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Src Phosphorylates Cas on Tyrosine 253 to Promote Migration of
Transformed Cells*
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Cas is a member of the focal adhesion complex. Phos-
phorylation of Cas by Src is an important event leading
to cell transformation. Using mass spectrometry, we
have mapped 11 sites in Cas that are phosphorylated by
Src. These sites are all located between residues 132 and
414 of Cas, in a region that is required for binding to a
number of other proteins including Crk. We tested syn-
thetic peptides modeled on Cas phosphorylation sites,
and found that the sequence containing tyrosine 253
was phosphorylated by Src most efficiently. Using cells
derived from Cas-deficient mice, we confirmed that Cas
greatly enhanced the ability of Src to transform cells.
Phosphorylation of Cas on tyrosine 253 was not required
for Src to increase growth rate, suppress contact inhibi-
tion, or suppress anchorage dependence. Yet, in con-
trast to these growth characteristics, phosphorylation
of Cas on tyrosine 253 was required for Src to promote
cell migration. Thus, a single phosphorylation site on
this focal adhesion adaptor protein can effectively sep-
arate cell migration from other transformed growth
characteristics.

Normal cells have intrinsic controls that limit their move-
ment and growth, such as restraints imposed by cell cycle
checkpoints. Cells must receive cues from their surrounding
environment to override these restraints. Thus, cell growth
normally relies on signals mediated from the extracellular ma-
trix through integrins (1–3).

In contrast to normal cells, tumor cells ignore their sur-
rounding environment, which allows them to overcome contact
growth inhibition, lose anchorage dependence, and migrate to
foreign tissues and organs. The degree to which tumor cells
grow and migrate correlates with their aggressive potential (1,
2). Therefore, it is important to understand how extracellular
signals guide cell behavior and how transformation ablates the
need for integrin signaling.

Integrins transmit signals from the extracellular matrix to
inside of the cell. Integrin signaling relies on a complex of
associated kinases including focal adhesion kinase (FAK)1 and
Src and adaptor proteins including Grb2, Shc, paxillin, and Cas
(4, 5). Cas is an important component of the integrin signaling
network (6). Cas was originally identified as a protein phos-
phorylated in v-src-transformed cells (7).

Cas has several structural motifs including an SH3 domain,
proline-rich regions, and a cluster of tyrosine phosphorylation
consensus sites that act as SH2 binding motifs (6, 8). FAK
binds to the SH3 domain in the amino-terminal part of Cas
(9–11), whereas Src binds to a proline-rich region and a phos-
phorylated tyrosine residue at the carboxyl end of Cas (12, 13).
Although FAK may phosphorylate Cas in certain cases (14, 15),
the biological activity of Cas depends on its phosphorylation by
Src (16–18). After phosphorylation, Cas associates with a num-
ber of proteins, including Crk, Src, phosphatidylinositol 3-ki-
nase, Nck, and phospholipase C�, via SH2 binding motifs (8,
10, 19).

Phosphorylation of Cas by Src plays a critical role in cell
transformation (20, 21). For example, Src must phosphorylate
Cas to promote anchorage-independent growth and cell migra-
tion (20–23). Therefore, understanding the mechanistic rela-
tionship between Cas and Src should help elucidate mecha-
nisms that underlie fundamental aspects of tumor cell growth.

To better understand the role of Cas in cell transformation,
we have identified residues that are phosphorylated by Src. We
then examined the effects of these phosphorylation events on
cell behavior. We report here that a single phosphorylation site
on Cas, tyrosine 253, can effectively separate the effects of
transformation on cell migration from other hallmarks of
transformation including anchorage-independent growth.

EXPERIMENTAL PROCEDURES

Production of Cas and Src in Sf9 Cells—Wild type Cas (8) and v-Src
(24) were tagged at the amino terminus with polyhistidine and pro-
duced by the Bac-to-Bac Baculovirus Expression System (Invitrogen) as
described (16). Briefly, cells were grown at 27 °C, infected with baculo-
virus expression vectors, collected and rinsed in phosphate-buffered
saline by centrifugation, and lysed in a French pressure cell in lysis
buffer (50 mM Tris-HCl, pH 8.5, 5 mM 2-mercaptoethanol, 100 mM KCl,
1 mM phenylmethylsulfonyl fluoride, and 1% Nonidet P-40 plus protease
inhibitors). Lysates were clarified by centrifugation and applied to blue
nickel-nitrilotriacetic acid resin to purify histidine-tagged Cas or Src
according to the manufacturer’s protocols (Qiagen) as described (16).
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grant-in-aid and research fellowship from the Foundation for the Pro-
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were defrayed in part by the payment of page charges. This article must
therefore be hereby marked “advertisement” in accordance with 18
U.S.C. Section 1734 solely to indicate this fact.
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matrix-assisted laser desorption ionization/time-of-flight; MS, mass
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Mutagenesis and Production of Cas in Bacteria—A BamHI/NotI frag-
ment containing Cas cDNA was subcloned into the complementary sites
of the bacterial expression vector pET28A to produce the entire coding
region of Cas with an amino-terminal polyhistidine tag as described by
the manufacturer (Novagen). This construct was used as a template to
produce site directed mutants with the QuikChange site-directed mu-
tagenesis kit according to the manufacturer’s protocols (Stratagene),
which were verified by sequencing on an ABI373 automated DNA
sequencer as described (16). The tyrosine residue at position 253 was
mutated to phenylalanine to produce CasY253F with the forward

