as the program
executes:

stud1 = new GradStudent("joe", "323-87-0102");

So stud1 is now storing a reference to a GradStudent.

156CHAPTER 6. ABSTRACTION, INHERITANCE, AND POLYMORPHISM

Variable
st ug

static dynamic static dynamic
Code type type type type
Student st; Student
Undergrad ug; Student Undergrad
ug = new Undergrad(”jim”,”22”) Student Undergrad Undergrad
st = ug; Student UnderGrad Undergrad Undergrad
st = new GradStudent (”joe”,”33”); Student GradStudent Undergrad Undergrad

Figure 6.7: Static type versus dynamic type. Static type changes as the code
executes.

The question to be addressed now is, What is the type of stud1 – UnderGrad
or Student? We need to distinguish two kinds of type: static type and dynamic
type.

Static type:

• Static type is the type of the variable shown in the declaration.

• Static type is determined when the program is compiled.

• Static type does not change as the program executes. It is in effect for the
lifetime of the variable.

Dynamic type:

• The dynamic type of a variable is the type of the reference assigned to the
variable.

• The dynamic type of a variable is determined when the program executes.

• The dynamic type of a variable can change as the program executes.

Figure 6.7 shows a code segment in which the the static and dynamic types
of variables are shown as the code is executed. Static type is important because
it will determine whether your program compiles without errors. Dynamic type
is important, as we shall see in the next section, because it will determine which
method is being called.

6.3.3.2 Assignment to subclass from superclass – casting

We now consider the case where we may wish to assign to a variable whose
static type is a subclass, but we are assigning from a variable whose static type
is the superclass; this can work, but only if the dynamic type of the variable
being assigned is correct. Here is an example:

Student stud1 = new Undergrad("jim", "322-23-3234");

Undergrad younger;

6.3. INHERITANCE 157

Code Comments
Student st;
Undergrad ug;
st = new Undergrad(”joe”, ”23”);
ug = st; ERROR (at compile time)
ug = (Undergrad) st; cast down to Undergrad
st = new GradStudent(”jim”,”32”);
ug = (Undergrad) st; ERROR (at run time)

Figure 6.8: Assignment to super-class variable, with a cast

Here we should be able to store the reference, stud1 , into the variable
younger because the dynamic type, Undergrad matches the static type of
younger, but the compiler will not accept it:

younger = stud1; // ERROR

The problem is the compiler is not convinced (and not smart enough to
know) that the dynamic type of stud1 is Undergrad (recall that dynamic type
is determined at execution time). We need to convince the compiler that every-
thing will be okay at execution time; this is done with a cast. A cast forces the
type of a reference to a particular type. We have already seen casts with respect
to primitive types; they can also be used with reference types. To apply a cast
to an expression, simply pubt the casting type in parentheses and preceding the
expression. The format is:

(type) expression
For example, (Undergrad) stud1; produces a reference to an Undergrad,

which can now be assigned to a variable whose static type is Undergrad:
younger = (Undergrad) stud1; // OK

However, if the the dynamic type of stud1 is not truly Undergrad as we are
claiming, we will get a runtime error when the cast is applied. Figure 6.8 shows
another code segment, similar to Figure 6.7, in which we show some valid and
non-valid operations.

When considering the use of a cast, remember that you are always casting
down the class diagram, from a superclass to a subclass. (Undergrad) student

is fine, but (Student) undergrad is not permitted.

6.3.3.3 Importance of inheritance

Inheritance is extremely important in Java programming. Looking at the Java
class library, you will see inheritance everywhere. Moreover, we can extend
classes from the Java class library to form extensions. For example, we might
want an improved version of the ArrayList class which can tell us whether the
items are in ascending order. This can be done easily by extending ArrayList
with a subclass that has the desired method:

public class BetterArrayList extends ArrayList

{

158CHAPTER 6. ABSTRACTION, INHERITANCE, AND POLYMORPHISM

public boolean isAscending()

{ /// method body here }

}

6.3.4 Exercises

1. Fill in the missing entries in the table below with one of the following:

• Is-a

• Has-a

• Neither

• Both

Car Has-a Engine
SUV Car
Student Person
Person SSN
Petunia Plant
Petunia Flower
Petunia Stem
Student University
University Collection of Students
Windows Folder Collection of Documents and Folders
Java method Signature

2. Assume Person and Animal have been defined as classes. Which of the
following contain syntax errors?

(a) public class Student subclass Person

{ }

(b) public class Student extends Person

{ }

(c) public class Student extends Person, Animal

{ }

3. Refer to the classes Student and GradStudent described in this section.
Define classes named PhdStudent and MastersStudent. Both should be
sublcasses of GradStudent. A PhdStudent should have two fields:

• A boolean field, true only if the PhdStudent has passed qualifying
exams.

• A String field, storing the PhdStudent’s dissertation topic, or null if
the PhdStudent has no dissertaion topic.

6.3. INHERITANCE 159

Newly created PhdStudents have not passed qualifying exams and have
no dissertation topic.

A MastersStudent has one field, a boolean which is true if the MastersStu-
dent is on a thesis track. When a MastersStudent object is created, it
should be possible to specify whether the MastersStudent is on a thesis
track.

Include appropriate public accessor and mutator methods in these classes.

4. Assume we have defined a class named Vehicle which has two subclasses
named Bicycle and Car. These classes all have default constructors.
Which of the following contain syntax errors, and which contain run-time
errors?

(a) Vehicle v;

Bicycle b;

v = new Bicycle();

(b) Vehicle v;

Bicycle b;

b = new Vehicle();

(c) Vehicle v;

Bicycle b;

v = new Bicycle();

b = v;

(d) Vehicle v;

Bicycle b;

v = new Bicycle();

b = (Bicycle) v;

(e) Vehicle v;

Bicycle b;

Car c;

v = new Bicycle();

c = (Car) v;

5. Look at the API for the ArrayList class in the java.util package.

(a) What is the superclass of ArrayList?

(b) What are the (direct) subclasses of ArrayList?

160CHAPTER 6. ABSTRACTION, INHERITANCE, AND POLYMORPHISM

6.4 Polymorphism and dynamic method look-

up

In this section we will examine how dynamic type is used in method calls. We
will also see that objects can exhibit different behavior, depending on their dy-
namic types. The word polymorphism, in the natural sciences, means ‘taking
on different forms or appearances.’ In object-oriented programming polymor-
phism is exhibited when two identical method calls can result in the invocation
of different methods. This can be particularly useful when we have a collection
of objects, with different dynamic types, and the action we wish to perform on
each of those objects will depend on its dynamic type.

6.4.1 Dynamic method look-up

Before going into the details of polymorphism, we need to take a closer look at
the mechanism which is used when methods are called. Continuing with our
Student classes, as shown in Figure 6.3, assume we wish to print the name of a
particular student:

Student st;

st = new UnderGrad("jim", "22");

System.out.println ("The student’s name is " + st.getName());

The method call st.getName() means to apply the getName() method to
the st object. However, st refers to an object of type Undergrad and that class
has no getName() method. We need to understand that methods are invoked
by a process known as dynamic method look-up. When a method is called via
object.method():

• Look in the class of the given object’s dynamic type. If the given method
is there, that is the method which is invoked.

• If the method is not there, look in the superclass of the given object. If
the method is found there, that is the method which is invoked.

• If the method is not there, continue to look in the super-super-superclass.

• Ultimately the method will be found, or the Object class will be reached
(Object is always at the root of the class hierarchy). If the method is not
found anywhere on the path to Object, an error is produced (as we will
see later, this could be a compile-time error or a run-time error).

In the code segment shown above the call st.getName() will find no such
method in the Undergrad class, so it will look in the superclass, Student and
find the method to be invoked in that class.

6.4. POLYMORPHISM AND DYNAMIC METHOD LOOK-UP 161

6.4.2 Polymorphism

Having defined dynamic method look-up, we are now in a position to understand
polymorphism in object-oriented programming. Consider the case where we
wish to invoke a method such as calcGPA on a variable whose static type is
Student:

Student st = new Undergrad("jim", "22");

int cr = readCredits(st);

int gp = readGradePoints(st);

st.calcGPA(gp,cr);

In this case the compiler will issue an error on the call to calcGPA because
there is no such method in the Student class. Unfortunately we know how to
calculate a GPA only for GradStudents and Undergrads, but not for ordinary
Students. To remedy this we can include a method in the Student class as a
place-holder, simply to satisfy the compiler, as long as we are sure that it never
actually gets called (in the next section we’ll see a better way to handle this).
In the Student class:

/** This method should never be invoked. It is here only as

* a place-holder, so that calls to calcGPA() can be compiled

*/

public void calcGPA(int gradePoints, int credits)

{ // do nothing

}

Now the method call st.calcGPA(int,int) will work fine; it will call the
calcGPA(int,int) method in the Undergrad class because the dynamic type
of st is Undergrad. To further explain polymorphism, we could extend that
code segment with two more statements:

Student st = new Undergrad("jim", "22");

int cr = readCredits(st);

int gp = readGradePoints(st);

st.calcGPA(gp,cr);

st = new GradStudent ("mary", "32);

cr = readCredits(st);

gp = readGradePoints(st);

st.calcGPA(gp,cr);

The first call st.calcGPA(gp,cr)will invoke the calcGPA(int,int)method
in the Undergrad class, and the second call st.calcGPA(cr,gp) will invoke the
calcGPA(int,int)method in the GradStudent class. Two identical statements
result in different methods being invoked. This is polymorphism and is depicted
in Fig 6.9

162CHAPTER 6. ABSTRACTION, INHERITANCE, AND POLYMORPHISM

Student st;

st = new Undergrad(...);

st.calcGPA();

st = new GradStudent(...);

st.calcGPA();

Undergrad
calcGPA()

GradStudent
calcGPA()

Figure 6.9: Polymorphism: Identical method calls invoke methods in different
classes

6.4.2.1 Polymorphism with collections

Polymorphism is most often used in connection with collections. For example,
assume that roster stores a reference to a list of students:

List <Student> roster;

roster = new ArrayList <Student>();

roster.add (new UnderGrad ("jim", "22");

roster.add (new GradStudent ("mary", "32");

roster.add (new UnderGrad ("joe", "56");

We now wish to print the name and GPA of each Student in the list. Before
printing a student’s gpa, we will make sure it has been calculated. Polymorphism
handles this perfectly:

for (Student st : roster)

{ int cr = readCredits(st);

int gp = readGradePoints(st);

st.calcGPA(gp,cr);

System.out.println ("The GPA for " + st.getName() + " is " +

st.getGPA();

}

The method call to calcGPA(gp,cr) will invoke the appropriate method
using dynamic method look-up.

6.4.3 Exercises

1. Assume that we have a class named Vehicle with two subclasses: Car

and Bicycle. These classes all have default constructors. The subclasses
each has a method named getMPG().

In the Car class:

public double getMPG()

{ return 35.0; }

6.4. POLYMORPHISM AND DYNAMIC METHOD LOOK-UP 163

In the Bicycle class:

public double getMPG()

{ return 0.0; }

(a) Which line(s) shown below will cause syntax error(s)?

Bicycle b = new Bicycle();

Car c = new Car();

Vehicle v = new Bicycle();

System.out.println (b.getMPG());

System.out.println (c.getMPG());

System.out.println (v.getMPG());

(b) Show change(s) to any of these classes which will prevent the syntax
error(s) from the previous problem.

(c) In the previous problem, the method call v.getMPG() will result in a
call to the getMPG() method in which class (after the correction has
been made)?

(d) Define a method named getMPG() with one parameter, a List of
Vehicles, which will return the average MPG those Vehicles:

/** @return the average MPG of the given vehicles, or 0 if the List

* is empty

*/

public double averageMPG (List <Vehicle> vehicles)

2. This exercise refers to dynamic method lookup. Figure 6.10 depicts a class
diagram showing public void methods that are defined in each class. Notice
that the same method signature can occur in several different classes.
Assume the following declarations:

Class2 c2;

Class3 c3;

Class4 c4;

Class5 c5;

Assume the variables declared above have been assigned non-null values.
In each of the following show which method is invoked, by giving the name
of its class, or indicate that an error will occur.

(a) c4.method1();

(b) c4.method2();

(c) c5.method1();

(d) c2.method2();

(e) c2.method1();

164CHAPTER 6. ABSTRACTION, INHERITANCE, AND POLYMORPHISM

Class2

Class4

method1()

Class5

method2()

Class3

method2()

Class1

method1()

Figure 6.10: Class diagram for exercise on dynamic method lookup. Each
method is public void.

6.5 Overriding methods from the Object class

Recall that the Object class is (directly or indirectly) a superclass of every
Java class. The Object class is in the package java.lang and does not need
to be imported. Looking at the API for the Object class we see at least three
interesting methods:

• public String toString() - An object of this class can be represented
by a String.

• public boolean equals (Object) - An object of this class can be com-
pared for equality with any other object (more on this in chapter 7).

• public int hashCode() - An object of this class can produce an int
likely to be unique for unequal objects of the same class (more on this in
chapter 8).

6.5.1 Overriding the toString() method

The purpose of the toString()method is to produce as a result a String repre-
sentation of an object. This will be useful when one needs to display data for a
user; the toString() method should format the data to be readable and clear
to the user. It should return that formatted result as a single String (it may
contain newline characters). As an example, we could override the toString()
method in our Student class as shown below:

/** @return this Student as a String */

public String toString()

{ String result = "Name: " + name + "\n";

6.5. OVERRIDING METHODS FROM THE OBJECT CLASS 165

result += "SSN: " + ssn + "\n"; // concatenate ssn

result += "GPA: " + gpa + "\n"; // concatenate gpa

return result;

}

The following code
Student s1 = new Student ("Joe", "123-45-6789");

System.out.println (s1.toString());

would produce the following output:

Name: joe

SSN: 123-45-6789

GPA: 0.0

The toString() method becomes even more useful when we learn that it is
called automatically by the Java runtime environment when:

• An object which is not a String is concatenated with a String. The
toString() method produces a String for the concatenation.

• An object is passed as a parameter to the System.out.println method since
println is expecting its parameter to be a String.

This means that we can concatenate a String with a Student object:
"Best student is " + s1

and we can simplify the call to println:
System.out.println (s1);

without explicitly calling toString().
Most of the classes in the Java class library override the toString()method.

This means that you can print objects of those classes easily, and expect to get
a pretty good looking result. Even Collection classes such as ArrayList have
a toString() method. In the case of an ArrayList the toString() method will
produce a result consisting of:

1. An open bracket - [

2. String representations of all the elements in the ArrayList (these are pro-
duced by calling toString() on each element), separated by commas

3. A close bracket -]

An ArrayList of 3 Strings might appear like this:
["joe","jim","mary"]

Incidentally, primitives can also be converted to Strings with concatenation.
If the variable sum is an int, with value 23, the value of "Sum is " + sum is the
String "Sum is 23". However, Figure 6.11 shows instances where concatenation
might produce unexpected results. To understand Figure 6.11 recall that when
there are several + operators in an expression, they are executed left to right.
To create a String representation of a primitive, simply concatenate it with a
String of length 0:

17 + "" produces the String "17".

166CHAPTER 6. ABSTRACTION, INHERITANCE, AND POLYMORPHISM

Plus operation(s) Result Explanation
2 + 3 5 Addition of ints
"2" + "3" "23" Concatenation of Strings
2 + "3" "23" Concatenation of Strings
"2" + 3 "23" Concatenation of Strings
2 + 3 + " is the result" "5 is the result" Addition done first
"Result is " + 2 + 3 "Result is 23" Concatenation done first
"Result is " + (2 + 3) "Result is 5" Parentheses take precedence

Figure 6.11: The overloaded + operator can mean addition of numbers or con-
catenation of Strings, depending on the context.

6.5.1.1 Failing to override toString()

What would have happened in the prior examples if we had not included a
toString() method in our Student class? The compiler will allow a call to
s1.toString() because the toString()method is defined in a superclass (Ob-
ject). Then at runtime when toString() is called, dynamic method lookup tells
us that it will search for this method in superclass(es), until it is found. In this
case it will be found in the Object class. A quick look at the API for Object
shows that toString() will call hashCode() (see below) which returns an int.
This int is formatted in hexadecimal (base 16), concatenated with the name of
the class, and returned as a String. This is most likely not what you wish to
happen. In summary, if you are printing an object, and you see some strange
looking output, such as Student@49a3c30, you need to define a toString()

method in the Student class.

6.5.2 Exercises

1. Consider the following class

public class Vehicle

{ int wheels;

public Vehicle (int wheels)

{ this.wheels = wheels; }

}

In some other class define a method in which you have the following:

Vehicle v1 = new Vehicle(18); // semi

System.out.println (v1);

If the output makes no sense, fix the Vehicle class so that the output will
be more readable, such as:

Vehicle with 18 wheels

6.6. ABSTRACT METHODS AND CLASSES 167

2. Test your solution to the previous problem by creating a List of at least 3
Vehicles, all with different number of wheels. Print the list without using
a loop.

3. Show the output in each case:

(a) System.out.println (" 5 + 4 + is " + 5 + 4) ;

(b) System.out.println (5 + 4 + " is " + 5 + 4) ;

(c) System.out.println (" 5 * 4 + is " + 5 * 4) ;

(d) System.out.println (" 5 + 4 + is " + (5 + 4)) ;

6.6 Abstract methods and classes

6.6.1 Abstract methods

We now return to the definition of the calcGPA(int,int)method in the Student
class. Recall that it was included simply as a ‘place-holder’, to satisfy the
compiler; we expect that it will never be invoked:

public void calcGPA(int gradePoints, int credits)

{ // do nothing

}

If it seems strange to you that there should be a method which does nothing at
all, you are not alone. This occurs so often that Java has a designation for this
kind of method called abstract. A method which exists in a superclass merely
to support the existence of methods having the same name in subclasses should
be declared as abstract:

public abstract void calcGPA(int gradePoints, int credits);

Note that instead of a method body, there is a single semicolon; abstract
methods have no body, and need no body, because they are never invoked. With
this slight change our Student classes should work just as well.

Remember the following concerning abstract methods:

• Used as a place-holder for methods of the same name in subclasses

• Declared with the abstract keyword in the signature

• Semicolon after the parameter list

• No method body, not even the curly braces

• Must be implemented in subclasses

• May be used only in abstract classes (see next section)

168CHAPTER 6. ABSTRACTION, INHERITANCE, AND POLYMORPHISM

6.6.2 Abstract classes

Any class which has at least one abstract method must be declared as an abstract
class. This is done with the keyword abstract in the declaration of the class:

public abstract class Student

Earlier we said that we were not sure that it would make sense to instantiate
a Student, not knowing what kind of Student he/she is. If this truly is not
desirable, an abstract class is exactly what we need. When a class is abstract
it cannot be instantiated:

new Student("jim", "33"); // ERROR

Thus by making the Student class abstract, we ensure that no client will ever
be able to instantiate a Student, but will be able to instantiate GradStudent
and Undergrad because they are concrete classes (i.e. not abstract).

When using abstract classes which may have one or more abstract meth-
ods, we must be sure that the methods are implementd in subclasses. If an
abstract method were not implemented in one of the subclasses, a method call
to an object of that subclass would have no method to invoke. For example, if
the Undergrad class had no calcGPA(int,int)method, then dynamic method
look-up would fail for a call to st.calcGPA(gp,cr) in the case that the dynamic
type of st is Undergrad.

Remember the following about abstract classes:

• Declared with abstract keyword at the top

• May have one or more abstract methods

• Cannot be instantiated

• Abstract methods must be concrete (not abstract) in subclasses

A subclass can also be abstract, in which case it would not be required
to implement abstract methods inherited from a superclass, but its (concrete)
subclasses would be required to implement the abstract methods. In other
words, viewing the class diagram from top to bottom, all abstract methods
must be implemented somewhere on a path from the top to a concrete class, as
depicted in Figure 6.12.

Notice in Figure 6.12 that the method meth1 is implemented (i.e. concrete)
in all concrete subclasses, but method meth2 need not be implemented in class
Sub3 nor in class Sub4 because it is implemented in class Sub2 and is therefore
available in classes Sub3 and Sub4.

6.6.3 Exercises

1. Point out the syntax error, if any, in each of the following:

(a) public class Class1

{ public abstract void method1(); }

6.6. ABSTRACT METHODS AND CLASSES 169

<<abstract>>
class Super

abstract meth1();
abstract meth2();

class Sub1
meth1()

{// concrete}
meth2()

{// concrete}

<<abstract>>
class Sub2

abstract meth1();
meth2()

{// concrete}

class Sub3
meth1()

{// concrete}

class Sub4
meth1()

{// concrete}

Figure 6.12: Class diagram showing an abstract method which must be imple-
mented (concrete) for use in concrete sub-classes

(b) public abstract class Class1

{ public void method1()

{ } // do nothing

}

(c) public abstract class Class1

{ public abstract void method1(); }

public class Class2 extends Class1

{ int field1;

public void method2()

{ } // do nothing

}

(d) public abstract class Class1

{ public void method1()

{ Class1 c1 = new Class1(); }

}

2. Use the Student, GradStudent, and UnderGrad classes from the project
university-ch6 in the code repository. We wish to calculate the GPA for a
list of Students:

170CHAPTER 6. ABSTRACTION, INHERITANCE, AND POLYMORPHISM

User Interface
(Exposed)

- Sends commands to the engine
- Relays info from the engine

to the user

Engine
(Hidden from view)

Details:
The inner workings

User

Figure 6.13: User Interface: All communication with the engine is through the
user interface

List <Student> roster = new ArrayList <Student>();

// several students added to roster

for (Student st : roster)

st.calcGPA(17,3);

Make the necessary changes to the Student class to get this code to compile
and execute. Assume that Student will never be instantiated.

6.7 Java Interfaces

There are at least three different, but related, meanings of the word interface
in computer science:

• A user interface is that which stands between an entity and the user of
that entity. All communication with the entity generally goes through the
interface (in both directions) as shown in Figure 6.13. We’ll call the entity
being used the engine. User interfaces generally simplify usage of the
engine for the user and can provide the user with useful information about
the state of the engine while hiding unnecessary details of the internal
workings of the engine.

Examples of user interfaces include:

– The API for a class constitutes an interface showing a potential user
how the class can be used.

– The API and signature for a method constitutes an interface showing
a potential user how the method can be used.

– The command language for an operating system such as DOS or Unix
constitutes an interface between the user and the services available
in the operating system.

– An automobile’s dashboard, gear stick, foot pedals, etc. constitute
an interface with the engine of an automobile.

6.7. JAVA INTERFACES 171

Many feel that user interfaces should be standardized, rather than propri-
etary (owned by a single company). What would happen if an automobile
manufacturer designed a car in which the brake pedal was on the right,
and the accelerator pedal was on the left?

• A graphical user interface (GUI) generally refers to software which allows
the user to communicate with a program while it is executing using a
graphic images (icons, trash basket, folders, etc) and some sort of pointing
device such as a mouse. The first such GUI was the desktop GUI provided
on the early Apple Macintosh computers (actually derived from a system
developed at Xerox PARC). The desktop metaphor provided users with
a means of coommunication with the operating system which was fairly
intuitive and easy for the user. Today most software applications provide
a GUI for the user.

Related to the question of standardization of user interfaces, when Mi-
crosoft followed Apple’s strategy by introducing a GUI for the PC – Win-
dows, Apple filed a copyright infringement lawsuit, claiming that Microsoft
had stolen the look and feel of their GUI (ironically, Apple had taken the
idea from Xerox years earlier).

• A Java interface is similar to an abstract class which has no fields and
no concrete methods. In this section we will provide some motivation for,
and examples of, Java interfaces.

6.7.1 The need for Java interfaces – multiple inheritance

In this section we provide some motivation for the need for Java interfaces, but
first we should discuss multiple inheritance.

We have said that a Java class may not have more than one superclass,
but some progamming languages will actually permit this so-called multiple
inheritance. To motivate this discussion, we return to our example involving
the classes Student, Undergrad, and GradStudent. We now add two more classes
to this project: Prof and Instructor. A Prof is a member of the faculty whose
job it is to teach classes and conduct research. An Instructor is anyone who
teaches classes. Often at a research university, grad students are asked to teach
classes. This would mean that a GradStudent is-a Student, and a GradStudent
is-an Instructor. As we saw previously, the is-a relationship implies the need
for inheritance, as shown in Figure 6.14. We now have a problem because Java
will not allow multiple inheritance:

public class GradStudent extends Student, Instructor // ERROR

A discussion of the pros and cons of allowing multiple inheritance in a pro-
gramming language is beyond the scope of this book; suffice it to say that
multiple inheritance can complicate things for both the programmer and the
compiler writer.

Java provides a good solution to this problem: the Java interface. A Java
interface is similar to an abstract class which has no fields and in which all the

172CHAPTER 6. ABSTRACTION, INHERITANCE, AND POLYMORPHISM

Instructor Student

Prof GradStudent UnderGrad

Figure 6.14: Class diagram showing multiple inheritance for the GradStudent
class; this is not permitted in Java

methods are abstract. An interface is declared with the keyword interface

instead of class. It is basically a template for subclasses, showing all the
methods which must be implemented:

public interface Instructor

{ public abstract List <Course> getCourses();

public abstract String getName();

}

This is an interface with 2 methods, both abstract. Note the following
concerning Java interfaces:

• An interface must not contain any instance variables (i.e. non-static
fields).

• An interface must not contain a constructor.

• All methods in an interface must be public abstract. If not declared as
such, the compiler will assume they are public abstract.

• An interface, like an abstract class, must not be instantiated.

We can redefine our interface more briefly as:

public interface Instructor

{ List <Course> getCourses();

String getName();

}

Now we can deal with the problem of multiple inheritance. To specify a
subclass relationship with an interface, we say that a class implements the in-
terface:

public class GradStudent extends Student implements Instructor

Our class diagram can now be drawn as shown in Figure 6.15 It shows
that every GradStudent is-a Student and every GradStudent is-an Instructor.

6.7. JAVA INTERFACES 173

<<interface>>
Instructor

Student

Prof GradStudent UnderGrad

Figure 6.15: Class diagram showing multiple inheritance with an interface: In-
structor

The compiler is satisfied because GradStudent extends only one class: Student.
Instructor is an interface, not a class.

Since the class GradStudent implements the Instructor interface, GradStu-
dent will have to implement all the methods in that interface: getCourses()

and getName().
A class may implement more than one interface; they are listed in the decla-

ration separated by commas. For example if there was another interface called
Researcher, we could define the GradStudent class as shown below:

public class GradStudent extends Student implements Instructor,

Researcher

6.7.2 Interfaces which we’ve already been using

Interfaces are very common in the Java class library; we’ve already started using
them: List and Set.

If you look at the API in the Java.util package, you’ll notice that:

• Interfaces and classes are separated.

• List is an interface; ArrayList implements List. Every ArrayList is-a List.
There are other classes which implement List, which we have not yet used.

• Set is an interface; HashSet implements Set. Every HashSet is-a Set.
There are other classes which implement Set, which we have not yet used.

When we declare a list:
List <Student> roster;

we are saying that the variable roster may store a reference to any kind of list.
When we instantiate the list:
roster = new ArrayList<Student> ();

we determine the specific kind of list – ArrayList.

This points out another advantage of interfaces which you will learn if and
when you study Object-oriented Design: It is better to program to an interface
rather than an implementation whenever possible.

174CHAPTER 6. ABSTRACTION, INHERITANCE, AND POLYMORPHISM

While we are on the subject of interfaces in the Java class Library, take
a look at Iterator; you’ll see that it is an interface, not a class. That’s ok
because nowhere do we instantiate Iterator - we always obtain an instance from
a collection, using the method iterator(). The particular kind of Iterator
obtained is determined by the collection, but that is of little concern to us; we
just use it as some kind of Iterator.

6.7.3 Exercises

1. Point out the syntax error, if any, in each of the following (refer to Fig-
ure 6.15):

(a)
public class SeniorStudent

extends GradStudent, Undergrad

{

// 5 year BSMS program

private boolean fiveYear;

public SeniorStudent (String name, String ssn,

boolean fiveYear)

{ super (name, ssn);

this.fiveYear = fiveYear;

}

}

(b) public interface Administrator

{ private int salaryLevel;

public abstract int getSalaryLevel();

}

(c) public interface Administrator

{

public Administrator (String name, String ssn);

int getSalaryLevel();

}

(d) public interface Administrator

{

int getSalaryLevel()

{ return 17; }

}

(e) public interface Administrator

{

6.7. JAVA INTERFACES 175

int getSalaryLevel();

}

(f) The following code is included in a method in some other class of the
same project:

Student junior = new Student ("jim", "222");

(g) public class MyList extends List

{ private boolean isSorted; // true only if the elements are

// in increasing order.

/** @return true only if the elements of this MyList

* are in increasing order

*/

public boolean getSorted()

{ return isSorted; }

}

2. Show the class diagram, similar to Figure 6.15, which would result from
the following class and interface declarations (the fields and methods of
each are not shown). Be sure to designate interfaces as such to distinguish
them from classes.

public class Mammal

{ ... }

public class Fish

{ ... }

public interface Swimmer

{ ... }

public class Whale extends Mammal implements Swimmer

{ ... }

public class Guppy extends Fish implements Swimmer

{ ... }

3. Show the class and interface declarations (no need to show any fields nor
methods) corresponding to the class diagram shown in Figure 6.16.

4. Arrange the following concepts into an appropriate class (or interface) hi-
erarchy, and show the class or interface declarations and the class diagram,

176CHAPTER 6. ABSTRACTION, INHERITANCE, AND POLYMORPHISM

<<interface>>
EggLayer

<<interface>>
Fish

Trout Guppy

Figure 6.16: Class diagram showing multiple inheritance with an interface for
exercise set 6.7

as shown in the previous two exercises. Each interface must have at least
one implementing class.

Bear, Fish, Mammal, DangerousAnimal, Shark

6.8 Inheritance and Polymorphism in the Grid-

World case study

6.9 Projects

1. Use the project dome from the code repository. The word ‘dome’ as used
here is an acronym for ‘database of multimedia entertainment’. In this
project we allow the user to maintain information on a collection of CD’s,
DVD’s, etc. In the project that we start with there are three classes:

• Database – This class stores a List of CDs (Compact Disks) and a
List of DVDs (Digital Video Disks). There are methods which allow
the user to:

– Add a CD to the List of CDs

– Add a DVD to the List of DVDs

– Print all the CDs and DVDs currently stored

• CD – This class stores information for one CD:

– The title of the CD (String)

– The performing artist on the CD (String)

– The number of tracks on the CD (int)

– The playing time of the CD (int)

– Whether we currently own this CD (boolean)

– A comment providing other information on this CD (String)

There are accessor and mutator methods for some of the above fields,
and a method which will print the CD.

6.9. PROJECTS 177

• DVD – This class stores information for one DVD:

– The title of the DVD (String)

– The director of the movie on the DVD (String)

– The playing time of the DVD (int)

– Whether we currently own this DVD (boolean)

– A comment providing other information on this DVD (String)

There are accessor and mutator methods for some of the above fields,
and a method which will print the DVD.

We wish to make some improvements, in stages, to this project.

(a) Make a list of fields and methods which the CD and DVD classes
have in common. Factor out these fields and methods to a superclass
called Item. You will need some accessor methods in the Item class.
Be sure to include a constructor in the Item class, and make the
appropriate changes to the constructors in the CD and DVD classes.
Caution: The print methods in CD and DVD are different, so don’t
factor them yet.

(b) Change the Database class so that instead of storing two Lists, it
stores one List of Items. The Database class will have a method to
add any Item to the database. The Item class will need a print()
method; for now, give it a print() method with an empty body. Test
your work by creating a Database object and adding several CDs and
DVDs to it. Then invoke the list() method to print everything in the
database.

(c) The print() method in CD and DVD have some duplicated code which
needs to be factored to the Item class. The print() method in each
class should print only the fields in that class. The print() method
in the Item class can be invoked

(d)

2. This project involves the simulation of traffic in a city. We wish to simulate
the activities of vehicles, such as busses, taxis, and cars. We also wish to
include people who will walk to and from bus stops, or be picked up by
taxis.

