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Abstract

Phillip J. DiBona
INFORMATION FORAGING THROUGH THE ANALYSIS OF SEMANTIC

NETWORK TOPOLOGY
2017-2018

Shen-Shyang Ho, Ph.D.
Master of Science in Computer Science

Information seekers are posed with multiple challenges in gathering an

unbiased and comprehensive body of information. The costs of analyzing documents

often drive searches toward a small subset of documents. Additionally, modern

search tools may reinforce the confirmation bias of users by providing only those

documents that closely match their search query. The end result is a decision or

hypothesis that is ill-considered and substantiated by potentially biased

information. Information seekers need an information foraging tool that can help

them explore the document corpus to find relevant topics and text snippets, while

finding the hidden information that may be buried in the corpus or may not have

been known a priori. An automated information foraging tool can mitigate these

challenges by automatically identifying a wide breadth of topics for the user,

extracted directly from a document corpus. When documents are decomposed and

reconstituted into a semantic network, there is value in the topological structures

formed. Leveraging a suite of information retrieval and graph analysis algorithms

that analyze the semantic network, a framework is defined for assisting information

seekers in both exploring and exploiting relevant information from a corpus to

support unbiased decision making.
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Chapter 1

Introduction

Information has become ubiquitous in the internet age, where both news

outlets and individuals are continually publishing articles to the World Wide Web

covering every conceivable topic and event from numerous perspectives. For

information seekers, the large quantity of available information (i.e., volume) and

rate at which new information is created and published (i.e., velocity) [1] provides

the opportunity to research and analyze a wide array of information. This rich body

of material informs decisions, arguments, and hypotheses ranging from business to

government and military policy. The ideal goal of the information seeker, enabled

by this volume of data, is to generate an understanding of a domain that is both

complete and accurate, but this depends primarily on the accuracy and

completeness of the available information [2]. However, this same volume and

velocity of data may hinder that goal because completely finding and analyzing all

documents within a domain’s corpus is infeasible due to the time and manpower

constraints required to do so. This leads to two related key challenges that diminish

the overall completeness and accuracy of a full search and analysis of a domain.

1.1 Exploration-Exploitation Tradeoff

The first challenge is the Exploration-Exploitation Tradeoff, which contrasts

the desirability to explore as much of the information space as possible against the

inherent costs of analyzing each document that relates to a domain in order to find

and extract the relevant snippets needed to inform analysis [3]. These costs are

typically quantified as the time involved in reading and analyzing the documents.

Because of the sheer volume of data available, the information seeker will not be

able to extract a holistic set of topics and snippets that cover the breadth of the

search domain. In practice, the exploration-exploitation tradeoff operates more as a
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continuous spectrum where the seeker will transition between exploration of the

domain and exploitation of documents in particular sub-topics of the domain based

on in situ goals and an assessment of what is “good enough” [4]. For example, a

person will often repeatedly transition between exploration and exploitation as the

results of one search may guide later searches. Typically, the exploratory side of the

spectrum strives to find relevant topics to better understand the information

landscape as it relates to a domain, while exploitation strives to “reward” the seeker

with documents or document snippets that can serve to provide details, evidence,

and depth to the understanding of specific topics. When a seeker is unfamiliar with

a domain or sub-domain, these transitions may themselves become costly and time

consuming, resulting in a truncated search. The seeker ultimately must decide what

level of exploration is “good enough” based on incomplete information.

1.2 Search Tools and Bias

The second challenge that affects search completeness and accuracy stems

from the tools we most often use to discover information. Modern search engines

offer information seekers efficient and ubiquitous access to this vast volume of data

for both exploring and exploiting their corpus of information. These tools excel at

matching documents against a user’s query, where a seeker formulates a query using

specific search criteria, and the search engine recommends a series of documents.

This process is well-suited to support the exploitation side of the

Exploration-Exploitation spectrum, as the user is presented with documents for

further, detailed analysis. But for the seeker who is exploring the domain, these

documents, or the tools presenting them, may not provide the context for

understanding how they fit into the larger domain [5].

