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Assessing the Effectiveness of Shah’s Innovation Metrics for Measuring 

Innovative Design within a Virtual Design Space 

Abstract 

Epistemic games, such as the virtual engineering internship Nephrotex, allow students to explore 

creative ways to approaching engineering problems while providing a novel alternative to the 

direct transmission method of instruction. Within Nephrotex, students choose a polymer, 

manufacturing process, surfactant, and percentage of carbon nanotube to create a functioning 

kidney dialysis membrane prototype. The performance of the membrane is measured using cost, 

flux, blood cell reactivity, marketability, and reliability thresholds given by stakeholders within 

the fictitious company. Although Nephrotex has been shown to be a valuable educational tool for 

modeling the product design process, only limited work has been done to investigate whether it 

is capable of providing an environment that allows students to generate innovative designs.   

 

The innovation assessment framework of Shah and colleagues employs four metrics of 

innovation – novelty, variety, quality, and quantity; novelty is further divided into a priori and a 

posteriori metrics. This work found that a priori and a posteriori novelty, variety, and quality 

were applicable metrics of innovation in the epistemic game environment of Nephrotex. 

Literature ranges for a priori and a posteriori novelty scores aligned with those found in this 

study.  

 

Comparing prior work on Nephrotex that identified innovative student designs based on a 

proposed literature definition, it was found that the Shah metrics between the innovative and 

non-innovative groups showed little variation and no statistically significant differences. A t test 

and a Mann-Whitney U test showed no significant difference between innovative and non-

innovative groups with regard to variety or novelty scores; however, these tests did show a 

significant difference between groups with regards to the quality score. The same results were 

found when calculating Cohen’s Effect Size – a priori novelty, a posteriori novelty, and variety 

had a small effect when comparisons were made between the innovative and non-innovative 

groups while quality had a large effect. The significant difference and large effect in regards to 

quality however, may be the result of the previous literature definition which employed quality 

as a measure to define innovation. Results from this study demonstrate that novelty is perhaps 

the most aligned innovation metric for an epistemic game environment and that both variety and 

quality can be helpful in understanding the designs generated within these contexts although they 

may need adjustment based on the application to a constrained design space. 

Introduction 

Upon completion of their degree, engineers should have the ability to design effective solutions 

to meet social needs and as such should be able to connect creativity with technical skills when 

approaching design problems [1].  The design process requires creativity and innovative thought. 

These qualities cannot be standardized which is why classes that prepare students just to succeed 

on exams are not the best route to enhance these skills [2]. Innovation is the act or process of 

introducing a new idea, device, or method that creates value [3]. Creativity is harder to define. 

Creative products are not universally judged as such by all experts, and creativity is different for 



different people across domains [4]. A consensual blueprint or formula for producing creative, 

innovative products does not exist, making creativity a difficult subject to teach students. 

However, there are aspects of creativity and innovation that can be measured in or taught to 

students such as attitudes about creativity and the process of product development [4]. 

 

Epistemic games are designed to be pedagogical tools for the digital age where players learn to 

think like professionals by playing a simulated game of their profession [5]. They have the 

ability to foster innovative thinking while teaching students about the process of product 

development. Epistemic games allow players to develop expertise by playing as novices training 

to be experts. Within this environment, novices receive explicit guidance from experts in the 

field helping them to acquire the knowledge, skills, values, and ways of thinking within their 

domain. Epistemic games lower the cost of failure by placing action in a simulated world and 

thus making it possible to learn innovation without the same level of risk that would exist in a 

work environment, to step into other cultural and intellectual settings in a guided and protected 

way, and thereby learn to think about issues that matter in a global economy by safely practicing 

in a virtual world [2]. 

 

Nephrotex is an epistemic game where students play as new hires for a fictitious medical device 

company. In the game, students design a dialyzer filtration membrane for a hemodialysis 

machine while trying to meet the requirements of the company’s internal consultants by using a 

software platform that allows them to enter in their design parameters, receive feedback on how 

their design performs and then iterate on this design process [5]. At the start of the internship, 

students take an entrance interview, create a staff biography page, review internal documents 

about hemodialysis, filtration membranes and diffusion, and summarize this information in their 

online engineering notebooks. After conducting background research, interns examine 

fictionalized company research reports based on experimental data with a variety of polymeric 

materials, chemical surfactants, carbon nanotube percentages, and manufacturing processes. 