We will start with a few simple classes:

• Location - This class encapsulates locations within the city. At this
point it will consist of a square grid, so a Location has x and y coor-
dinates, but future implementations could involve actual city streets.
As entities move in the city they can move to any adjacent Location.
This class should have the following capabilities:

– Construct a new Location with random x and y values.

– Construct a new Location with given x and y values.

178CHAPTER 6. ABSTRACTION, INHERITANCE, AND POLYMORPHISM

– Find the distance from this Location to another Location (i.e.
the number of distinct moves to get from one to the other).

– Determine which way to go in order to move closer to a given
target Location.

• Passenger - This class deals with Passengers who will be riding on
various kinds of Vehicles (such as Busses). A Passenger has a current
Location and a destination Location. This class should have the
following capabilities:

– Produce a new Passenger with random origin and destination.

– Move toward the nearest bus stop, if not on a vehicle.

– Move toward destination after exiting a vehicle.

• Vehicle - An abstract class which is a superclass of Bus, Taxi, Car,
etc. A Vehicle has a capacity (i.e. number of passengers it can accom-
modate), a current Location, a destination Location, and possibly a
speed. This class should have the following capabilities:

– Move closer to its destination Location.

• Bus - A Bus is a Vehicle. It should have:

– a List of Locations which are the Locations where it stops to pick
up or discharge Passengers. The Bus should move from one stop
to the next, in a continuous circle (after the last stop in the List
has been reached, it should then proceed to the first stop).

– It should have a List of Passengers who are riding on the Bus.

This class should have the following capabilities (in addition to the
capabilties inherited from Vehicle):

– Pick up passengers waiting at a bus stop.

– Discharge passengers who have arrived at their stop.

– Provide the nearest stop to a given Location.

• Actor - An Actor is anything which acts, or takes part in the simu-
lation. This includes Passengers and all Vehicles. Since a Bus is a
Vehicle, and a Bus is an Actor, Actor will have to be an interface.
It will have only one method - void act(). Each class which imple-
ments Actor will have its own implementation of the act() method.

• Simulation - This class will initialize and drive the simulation. It will
have a List of Actors and possibly a List of Passengers who have been
generated during the Simulation. This class will have methods to:

– Initialize the Simulation with one or more Vehicles. Each of these
should be added to the List of Actors.

– Run the simulation for one step. On each step, the Passenger
class should be given the opportunity to create a new Passenger.
If one is created, it should be added to the List of Actors (and
Passengers, if necessary). Then each Actor in the simulation

6.9. PROJECTS 179

should be told to act. For Passengers this could mean moving
toward a Bus stop or toward a destination. For Vehicles this
could mean moving toward a destination. For Buses this could
mean picking up or discharging passengers if it is at a stop.

– Run the simulation for a given number of steps.

– Provide the nearest bus stop to a given Location.

– Provide a List of Passengers at a given Location.

To test your simulation, print all the Actors on each step to see if they
are behaving in a sensible way (this means you will need toString()

methods).

These specifications allow for some leeway in implementation, and
no two solutions will be the same. If time permits, you can extend
the simulation to include Cars, Taxis, Bikes, Pedestrians, etc.

3.4.

Chapter 7

Maps, Collections Revisited

7.1 Fast look-up

One of the most important functions of any computer system is to store large
quantities of data, and provide quick access to any portion of that data storage.
The ability to store a lot of data is of little value if we cannot access what we
need quickly.

Consider the young researcher who is visiting the New York Public Library
(one of the world’s largest) and needs the answer to a question: What is the
relationship, if any, between per-capita income and suicide rate across countries
in the world? Our young friend has been assured that the information needed
to answer the question is stored somewhere in that library, but how can he/she
find it? One solution would be to walk to the nearest stack and read through
every book on the shelf, then proceed to the next stack, and so on until he/she
eventually finds the necessary information or determines that it is not to be
found in all the volumes of that huge library.

This strategy is probably doomed to failure from the start; the researcher
will not find what he/she is looking for in his/her lifetime, and will probably tire
of the task long before that. The point is that smart search methods are critical
to the information retrieval problem. Consequently the stored data must be
organized in such a way that it can be searched quickly.

7.1.1 Exercises

1. Use a hard-copy dictionary to find a solution to one of the following prob-
lems:

(a) Find a word which means “(adj) Covered or marked with numerous
shallow depressions, grooves, or pits.”

(b) Find the definition of the word wollasonite.

180

7.2. SEQUENTIAL SEARCH 181

2. In 1945 the author Max Shulman published a collection of humerous short
stories titled The Many Loves of Dobie Gillis. The title character was a
university student who spent more time chasing after women than he did
studying. In one of the stories, “The face is familiar but...”, Dobie is
introduced to a beautiful girl at a dance but doesn’t hear her name. He
spends the rest of the evening trying to get her name, but fails at every
attempt. He takes her home that evening, and she gives him her phone
number; he now knows her home address and phone number but not her
name. Among the several tactics that Dobie uses to discover this girl’s
name is the following:

He approaches a pledge to his fraternity named Ed and says:

Varlet, I have a task for you. Take yon telephone book and
look through it until you find the name of the people who have
telephone number Kenwood 6817.

[This was in the days before cellular phones.] The story continues, nar-
rated by Dobie Gillis:

In ten minutes Ed was in my room with Roger Goodhue,
the president of the fraternity. “Dobie”, said Roger, “you are
acquainted with the university policy regarding the hazing of
pledges... You know very well that hazing was outlawed this
year by the Dean of Student Affairs. And yet you go right
ahead and haze poor Ed.”

(a) Explain why Dobie Gillis was accused of hazing a pledge.

(b) Would Dobie have been accused of hazing if he had told the pledge
to search for the girl’s home address instead of her phone number?

7.2 Sequential search

The strategy of searching by starting at the beginning (of a list, for example)
and examining every item until you find the one you are looking for is called a
sequential search. For relatively small lists it is not unreasonable, and it is easy
to implement. The following method will return the position of the target in a
list of numbers, or -1 if the target is not found:

/** @return Position of target in the given list, or -1 if not found

*/

public int sequentialSearch(List <Integer> numbers, int target)

{ int pos = 0;

for (int n : numbers)

{ if (n == target)

return pos; // found the target

pos++;

182 CHAPTER 7. MAPS, COLLECTIONS REVISITED

}

return -1; // target not found

If the size of the list is less than a few million, this will not take long.
However, for much larger lists a sequential search will not be acceptable. The
algorithms which may be involved for more effective searching are discussed in
chapter 12 In addition, Java provides some fairly clear classes which can be used
to access data quickly.

7.2.1 Exercises

1. If it takes 5 nanoseconds for one iteration of the loop in the sequentialSearch
method shown above, how long would it take to search a list of 50,000
numbers:

(a) In the best case (the target is the first number in the list)?

(b) In the worst case (the target is not in the list)?

(c) In the average case (the target is in the list, but could be anywhere
in the list)?

Hint: A nanosecond is 10−9 sec.

2. Assuming that nums is a List of 1250 numbers, given the following code,
how many times will the comparison in the sequentialSearch method
(if (n == target)) be executed?

int countMissing = 0;

for (int i=0; i<10000; i++)

if (sequentialSearch(nums, i) == -1)

countMissing++;

7.3 Java maps

In an English dictionary we have a list of words, with a definition for each word.
We will call each word, together with its definition, an entry in the dictionary.
It is easy to look up a word in the dictionary to find its definition, but it is very
difficult or time consuming to look up a definition. For example, what is the
word which means ‘A fruiting body or the stalk of a fruting body in a fungus?’
You can find it by starting on page 1 and looking at the defintion of each word
until you arrive at this definition. This is a sequential search and would probably
take a long time. The words in a dictionary are called keys. The definition of a
word is called a value. When using the dictionary, we always search for an entry
using its key, and we never search for an entry using its value. There are a few
classes in the Java Class Library which give us a key-value look-up capability,
and they are all implementations of the Map interface. Maps can be found in
the java.util package, along with collections, though strictly speaking a Map is

7.3. JAVA MAPS 183

not a collection. Looking at the API for the Map interface we see that there are
methods which allow us to add an entry to a map, search a map using a key,
remove an entry from a map, etc. As with lists and sets, we can specify the type
of the items stored; however, with maps we will specify two types: the type of
the keys (K) and the type of the values (V). Each entry in a map consists of a
key-value pair. Here are a few of the most useful methods which are available
for all maps:

• Put a new entry into a map. If the key of the new entry is already in
the map, the new value replaces the existing value, and the old value is
returned.

/** Put the given key-value pair into this Map.

* If the key is already in this Map, replace the existing

* value with the* given value.

* @return The existing value for the given key,

* or null if the given key is not found in this Map.

*/

V put (K key, V value);

Get a value from a map. Provide a key to obtain its corresponding value.

• /**

* @return The value corresponding to the given key, or null if the

* given key is not found in this Map.

*/

V get (Object key);

Note that the parameter need not be of any particular type.

• Determine whether a given key is in this Map.

/**

* @return true only if the given key is in this Map.

*/

boolean containsKey (Object key);

Note that the parameter need not be of any particular type.

• Remove the entry with the given key from a map.

/** Remove the entry with the given key from this Map.

* @return The existing value corresponding to the given key,

* or null if the given key is not found in this Map.

*/

V remove (Object key);

Note that the parameter need not be of any particular type.

184 CHAPTER 7. MAPS, COLLECTIONS REVISITED

roster

HashMap < String,Student >

size 0

keys values

Figure 7.1: An empty map in which the keys are Strings and the values are
Students

• Determine the number of entries in a map.

/** @return The number of entries in this Map. */

int size();

• Obtain a set of all the keys in a map.

/**

* @return All the keys from this Map, as a Set.

*/

Set<K> keySet();

In a map, the keys must be unique; i.e. there cannot be two entries with
the same key. This should be evident from the description of the put method
above. On the other hand there may be several entries with the same value.

We can further explain the structure of a map by looking at object diagrams.
In an object diagram we will show the size of a map, as we did with lists and
sets, at the top of the object. The size of a map is simply the number of entries
contained. This is followed by two columns: the left column is for the keys, and
the right column is for the corresponding values. As with lists and sets, we will
treat wrapper classes and Strings as primitives, showing their values directly
rather than as references to other objects.

Figure 7.1 shows a newly created map which is empty. No entries have been
put into this map. The keys in this map are student numbers (as Strings), and
the corresponding values are Students. The variable myMap does not store a null
reference; it stores a reference to the map object, which has a size of 0.

Figure 7.2 shows the object diagram for a map into which three entries have
been put. The size is now 3, and each of the three entries consists of a key (a
String) and a value (a reference to a Student).

7.3. JAVA MAPS 185

myMap

HashMap < String,Student >

size 3

keys values

”256-44-0321”

”494-32-0909”

”222-32-9398”

Student

name ”joe”

ssn ”256-44-0321”

gpa 3.5

Student

name ”jim”

ssn ”494-32-0909”

gpa 2.5

Student

name ”mary”

ssn ”222-32-9398”

gpa 4.0

Figure 7.2: An object diagram showing the value of the variable myMap storing
a reference to a map, after three entries have been added

186 CHAPTER 7. MAPS, COLLECTIONS REVISITED

credits

HashMap < Student,Integer >

size 2

keys values

Student

name ”joe”

ssn ”256-44-0321”

gpa 3.5

Student

name ”jim”

ssn ”494-32-0909”

gpa 2.5

35

120

Figure 7.3: An object diagram showing the value of the variable credits storing
a reference to a map, in which the keys are students and the values are the
number of credits accrued, after two entries have been added

Note that the keys need not be primitive types and the values need not
be reference types. Figure 7.3 shows the object diagram for a map in which
the keys are Students and the values are the number of credits accrued by the
corresponding Student. Two entries have been put into this map.

7.3.1 Exercises

1. What value is returned by the put method when the key of the entry bein
put into a map is not already in the map?

2. What is the effect on a map when the key of the entry being put into the
map is already in the map? In this case what value is returned by the put
method?

7.4. EXAMPLES OF METHODS WHICH USE MAPS 187

3. What value is returned by the get method when the key is not in the
map?

4. What method (other than get) can be used to determine whether a given
key is already in a map?

5. What is returned by the remove method when removing an entry from a
map?

6. True or false:

(a) The values in a map must be unique.

(b) The keys in a map must be unique.

(c) The size of a map is twice the number of entries because each entry
consists of a key and a value.

7.4 Examples of methods which use maps

Before we see how to instantiate maps, we will show a few examples of methods
which make use of maps. These methods assume the map has already been
created and may contain several entries.

/** @return The name of the student with the given ssn,

or "NOT FOUND" if the student is not in the given map.

@param roster is a map in which the key is an ssn,

and the value is the corresponding Student.

*/

public String getName (String ssn, Map<String,Student> roster)

{

String result = roster.get(ssn);

if (result == null)

return "NOT FOUND";

return result.getName();

}

In this example each entry in the map named roster stores an ssn as key,
and a reference to the corresponding Student as the value. This method uses
the get method to extract the Student with the given ssn. If the ssn is not in
the map, a null reference is returned, and the method shown here checks for null
and returns the String ”NOT FOUND” in that case. Otherwise it will invoke
the getName() method on the Student, to obtain the Student’s name.

In the next example we show a method which will count the number of
students in the given map who have a perfect GPA.

/** @return the number of students in the map roster who

* have a perfect 4.0 GPA.

188 CHAPTER 7. MAPS, COLLECTIONS REVISITED

*/

public int perfectCount (Map <String,Student> roster)

{ Set <String> ssns = roster.keySet(); // set of all keys in the map

int count = 0; // result

Student student;

for (String ssn : ssn)

{ student = roster.get(ssn); // get the student

if (student.getGPA() == 4.0)

count++;

}

return count;

}

In this method we use the \texttt{keySet()} method to obtain a Set

of all the keys in the given map.

Then we use a for-each loop to cycle through the set of ssns,

incementing the \texttt{count} variable each time we encounter a Student

with a GPA of 4.0.

If the map is empty, the loop repeats 0 times, and the returned

value is 0.

Note that the call to \texttt{roster.get(ssn)} cannot return a null

reference, because the ssn was obtained from the map in the first place.

7.4.1 Exercises

1. Define a method which will count the number of occurrences of a student
with a given name in a given map in which the keys are students’ ssns,
and the values are the corresponding students.

/** @param roster Is a Map in which the keys are ssns, and the

values are the corresponding students.

* @param name Is the name of a student which may be in the given map.

* @return The number of students in roster with the given name.

*/

public int countNames (Map <String,Student> roster, String name)

2. Define a method which will return the number of ssns in the given list
occur in the given map. Do not use the get method.

/** @param roster Is a Map in which the keys are ssns, and the

values are the corresponding students.

* @param ssns Is a List of ssns.

*/

public int countSSNs (Map <String, Student> roster, List <String> ssns)

7.5. INSTANTIATING MAPS 189

3. We wish to count the number of occurrences of various words in some
text. We will use a map to accomplish this; the keys will be Strings (i.e.
the words) and the corresponding values will be Integers (the number of
occurrences of the corresponding word). For example, if the text is "I

yam what I yam" then the map will contain the following information:

key value

--- -----

"I" 2

"yam" 2

"what" 1

Define a method named update which will put a word into a given map,
so as to tabulate the distribution of words as shown above. (To create the
map shown above, your method would have been called 5 times, once for
each word to be entered)

/** Include the given word into the distribution map.

* @param word An (additional) word to be included in the map

* @param distribution A Map storing the number of occurrences of each of

* several words.

*/

public void update (String word, Map <String, Integer> distribution)

Hint: Before putting an entry in the map, check to see whether the word
to be entered is already in the map.

4.

7.5 Instantiating maps

We are now ready to create maps. There are two kinds of maps available in the
Java class library: HashMaps and TreeMaps. Both of these implement the Map
interface. As with lists and sets, when declaring a variable, we will simply call
it a Map, and this means that it is capable of storing a reference to some kind
of Map. When instantiating an object, we will have to decide what kind of Map
it should be.

7.5.1 HashMap

HashMap is a class in the package java.util which implements the Map interface.
It is designed to provide quick access to any of its entries if you provide the key
to the entry you are seeking. The order in which the entries are stored is
determined by the HashMap class, and is not likely to be the same order in
which the entries were put into the map. In this respect a HashMap is similar
to a HashSet.

190 CHAPTER 7. MAPS, COLLECTIONS REVISITED

To declare a variable which can store a reference to any kind of Map, use
the following format:

Map <keyType, valueType> variableName;

To instantiate the Map as a HashMap, and store the reference in the variable:
variableName = new HashMap <keyType, valueType> ();

The following code shows how to declare a variable, create an instance of a
HashMap, and put three entries into it. The keys of this Map are Strings and
the values are Students:

Map <String,Student> roster; // roster is null

roster = new HashMap <String,Student> (); // roster is not null

// size of roster is 0 entries

Student st = new Student ("jim","254-33-3221");

roster.put ("254-33-3221",st); // size of roster is 1 entry

st = new Student ("sue","873-34-856");

roster.put ("873-34-8563", st); // size of roster is 2 entries

System.out.println (roster.get("873-34-8563")); // prints sue

System.out.println (roster.get("999-32-2222")); // prints null

// key not found

st = new Student ("sueAnn","873-34-8563", st); // same ssn

st = roster.put (st.getSSN(), st); // size of roster is still 2 entries

System.out.println (st); // prints sue

System.out.println (roster.get ("873-34-8563"); // prints sueAnn

Note that using the put method does not necessarily increase the size of the
map. When sueAnn was put into the map, her ssn was already in the map (as a
key). So the reference for the corresponding value was simply replaced. In this
case the put method returned a reference to the old value, sueAnn.

7.5.1.1 HashSets revisited

In chapter 5 we pointed out that when creating a set of objects, those objects
must have two methods defined:

• boolean equals (Object obj);

This method is needed because the items in a Set must be unique. When
you attempt to add an item to a Set, the implementation (e.g. HashSet)
needs to compare the item you are adding with the items already present
in the Set to make sure there are no duplicates. Suppose you are working
with a Set of Students. How can the add method in HashSet determine
whether the given Student is already in the HashSet? It will need to
compare the given Student with each Student in the Set. But how can
equality of Students be determined? This must be decided by the Student
class; this is where it is decided whether this Student is equal to some

7.5. INSTANTIATING MAPS 191

other Student. Since we designed the Student class, we could decide, for
example, that two Students are equal if and only if they have the same
ssn.

In that case we could define a method in the Student class to determine
whether two Students are equal, as shown below:

/** @return true only if the ssn of this student equals the

* ssn of the other Student.

*/

public boolean equals (Object other)

{ if (! (other instanceof Student) // is other a Student?

return false;

Student otherAsStudent = (Student) other; // cast to Student

return this.ssn.equals (otherAsStudent.getSSN());

}

Here we are making use of the fact that the String class itself has an
equals(Object) method. The parameter, other, in the above method
is declared as Object, so as to be the same as the equals method in
the Object class. If the parameter other is anything but a Student, our
method needs to return false. That is the purpose of the instanceof
operator. someObject instanceof someClass will return true only if
someObject is an instance of someClass.

• int hashCode();

Unfortunately a complete explanation of the need for this method is
beyond the scope of this book. Suffice it to say that HashSets (and
HashMaps) use hash tables for implementation, which require the use
of a hash code. A good hashCode() strategy recommended by Bloch is
shown below:

1. Start with an inital value of 17.

2. For each field which is used in the equals method:

(a) If the field is a primitive type, use the field’s value as an int.

(b) If the field is a reference type, use the hashCode of that field.

3. Multiply the result by 31 and add the field’s value to the result

A hashCode() method for the Student class is shown below:

/** @return a value such that two objects have the same

* hash code if they are equal, and two objects are

* likely to have different hash codes if they are not

* equal.

*/

192 CHAPTER 7. MAPS, COLLECTIONS REVISITED

public int hashCode()

{ int result = 17;

result = 31 * result + ssn.hashCode();

}

With these two methods in the Student class, we can now work with a
HashSet of Students:

Set <Student> roster = new HashSet <Student> ();

roster.add (new Student ("jim", "343-55-8494"));

roster.add (new Student ("mary", "242-87-5943"));

7.5.1.2 HashMaps: Using our own class as a key: equals(Object)

hashCode()

Figure 7.3 is a bit premature; in a HashMap the keys must have the methods
equals(Object) and hashCode(). Now that we have these methods in the
Student class, we can work with a HashMap in which the keys are Students.

As an example, suppose we wish to store the number of courses taken by
each student. We could use a map in which the keys are Students and the
values are Integers. Each value represents the number of courses taken by the
corresponding Student. Each time a student registers for a course, we increment
the value of that student’s entry; each time a student drops a course, we decre-
ment the value of that student’s entry. Now that we have equals(Object) and
hashCode() methods we can build the map:

public class CourseCounter

{

private Map <Student, Integer> courseCounts =

new HashMap <Student, Integer> ();

/** This method is called when a Student registers

* for one course.

*/

public void reg (Student st)

{ int count = 1;

if (courseCounts.containsKey(st))

{ count = courseCounts.get(st); // number of courses for st

count++;

}

courseCounts.put(st,count); // increment count for st

}

/** Drop one course for the given Student

* @param st A student who is registered for at

* least one course.

7.5. INSTANTIATING MAPS 193

*/

public void drop (Student st)

{ int count;

count = courseCount.get(st);

count--;

courseCount.put(st,count);

}

/** @return the number of courses for the given Student

*/

public int getCount (Student st)

{ int result = 0;

if (courseCounts.containsKey(st))

result = courseCounts.get(st);

return result;

}

public String toString()

{ return courseCounts.toString(); }

}

In the example above when the reg method is called the student’s course
count is extracted from the map, incremented, and put back into the map.
When the drop method is called, the student’s course count is extracted from
the map, decremented, and put back into the map.

We could use this class as shown below:

CourseCounter cc = new CourseCounter();

Student joe = new Student ("joe", "256-44-0321");

Student jim = new Student ("jim", "494-32-0909");

cc.reg(joe);

cc.reg(jim); // registered for 1 course

cc.reg(joe);

cc.reg(joe); // registered for 3 courses

The resulting object diagram for cc is shown in Figure 7.4

7.5.2 Exercises

1. Find the syntax error, if any, in each of the following:

(a) Map <String> myMap;

(b) Map <String, Student> myMap = null;

myMap = new HashMap <Student,String> ();

(c) Map <String, Student> myMap;

myMap = new HashSet <String, Student ();

194 CHAPTER 7. MAPS, COLLECTIONS REVISITED

cc

CourseCounter

courseCounts

HashMap < Student,Integer >

size 2

keys values

Student

name ”joe”

ssn ”256-44-0321”

gpa 3.5

Student

name ”jim”

ssn ”494-32-0909”

gpa 2.5

3

1

Figure 7.4: An object diagram showing the value of the variable cc storing a
reference to a CourseCounter object, which stores a reference to a map, in which
the keys are students and the values are the number of courses for which the
corresponding Student has registered

7.6. TREEMAPAND COLLECTIONSREVISITED: TREESETAND LINKEDLIST195

mapper

HashMap < String,Integer >

size 1

keys values

”six” 6

Figure 7.5: Object diagram for a variable storing a reference to a Map (see
Exercises)

2. Show the code which will declare a variable which stores a reference to a
Map in which the values are Strings and the keys are Integers. It should
initialize that variable with a reference to an empty HashMap.

3. Draw object diagrams for the variables map1, map2, and map3, after the
code shown below has executed:

Map <Integer, String> map1;

Map <Integer, String> map2 = new HashMap <Integer,String>();

Map <Integer, String> map3 = new HashMap <Integer,String>();

map3.put (5, "five");

4. Show the code which would have produced the object diagram shown in
Figure 7.5.

7.6 TreeMap and Collections revisited: TreeSet

and LinkedList

Now that we have a better understanding of inheritance, interfaces, and maps,
we are ready to take a look at another class that implements the Set interface,
and another class that implements the Map interface.

7.6.1 TreeSets

In chapter 5 we mentioned that there is more than one class in the Java class
library which implements the Set interface. In that chapter we discussed Hash-

196 CHAPTER 7. MAPS, COLLECTIONS REVISITED

sets; we now present another class which implements the Set interface – TreeSet.
We mentioned that sets, in general, are not concerned with the order in

which its items are stored. The TreeSet, in a sense, contradicts this property; a
TreeSet will maintain its elements in increasing order. If we have a TreeSet of
numbers, and we iterate through that TreeSet, we will obtain the numbers in
increasing order, regardless of the order in which they were added to the TreeSet.
Strings would be obtained in alphabetic order. Other than that, TreeSets and
HashSets have very similar behavior. They both provide fast access to any item
in a set.

To instantiate a TreeSet of Strings, and add three Strings to it:

Set <String> names;

names = new TreeSet <String> ();

names.add ("jim");

names.add ("al");

names.add ("mary");

If we were to cycle through this set with an iterator, we would obtain the items
in the following order:

"al", "jim", "mary"

For a TreeSet storing objects of some other class, that class must have a
compareTo method which can be used to determine whether a given object is
less, equal, or greater than another object of the same class.

For example, if we were to create a TreeSet of Students, our Student class
would need a compareTo method. Here is an example of a compareTo method
for the Student class, assuming that we wish Students to be ordered by SSN:

/** @return a negative number if this Student precedes the other Student,

0 if this Student equals the other Student,

a positive number if this Student follows the other Student.

* Students are to be ordered by SSN

*/

public int compareTo (Student other)

{ return ssn.compareTo(other.ssn); }

The compareTo method is a standard method found throughout the Java
class library. In the comparison foo.compareTo(other), the returned value is
negative if foo is less than bar (foo precedes bar) and positive if foo is greater
than bar (foo follows bar). The easiest way to remember this convention is to
imagine that the compareTo method simply does the subtraction: foo - bar

(which is what it actually does).
One additional modification is needed in the Student class. The class should

implement the Comparable interface:
public class Student implements Comparable<Student>

Thus, the compiler will require you to include the compareTo method in the
Student class, which will permit the client to compare this Student with any
other Student. In the implementation of this method you will need to decide

7.6. TREEMAPAND COLLECTIONSREVISITED: TREESETAND LINKEDLIST197

how to order Students. You may decide, for example, to use the Student’s ssn
as the sole criterion for ordering Students, as shown above. The compareTo

method is needed by TreeSet so that the TreeSet class can keep the elements
in order.

Having included this method in our Student class, we can now create a
TreeSet of Students:

Set <Student> roster;

roster = new TreeSet <Student> ();

roster.add (new Student ("al", "832-43-4342"));

roster.add (new Student ("mary", "135-34-7839"));

roster.add (new Student ("joe", "135-27-3482"));

An iterator would produce these Students in the order joe, mary, al.

7.6.2 TreeMaps

One of the methods in the Map API is keySet. It returns a Set of all the keys
in the map. If we wish to search the entries in a Map, we must first obtain a
Set of all keys in the Map. We can then iterate through the Set of keys, using
each key to obtain an entry in the Map. The example shown below is a method
which will print all Students who have a sufficienly high GPA.

/**

* @param roster is a Map in which the keys are Students’ SSNs and

* the values are the corresponding Students.

* @param min The minimum GPA required to be considered a good Student.

* This method will print all Students with a gpa of min or greater.

*/

public void showGoodStudents (Map <String,Student> roster, double min)

{ Set <String> ssns = roster.keySet(); // obtain the set of ssns

Iterator <String> itty = ssns.iterator();

String ssn;

Student st;

System.out.println ("Students with a minimum GPA of " + min);

while (itty.hasNext())

{ ssn = itty.next();

st = roster.get(ssn);

if (st.getGPA() >= min)

System.out.println (st + "\n");

}

}

Notice that this method knows that roster stores a reference to a Map, but
doesn’t know what kind of Map it may be. If it happens to be a HashMap, the
sequence in which the Students are obtained with the Iterator is unspecified.

198 CHAPTER 7. MAPS, COLLECTIONS REVISITED

They could be obtained in any order; moreover, if entries are added or removed,
the ordering could be totally different.

We now introduce another kind of Map called TreeMap. A TreeMap is similar
to a TreeSet in that the entries will be ordered according to the compareTo

method of the Map’s keys. If the keys are Strings, the keys will be in alphabetic
order. More precisely, they will be obtained in alphabetic order by an Iterator.

If the parameter roster in the method shown above happens to be a ref-
erence to a TreeMap, the Students will be printed in order of increasing SSN,
since the SSN is a String.

7.6.3 LinkedList

In chapter 5 we introduced the List interface, and an implementing class called
ArrayList. We also mentioned that there could be other implementing classes
for the List interface; i.e. there could be other kinds of Lists. In this section we
introduce one such List, called LinkedList. Because a LinkedList implements
List, it has all the methods shown in the List interface: add, get, set, size,

remove,

As an example, we show how to instantiate a LinkedList and add some items
to it in the code segment below:

List <Integer> grades = new LinkedList <Integer> ();

grades.add (92);

grades.add (88);

grades.add (100);

System.out.println (grades.get(2));

In this code segment the only unusual aspect is that we have instantiated a
LinkedList instead of an ArrayList.

For the most part, everything you can do with an ArrayList you can also
do with a LinkedList, and vice versa. So why is there a need for LinkedList at
all? The answer concerns run-time efficiency. These two classes can differ in
the time required to work with long lists. When processing a long list, some
operations can take a long time for ArrayLists, but a short time for LinkedLists,
and vice versa.

To decide which kind of List should be used in a particular application, we
offer the following general guidelines:

• If the size of the list will be changing (increasing and decreasing) as the
program executes, LinkedList will be faster than ArrayList.

• If the size of the list will remain stable, ArrayList might be faster than
LinkedList.

• The get and set methods are slow for LinkedList.

• The add and remove methods are slow for ArrayList (they both change
the size of the list).

7.6. TREEMAPAND COLLECTIONSREVISITED: TREESETAND LINKEDLIST199

Operation ArrayList LinkedList
get(int inx) fast slow
set(int ndx, E item) fast slow
add(E item) ok fast
add(int ndx, E item) slow fast
remove (int ndx) slow fast

Figure 7.6: Relative efficiency of operations on ArrayLists vs. LinkedLists

<< interface >>
Collection

<< interface >>
Map

<< interface >>
List

<< interface >>
Set HashMap TreeMap

ArrayList LinkedList HashSet TreeSet

Figure 7.7: Class diagram showing some of the interfaces and classes in the
package java.util

• When working with a variable declared as List and the actual kind of
List is unknown, use an Iterator to cycle through the items of the List.

These performance characteristics are summarized in Figure 7.6. The add (E

item) method adds an item at the end of a List. The figure indicates this
operation is ‘ok’. By this we mean that adding at the end of an ArrayList
will generally be fast; there might be occassions when it would slow down a
little, but this is not a major concern. However, when inserting an item at an
arbitrary position in a List – add(int ndx, item) – LinkedList is clearly faster
than ArrayList. You will understand why these performance characteristics are
as shown here, and you will be able to describe them mathematically, when you
study Data Structures.

Now that we have taken a look at several of the classes in the java.util
package of the Java class library, we can examine the way in which they relate
to each other. The best way to do that is with a class diagram. Figure 7.7 shows
a class diagram for some of the classes in the Java class library (Not shown is
the Object class which is a super-class, directly or indirectly, of all classes).

200 CHAPTER 7. MAPS, COLLECTIONS REVISITED

7.6.4 Exercises

1. Point out the syntax error, if any, in each of the following (assume the
Student class implements Comparable¡Student¿):

(a) Set <String> names = new Set <String> ();

(b) Set <String> names = new TreeSet <Student> ();

(c) Map <Integer,Student> grades= new TreeMap <Integer, Student>

();

(d) List <Integer,Student> grades = new LinkedList <Integer, Student>

();

2. Define a method which, given a Set of Students, will print all Students
whose names are longer than 10 characters. In what order will those
students be printed?

/** Print all Students in roster whose name is longer than 10

* characters.

*/

public void showLongNames (Set <Student> roster)

3. Define a method similar to the previous problem in which the parameter
is a Map rather than a Set. In what order will those students be printed?

/** Print all Students in roster whose name is longer than 10

* characters.