For those information seekers already familiar with a domain, these search tools

may also pose an additional challenge from confirmation bias, the tendency to seek
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confirming evidence by providing ranked results that closely match the search

query [6]. This adversely affects completeness of the search because analyzed

documents, topics, and snippets will be only a subset of the relevant information

domain. This subset will be closely correlated to the specific search query terms,

causing an inability to discover relevant topics unknown to the information seeker.

When search engine induced bias is coupled with inherent bias in the information

seeker, a resulting understanding of a domain may be skewed toward specific

sub-domains, leading to a significantly incomplete and inaccurate analysis.

1.3 Information Foraging

Information search is ultimately used to develop an information product,

that may take the form of a formal hypothesis or structured argument, research

paper, or a mental understanding of a domain or topic, a process often referred to

as sensemaking. Pirolli and Card defined a model for sensemaking [3] that is

principally comprised of two intersecting loops, the foraging loop and the the

sensemaking loop (see Figure 1). The foraging loop models how information

analysts (i.e., seekers) gather information, collect it into an analyst’s shoebox, and

after identifying relationships among the data, form an evidence file. This process

iteratively narrows information topics from an unstructured raw set, to a relevant

set, to a lucrative set. By the time the information is organized into the evidence

file, the information analyst has used the information and concept/topic

relationships as well as contextual information to form loose or high-level

organizational structures within the data, often in the form of concept maps (or

semantic networks). The sensemaking loop builds upon this base of information and

models how analysts schematize the information, adding more structure, and

ultimately forming hypotheses.

As hypotheses are formed, seekers may often need to traverse down the
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Figure 1. An information foraging and sensemaking model

sensemaking loop and back into the foraging loop to find information to further

substantiate or refute the premises of the hypotheses (i.e., exploitation), potentially

changing the schema and structure of that information. As premises and

assumptions are substantiated or refuted, the information seeker may again

transition into an exploration process, seeking to expand the breadth of topics

analyzed. Depending on the information seeker’s a priori understanding of the

domain, the information foraging process may initiate anywhere on the

exploration-exploitation spectrum. However, for a complete and accurate

understanding of the information, the seeker will have made several transitions

between the two ends of the spectrum, exploring a wide breadth of information and
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selectively exploiting several sub-topics, gathering an evidence file. Information

Foraging Theory also discusses that seekers will often identify information patches [7]

that are rich sources of relevant information. These patches are visited by the

seeker, and when the exploitation of information at that patch is exhausted (or the

diminishing value of the information exploited no longer justifies remaining at the

patch), the seeker will move onto another information patch for further foraging.

The content of the patches are identified by the seeker via indicators or cues and

may hint at their likelihood to be lucrative patches for exploitation. These cues,

referred to as the information scent, help the seeker “follow the data” during their

exploration and foraging.

1.4 Semantic Networks in Exploratory Search

Throughout the research into how information seekers discover, collect,

organize, and schematize information, there is a recurrent theme regarding the

benefits of modeling the relationships among elements of information. In their

sensemaking model, Pirolli and Card assert that as information seekers forage for

information and evidence, the seeker will identify relationships among the concepts

within their corpus, often creating concept maps, or semantic networks, that model

these concepts (e.g., people, locations, events, organizations) and their

interrelationships. Collaborative databases, such as Wikipedia, often have explicit

links between documents, concepts, and categories (i.e., topics). Exploratory search

based on these network relationships can improve search performance and provide

diversity in the search results [9]. Recent research approaches in exploratory search

interfaces have shown efficacy from displaying and leveraging network views of the

information space as means to navigate the complex relationships of data elements

within the corpus, visualizing both the documents and the categories that label

them [10]. These networks of information concepts and their interrelationships are in
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fact semantic networks, a graph structure that represents knowledge in patterns of

concept nodes and edges [11]. In practice, these networks may be modeled as either

directed or undirected graphs, and the edges may be weighted to represent the

strength of that relationship.