After collecting and summarizing research data, interns begin the design process. First 

individually and then in teams, students develop hypotheses based on their research, test these 

hypotheses in the provided design space, and analyze the provided results. At the end of the 

internship, students present their work to their colleagues and “supervisors” via a poster 

presentation. The students’ supervisors are their professors and graduate teaching assistants. 

Nephrotex is a simulated design experience that uses a web-based PHP application and MYSQL 

database [5]. All activities are web-based, allowing students to access the game from any 

browser with internet capabilities. 

 

It is important when working with a novel pedagogical tool designed to teach students about 

product design, such as Nephrotex, to determine whether it is able to support students’ 

development of innovative designs.  In a prior study, it was shown that a set of rules could be 

constructed to discriminate between innovative and non-innovative designs within Nephrotex. 

Designs that were unique in terms of material selection with quality greater than the section 

average OR that were the highest scoring non-unique material, but unique in process, design OR 

achieved a “perfect” quality score of 18 were considered innovative [6]. The study concluded 



that students with more innovative designs were students who were exposed to external 

stakeholders in a focus group setting and reported spending more time on management tasks [6].  

Although the study by Markovetz et al. did provide some initial evidence to support the ability of 

Nephrotex to allow students to generate innovative designs [6], it was important to determine 

whether existing approaches to evaluate innovative design from pertinent design literature may 

also be applicable within the context of the Nephrotex environment.  

 

Nephrotex challenges students with a complex design problem and gives them a space to explore 

multiple solutions and design hypotheses to determine which solution optimizes the conditions 

that have been presented to them. It allows students to learn about the product design process 

while reducing risks and allowing students to fail without detrimental consequences. Most design 

literature shows different ways of measuring innovative solutions for simple problems, not the 

complex design problems brought forth within Nephrotex. Effectiveness of ideation can be 

measured in two ways according to Shah et al. – process based where the idea generation process 

is evaluated or outcome based where the product is evaluated [7].  

 

There have been some attempts to study ideation processes using process based models. Studies 

from an information processing point of view out of cognitive psychology have examined 

technological creativity and perception, specifically for design team activities. One example of 

this approach is when Ullman investigated the task-episode accumulation model (TEAM) of 

non-routine mechanical design through an analysis of audio and video protocols of five 

mechanical designers [8]. The components of this model were the design state, proposals, 

constraints, design operators, and episodes. The design state contains all information about the 

evolving design; proposals are alternative ways of achieving a goal; constraints are requirements 

for the design; operators are primitive information processes that modify the design state; and 

episodes are operators in a meaningful sequence. The TEAM includes ten operators – select, 

create, simulate, calculate, compare, accept, reject, suspend, patch, and refine – and six types of 

episodes – assimilate, document, plan, repair, specify, and verify – to create a picture of how 

mechanical design engineers of varying backgrounds and experience approach and solve design 

problems [8]. Another attempt to study ideation processes was the work done by Nagy, Ullman, 

and Dietterich who developed a data representation for collaborative mechanical design 

implemented in a computerized design history tool (DHT). This technique allows for the 

recording of design decisions, through collection of final specifications, alternatives considered 

during the design process, and designers’ rationale as part of the database. This data 

representation was developed based on the Issue Based Information System method and aims to 

address problems in managing design information for collaborative design projects, including 

conflicting design requirements, a loss of rationale and design assumptions, and a thin spread of 

application domain knowledge. The DHT could replace traditional methods of recording 

mechanical design information – design drawings, plans, and specification sheets – that do not 

represent the design process, and only record the end results of design decisions [9]. As Shah et 

al. noted in their work, these process based, cognitive theory approaches were derived either ad 

hoc or through controlled experiments that use simple tasks. The suitability of these models for 

design problems that are much more complex has never been investigated. This lack of 



investigation and difficulties met in process based measurements of ideation effectiveness led 

Shah et al. to consider outcome based metrics for their study of engineering design [7]. As such, 

Shah et al. developed a framework to measure ideation effectiveness in simple and complex 

design situations. 