*/

public void showLongNames (Map <String, Student> roster)

4. Define a method which, given a Set of Students, will print all the Students
in order, by ssn, one student per line. Assume the compareTo method in
the Student class orders Students by ssn.

/** Print all Students in roster whose name is longer than 10

* characters.

*/

public void showBySSN (Set <Student> roster)

Hint: Copy the Students to a TreeSet and print the TreeSet.

5. Define a method which, given a list of integers, will return the largest
integer in the list. Be concerned with the efficiency (i.e. execution time)
of your method.

/** @return The largest value in numbers.

*/

public int largest (List <Integer> numbers)

7.7. PROJECTS 201

6. Define a method which, given a List of Students, will return a List of those
with a perfect GPA (4.0). Be concerned with the efficiency (i.e. execution
time) of your method.

/** @return A List of all Students in roster who

* have a perfect 4.0 GPA.

*/

public List <Student> perfect (List <Student> roster)

7. For each of the following determine whether the List involved should be
an ArrayList or a LinkedList (or whether either is ok), for purposes of
efficiency:

(a) A method which, given a List, determines whether the elements are
in ascending order.

(b) A method which, given a List of items, obtains other items from the
user’s keyboard, and, one at a time, deletes each of those items if
found in the given list.

(c) A method which, given a List of items in ascending order, obtains
other items from the user’s keyboard and inserts them at the appro-
priate places in the given List.

(d) A method which, given a List of items, will arrange those items in
ascending order. The given List may contain duplicate values.

7.7 Projects

1. Use the project university for this project. It should contain the Student
class which we have been using. We wish to implement a simple informa-
tion system for a university in this project. Define a new class named
UniversityInfoSys. This class should maintain information on all stu-
dents admitted to a university. It should have a field which stores all the
students in a Map in which the keys are Strings (ssns) and the values
are Students. In addition to a constructor, it should have the following
methods:

• A method to add a new student to this university.

/** Add the Student st to this UniversityInfoSys

* @return false If not added (e.g. already in the system)

*/

public boolean addStudent(Student st)

• A method to obtain a reference to a list of all students who are active
at this university.

202 CHAPTER 7. MAPS, COLLECTIONS REVISITED

/** @return a List of all Students in the system

*/

public List <Student> getStudents()

• A method to search for a particular student, given the student’s ssn.
This method should not involve a loop.

/**

* @return the student with the given ssn, or

* null if not found.

*/

public Student searchBySSN(String ssn)

• A method to search for all students, who have a given name.

/**

* @return the set of students with the

* given name. Must match exactly, case

* sensitive.

*/

public Set <Student> searchByName(String name)

• A method to find the average GPA of all students at this university.

/** @return Average GPA of all students

*/

public double averageGPA()

• A method to remove those students whose GPA has fallen below a
given minimum value.

/** Remove all students who have a GPA less than minimum.

* @return Number of students dismissed.

*/

public int dismiss (double minimum)

2. In a new project, we wish to develop a class which will enable us to encrypt
and decrypt secret messages. We will use a few maps for this purpose.
Cryptologists call this kind of encryption scheme a codebook. Open the
project crypto from the repository for this chapter. Define methods to:

• Build a map which stores English words as keys, and the correspond-
ing encrypted words as the values. Make up your own entries, such
as:
plain text cipher text
the spritz
fox glmph
jump foo

• Build the inverse map, i.e. the map in which the keys are encrypted
(i.e. cipher) words, and the corresponding values are real English

7.7. PROJECTS 203

words (i.e. plain). Build this map automatically from the other
map, using a loop.

• Given a List of English words, return a List of the corresponding
encrypted words.

• Given a List of encrypted words, return a List of the corresponding
English words.

• A method to test your work is provided. It encrypts the words ”I
have things to do”, producing cipher text. It then decrypts the cipher
text to produce the original plain text.

3. You have intercepted a message sent by the enemy, and you need to decode
it to save us from attack. All you know is that the enemy is using a
permutation cipher; each word in the intercepted message is simply a
permutation (i.e. an anagram) of an English word. The message is:

niaiuanmrisotzrtiiocm fo uealcisonlesm npesoaw tpso nialtrenosotiaertuc

Use the project unscramble from the repository. In this project a class
named WordProduce is provided. It has methods which will provide you
with over 10,000 English words, one at a time, each time you call the
getWord() method. This class also has a boolean method which will tell
you whether there are more words yet to be obtained. Use this method
to control a loop in which you call getWord().

The strategy here is to use a map in which the keys are Strings in which
the characters are in alphabetic order. The corresponding values are sets
of Strings which are the anagrams of the keys. For example, one entry in
the map could be:

arst = {"arts", "rats", "star", "tars", "tsar"}

Here is what you’ll need to do:

(a) In the MapBuilder class implement a method to build the map, using
wordProducer. It should return a reference to the map.

Hint: In the String class there is a method which will produce an
array of chars from a String. In the Arrays class there is a static
method which will sort an array of chars.

(b) In the Unscrambler class:

i. In the constructor instantiate MapBuilder, and use it to create
the map.

ii. Define a method which will get the anagrams of a sorted String
from the map.

204 CHAPTER 7. MAPS, COLLECTIONS REVISITED

iii. Define a method which will show all the anagrams of each word
in a given list of words.

iv. Define a method which will allow you to test what you have done.
See if you can decode the secret message shown above.

Chapter 8

Exceptions - Handling
Errors

Unfortunately, most software projects of appreciable size are not flawless. Be-
cause of the complexity of software, it is not unusual to encounter incorrect
behavior (bugs) when using software. If the project is viable, the bugs are
corrected as they are encountered and reported; over time the quality of the
software improves. Some software applications which have been widely used for
a long period of time are relatively robust. However, getting to that point is a
long and difficul road.

Some bugs result in a minor inconvenience to the user; the program comes
to a crashing halt and needs to be restarted. In other cases incorrect output
can go undetected, until it is too late. There are also safety-critical applications
in which bugs are completely unacceptable:

• Software controlling the flight patterns of aircraft at a busy airport.

• Software controlling medical machinery such as X-ray machines, heart-
lung machines, intensive care monitor machinery, etc.

• Software used for national defense – early attack warning systems, radar
systems, secure international communications software.

• Military applications – drone control systems, missile guidance systems,
field communications cryptologic software, etc..

• NASA flight control software.

There are many more applications, too numerous to mention, where we rely for
our own safety on computerized systems. Such systems are tested rigorously, and
often have fail-safe redundancies built in. Nevertheless, in developing software
we will find that debugging is an inevitable part of the process.

In this chapter we examine some of the run-time errors which can occur
when a Java program executes. We will also attempt to ‘trap’ or catch those

205

206 CHAPTER 8. EXCEPTIONS - HANDLING ERRORS

ClassA ClassB

Figure 8.1: Class diagram showing a client (ClassA) and server (ClassB)

ClassA ClassB ClassC

Figure 8.2: Class diagram showing a class (ClassB) which acts as both client
and server

errors, and handle them in such a way that the program continues to execute
without crashing. In the best of all worlds, if an error does occur, the system will
tolerate the error and continue execution, and the the user will be unaware that
all this has transpired. We call this error-handling or fault-tolerant computing.

8.1 Client/Server terminology

Before discussing the handling of errors, we should introduce some terminology
having to do with the providing of services. This terminology can refer to classes
which provide services to other classes, or to methods which provide services to
other methods.

If classA uses the services of classB, we say that classA is a client of classB
and that classB is a server for classB. A server class is simply the one providing
one or more services to one or more client classes. This is often indicated in
class diagrams as shown in Figure 8.1. A dashed arrow pointing from classA
to classB means that classA uses classB. In this case classA is the client, and
classB is the server. Note that the arrow does not represent inheritance; a solid
arrow with hollow arrowhead is used to represent inheritance.

Suppose we introduce a third item, classC, and that classB uses the services
of classC. The class diagram is shown in Figure 8.2. We now see that the terms
‘client’ and ‘server’ are relative to a context. As in Figure 8.1, classA is still a
client of classB, and classB is still a server for classA, but now classB is a client
of classC, and classC is a server for classB. In other words, classB acts as both
client and server.

This terminology can also be applied to methods. If methodA calls methodB,
methodA is a client of methodB, and methodB is a server for methodA. As with
classes, a method can be both a client and a server (and this is very often the
case).

8.2. ASSERTIONS 207

8.1.1 Exercises

1. Refer to the project university in the repository for chapter 7.

(a) Which class is a client and which is a server?

(b) In the Student class which methods are client methods, and which
methods are server methods?

2. True or False:

(a) A client, as defined in this section, is a person.

(b) It is possible for one class to act as both client and server.

(c) The method getName() in the Student class is a client of the method
searchByName() in the UniversityInfoSys class.

8.2 Assertions

Before getting to Exceptions, we would like to address the problem of deter-
mining the actual location of a program error (bug). Java has the capability of
reporting to the programmer the method and line number within the source file
where the error took place, along with a brief description of the nature of the
error. Older programming languages and run-time systems provided little more
than a hexadecimal memory dump, leaving the programmer the rather difficult
task of tracking down and fixing the error.

Despite all the information received from the Java run-time environment,
finding the actual bug is not always a simple task. Consider a division-by-
zero error. This might occur because a parameter passed to a method stored,
erroneously, a value of zero. The real programming error took place in the
calling method, i.e. the client method (or perhaps the client’s client). The
incorrect line(s) of code could be far removed from the actual line where the
error occurred, as shown in Figure 8.3.

Because the actual cause of a run-time error can be buried deep in many
levels of method calls, we could simplify the debugging process if we could
somehow detect that our program is in a non-valid state before the error actually
occurs. In the example above, in the method meth1, if the value of a is 4, there
will eventually be a division-by-zero error in meth3. We can save ourselves a
lot of time if we could detect the problem in meth1, before any other methods
are called. This can be done with an assertion.

An assertion is a true/false statement about the state of the variables at
some point in a method. An assertion should be true; if it is false, we’d like to
know about it before going any further. Assertions come in two formats; the
first format is:

assert booleanExpression;

The booleanExpression is an expression which evaluates to true or false.
If the booleanExpression is true, execution continues as if the assertion did
not exist. However, if the booleanExpression is false, the program terminates,

208 CHAPTER 8. EXCEPTIONS - HANDLING ERRORS

public void meth1()
{ ...
a = 4;
meth2(a);
...
}

public void meth2(int b)
{ ...
c = b+2;
meth3(c);
...
}

public void meth3(int d)
{ ...
e = d - 6;
f = 3 / e;
...
}

Programming error here:
a should not be 4

Program crashes here:
division by zero

Figure 8.3: A run-time error buried deep in a series of method calls

8.2. ASSERTIONS 209

providing information as to the location of the assertion which failed (name of
method, and line number of the source file). In our example, we know that if
the parameter b in meth2 is 4, the program will ultimately fail, so we use that
in our assertion:

public void meth2(int b)

{ assert b != 4; // b should not be equal to 4

... // other statements not shown

c = b+2;

meth3(c);

... // other statements not shown

}

The second format for assertions allows us to put out more information about
the cause of the problem:

assert booleanExpression : String ;

The String should provide some helpful clues as to exactly what has gone
wrong; the String need not be a String constant, but may be any expression
which evaluates to a String:

public void meth2(int b)

{ assert b != 4 : "The value of b should not be 4";

... // other statements not shown

c = b+2;

meth3(c);

... // other statements not shown

}

In this case when the assertion fails the programmer will see the message,
“The value of b should not be 4” in addition to the method name and line of
the source file for the assertion.

Once we have finished testing our program and are ready to release it to
users, we may wish to remove all the assertions. If we do so, and then a bug
is encountered, we would have to put all the assertions back in place (a time
consuming task).

Instead there is a better solution. Assertions can be disabled or enabled.
When assertions are disabled, they are still in the source file, but the compiler
does not include them in the output (.class file); in other words it is as if they
have been removed. If further testing reveals a bug, we simply enable assertions
to help discover the source of the error.

We caution the programmer to avoid doing something like the following:
assert roster.remove(6) != null : "Position 6 of roster is null";

The remove method will remove the item at position 6 of roster, and return
the reference at that position, which we compare against null. The problem
with this is that when assertions are enabled, the size of roster is changed, but
when assertions are disabled, the size of roster is not changed. The program

210 CHAPTER 8. EXCEPTIONS - HANDLING ERRORS

will exhibit different behavior depending on whether assertions are enabled or
disabled – not a a good thing.

In summary, an assertion is a statement about the state of things as the
program executes which should be true, and is generally false only if something
unexpected or incorrect has occurred. As a college professor, I make the as-
sertion: “All my students work hard and will pass this course”. It is my hope
that this assertion will always be true, but if it happens to be false, I’d like to
understand what has caused it to be false.

8.2.1 Exercises

1. Refer to the university project in the repository for this chapter. What
will be printed when each of the following code segments is executed?

(a) String name = "joe";

Student frosh;

assert frosh != null : "reference to Student is null";

frosh = new Student (name, "232-34-9756");

System.out.println (frosh);

(b) String name = "joe";

Student frosh;

assert name.length() > 0 : "Name " + name + " is not valid";

frosh = new Student (name, "232-34-9756");

System.out.println (frosh);

2.

8.3 Exceptions

8.3.1 Run-time errors resulting in an Exception

When a Java program is executing, the Java run-time system can detect an
incorrect operation and determine that the program needs to be terminated.
The particular kind of error is called an Exception, and the process in which it
occurs is called a throw. This can result in program termination, also known
as a crash. Java has the capability of providing the method and line number
within the source file where the error took place, along with a brief description
of the nature of the error (Exceptions are similar to assertions; Java assertions
are actually implemented using Exceptions). Older programming languages and
run-time systems provided little more than a hexadecimal core dump, leaving
the programmer the rather difficult task of tracking down and fixing the error.

You may have encountered several examples of Exceptions already:

• NullPointerException – This occurs when you attempt to use a null
reference inappropriately. In the expression foo.bar or foo.bar() the
variable foo must not be null; if foo is null, a NullPointerException is

8.3. EXCEPTIONS 211

thrown, and the program terminates. Note that comparing a reference will
not cause a problem: if (foo == null) ... is not a problem. When
you get a NullPointerException, always look at the variable to the left of
the dot as the likely culprit.

• IndexOutOfBoundsException – An array index or List index is not in the
correct range. If grades is a List of size 5, the range of indices is [0..4]
inclusive. Thus, either of the following will cause an IndexOutOfBound-
sException:

– grades.get(5)

– grades.get(-1)

• ArithmeticException – This is typically a division by zero, though there
could be other causes resulting from a calculation that cannot produce a
valid result.

• ConcurrentModificationException – This results when changing the
size of a Collection in a for-each loop. If you need to selectively remove
or add items to a Collection in a loop, use an Iterator (a ListIterator will
allow you to add items to a List).

• ClassCastException – This Exception is thrown when the Java run-time
environment is unable to perform the requested cast. For example:

Student st = new GradStudent ("jim", "353-33-9303");

Undergrad under = (Undergrad) st;

It is not possible to cast the variable st as an Undergrad because its
dynamic type is GradStudent.

• IllegalArgumentException – This Exception is thrown when a method’s
parameter has a non-valid value. 1

These are just a few of the more common Exceptions; they are all described
in the API for the Java class library (see, for example, the package java.lang).
As we will see, Exception is a class which has many sub-classes. Each package
can have its own Exception classes.

In addition to the information provided by the Java run-time system, most
IDEs provide a debugger, which is a utility that allows one to step through
the statements of a program one at a time while watching the values of vari-
ables change. Though a debugger will not eliminate bugs for you, it is a useful
tool that allows you to diagnose a problem and decide on an appropriate fix.
Debuggers will be discussed in more detail later in this chapter.

1 An argument is terminology carried over from other programming languages and is
essentially the same as a parameter.

212 CHAPTER 8. EXCEPTIONS - HANDLING ERRORS

8.3.2 Throwing exceptions in a server method

Every public method should have an API which describes pre and post con-
ditions for that method. These pre and post conditions constitute a contract
for all client methods: If the pre conditions are satisfied, the post conditions
will also be satisfied; if any pre condition is not satisfied, the server method is
not under any obligation to do anything. This ‘contract’ is vital to the proper
interaction of methods.

In the case where a precondition is not satisfied (the server method is not able
to complete its obligations) the server method may wish to throw an Exception.
This is a way of signalling that something is drastically wrong, and normal
execution cannot continue. The throwing of an Exception differs from a failed
assertion in that the client method can handle the Exception and attempt to
continue executing the program; the program will not necessarily come to a
crashing halt.

To throw an Exception, use a throw statement in which you instantiate the
Exception being thrown:

throw new Exception-Name();

For example: throw new IllegalArgumentException();

When this is executed,

• The server method is terminated immediately; no return statement is
executed, and even a non-void method is not required to return a value.

• Control returns to the statement in the client method which invoked the
server method. The client method can then handle the Exception as de-
scribed in the next section. If the client method chooses not to handle
the Exception, the client method will throw the same Exception, to be
handled by its client method. If no method handles the Exception, the
Java runtime environment will bring the program to a crashing halt.

When instantiating the Exception, the particular Exception being instan-
tiated may have several different constructors. They usually have at least a
constructor with no parameters, and a constructor with a String parameter (as
in the example above). The purpose of the String is to provide information
for the programmer as to why the Exception was thrown. See the API for the
Exception class to understand all the options available when instantiating an
Exception.

If a server method can potentially throw an Exception, it is essential that
this be made clear in the method’s API. There is a javadoc keyword, throws
used for this purpose. Consequently, the programmer writing a client method
will understand that an Exception might be thrown, and be prepared for it.
As an example, we return to our Student class in which we wish to calculate a
Student’s GPA:

/**

* @param gradePoints The number of gradePoints earned by this Student.

* @param credits The number of credits earned by this Student,

8.3. EXCEPTIONS 213

* should be positive.

* @throws IllegalArgumentException if credits is less than or equal

* to zero.

*/

public void calcGPA (int gradePoints, int credits)

{ if (credits <= 0)

throw new IllegalArgumentException ("credits is " + credits);

gpa = gradePoints / (double) credits;

}

If and when the IllegalArgumentException is thrown, the gpa is not calculated;
instead we are back in the client method, where the thrown Exception can be
handled or ignored.

One final caveat on throwing Exceptions is in order. Exceptions should be
used only for exceptional, unexpected, or erroneous events. Do not use Excep-
tions in place of ordinary logic. Do NOT do the following (we have actually
seen students do this):

// The WRONG way to control execution of a loop

try {

int i=0;

while (true)

{ System.out.println (roster.get(i));

i++;

}

}

catch (IndexOutOfBoundsException ioobe)

{ }

8.3.3 What to do when an Exception is thrown

In this section we address the issue of handling a thrown Exception; we are
concerned with the client method here, not the server method. Our client
method has called a server method which has thrown an Exception and we need
to decide how it should be handled or ignored in the client method:

• Should we ignore the exception? If so, our method automatically throws
the same Exception, so that it can be handled in the client method which
called our method.

• Should we throw the same Exception explicitly? This has the same effect
as ignoring the Exception (but may be required depending on the kind of
Exception – see checked vs. unchecked Exceptions, below)

• Should we try to handle the Exception right here in our method? This
would involve a try/catch block.

214 CHAPTER 8. EXCEPTIONS - HANDLING ERRORS

8.3.4 Handling exceptions with try/catch in a client method

If we choose to handle a thrown Exception in our client method, we must use a
statement called a try/catch block. This is a statement with at least two parts:
a try block and one or more catch blocks. The format is:

try { // statement(s) containing a call to a method which might

// throw an Exception.

// Include all statements which depend on the result of

// the method call.

}

catch (ExceptionClass name1)

{ // Statements to handle the Exception

}

catch (ExceptionClass name2)

{ // Statements to handle the Exception

}

.

.

.

catch (ExceptionClass name)

{ // Statements to handle the Exception

}

}

The try block includes a statement which calls a server method – the one which
potentially will throw an Exception. The try block should also contain all
statements which depend on the result of the server method.

If an Exception is thrown, control is immediately transferred to the catch
blocks. The first catch block to correctly name the Exception is selected, and
the statements in its block are executed. Control then falls through to whatever
follows the try/catch statement. If none of the named Exceptions match the
thrown Exception, this method throws the same Exception (the Exception is
not handled here).

As an example, consider the following method which attempts to calculate
the GPA of each student in a given List.

/** @param min The minimum GPA needed to be on the dean’s list

* @return A List of all students on the roster

* who qualify for the dean’s list.

* Uses getGradePoints() and getCredits() to obtain data for

* a student. Ignores students with non-valid data.

*/

public List<Student> deansList (List <Student> roster, double min)

{ List <Student> result = new LinkedList <Student> ();

int credits, gradePoints;

for (Student st : roster)

8.3. EXCEPTIONS 215

{ credits = getCredits(st);

gradePoints = getGradePoints(st);

try {

st.calcGPA (gradePoints, credits);

if (st.getGPA() >= min)

result.add (st);

}

catch (IllegalArgumentException iae)

{ System.err.println ("Illegal data for " + st);

System.err.println ("This student not processed");

}

}

}

In the deansList method shown above note that the try block contains all
statements which depend on the result of the call to calcGPA(). In this ex-
ample there is only one catch block, but if we knew that calcGPA threw other
Exceptions we could include additional catch blocks. Also note that the try
and catch blocks require the curly braces, even if there is only one statement in
the block.

8.3.4.1 Checked and unchecked Exceptions

As with most classes in the Java class library, Exception classes form a hierarchy
of sub-classes. This hierarchy is critical to understanding the requirements
placed on a program by the compiler. The compiler will require handling certain
Exceptions and will allow other Exceptions to be ignored.

Some selected Exception classes (and anything which can be thrown) from
the Java class library are shown in Figure 8.4. In this diagram a Throwable is
a super-class representing anything that can be thrown (at this point the only
things we can throw are Exceptions). An Error represents an error in the Java
class library or run-time system; it is safe to say that you will not encounter this
error. This software has been thoroughly tested by millions of users for many
years. If you do encounter this error, rest assured it is not your mistake, and
you will have to find a work-around (report this to Oracle).

We should concern ourselves with the Exception class in Figure 8.4 and its
sub-classes. These classes fall into two categories:

• Unchecked Exceptions – RunTimeException and all of its sub-classes are
said to be unchecked.

• Checked Exceptions – All other sub-classes of Exception are said to be
checked.

The difference between checked and unchecked Exceptions has to do with
whether the compiler allows you to ignore them:

216 CHAPTER 8. EXCEPTIONS - HANDLING ERRORS

Error

NullPointerException
(unchecked)

IllegalArgumentException
(unchecked)

RunTimeException
(unchecked)

FileNotFoundException
(checked)

IOException
(checked)

Exception

Throwable

Figure 8.4: Class diagram showing some of the Exception classes in the Java
class library

• Unchecked Exceptions – The client method is not required to check for
any unchecked Exceptions that might be thrown by server methods. It is
permissable to use a try/catch block, but not required.

• Checked Exceptions – The client method is required to check for any
checked Exceptions that might be thrown by server methods. In this case,
the client method has two choices:

– Use a try/catch block to handle the Exception as discussed previ-
ously.

– Declare, in the method signature, that the client method throws the
Exception. In this case the method which called the client method is
faced with the same requirement (we call this ‘passing the buck’).
The API of the client method should also have an @throws line
describing the circumstances under which this Exception would be
thrown.

Why would the client method wish to pass the buck rather than handling the
Exception? It could be that the client method does not have enough information
to handle the Exception appropriately, but the method which called it would be
better able to handle the Exception. Thus Exceptions can be propagated from
any depth all the way to your top-level method (the one that started everything
at the beginning). If your top-level method throws an Exception, the Java
runtime environment will catch it and your program will come to a crashing
halt.

8.3. EXCEPTIONS 217

Methods which involve input and output are often subject to external con-
straints which are difficult, if possible, to deal with in a program. For example,
when attempting to open a data file, the file may not exist, the disk might be full
(when opening for output), or network problems may exist (for drives mapped
to a network). This is why all sub-classes of IOException are checked Excep-
tions; the likelihood of an Exception occurring is so great that the developers
of Java decided to force you to check for them. We will discuss I/O exceptions
further in chapter 9.

As an example, reconsider our deansList method to return a List of all
students from the given List who have a given minimum GPA. It called a
few methods: getGradePoints(Student) and getCredits(Student). Sup-
pose these methods obtain information by reading data from a disk file; it is
likely that they would throw some sort of (checked) IOException. If this is the
case, we should see it described in the API, and the compiler would see the
throws keyword in the signature:

/** @param st A Student in our disk file of Students

* @return the number of credits earned by st.

* @throws IOException

*/

public int getGradePoints (Student st)

throws IOException

{ // Code to open a data file and find the number

// of grade points for the given Student...

}

Because this method specifies throws IOException in the signature, the
compiler will force us to make a choice: handle the Exception right here in the
deansList method or pass the buck to the calling method.

If we choose to handle the Exception here in the deansList method, it could
be done as shown here with a try/catch:

/** @param min The minimum GPA needed to be on the dean’s list

* @return A List of all students on the roster

* who qualify for the dean’s list.

* Uses getGradePoints() and getCredits() to obtain data for

* a student.

*/

public List<Student> deansList (List <Student> roster, double min)

{ List <Student> result = new LinkedList <Student> ();

int credits, gradePoints;

for (Student st : roster)

{ try // handle a possible IOException

{ credits = getCredits(st);

gradePoints = getGradePoints(st);

st.calcGPA (gradePoints, credits);

218 CHAPTER 8. EXCEPTIONS - HANDLING ERRORS

if (st.getGPA() >= min)

result.add (st);

}

catch (IOException ioe)

{ System.err.println ("Unable to obtain data for " + st); }

}

}

Note that the calls to getCredits and getGradePoints are in the try block, as
well as all statements which need the results of those methods. It would make
no sense to call calcGPA if we have failed to obtain the information which it
needs.

Our other option is to pass the buck; i.e. notify the calling method that we
are unable to handle this Exception so the calling method must decide what to
do:

/** @param min The minimum GPA needed to be on the dean’s list

* @return A List of all students on the roster

* who qualify for the dean’s list.

* Uses getGradePoints() and getCredits() to obtain data for

* a student. Ignores students with non-valid data.

* @throws IOException if credits and/or grade points cannot

* be obtained from the data file.

*/

public List<Student> deansList (List <Student> roster, double min)

throws IOException // pass the buck

{ List <Student> result = new LinkedList <Student> ();

int credits, gradePoints;

for (Student st : roster)

{ credits = getCredits(st);

gradePoints = getGradePoints(st);

st.calcGPA (gradePoints, credits);

if (st.getGPA() >= min)

result.add (st);

}

}

Note that the @throws keyword in the API is for the benefit of people
(the programmers who will be writing methods that call this method), and
the throws keyword in the method signature is primarily for the compiler.

8.3.5 Defining your own Exception classes

Classes in the Java class library can be extended (sub-classed) by classes that
we create. This is certainly true for Exception classes. When we define our
own Exception class, we must decide which of the Exception classes in the Java
class library is to be the super-class. If we wish our class to be an unchecked

8.3. EXCEPTIONS 219

Exception, it should extend RunTimeException, but if we wish our class to be a
checked Exception, it should extend Exception (or some sub-class of Exception
other than RunTimeException).

When doing so, we will use the existing Exception classes as models of good
behavior, and design our classes in a similar way. In particular, we will have
a few constructors: a default constructor with no parameters, and a construc-
tor with a String parameter, to be displayed for the programmer of the client
method.

Continuing with our Student example, suppose we wish to throw an Ex-
ception when a GPA cannot be calculated. We may wish to define our own
Exception specifically for this error. If we wish the compiler to force checking
for this Exception, we would want it to be a checked Exception, and therefore
it could be a sub-class of Exception:

/** This Exception should be thrown when a Student’s GPA cannot

* be calculated.

* Detailed message and the Student can be included, but are

* optional.

*/

public class BadGpaException extends Exception

{ private String message; // error detail

private Student student; // Student with the problem

/** Construct a BadGpaException with null as its

* error detail message and null as its

* offending Student;

*/

public BadGpaException()

{ }

/** Construct a BadGpaException with the given String as its

* error detail message, and the given Student as the

* offending Student.

* @param s Detaileds info on the error, or null if no info

* is available.

* @param st Student who caused the problem, or null if

* not available.

*/

public BadGpaException(String msg, Student st)

{ message = msg;

student = st;

}

/**

* @return the details of the error,

* which could be a null reference,

220 CHAPTER 8. EXCEPTIONS - HANDLING ERRORS

* if not available.

*/

public String getMessage()

{ return message; }

/**

* @return the offending Student,

* which could be a null reference,

* if not available.

*/

public Student getStudent()

{ return student; }

/**

* @return this BadGpaException as a String

*/

public String toString()

{ String result = "GPA could not be calculated";

if (message != null)

result = result + " because " + message;

if (student != null)

result = result + "\nCaused by " + student;

return result;

}

}

We can now add the BadGpaException class to our class diagram; it is shown
in Figure 8.5.

In the BadGpaException class note that:

• There are two fields in this class:

– A String containing details on the cause of the Exception

– A reference to the Student who caused the Exception to be thrown
(the offending Student).

• There are two constructors in this class.

– A constructor with no parameters (default constructor) which is used
when the error details and the offending Student are unavailable.
This constructor leaves both fields initialized to null references.

– A constructor with two parameters which is used when either, or
both, the error details and the offending Student are available. It
initializes at least one of the two fields.

• If a method wishes to throw this Exception, there are a few ways this can
be done:

8.3. EXCEPTIONS 221

Error

NullPointerException
(unchecked)

IllegalArgumentException
(unchecked)

RunTimeException
(unchecked)

BadGpaException
(checked)

FileNotFoundException
(checked)

IOException
(checked)

Exception

Throwable

Figure 8.5: Class diagram showing some of the Exception classes in the Java
class library with our own class, BadGpaException

– If it has no information on both the error details and the offending
Student, it could throw an Exception using the default constructor:

throw new BadGpaException ();

– If it has information on both the error details and the offending Stu-
dent, it would call the constructor with two parameters:

throw new BadGpaException ("No credits earned", someStudent);

– If it has information on either the details of the error or the offend-
ing Student, but not both, it would call the constructor with two
parameters, with null as a parameter:

// Offending Student not available

throw new BadGpaException ("Student not in database", null);

// Error details not available

throw new BadGpaException (null,someStudent);

8.3.6 Exercises

1. List a few java Exceptions not mentioned in this section.

2. Can a NullPointerException be created with a String as a parameter?

NullPointerException npe = new NullPointerException ("foo is

null");

If so, what is the purpose of the parameter?

222 CHAPTER 8. EXCEPTIONS - HANDLING ERRORS

Hint: See the API for the package java.lang.

3. Refer to the university project in the repository for this chapter. Which
of the following code segments will cause an Exception to be thrown, and
if so, what is the class of the Exception?

(a) Student frosh;

frosh.calcGPA(12,3); // 12 grade points

System.out.println (frosh);

(b) Student frosh = new Student ("jim", "232-34-3333");

frosh.calcGPA(12,0); // 12 grade points

System.out.println (frosh);

4. In the Student class of the university project in the repository for this
chapter, there are accessor methods for a Student’s name and ssn. Make
the following modifications to these accessor methods, and include an
explanation for the reason the that it is being thrown (don’t forget to
update the API).

(a) Modify the getName()method so that it will throw an IllegalStateException
if the name is a null reference.

(b) Modify the getSSN()method so that it will throw an IllegalStateException
if the ssn is not valid. The format of an ssn should be ”999-99-9999”,
where the ”9” represents any numeric digit.

5. Use the university project in the repository for this chapter. In the
UniversityInfoSys class define a method named buildPassword with
one parameter, a Student. The method should return an initial pass-
word for the given Student consisting of the first initial of the Student’s
name and the last two digits of the Student’s ssn. If one of the server
methods throws an Exception, it should be caught and handled in the
buildPassword such that:

• An error message is sent to stderr (System.err.print...)

• Execution continues; the program does not crash.

/** @return An inital password for the given Student,

* consisting of first initial of name and last two digits

* of ssn.