primer 5�-GCTCCAGGTTCCCAGGACATCTTTGATGTGCCCCCTGT-
TCG-3� and a complementary reverse primer. The amino acids between
residues 118 and 423 were deleted to produce Cas118�423. EcoRI sites
were introduced at the nucleotides encoding amino acids 118 and 423
with forward primers 5�-CCCCAACCTGACAATGAATTCCTGGTACC-
CACTCCC-3� and 5�-CCAGCCGAGCGAGAATTCCCAACAGATGGCA-
AGCGC-3�, respectively, and complementary reverse primers. The
construct was religated after excising the resulting EcoRI fragment,
which contains the entire substrate binding region of the protein. Wild
type and mutant Cas proteins were produced in Escherichia coli strain
BL21 DE3RP codon� (Stratagene) and purified as done for Sf9 cells
described above.

Expression of Cas and Src in Mammalian Cells—To examine the
effects of Cas and Src on a blank background, fibroblasts from homozy-
gous null Cas knockout cells were used as described previously (20, 21).
The BamHI/NotI fragments encoding wild type Cas, CasY253F, or
Cas118�423 were excised from pET28A vectors and subcloned into the
BamHI/SnabI sites of pBABEhygro (25). An EcoRI/Hind3 fragment
containing the entire coding cDNA region of the pp60 Src kinase of the
Schmitt-Rupin strain of v-Src (26) was inserted between the EcoRI and
SnabI sites of pBABEpuro (25). For controls, cells were transfected with
empty vectors (pBABEhygro and/or pBABEpuro) as appropriate so that
all transfectants were selected for hygromycin resistance and puromy-
cin resistance conferred by the transfection vectors. All cells were
transfected with equal concentrations of both plasmids (1 �g/well of
6-well plate), and clones were not taken from the resultant cells, thus
avoiding potential consequences of clonal variation.

In Vitro Kinase Reactions—In vitro kinase reactions on full-length
Cas proteins were performed as described previously (16). Basically, 1
�g of Cas protein was incubated at 30 °C in 10 �l of kinase buffer (10

FIG. 1. Phosphorylation of Cas by Src. Full-length Cas was puri-
fied from baculovirus-infected Sf9 cells and incubated with ATP in the
presence or absence of Src for 0, 20, or 60 min as indicated. After 60 min,
one sample was incubated with Yersinia phosphatase (yop) for an ad-
ditional 5 min. Samples were resolved by SDS-PAGE on 8% gels and
examined by Western blotting with antibody directed against Cas.
Phosphorylation of Cas was evident by a shift in migration from an
apparent molecular mass of 130 kDa to about 170 kDa, which was
reversed by phosphatase treatment.

FIG. 2. Mapping Src phosphorylation sites in Cas. Cas was incubated with ATP and Src or ATP alone as indicated, resolved by SDS-PAGE,
and digested with trypsin. Resulting peptides were then examined by MALDI-TOF MS. Mass and intensity are shown on the x and y axis,
respectively. Phosphorylated peptides, detected by an increase in mass of 80 daltons in the Src � Cas sample, are designated by the apparent
phosphorylation sites they contain. The amino acid sequences of these fragments are listed in Table I.

Src Phosphorylates Cas to Promote Transformed Cell Migration46534
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mM Tris-HCl, pH 7.5, 20 mM MgCl2, 0.5 mM ATP) in the presence or
absence of 0.15 �g of Src for varying lengths of time. After incubation
with Src, some reactions were treated with 1 �g of Yersinia phosphatase
for an additional 5 min. Reactions were stopped by the addition of
SDS-PAGE sample buffer (to achieve a final concentration of 62.5 mM

Tris-HCl, pH 6.8, 2% SDS, 10% glycerol, 50 mM dithiothreitol, 0.01%
w/v bromphenol blue).