 

Shah et al.’s framework includes metrics that measure the effectiveness of formal idea 

generation methods. The framework addresses that engineering design must be novel – unusual 

and unexpected – but also must satisfy some intended function or desired specification – have 

utility. The framework encompasses the rationale that engineering design is goal oriented 

because a designer’s success is judged by how well his or her design meets desired goals and 

how well he or she has identified the alternative ways of achieving those goals [7]. The 

framework developed by Shah et al. quantitatively measures innovation in student designs based 

on four metrics – novelty, variety, quality, and quantity. Shah’s measures are outcome based 

metrics with the premise that an idea generation method is considered effective if its use results 

in “good” ideas [7].  This framework has been utilized in a number of studies for the 

determination of innovative capacity within engineering design [10] [11] [12]. 

 

This work aimed to determine if designs produced in the simulated environment of Nephrotex 

were considered innovative based on the existing framework developed by Shah et al. This work 

did not aim to create a framework from scratch rather it was focused on determining if an 

existing ideation effectiveness framework from the design literature was applicable to an 

epistemic game environment.  This work also builds on a previous study completed by 

Markovetz et al. [6] and discusses whether Shah’s ideation effectiveness metrics can be used to 

distinguish between teams that were identified in the prior study to be innovative and non-

innovative.  

 

Research Questions 

This work evaluated Shah’s metrics for novelty, variety and quality based on students’ final 

designs and their final five prototypes submitted for testing.  More specifically, this study asks 

 How do engineering students’ designs produced from Nephrotex score on Shah’s quality, 

novelty, and variety metrics? 

 Is Shah’s framework able to distinguish between designs that were identified as 

innovative and non-innovative based on a literature definition of innovative design in an 

epistemic game environment? 

 

Methodology 

 

Participants  

During the spring 2014 and 2015 semesters, at a large research university, 286 sophomore-level 

chemical engineering students enrolled in an Introduction to Chemical Product Design course 

participated in Nephrotex.  Overall, a total of approximately 50 student teams of 5-6 students 

each took part in the epistemic game. 

 



Data Sources and Collection 

Throughout the design process, students were asked to document their work in online notebooks. 

Each week, students completed one to two notebook prompts, detailing information such as 

background research completed, internal consultants’ threshold demands, and prototype testing 

results. Prototype testing results consisted of students’ evaluation of their design prototype(s) 

relative to desired values by the internal/external consultants for product attributes including 

marketability, cost, reliability, blood cell reactivity, and flux. In this study, data returned from the 

testing of the groups’ final five prototypes and the final designs selected were collected via the 

online notebooks and analyzed using Shah et al.’s metrics for innovation. 

 

Application of Shah Metrics to Nephrotex 

It was determined that the quantity metric was not an applicable measure for this study because 

all students were required to submit the same number of designs. Therefore, this study adopted 

Shah’s novelty, variety, and quality metrics as a way to analyze student designs. These 

measurements were identified as applicable based on Shah et al.’s discussion of exploring and 

expanding the design space by the means of the quality, variety, and novelty metrics. This 

section will provide a brief overview of each of the metrics applied to the Nephrotex 

environment along with a sample calculation using data obtained from a selected Nephrotex 

team to illustrate how the calculations were conducted [7]. 

 

Novelty 

The novelty of a design is the measure of how “unexpected” an idea is compared to other ideas 

generated by groups working on the design problem. The novelty of an idea may be calculated 

by the following equation: 

𝑀1 = ∑ 𝑓𝑗
𝑚
𝑗=1 ∑ 𝑆1𝑗𝑘𝑝𝑘

𝑛
𝑘=1      (1) 

Where M1 is the overall novelty score for the idea which has m attributes at the nth stage of 

design. S1jk is the score assigned to each option for the j
th

 attribute considered in the k
th

 stage.   A 

stage weighting factor, pk, was set equal to 1 because only the embodiment design stage was 

considered.  As defined by Shah and colleagues, there are either conceptual or embodiment 

stages of design [7]. Conceptual stages require creative, divergent thinking and describe the 

movement between configuration space and concept space where iterations are made to create a 

working prototype with desired specifications [13]. Embodiment stages describe the 

identification of important physical and functional constraints from knowledge of the solution 

[14]. Within Nephrotex, groups have the option of selecting the polymer, process, surfactant, and 

carbon nanotube percentage for their final dialysis membrane design, hence m=4 attributes. Only 

the embodiment phase was considered in this study, making n=1 stage of design. An attribute 

weighting factor, fj, of 0.3 was assigned to the polymer, process, and surfactant, and a weighting 

factor of 0.1 was assigned to the carbon nanotube percentage. These weights were assigned 

based on the relative importance of each attribute to the overall functionality of a kidney dialysis 

membrane.   