1.5 Premise

This information foraging model provides useful insights into the cognitive

science of information exploration and exploitation. The constructs of the iterative

foraging loop that transitions the exploration-exploitation spectrum, information

patches and scent, along with the common (human) use of concept maps for

identifying relationships within the information space offer insights into how the

computer science community can develop algorithms and methods to facilitate

lucrative information foraging. Both the exploration-exploitation tradeoff as well as

cognitive bias (inherent in the seeker and exacerbated by search tools) pose as

barriers to a complete and accurate exploration of a domain’s information space.

Information seekers need tools to support the exploration and navigation of

the wide volume of a domain’s topics and concepts as well as their complex

interrelationships. Decisions on how to explore this conceptual network offer the

information seeker, not a few options to follow from each topic or concept, but

possibly tens or hundreds of possibilities [5]. Information search tools should not

support just exploration or exploitation, but rather the repeated transitions that

occur throughout the search process.

Information seekers, when gathering data for important decisions and

hypotheses, need an automated information foraging (AIF) capability that can

analyze a document corpus for a specific domain, and provide a simultaneous

presentation of the full breadth of topics that comprise that domain, where it will

be apparent to the user what topics are consonant or dissonant with their extant
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beliefs or biases [8]. Further, this capability should allow the seekers to narrow these

topics for further analysis by providing access to related topic adjacencies (both in

breadth and depth) across the exploration-exploitation spectrum. This allows them

to follow the information scent to explore the various information patches existing

in the corpus and enrich their hypotheses through the identification of snippets of

information that can serve as supporting or refuting evidence for decisions and

hypotheses.

The technical premise behind this information foraging framework is that

when documents in a corpus are decomposed into constituent terms and formed into

a semantic network, based on their co-occurrence and relationships to other terms,

there is inherent value in the graph structures formed. These semantic networks

organically form concept community structures that can be viewed by the

information seeker as a set of information patches representing highly-cohesive

topics within the corpus with their own interrelationships. These inter-relationships

can assist the seeker in exploration of the information space through adjacent (i.e.,

related) patches/topics. By having an ability to explore the entire corpus via these

topics, the information seeker may identify those topics for further exploitation to

find the lucrative document snippets to be used as evidence for substantiating or

refuting hypotheses or informing decisions. Additionally, a hierarchical graph-based

schema provides full traceability between term-concept communities and the

documents that originated the terms.

This thesis describes the methods of the AIF framework to:

• Decompose an information corpus,

• Construct a semantic network of concepts,

• Identify structures in the semantic network as cohesive concept communities,
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• Present the concept communities to the information seeker as corpus topics,

• Explore the corpus topics to identify relevant topics to a seeker’s queries.

1.6 Contributions to the Research

Pirolli and Card have proposed the need for an automated information

foraging capability that can assist information analysts/seekers in exploring the raw

information landscape to identify the relevant and lucrative text snippets that can

be exploited as evidence for hypotheses and decisions. However, without addressing

bias in the information and in the information seeker, this evidence will also be

biased, potentially leading to ill-considered decisions. Heuer posits the need for

rigorous methods to identify and eliminate bias in decision making through

developing multiple competing lines of inquiry requiring analyzing as much of the

information as possible. This thesis describes a framework for providing an

information foraging capability that addresses both goals through a suite of

algorithms that focus on the semantic network, a construct that is inspired by the

concept maps often generated by information analysts. While other research has

addressed various aspects of the foraging problem, this ensemble set of algorithms

addresses the full information foraging loop, from identifying raw information

sources, through assisting with the exploration of those documents to find relevant

and lucrative text snippets. The resulting automated information foraging

framework provides the software tools to study the entire information foraging

process in light of the exploration-exploitation tradeoff, while also exposing the

hidden lucrative information embedded in the corpus, mitigating potential bias.

1.7 Scope

The actual information landscape for any particular domain will contain a

wide variety of data types and forms, such as text (structured and unstructured),

imagery (e.g., photographs, figures, maps, timelines), video, and audio. Each of
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these modalities offers an important element to an information foraging system. The

multimedia types are specifically well suited as cues for modeling information scent.