A continuous spectrophotometric assay was also used to measure
kinase activity on synthetic peptides shown in Table II as described by
Porter el al. (27). Reactions contained 100 mM Tris-HCl (pH 7.5), 10 mM

MgCl2, 0.5 mM ATP, 1 mM phosphoenolpyruvate, 0.28 mM NADH, 89
units/ml pyruvate kinase, 124 units/ml lactate dehydrogenase, and
varying concentrations of peptide substrates (75–2000 �M). The reac-
tions were carried out in duplicate at 30 °C and were initiated by the
addition of Src. Kinetic parameters were determined by fitting data to
the Michaelis-Menten equation using nonlinear regression analysis of
initial rates.

Western Blot Analysis of Protein Produced by Sf9 or Bacterial
Cells—Protein (1 �g/lane) was resolved by SDS-PAGE and trans-
ferred to Immobilon-P membranes (Millipore). Antisera were used to
detect p130 Cas (rabbit antiserum C-20, catalog no. 860, Santa Cruz
Biotechnology) and tyrosine-phosphorylated proteins (P-Tyr-100
monoclonal, catalog no. 9411, Cell Signaling Technology). Reactions
were detected by chemiluminescence with Amersham ECL plus as
described (28, 29).

Western Blot Analysis of Mammalian Cells—Western blot analysis was
performed on cells grown for 24 or 72 h after plating. Cells were quickly
aspirated, washed with phosphate-buffered saline, transferred to micro-
centrifuge tubes, pelleted by a brief spin (1 min at 8000 � g), aspirated,
lysed in SDS-PAGE sample buffer (2% SDS, 10% glycerol, 50 mM dithio-
threitol, 0.01% bromphenol blue, and 62.5 mM tris-HCl (pH 6.8)), sheared
through a 26-gauge needle, boiled for 5 min, and cooled on ice.

Protein (5 �g/lane) was resolved by SDS-PAGE and transferred to
Immobilon-P membranes (Millipore). Antisera were used to detect p130
Cas (rabbit antiserum C-20, catalog no. 860, Santa Cruz Biotechnolo-
gy.), total pp60v-Src kinase (anti-avian clone E10 monoclonal, catalog
no. 05-185, Upstate Biotechnology), active pp60 kinase (rabbit anti-
serum specific for Src phosphorylated at Tyr416, catalog no. 2101, Cell
Signaling Technology), total MAPK (rabbit antiserum against the p44
and p42 MAP kinase proteins, catalog no. 9102, Cell Signaling Tech-
nology), active MAPK (E10 monoclonal antibody specific for p42 and
p44 MAP kinase protein phosphorylated at Thr202 and Tyr204, catalog
no. 9106, Cell Signaling Technology), other proteins phosphorylated on
tyrosine residues (P-Tyr-100 monoclonal, catalog no. 9411, Cell Signal-
ing Technology), and �-actin (monoclonal antibody AC15, catalog no.
A5441, Sigma). Reactions were detected by chemiluminescence with
Amersham ECL plus as described (28, 29).

Crk was immunoprecipitated to evaluate its association with wild
type Cas and CasY253F in mammalian cells as described by Klemke et
al. (23). Cells were washed twice with phosphate-buffered saline, lysed
with a solution containing 50 mM Tris pH 7.5, 150 mM NaCl, 5 mM

EDTA, 1 mM sodium vanadate, protease inhibitor mixture (Sigma,
P8340), and 1% Nonidet P-40, and clarified by centrifugation. 4 mg of
total protein was precleared with protein G-Sepharose 4 Fast Flow
beads (Amersham Biosciences, catalog no. 17-0618-01), incubated over-
night with monoclonal antibody against Crk (Transduction Laborato-
ries, catalog no. 610035), immunoprecipitated with protein G-Sepha-
rose beads, eluted in SDS-PAGE sample buffer, resolved by gel
electrophoresis, and analyzed by Western blotting with antiserum
against Crk and Cas as described above.