* Execution continues if an IllegalArgumentException is thrown,

* with a message sent to stderr.

*/

public String buildPassword (Student st)

8.4. DEBUGGERS 223

8.4 Debuggers

A software tool which is helpful in finding and fixing programming errors is called
a debugger. The debugger will not help you with compile-time errors; for these
you must rely on the error message provided by the compiler. But for complex
run-time errors, which may be buried deep in several nested method calls, or
nested loops, a good debugger is essential. There may be some disagreement over
the value of a debugger versus code review. Code review, recommended by many
software engineers, is the process of examining the program carefully, either
alone or with other programmers, to make sure that every possible problem or
error is avoided. We agree that code review is valuable, but there always seem
to be bugs which slip through after the most careful code review. For these, one
needs to have the necessary skills to use the debugger effectively.

Each Integrated Development Environment (IDE) has its own debugging
tool with a user interface. These user interfaces may appear different, and
somewhat daunting, at first. Here we attempt to describe some of the features
available in most debuggers, without going into the specific details of any one
particular debugger. We stress that the debugger is used to find the line(s) of
source code which are causing erroneous output, a run-time exception, or an
invalid program state. Note that a debugger will NOT help with:

• A debugger will not help you with compile-time errors. The compiler will
provide an error message and line number in the source file, either of which
might be accurate or helpful.

• A debugger will not help you discover that a flaw in the program exists.
For this we use code review and thorough testing.

• A debugger will not automatically show you where the bug is; it is simply
a tool which will help you find the bug.

• A debugger will not fix the bug for you. A good understanding of the
program logic is necessary to fix the bug yourself.

The features of a typical debugger include:

• Single Step (or Step) – Step through the statements of the program one
line at a time. Click a button to allow the next line to be executed. There
are usually two ways to do this:

– Step Over – Execute the current line. If the line contains a method
call, run the called method at full speed before returning control to
the debugger, and move on to the next line of code.

– Step Into – If the current line contains a method call, step into that
method and return control to the debugger to execute the called
method one line at a time.

224 CHAPTER 8. EXCEPTIONS - HANDLING ERRORS

• Watch variables – Show the value of selected variables as the program ex-
ecutes. Many debuggers show all active variables (local variables, instance
variables, class variables) by default. Many debuggers will also show you
the call stack – the sequence of method calls which led to the current line.

• Set Breakpoint – Any executable line may be set with a breakpoint. When
running a method at full speed, execution pauses when encountering a
breakpoint. Control is returned to the debugger so that one can single-
step from that point.

• Continue – Continue executing at full speed, pausing at the next break-
point, if any.

• Conditional commands – Choose one of the options shown above condi-
tionally, depending on the value(s) of variable(s). This feature is available
only with the more advanced debuggers.

• Step backwards – If you have gone past the bug and do not wish to start
over from the beginning, you can step to the previous line. This feature is
available only with the more advanced debuggers (notably in the Eclipse
IDE).

We cannot overemphasize the importance of learning to use a debugger skill-
fully. Once you have experience with one particular debugger, it is relatively
easy to learn a different debugger.

8.4.1 Exercises

1. Briefly describe the difference between the meaning of step into and step
over for a typical debugger.

2. True or False: A Debugger is a tool which can be used to patch a defec-
tive program, after the programmer has determined which statement is at
fault.

3. Consider the following code segment:

for (int i=0; i<100; i++)

for (int j=0; j<10000; j++)

System.out.println (i*j - i/j);

Enter this code into a method in a new class, and execute it with your
debugger. Step through the statements and pause when the value of i is
25 and the value of j is 10.

8.5. DEBUGGING WITH PRINT STATEMENTS 225

8.5 Debugging with print statements

One of the oldest and most obvious debugging techniques involves the use of
print statements. Insert print statements at various points in the program to
make sure that variables contain correct values. This is sometimes easier than
using a debugger, but if your print statements are in nested loops, you could get
large quantities of output, making it difficult to search for useful information.
The following print statement assures the programmer that the value of the
variable credits contains the correct value, 45:

System.out.println ("credits should be 45, credits = " + credits);

8.6 Projects

1. Use the project university-debug in the repository. In this project
the class UniversityInfoSys is responsible for providing information on
courses and students enrolled. The Student class has been enhanced to
store a collection of courses in which the Student has enrolled. You should
start out by viewing the API (Documentation View) for each of the classes.

This project compiles without errors (ignoring the class Driver2), but it
contains at least 6 run-time errors. Some of these will cause the program
to crash, and some will cause incorrect output. Correct all run-time errors
(they will be found in the Student and UniversityInfoSys classes only); it
may be helpful to use a debugger. When you test your solution using
the main method in the Driver1 class, the output should look like the
output in the plain text file university-debug-output1.txt. (Do not
try to compile the class Driver2; you could temporarily remove it from
the project. It is for the next problem.)

Hint: Your debugger should be able to distinguish between local variables
and fields.

2. Use the same project that you used in the above problem; here you will
test with the Driver2 class.

In this problem a Student’s ssn must be in the format ‘999-99-9999’, i.e.
all characters must be numeric (0-9) except for the two dashes, and the
dashes must be in positions 3 and 6.

Define an Exception named InvalidSSNException. This Exception will
be thrown when a Student is given an invalid ssn. We will handle the
exception by attempting to put the ssn in the correct format, if possible.
It that is not possible, we will use the given ssn, print an error message, and
continue processing. Be sure that your InvalidSSNException class has
the appropriate javadoc comments for a useful API. It will be necessary
to make some changes to the Student class.

The output should match what is shown in the plain text file
university-debug-output2.txt.

Chapter 9

Console Applications –
Input and Output

Most programs need to communicate, in some way, with the world outside. They
may need information from some external source, or they may need to commu-
nicate results to an external device. In this chapter we examine some common
operations which are used to bring data into an executing program (input) and
operations used to send data out from an executing program (output).

The terms input and output are used from the point of view of the primary
memory (RAM). The input operation brings data into RAM from some external
source such as a disk, a USB port, a keyboard, or a network port. The output
operation sends data out from RAM to some external device such as a disk, a
USB port, a monitor, a printer, or a network port. Figure 9.1 shows a simple
diagram of these hardware components, with arrows showing the direction of
data transfer for input and output.

This chapter will discuss these input and output operations for console ap-
plications only. A console application is one in which the data being input,
or put out, for the user is plain text (i.e. ASCII or Unicode characters). In
communicating with the user, console applications cannot use graphics of any
kind, including graphical user interfaces. Nor do console applications normally
utilize images or sound.

9.1 Standard io files

Most systems which accommodate console applications make use of standard
IO files. These are somewhat abstract concepts that represent the source or
destination of data being input or put out, respectively. Standard IO is usually
abbreviated stdio, and there are three such files which we discuss here:

• stdin – The standard input file. Normally this refers to the user’s key-
board. When we read from from stdin we are obtaining plain text that

226

9.1. STANDARD IO FILES 227

CPU RAM

Disk

KeyBoard

Monitor

Figure 9.1: Simplified diagram of a computer with peripheral devices

the user types on the keyboard.

• stdout – The standard output file. Normally this refers to the user’s
monitor (or terminal window in an IDE such as BlueJ). When we print to
stdout, we are sending plain text to the user’s monitor.

• stderr – The standard error file. Similar to stdout, stderr is normally
used for error messages directed to the user. When running an appli-
cation from the system command line, text sent to stdout will not be
distinguished from text sent to stderr. Some IDEs, such as BlueJ, will
show stdout and stderr in separate windows, with the stderr output in
red.

The user can redirect any, or all three, of these standard files to some other
source or destination.

9.1.1 Exercises

1. True or false:

(a) Both stderr and stdout are initially directed to the user’s monitor
but can be redirected to some other destination.

(b) stdin is initially directed to the user’s keyboard but can be redirected
to some other source.

(c) Console applications may utilize images or sound to improve com-
munication with the user.

2. Is a printer an input device, or does it perform output as well?

3. Is a scanner primarily an input or output device?

228 CHAPTER 9. CONSOLE APPLICATIONS – INPUT AND OUTPUT

9.2 Output to stdout or stderr

In this section we explain how to send plain text to the user, on stdout or
stderr. Normally the output will be sent to the user’s monitor, but it can be
redirected to some other destination such as a disk or USB port.

9.2.1 Output to stdout

One way to send text to stdout we’ve already seen:
System.out.println("some message");.

System is a class in the package java.lang which does not need to be imported.
System has other interesting features, but we will be using it for output of plain
text to stdout. When the println method is executed, its parameter, which
is a String, is sent to stdout, and the user is able to see the output. If the
parameter of println is not a String, it is automatically converted to String
via a call to the toString() method. All primitive types can be converted to
String automatically by the run-time system, and all reference types inherit a
toString() method from Object if they don’t define one. The toString() method
inherited from Object is probably not going to do what you want. It will call the
hashCode method on the object, and convert the result to hexadecimal (base 16
characters), concatenated with the name of its class. If you see something like
Student@148ae300 on your output screen, you are probably missing a toString()
method in your Student class.

9.2.2 Output to stderr

In order to send plain text to stderr, we simply use err instead of out in the
call to the println method. This form is intended to be used for error messages,
such as:

System.err.println ("Number of credits should not be negative");

9.2.3 Exercises

1. Which IDE do you use? When executing a program does it show stdout

and stderr in separate windows?

2. Write a simple java method to write some text to stdout and some to
stderr. Compile and test this method from the system command line.
Are the output lines of stdout separate from the output lines of stderr?

Hint:

(a) Open a terminal window (or cmd window).

(b) Move to the directory in which you wish to work.

(c) Define a class named Test in a text file named Test.java. It should
have a method:

public static void main (String [] args)

9.3. INPUT FROM STDIN 229

(d) Compile your class by issuing the command:

javac Test.java

(e) If there are no compilation errors, run the main method in the class
by issuing the command:

java Test

3. Only Strings can be printed to stdout or stderr. Explain how it is
possible to print something that is not a String:
System.out.println (new Student ("jim", "123"));

9.3 Input from stdin

Input is the process of transferring information from an external source such as
disk, keyboard, or USB port into the computer’s RAM as a program executes.
We can use the standard input file, stdin, which is normally directed to the
user’s keyboard. There are several ways of accomplishing this; one of the easiest
and most powerful tools for input is the Scanner class which is in the java.util
package. Do not let the huge API for this class scare you away; it has many
powerful features, but we will be using a few of the easier features.

In order to use Scanner it must be imported at the beginning of the class:
import java.util.Scanner or import java.util.*

When instantiating a Scanner object, you can provide it with the source of the
input. In this section we wish to read from stdin, i.e. the user’s keyboard.
Consequently we identify this as System.in:

Scanner scan = new Scanner (System.in);

We can now apply any of the methods in the Scanner class to this object, which
we have named scan. The two methods from Scanner which we introduce now
are:

• public boolean hasNextInt(); – This method will return true only if
an int has been entered on the input stream (System.in in our case).

• public int nextInt(); – This method will return an int, if possible,
from the input stream.

As an example, we could implement a method in our Student class to get
the number of credits from the user’s keyboard:

/** Get the number of credits for the given Student

* from stdin.

* @return The number of credits read from stdin.

*/

public int getCredits (Student st)

{ int result = 0;

// Prompt user for input

230 CHAPTER 9. CONSOLE APPLICATIONS – INPUT AND OUTPUT

System.out.println ("Enter the number of credits for " + st);

if (scan.hasNextInt())

result = nextInt();

else

System.err.println ("Invalid number entered, 0 is assumed");

return result;

}

Note that this method first prompts the user to enter something on the
keyboard. If you forget this prompt, the user will not know that the computer
is waiting for input; the user and computer will sit there waiting for each other
to do something. Users need to be prompted for action, and they need to be
told what the program is expecting to be entered.

The call to hasNextInt() is recommended, so that if the user enters some-
thing which is not a valid int, the program will not crash with an IOException.

9.3.1 Exercises

1. Which method in the Scanner class can be used to read the next valid
double precsion number from the input stream?

2. Which method in the Scanner class can be used to determine whether
there is a valid double precsion number at the front of the input stream?

3. Experiment to see what happens when a program tries to get a double
precision number from the input stream, and the front of the input stream
is not a valid double precision number.

4. Write a method to prompt the user to enter three whole numbers at the
keyboard. Your method should return the average of the three numbers.

/** @return the average of three whole numbers entered

* on the user’s keyboard */

public double average3 ()

9.4 Data Files

Large quantities of data can be stored permanently on external or internal
storage devices such as disks and USB flash memory. In this section we will see
how to input data from storage, and how to put out data to storage, from an
executing program. Before a data file can be accessed, it must be opened. Once
it has been opened, it is possible to read data from the file, append data to the
file, or overwrite existing data with new data to the file.

9.4. DATA FILES 231

9.4.1 Opening a data file

Before any input or output can occur, a data file must be opened. This is the
point where the program requests a service from the operating system:

• I will tell you whether I will be using it for input or for output.

• If using it for input, can this file be found in the folder where I think it
exists?

• If using it for output, can this file be created in a particular folder?

• Do I have permission to use this file?

A file can opened by instantiating an appropriate class from the Java class
library; this will typically be an instance of the File class for input, or the
FileWriter class for output; the constructor is provided with the name of the
file to be opened:

new File("myInputFile.txt");

new FileWriter("myOutputFile.txt");

More complete examples are given in the following sections.

9.4.2 Input from Data Files

Input is the process of transferring information from an external source, such
as a disk or USB flash memory, into RAM for an executing program. We will
use the same class that we used for keyboard input: Scanner. To open a file for
input, we will instantiate a Scanner object using an instance of the File class.
File is in the java.io package so it will need to be imported:

import java.io.File; or import java.io.*;

We will also need to import the Scanner class:
import java.util.Scanner or import java.util.*;

We can now open a file for input by instantiating Scanner:
Scanner scan = new Scanner (new File("myFile.txt"));

Notice that we are careful to provide Scanner with a File. If we had omitted
the new File and simply provided Scanner with the file name as a String, we
would have been calling a different constructor in the Scanner class – Scanners
can also read from Strings, and that is not what we are interested in doing here.

As shown above, however, the compiler will not accept this. If you look
at the API for the constructor in the File class you will see that it throws
IOException. The API goes on to explain that if the file cannot be found or
cannot be opened for some other reason, an IOExceptionwill be thrown. Recall
from chapter ?? (Figure 8.4) that IOException is a checked exception, which
means that the client method (i.e. the calling method) must do one of the
following:

• Handle the Exception with a try/catch statement.

232 CHAPTER 9. CONSOLE APPLICATIONS – INPUT AND OUTPUT

• Declare that this method also throws IOException (i.e. pass the buck).

If you omit both of the above, the compiler will remind you of your choices:
Unreported Exception java.io.IOException; must be caught or declared

to be thrown

Once the file has been opened for input, we can use the Scanner object to
read data just as if we were reading from the user’s keyboard. In addition to
hasNextInt() and nextInt(), the Scanner class has methods which will read
an entire line as a String: hasNextLine() and nextLine().

When finished reading data from a file, we should close it. If we forget
to close it, the system will close it when the program terminates; however we
should close it anyway. This is a good habit to get into; good citizens always
close their files when finished:

scan.close();

We can now write code which will read all the lines in a text file and print them
on stdout:

import java.util.*; // Scanner

import java.io.*; // File

...

String line;

// Open the file roster.txt for input

try {

Scanner scan = new Scanner (new File ("roster.txt"));

while (scan.hasNextLine())

{ line = scan.nextLine(); // Read a line from the file

System.out.println (line);

}

scan.close(); // Good citizens close files

}

catch (IOException ioe)

{ System.err.println ("File roster.text not found"); }

Notice that we include in the try block not only the call to the File construc-
tor, but everything which depends on its successful termination as well.

9.4.3 Output to data files

There are many ways of writing output to a data file. We will discuss one of
the simpler techniques. Though it is possible to write binary data to a file, we
will be writing plain text. We will need the FileWriter class which is in the
java.io package:

import java.io.FileWriter; or import java.io.*;

9.4. DATA FILES 233

Though it is possible to append data to an existing file, we will simply write
to a file, assuming that if it does not exist, it will be created, and if it does exist
it will be overwritten. To open the file for output, instantiate the FileWriter

class, by giving it the name of the file as a String:

FileWriter writer = new FileWriter("myFile.txt");

Like the File class, the FileWriter constructor also throws IOException, so
we enclose its instantiation in a try block.

The example above presumes that the file to be opened is in the same di-
rectory (i.e. the same folder) as the Java source file. If it is located somewhere
else, a full path description of its location is needed:

FileWriter writer = new FileWriter("c:myStuff/myFile.txt");

After opening the file, we can write Strings to it using the write (String)

method:

writer.write("any string...");

Each time this method is executed a String will be written to the file. Note that
if you want the Strings stored on separate lines, you must include a newline
character, ’\n’ at the end:

writer.write("any string...\n");

Finally, when finished writing data to the file, it should be closed. Most
systems will automatically close a file when the program terminates, but you
should close it anyway. This is a good habit to get into; all good citizens close
their files when finished using them:

writer.close (); // good citizens close files

The following code segment will open a file named roster.txt for output, and
write data for two students to that file:

import java.io.*;

...

try {

FileWriter writer = new FileWriter ("roster.txt");

writer.write ("joe\n"); // name

writer.write ("234-54-9498\n"); // ssn

writer.write ("3.5\n"); // GPA

writer.write ("jim\n"); // name

writer.write ("432-45-8949\n"); // ssn

writer.write ("0.0\n"); // GPA

writer.close(); // good citizens close files

}

catch (IOException ioe)

{ System.err.println ("File not found: roster.txt"); }

234 CHAPTER 9. CONSOLE APPLICATIONS – INPUT AND OUTPUT

9.4.4 Exercises

1. Under what circumstances might an attempt to open a file result in the
throwing of an Exception?

2. Define a method named createFilewith one parameter which will accept
input from stdin and store the lines in a file with the given name.

/** Open the given file for output. Obtain lines of text from stdin,

* and write them to the given file.

* @param filename Name (and path) of the text file to be created.

*/

public void createFile (String filename)

When testing your solution, use ctrl-d (Unix) or ctrl-z (Windows) to ter-
minate the input.

3. Define a method named copyFile with two parameters which will copy
all the lines from a text file into a new text file.

/** Open source file for input and open target file for output.

* Copy all lines of source file to target file and close.

* Pre: Source file is a text file.

* @param sourceFilename Name (and path) of the text file to be copied.

* @param targetFilename Name (and path) of the text file to be created.

*/

public void copyFile (String sourceFilename, String targetFilename)

Test your program by using it to copy the source file to a new file.

4.

9.5 Running an Application from the Command
Line

As we develop software in Java, we generally use an Interctive Development
Environment (IDE), such as BlueJ, Eclipse, or NetBeans. The IDE provides
a convenient way to edit, compile, test, debug, etc. Many IDEs will provide
information on a project’s classes as well as a nice-looking API. Some IDEs,
such as BlueJ, allow the developer to execute an individual class or instance
method when testing a particular class (BlueJ also allows direct execution of a
single Java statement with a CodePad feature).

9.5. RUNNING AN APPLICATION FROM THE COMMAND LINE 235

9.5.1 Compile and Test from the Command Line

However, a Java application can also be invoked from the Unix or DOS command
line. Follow these steps to create your source file(s), compile, and test your
application:

1. There should be a source file (.java) for each class in your project. The
name of the file should be the same as the name of its class. These files
will normally all be in the same directory (folder), and they should be
plain text files, created and edited with a line editor such as vi, emacs,
edlin, or notepad.

2. One of the classes in your project, the main class, should have a main

method which starts the application:

public static void main (String [] args) { ... }
This is the method which will be called when execution begins, and is
explained in the next section.

3. When ready to compile these source files, they can be compiled individu-
ally, or all at the same time:

• javac ClassName.java

• javac *.java

4. If there are error messages from the compiler, use your editor to correct
the errors, save, and recompile.

5. If there are no error messages from the compiler, you will notice that
there is a .class file in the project’s directory for each class in the project
which has been compiled. These files contain byte code which can be
directly executed by the Java RunTime Environment. To execute, you
must invoke the Java runtime environment from the command line:

java MainClassName parm1 parm2 parm3 ...

The parameters, parm1, parm2, parm3, ... are not required, but they
should correspond to the array of Strings (args) in the declaration of the
main method. Note that there is no .java suffix (or any suffix) on the class
name.

9.5.2 public static void main (String [] args)

Here we explain why the main method must be declared as shown in the previous
section. We dissect this declaration and explain each part below:

• public – Since this method will be invoked from outside the class, access
must be public.

236 CHAPTER 9. CONSOLE APPLICATIONS – INPUT AND OUTPUT

• static – The main method must be a class method; it cannot be an
instance method because there are as yet no instances of that class. The
runtime environment is assuming it will be a class method and will invoke
it as:

MainClassName.main (...)

• void – The runtime environment does not make use of a returned value,
and requires that the main method be a void method.

• main – Since the runtime environment is calling a method named main,
that is what the name of your method must be.

• String – The runtime environment calls your main method with one ac-
tual parameter; thus your main method must have one formal parameter.

• [] – The parameter is an array of Strings.

• args – The parameter name can be any valid Java name, but most people
use argswhich is short for arguments. The term ‘argument’ is synonymous
with ‘actual parameter’ and is carried over from older languages such as
C++ which have functions.

The command line arguments correspond to the items in the array of Strings
which is the main method’s formal parameter. If the runtime environment is
invoked as shown below:

java MyClass sam joe bill

then when the main method starts up, the value of its parameter will be:

args.length = 3

args[0] = "sam"

args[1] = "joe"

args[2] = "bill"

If you supply too many arguments on the command line, your program simply
ignores the extra arguments. However, if you enter too few arguments on the
command line, you could get an IndexOutOfBoundsException.

9.5.3 Exercises

1. Choose one of the methods you defined in the exercises of the prevous
section, and modify its class so that it can be executed from the command
line of a terminal window.

2. Define a command named Alphabetic which will determine whether its
three arguments are in alphbetic order. It should print either “in order”
or “not in order”. For example:

9.6. PROJECTS 237

> java Alphabetic alpha gamma beta

not in order

> java Alphabetic alpha beta gamma

in order

3.

4.

9.6 Projects

1. A classic data processing task involves the merging of two or more ordered
data files. The output file contains all the data of the input files and is
also ordered.

In this project we wish to merge two text files, each of which contains a
single word on each line. The words are in alphabetic ordeer. We wish to
create a file containing all the words in both files (duplicates are ok) in
alphabetic order.

Use the project fileMerger from the code repository. Define a class
named Merger in which you will define a method with three parameters
named merge. The parameters are the names of the two input files and
the name of the output file to be created.

/**

* Pre: file1 and file2 are text files in alphabetic order.

* @param result is the name of the file produced by merging

* file1 with file2.

* The result is also in alphabetic order.

*/

public void merge (String file1, String file2, String result)

Test your solution by using the data files provided in the code repository,
file1.txt and file2.txt.

2. Java (and many other programming languages) have two kinds of com-
ments:

• Single-line comments: Begin with // and extend to the end of the
line

• Multi-line comments: Begin with /* and end with */

In a new project create a class named Comments. In this class define two
methods:

• A method named countSingleLineComments which will count all
the comments beginning with // in a java source file.

238 CHAPTER 9. CONSOLE APPLICATIONS – INPUT AND OUTPUT

/** @return number of single-line comments in the

* given java source file

*/

public int countSingleLineComments (String filename)

• A method named countMultiLineComments which will count all the
comments beginning with /* and ending with */ in a java source file.

/** @return number of multi-line comments in the

* given java source file

*/

public int countMultiLineComments (String filename)

Be careful:

• The following counts as two multi-line comments:
/* hi */ /* there */

• The following counts as one single-line comment:
// hi there /* today */

• The following counts as one multi-line comment:

/* This is a // multiline

comment

*/

• The following counts as one multi-line comment:

/* This is a /* multiline

comment

****/

Hint: Define one method which returns both values as a List<Integer>

of size 2. Your method will behave like a state machine as it scans the
characters of the source file:

• It will initially be in a default state (not inside a comment).

• When it sees a single slash, it will be in the slash state.

• When it sees // it will be in single-line state, and will remain in that
state until it reaches the end of the line, at which point it will return
to the default state.

• When it sees /* it will be in multi-line state, and will remain in that
state until it reaches */ at which point it will return to the default
state.

This state machine is shown in Figure 9.2. The circles represent states, and
the labels on the arcs represent input characters (n represents a newline
character, and A represents any character other than /, *, or newline). As
each input symbol is scanned, the state of the machine changes according
to the arrow. The machine starts out in the default state (DEF).

9.6. PROJECTS 239

DEF♥ SLASH♥ SINGLE♥

MULTI♥STAR♥

/

A,n

n,A,*
/

*

A,*,/

/,n,A

*

n,A

/

*

n

Figure 9.2: State machine to process java comments. n represents a newline
character. A represents any input character except newline, *, and /. Start at
the default state (DEF).

Chapter 10

Graphical User Interfaces

In the early days of computing (1945-1965) large mainframe computers executed
programs in batch mode. Programs (and data) were submitted via punched
cards or paper tape. At some later time, paper output would be available to
the user. There was no interaction with the user as the program executed.

This was followed (1965-1980) by time-sharing systems which allowed users
to provide input, and read output, via electric typing machines (often teletype
machines, or IBM Selectric typewriters). Users were now able to interact with
programs at execution time. Users could manage files and launch programs by
typing commands to the operating system at the console. Such command line
user interfaces are still in use today (Unix, DOS, e.g.).

In the mid 1970’s researchers at the XEROX Palo Alto Research Center
(PARC) experimented with a new user interface in which a pointing device
(a mouse) was used to select icons on a monitor. XEROX did not pursue
this effort, but the Apple corporation had recently developed micro-computers
to compete with the IBM PC. Apple took PARC’s idea, and produced the
Macintosh computer with a graphical user interface (GUI) using a desk-top
metaphor:

• Images of folders represented directories

• Copying of files was done by dragging items with the mouse

• Programs were launched by clicking on filenames with the mouse

• Files were deleted by dragging them to a trash can

Thus the GUI revolution was born; this was clearly a better way for the
average user to communicate with an operating system. This user interface is
sufficiently intuitive that novice users spent little, if any, time reading manuals.
Apple’s leading competitor in software, Microsoft, was compelled to follow suit
or be left in the dust; a GUI for DOS, called Windows, was the result.

Today, though we still have command-line interfaces for operating systems,
console applications are rare. Any software which expects user interaction will

240

10.1. PACKAGES JAVA.AWT AND JAVAX.SWING 241

have a graphical user interface. In this chapter we expose some of the Java
classes which can be used to provide an application with a GUI.

10.1 Packages java.awt and javax.swing

Related classes can be grouped together in a package. There are primarily two
such packages which can be used to build a graphical user interface:

• java.awt – This is the original package used for building a GUI. Some of
its classes have been replaced by a better version in javax.swing.

• javax.swing – This package includes newer versions of some of the classes
in java.awt, and other classes not found in java.awt.

Since many of the classes in java.awt are still considered usable, and some
have been replaced by newer versions in javax.swing, we will need to import
from both of these packages. The easiest way to do this is:

import java.awt.*; // all the old classes

import javax.swing.*; // all the newer classes

We do this at the risk of introducing name conflicts with classes imported
from java.util or other sources (more on that later). A quick perusal of the
java.awt package API shows that we have classes for some common GUI com-
ponents, such as Button, TextField, CheckBox, Frame, and Color. These
components will allow the user to communicate with an application; think of a
Frame as being like a window frame, in which our GUI components will reside.

Looking at the javax.swing package, we see similar classes: JButton, JTextField,
JCheckBox, and JFrame. However, there is no JColor class. The designers of
javax.swing felt that the Button, TextField, and Frame classes needed to be
rebuilt from scratch, but there was no need to make changes to the Color class,
as depicted in Figure 10.1. In general, classes in javax.swing which replace older
classes from java.awt begin with a J. Conceivably, we could build a GUI using
java.awt only; however, we wish to be more up-to-date, so we will be using swing
classes whenever possible.

10.1.1 Exercises

1. Which of the following classes from java.awt have been updated in javax.swing?

BorderLayout, Menu, Label, Insets, Applet

2. (a) Why did Apple file a lawsuit against MicroSoft and Hewlett-Packard
in 1988?

(b) Which company filed a lawsuit against Apple at the same time and
for the same reason?

(c) What were the outcomes of those lawsuits?

242 CHAPTER 10. GRAPHICAL USER INTERFACES

Class in awt Updated version in swing
Button JButton

TextField JTextField
Frame JFrame

CheckBox JCheckBox
Color ——
—— ImageIcon

Figure 10.1: Classes in package java.awt and updated versions, if present, in
package javax.swing

Title
contentPane

Figure 10.2: A simple frame with a title and contentPane

10.2 Starting out: Frame and ContentPane

A GUI will generally consist of at least one Frame. A Frame is the basic struc-
ture from which a window may be constructed. Since there is an updated
version, JFrame, in javax.swing, we will use the updated version. Looking at
the constructor for JFrame, we see that it can have a String as its parameter;
this is the title of the JFrame. A frame also has a contentPane. This is the part
of the frame which can store the components (buttons, textfields, etc) of the
frame. The contentPane is a Container, which is simply a general class which
contains zero or more components. A simple frame, with title and contentPane,
are shown in Figure 10.2. The appearance of the frame can vary, depending on
the host platform (MacOS vs Windows vs Android, etc.).

To expose the various elements of a GUI we will use our Student class and
develop a simplified information system for a typical university. All interaction
with the user of this informaion system will take place through the GUI. Below
we show the inital structure of the GUI:

public class UniversityGUI

{

private JFrame frame;

public UniversityGUI()

{

frame = new JFrame ("State U"); // title

makeFrame();

}

10.2. STARTING OUT: FRAME AND CONTENTPANE 243

// initialize the frame

private void makeFrame()

{

frame.setVisible(true); // default is false

}

}

At this point our class has one field, frame. We instantiate it in the con-
structor, then call makeFrame() to initialize the frame (this is done in a private
helper method rather than in the constructor itself because we will be adding
more to it later). Note that frames are initially invisible, and we must set the
visibility to true if we wish the user to see the frame.

If you try this yourself, you will see a small frame, perhaps in the upper left
corner of your screen; it may not display the full title. To remedy this we can
set the size of the frame with the setSize(int width, int height) method,
for example:

frame.setSize(200,100);

This will set the width of the frame to 200 pixels and the height of the frame
to 100 pixels. A pixel is a picture element; it is the fundamental (atomic, or
indivisibile) unit of a graphics display. To understand the meaning of ‘pixel’
examine a photograph in your newspaper very closely. You will see that it is
composed of many small dots; each dot can be considered a pixel.

We now wish to access the frame’s contentPane, and add components to the
contentPane. An example of a component would be a label which merely displays
some text (or picture) on the frame. In order to work with the contentPane we
will use an instance variable, contentPane, a Container which can be obtained
from the frame:

contentPane = frame.getContentPane();

In our makeFrame() method we can now add one or more components to
the contentPane:

contentPane.add(new JLabel ("I am a label"));

Our GUI class now looks like this:

public class UniversityGUI

{

private JFrame frame;

private Container contentPane;

public UniversityGUI()

{

frame = new JFrame ("State U"); // title

contentPane = frame.getContentPane();

makeFrame();

}

// initialize the frame

244 CHAPTER 10. GRAPHICAL USER INTERFACES

private void makeFrame()

{

contentPane.add (new JLabel ("I am a label"));

frame.setSize(200,100);

frame.setVisible(true); // default is false

}

}

10.2.1 Exercises

1. Point out the syntax errors, or possible run-time errors, if any, in the
following statements:

(a) Frame frame = new JFrame("State U");

(b) JFrame frame = new JFrame();

(c) JFrame frame = new JFrame ("Sate U");

Container contentPane;

contentPane.add (new JLabel("label"));

contentPane = frame.getContentPane();

2. (a) In a new project define a class named GUI which creates a GUI for
which the title of the frame is ”Exercise”. Add a textfield to this
frame. The initial width of the frame should be 100 pixels and the
initial height of the frame should be 200 pixels. Instantiate the GUI
to see that it displays properly.