For this thesis, the variety of information considered will be limited to

unstructured text in the form of web-published articles from established news

sources. Unstructured text is a rich and complex data type with unique challenges

and opportunities. Additional research in expanding these concepts and methods to

non-textual information would prove beneficial to the overall goals of this thesis.

Additionally, this thesis is limited to the investigation of algorithmic

approaches for creating an automated information foraging capability through the

analysis of semantic network topology. Graphical user interfaces nor visualizations

of the information landscape have been attempted. The goal is to establish a proof

of concept framework for these methods as a basis for research in automated

information foraging.

The algorithms and approaches describes in this thesis require a corpus of

unstructured textual documents. Although this thesis does identify one such

method for acquiring a corpus, this is not a focus area under investigation.
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Chapter 2

Literature Review

The purpose of this literature review is to identify the breadth of topics

relevant to the construction of an automated information foraging (AIF) framework.

Because AIF and its technical premise cover multiple disciplines and research areas

within those disciplines, the scope of this review is intended to identify key research

papers and how they relate to AIF. This review is divided into cognitive science,

computer science, and the contributions to the research stemming from this thesis.

2.1 Cognitive Science

Information foraging, as a research topic, is first concerned with the

processes and confounds involved in how humans search for information as well as

the rationale and goals informing that search. Through cognitive task analysis,

Peter Pirolli and Stuart Card empirically studied the processes and structures

employed by information and intelligence analysts in sensemaking [3]. The roles

studied are optimal subjects because their success requires analytic rigor, the ability

to organize and sift through vast amounts of information, and minimize cognitive

biases, as the hypotheses they form and substantiate are crucially important. Pirolli

and Card developed a model for Sensemaking that shows the relationship between

the the structure of information and the level of effort required to achieve that

structure, where the pinnacle is a defensible hypothesis that has ample evidence to

substantiate it. The hypotheses are formed from schemas that organize the

information which are in turn built upon the relationships among the elements of

information. The basis of this sensemaking model is the foraging loop, where the

analysts search for information among external, raw data sources, identify and filter

relevant pieces of information and store that information in a loosely organized

manner. As the information is read and examined in more detail, more lucrative
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information is extracted and organized into a more structured manner where

relationships among the information is identified. One of the common methods used

to structure this evidence is through visual concept maps or linkage maps. This

insight into how professional information seekers and analysts organize and

structure information inspired much of the technical approach for this thesis.

Further, their cognitive task analyst highlights that the information foraging loop is

a leverage point in the sensemaking process where technology may provide benefits

to the analyst.

Pirolli and Card expanded these concepts in their book, Information

Foraging Theory, where they further explain this information search process relative

to the exploration-enrichment-exploitation tradeoff in the form of a biological

metaphor [7]. This metaphor compares the tradeoff to the process modeled by

predators hunting for food as they balance the tradeoff of calories expended

searching for food (exploration) against the calories gained (exploitation) through

several foraging strategies. One of the key strategies is the patching strategy, where

predators will identify and spend extended periods of time in food patches. When

the food gained in these patches is expended, they will explore and find a new

patch. Information foragers often have their own information patches. These could

be information sources or websites. They may also be clusters of inter-related

documents that contain a rich (and lucrative) set of information. This concept of an

information patch is another inspiration for the technical approach in this thesis,

namely, using clusters of highly-related information pieces that serve as means to

facilitate information exploration.

Another key paper that studies successful information and intelligence

analysis processes was authored by Richards Heuer, which asserts the need to

mitigate cognitive bias in the information used for sensemaking [2]. One method for
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mitigating bias is the generation of alternative and competing hypotheses, which

requires a wide breadth of information gathered and analyzed. To the extent

feasible, the analyst should assess the full information space, filtering and

identifying information that is both consonant and dissonant to his/her beliefs and

the hypotheses themselves. White, et al, assert that the very tools available to

modern information seekers and analysts, such as search engines, may exacerbate

cognitive biases because they find information that closely matches the query terms

provided by the information seeker [6]. These papers further motivated this thesis to

provide an automated means to assist bias mitigation through the presentation of

all the topics contained within the information space. By having access to the full

breadth of information topics from a corpus, the analyst should be able to quickly

assess the information space and identify those topic that are relevant to the various

hypotheses and which are consonant or dissonant to their beliefs.