Phosphorylation Site Identification by MALDI-TOF—Cas protein (1
�g) produced by Sf9 cells was subjected to in an in vitro kinase reaction
for 1 h either in the presence of 0.5 mM ATP alone or with ATP plus 0.15
�g of purified v-Src. Cas was then resolved by SDS-PAGE, and exam-
ined by MALDI-TOF MS as described previously (28). Briefly, protein
was detected by Coomassie staining, excised, rehydrated, washed with
50 mM Tris (pH 8.0), 50% acetonitrile, dried, and completely digested
with trypsin in 25 mM Tris (pH 8.5). Peptides were then extracted with
50% acetonitrile, 0.1% trifluoroacetate, dried, suspended in 10 mg/ml
4-hydroxy-�-cyanocinnamic acid in 50% acetonitrile, 0.1% trifluoroac-
etate containing bovine insulin and human angiotensin as internal
standards, and applied to a MALDI sample plate. MALDI mass spec-
trometric analysis was performed on a PerSeptive Voyager DE-RP mass
spectrometer in the linear mode. Profiles were queried against the
expected Cas peptide products, and phosphorylated residues were ap-
parent by an increase in molecular mass of 80 daltons (relative to the
Cas � ATP samples).

Sequencing and Identification of Phosphorylation Sites by LC-MS-
MS—Protein bands were subjected to in-gel digestion as for MALDI-
MS. Peptide extracts were desalted using a C18 ZipTip (Millipore)
followed by elution from the tip with 10 ml of 50% acetonitrile. Imme-
diately prior to injection the acetonitrile was removed on a Speed-vac
concentrator, and the volume was brought to �2 ml. Analysis was done
on a Micromass Q-Tof hybrid quadrupole/time-of-flight mass spectrom-
eter with a nanoelectrospray source. A fused silica tip mounting adapter
from New Objective was fitted with a 75-mm inner dimension fused
silica tip, also from New Objective, connected through 50-mm inner
dimension fused silica tubing to the LC detector outlet. Nano-LC was
performed with an LC Packings Ultimate micro pump and solvent

TABLE I
Identification of tyrosine residues in Cas that are phosphorylated by Src

Cas and Src were purified from Sf9 cells, utilized for in vitro kinase assays, and resolved by SDS-PAGE. All sites were identified by MALDI-TOF
MS analysis of tryptic peptide fragments of Cas incubated in the presence or absence of Src.

Sitea Sequenceb MWc

ATP Src

Tyr132 127TQQGLY*QAPGPNPQFQSPPAK147 2255 2335
Tyr169-Tyr183-Tyr196 155QTPHHSFPSPATDLY*QVPPGPGSPAQDIY*QVPPSAGTGHDIY*QVPPSLDTR205 5423 5583, 5663
Tyr238 222VGQGYVYEASQAEQDEY*DTPR242 2406 2486
Tyr253 243HLLAPGSQDIY*#DVPPVR259 1877 1957
Tyr271 260GLLPNQYGQEVY*DTPPMAVK279 2221 2301
Tyr291 280GPNGRDPLLDVY*DVPPSVEK299 2168 2248
Tyr310 300GLPPSNHHSVY*#DVPPSVSK318 2018 2098
Tyr391 384RPGPGTLY*#DVPR395 1328 1408
Tyr414 398VLPPEVADGSVIDDGVY*AVPPPAER422 2564 2644

a Sites are indicated by residue number in primary sequence.
b Sequence of tryptic peptide fragments with phosphorylation sites indicated by asterisks; pound signs indicate sites verified by LC-MS-MS.
c Molecular weights of fragments after incubation with ATP alone or with ATP and Src, as indicated.

TABLE II
Evaluation of Cas peptides as Src substrates

Phosphorylation of peptides was evaluated by a spectrophotometric
assay to detect kinase activity.

Sitea Sequenceb kcat/Km
c

Tyr119 114QPDNVYLVPTPS125 0.071
*Tyr132 127TQQGLYQAPGPN138 NS
*Tyr169 164PATDLYQVPPGP175 NS
*Tyr183 178PAQDIYQVPPSA189 NS
*Tyr196 191TGHDIYQVPPSL202 0.031
*Tyr253 246GSQDIYDVPPVR257 0.232
*Tyr291 286PLLDVYDVPPSV297 0.072
*Tyr310 305NHHSVYDVPPSV316 0.091
Tyr366 360PAEDVYDVPPPA372 0.145
*Tyr414 409IDDGVYAVPPPA420 0.072
Tyr657 652SPDGQYENSEGG663 NS
Tyr668 663GWMEDYDYVHLQ674 NS

a Sites indicated by residue number in primary sequence with aster-
isks indicating sites identified by phosphorylation of full-length Cas.

b Sequence of peptide fragments.
c kcat/Km values for Src phosphorylation (min1 �M1). For several pep-

tides (designated NS, no saturation), the values of Km were too high to
achieve saturation in these experiments, indicating that they were
relatively poor substrates.
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organizer, and an Ultimate detector with a 10-nl flow cell and 214-nm
wavelength. Sample was resolved through an LC Packings C18 PepMap
column (5 mm, 75-mm ID, 15-cm length) at a flow rate of 200 nl/min and
an injection volume of 1 ml (Solvent A: 2% acetonitrile, 0.1% formic acid;
Solvent B: 80% acetonitrile, 0.1% formic acid; loading solvent: 0.1%
formic acid).