(b) Experiment to see what happens if you add a button, in addition to
the textfield.

10.3 Adding components to a container

JFrame!adding components Component, in a JFrame

10.3.1 Designing the GUI

We now wish to give our information system some functionality; we wish to
admit students to our university. The user should have the capability of:

• Admitting students to the university

• Displaying all students currently admitted

• Searching (by name or by ssn) for a particular student

We propose using a GUI which looks like the one in Figure 10.3. The frame
for this GUI has the following features:

• The title ’State U’

10.3. ADDING COMPONENTS TO A CONTAINER 245

Figure 10.3: Proposed GUI for the university information system

• Three buttons:

– Search – search for a particular student

– Admit Student – Allow the user to enter the new student’s name and
ssn

– Display All Students

• Check boxes to search by name, or by ssn

• A text field to allow the user to enter a search string (name or ssn)

• A label showing where the output of a search or a display will be shown.

10.3.2 Adding components

Since the contentPane is a Container, we can add components to it. We will
now remove the label from the contentPane, and add a few buttons, as shown
at the top of Figure 10.3. We can create a button, with text often called a
‘caption’, showing its purpose:

246 CHAPTER 10. GRAPHICAL USER INTERFACES

JButton someButton = new JButton("Caption");

We then add the button to the contentPane:

contentPane.add(someButton);

For our university GUI, the makeFrame() method would now be:

// initialize the frame

private void makeFrame()

{

JButton searchButton = new JButton("Search");

contentPane.add (searchButton);

JButton admitButton = new JButton("Admit Student");

contentPane.add (admitButton);

JButton displayButton = new JButton("Display All Students");

contentPane.add (displayButton);

frame.setSize(200,100);

frame.setVisible(true); // default is false

}

}

When you instantiate UniversityGUI, you will see the frame with the correct
title, but unfortunately it will show only one button – Display. To understand
what is happening, we will need to learn about layout managers.

10.3.3 Exercises

1. Give some examples of other kinds of components, in addition to JButton
and JLabel.

2. Is a Container an example of a component? (i.e. is Container a subclass
of Component?)

10.4 Layout managers

We have seen that components can be added to containers to produce a GUI. A
contentPane is an example of a container, and a button is an example of a com-
ponent. When several components are added to a container, those components
must be visually positioned within the container in some way. Hopefully, they
will be positioned in such a way that the user will find it easy to understand the
meaning and purpose of each component; it would be easy to confuse the user
if the components were situated at random positions within the container. It is
possible to specify an exact position within the container for each component;
but suppose we later add or delete components? What would happen when the
user resizes the container? Our GUI would have to recalculate the position of
each component to maintain a good appearance for the container.

10.4. LAYOUT MANAGERS 247

Figure 10.4: Frame with five buttons, using flow layout

There is a better solution to the problem of positioning components in a
container: the layout manager. LayoutManager is an interface in java.awt, and
every container has a layout manager. The layout manager will position compo-
nents in the container in a fairly ‘intelligent’ way. The layout manager will also
reposition, or resize, the components at appropriate times (e.g. the container’s
size changes). There are several classes which implement the LayoutManager

interface; each has its own algorithm for positioning components. If you don’t
like the look of your container, you can use a different layout manager which
may give it a better appearance. In this section we will examine some of the
more commonly used layout managers.

10.4.1 Flow Layout

The easiest layout manager to use is called Flow Layout. A FlowLayout is the
default layout manager for many kinds of containers, including JPanel. When
you create a JPanel, its layout manager will be FlowLayout:

JPanel buttonPanel = new JPanel(); // layout mgr is flow layout

To see how the components are positioned by a FlowLayout, we have developed
a simple GUI with five buttons. Each button has a caption, but the fourth
button has a much longer caption, which makes the default size of that button
significantly larger than the other buttons. The GUI initially appears as shown
in Figure 10.4. Note that the buttons are positioned in the order in which they
were added to the container (i.e. the contentPane). When the window is re-
sized, the buttons are automatically shifted so as to have a ‘nice’ appearance,
as shown in Figure 10.5. With flow layout, the components are arranged hori-
zontally as long as they fit in the container; but if they do not fit, they will be
moved vertically to available space. The components seem to flow to available
space in the container, hence the name FlowLayout.

10.4.2 Grid Layout

A Grid Layout will position the components in a rectangular array, or grid,
with rows and columns (think of a spreadsheet, or a checkerboard). When
components are added, the columns of the first row are filled with components
before moving to the second row; i.e. the container is filled in row-major order,
not in column-major order. When instantiating a GridLayout, you can specify
the number of rows and columns it will have. Then you can set the layout

248 CHAPTER 10. GRAPHICAL USER INTERFACES

Figure 10.5: Frame with five buttons, using flow layout, after resizing the frame

Figure 10.6: Frame with five buttons, using grid layout, 2 rows and 3 columns

manager when instantiating the container:
// 2 rows and 3 columns

LayoutManager gridMgr = new GridLayout(2,3);

JPanel inputPanel = new JPanel(gridMgr);

The first parameter in the constructor for GridLayout is the number of rows,
and the second parameter is the number of columns in each row. An example
of a frame with grid layout is shown in Figure 10.6. This frame has five buttons
(same as the example for flow layout).

If you wish the components to be arranged in a horizontal grid with one row
and a variable number of columns, specify 0 as the number of columns:

// One row

LayoutManager gridMgr = new GridLayout(1,0);

In this case the number of columns will increase as components are added to
the container. Alternatively, to arrange the components in a vertical column,
use 0 for the number of rows:

// One column

LayoutManager gridMgr = new GridLayout(0,1);

In general, if the number of rows (columns) is 0, the grid will have as many
rows (columns) as are needed to accommodate the components which have been
added.

As you experiment with Grid Layout, you will notice a few things:

• The components are arranged in a rectangular grid

• If the number of components added to the grid is less than the product
of the number of rows and the number of columns, unused grid positions
are empty.

• As you resize the container, the components also resize to fill their respec-
tive grid positions (this may be undesirable, and we will address this issue

10.4. LAYOUT MANAGERS 249

Figure 10.7: Frame with five buttons, using border layout

below)

• There can be at most one component in each position of the grid. If you
add a second component to a position, it replaces the first component.

10.4.3 Border Layout

Border Layout is a very commonly used layout manager. It allows you to arrange
the container into five regions. A single component may be placed in any of those
regions. The five regions are: NORTH, SOUTH, EAST, WEST, and CENTER,
as shown in Figure 10.7.

To create a container with a BorderLayout manager:

LayoutManager borderMgr = new BorderLayout();

JPanel outPanel = new JPanel(borderMgr);

Then to add a component to a particular region, use a class constant from the
BorderLayout class to specify the region:

outPanel.add(new JLabel("hi"), BorderLayout.NORTH);

outPanel.add(new JButton("there"), BorderLayout.CENTER);

When using a Border Layout:

• There can be only one component in each region (as with GridLayout). If
you add a second componenet to a region, it will replace the first compo-
nent.

• Each component will expand to fill the entire region as the container is
resized (as with Grid Layout).

• If no component is added to a particular region, that region will not be
shown at all. The other regions will expand to fill up the entire container.

• The default region is CENTER. If you do not specify a region, the com-
ponent will be placed in the center region.

250 CHAPTER 10. GRAPHICAL USER INTERFACES

• BorderLayout is the default layout manager for the contentPane. This ex-
plains why our UniversityGUI in the previous section did not show both
buttons in the contentPane. The layout manager was BorderLayout, by
default, and both buttons were added to the center region. The display-
Button replaced the admitButton.

10.4.4 Nested containers and summary of layout man-
agers

The layout manager for a particular container can be changed at execution time,
using the setLayout(LayoutManager) method. For example:

contentPane.setLayout(new GridLayout(4,3));

changes the layout manager for the contentPane to GridLayout.
We have been using the words ‘container’ and ‘component’ in a somewhat

general sense without giving precise definitions of these words. Container and
Component are both classes in java.awt. Moreover, Container is a subclass of
Component. This means that every Container is-a Component. This provides
for the nesting of containers. You can put components into a container, but
since every component is-a container, you can put a container into a container.
This recursive notion is very common in computer science (think of the folders
on your computer, which may contain other folders, which in turn may contain
other folders, ...). When we nest containers inside other containers, each of
those containers may have its own layout manager; we will make use of this
property in our UniversityGUI class.

We mentioned that only one component may be placed into a position when
using GridLayout, and only one component may be placed into a region when
using BorderLayout. If you wish to put more than one component into a position
or region, consider adding a container to that position or region. Then several
components can be added to the nested container, as shown in Figure 10.8.

This diagram shows a contentPane with BorderLayout. Its five regions con-
tain:

• NORTH – A container with Flow layout

• SOUTH – A container with Border layout. Its five regions contain:

– NORTH – Nothing

– SOUTH – Nothing

– EAST – A component which is not a container, perhaps a button or
label, not shown here for lack of space

– WEST – A component which is not a container, perhaps a button or
label, not shown here for lack of space

– CENTER – A component which is not a container, perhaps a button
or label, not shown here for lack of space

• EAST – Nothing

10.4. LAYOUT MANAGERS 251

NORTH
(Flow layout)

CENTER
(Label)

WEST

(Grid)

SOUTH
WEST

SOUTH
(Border)
CENTER

SOUTH
EAST

contentPane
(Border layout)

Figure 10.8: A contentPane with BorderLayout, in which containers have been
placed in the north, west, and south regions – the container in the south region
also uses BorderLayout

• WEST – A container with Grid layout, 3 rows and 2 columns. Its six
positions could be components which are not containers, perhaps buttons
or labels, not shown here for lack of space

• CENTER – A label

In summary, layout managers may not always perform in an ideal way, but
most programmers feel the advantages of using layout managers far outweigh
the disadvantages. There are other layout managers in java.awt which we have
not mentioned; if your GUI doesn’t look just right, you are probably using the
wrong layout manager.

10.4.5 University Information System - version 1

Version 1 of our University Information System is in the project university-v1
in the repositry for this chapter. At this point there is only one class in the
project: UniversityGUI which will define and place all the components in the
graphical user interface for our information system.

The frame is instantiated in the constructor, with the title “State U”. The
constructor also obtains a reference to the contentPane and calls a helper method
makeFrame() to do all the work involved in placing components into the con-
tentPane.

In the makeFrame() method we note that the default layout manager for
the contentPane is BorderLayout. We make use of only three regions in the
BorderLayout:

• North - contains a JPanel called buttonPanel with FlowLayout (default)
into which we place three buttons:

– searchButton, to search for a Student

252 CHAPTER 10. GRAPHICAL USER INTERFACES

Title
(State U)

NORTH
(buttonPanel - FlowLayout)

CENTER

(searchPanel

GridLayout(3,1))

SOUTH
(outLabel)

contentPane
(BorderLayout)

Figure 10.9: Diagram of the GUI for the University Information System, version
1

– admitButton, to admit a new Student to the University

– displayButton, to display all students in the University

• Center - contains a JPanel called searchPanelwhich contains check boxes
to select a search by name or by ssn. It also contains a text field in which
the user may enter a name or ssn for search purposes.

• South - A label which will display output: either search results or a display
of all students.

Figure 10.9 shows a diagram of the layout of our graphical user interface at
this point.

Students often ask about the sequence in which components are added to
the contentPane, and the sequence in which we specify attributes (Should the
frame be made visible before or after adding all the components?) In most
cases it really doesn’t matter; we are simply building a structure and filling
in references. As an example, we show a hypothetical object diagram for our
frame in Figure 10.10. We call it a hypothetical diagram because we are just
guessing at the names of the private fields in many of these classes (as we did
with Sets, Maps, etc). To fit this diagram on the page we are not showing some
of the referenced objects (and we are probably omitting many fields as well) but
Figure 10.10 can be helpful in understanding the internal structure of a GUI.

10.4.6 Exercises

1. Give the name of the LayoutManager with the following properties:

(a) Components are repositioned vertically and horizontally as the con-
tainer is resized.

10.4. LAYOUT MANAGERS 253

frame

JFrame

title ”State U”

contentPane

Container

layoutMgr

BorderLayout

south not shown

east null

west null

center not shown

north

JPanel

layoutMgr

FlowLayout

Figure 10.10: A hypothetical object diagram showing the value of the variable
frame after the makeFrame() method has terminated

254 CHAPTER 10. GRAPHICAL USER INTERFACES

(b) Is capable of storing at most five components.

(c) Will arrange components into rows and columns.

(d) Has regions named North, South, East, West, and Center.

2. Identify the apparent error, if any, in each of the following:

(a) JPanel myPanel = new JPanel();

myPanel.setLayout (new BorderLayout());

myPanel.add (new JButton ("Click"), BorderLayout.NORTH);

myPanel.add (new Label ("Hi"), BorderLayout.SOUTH);

myPanel.add (new Label ("There"), BorderLayout.NORTH);

(b) JPanel myPanel = new JPanel();

myPanel.setLayout (new GridLayout(3,2));

myPanel.add (new JButton ("Click"), BorderLayout.NORTH);

(c) JPanel myPanel = new JPanel();

myPanel.setLayout (new GridLayout(0,2));

myPanel.add (new JButton ("Click"));

3. How many rows and columns of components will there be in myPanel after
the code shown below has executed?

JPanel myPanel = new JPanel();

myPanel.setLayout (new GridLayout(0,2));

myPanel.add (new JButton ("Click"));

myPanel.add (new JButton ("Here"));

myPanel.add (new JButton ("Now"));

4. Define a class which will produce a GUI as shown below when instantiated.

10.5. ACTIONS AND LISTENERS 255

10.5 Actions and Listeners

We now have a GUI for our University Information System. The only problem is
that it does not do anything. If you click on a button, nothing happens. We need
to use Actions and Listeners; thus we will introduce event-driven programming.
Up to this point, all appications that we hve developed started up from a main

method, or from an IDE, and ran to completion (perhaps pausing for input from
stdin). With GUIs the sequence of events is much different. Once the GUI has
been initialized, it waits for a user action. Examples of actions are:

• The user clicks on a button

• The user selects an item from a menu

• The user moves the mouse

• The user types on the keyboard

• The user provides some other form of interaction with the computer

When any of these actions occur, our application can be programmed to
handle them in an appropriate way. Alternatvely, we may wish our application
to ignore certain actions (such as a mouse movement). Run time computations
occur as a result of a particular action or event, thus the phrase ‘event-driven’
is used to describe this kind of program.

In the package java.awt.event there are several kinds of listeners. Lis-
teners are objects which detect a particular event, and are then capable of
handling the event appropriately. Each listener is an interface in the package

256 CHAPTER 10. GRAPHICAL USER INTERFACES

java.awt.event; the listener must be implemented in order to handle actions.
This means we must import needed classes from this package:

import java.awt.event.*;

Note that import java.awt.*;will not give us the classes from java.awt.event

because the * matches class names only , not package names, in a package, which
is essentially just a folder, or directory. (The . in java.awt.event is like a slash
- forward or backward - in a unix or Windows directory path)

Examples of listeners from java.awt.event are:

• ActionListener - listen for an action such as a button click or a menu
selection

• MouseListener - listen for a mouse movement, mouse button down, mouse
button up, etc.

• KeyListener - listen for a keyboard strike

• TextListener - listen for a change to a text field

The most useful listener is ActionListener, and this is the one we will be using
most. As we look at the API for the ActionListener interface, we see that
it has only one method: actionPerformed (ActionEvent). This means that
any class which implements ActionListenermust define the ActionPerformed
method. When an action occurs, any listener which is listening for that action
will automatically call the actionPerformed method. It is our responsibility
to define this method to handle the action before returning control to the Java
runtime environment. The program is event-driven: nothing happens until an
event causes a listener to respond.

The parameter for the actionPerformed method is of type ActionEvent.
This parameter provides us with everything that is known about the event, as
shown in the API for ActionEvent. These include, but are not limited to:

• Text from the component which cause the event (such as a button’s cap-
tion)

• Time that the event occurred

• A reference to the component which caused the event; returned by the
method getActionCmd() (this will be used to identify which component
caused the event; e.g. which button was clicked)

Any component for which we need to handle events, must be registered with
an event listener. This can be done with the the method

addActionListener(ActionListener).
One last item needs to be addressed before we try to apply all this. How

do we instantiate listeners? The easiest way to do this is to make our GUI an
ActionListener. We can do this by declaring that it implements ActionListener.
Then the GUI object is itself an ActionListener, and can be used as the actual
parameter in the call to addActionListener. For example:

10.5. ACTIONS AND LISTENERS 257

public class MyGUI implements ActionListener

{ private JButton myButton = new JButton ("click me");

...

private void makeFrame()

{ myButton.addActionListener (this); // this MyGUI object

...

}

public void actionPerformed (ActionEvent evt)

{ if (evt.getActionCmd() == myButton)

// code to handle the button click

}

}

In the makeFrame method we register an ActionListener with a button. The
usage of the key word this should be explained. The key word this stores a
reference to the object on which the method was called. In this case it refers to
this MyGUI, which is an ActionListener. This usage of this is the same as
that which was described previously in chapter 3.

Note in the actionPerformed method that we obtain a reference to the
component that caused the action (returned by getActionCmd()) and compare
it with the reference in the field myButton. In this case the comparison is ==

and not .equals(Object) because we are comparing references rather than the
objects to which those references refer.

10.5.1 University Information System - version 2

We are now ready to build a GUI for our information system. We wish it to be
capable of admitting students, displaying admitted students, and searching for
a particular student by name or by ssn.

At this point we should clarify the purpose of a user interface; it should
be used only to communicate with the user. All computations and processing
of data should be done separately in what is often referred to as an engine or
kernel. There should be a clear separation of the user interface and the engine.
If this is done properly, we should be able to remove the graphical user interface
for our information system, and plug in a command-line user interface, without
making any changes to the engine.

To further clarify, we now define the engine, and we call it UniversityInfoSys.
This class will have a set of students. Version 2 will be able to do the following:

• Add a student to the set

• provide a reference to the set of students

• search for a student by name or by ssn

258 CHAPTER 10. GRAPHICAL USER INTERFACES

Our UniversityInfoSys class is shown in the project university-v2. In
this class we note that

• There is one field, a set of students.

• The constructor instantiates the set, it is now an empty set. The con-
structor also instantiates the GUI. This will cause the GUI frame to be
initialized and to pop up on the monitor.

• The addStudent method adds one student to the set of students.

• The getStudentsmethod is an accessor method which returns a reference
to the set of students who have been admitted.

• The searchByName method will search for all students who have a given
name, and return those students as a set.

• The searchBySSN method will search for the one student who has the
given SSN.

10.5.2 Exercises

1. For each of the following interfaces in the package java.awt.event show
all methods which must be defined in any class which implements the
interface.

(a) MouseListener

(b) KeyListenerr

(c) TextListener

2. Show the code necessary to print the caption of a button named goButton

to stdout when the button is clicked. Assume the button has been regis-
tered with this ActionListener.

3. In the project university-v2 in this chapter’s repository the program
will throw a NullPointerException and crash if the user cancels input for
the name and/or ssn when attempting to admit a student. Correct this
problem so that the student is not admitted, and an appropriate message
is displayed on the output label.

4. In the project university-v2 in this chapter’s repository if the user at-
tempts to enter two students with the same ssn, the first one is expelled
and replaced by the second one. Modify this project so that the first stu-
dent is retained, and an appropriate message is displayed on the output
label.

10.6. MENUS 259

10.6 Menus

One useful way of communicating commands to a GUI is through the use of
Menus. A menu is normally a drop-down list of items, one of which can be
selected with the mouse. Menus typically allow users to open or save to a disk
file, terminate an application, edit data, etc. You can define menus to perform
any action you wish. We will include two menus in the GUI in our information
system: a File menu and a Help menu.

10.6.1 Adding menus to the frame

If you wish to include menus in your GUI, your frame must have a menu bar
(there can be only one menu bar). You may then add several menus (e.g. File,
Help) to the menu bar. Each menu may in turn have several menu items (e.g.
Save, Save As, Open, Quit). A diagram of the menu bar for our University GUI
is shown in Figure 10.11.

Menus are included in version 3 of our university information system. We
will have a File menu which allows us to save our data to a disk file, and to
retrieve our data from a disk file. We will also have a Help menu for the clueless
users. The menus are set up in a separate method: setMenus().

10.6.1.1 Setting the MenuBar

If your frame is to make use of menus, it must have a menu bar (We will use
JMenuBar from javax.swing to be up-to-date). Think of this as a container,
appearing as a rectangle as shown in Figure 10.11, for all the menus. A frame
cannot have more than one MenuBar. The method used to include a JMenuBar
is setJMenuBar(JMenuBar) as shown below:

JMenuBar menuBar = new JMenuBar();

frame.setJMenuBar (menuBar);

Note that this method is not addJMenuBar; the word ‘add’ would imply that a
frame can have more than one menu bar.

10.6.1.2 Adding Menus to the MenuBar

One or more menus may be added to the menu bar. When a menu is created, it
is provided with a String, which is the text shown on the menu. The menu can
then be added to the menu bar with the method add(JMenu) as shown below:

JMenu fileMenu = new JMenu("File");

menuBar.add (fileMenu);

10.6.1.3 Adding the MenuItems to a Menu

Each menu may have 0 or more menu items. A menu item may be selected by
the user to generate an event (e.g. open a file, quit, edit text, etc.). Again,

260 CHAPTER 10. GRAPHICAL USER INTERFACES

Title

File

Save

Save As

Open

Quit

Help

contentPane

Menu Bar

Menus

Menu Items

Figure 10.11: A simple frame with a title, menu bar, and contentPane

we will be using JMenuItem rather than MenuItem. When the menu item is
created, it is provided with a String, which is the text shown on the menu item.
To add a menu item to a menu, use the method add(JMenuItem). A menu item
which is supposed to save our data to disk can then be added to the File menu
as shown below:

JMenuItem saveItem = new JMenuItem("Save");

fileMenu.add (saveItem);

The menu items in our GUI are declared as fields rather than as local variables
because we may wish to refer to them from other methods in this class.

10.6.1.4 Other features of menus

Menu items may be disabled (or greyed-out) by using the method setEnabled(boolean).
For example:

saveItem.setEnabled(false); // disable save

saveItem.setEnabled(true); // enable save

The disabling of a menu item is desirable when its selection would not make
sense, particularly if the user can cause an error by selecting the item. A good
GUI will protect the novice user from making careless mistakes.

The java class library has a number of other features involving menus:

• Menu items may themselves contain other menu items

• menus can pop up at places in the frame other than the menu bar

• The menus on a menu bar, and the menu items on a menu can be changed
as the program executes, to ensure that the user is always seeing options
which are currently of interest

10.6. MENUS 261

• Even the menu bar may be changed at run time, to ensure that the user
is always seeing options which are currently of interest (at any one time
there can be no more than one menu bar)

10.6.2 Listening for menu selection

At this point our GUI has menus, but they do not do anything; the user can
make selections, but nothing happens as a result of the selection. Our GUI
needs to listen for these actions and handle them appropriately.

The handling of a menu item selection is exactly the same as the handling of
a button click; it is merely an action. If there is an action listener registerd with
the menu item, the method actionPerformed(ActionEvent) is called automat-
ically. Just as we did with buttons, we can use the addActionListener(ActionListener)
to register an action listener with a particular menu item. In our example, the
GUI class implements the interface ActionListener, so we can register the Save
menu item as follows:

saveItem.addActionListener(this);

Having done this, when the user selects the Save menu item, the method
actionPerformed(ActionEvent) is called automatically.

To handle this event in the actionPerformed method, we compare the ref-
erence provided by the parameter, evt, with a reference to the Save menu item.
If they are equal (same reference), we know that actionPerformed was called
as a result of the Save menu item selection. This is done as shown below:

public void actionPerformed (ActionEvent evt)

{ ...

if (evt.getSource() == saveItem)

infoSys.saveFile();

... // handle other menu items here

}

Note that the actual saving to disk is not done in the user interface; it is
done with a call to saveFile(), a method in the information system engine.
In general all computation and processing should be done in the engine (or in
other classes; we could have a separate class dedicated to input/output of data).
A user interface should be used only for communication with the user.

10.6.3 Menus for the University Information System - ver-
sion 3

The GUI for version 3 of our university information system has a menu bar with
two menus:

• File menu - has 4 menu items:

– Save menu item: save the set of students in the current disk file.
Prompt for a file name if necessary.

262 CHAPTER 10. GRAPHICAL USER INTERFACES

– Save As menu item: prompt the user for a new file name to be used
as the current disk file, and save the set of students. Provide an error
message if the file cannot be opened for output.

– Open menu item: read a set of students from the current file; provide
an error message if the file does not exist or cannot be opened for
input.

– Quit menu item: terminate the application.

• Help menu - intended to provide assistance for the novice user. Imple-
mentation of the menu items contained here is left as an exercise for the
reader.

After we set up the frame and add the menus, we should tell the frame to
resize itself appropriately to accommodate all the components which have been
added, as well as the menubar. This is done with the pack() method:

frame.pack(); // resize the frame
The engine for this project, UniversityInfoSys, is expanded to include meth-

ods for saving to and retrieving from disk. The class has a String, fileName,
which stores the name of the file currently storing a permanent copy of our
data. This file is in the same folder as the project, by default, though we could
specify a path to a different folder. The file is a plain text file in which each
student name and each student ssn is on a separate line. We will not go into
the details of these methods here because they are not relevant to the subject
of this chapter, but they apply the concepts of input and output as covered in
chapter 9.

10.6.4 Exercises

1. Point out the error, if any, in each of the following:

(a) JMenu menu = new JMenu ("File");

frame.setJMenu (menu);

(b) JMenuBar menuBar = new JMenuBar ();

frame.addJMenuBar (menuBar);

(c) JMenu menu = new JMenu ("File");

JMenuItem menuItem = new JMenuItem ("Quit");

menu.addItem (menuItem);

(d) Assume the GUI class implements ActionListener

JMenu menu = new JMenu ("File");

JMenuItem menuItem = new JMenuItem ("Quit");

menu.add (menuItem);

menuItem.addActionListener (menu);

(e) Assume there is a button named goButton and a method named
go().

10.7. PROJECTS 263

public void actionPerformed (ActionEvent evt)

{ if (evt.getSource().equals (goButton))

go();

}

2. (a) Which method in the ActionEvent class can be used to find out the
exact time that the event occurred?

(b) What are the units of time used in that method’s result?

3. The project university-v3 in this chapter’s repository includes a Help
method which does not do anything. Improve the Help menu so that
the user will understand the meanings of the three buttons. (Do NOT
print to stdout nor to stderr. All communication with the user must go
through the GUI.)

Hint: See the API for JOptionPane in the javax.swing package.

4. Add a menu to the menubar which will ...

10.7 Projects

1. Build an application with a GUI which will test a student on integer
arithmetic skills. Include the operations:

• Addition

• Subtraction

• Multiplication

• (Integer) quotient on division

• (Integer) remainder on division

The student should be rewarded for attempting more difficult operations
and for quick responses. Include a menu to set the level of difficulty. An
example of this program can be executed from the project games in this
chapter’s repository. Instantiate the Arithmetic class to start it up.

2. Build a java application that works like the one in the project chase in
the code repository for this chapter. To execute it, simply instantiate the
Chase class.

Hints:

• See the API for the MouseListener interface in the java.awt.events
package.

• Use a List of buttons, all of which are not visible, except for one
button.

• Use a GridLayout for the contentPane. Add all the buttons to the
contentPane, and register each one with a MouseListener.

264 CHAPTER 10. GRAPHICAL USER INTERFACES

• In the MouseEntered method, make the selected button invisible,
and choose some other button to become visible. (This can be done
with a random number generator, or with clever use of the mod %
operator)

Chapter 11

Abstract Data Types

In chapter 2 we discussed the various data types provided in java. Some exam-
ples of primitive data types are: int, float, double, char, boolean. In addition
any class may be regarded as a data type - we can declare a variable that stores
a reference to an object of a defined class.

In this chapter we examine classes which are designed to be used in the
same way that primitive data types are normally used. In this way we can
use software to improve, or enhance, the properties of the primitive data types
provided by the hardware. We call these classes abstract data types.

Some programming languages, such as C++, provide features which make
abstract data types even more attractive. One such feature, called operator
overloading allows the programmer to define the semantics of primitive operators
to include programmer-defined abstract data types. Unfortunately java does not
allow operator overloading. Nevertheless we can define very useful abstract data
types, but the user must understand the proper syntax for their use.

11.1 The Rational ADT

In mathematics a rational number is one that can be expressed as the ratio of
two whole numbers. Some examples of rational numbers are: 3/2, 2/1, 4/2,
0/4, 5/-3.

In this section we develop an ADT for rational numbers. This ADT is
motivated by some of the shortcomings of the floating point types.

11.1.1 Some problems with float and double

Java provides two floating point types: float and double. These types presum-
ably reflect data types of the underlying hardware. I.e. most computers have
a 32-bit floating point numeric format (which java calls float) and a 64-bit
floating point numeric format (which java calls double).

265

266 CHAPTER 11. ABSTRACT DATA TYPES

These floating point types can exhibit unexpected behavior (which we will
investigate further in the next section). Here are a few of the problems we might
encounter:

• 1.0/3.0 produces the result 0.3333333333333333 which is close but not
perfect. This repeating decimal cannot be represented exactly in base 10
(nor in its internal representation on the computer).

• 0.1+0.1+0.1 == 0.3 is false. If you don’t believe this, try it. The reason
has to do with the fact that 0.1 cannot be represented exactly on a binary
machine, for the same reason that 1.0/3.0 cannot be represented exactly
in decimal.

• 1.0E200 + 1.0 == 1.2E200 is true. If you don’t believe this, try it. This
problem results from the limited precision available in the floating point
formats. The Rational ADT will not address this problem, but we will
address it in a later section.

Smart programmers will generally avoid comparing floats for equality to avoid
some of these unexpected results. In cases where it is necessary to compare
floats for equality, it is better to determine whether the two values differ by
more than a very small tolerance. For example, if one wishes to compare the
floats x and y for equality we wish to avoid:

if (x == y)

Instead we will use a small tolerance, such as:
float epsilon = 1.0e-7

and instead compare x and y as follows:
if (Math.abs (x - y) < epsilon)

In this statement we determine whether the absolute value of the difference
between x and y is smaller than epsilon; if so, we conclude that the values of x
and y are sufficiently close that they can be considered equal.

11.1.2 Defining the Rational ADT

Some of the problems described above can be alleviated with a Rational ADT.
Our ADT will store two ints to represent a rational number: a numerator and
a denominator (the denominator must not be zero). In this way we can store
exact values in cases where floats are not perfect. A numerator value of 1 and
a denominator value of 3 is a perfect representation of one third.

Our ADT should include operations; we will define addition, subtraction,
multiplication, and division of rationals to provide the user with a complete
and useful ADT. We’ll start with the class definition shown below:

/** Rational ADT

* A Rational has a numerator and a denominator.

* Rationals can be added, subtracted, multiplied, and divided

*/

public class Rational

11.1. THE RATIONAL ADT 267

{ private int num; // numerator

private int denom; // denominator, cannot be 0

/** @param d must not be 0

*/

public Rational (int n, int d)

{ num = n;

denom = d;

}

}

This means that we can create Rational objects such as:

Rational r;

r = new Rational (1,3); // 1/3

r = new Rational (-7,2); // -7/2 = -3 1/2

r = new Rational (2,6); // 2/6 = 1/3

r = new Rational (17,1); // 17

Note that there can be more than one representation for the same rational
number: 1/3 = 2/6
If at some point we wish to compare rational numbers for equality, or we exceed
the precision of ints, this could be a problem, which we will address here. The
constructor should call a method to simplify this Rational, or reduce it to lowest
terms.