2.2 Information Retrieval

Information Retrieval (IR) is the subfield of computer science concerned

with the efficient storage, search, and discovery of large amounts of information.

Many of the research areas within IR are applicable to this thesis, the first of which

is exploratory search, which addresses how people find information when the

problem is poorly defined, when they are unfamiliar with the domain in question, or

when multiple perspectives must be analyzed [5]. Modern tools often facilitate

information browsing behavior by following hyperlinks in documents which can lead

to serendipitous discovery of information. This process, while easy for information

seekers and can help in refinement of search goals, is often inefficient and not

appropriate for fact-finding or exploring a wide breadth of the information

space [40,41]. However, the literature strongly favors development of approaches for

goal and task-oriented exploration of the information over serendipity [42]. To
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maintain a higher-level of efficiency and value in the exploration process,

quantification and assessment of the relevance of information is needed for

exploratory search tools. This research has motivated this thesis to identify

methods for quantifying relevance of information topics presented to the user.

Another important research area within exploratory search is concerned

with the presentation and navigation of the information space. Some researchers

assert that visualization and user interfaces are as important, or perhaps more

important than analytic strategies. Visualization helps information seekers

understand where they are in the domain, and how to identify and navigate the

various decision points to explore related information. These kinds of tools and

interface should facilitate information understanding over just finding and ranking

information [9,10,43]. Although this thesis is not focused on user interfaces, this

research motivates the AIF goal of providing a simultaneous presentation of all

topics to the information seeker, so that navigation of those topics will be more

tractable, as opposed to following semantic network links as if they are hyperlinks.

Topic modeling is widely researched area in IR, where the intent is to

generate a set of topics contained in a corpus, where a topic is a pattern of term

co-occurrences. Most approaches leverage a probabilistic model for identifying the

statistically significant patterns of word (term) use and their associations to

documents that exhibit similar patterns [44,45]. The leading approach is Latent

Dirichlet Allocation (LDA) in which documents are modeled as mixtures of topics

that generate terms with probabilities of association to those topics [30]. Therefore,

the output of an LDA process is a set of n topics (where n is chosen a priori)

containing significant, high probability terms associated with that topic. Despite

the popularity and successes of LDA, there has been little analysis on the factors

that characterize LDA’s performance [46]. Through experimentation, Tang, et al,
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demonstrate several factors that affect LDA performance, including the number of

documents and the length of the documents. Additionally when there are large

numbers of topics, LDA may not converge well. This is confirmed in real-world use

cases [47,48]. For information foraging, one challenge that LDA poses is its need for

the number of topics as an input parameter. If supplied by the user, this can be an

implicit bias source. If iteratively tested with varying values by software, it could

affect the resolution of topics generated. This probabilistic approach may also not

detect small topics that are statistically insignificant, but may be relevant to the

information exploration. But the successes of LDA motive this thesis to use a form

of topic modeling for finding the information patches in a corpus as a means to

facilitate exploration.

The IR community has explored the use of semantic networks, also called

associative networks, for information indexing and retrieval. These semantic

networks model knowledge and their interrelationships, similar to the information

and intelligence analysts’ use of concept maps in the Pirolli and Card study. This

subfield of IR, known as Associative Retrieval, leverages these relationships between

knowledge elements (terms) and documents to identify related, adjacent knowledge

that may be relevant to a search. One successful associative retrieval method uses a

spreading activation model that uses the associative nature of a semantic network as

a means for controlling search [38]. This approach activates one or more nodes in the

semantic network and propagates an output signal to adjacent nodes and controls

how that signal and subsequent nodal activations spread through the larger

network [49]. Cresanti posits that spreading activation can be used to retrieve

relevant information by identifying other information that is associated with what is

already known to be relevant. Because of its common underlying data structure

(i.e., semantic networks) for organizing information used for sensemaking, as well as
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its ability to identify relevant information, this thesis is motivated to leverage

associative retrieval concepts for relevance analysis.