 



Two approaches were used to calculate novelty. The first method is referred to as a priori 

novelty score where a value of S1 is established before any designs are submitted. The assigned 

values for S1 came from the expected commonality of the polymer, process, surfactant, and 

carbon nanotube percentage used in the design space based on previous play-through examples 

of Nephrotex in 2012. The values of S1 used to calculate the a priori novelty score are shown in 

Table 1. 

Table 1: a Priori Novelty Sub Score 

J Attribute Novelty Sub Score S1 

  S1=1 S1=3 S1=7 S1=10 

1 Polymer Polyrenalate PES-PVP Polyamide PMMA 

     Polysulfone 

2 Process  Phase 

Inversion 

Vapor Dep. 

Polym. 

Dry-jet Wet 

Printing 

3 Surfactant Biological Steric 

Hindrance 

Hydrophilic Negative 

Charge 

4 CNT % 0% 2% 10% 1.5% 

   4% 20%  

 

As an example for calculating the a priori novelty score, if a group’s final design includes the 

PES-PVP polymer, the Dry-Jet Wet Printing process, the Negative Charge surfactant, and 20% 

carbon nanotube, their a priori polymer novelty sub score (S1) would equal 3 based on Table 1, 

their process novelty sub score would equal 10, and so on. A sample calculation for the group’s 

a priori novelty score can be seen below. 

𝑀1 = 0.3 ∗ 3 + 0.3 ∗ 10 + 0.3 ∗ 10 + 0.1 ∗ 7 = 7.6 

The second method for determining novelty is referred to as a posteriori novelty score. Unlike 

the a priori novelty score, a calculated S1 score based on submitted designs is incorporated. The 

a posteriori novelty subscore can be calculated by the following equation: 

𝑆1 =
𝑇𝑗𝑘𝐶𝑗𝑘

𝑇𝑗𝑘
∗ 10       (2) 

Where Tjk is the total number of ideas used within the design process for the j
th

 attribute at the k
th

 

stage. In 2014, 20 groups participated in the product design while 30 groups participated in 2015; 

therefore Tjk is equal to 20 and 30 respectively for each year. Cjk denotes the total number of 

designs in which a particular attribute was used; for example if 12 out of the 20 groups in 2014 

used steric hindrance as their surfactant, Cjk would be equal to 12. Table 2 gives the values of S1 

used to calculate a posteriori novelty score for the 2014 class, while Table 3 shows the values of 

S1 for the 2015 class. 

 

 

 



Table 2: 2014 a Posteriori Novelty Sub 

Scores 

Attribute Cj S11 

Polymer PMMA 0 10 

Polyrenalate 0 10 

Polysulfone 1 9.5 

Polyamide 7 6.5 

PES-PVP 12 4 

Process Phase 

Inversion 

5 7.5 

Dry-Jet Wet 

Printing 

5 7.5 

Vapor Dep. 

Polym. 

10 5 

Surfactant Biological 0 10 

Hydrophilic 6 7 

Negative 

Charge 

4 8 

Steric 

Hindrance 

10 5 

None 0 10 

% CNT 0 0 10 

0.5 0 10 

1 2 9 

1.5 1 9.5 

2 5 7.5 

4 0 10 

6 0 10 

10 0 10 

15 0 10 

20 12 4 
 

Table 3: 2015 a Posteriori Novelty Sub 

Scores 

Attribute Cj S11 

Polymer PMMA 2 9.33 

Polyrenalate 3 9 

Polysulfone 1 9.67 

Polyamide 11 6.33 

PES-PVP 13 5.67 

Process Phase 

Inversion 

10 6.67 

Dry-Jet Wet 

Printing 

11 6.33 

Vapor Dep. 

Polym. 

9 7 

Surfactant Biological 1 9.67 

Hydrophilic 7 7.67 

Negative 

Charge 

6 8 

Steric 

Hindrance 

15 5 

None 1 9.67 

% CNT 

 

 

0 0 10 

0.5 0 10 

1 3 9 

1.5 4 8.67 

2 7 7.67 

4 1 9.67 

6 0 10 

10 2 9.33 

15 1 9.67 

20 12 6 
 

 

As an example for calculating the a posteriori novelty score, the group mentioned in the previous 

example included students from the 2015 class. Therefore, their a posteriori polymer novelty sub 

score (S11) would equal 5.67 based on Table 3, their process S11 would equal 6.33, and so on. A 

sample calculation for the group’s a posteriori novelty score can be seen below. 