Cell Growth Assays—For all assays, cells were grown in Dulbecco’s
modified Eagle’s medium � 10% fetal bovine serum at 37 °C in 100%
humidity. All comparisons were done in parallel to avoid any changes in
culture conditions between experiments. 20,000 cells were seeded in 1
ml in each well of tissue culture-treated 12-well cluster plates (Falcon,
catalog no. 3043) to examine anchored growth or in ultra low attach-
ment 24-well cluster plates (Corning, catalog no. 3473) to examine
nonanchored growth. Cell numbers were obtained by Coulter counter at
the time points indicated in the Fig. 7.

To examine cell migration, 200,000 cells were plated in 6-well cluster
plates on cell culture inserts with a 3-�m pore size as directed by the
manufacturer (Transwell clear, Costar) and grown for 72 h. Cells were
then separately released from the top of the membrane, the bottom of
the membrane, and well beneath the membrane. Migration was then
quantitated as the percent of cells found in the well over the total cell
number.

RESULTS

Identification of Src Phosphorylation Sites in Cas—Src and
Cas were purified from Sf9 cells and utilized for in vitro kinase
assays. Phosphorylation of Cas by Src was evident in these
experiments. The apparent molecular mass of Cas was shifted
by Src phosphorylation from 130 to 170 kDa in SDS-polyacryl-
amide gels. This effect was reversed by treatment with a tyro-
sine phosphatase (Fig. 1).

To identify sites phosphorylated by Src, Cas was incubated
with Src and ATP or with ATP alone, resolved by SDS-PAGE,
cleaved with trypsin, and analyzed by MALDI-TOF MS. As
shown in Fig. 2, several tryptic fragments were found in the

unphosphorylated state in the ATP-treated sample, but these
were shifted by the mass of a phosphate (�80) in the Src-
phosphorylated sample. Based on these data, 11 tyrosine resi-
dues (132, 169, 183, 196, 238, 253, 271, 291, 301, 391, and 414)
were phosphorylated by Src (Table I).

Src Preferentially Phosphorylates Cas on Tyrosine 253—
Quantitative kinase assays were performed on peptides har-
boring several of the phosphorylation sites identified by
MALDI-TOF MS. As shown in Table II, the peptide based on
tyrosine 253 was the most efficient substrate of those tested, in
terms of kcat/Km. Although individual sites might be phospho-
rylated differently in the context of the folded three-dimen-
sional structure of Cas, the mass spectrometry and peptide
data collectively point to tyrosine 253 on Cas as a primary
target of Src phosphorylation.

Phosphorylation of full-length Cas on tyrosine 253 by Src
was verified by LC-MS-MS. The calculated mass of the peptide
sequence between residues 243 and 259 (HLLAPGSQDIYDVP-
PVR) is 1877 daltons. Phosphorylation of tyrosine 253 in-
creased the mass of this fragment by 80 daltons to 1957 daltons
(Fig. 2 and Table I). The carboxyl-terminal portion of this
fragment, containing tyrosine 253, was clearly detected by
LC-MS-MS in Fig. 3. The pattern of fragment ions confirmed
the presence of phosphorylated tyrosine 253, with a mass of 243
daltons.

Src Phosphorylation Sites Reside in the “Src Substrate Re-
gion” of Cas—The phosphorylation sites identified in this study
were all located between amino acids 132 and 414 of Cas.
Expression vectors were created to produce full-length wild
type Cas, a site mutant with tyrosine 253 changed to pheny-
lalanine (Y253F), or a deletion mutant missing the entire sub-
strate for Src substrate region between amino acids 118 and
423 (118�423). As shown in Fig. 4, wild type Cas and
CasY253F were both phosphorylated by Src in vitro, whereas
Cas118�423 was not. Thus, Src phosphorylated Cas at sites in
addition to tyrosine 253, but they all resided within the Src
substrate region as presented in Fig. 5.

Deletion of the Src Substrate Region Makes Cas Cytotoxic—
Wild type Cas and mutant Cas constructs shown in Fig. 5 were
transfected into fibroblasts derived from homozygous null Cas
knockout mice to examine their effects on cell transformation
by v-Src. However, in agreement with recent reports (21, 30,
31), we found Cas118�423 to be extremely toxic to mammalian
cells. This construct appeared to cause rapid apoptosis, and we
were unable to obtain stable transfectants for further study.
Nonetheless, we were able to proceed with wild type Cas and
CasY253F.