/** @param d must not be 0

* Zero is always represented as 0/1

*/

public Rational (int n, int d)

{ num = n;

denom = d;

if (n == 0)

d = 1; // normal form for 0

else

simplify();

}

In this way Rationals should always be simplified when created (and we should
avoid setting the numerator or denominator of an existing Rational). In other
words, do this: r = new Rational (n,d); not this:

r = new Rational();

r.num = n;

r.denom = d;

The simplify method will utilize the fact that we can divide two numbers
by their greatest common divisor to eliminate the factors which they have in

268 CHAPTER 11. ABSTRACT DATA TYPES

common. For example, gcd(70,21) is 7 because: 70 = 2 · 5 · 7 and 21 = 3 · 7 . To
simplify 70/21 we divide both numerator and denominator by 7 to obtain 10/3.
The simplify method is shown below:

/** Simplify this Rational, eliminating common factors

* from the numerator and denominator.

*/

private void simplify()

{ int g = gcd(num, denom); // greatest common divisor of num and denom

num = num / g;

denom = denom / g;

}

To define the gcd method, we use a classic algorithm known as the Euclidean
algorithm.

/** @return the greatest common divisor of a and b.

* @param a must greater than or equal to 0

* @param b must greater than 0

*/

private int gcd (int a, int b)

{ int r = a % b;

while (r > 0)

{ a = b;

b = r;

}

return b;

}

Note that our simplify method works only for non-negative numbers. (Im-
provement is left as an exercise.)

We can now proceed to define some of the arithmetic operations for our
Rational ADT. With all of our operations, we’ll assume that the left operand
is this Rational, and the right operand is the parameter. If we had operator
overloading and the client wanted to multiply the Rationals r1 and r2, it would
simply use: r1*r2. But since we do not have operator overloading it will be
done this way:

r1.mult(r2)

Multiplication is the easiest so we’ll start with that. Recall that when multi-
plying rational numbers we simply multiply the numerators and multiply the
denominators: (a/b) ∗ (c/d) = (ac)/(bd)

/** @return The product, this Rational multiplied by the parameter r

*/

public Rational mult (Rational r)

{ return new Rational (num * r.num, denom * r.denom); }

11.1. THE RATIONAL ADT 269

We next implement addition of Rationals. Recall that we can add the nu-
merators only if the denominators are equal. To ensure the denominators are
equal, we can multiply each operand by a number equal to 1:

a/b+ c/d = a/b ∗ d/d+ c/d ∗ b/b = ad/bd+ bc/bd = (ad+ bc)/bd
We define the addition method using this formula.

/** @return The sum, this Rational plus the parameter r

*/

public Rational add (Rational r)

{ return new Rational ((num*r.denom + denom*r.num)/

denom * r.denom); }

Subtraction and division will be left as exercises for the student. Note that
we can now compute 0.1 + 0.1 + 0.1 with perfect accuracy:

Rational tenth, result;

tenth = new Rational (1,10); // 1/10

result = tenth.add(tenth); // 2/10

result = result.add(tenth); // 3/10

To print out a Rational we should have a toString() method:

/** @return this Rational as a String

* Show numerator over denominator

*/

public String toString()

{ return num + "/" + denom; }

To determine whether two Rationals are equal:

/** @return true only if this Rational represents

* the same number as obj.

* Pre: this Rational and obj have both been simplified.

*/

public boolean equals (Object obj)

{ if (obj==null | (! (obj instanceof Rational))

return false;

Rational r = (Rational) obj;

// numerators and denominators must be equal

return num == r.num && denom == r.denom;

}

If the user wishes to create a HashSet or HashMap of Rationals, we should
supply a hashCode method, which agrees with the equals method: two Rationals
which are equal should have the same hashCode.

270 CHAPTER 11. ABSTRACT DATA TYPES

11.1.3 Exercises

1. Define a division method for the Rational class:

/** @return the result of dividing this Rational by

the parameter, r.

@param r is not zero.

*/

public Rational divide (Rational r)

Hint: a/b÷ c/d = ad÷ bc

2. Define a subtraction method for the Rational class:

/** @return the result of subtracting

the parameter, r, from this Rational.

*/

public Rational subtract (Rational r)

3. Improve the simplify method called by the constructor, to allow for
negative values for numerator and/or denominator.

4. Define additional constructors in the Rational class to allow convenient
ways of constructing Rational numbers which are whole, and Rational
numbers representing zero:

Rational r = new Rational (17); // 17/1

Rational p = new Rational (); // 0/1

Hint: Eliminate duplicated code in your constructors by calling another
constructor using the keyword this. A call to another constructor must be
the first statement in your constructor.

5. Define a copy constructor for the Rational class. It should have one pa-
rameter, the Rational being copied.

6. Define a method in some class, to return the purchase price (including
tax) on a purchase. Assume the retail price and the tax rate are both
Rationals. For example, a tax rate of 7/100 is a rate of 7%. You may use
the copy constructor defined in the previous exercise.

/** @return the total purchase price, including tax.

* @param retail The retail price, in dollars.

* @param taxRate The tax rate

*/

public Rational getCost (Rational retail, Rational taxRate)

11.1. THE RATIONAL ADT 271

7. Define a method in the Rational class which will round this Rational up
to a given whole fraction. For example, if fraction is 100, it will return
the Rational rounded up to the next higher one hundredth. Test your
method in conjunction with your getCost method to obtain a purchase
price rounded up to a penny (fraction = 100).

/** @return this Rational rounded up to the next higher

* fraction.

* If fraction is 100, it will round up to the

* one hundredth. Can be used in financial applications

* to round to the (higher) penny,

* Pre: this Rational is not negative.

*/

public Rational roundUp (int fraction)

8. Show how to create Rational objects representing each of the following
numbers.

(a) 7

(b) 4.1

(c) -12.04

9. Define a toString() method for Rationals. The easiest way to do this is
simply to include the character ’/’ between the numerator and denomina-
tor. An example could be "13/2".

/** @return A String representation of this

* Rational.

*/

public String toString()

10. Improve your toString() method to return a representation in composite
form, such as 2 1/3 rather than 7/3. Hint: Watch for negative values; in
normal form, it is the numerator which will be negative.

11. Define an equals (Object) method for Rationals, so that the client can
have a Set of Rationals. You may assume that this Rational and the
parameter are both in normal form.

/** @return true only if the parameter obj

* is a Rational and is equal to this Rational.

*/

public boolean equals (Object obj)

12. Define a hashCode method for Rationals, so that the client can have a
HashSet of Rationals. You may assume this Rational is in normal form.

272 CHAPTER 11. ABSTRACT DATA TYPES

/** @return A hashCode for this Rational.

* Pre: this Rational is in normal form.

*/

public int hashCode ()

13. We would like the Rational class to implement the Comparable interface,
so that the client can have a TreeSet of Rationals. Change the class
definition to read as follows:

public class Rational implements Comparable<Rational>

This means that a Rational can be compared with any other Rational for
order as well as equality (i.e. greater than, less than). The compiler will
require you to include a compareTo method:

/** @return a negative value if this Rational is less than

* the parameter r, a positive value if this Rational

* is greater than the parameter r, and 0 if they

* are equal.

* Pre: Both this Rational and the parameter r

* are in normal form.

*/

public int compareTo (Rational r)

11.2 MyFloat

In the previous section we examined some anomolies of floating point arithemetic.
These resulted from the fact that certain values (such as 0.1) cannot be rep-
resented exactly on a binary machine, and from the limited precision of the
floating point hardware. In order to gain a better understanding of floating
point types, we will implement our own floating point ADT in this section. In
doing so, we will use only whole numbers (i.e. ints). The presumption here
is that floating point values (floats and doubles) do not exist, and that we are
building this data type from scratch. In doing so, we will see many similarities
with the Rational ADT of the previous section, and will use what we learned
there.

We will call our ADT MyFloat, to distinguish it from the existing wrap-
per class in the java.lang package, Float. We begin by pointing out that every
MyFloat can be represented by two whole numbers, and we call these the man-
tissa and the exponent. These whole numbers correspond to the two parts of a
java constant when written in scientific notation, as in the following examples:

125e0 = 125.0

12e3 = 12000.0

12e-3 = 0.012

0e0 = 0.0

11.2. MYFLOAT 273

The mantissa of a MyFloat corresponds to the part of a floating point number
before the e, and the exponent of a MyFloat corresponds to the part of a floating
point number after the e. The exponent is always assumed to be an exponent
of 10. In this way, any floating point value can be represented with two whole
numbers.

11.2.1 Constructor for MyFloat

We begin our class definition as follows:

/** Every MyFloat has a mantissa and an exponent (of 10).

* MyFloat operations are addition, subtraction,

* multiplication, and division.

*/

public class MyFloat

{ int mant;

int exp; // exponent of 10

public MyFloat (int m, int e)

{ mant = m;

exp = e;

}

}

As we noticed with the Rational ADT, MyFloat also has the property that there
can be more than one representation for any number:

103e0 = 1030e-1 = 10300e-2 = 103000e-3 ... = 103.0
602e21 = 6020e20 = 60200e19 = 602000e18 ... = 6.02× 1023

We can eliminate trailing zeros in the mantissa:

/** Eliminate trailing zeros in the mantissa of this

* MyFloat. Adjust the exponent accordingly

*/

private void simplify ()

{ if (mant == 0)

{ exp = 0; // Handle zero as a special case

return;

}

while (mant % 10 == 0) // Low order digit is zero?

{ mant = mant / 10;

exp++;

}

}

274 CHAPTER 11. ABSTRACT DATA TYPES

In the constructor we can now include a call to the simplify() method. As
with the Rational ADT, we can be sure that all MyFloats are in normal form
if created with our constructor:

/** Every MyFloat has a mantissa and an exponent (of 10).

* MyFloat operations are addition, subtraction,

* multiplication, and division.

* Constructed MyFloat will be in normal form.

*/

public class MyFloat

{ int mant;

int exp; // exponent of 10

public MyFloat (int m, int e)

{ mant = m;

exp = e;

simplify(); // Put into normal form

}

}

11.2.2 Arithmetic operations for MyFloat

We will now define the same four arithmetic operations for MyFloat which
were defined for the Rational ADT: Addition, Subtraction, Multiplication, and
Division. Again, we will be assuming that the left operand is this Myfloat, and
the right operand is the parameter. Thus, if x and y are MyFloat objects, they
can be multiplied to produce a product:

product = x.mult(y);

We’ll start with multiplication because that is the easiest operation. When
multiplying two MyFloats we multiply the mantissas and add the exponents, as
shown in the following examples:

123e3 * 2e4 is 246e7, i.e. 123000.0 * 20000.0 = 2460000000.0

3e-3 * 2e1 is 6e-2, i.e. 0.003 * 20.0 = 0.06

123e0 * 1e-4 is 123e-4, i.e. 123.0 * 0.0001 = 0.0123

5e0 * 6e0 is 3e1, i.e. 5.0 * 6.0 = 30.0

In the last example, note that the result has been simplified to normal form (i.e.
it has been normalized).

Our multiply operation can be defined as shown below:

/** @return the product of this MyFloat multiplied

* by the parameter, f.

*/

public MyFloat mult (MyFloat f)

{ int mantissa = this.mant * f.mant;

int exponent = this.exp + f.exp;

11.2. MYFLOAT 275

return new MyFloat (mantissa, exponent);

}

Note that we have taken care to do this so that the result has been simplified
to normal form (i.e. the simplify() method is called from the constructor).

Division is similar to multiplication, but is not as easy. The following ex-
amples show that to divide MyFloats, we divide the mantissas and subtract the
exponents:

12e4 / 3e1 = 4e3, i.e. 120000.0 / 30.0 = 4000.0

4e0 / 1e3 = 4e-3, i.e. 4.0 / 1000.0 = 0.004

These examples are straightforward and easy because the mantissa of the left
operand is a divisor of the mantissa of the left operand in both cases. The next
two examples expose the case where division of the mantissas will not produce
the desired result

1e0 / 4e3 = 25e-5, i.e. 1.0 / 4000.0 = 0.00025

1e0 / 3e0 = 333333333e-8, i.e. 1.0 / 3.0 = 0.33333333

Recall that integer division produces an integer quotient; for example 1/4
is 0, thus dividing the mantissas will not give the desired result. To correct
this problem in the first example above, we must adjust the left operand by
making the mantissa larger, and the exponent smaller, to form an alternate
representation of the same number.

1e0 = 10e-1 = 100e-2

We can now perform the division without loss of precsion:
100e-2 / 4e3 = 25e-5

In the case of the second example above, we need to adjust the left operand
even more. Notice that the larger we make the mantissa of the left operand, the
more precision we will get in the result:

1e0 / 3e0 = 0e0, i.e. 1.0 / 3.0 = 0.0, not correct.
10e-1 / 3e0 = 3e-1, i.e. 1.0 / 3.0 = 0.3, a little better.
100e-2 / 3e0 = 33e0, i.e. 1.0 / 3.0 = 0.33, even better.
1000e-3 / 3e0 = 333e0, i.e. 1.0 / 3.0 = 0.333, even better.
The solution is to make the mantissa of the left operand as big as possible

(without exceeding the bounds of the int primitive data type). This value can
be obtained from the wrapper class for ints: Integer.MAX VALUE. This is done
in the private helper method, adjust, shown below, leading to the following
definition of the divide operation:

/** @return the quotient when this MyFloat is divided

* by the parameter, f.

* @param f Must not be a representation of zero

*/

public MyFloat divide (MyFloat f)

{ MyFloat temp = new MyFloat (mant, exp); // temp copy of this

temp.adjust (f); // adjust with respect to f

return new MyFloat (temp.mant / f.mant, temp.exp - f.exp);

276 CHAPTER 11. ABSTRACT DATA TYPES

}

/** Adjust this MyFloat with respect to the parameter f,

* to provide maximum precision when dividing

*/

private void adjust (MyFloat f)

{ while (mant % f.mant != 0 && mant < Integer.MAX_VALUE/10)

{ mant = mant * 10;

exp--;

}

}

In the adjust method above, we wish to stop the loop when the mantissa
of the parameter, f, divides the mantissa of this MyFloat without a remainder.
We also wish to stop the loop before overflowing the capacity of an int. Also
note that we made a temporary copy of this MyFloat in the divide method; we
do not wish to make any alterations to either operand when dividing.

The adjustmethod shown above presumes that the mantissas of this MyFloat
is positive. We need to allow for the fact that it could be negative. To do this
we will make use of the absolute value method provided in the Math class:
Math.abs(int).

/** Adjust this MyFloat with respect to the parameter f,

* to provide maximum precision when dividing

* @param f must not be a representation of 0

*/

private void adjust (MyFloat f)

{ while (mant % f.mant != 0 && Math.abs(mant) < Integer.MAX_VALUE/10)

{ mant = mant * 10;

exp--;

}

}

We are now ready for addition and subtraction. In order to add or subtract
the operands must have the same exponent. For example, to add 12e3 + 3e4,
i.e. 12000.0 + 30000.0 we cannot simply add the two mantissas (this would
produce a mantissa of 15, clearly not correct). Instead we must adjust one of
the operands so that the exponents are equal. We choose to adjust the operand
with the larger exponent, 3e4 in this case: 3e4 = 30e3. We can now perform
the addition by adding the mantissas and using the exponent of either operand
(they are equal) for the exponent of the result:

12e3 + 30e3 = 42e3, i.e. 12000 + 30000 = 42000.
Our addition method for MyFloat is shown below:

%%%%%%%%%%%%%% TEST THIS

/** @return the sum when this MyFloat

11.2. MYFLOAT 277

* and the parameter, f, are added.

*/

public MyFloat add (MyFloat f)

{ MyFloat temp = new MyFloat (mant, exp); // temp copy of this

MyFloat tempF = new MyFloat (f.mant, f.exp); // temp copy of f

temp.adjustAdd (tempF); // adjust either this or f

return new MyFloat (temp.mant + tempF.mant, temp.exp);

}

/** Adjust either this MyFloat or f

* so that they have the same exponent.

*/

private void adjustAdd (MyFloat f)

{ while (exp > f.exp)

{ exp--;

mant = mant*10;

}

while (f.exp > exp)

{ f.exp--;

f.mant = f.mant*10;

}

}

The subtract method will be almost identical to the add method.

11.2.3 Exercises

1. Show how to create MyFloat objects representing each of the following
numbers.

• 7

• -12.04

• 0.00032

• 6.02x10 sup23

• 6.02e23

2. What is the value of 12e23 * 3e10 / 4e12 ?

3. Define a toString() method for MyFloats. The easiest way to do this is
simply to include the character ’e’or ’E’ between the mantissa and the
exponent, producing a result such as "32e-4" or "1e3".

4. Improve your toString() method so as to produce more conventional results
such as "0.0032" instead of "32e-4" and "1000.0" instead of "1e3".
You’ll need to decide on an arbitrary criterion to produce output with the
”e” notation.

278 CHAPTER 11. ABSTRACT DATA TYPES

/** @return A String representation of this

* MyFloat.

*/

public String toString()

Hint: Convert the mantissa to a String, then handle each of the following
cases separately, in the order shown (LIMIT is a constant (perhaps 6)
representing the number of zeroes to be inserted before resorting to the
’e’ notation):

Case mant exp result
exp == 0 123 0 ”123.0”
exp > LIMIT 123 12 ”1.23e14”
exp > 0 123 3 ”123000.0”
−exp > mant.len+ LIMIT 12345 -10 ”1.2345e-6”
−exp > mant.len 123 -4 ”0.0123”
default 123 -2 ”1.23”

5. Define a subtract method for MyFloats:

/** @return the difference produced when

* the parameter f is subtracted from

* this MyFloat

*/

public MyFloat subtract (MyFloat f)

6. Define additional constructors in the MyFloat class to allow convenient
ways of constructing MyFloats which which have an exponent of 0, and
MyFloats representing zero:

MyFloat r = new MyFloat (17); // 17e0

MyFloat p = new MyFloat (); // 0e0

Hint: Eliminate duplicated code in your constructors by calling another
constructor using the keyword this. A call to another constructor must be
the first statement in your constructor.

7. Define an equals (Object) method for MyFloats, so that the client can
have a Set of MyFloats. You may assume that this MyFloat and the
parameter are both in normal form.

/** @return true only if the parameter obj

* is a MyFloat and is equal to this MyFloat.

* Pre: Both this MyFloat, and the parameter,

* are in normal form.

*/

public boolean equals (Object obj)

11.2. MYFLOAT 279

8. Define a hashCode method for MyFloats, so that the client can have a
HashSet of MyFloats. You may assume this MyFloat is in normal form.

/** @return A hashCode for this MyFloat.

* Pre: this MyFloat is in normal form.

*/

public int hashCode ()

9. We would like the MyFloat class to implement the Comparable interface,
so that the client can have a TreeSet of MyFloats. Change the class
definition to read as follows:

public class MyFloat implements Comparable<MyFloat>

This means that a MyFloat can be compared with any other MyFloat for
order as well as equality (i.e. greater than, less than). The compiler will
require you to include a compareTo method:

/** @return a negative value if this MyFloat is less than

* the parameter f, a positive value if this MyFloat

* is greater than the parameter f, and 0 if they

* are equal.

* Pre: Both this MyFloat and the parameter f

* are in normal form.

*/

public int compareTo (MyFloat f)

10. Try the following operation in Java (if using BlueJ, you can use the code-
pad feature).

3e200 + 1e0

• Explain why the result is not perfectly accurate.

• Try this same operation with MyFloats. If an error occurs, correct
it so that a reasonable result is produced.

11. Try the following operation in Java (if using BlueJ, you can use the code-
pad feature).

123456789e0 * 123456789e0

• Explain why the result is not perfectly accurate.

• Try the same operation with MyFloats. If an error occurs, correct it
so that a reasonable result is produced.

280 CHAPTER 11. ABSTRACT DATA TYPES

11.3 BigNumber

Our third example of a useful ADT is one which allow arithmetic with unlimited
precision. A java int is represented by 32 bits, and thus has limits (see Inte-
ger.MAX VALUE and Integer.MIN VALUE). When the result of an arithmetic
operation exceeds these limits (known as overflow), no Exception is thrown; the
program continues to execute with values that are almost certainly not valid.
Even if we use the primitive type long (64 bits) instead, there are still limits to
the values which can be computed and stored.

In this section we will define an ADT named BigNumber which will be used
to represent whole numbers that are not limited in size. 1. Numbers with
unlimited precision have many important applications in today’s world, most
notably in the areas of cryptography and computer security. BigNumbers are
keeping the internet alive today.

Our strategy is to represent a whole number as a list of decimal digits.
Each digit will be in the range [0..9]. For example, the number 423,502 will
be represented as the list [4,2,3,5,0,2]. With BigNumbers we will need to find
a suitable representation for negative numbers, and here we will follow the
example of computer chip design; we will use a representation similar to two’s
complement.

11.3.1 Constructing BigNumbers

Our BigNumber class will need only one field: the List of digits. We need
to decide what kind of List this should be in the Constructor. Recall that
ArrayLists are designed to be efficient when accessing specific elements directly,
but not efficient when the size of the List is often changed. As far as we can
see now, with BigNumbers we will not need to access digits in the middle of
the List, but instead will process the digits in sequentially, from low order digit
to high order digit. For this reason we choose to implement our List of digits
with a LinkedList, noting that if we made the wrong choice it should be easy to
change it to an ArrayList.

/** A BigNumber represents a whole number with unlimited

* precision.

*/

public class BigNumber

{ private List<Integer> digits

= new LinkedList <Integer> ();

/** Default constructor is used in the add

* method.

1Of course every computer has a finite memory, hence there will be limits on the size of
a BigNumber, yet our software will be designed so as to impose no limit on the size of a
BigNumber, and the client can potentially allow for larger numbers by adding more memory
to the computer

11.3. BIGNUMBER 281

*/

BigNumber ()

{ }

/** Construct a BigNumber from a String

* of numeric characters.

* @param num is a String of numeric

* characters [0..9]

*/

public BigNumber (String num)

{ // Process the digits from low-order to high-order

for (int i=num.length()-1; i>=0; i--)

digits.add (num.charAt(i));

}

}

The client can now create very large numbers such as:

BigNumber huge = new BigNumber ("2348099039393920349820439834");

Note that the constructor will put the low-order digit (the one at the right, as
normally viewed, into position 0 of the List. If you are accustomed to seeing
position 0 at the left end of a List, the digits of a BigNumber will appear to be
in reverse order.

11.3.2 Adding BigNumbers

We now wish to be able to add BigNumbers. We will do this by adding cor-
responding digits, beginning at the low-order digit, and working toward the
high-order digit, adding in a carry (0 or 1) at each position.

In our add method, we use three loops (not nested). The first loop continues
as long as there are more digits in both operands. The second loop continues as
long as there are more digits in this BigNumber, and the third loop continues
as long as there are more digits in the parameter. At least one of these loops
will repeat 0 times. We use carry to carry a 1 into the next ’column’. When all
loops terminate, we can add the carry at the high order position of the result.
At this point we are assuming BigNumbers are not negative.

/** @return The sum of this BigNumber and the

* parameter, b.

*/

public BigNumber add (BigNumber b)

{ int carry = 0;

int sum;

BigNumber result = new BigNumber();

Iterator<Integer> ittyThis = digits.iterator();

282 CHAPTER 11. ABSTRACT DATA TYPES

Iterator<Integer> ittyB = b.digits.iterator();

while (ittyThis.hasNext() && ittyB.hasNext())

{ sum = ittyThis.next() + ittyB.next() + carry;

carry = sum / 10;

result.add (sum % 10);

}

// This loop may execute 0 times

while (ittyThis.hasNext())

{ sum = ittyThis.next() + carry;

carry = sum / 10;

result.add (sum % 10);

}

// This loop may execute 0 times

while (ittyB.hasNext())

{ sum = ittyB.next() + carry;

carry = sum / 10;

result.add (sum % 10);

}

if (carry == 1)

result.add (carry);

return result;

}

11.3.3 Subtracting BigNumbers

When subtracting, it is possible to obtain a negative result; consequently we
need to think about how to represent negative BigNumbers. Here are a few
possibilities:

1. Sign and Magnitude - Store the magnitude of the BigNumber as we are do-
ing currently; also store a boolean which indicates whether the BigNumber
is negative.

2. Nines Complement - Negate a BigNumber by subtracting each digit from
9 (similar to ones complement for binary numbers). For example, -04096
would be stored as 95903. Then when adding we would need to add 1 to
the result, only if one of the operands is negative.

3. Tens Complement - Similar to two’s complement for binary numbers, -1
would be represented by all 9’s (9999), -2 would be 9998, -3 would be 9997,
etc.

We will use tens complement representation for a few reasons:

• This will simplify subtraction: a − b = a + (−b). All we need now is a
negate method, to find -b (though we will need to modify our add method).

11.3. BIGNUMBER 283

• Tens complement is analogous to twos complement for binary numbers.
Hence, tens complement will reinforce your understanding of twos com-
plement representation which is used in virtually all digital hardware.

In tens complement representation, the number is negative if and only if
the high order digit is greater than 4. To determine the value of a negative
number, we can negate it. Here are three algorithms for negating a number in
Tens Complement:

• Subtract it from 0. For example, to negate 345:

000 Extend the zeroes

-345

655 = -345

• Find the nines complement, and add 1. For example, to negate 345:

999

345 Nines complement, subtract each digit from nine

654

+ 1 Add 1

655 = -345

• Scan the digits right to left:

1. copy zeros

2. subtract first non-zero digit from ten

3. subtract all remaining digits from nine

For example, to negate 3405000:

3405000

000 copy zeros

5 subtract first non-zero digit from ten

659 subtract remaining digits from nine

6595000 = -3405000

If it seems strange to you that 6595000 should be equal to -3405000, re-
member that 6595000 represents a negative number because its high order
digit is greater than 4. Try adding 6595000 + 3404000 (and discard the
carry out of the high order digit). The result should be 0, proving that
they are complements of each other.

We prefer this algorithm, and recommend it be used in our BigNumber
class.

284 CHAPTER 11. ABSTRACT DATA TYPES

Here are some other examples of tens complements:

-280 = 720

-0509 = 9491

-0500 = 500 = 9500 = 99500

Note that a non-negative number may have leading zeros, and a negative number
may have leading nines; thus there are multiple represenations of the same
number (as with our other abstract data types Rational and MyFloat).

Number Tens Comp Alternates
+3 3 03 003
+10930 10930 010930 0010930
-3 7 97 997
-8 92 992 9992
+499 499 0499 00499
-499 501 9501 99501
+500 0500 005000 000500
-500 500 9500 99500
-501 599 9599 99599

A normal form for BigNumber objects is described as:

• A non-negative BigNumber has a minimum number of leading zeros.

• A negative BigNumber has a minimum number of leading nines.

Before we can implement subtraction of BigNumbers we will need to define
the negate method. We will use the third negate algorithm described above.

/**@return this BigNumber negated, tens complement */

private BigNumber negate()

{ BigNumber result = new BigNumber();

Iterator <Integer> itty = digits.iterator();

int d = itty.next();

while (d==0 && itty.hasNext()) // copy zeros

{ result.digits.add (0);

d = itty.next();

}

result.digits.add ((10-d) % 10); // copy 10 - digit

// ensure digits is not empty.

while (itty.hasNext())

{ result.digits.add (9-itty.next()); } // copy 9 - digit

return result;

}

Now that we have a negate method, the subtract method is easy: a − b =
a+ (−b).

11.3. BIGNUMBER 285

/** @return the result of subtracting the parameter, b,

* from this BigNumber.

*/

public BigNumber subtract (BigNumber b)

// a-b = a+(-b)

{

return this.add (b.negate());

}

However, we will need to make a few minor changes to our add method, now
that we are working with negative numbers (this is left as an exercise for the
student):

• In the loops which accomodate the fact that one of the operands may
have fewer digits than the other operand, we assumed leading zeros for
the shorter operand. Now we will have to determine whether the shorter
operand is negative; if so, assume leading nines. This can be done easily
using a fill digit:

int fill=0;

If the shorter operand is negative, change the fill digit to 9. Add in the
fill digit on each iteration.

• When adding two non-negative operands, the result should be non-negative.
If this is not the case (i.e. overflow has occurred), append a leading zero.
For example, when adding the positive numbers 402+350 you will get 752,
which is negative because the high order digit is greater than 4; append a
leading zero to produce 0752.

• When adding two negative operands, the result should be negative. If this
is not the case (i.e. overflow has occurred), append a leading nine. For
example, when adding the negative numbers 702+650 you will get 352,
which is non-negative because the high order digit is less than 5; append
a leading nine to produce 9352.

• A private helper method to determine whether a BigNumber is negative
may be helpful; it will merely compare the hight order digit with 5.

Having defined addition and subtraction, how can we define multiplication,
division (and mod) using what we have already built? We leave these as exercises
for the student; here are some hints:

• Multiplication could be done by repeated addition: 4 ∗ 7 = 7 + 7 + 7 + 7.

• Remember, both operands are BigNumbers. This means that a loop is
needed, and it will be controlled by decrementing the left operand until
zero is reached. In the body of the loop the right operand is added into
the result.

286 CHAPTER 11. ABSTRACT DATA TYPES

• If the left operand is negative, work with its negation in order to control
the loop.

This is a fairly slow algorithm for multiplication of BigNumbers. A faster
algorithm is called shift and add :

The multiplier is this BigNumber, and the multiplicand is the parameter.

1. Define a private helper method to multiply this BigNumber by a decimal
digit returning the product.

/** @return the product of this BigNumber multiplied by

* the parameter, i.

* @param i is in the range 0..9

*/

private BigNumber multByDigit (int i)

2. Use a ListIterator to iterate over the digits in this BigNumber from high
order to low order digit.

3. Multiply the parameter by the high order digit, storing the product in a
local BigNumber, result.

4. Continue to iterate over the digits in this BigNumber using your ListIter-
ator (using methods hasPrevious() and previous()):

(a) Shift the result (simply insert a 0 at position 0)

(b) Multiply the parameter by the next (i.e. previous) digit of this
BigNumber, storing the result in a temporary BigNumber.

(c) Add the temporary BigNumber into the result.

A slow algorithm for division of BigNumbers is fairly easy. Division should in
general produce two results: a quotient and a remainder, since we are working
with whole numbers. We should design our software so that the client can
obtain both of these values without repeating the division. To do this, the
divide method should return a List of BigNumbers; the first element in the list
is the quotient and the second element is the remainder.

/** @return Both the quotient and the remainder when this

* BigNumber is divided by the parameter b

*/

public List<BigNumber> divide (BigNumber b)

The algorithm for division (this BigNumber is the dividend, and the param-
eter is the divisor):

1. Copy the dividend to a local BigNumber, dividendTmp.

11.3. BIGNUMBER 287

2. Loop while the dividendTmp is greater than the divisor (use a BigNumber
counter, to count the number of times the loop repeats):

(a) Subtract the divisor from the dividendTmp storing the result in div-
idendTmp.

3. When the loop terminates, the loop counter is the quotient, add it to the
result list.

4. The dividendTmp is the remainder, add it to the resultlist.

Now that you have a BigNumber class it could be tested as shown below
(commment out the lines which have not yet been implemented):

public static void main()

{ Scanner scanner = new Scanner (System.in); // read from stdin

BigNumber x,y;

String input;

System.out.println ("Enter a Big Number, or Enter to terminate");

while (scanner.hasNextLine())

{

// read a big number from keyboard

input = scanner.nextLine();

if (input.length() == 0)

return;

x = new BigNumber (input);

// read a big number from keyboard

System.out.println ("Enter another Big Number");

input = scanner.nextLine();

if (input.length() == 0)

return;

y = new BigNumber (input);

System.out.println ("x+y: " + x.add (y));

System.out.println ("y+x: " + y.add (x));

System.out.println ("x-y: " + x.subtract (y));

System.out.println ("y-x: " + y.subtract (x));

System.out.println ("Enter a Big Number, or Enter to terminate");

}

}

11.3.4 Exercises

1. Complete the following table using tens complement representation.

Hint: When viewing a number in tens complement representation, the
first decision to be made is whether the number is positive or negative.