𝑀11 = 0.3 ∗ 5.67 + 0.3 ∗ 6.33 + 0.3 ∗ 8 + 0.1 ∗ 6 = 6.60 

Variety 

The variety score is a measure of how deeply the design space was explored throughout the 

design process. Si values, which represent the weighted contribution of an attribute to the 

product’s innovative variety score, were assigned for the different attributes of the design in 

decreasing order based on a hierarchy of attributes or phases. The first phase of the design that 

was considered was selection of the polymer (S1=10) for use in the second phase of the design or 



the process (S2=6). The third phase considered was the surfactant (S3=3) and the fourth 

considered carbon nanotube percentage (S4=1) as this was the last portion of the product design 

considered by students. The weights given assure attributes that more effectively distinguish 

design performance such as the polymer or process selected provide a greater total variety score 

than attributes at a more detailed level such as the carbon nanotube percentage where 

performance is less likely to vary drastically. The variety score can be calculated by the 

following equation: 

𝑀3 = ∑
𝑆𝑘∗𝑏𝑘

𝑛

4
𝑘=1        (3) 

Where bk is the number of attributes tested at design stage k. For example, if a group tested three 

prototypes with designs of [PES-PVP polymer, Phase Inversion process, Steric Hindrance 

surfactant, 20% CNT], [PES-PVP polymer, Vapor Dep. Polym. process, Hydrophilic surfactant, 

15% CNT], and [Polysulfone polymer, Dry-Jet Wet Printing process, Hydrophilic surfactant, 6% 

CNT], their b1=2 because they tested two types of polymers, their b2=3 because they tested three 

different processes, and so on. A sample calculation of this hypothetical group’s variety score 

can be seen below where n is the total number of ideas. In the hypothetical situation, n=3 

because the group tested three prototypes. 

𝑀3−𝑟𝑒𝑣𝑖𝑠𝑒𝑑 =
10 ∗ 2 + 6 ∗ 3 + 3 ∗ 2 + 1 ∗ 3

3
= 15.6 

The variety calculation for this study is a modification of Shah’s calculation. In Shah’s study, 

genealogy trees were developed for each group on the same principle that a heavier weight is 

assigned to attributes that more effectively distinguish design performance. However, instead of 

bk representing the number of attributes tested at design stage k, it represents the number of 

branches. For example, the designs mentioned in the paragraph above would give the genealogy 

tree shown in Figure 1; because there are only two different types of materials used, resulting in 

two branches for the materials, b1=2. There is one branch from the PSF material and two 

branches from the PESPVP material, resulting in three process branches and therefore b2=3. The 

variety score would be calculated as such:  

 

 

 

 

 

 

 

Figure 1: Example group’s genealogy tree 



𝑀3−𝑠ℎ𝑎ℎ =
10 ∗ 2 + 6 ∗ 3 + 3 ∗ 3 + 1 ∗ 3

3
= 16.7 

Quality 

The quality score evaluates whether a device in Nephrotex adds “value.” This metric was 

assessed based on the work of Arastoopour and colleagues and takes technical and economic 

performances, such as marketability, cost, reliability, flux and blood cell reactivity (BCR), into 

consideration [15]. Four graduated thresholds were placed on each of these criteria, which can be 

seen in Table 4, and designs were given a point for each threshold met. Thus a “perfect” design 

that met every threshold in every output category would receive quality score of 20. However, 

the maximum possible score in Nephrotex was 18 because of constraints placed on the design 

space. 

Table 4: Thresholds for Design Outputs 

Rating Threshold Marketability Cost ($) Reliability 

(hrs.) 

Flux 

(m
3
/m

2
/day) 

BCR 

(ng/mL) 

1 Minimum 250,000 140 1.5 10 90 

2 Medium – 

Low 

400,000 120 5 12 75 

3 Medium – 

High 

550,000 110 8 13.5 65 

4 Maximum 650,000 95 9 17 40 

 

For example, a prototype made from the PES-PVP polymer, Phase Inversion process, Steric 

Hindrance surfactant, and the 20% CNT was found to have a marketability of 900,000 units, a 

cost of $120 per unit, a reliability of 9 hours, a flux of 17 m
3
/m

2
/day, and a blood cell reactivity 

of 43.333 ng/mL. A sample calculation of the quality score for this prototype can be seen below. 