Cas Augments Src Transformation—As shown in Fig. 6, Src
transfection caused cells to assume a spindly morphology com-

FIG. 3. Phosphorylation of tyrosine
253 of Cas by Src. Cas was phosphoryl-
ated by Src, resolved by SDS-PAGE, di-
gested with trypsin, and analyzed by LC-
MS-MS. A deconvoluted chromatogram of
the peptide containing residues 251–259
(251DIYDVPPVR259) is shown. Peaks be-
longing to the y-type ion series are indi-
cated along the x axis, with their relative
intensity shown on the y axis. The se-
quence is given above the chromatogram
with the phosphorylation site indicated.
The monoisotopic mass of each amino
acid residue is given in parentheses be-
low the sequence. Superscript 1, Val (97
daltons) � Pro (99 daltons) � 196 dal-
tons; superscript 2, Tyr (163 daltons) �
phosphate (80 daltons) � 243 daltons.
These data indicate that tyrosine 253 of
Cas was phosphorylated by Src.

FIG. 4. Src phosphorylation sites lie between residues 118 and
423 in Cas. Wild type Cas (WT), CasY253F, and Cas118�423 were
produced in bacteria and subjected to in vitro kinase assays with or
without Src as indicated. Protein was then examined by Western blot-
ting with anti-phosphotyrosine antibody (P-Tyr). Wild type Cas and
CasY253F were phosphorylated by Src, but Cas118�423 was not, con-
firming that major Src phosphorylation sites were located between
residues 118 and 423 in Cas.

Src Phosphorylates Cas to Promote Transformed Cell Migration46536
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pared with Cas or control transfectants. In contrast, coexpres-
sion of Cas and Src caused cells to assume a refractive and
rounded morphology typical of transformed cells. Wild type Cas
and CasY253F were indistinguishable in their ability to sup-
port Src-induced transformation (Fig. 6).

Eventually, Cas and control transfectants formed contact
inhibited monolayers. At higher densities, cells transfected
with Src formed multilayered foci. However, expression of Cas
appeared to augment foci formation of postconfluent Src-trans-
fected cells (Fig. 6).

FIG. 5. Diagram of Src phosphorylation sites and Cas transfection constructs. Tyrosine residues phosphorylated by Src are numbered
over a schematic representation of Cas. Positions of the SH3 domain, proline-rich region (Pro), kinase substrate region, serine rich-region (Ser),
Src binding sequence (SBS), and helix-loop-helix (HLH) motifs are indicated. Schematic diagrams of two mutants made for further testing are also
shown. Tyrosine 253 was changed to phenylalanine to create CasY253F, and the entire substrate for the Src kinase region between residues 118
and 423 was deleted to create Cas118�423. WT, wild type.

FIG. 6. Effects of Cas and Src on cell morphology, growth, and migration. Fibroblasts from homozygous null Cas knockout mice were
transfected with wild type Cas or CasY253F in pBABEhygro, v-Src in pBABEpuro, or empty vectors and selected for resistance to puromycin and
hygromycin. 20,000, 200, or 200,000 cells were plated on each well of 12-well tissue culture plates, 24-well low attachment plates, or Transwell
inserts with 3.0-�m pores in 6-well cluster plates to examine anchored growth, nonanchored growth, or cell migration, respectively. Anchored cells
grown for 2 days (subconfluent) and 6 days (confluent) are shown, along with nonanchored cells grown for 11 days and cells that migrated through
a porous membrane to the bottom well of cluster plates over a 3-day period as indicated. Cas was not required for Src to cause transformation of
cell morphology but was required for Src-transformed cells to achieve robust anchorage independence at these plating densities. Phosphorylation
of Cas at tyrosine 253 was required for Src to induce cell migration, but not anchorage independence. (Bar � 250 �m)
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Reduced Contact Growth Inhibition by Src Is Independent of
Cas Tyrosine 253—Foci formation of Src transfectants sug-
gested a loss of contact growth inhibition. This was made

evident by growth curves shown in Fig. 7. Control transfectants
achieved an average saturation density of less than 1200 cells
mm2. Cas transfectants surpassed this by about 50%, reaching
an average density of nearly 1800 cells/mm2. Transfection with
Src increased saturation density of these cells by about 300% to
over 3000 cells/mm2 or about 6-fold higher than the increase
caused by Cas. Wild type Cas did not further increase the
saturation density of Src transfectants. However, Cas did en-
able the Src-transfected cells to reach higher densities faster
(in 11 days as opposed to 15 days). The same was true for
CasY253F, which enabled cells to reach an even higher satu-
ration density of over 3700 cells/mm2 in the same amount of
time (11 days). Thus, wild type Cas and CasY253F both aug-
mented the ability of Src to decrease contact growth inhibition
of these cells.