288 CHAPTER 11. ABSTRACT DATA TYPES

Number Tens Comp Tens Comp
Using 4 digits, if possible Using as many digits as needed, but no more

0 0000 0
2
4
5
-4 9996 6
-5
-6
25
92
-25
-92
499
500
501
-499
-500
-501
4999
5000
-5000
-5001

-394920 Not Possible

2. Complete each of the following operations, assuming tens complement
representation (use as many digits as necessary for the result):

(a)
0003 = +3

+ 0097 = +97

(b)
4004 = +4004

+ 3097 = +3097

(c)
0003 = +3

- 0097 = +97

11.3. BIGNUMBER 289

(d)
9999 = -1

+ 0100 = +100

9999 = -1

+ 9998 = -2

3. Include a toString() method in your BigNumber class:

/** @return this BigNumber as a String. */

public String toString()

4. (a) Revise the toString method so that it will handle negative values, in
tens complement representation.

Hint: If the number is negative, negate it, produce the result string,
and append a ’-’ at the beginning.

(b) Revise the add method so that it works with tens complement values.
Use the main method given at the end of this section to test your
solution.

Hint: Use a fill digit for the operand that has fewer digits. The fill
digit should be 9 if the operand is negative, and 0 otherwise. Discard
the carry out of the high order digit. Add a 0 (or 9) at the high order
digit if necessary to ensure the correct sign of the result.

(c) Implement the subtract method. Test subraction using the main
method.

Hint: a - b = a + (-b)

(d) There are several tens complement representations for the same num-
ber:
+17 = 17 = 017 = 0017 = 00017

+93 = 093 = 0093 = 00093

-19 = 81 = 981 = 9981 = 99981

-82 = 918 = 9918 = 99918 =

We can define a normal form by choosing the representation which
has no unnecessary leading zeros (or nines for negative numbers). In
the examples given above, the normal form of each number is shown
first. Define a method which will normalize this BigNumber, and
test with the main method. All newly created BigNumbers should
be normalized.

290 CHAPTER 11. ABSTRACT DATA TYPES

/** Put this BigNumber into normal form.

* Eliminate unnecessary leading zeros or nines

*/

private void normalize()

(e) Revise the toString() method, if necessary, so that it does not print
unnecessary leading zeros.

5. Implement multiplication using repeated addition: 5*3 = 3+3+3+3+3

The method signature should be:

/** @return the product of multiplying this BigNumber by b. */

public BigNumber multiply (BigNumber b)

Hint: Check the signs of the operands first, if they are different you know
the sign of the result should be negative. Then negate each operand which
is negative, and do the multiplication with non-negative values. Then
negate the result if necessary.

6. Improve your multiply method to use a shift and add algorithm as de-
scribed in this section.

7. Implement division using repeated subtraction. Division should produce
two BigNumbers as results: a quotient and a remainder. The signature is:

/** @return the quotient and remainder (in that order)

when this BigNumber is divided by b.

@throws DivideByZeroException if b is 0.

*/

public List<BigNumber> divide (BigNumber b)

If the dividend and divisor have different signs, the quotient should be
negative. The sign of the remainder should be the same as the sign of the
dividend.2

8. Make improvements to your divide method so that it is faster; this is
similar to the shift and add algorithm for multiplication, but instead it
will be shift and subtract.

2Caution: Various platforms do not agree on the correct sign for the remainder when one
or both operands is negative. The sign proposed here agrees with the Java virtual machine.

Chapter 12

Algorithms: Sorting and
Searching

This chapter contains an introductory discussion of sorting and searching algo-
rithms. This subject is covered more extensively in Data Structures textbooks.
We include it here because sorting and searching are included in the College
Board’s Advanced Placement exam for Computer Science.

An algorithm is a well-defined series of steps leading to the solution of a
given problem. An algorithm must terminate with a correct solution. Note that
the concept of an algorithm is independent of a particular implementation, or
programming language used, for that algorithm. For example, we discussed the
sequential search algorithm in chapter7. The sequential search method could
have been written in C++, Python, or any other programming language. Also,
it could have been written in a very different way in Java; it could have been a
recursive method instead of using a loop. These would all be implementations
of the same algorithm.

There are some problems which become very complex as the size of the
input increases. A classic example is the traveling salesman problem: Given a
map showing cities and roads connecting the cities, find a shortest path which
enables the salesman to visit every city exactly once. There are algorithms
to solve this problem, and if the number of cities is 10, they work quite well.
However, if there are 1000 cities, your program will take too long to execute. For
problems such as this we may choose to use a method which is not guaranteed
to produce a correct solution, but which executes quickly enough that we will
see it terminate. This kind of solution is called a heuristic. It is important to
understand that a heuristic is not an algorithm; for problems like the traveling
salesman problem a heuristic can be more useful than an algorithm.

291

292 CHAPTER 12. ALGORITHMS: SORTING AND SEARCHING

12.1 Searching: Binary Search

In chapter 5 we discussed the problem of searching a list for a given target value.
This was the indexOf(Object) method in the list classes (for the API, see the
List interface in the java.util package of the java class library). This method
performs a sequential search for the given object (i.e. the target). It begins at
the first element of the list, comparing with the target, and proceeding to each
element of the list until it either finds an element which is equal to the target
(in which case it returns its index in the list), or reaches the end of the list, in
which case it returns -1. If it finds the target, it will therefore return the index
of the first occurrence of that value (there may be duplicate values in a list).

In this section we discuss an improvement to the sequential search algorithm.
If the list being searched is sorted in ascending (or descending) order we can
use an algorithm known as binary search to locate a given target value.

Imagine that you have an old (paper) telephone book for a nearby city. If
you needed to find out who lives at “332 N. Main St”, you would have to begin
by looking at every entry on page 1, and continue through every entry in the
phone book until you either find that address, or reach the end of the book, in
which case you would conclude that the address “332 N. Main St.” is not in the
phone book.

However, if you need to find ”Smithson, John” in that phone book, it would
be much faster. If the first entry you look at is “Potter, James”, then you
know that if “Smithson, John” is in the book, it would have to come after “Pot-
ter, James”. Thus you immediately exclude from consideration those entries
coming before “Potter, James”. This is an informal description of the binary
search algorithm. After each comparison, half of the values are eliminated from
consideration; we can ignore them, speeding up the search considerably.

The reason that looking up a name is so much faster than looking up an
address is that the phone book is sorted by name, but it is not sorted by address.
Thus the binary search algorithm applies only when the data are sorted prior
to beginning the search.

The binary search algorithm can be expressed as follows:
Search a given list for a given target value, given the starting and ending indices
of the list being searched

1. If the starting index is greater than the ending index, terminate. The
target is not in the list.

2. Calculate the index of the midpoint, by averaging the start and end in-
dices:
mid = (start+end)/21

3. If the target is equal to the value at position mid, the target has been
found; return mid, the position of the target.

1Note that if start+end is odd, the result is rounded down to an int. E.g. 15/2 = 7. This
works fine as the midpoint.

12.1. SEARCHING: BINARY SEARCH 293

4. If the target is smaller than the value at position mid, then the target must
be in the left portion of the list (if it is in the list). Search the left portion
of the list (excluding the mid point) using the binary search algorithm,
from start to mid-1.

5. If the target is greater than the value at position mid, then the target
must be in the right portion of the list (if it is in the list). Search the
right portion of the list (excluding the mid point) using the binary search
algorithm, from mid+1 to end.

Note that this algorithm is expressed recursively. The base cases are steps
1-3. The recursive cases, steps 4 and 5, reduce the size of the input; thus it
satisfies the desired properties of recursion.2

The binary search algorithm is diagrammed in Fig 12.1, in which the sorted
list is [-7,-4,2,3,5,7,8,8,11,11,12,13,17,17,22] and the target is 11. On the first
iteration, start=0 and end=14. The midpoint is calculated as mid = (0+14)/2

= 7. Since the value at position 7 is 8, and the target, 11, is greater than 8, the
target must be in the right half of the list; search the portion of the list from
start=8 to end=14, using the same binary search algorithm.

At this point the midpoint is calculated as mid = (8+14)/2 = 11. The
value at position 11 is 13, which is less than the target. Thus if the target is
in the list, its position must be in the range [8..10]. Thus on the next iteration
start=8 and end=10.

When searching this part of the list, mid = (8+10)/2 = 9. At this point
the algorithm finds the target,11, at the midpoint, and terminates by returning
its position, 9.

Note that the algorithm did not find the position of the first occurrence of
the target. It is sufficient to return the position of any occurrence of the target.

Each time this algorithm invokes the binary search algorithm recursively,
the start and end indices get closer together. If the target is not in the list,
then the start index becomes greater than the end index, and the algorithm
terminates with the base case in step 1. This case is diagrammed in Fig 12.2, in
which the target, 4, is not in the list. When start=4 and end=3, the algorithm
determines that the target 4 is not in the list.

A java method for the binary search algorithm is shown in Fig 12.3. The list
to be searched is defined as a field in the class, and is assumed to be initialized.3

We use a recursive helper method, binSrch to search the portion of the list
from position start to position end for the target. There are two base cases in
binSrch:

• start > end: The target is not in the list.

• The value at the midpoint is equal to the target. The target has been
found; return its position: mid.

2This algorithm could have been expressed just as easily with a loop; we use recursion
simply to gain some additional experience with recursion.

3The list should be an ArrayList, for efficiency.

294 CHAPTER 12. ALGORITHMS: SORTING AND SEARCHING

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

-7 -4 2 3 5 7 8 8 11 11 12 13 17 17 22

start=0

end=14
mid=7

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

-7 -4 2 3 5 7 8 8 11 11 12 13 17 17 22

start=8

end=14
mid=11

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

-7 -4 2 3 5 7 8 8 11 11 12 13 17 17 22

start=8

end=10
mid=9

Target found at position 9

Figure 12.1: Binary Search algorithm, on a list of size 15. The target is 11,
found at position 9. There is no need to search the shaded regions.

12.1. SEARCHING: BINARY SEARCH 295

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

-7 -4 2 3 5 7 8 8 11 11 12 13 17 17 22

start=0

end=14
mid=7

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

-7 -4 2 3 5 7 8 8 11 11 12 13 17 17 22

start=0

end=6
mid=3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

-7 -4 2 3 5 7 8 8 11 11 12 13 17 17 22

start=4

end=6
mid=5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

-7 -4 2 3 5 7 8 8 11 11 12 13 17 17 22

start=4

end=4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

-7 -4 2 3 5 7 8 8 11 11 12 13 17 17 22

start=4

end=3

Target not found

Figure 12.2: Binary Search algorithm, on a list of size 15. The target, 4, is not
found in the list.

296 CHAPTER 12. ALGORITHMS: SORTING AND SEARCHING

List<Integer> list; // Should be an ArrayList

...

public int search (int target)

{ return binSrch (0, list.size()-1, target); }

/** @return A position of the target in the

* portion of the list from start .. end, or

* -1 if not found,

*/

private int binSrch (int start, int end, E target)

{ if (start > end)

return -1;

int mid = (start + end) / 2;

if (target == list.get(mid))

return mid;

if (target < list.get(mid))

return binSrch (start, mid-1, target);

// target > list.get(mid)

return binSrch (mid+1, end, target);

}

Figure 12.3: Method to search a sorted list of Integers for a given target value,
using the binary search algorithm.

There are two possible recursive cases in binSrch:

• The target is smaller than the value at the midpoint; search the list from
positions start thru mid-1, inclusive.

• The target is larger than the value at the midpoint; search the list from
positions mid+1 thru end, inclusive.

.

12.1.1 Exercises

1. Given the List of Fig 12.1 show the values assigned to the variable mid for
each of the following target values:

(a) target = 8

(b) target = 13

(c) target = 2

(d) target = 15

(e) target = -400

12.2. SORTING A LIST 297

2. Show a diagram similar to Fig 12.1 for each of the targets given in the
previous exercise (and the list given in that figure).

3. Show a binary search method similar to Fig 12.3 in which we are searching
a sorted array of ints, rather than a sorted List of Integers.

4. Show a binary search method similar to Fig 12.3 which uses a loop rather
than a recursive helper method.

5. How many iterations (or calls to binSrch) would occur when searching
for a target that is not in the given list if:

(a) The size of the list is 7.

(b) The size of the list is 15.

(c) The size of the list is 1023.

(d) The size of the list is 2k−1 for some integer k.

(e) The size of the list is n.

6. (a) Rewrite the search method in Fig 12.3 to search a List of Strings for
a given target String.
Hints:

• A String, s1, is smaller than another String, s2, iff s1 precedes
s2 alphabetically.

• See the compareTo method in the String class.

(b) If you are familiar with generic types in java, and typed classes,
rewrite the search method in Fig 12.3 assuming that it is in a class
with generic type E. The E represents any class which implements the
Comparable interface.
public class Search<E extends Comparable>

12.2 Sorting a list

12.2.1 Rationale for Sorting

In this section we discuss an important problem known as the sorting problem:
given a list of values which can be compared4 for order, arrange the list in
ascending (or descending) order.

Once a list has been sorted, it can be searched quickly with the Binary
Search algorithm. Sorting a long list can take a lot of time, but it is probably
worth it if the list is to be searched for many different values.

4Comparing two values to determine which is larger, or whether they are equal

298 CHAPTER 12. ALGORITHMS: SORTING AND SEARCHING

12.2.2 Selection Sort Algorithm

There are many algorithms which can solve the sorting problem. We examine
one of the easiest to understand and implement in this section. It is called selec-
tion sort. We describe the algorithm informally below, where size represents
the size of the list.:

• Scan the list from left to right (ndx = 0,1,2,3,...size-2)

• Find the position, p, of the smallest value in the list beginning at position
ndx, i.e. search the sublist in positions [ndx..size-1] for the smallest value.

• Swap (i.e. exchange) the values at positions p and ndx.

• Increment ndx and repeat from step 2 until ndx = size-1.

Fig 12.4 shows how this algorithm is applied to a List of size 5. The list is
shown as the value of ndx ranges from 0 through 3. When the value of ndx is
0, the position of the smallest value to the right (-1) is position 3. Thus the
algorithm swaps positions 0 and 3. Note that when the value of ndx reaches 1,
the position of the smallest value starting from position 1, is also 1. That means
that the algorithm swaps position 1 with itself - an unnecessary, but harmless,
operation.5 Note also that for a list of size 5, there are only 4 iterations. After
the first 4 iterations, the first 4 values are correctly placed, and the remaining
value must be in its correct position.

A Java method to sort a given List using the selection sort algorithm is
shown in Fig 12.5. It uses a private helper method, posSmallest(int start)

to return the position of the smallest value beginning at the given start position.
.

12.2.3 Insertion Sort Algorithm

The insertion sort algorithm is similar to the selection sort algorithm, in that
it also requires n-1 passes over the input list, for a list of size n. On each pass,
p=1..n-1, the algorithm will move the value in position p to the left as many
places as needed so that it is inserted in the correct position. To do this, values
to the left of position p must be shifted to their righ-hand neighbors, in order
to make room for the inserted value.6 Fig 12.6 shows how the algorithm sorts
a List of size 5.

When p=2, the value at position 2 is 19, which is then removed and inserted
at position 2 (essentially a no-operation). On that iteration the list is not
changed. As with selection sort, we note that after i iterations the first i values
of the list are correctly sorted. If n is the size of the list, then after n-1 iterations,

5Students often suggest checking for this condition, to avoid an unnecessary swap; however
we feel that for random data it will not save a significant amount of time.

6We could remove the value at position p, and insert it at the correct spot, but the remove
operation has a ’hidden loop’ which we prefer to avoid, for reasons of run-time efficiency, and
also to facilitate adapting the algorithm to operate on an array rather than an ArrayList.

12.2. SORTING A LIST 299

0 1 2 3 4

4 0 3 -1 2

ndx=0 p=3

0 1 2 3 4

-1 0 3 4 2

swap

ndx=p=1 swap with itself

0 1 2 3 4

-1 0 3 4 2

ndx=2 p=4

0 1 2 3 4

-1 0 2 4 3

swap

ndx=3p=4

0 1 2 3 4

-1 0 2 3 4

swap

Figure 12.4: Selection sort algorithm, on a list of size 5

300 CHAPTER 12. ALGORITHMS: SORTING AND SEARCHING

/** Post: The values in the List will be arranged in ascending

order

*/

public void selectionSort (List <Integer> list)

{ for (int i=0; i<list.size()-1; i++)

swap (list, posSmallest (list, i), i);

}

/** @return the position of the smallest value,

* beginning at the given start position

*/

private int posSmallest (List<Integer> list, int start)

{ int smallestPos = start;

for (int i=start+1; i<list.size(); i++)

if (list.get(i) < list.get(smallestPos))

smallestPos = i;

return smallestPos;

}

/** Exchange values at positions i and j

*/

private void swap (List <Integer> list, int i, int j)

{ E temp;

temp = list.get(i);

list.set (i, list.get (j));

list.set (j, temp);

}

}

Figure 12.5: Java method implementing the selection sort algorithm, applied to
a List of Integers

12.2. SORTING A LIST 301

0 1 2 3 4

8 4 19 0 6

0 1 2 3 4

p=1
insert at position 0

4 8 19 0 6

0 1 2 3 4

p=2
insert at position 2

4 8 19 0 6

0 1 2 3 4

p=3
insert at position 0

0 4 8 19 6

0 1 2 3 4

p=4
insert at position 2

0 4 6 8 19

Figure 12.6: Insertion sort algorithm, on a list of size 5

302 CHAPTER 12. ALGORITHMS: SORTING AND SEARCHING

/** Post: The values in the List will be arranged in ascending order

*/

public void sort (List <Integer> list)

{ int j, tmp;

for (int p=1; p<list.size(); p++)

{ tmp = list.get(p);

for (j = p; j>0 && tmp < list.get(j-1); j--)

list.set (j, list.get(j-1)); // shift right

list.set(j, tmp);

}

}

Figure 12.7: Java method implementing the insertion sort algorithm, applied to
a List of Integers

the first n-1 values are correctly sorted, so the last value must be in its correct
spot; the loop repeats only n-1 times.

The code for the insertion sort algorithm is shown in Fig 12.7. Note that
the inner for loop shifts values in the List to their right-hand neighbor:
list.set (j, list.get(j-1));

This allows insertion of the value from position p, stored in tmp, to be inserted
at the correct position.

This example sorts a List of Integers, though it can be readily adapted to
sort a List of any type which is Comparable.7

12.2.4 Merge Sort Algorithm

The Merge Sort algorithm makes use of one of the oldest techniques in computer
science: that of merging two sorted lists. This was done decades ago when
large datasets were stored on magnetic tape. If two tapes contained data in
ascending order, they could be merged to a single third tape with a simple
merge algorithm.8

12.2.4.1 Merge Algorithm

The merge algorithm takes 2 sorted lists as input; here we assume they are
sorted in ascending order. The algorithm produces a sorted list from the values
of the two given lists (refer to Fig 12.8 as we describe the algorithm). The two
given lists are [3,5] and [2,3,6,7].

1. We compare the first value of the first list with the first value of the second
list. The smaller value is added to the result list, and we move to the next

7With a generic type that extends Comparable, we can sort any List.
8Access to the data on a magnetic tape is sequential, similar to the access to data in a

linked list.

12.2. SORTING A LIST 303

value of that input list. In Fig 12.8 since 2 < 3, we copy 2 to the result
and move to the next position of the second list (value is 6).

2. Since 3 < 6, we copy 3 to the result and move to the next position of the
first list (value is 5).

3. Since 5 < 6, we copy 5 to the result and move to the next position of the
first list (reaching the end of the first list).

4. Since we have reached the end of the first list, we copy the remaining
values of the second list (6,7) to the result.

The final result is the list [2,3,5,6,7] Fig 12.8 shows how the algorithm merges a
sorted list of size 2 with a sorted list of size 3, to produce a sorted list of size 5.

A java method which implements the merge algorithm is shown in Fig 12.9.
This method uses two Iterators, one for each input List. Thus it will run effi-
ciently whether the input is an ArrayList or LinkedList. In the loop it chooses
the smaller of the two values selected from list1 and list2, and adds it to the
result List, after which it obtains the next value from that List. Note that a
null value indicates that the end of the corresponding List has been reached.
At that point the loop terminates, and the remaining values of the other list, if
any, are copied to the result list.

This method uses a few helper methods, which are shown in Fig 12.10:

• getNext(Iterator<Integer> it): Use the given iterator to obtain the
next value from one of the input lists, or null if there is none.9

• copyRemainingValues(int value, Iterator<Integer> it): Use the given
iterator to copy all the remaining values to the result list.

12.2.4.2 Merge-in-Place Algorithm

Our goal is to expose a sorting algorthm which uses the merge algorithm that
we have just seen. However, in order for it to be useful (and efficient) in our
sorting algoirthm we need to modify the merge algorithm. We will consider the
two lists to be merged as residing in the same list. We will need to provide the
start position of the second list. For example, the lists [3,5] and [2,6,7] can be
located in the same list as [3,5,2,6,7] with the start position of the second list at
position 2. The result of our merge-in-place algorithm will be the list [2,3,5,6,7].
The Merge-in-Place is depicted with a diagram in Fig 12.11.

A Java method which performs the Merge-in-Place is shown in Fig 12.12.
It has one parameter, the starting position of the second list to merged. The
inner loop is used to shift values of the first list to the right to make room for
the insertion of a value from the second list.

9This redesign of the next() method from the Iterator interface leads to a substantially
cleaner solution.

304 CHAPTER 12. ALGORITHMS: SORTING AND SEARCHING

0 1

3 5

0 1 2

2 6 7

0 add from s0

2

0 1

3 5

0 1 2

2 6 7

0 1 add from f0

2 3

0 1

3 5

0 1 2

2 6 7

0 1 2 add from f1

2 3 5

0 1

3 5

0 1 2

2 6 7

0 1 2 3 add from s1

2 3 5 6

0 1

3 5

0 1 2

2 6 7

0 1 2 3 4 add from s2

2 3 5 6 7

Figure 12.8: Merging two sorted lists into one sorted list. f = first list, s =
second list.

12.2. SORTING A LIST 305

List<Integer> result = new ArrayList<Integer>();

Iterator<Integer> it1, it2;

Integer value1 = null, value2 = null;

/** @return a sorted ArrayList consisting of all values from

* the two given lists.

* @param first and second are both sorted in ascending order.

*/

public List<Integer> merge (List<Integer> first, List<Integer> second)

{ it1 = first.iterator();

it2 = second.iterator();

value1 = getNext(it1); value2 = getNext(it2);

while (value1!=null && value2!=null)

{ if (value1.compareTo(value2) < 0) // add smaller value

{ result.add(value1); // to the result.

value1 =getNext(it1);

}

else

{ result.add(value2);

value2 = getNext(it2);

}

}

copyRemainingValues(value1,it1); // one of these will

copyRemainingValues(value2,it2); // do nothing.

return result;

}

Figure 12.9: Method to merge two sorted lists into one sorted list.

306 CHAPTER 12. ALGORITHMS: SORTING AND SEARCHING

/** Copy the given value to the result list if not null, then copy

* the remaining values using the given iterator.

*/

private void copyRemainingValues(Integer value, Iterator<Integer> it)

{ while (value!=null)

{ result.add(value);

value = getNext(it);

}

}

/** @return the next value using the given Iterator, or

* null if there is none.

*/

private Integer getNext(Iterator<Integer> it)

{ if (it.hasNext())

return it.next();

return null;

}

}

Figure 12.10: Helper methods for the method which merges two sorted lists into
one sorted list (Fig 12.9).

12.2.4.3 MergeSort Algorithm

We now have all the tools we need to implement a sort algorithm known as
MergeSort. Given an ArrayList of values which can be compared for larger-vs-
smaller,10 we wish to sort the values in ascending order. Here is the MergeSort
algorithm:

1. If the size of the list is 0 or 1, terminate; the list is sorted.

2. If the size of the list is 2, swap the two values, if necessary, so that the
smaller is to the left of the larger, and terminate.11

3. Find the midpoint of the list. We now have a left part (which includes the
midpoint) and a right part (which excludes the midpoint).

4. Sort the left part, using the MergeSort algorithm.

5. Sort the right part, using the MergeSort algorithm.

6. Merge-in-place the two parts, using the Merge-in-Place algorithm de-
scribed above.

10In Java, any class which implements the Comparable interface must have a
compareTo(Object) method, which enables the client to compare not only for equality, but
for ordering, i.e. smaller or larger.

11Step 2 is actually not needed; we include it to simplify the diagrams.

12.2. SORTING A LIST 307

0 1 2 3 4

3 5 2 6 7

0 1 2 3 4

ndx2=2
insert at position 0

ndx1=0

2 3 5 6 7

0 1 2 3 4

ndx2=3
No insertion

ndx1=1

2 3 5 6 7

0 1 2 3 4

ndx2=4
No insertion

ndx1=1

2 3 5 6 7

Figure 12.11: Merge in place. The two input lists are [3,5] and [2,6,7], contained
in the same list. The second input list begins at position 2. Result is the merged
list.

308 CHAPTER 12. ALGORITHMS: SORTING AND SEARCHING

List<Integer> list; // list is a field

// initialized here ...

/** Merge in place two lists stored in the same list.

* @param start2 Position of first value in the second list.

*/

public void mergeInPlace (int start2)

{ int end = start2 - 1; // end of first list

int ndx = 0; // position in first list

while (ndx<=end && end < list.size()-1)

{ if (list.get(ndx) <= list.get(start2))

ndx++;

else

{ int value = list.get(start2);

for (int i=start2; i>ndx; i--)

list.set(i, list.get(i-1)); // shift for insert

list.set(ndx, value); // insert value from second

// list.

ndx++;

start2++;

end++;

}

}

}

Figure 12.12: Method to merge two sorted lists, both in one list, in place, using
only one listt.

12.2. SORTING A LIST 309

Notice that the description of the MergeSort algorithm involves a directive to
use the MergeSort algorithm in steps 4 and 5. Thus it is a recursive algorithm
(see chapter 3). This recursive method satisfies the two basic properties of
recursion:

• There is a base case, which involves no recursive call (steps 1 and 2).

• In each recursive call, the size of the input is somehow reduced. In this
case we are invoking the MergeSort algorithm on half of the given list
(steps 4 and 5).

A diagram of this algorithm is shown in Fig 12.13. In that diagram we wish
to sort the list [20,18,19,14]. To do that we first calculate the midpoint using
the starting and ending positions. Thus the midpoint,
mid = (0+3)/2 = 1. The left half of the list is [20,18], and the right half is
[19,14]. There is then a recursive call to MergeSort, using start=0, end=1

to sort the left half. When that completes the left half is [18,20]. The same
procedure is then applied to the right half, [19,14], which results in [14,19].
The complete list is now [18,20,14,19], which is merged using position 2 as the
starting position of the second list. This merge results in [14,18,19,20], and the
list is now sorted in ascending order.

A Java method for the MergeSort algorithm is shown in Fig 12.14. Note
that since mergeInPlace is called from msort, and since msort is working on a
part of the list, mergeInPlace will also need to know on what part of the list it
is working. Therefore, mergeInPlace will need a second parameter, end, which
is the index of the last value in the part of the list being considered.

This completes our discussion of the MergeSort algorithm. For long lists
it is significantly faster than both SelectionSort and InsertionSort. However, a
detailed analysis and explanation of the efficiency of MergeSort is beyond the
scope of this book.

12.2.5 Exercises

1. Show which positions are swapped on each iteration of the main loop in
the SelectionSort algorithm when sorting the list shown below:
[5, 4, 2, 4, 3, 1]

2. Show a diagram similar to Fig 12.4 showing how the SelectionSort algo-
rithm sorts the list shown below:
[5, 4, 2, 4, 3, 1]

3. In the SelectionSort algorithm shown in Fig 12.5 there is a private helper
method, posSmallest(List,int). That method has a loop in which it
compares two elements in the List being sorted. How many comparisons,
total, are made if the size of the List, n, is:

(a) n = 4

(b) n = 5

310 CHAPTER 12. ALGORITHMS: SORTING AND SEARCHING

0 1 2 3

20 18 19 14

sort(0,3)

mid = 1

sort(0,1): left half

0 1

20 18

mid = 0

sort(0,0): left half

sort(1,1): right half

merge(0,1)0 1

18 20

sort(2,3): right half2 3

19 14

mid = 2

sort(2,2): left half

sort(3,3): right half

merge(2,3)2 3

14 19

merge(0,3)

0 1 2 3

14 18 19 20

Figure 12.13: Merge sort algorithm, on a list of size 4

12.2. SORTING A LIST 311

// sort increasing, using mergeSort algorithm

public void sort (List <E> list)

{ this.list = list;

msort (0, list.size()-1);

}

// Recursive helper method

// Sort the portion of the list beginning at start

// and ending at end.

private void msort (int start, int end)

{ if (end-start < 1) // base case, size = 1

return;

if (end-start < 2) // base case, size = 2

if (list.get(start).compareTo(list.get(end)) > 0)

{ swap (start,end);

return;

}

int m = (start+end) / 2; // midpoint

msort(start,m); // sort left half

msort(m+1,end); // sort right half

mergeInPlace(start,end); // merge the two halves

}

private void mergeInPlace (int start, int end)

{ int m = (start+end)/2;

int ndx1 = start, ndx2 = m+1;

while (ndx1<=m && m<end)

{ if (list.get(ndx1).compareTo(list.get(ndx2)) <= 0)

ndx1++;

else

{ E value = list.get(ndx2);

for (int i=ndx2; i>ndx1; i--)

list.set(i, list.get(i-1)); // shift for insert

list.set(ndx1, value);

ndx1++;

ndx2++;

m++;

}

}

}

Figure 12.14: Method to sort a list using the MergeSort algorithm; mergeInPlace
now requires two parameters.

312 CHAPTER 12. ALGORITHMS: SORTING AND SEARCHING

(c) n = 6

(d) n = 1000

(e) n

4. Show an implementation of the SelectionSort algorithm which operates on
an array of ints rather than a List of Integers.

5. Show an implementation of the SelectionSort algorithm which operates on
a List of Strings rather than a List of Integers.

6. If you are familiar with generic types in java, and typed classes, rewrite
the sort method in Fig 12.5 assuming that it is in a class with generic type
E. The E represents any class which implements the Comparable interface.

public class Sort<E extends Comparable>

7. Refer to the InsertionSort algorithm. Given the List shown below, show
the position at which each value at position p is inserted as p is incre-
mented from 1 through 8:
[9, 12, 4, 6, 9, 2, 0, 8, 1]

8. Show a diagram, similar to Fig 12.6, showing how the List given below is
sorted by the InsertionSort algorithm:
[9, 12, 4, 6, 9, 2, 0, 8, 1]

9. In the InsertionSort algorithm shown in Fig 12.7 there is a a call to the
set method on the List being sorted:
list.set(j,list.get(j-1)).
in the inner loop. How many times is that set method called for a List
(initially in descending order) of size:

(a) 3

(b) 4

(c) 5

(d) 1000

(e) n

10. Show an implementation of the InsertionSort algorithm which operates on
an array of ints rather than a List of Integers.

11. Show an implementation of the InsertionSort algorithm which operates on
a List of Strings rather than a List of Integers.

12. If you are familiar with generic types in java, and typed classes, rewrite
the sort method in Fig 12.7 assuming that it is in a class with generic type
E. The E represents any class which implements the Comparable interface.

public class Sort<E extends Comparable>

12.2. SORTING A LIST 313

13. The private helper method, msort in the MergeSort algorithm shown in
Fig 12.14 is a recursive method, with parameters start and end. Show
the parameter values and the value computed for the local variable m on
each call to msort for the List [9,2,8,3,0,7,5]

14. The private helper method, msort in the MergeSort algorithm shown in
Fig 12.14 is a recursive method. How many times is that method called
for a List of size:

(a) 7

(b) 15

(c) 31

(d) n

15. Show an implementation of the MergeSort algorithm which operates on
an array of ints rather than a List of Integers.

16. Show an implementation of the MergeSort algorithm which operates on a
List of Strings rather than a List of Integers.