𝑀4 = 4 + 2 + 4 + 4 + 3 = 17 

Results and Discussion 

Using the team scores for each of the Shah metrics, we sought to answer how do engineering 

students’ designs produced from Nephrotex score on Shah’s quality, novelty, and variety 

metrics? 

 

Table 5 displays the mean, standard deviation, minimum, maximum, and number of groups for 

each metric for the combined 2014 and 2015 class sections.  

Table 5: Combined Overall Metrics 

Shah Metrics Mean stdev Min Max n 

A Priori 

Novelty 

5.82 1.24 3.40 8.40 50 

A Posteriori 

Novelty 

6.35 0.85 4.60 8.43 50 

Quality 15.6 1.4 13 18 50 

Variety 13.5 2.6 6 17 50 



 

Literature ranges from work completed by Shah et al. for a priori and a posteriori novelty scores 

align with the novelty scores found in this study. The literature range was seen to be 3.0 to 8.05 

for a priori and 3.28 to 8.46 for a posteriori [7] while the range in this study was found to be 3.4 

to 8.4 and 4.6 to 8.433 for a priori and a posteriori respectively. The literature illustrates the 

application of the novelty score with designs from a student design competition where seven 

designs were considered “unusual” and therefore novel. These designs received a priori scores of 

6.25, 6.25, 4.40, 8.05, 4.40, 4.80, and 8.05, and a posteriori scores of 6.45, 6.45, 4.46, 8.46, 4.46, 

5.16, and 8.46. In the example design competition, there are designs that received higher novelty 

scores than the ones listed above that were not considered novel [7]. Since the calculated novelty 

scores in this study match the novelty scores in the literature, this metric seems to be applicable 

to the Nephrotex environment but a low novelty score doesn’t necessarily mean that the design 

lacks novel components, based on the scoring of the example design competition provided within 

Shah’s work [7]. According to Shah’s work, to determine novelty of a design, all designs must 

be analyzed together and any “unusual” component, number of components; way of design, etc. 

will make the design novel and therefore innovative. For this reason, a design can have a low 

novelty score but still contain novel components dependent upon the weighting of the attributes. 

In Shah et al.’s example design competition, students were challenged to build a device made 

from a fixed set of materials and powered by a fixed volume of pressurized air. The key 

functions and characteristics of the designs were identified as propulsion/thrust method, medium 

of travel, motion of device, and number of parts of device. The thrust and medium attribute were 

weighted 0.35 whereas the motion attribute was weighted 0.2 and a weight of 0.1 was given to 

the number of parts attribute. A design can have a “usual” propulsion method and travel through 

an “expected” medium but have an “unusual” motion and number of parts, causing the design to 

have a low novelty score but novel components. Therefore, it is possible that designs with 

innovative components may have been produced from students in the Nephrotex environment 

but not identified as such because of a low novelty score. 

 

The variety score calculated in this study was similar to that Shah et al. discusses in their work; 

however, this study altered the metric slightly. The number of branches in Shah’s equations was 

substituted with the number of attributes tested. An instance was found where students kept the 

surfactant, manufacturing process, and carbon nanotube percentage constant while changing only 

the polymer. This team received a perfect variety score because students were required to submit 

five prototypes for testing, there were five different polymers to choose, and the polymer 

attribute is at the top of the genealogy tree, meaning the polymer attribute had more of a weight 

in calculating the variety score than other attributes. This team’s genealogy tree is shown in 

Figure 2 and the variety score would be calculated as such: 



 

Figure 2: Genealogy tree for an idea set with perfect variety score 

𝑀3−𝑠ℎ𝑎ℎ =
10 ∗ 5 + 6 ∗ 5 + 3 ∗ 5 + 1 ∗ 5

5
= 20 

Shah’s variety score is considered “perfect” despite the minimal variety within the designs 

tested. This was the motivation in calculating the variety score as described in the Data 

Assessment subsection where all aspects of the design impacted the variety score. An example 

calculation for the genealogy tree shown in Figure 2 using the modified approach to variety is 

shown below. 