2.3 Graph Analytics

Because this thesis focuses on the analysis of a semantic network, literature

on the analysis of graphs is warranted. Two key areas of graph analytics were

investigated: centrality and community detection. Graph Centrality assesses which

nodes in a network have the most relative importance with respect to the other

nodes in the graph (or subgraph). There are several approaches toward computing

centrality.

Degree centrality measure the importance of a node by the cardinality of its

neighbors [50]. This measure has two disadvantages in that many nodes will share a

common degree score and that it only uses local information with respect to each

node. The graph as a whole is not important, and thus minimizes its descriptiveness

as a measure of importance relative to the graph. Closeness centrality measures the

average distance from each node to all other nodes [51]. While this is an improvement

over degree centrality in that it uses non-local information and considers the whole

graph, this measure does not have much semantic meaning regarding relative

importance of nodes. Betweenness Centrality is a widely used method for

computing centrality in a graph. This method finds the shortest distance between

every pair of nodes in the graph and counts the times every node is traversed in

those paths. This method does indeed create a semantically meaningful concept of

importance. Additionally, betweenness centrality can be applied to both weighted

and unweighted graphs as well as both nodes and edges, making this a versatile

metric. Several efficient approaches to betweenness centrality have been developed

by Newman [52] and Brandes [34].

Graph community detection, also referred to as graph clustering, are

15



algorithms that identify topological structures in the graph, specifically,

communities of highly connected nodes with looser connections between those

communities. Three popular classes of algorithms were investigated to determine an

optimal approach to community detection. These classes are: Graph Partitioning,

Divisive Hierarchical Clustering, and Hierarchical Maximum Modularity Clustering.

Graph partitioning was originally motivated by electronic circuit board

designs that require partitioning the circuits to minimize the physical

interconnections between modules [31]. The graph’s edges model the physical

interconnections on the circuit board, and clusters model groups of components on

that same board. This class of algorithms optimizes a function that determines the

ratio of the number of edges between modules to the number within modules. This

method, although efficient and widely used for various applications, requires a

predefined number of clusters to be provided to the algorithm.

The class of Divisive Hierarchical Clustering algorithms approaches

community detection and clustering by identifying candidate edges that can be

iteratively removed until communities emerge. One of the first and more popular

methods is the Girvan-Newman Algorithm [13]. Girvan-Newman uses the

Betweenness Centrality (Bc) Metric of the edges to find clusters by removing the

edge with the highest Bc score, then recomputing the Bc scores for the entire graph

again. This is repeated (hierarchically) until all edges have been removed or a

modularity-score stopping condition is achieved, resulting in a dendrogram.

Girvan and Newman first used the modularity metric for assessing the

quality of the community structures in the graph, which measures the degree to

which a cluster’s membership has dense edge interconnections while edge

connections between clusters is relatively low [13]. Modularity can also take into

account not just the density of edges between nodes to identify communities, but
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also incorporate the weights of those edges, thus enabling the graph clustering to

identify strongly connected groups of nodes [32]. Although maximizing modularity is

NP-Hard, Noack and Rotta identify several efficient greedy and heuristic-based

approaches for achieving effective clusterings [33]. This class of algorithms uses a

multi-level heuristic of coarsening, which iteratively merges cluster pairs starting

from singleton clusters, then refinement, which iteratively reassigns vertices vertices

to different clusters.
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Chapter 3