17. If you are familiar with generic types in java, and typed classes, rewrite the
sort method in Fig 12.14 assuming that it is in a class with generic type
E. The E represents any class which implements the Comparable interface.
public class Sort<E extends Comparable>

Glossary

! - Logical NOT operator

& - Bitwise AND operator

&& - Logical AND operator

| - Bitwise OR operator

|| - Logical OR operator

˜ - Bitwise NOT operator

abstract - Having no evident details; non-concrete

abstract class - A class which has one or more abstract methods, and
cannot be instantiated

abstract data type - A collection of data with associated operations; ADT

abstract method - A method which has no body and must be defined in
a subclass

abstraction - The process of separting ideas from specific instances of those
ideas

access mode - A specification of which classes can refer to a particular
class, method or variable: public, [default], protected, and private

accessor method - A method with the purpose of obtaining the value of a
particular field

Action - A class which is capable of generating an event in a GUI

ActionListener - An interface for the handling of actions, such as a button
click or menu selection, in a GUI

actionPerformed - A method in the ActionListener interface which handles
actions

actual parameter - A parameter value to be passed to a called method

ADT - Abstract data type

algorithm - A well-defined sequence of steps to solve a given problem, which
terminates with a correct solution

314

Glossary 315

AND - A boolean operation which results in true only if both operands are
true

ArrayList - A List which can efficiently get and set a value at a particular
position, or index

ASCII - American Standard Code for Information Interchange

American Standard Code for Information Interchange - An 8-bit
numeric code for each character; a subset of Unicode

API - Application Program Interface

application program interface - The information needed to use an entity,
such as a class, package, or program; API

ArithmeicException - An Exception indicating that a non-valid arith-
metic operation, such as a division by zero, has occurred at run time

array - A homogeneous collection of values which is mapped directly to the
computer’s main memory

assertion - A statement of the program’s current state, at run time, for
purposes of verification

assignment - The binding of a data value with a variable

awt - Abstract window toolkit; package used for graphics applications

BigNumber ADT - An ADT for whole numbers with unlimited magnitude

binary search - A search algorithm in which the number of values which
need to be examined is proporitional to the the logarithm of the size of the
collection being searched; a fast search algorithm

BinaryTree - A Tree in which each value has two children

bit - A binary 0 or 1; a binary digit

BlueJ - An IDE used to develop java software

BorderLayout - A LayoutManager with five regions: NORTH, SOUTH,
EAST, WEST, and CENTER

Byte - Wrapper class for the primitive type byte

byte - A data type for whole numbers using 8-bit two’s complement repre-
sentation

byte - 8 bits

boolean - A data type with only two possible values: true and false

Boolean - Wrapper class for the primitive type boolean

catch - The process of handling a thrown Exception

central processing unit - That portion of the computer’s hardware which
is capable of performing calculations and making decisions; CPU

316 Glossary

char - A data type for characters, such as those on the keyboard, using
ASCII

Character - Wrapper class for the primitive type char

checked Exception - An Exception which must either be caught (in a
try/catch statement) or declared to be throwbn

class - A template defining the composition of a data object

ClassCastException - An Exception indicating that a reference is not
being casted correctly at run time, to a subclass or subtype

class method - A (static) method which applies to a class

class variable - A (static) variable shared by all objects of a class

client - Software needing services from other software

close (a file) - Discontinue use of, or relinquish access to, a file which has
been opened

collection - An object consisting of a variable number of objects

command line - A user interface in which words are typed on a keyboard
for input

comment - A programmer-supplied description, ignored by the compiler

compile-time error - An error in a program which is detected by the
compiler

compiler - A program which translates a program written in a high-level
language to an equivalent program in machine language

Component (graphics) - A graphical entity, or Container, which may be
included in a Container

compound statement - A block of statements enclosed in curly braces

concrete - Having exposed implementation details; not abstract

ConcurrentModificationException - An Exception indicating that a
value in a collection is being changed as an iteration through the collection
is occurring

console application - A program in which the user interacts with a key-
board and text display

constant - A data value supplied by the programmer

Container - An awt class which enables storage of multiple components
and/or containers

contentPane - A Container for the components of a JFrame

control structure - A programming construct enabling an altered flow of
execution

Glossary 317

constructor - A method used to initialize the fields of an object when it is
created

CPU - Central processing unit

data file - Information stored on a secondary storage device, such as disk
or flash memory

De Morgan’s Laws - Boolean identities: The negation of a conjunction is
the same as the disjunction of the negations; The negation of a disjunction is
the same as the conjunction of the negations

declaration - A definition of a variable or method

[default] access - Access is permitted from any class in the same package

double - A data type for numbers using 64-bit floating point representation

Double - Wrapper class for the primitive type double

do while statement - An iteration structure which does not specify the
number of times the loop body is to be executed; a post-test loop

duplicated code - Program code which is duplicated verbatim in several
places in a program

dynamic method lookup - The process of determining which of several
functions having the same name is being called, at run time

Event - A state caused by an external action such as mouse move or key-
board entry

Exception - A class which is used to manage errors or other unexpected
occurrences at run time

expression - A variable, a constant, or an operation on two expressions

extends - Specification of a subclass relationship

extremum problem - The problem of finding a minimum or maximum
value in a collection of values

field - A data value belonging to an object (non-static)

FileReader - A class in the java.io package enabling input from a data file

FileWriter - A class in the java.io package enabling output to a data file

final - Cannot be changed as the program executes

finally - A clause in a try/catch statement which allows the handling of an
Exception when no specified catches apply

file - Data stored on a secondary storage device, such as disk or flash memory

float - A data type for numbers using 32-bit floating pointrepresentation

Float - Wrapper class for the primitive type float

318 Glossary

floating point - A approximate data representation for numbers which need
not be whole numbers, and which may be very large, or very close to 0

FlowLayout - A LayoutManager which arranges components from one row
to the next in available space

for statement - An iteration structure defining the number of times the
loop body is to be repeated

for-each statement - An iteration structure associated with a collection

formal parameter - A parameter in a method declaration

Frame - See JFrame

free format - A lexical property: white space is ignored by the compiler

generic type - A variable type to be filled in at compile time

get - The operation of obtaining a value from a collection or Map

graphical user interface - A user interface in which icons, and other
images on a display, and mouse or touchpad are used to interact with a program

GridLayout - A LayoutManager in which components are arranged in rows
and columns

GridWorld - Case study developed by the Educational Testing Service for
the Computer Science Advanced Placement course

GUI - Graphical User Interface

has-a - Composition relationshp; field within a class

HashMap - An implementation of the Map interface using a HashTable

HashSet - A Set implemented with a HashTable

HashTable - A structure storing many values enabling quick access

heuristic - A series of steps which attempts to solve a given problem but
which may terminate with an incorrect, or approximate, solution

high-level language - A language such as Java which enables humans to
develop software; a programmming language

IDE - interactive development environment

if statement - A one-way selection structure

if-else statement - A two-way selection structure

implements - Specification of a (java) interface to be implemented

IndexOutOfBoundsException - An Exception indicating a non-valid po-
sition being accessed in a collection

inheritance - The establishment of a class hierarcy resulting from a subclass-
superclass relationship

Glossary 319

initialization - The assignment of a value to a variable when it is first
declared

input - Data supplied by the user of a program

instance (of a class) - An object

instance method - A (non-static) method which applies to an object

instance variable - A variable owned by a particular object

interactive development environment - software used to edit, compile,
and test programs being developed

instantiate - To create an object, or instance, of a particular class

int - A data type for whole numbers using 32-bit two’s complement repre-
sentation

Integer - Wrapper class for the primitive type int

interface - An adapting layer between two or more entities (see applicaton
program interface, java interface, and user interface

IO - Input and output

IOException - An Exception involving input and/or output; checked

is-a relationship - Subclass relationship

iteration structure - A selection structure permitting repeated exection
of a statement; a loop

Iterator - A class which enables access to each of the elements of a Collec-
tion; also enables selective removal of values from a Collection

java - A high level programming language developed by Sun Microsystems,
later acquired by the Oracle corporation; a command to execute a compiled java
program

javac - A command to compile a java program

java interface - Specification of operations on data

JFrame - A swing class defining an application’s extent and components

KeyListener - A class which can handle keyboard events in a GUI

LayoutManager - Class in awt which automatically arranges the compo-
nents in a Container

LinkedList - A List which can change size efficiently (insert and/or remove
values)

List - A Collection in which order is maintained, and duplicate values are
permitted

Listener - A class which is capable of reacting to an event in a GUI

320 Glossary

long - A data type for whole numbers using 64-bit two’s complement rep-
resentation

Long - Wrapper class for the primitive type long

loop - An iteration structure

loop body - The statement to be executed repeatedly in a loop

machine language - The language of binary coded instructions which can
executed by the CPU

main - Name of the starting method for a program

Map - An interface defining an ADT for quick access to values using asso-
ciated (unique) keys

method - A programmer-defined operation to be performed on an object
or class

method abstraction - The ability to see the important aspects of a method,
without being exposed to its underlying detailed code, which may involve calls
to other methods

MouseListner - A class which can listen for Mouse events, such as move-
ment, click buttonDown, in a GUI

multiline comment - A comment initiated with /* and ended with */

multiple inheritance - The ability, or property, that a class may have more
than one superclass

mutator method - A method with the purpose of changing the value of a
particular field

MyFloat ADT - An ADT (designed for this textbook) which mimics float-
ing point data types and is capable of doing arithmetic

nested loop - A loop defined to be entirely in the loop body of another
loop

NOT - A boolean operation which results in the logical complement of its
operand

NullPointerException - An Exception caused by the dereferencing of a
null reference

object - Data values in memory with a predetermined structure; an instance
of a class

object diagram - A drawn diagram depicting the fields of an object, and
their current values

one-way selection - A selection structure with only one possible choice of
execution paths; an if statement

Glossary 321

open (a file) - Determine correct access to a file and prepare for input
and/or output

operation - A calculation on one or two data values, producing a new data
value, with possible side effects

OR - A boolean operation which results in false only if both operands are
false

output - Data produced by a program for a user

overriding methods - The process of redefining a method from a superclass

package - A group of associated classes

parameter - A variable used to send information to a method

pixel - One of the small dots making up an image; a picture element

post-test loop - An iteration structure in which the loop body is executed
once before the termination condition is tested

polymorphism - The capability of exhibiting different behaviors at run
time, generally enabled by inheritance

pre-test loop - An iteration structure in which the termination condition
is tested before the first execution of the loop body

primitive type - A data type included in the java programming language

program - A sequence of binary coded instructions in the computer’s mem-
ory

programming language - A language such as Java which enables humans
to develop software; a high-level language

protected - Access is permitted from any subclass or any class in the same
package

private - Access is not permitted from any other class

program - A sequence of binary coded instructions stored in the computer’s
memory

public - Access is permitted from any class

public static void main - Specification of the starting method for a pro-
gram

put - The operation of adding a value to a HashTable or Map

Rational ADT - An ADT which can do arithmetic with non-whole numbers

recursive method - A method which calls itself

reference - The memory location of a data object

reference type - A data type defined by a class

return type - The type of data to be returned by a method

322 Glossary

return statement - A statement intended to terminate the execution of a
method, with a possible value to be sent to the calling method

run time - The execution of a program, as opposed to the compilation

run-time error - An error in a machine language error, detected when the
program is executing

RunTimeException - An Exception which the programmer may ignore;
unchecked

Scanner - A class in the java.util package used for input, pattern recogni-
tion, etc.

scope (of a variable) - The range of statements over which a variable has
meaning

search - The problem of finding a given target value in a collection of values

selection structure - A programming construct enabling a program to take
one of a few possible execution paths

sequential search - A search algorithm which examines all elements of
a collection until the desired value is found, or determined not to be in the
collection

server - Software providing data or computation for other software

Set - A Collection in which ordering of the values is not required, and in
which there are no duplicates

set - The operaion of changing a value in a collection

short - A data type for whole numbers using 16-bit two’s complement rep-
resentation

Short - Wrapper class for the primitive type short

short circuit evaluation - An optimization of a selection structure result-
ing from the evaluation of a single operand

side effect - A change in a program’s state, or output, resulting from an
operation

signature - The part of a method defining the access mode, return type,
method name, and parameter list

single line comment - A comment initiated with // and ended at line-end

sorting - The process of arranging the values in a collection in ascending
(or descending) order

statement - An assignment operation, or method call, followed by a semi-
colon, a selection statement, a loop statement, or a compound statement

static - Describing a field or method which applies to a class, not an object

static field - A data value belonging to a class; a class variable

Glossary 323

static method - A method invoked on a class; a class method

stderr - Standard error file; defaults to the user’s console display

stdin - Standard input file; defaults to the user’s keyboard

stdout - Standard output file; defaults to the user’s console display

String - A class in the java.lang package containing operations on strings

string - Data consisting of a sequence of characters

swing - An updated package for graphics; in javax

TextListener - A class which can handle text entry from the keyboard in
a GUI

throw - A statement which interrupts execution to indicate that an Excep-
tion has occurred at run time

toString() - A standard method used to convert a data object to a String
representation

Tree - A storage structure in which each value is associated with other
values, called the ’children’

TreeMap - An implementation of the Map interface using a BinaryTree

TreeSet - A Set implemented with a BinaryTree, in which natural ordering
of the values is maintained

try - A statement which enables a thrown Exception to be handled at run
time

type - classification of data, such as int, char, String, ...

two’s complement - A binary representation system for negative, as well
as positive, whole numbers

two-way selection - A selection structure with a choice of two possible
execution paths; an if - else statement

type conversion - The transformation of a data value to a different type

user interface - Hardware and/or software used for human interaction with
a device or program

variable - A name representing a memory storage location for a primitive
value or a reference to a data object

visibility - Accessibility in a class

void method - No value is to be returned

while statement - An iteratioon structure which does not specify the num-
ber of times the loop body is to be executed; a pre-test loop

wrapper class - A predefined class in the java.lang package whose objects
store only the value of a particular primitive type

Index

−−, autodecrement, 85
++, autoincrement, 85

abs methods, 44
absolute value, 44
abstract class, 168
abstract data types, 265
abstract methods, 167
abstraction, 138
abstraction, of methods, 140
abstraction, of Objects, 143
ActionCmd() in a GUI, 256
ActionEvent

in a GUI, 256
ActionListener

for menu items, 261
in a GUI, 256

actions
in a GUI, 255

ADT
BigNumber, 280
MyFloat, 272
Rational, 266

ADT, abstract data type, 265
algorithm, 291

binary search, 292
sequential search, 181
sorting, 297

ambiguous definition, of expressions, 33
AND operator, 53
API, 12
ArithmeticException, 211
ArrayList, 98
ArrayList accessing values, changing val-

ues, 102
ArrayList vs. LinkedList, efficiency, 198

ArrayList, adding and inserting values,
99

ArrayList, Declaration, 98
ArrayList, empty?, 105
ArrayList, obtaining the size, 104
ArrayList, printing, 105
ArrayList, selective removal, 118
ArrayList, set method, 102
ArrayLists

of primitives, 103
arrays, 121

contrasted with lists, 121
arrays, accessing values, 122
arrays, creation, 122
arrays, initialization, 123
arrays, storing values, 122
assertions, 207
assertions, enable/disable, 209
assigning values to variables (inheritance),

155
assignment operator, 35
assignment, of references, 38
auto-boxing, 103
auto-unboxing, 103
autodecrement, 85
autoincrement, 85
awt

GUI package, 241

behavior of an object, 7
BigNumber

negate, 284
normal form, 284
tens complement representation, 282

BigNumber ADT, 280
binary search algorithm, 292
bit, 3

324

INDEX 325

BlueJ, 17
codePad, 20

boolean, 24
boolean operators, 53
BorderLayout

layout manager, 249
breakpoint, with debuggers, 224
Button

see JButton, 245

(cast), 156
cast, to subclass, 156
catching, or handling exceptions, try/catch,

214
Central Processing Unit, 2
char, 25
checked exceptions, 215
class, 7
class constants, 48
class hierarchy, 148
class library, 98
class variables (static), 48
class, abstract, 168
class, defining, 9
ClassCastException, 157, 211
client/server, 206
closing, data files, 232, 233
codepad, of BlueJ, 20
collections, 97

polymorphism, 162
collections, of primitives, 103
command line invocation of a program,

234
comments, 50
compareTo, method for comparing ob-

jects, 74
comparison operators, 52
comparison, of Strings, 74
comparisons, of objects, 73
compile, 17
compile-time error, 2
compiler, 2
compiling, from command line, 235
components, in a JFrame, 245
compound statements, 66
Computer Science, 1

concatenation of strings, pitfall, 165
concatenation, of Strings, 29
ConcurrentModificationException, 211
conditional commands, in a debugger,

224
conditional statements, 52
constructor, 14
constructors, of subclasses, 153
containers, nested (for a GUI), 250
containsKey() method, for maps, 183
ContentPane

JFrame, 243
ContentPane, for GUI, 242
continue, execution in a debugger, 224
counter controlled loop, 86
counter-controlled loops, 85
CPU, 2

dangling ’else’ ambiguity, 62
data file, input, 231
data files, 230
data files, closing, 232, 233
data files, opening, 231
data files, output, 232
data types, 22
data types, primitive, 22
data types, reference, 22
De Morgan’s Laws, 56
debugger, 19, 211
debuggers, 223
debugging, with print statements, 225
double, 23
duplicated code, 138
duplicated code, elimination using in-

heritance, 148
dynamic methos look-up, 160
dynamic type, 156

encapsulation, of Objects, 143
engine, distinguished from user inter-

face, 257
equals (Object), for sets, 111
Error, java system error, 215
event, package in java.awt, 256
Exception classes, 215

326 INDEX

Exception classes, defining or extend-
ing, 218

exceptions, 205, 210
exceptions, handling, 213
exceptions, instantiating, 212
exceptions, throwing from a server method,

212
exponent calculation, 44
exponent notation, 23
expression, recursive definition, 32
expressions, arithmetic, 30
expressions, structure, 32
extrema problems, 114

field, 9
FileWriter, 232
FileWriter, data file for output, 231
final variables, 48
float, 23
floating point ADT, 272
floating point, inadequacies , 265
FlowLayout

layout manager, 247
for and shile loop, equivalence, 89
for loop, 86
for loop, example, 86
for statement, 85
for-each iteration, 113
formatting a program, 49
Frame

see JFrame, 242

get a value, from a Map, 183
graphical user interface, GUI, 240
GridLayout

layout manager, 247
GUI

actions, listeners, 255
awt and swing packages, 241
example, University Information Sys-

tem, 257
example: University Information

System, 251
JMenuBar, 259
menu items, 259
menus, 259

GUI design, 244
GUI, graphical user interface, 240

has-a, relationship, composition, 149
hashCode()

for HashSet and HashMap, 191
hashCode(), for sets, 111
HashMap, 189

object diagram, 184
required methods for keys, 192
see Map, 184

HashSet, 109, 190
required methods, 192

HashSet, iterating through, 113
HashSet, printing , 111
HashSet, selective removal, 118
hasNext() method, Iterator, 118
heuristic, 291
high-level language, 2

I/O, for console applications, 226
IDE, 16
if statements, 58
if-else statements, 60
IllegalArgumentException, 211
image, 4
import, 98
IndexOutOfBoundsException, 211
infinite loops, 83
inheritance, 145
inheritance, assigning values to vari-

ables, 155
inheritance, multiple, 171
inheritance, summary, 157
initialization, of arrays, 123
input and output, 226
input file, stdin, 229
input, from data file, 231
input, using Scanner, 229
insertion sort algorithm, 298
instantiation

of maps, 189
instantiation, of a class, 19
int, 23
Integer wrapper class, 104
Integer.MAX VALUE, 104

INDEX 327

Integer.MIN VALUE, 104
interface, java, 170
interface, user-to-computer, 240
interfaces, from the java class library,

173
io files, standard, 226
io, java.io package, 231
IOException, 231
is-a, relationship, inheritance, 149
isEmpty, List, 105
iterating through a Set, 113
iteration, 80

with lists, 107
Iterator, 117

hasNext() method, 118
instantiation, 118
next() method, 118
remove() method, 118

iterator() method call, 118

java.util package, 98
javadoc, 12
JButton

swing component, 245
JFrame

adding components, 245
ContentPane, 243
Label, 243
layout managers, 246
makeFrame(), 242
setSize(), 243
setVisible(), 242
swing class for GUI, 242

Jmenu
adding to a JMenuBar, 259
in a GUI, 259

JMenuBar
in a GUI, 259

JMenuItem
enabling/disabling, 260
listener, 261

JmenuItem
adding to a JMenuBar, 259
in a GUI, 259

JPanel
component container in swing, 247

kernel
see engine, 257

KeyListener
in a GUI, 256

keys, for maps, 182
keySet() method, for maps, 184

Label
JFrame, 243

layout managers
BorderLayout, 249
FlowLayout, 247
for a JFrame, 246
GridLayout, 247

LinkedList, 198
LinkedList vs. ArrayList, efficiency, 198
List accessing values, changing values,

102
List, adding and inserting values, 99
List, empty?, 105
List, get method, 102
List, obtaining the size, 104
List, printing, 105
List, selective removal, 118
listeners

ActionListener in a GUI, 256
in a GUI, 255
in java.awt, 256
KeyListener in a GUI, 256
MouseListener in a GUI, 256
registered with a component, 256
registered with components in a

GUI, 257
TextListener in a GUI, 256

listeners, for JMenuItem, 261
lists, 97

contrasted with arrays, 121
iterating through, 107
of primitives, 103

Lists, removal of a value, 104
loooping

with lists, 107
loops, 52, 80

infinite, 83
nested, 91

328 INDEX

machine language, 2
main method, declaration, 235
makeFrame(), JFrame, 242
Map, 182

containsKey() method, 183
examples of usage, 187
get a value from, using a key, 183
object diagram, 184

maps
instantiation, 189
keys, 182
keySet() method, 184
operations, 183
removing an entry from, 183

Math class, 44
MAX VALUE, in Integer class, 104
maxima problems, 114
Menu

see JMenu, 259
MenuBar

see JMenuBar, 259
MenuItem

see JMenuItem, 259
menus

example - University Information
System, 261

in a GUI, 259
menus, nested, 260
merge algorithm, 302
merge in place algorithm, 303
merge sort algorithm, 302, 306
method abstraction, 140
method body, 41
method definitions, 40
method invocation (call), 42
method parameters, 12, 41
method signature, 41
methods, 11, 40
methods, abstract, 167
methods, recursive, 70
MIN VALUE, in Integer class, 104
minima problems, 114
modulus, 28
MouseListener

in a GUI, 256
multiple inheritance, 171

MyFloat
normal form, 273

MyFloat ADT, 272

next() method, Iterator, 118
normal form

BigNumber, 284
MyFloat, 273
Rational, 267

NOT operator, 53
NullPointerException, 210
nullPointerException, 42

object, 7
Object abstraction, 143
Object class, overriding methods, 164
object diagram, 7, 9, 11
Object encapsulation, 143
object types, 22
object, behavior, 7
object, state, 7
open, data file, 231
operations, 28
operations, on Strings, 28
operations, precedence rules, 33
operators, boolean, 53
operators, for comparing values, 52
OR operator, 53
output (to stdout), 46
output, for console applications, 226,

228
output, to data files, 232
overriding methods, from Object, 164

package, java.util, 98
packages, 98
Panel

see JPanel, 247
parameter passing, in method calls, 42
parameters, of a method, 12
pixel, 4
polymorphism, 160, 161
polymorphism, with collections, 162
pow method, 44
precedence rules, arithmetic operations,

33

INDEX 329

pretest loop, 80
prime numbers, 95
print, 46
print statements, used for debugging,

225
printing a List, 105
printing a Set, 111
program, 2
program startup, from command line,

234
programming language, 2
public static void main, 235
put operation, on maps, 183

random number, in Math class, 44
Rational

normal form, 267
Rational ADT, 266
readability, of programs, 49
recursive methods, 70
reference, 8
reference types, 22
removal of a value from a list, 104
removal, selective, from collections, 118
remove() method, Iterator, 118
removing an entry from a Map, 183
repetition, of statements, 80
run-time error, 2

Scanner, 229, 231
scope, of variables, 67
search

binary, 292
search, sequential, 181
searching a Map, 183
selection sort, 298
selection structures, 52
selection structures, one-way, 58
selection structures, two-way, 60
selective removal, from collections, 118
sequential search, 181
server method, throwing an Exception,

212
server, client/server, 206
Set, 109
Set, iterating through, 113

Set, object diagram, 110
Set, printing , 111
Set, selective removal, 118
setVisible(), JFrame, 242
signature, method, 11
size

JFrame, 243
size of a List, 104
software engineering, 137
sort algorith, MergeSort, 302, 306
sorting a list, 297
sorting a list, insertion sort algorithm,

298
sorting a list, selection sort, 298
sound, 4
sqrt - square root, 44
standard io files, 226
state of an object, 7
statement, 36
statement, definition, 68
statement, formal definition, 93
static type, 156
static variables, 48
stderr, standard error file, 227, 228
stdin, standard input file, 226, 229
stdout, standard output file, 227, 228
step backwards, in a debugger, 224
step over vs. step into, with debuggers,

223
String, 25
String comparison, 74
String operations, 28
subclass, 149
subclass constructors, 153
subclass, casting, 156
super(), call to constructor in a super-

class, 154
superclass, 149
swing

update for awt package, 241

tens complement, for BigNumber, 282
terminal window, BlueJ, 19
TextListener

in a GUI, 256
this, keyword, 14

330 INDEX

throw, Exception, 210, 212
Throwable, 215
throwing an Exception from a server

method, 212
throws, keyword, 212
toString(), automatically called, 165
toString(), failure to override, 166
toString(), overriding, 164
TreeMap, 197
TreeSet, 195
try/catch, 214
two’s complement, 3
twos complement representation, 23
type, 10

dynamic, 156
static, 156

type conversion, 37

unchecked exceptions, 215
University Information System, GUI ex-

ample, 251
user interface, graphical, 240

variable, 8
variable scope, 67
variables, 34

declaration, 35
initialization, 35

variables, class (static), 48
vector product, 124
void methods, 12

watch variables, with debuggers, 224
while and for loop, equivalence, 89
while statement, 80
wrapper classes, 103

	Introduction to Computer Science with Java Programming
	Let us know how access to this document benefits you - share your thoughts on our feedback form.
	Recommended Citation

	Preface
	Computers and Computer Programs
	The CPU and machine language
	High level languages and compilers
	Data representation: bits and bytes
	Whole numbers
	Other numbers
	Characters
	Images
	Sound
	Exercises

	Java classes, objects, object diagrams and methods
	Classes and objects
	Exercises

	Variables and references
	Exercises

	Defining a Java class
	Exercises

	Object diagrams
	Methods
	Exercises

	Constructors and object creation
	Exercises

	Getting started: IDE or command line
	Using an IDE
	The BlueJ IDE
	Exercises

	Constructors and objects in the GridWorld case study
	Projects

	Program Elements and Methods (revisited)
	Data types
	Whole numbers: int
	Other numbers: float and double
	Logical values: boolean
	Character values: char
	Strings of characters: String
	Other reference types
	Exercises

	Operations and expressions
	Arithmetic operations
	String operations
	Arithmetic Expressions
	Exercises

	 Declaration and initialization of variables
	Declaration of variables
	Iniitialization of variables
	Exercises

	Assignment of values to variables
	Type conversion in assignments
	Type conversions and initializations
	Assignment of references
	Exercises

	 Method definitions, signatures, and invocation
	Method definition
	Method signature and body
	Method invocation
	Methods From the Java Class Library
	Exercises

	 Recursive methods
	Exercises

	Printing the output
	Exercises

	Constants and class variables
	Constants
	Class variables
	Class constants
	Exercises

	Comments and readability
	Formatting a program
	Comments
	Exercises

	 Program elements and methods in the GridWorld case study

	Selection Structures
	Comparison operators
	Exercises

	Boolean operators
	AND, OR, NOT
	Short circuit evaluation
	De Morgan's Laws
	Exercises

	One-way selections
	Exercises

	Two-way selections
	Exercises

	Compound statements and scope
	Compound statements
	Scope of variables
	Java statements - revisiting a formal definition
	Exercises

	Recursive methods revisited
	Exercises

	Comparing Strings and other reference types
	Comparison for equality or inequality
	Ordered comparisons
	Exercises

	 Selection structures in the GridWorld case study
	Projects

	Iteration Structures
	Looping with while– pre-test loops
	Infinite loops
	Exercises

	Looping with for – counter-controlled loops
	Autoincrement and autodecrement
	The for loop
	Exercises

	Equivalence of while and for loops
	Exercises

	Nested loops
	Exercises

	Definition of Statement - updated
	Exercises

	Iterations in the GridWorld case study
	Projects

	Collections, and Iteration Revisited
	 Lists
	Java packages and java.util
	ArrayList
	Exercises

	 Iteration revisited, with lists
	Exercises

	 Sets
	Exercises

	 Iteration through a collection with for-each, and extrema problems
	Iteration through a collection with for-each
	Extrema problems
	Exercises

	 Iterators and selective removal from a collection
	Iterators
	Selective removal
	Exercises

	Arrays
	Initialization of arrays
	Passing arrays as parameters
	Vector product of numeric arrays
	Exercises

	Matrices: Two Dimensional Arrays
	Examples of Matrix Arithmetic
	Exercises

	Collections in the GridWorld case study
	Projects

	Abstraction, Inheritance, and Polymorphism
	Software engineering
	Abstraction
	Duplicated code
	Method abstraction
	Object abstraction and encapsulation
	Exercises

	 Inheritance
	Is-a versus Has-a
	Factoring duplicated code and defining subclasses
	Making use of inheritance
	Exercises

	Polymorphism and dynamic method look-up
	Dynamic method look-up
	Polymorphism
	Exercises

	Overriding methods from the Object class
	Overriding the toString() method
	Exercises

	 Abstract methods and classes
	Abstract methods
	Abstract classes
	Exercises

	Java Interfaces
	The need for Java interfaces – multiple inheritance
	Interfaces which we've already been using
	Exercises

	Inheritance and Polymorphism in the GridWorld case study
	Projects

	Maps, Collections Revisited
	Fast look-up
	Exercises

	Sequential search
	Exercises

	Java maps
	Exercises

	Examples of methods which use maps
	Exercises

	Instantiating maps
	HashMap
	Exercises

	TreeMap and Collections revisited: TreeSet and LinkedList
	TreeSets
	TreeMaps
	LinkedList
	Exercises

	Projects

	Exceptions - Handling Errors
	Client/Server terminology
	Exercises

	Assertions
	Exercises

	Exceptions
	Run-time errors resulting in an Exception
	Throwing exceptions in a server method
	What to do when an Exception is thrown
	Handling exceptions with try/catch in a client method
	Defining your own Exception classes
	Exercises

	Debuggers
	Exercises

	Debugging with print statements
	Projects

	Console Applications – Input and Output
	Standard io files
	Exercises

	Output to stdout or stderr
	Output to stdout
	Output to stderr
	Exercises

	Input from stdin
	Exercises

	Data Files
	Opening a data file
	Input from Data Files
	Output to data files
	Exercises

	Running an Application from the Command Line
	Compile and Test from the Command Line
	public static void main (String [] args)
	Exercises

	Projects

	Graphical User Interfaces
	Packages java.awt and javax.swing
	Exercises

	Starting out: Frame and ContentPane
	Exercises

	Adding components to a container
	Designing the GUI
	Adding components
	Exercises

	Layout managers
	Flow Layout
	Grid Layout
	Border Layout
	Nested containers and summary of layout managers
	University Information System - version 1
	Exercises

	Actions and Listeners
	University Information System - version 2
	Exercises

	Menus
	Adding menus to the frame
	Listening for menu selection
	Menus for the University Information System - version 3
	Exercises

	Projects

	Abstract Data Types
	The Rational ADT
	Some problems with float and double
	Defining the Rational ADT
	Exercises

	MyFloat
	Constructor for MyFloat
	Arithmetic operations for MyFloat
	Exercises

	BigNumber
	Constructing BigNumbers
	Adding BigNumbers
	Subtracting BigNumbers
	Exercises

	Algorithms: Sorting and Searching
	Searching: Binary Search
	Exercises

	Sorting a list
	Rationale for Sorting
	Selection Sort Algorithm
	Insertion Sort Algorithm
	Merge Sort Algorithm
	Exercises

	Glossary