𝑀3−𝑟𝑒𝑣𝑖𝑠𝑒𝑑 =
10 ∗ 5 + 6 ∗ 1 + 3 ∗ 1 + 1 ∗ 2

5
= 12.2 

Brent Nelson and Jeannette Yen also found flaws in Shah’s variety metric and sought to correct 

for them by creating a new variety metric that addressed these flaws [16]. The flaws discovered 

by Nelson and Yen include lower scores for higher variety in design ideas and normalizing a 

group score. The former flaw addressed the double-counting of ideas and suggests counting the 

number of differentiations in design principles rather than counting the number of branches in 

each level – the number of differentiations is always one less than the number of branches. For 

example, for the genealogy tree seen in Figure 2, Nelson and Yen would calculate the variety 

score to be 10 as they do not continue to count designs within the genealogy tree once they 

contain only a single design.  

𝑀3−𝑁𝑒𝑙𝑠𝑜𝑛/𝑌𝑒𝑛 =
10 ∗ 5 + 6 ∗ 0 + 3 ∗ 0 + 1 ∗ 0

5
= 10 

Since each box contains only one design in the top level, nothing is considered in lower levels. 

Nelson and Yen reworked Shah’s equation to encompass their suggestions and developed the 

following equation where all variables are identical to those addressed in the Methodology 

section with one added variable dl which is the number of differentiations at node l: 

𝑀3−𝑁𝑒𝑙𝑠𝑜𝑛/𝑌𝑒𝑛 =  ∑ 𝑓𝑗(𝑆1(𝑏1 − 1) + ∑ 𝑆𝑘
4
𝑘=2 ∑

𝑑𝑙

(𝑁−1)
)

𝑏𝑘−1
𝑙=1

𝑚
𝑗=1   (4) 



The latter variety flaw addressed the error in giving an average variety score to a set of designs 

because variety can only be calculated  for a set of multiple designs and therefore only applies to 

the set itself. From fixing this flaw, Nelson and Yen eliminated the need for the quantity metric 

by incorporating the number of designs in the variety calculation, as our study also had to do. To 

address this flaw, Nelson and Yen eliminated (N-1) in the above reworked equation [16]. 

Combining the modifications made to the variety score in this study and the study conducted by 

Nelson and Yen may allow for the variety matric to better map to the constrained design 

environment of Nephrotex than the original variety metric designed by Shah et al. 

 

The quality metric Shah et al. discusses does not give design outcomes in which to measure the 

quality metric but states evaluation procedures tend to be domain specific. How the prototype 

performed in marketability, cost, reliability, flux, and blood cell reactivity was the basis for 

calculating the quality score in this study. These design outputs were developed by Arastoopour 

and colleagues and consider a prototype’s technical and economic performance [15]. 

The second research question this study sought to answer was is Shah’s framework able to 

distinguish between designs that were identified as innovative and non-innovative based on a 

literature definition of innovative design in an epistemic game environment? 

 

Table 6 displays Shah’s metrics for combined teams from 2014 and 2015 identified as innovative 

within Nephrotex compared against teams that were identified as non-innovative based on the 

previous work by Markovetz et al [6].  Based on this comparison, it was found that the Shah 

metrics between innovative and non-innovative groups showed little variation and no statistically 

significant differences [6]. As seen in Table 6, a t test and a Mann-Whitney U test showed no 

significant difference between innovative and non-innovative groups with regard to variety and 

novelty scores; however, these tests did show a significant difference between groups with 

regard to the quality score. The same results were found when calculating Cohen’s Effect Size, 

which again can be seen in Table 6. Novelty and variety scores have a small effect for innovation 

while quality was found to have a large effect.  

Table 6: Combined Metrics for Innovative vs. Non-innovative Designs within Nephrotex 

 Teams with 

Innovative Designs 

Teams without 

Innovative Designs 

t test Mann-

Whitney 

U test 

Cohen’s 

Effect 

Size 

Shah Metrics Mean stdev n Mean stdev n p d 

Priori Novelty 5.9 1.117 7 5.809 1.27 43 0.86 0.848 0.0761 

Posteriori 

Novelty 

6.59 0.593 7 6.314 0.888 43 0.432 0.364 0.3657 

Quality 16.714 1.113 7 15.44

2 

1.333 43 0.021 0.029 1.0361 

Variety 13.343 1.843 7 13.53 2.764 43 0.864 0.603 0.0796 

 