Src Increases Growth Rate Independently of Cas Tyrosine
253—Cas also enabled Src to increase the growth rate of these
cells. Control transfectants displayed a log phase doubling time
of 24 h. Cells transfected by either Cas or Src alone displayed
a similar log phase doubling time of 23 h. In contrast, cells
transfected with both Cas and Src displayed a faster log phase
doubling time of just 16 h. Thus, Cas potentiated the ability of
Src to increase cell growth rate, as well as to suppress contact
growth inhibition.

Loss of Anchorage Independence by Src Is Independent of Cas
Tyrosine 253—Loss of anchorage dependence is a reliable hall-
mark of most tumor cells (3, 32). Consistent with earlier re-
ports (20, 21), Cas augmented the ability of Src to promote
anchorage-independent growth. As shown in Fig. 7, cells trans-
fected with Cas or control vectors could not grow in suspension,
whereas 200 Src transfectants grew to about 8500 in 11 days.
In contrast, 200 Src transfectants expressing wild type Cas or
CasY253F grew to an average of over 37,000 or 55,000, respec-
tively, in the same period of time. This was significantly better
than cells transfected with Src alone (p � 0.005 by t test). Thus,
wild type Cas and CasY253F both potentiated the ability of Src
to override anchorage dependence.

Src Requires Cas Tyrosine 253 to Increase Cell Migration—In
addition to promoting anchorage-independent growth of trans-
formed cells, Cas plays an important role in process of cell
migration (21). As shown in Fig. 7, less than 0.5% of the cells
transfected with control vectors, Cas, or Src were able to mi-
grate through pores in a migration chamber. In contrast, more
than 8% of cells transfected with both Src and wild type Cas
migrated, representing a significant increase over cells trans-
fected with Src alone (p � 0.0001 by t test). However, less than
2% of cells transfected with both Src and CasY253F migrated,
representing a 4-fold decrease compared with Src-transformed
cells expressing wild type Cas. Therefore, wild type Cas en-
abled Src transformed cells to migrate significantly better than

FIG. 7. Phosphorylation of tyrosine 253 is important for cell
migration, but not for anchored or nonanchored growth. Cells
were plated as described in the legend for Fig. 6 and counted at the
indicated time points to examine anchored growth or nonanchored
growth. To measure cell migration, the percent of cells that migrated
through the membranes to the bottom well after 72 h was calculated as
shown. Data are shown as mean � S.E. with n � 2, 4, and 3 for
anchored growth, nonanchored growth, and cell migration, respectively.
Phosphorylation of Cas at tyrosine 253 was required for Src to induce
cell migration but not to reduce contact growth inhibition or achieve
anchorage independence. HP, empty hygro/puro vectors.

FIG. 8. Src activity is independent of Cas. Cells were examined by
Western blotting for v-Src, active Src, and �-actin as indicated. Cas and
Src were expressed in the appropriate transfectants. Src activity was
not affected by Cas expression.

FIG. 9. Phosphorylation of Cas at tyrosine 253 is not required
for Crk binding. Crk was immunoprecipitated (IP) from cells trans-
fected with Src and wild type Cas (WT) or Src and CasY253F. Immu-
noprecipitated protein was then analyzed by Western blotting for Cas
and Crk as indicated. Both wild type Cas and CasY253F coprecipitated
with Crk.
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CasY253F (p � 0.0003 by t test).
Cas Does Not Affect Src Kinase Activity—We examined the

effects of wild type Cas and CasY253F on Src activity in these
cells. Consistent with previous reports (20), Cas did not affect
v-Src activity (Cas has previously been shown to activate c-Src,
the down-regulated cellular form of Src (16, 33)). As shown in
Fig. 8, all cells transfected with Src had similar levels of total
and active forms of the kinase. Therefore, Cas is likely to affect
Src signaling downstream of its intrinsic kinase activity.

Phosphorylation of Cas at Tyrosine 253 Is Not Required for
Crk Association—Previous reports indicate that binding of Crk
to Cas is important for cell migration (21–23). Therefore, we
investigated the ability of CasY253F to associate with Crk. As
shown in Fig. 9, both wild type and mutant Cas associated with
Crk in Src transformed cells.

DISCUSSION

Cas plays a critical role in cell growth and transformation
(6). The importance of Cas in cell transformation is highlighted
by investigations into the relationship between Cas and Src.
For example, experiments with site-directed mutants revealed
that the ability of Src and Crk to transform cells relies on their
ability to bind Cas (34, 35). In addition, ablation of Cas with
antisense constructs curtailed transformed characteristics im-
parted by agents including v-Src (36).

We identified 11 Src phosphorylation sites on Cas. These
were all within the Src substrate region between amino acids
118 and 423 of Cas. These data are consistent with reports that
sites outside of this region (e.g. tyrosine residues 668 and 670)
are not phosphorylated by Src (37). These data are also con-
sistent with reports that Src must phosphorylate tyrosine res-
idues in this region to transform cells (21).

Our results also confirm reports that deletion of the Src
substrate region causes Cas to induce cellular apoptosis (30).
An apoptotic role for Cas may also be inferred from its cleavage
by caspase-3 (38). However, mechanisms by which ablation of
the Src substrate region turns Cas apoptotic are intriguing. In
the absence of Cas (e.g. in Cas knockout cells), its homologues
HEF1 and Efs/Sin may perform scaffolding functions needed
for cell survival (6). HEF1 and Efs/Sin may not completely
substitute for Cas because Cas knockout mice suffer from se-
vere developmental disorders. However, some of this deficiency
may be due to differences in expression patterns as opposed to
function (20). Also, Cas is not required for formation of focal
adhesions (20), whereas HEF1 is found in focal adhesion
plaques of adherent cells (39). Therefore, deletion of the Src
substrate region may cause Cas to act as a dominant negative
protein that interferes with itself and its homologues, thus
causing events leading to apoptosis. Nonetheless, the case does
not seem simple because, instead of blocking apoptosis, trans-
fection of HEF1 can actually increase apoptosis in some mam-
mary carcinoma cells (39).

Regardless of how the Src substrate region in Cas affects
apoptosis, the importance of its phosphorylation by Src in cell
transformation is clear (20, 21). Our data confirm this in that
Cas significantly enhanced the ability of Src to cause morpho-
logical transformation (Fig. 6). More importantly, Cas signifi-
cantly increased the ability of Src to decrease contact growth
inhibition and to increase anchorage-independent growth
(Fig. 7).

Our data indicate that Src phosphorylates 11 sites within the
Src substrate region of Cas. Once these sites are phosphoryl-
ated, they can bind to SH2 domains on different proteins (6).
Tyrosine 253 was a preferred Src phosphorylation site in Cas.
However, phosphorylation of this site was not required for Src
to block contact growth inhibition or anchorage dependence.
Instead, phosphorylation of tyrosine 253 was required for Src to

augment the migration of transformed cells. Therefore, this
site may target individual proteins to focal adhesions that are
specifically required for cell migration to occur.

Binding of Crk to the Src substrate region of Cas is required
for cell migration and invasion into collagen (21–23). In addi-
tion, Huang et al. (21) have recently reported that phosphoryl-
ation of this region is required for Crk binding to Cas, and for
Src to induce cell migration but not for Src to promote nonan-
chored cell growth. Also, Cho and Klemke (40) have recently
demonstrated that the association of Cas with Crk activates
the small GTPase Rac1 to direct cell movement by causing the
growth and retraction of pseudopodia. This same Cas/Crk/Rac1
association also blocks apoptosis (22, 23). However, Cas may
regulate the binding of Crk to other proteins including Gab,
Cbl, and the insulin receptor substrate IRS1 (41–43), which
have all been implicated in cell migration (44–46).

Phosphorylation of Cas during cell migration differs from its
phosphorylation profile during cell division. Cas is phosphoryl-
ated on serine and threonine, whereas tyrosine residues are
dephosphorylated during mitosis (47). As opposed to the Cas/
Crk/Rac1 cascade implicated in cell migration, phosphorylation
of Cas at sites other than tyrosine 253 may enable Grb2 to
associate with Shc and Shp2 to activate the Ras/MAPK cas-
cade, which then activates genes required for mitogenesis via
serum response elements (48).

Taken together, because phosphorylation of tyrosine 253 is
not required for the effects of Cas on cell growth and anchorage
independence but is required for Cas to enhance transformed
cell migration, it may be proposed that phosphorylation of this
site is especially suited to activate Rac, whereas other sites
enable the activation of Ras. This system provides a striking
example of how a single phosphorylation site on one protein can
determine whether or not a tumor cell will migrate. Ultimately,
this situation may be exploited to precisely target specific as-
pects of tumor cell growth, such as metastasis, without inhib-
iting the processes required for normal cell behavior.
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