A significant difference between innovative and non-innovative teams and a large effect was 

seen in the quality metric. However, two of the classifications used to categorize an innovative 

design within Nephrotex in the study by Markovetz et al. [6] was “a perfect quality score of 18” 



and “… design with a quality greater than the section average.” Therefore this requirement for 

innovative design may likely contribute to the significance seen between innovative and non-

innovative teams and the large effect the quality metric had for innovative designs in the 

comparison performed in Table 6. Furthermore, a quality metric was predefined within the 

Nephrotex environment based upon constraints provided to the students through the internal 

consultants, indicating that this could have influenced how students approached their design 

process. 

 

Based on the results obtained, it may be hypothesized that Shah’s metrics as a whole may be 

incorrect for determining innovative designs within a constrained design space. This hypothesis 

is supported by (1) the need to eliminate Shah’s quantity measure from the study since students 

were limited to the number of designs they were able to submit; (2) the variety metric required 

adjustment to be able to be applied within the Nephrotex context; and (3) the quality metric was 

predefined within Nephrotex because of the epistemic game’s digital nature. However, it is 

important to point out that Shah et al. [7] noted that not all metrics may apply to each specific 

design situation and that these metrics don’t consolidate well into an overall effectiveness 

measure. Novelty, as already defined by Shah et al., may be the only metric that can map to a 

constrained design space without adjustment because of the alignment of literature ranges and 

this study’s calculated ranges. 

 

Study Limitations 

This study and its subsequent analysis was all performed on a population of sophomore chemical 

engineering students which would limit its generalizability to other student populations.  

However, this research still provides the basis for determining how innovation metrics can be 

applied to constrained design spaces and provides suggestions for future research that may lead 

to a better understanding of design in an epistemic game environment. 

  

Conclusion 

Epistemic games, such as the virtual engineering internship Nephrotex, allow students to explore 

creative ways to approach engineering problems while providing a novel alternative to the direct 

transmission method of instruction. Nephrotex fosters an understanding of the product design 

process and mitigates the risks associated with product design by allowing students to create 

designs without the risk of failure that would occur in the real world. When applying Shah’s 

innovation metrics to Nephrotex, it was observed that the entirety of the metrics may not be 

applicable to the constrained design space. Literature ranges for the a priori and a posteriori 

novelty scores overlap the novelty ranges found in this study, showing that this metric is likely 

most applicable to the Nephrotex environment out of all the innovation metrics discussed by 

Shah. Shah’s variety score needed to be modified in this study to eliminate a perfect variety 

score being awarded to teams with very little variety in their designs although after modification 

was able to provide a better mapping to students’ design process within the constrained 

environment. The quality metric was calculated identically in this study as in Shah’s study. 

Shah’s quality metric evaluates the design ideas and not the testing of a design after it has been 

built; therefore is well suited for a virtual internship where tangible models cannot be made; 



however, this metric was predefined within the Nephrotex environment. Finally, the quantity 

measure was not applicable to this study because all students needed to submit the same number 

of designs. Overall, it was observed that novelty was the most applicable of the innovation 

effectiveness metrics discussed by Shah et al. however with modifications both variety and 

quality could be applied within the constrained design space. 

 

This study further concluded that the Shah metrics may not be correct for distinguishing between 

innovative and non-innovative designs in a constrained design space. Quality was the only metric 

found to show a significant difference between innovative and non-innovative designs and have 

a large effect for innovative designs. However, based on the literature definition used, quality 

was a major factor when considering if a design was innovative – designs with “quality greater 

than section average” and “a perfect quality score of 18” were considered innovative. Variety 

scores were not considered in the literature definition.  

 

Though Nephrotex is a constrained design space, it is an excellent introductory experience for 

students to learn aspects of engineering design. It allows students to make design mistakes 

without the associated real world consequences, provides students with example materials, 

surfactants, and processes to use in the design of a kidney dialysis membrane, and shows 

students the necessity of research and performance outcomes within the realm of engineering 

design. For more experienced design students, the Nephrotex design space could be expanded to 

allow students to research the design problem and identify materials, surfactants, and processes 

that could possibly be a solution to the posed design problem.  Afterwards, students could design 

their solution, and develop ways to measure performance outcomes and potentially build these 

solutions in real life to determine if they perform the way Nephrotex predicts. 
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