Technical Approach Overview

This automated information foraging (AIF) framework is intended to

facilitate research in assisting an information seeker in gaining an understanding of

the breadth of information in a domain’s document corpus, find relevant topics (that

may or may not have been known a priori), and discover documents or document

snippets that can be exploited for evidentiary substantiation or refutation of

hypotheses or decisions. The underlying premise behind this AIF framework is that

when documents in a corpus are decomposed into constituent terms and formed into

a semantic network, there is inherent value in the topology of that network. The

topology will contain graph communities (or clusters) based on the connectedness

(and strength of the connections) among the concept nodes, revealing cohesive

topics in the corpus. This topology additionally models semantic relationships

between corpus concepts and between the topic clusters that assist in exploratory

search of the information landscape. The semantic network, however, is only a

subset of the overall AIF schema, which is a hierarchical graph that both facilitates

breadth-wise exploration of the information domain of a corpus and depth-wise

enrichment and exploitation of the documents and documents snippets associated

with specific topics within the domain. In addition to facilitating the seeker’s

exploration-exploitation transitions, this hierarchical graph-based schema provides

traceability between the topics, concepts, and the documents that spawned them.

As with any search process, this is not a completely automated process. The

human information seeker must guide the process at a few key points to ensure that

the automated process satisfies to the seeker’s information needs. This is most

evident in two areas, specifying the broad domain and in identifying

exploration-exploitation transitions. This section describes the schema and the
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high-level AIF framework processing (with details provided in subsequent chapters),

noting points where human-in-the-loop inputs are required.

3.1 Hierarchical Graph-Based Schema

The overall schema for the AIF framework’s data is an undirected graph

comprised of four interconnected layers, where nodes in each layer are a

homogeneous class of data, as shown in Figure 2. Each of the layers is a distinct

subgraph with connections to the layers above and below (as applicable). The AIF

framework constructs each layer from the bottom-up. The information seeker,

however, will interact with the AIF data from the top-down, starting with

exploratory search within the topic layer, then exploiting (i.e., analyzing) the

snippets and documents by accessing data further down the graph.

Concepts
(Semantic Network)

Snippets

Documents

Topics

Figure 2. Automated information foraging hierarchical graph-based schema

The bottom layer is the Documents Layer, and contains one node per

document in the corpus. In this context, a document may include a news article, a

web page, blog post, or any other unstructured textual content. Metadata for each
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document node contains the document’s source (e.g., URL) and unstructured text

content.

The next layer, the Snippets Layer, contains discrete sections of documents,

such as article sections or paragraphs. Snippets are useful in this model because

they are typically cohesive (and related) groups of sentences, usually more cohesive

than the document as a whole. For each document, there are one or more snippets.

From an information retrieval perspective, snippets are document surrogates that

allow information seekers to quickly identify information based on utility or

relevance [12]. For the AIF framework, snippets are used to limit the edges between

nodes in the Concepts layer.

The third layer is the Concepts Layer, which is the semantic network of

significant terms within the snippets, such as named persons, organizations,

locations, as well as significant noun phrases. These terms represent concepts within

the domain’s corpus. Information analysts often form conceptual schemas of

information by generating concept maps to organize information to infer patterns.

Similarly, this layer forms a large semantic network (as an undirected weighted

graph) of the significant terms in the corpus based on the co-occurrence

relationships between terms found in the snippets. These concepts may originate

from one or many snippets. The AIF framework will account for the common (and

expected) situation when a concept is represented in multiple snippets.

The final (and top-most) layer is the Topics Layer, which is formed by

identifying weighted community structures within the Concepts Layer’s topology.

Each node represents one concept cluster (or community), containing links to its

constituent concepts in the layer below. The most significant concepts within each

cluster are presented to the information seeker as representative terms (i.e.,

keywords) for that topic. In the current AIF prototype, a concept may only be a
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member of one topic, however the framework allows for many-to-many relationships

for future research.

3.2 Automated Information Foraging Process

The AIF framework supports the information seeker’s exploration and

exploitation of the information landscape, and therefore is comprised of tasks

assigned to both the human and the automation support algorithms, as shown in

Figure 3. The first phase of the automated information foraging process

deconstructs a document corpus to its most basic atomic elements, textual terms,

and reconstructs and reorganizes those terms to form the semantic network. The

second phase of the process analyzes the topology of that semantic network using

graph analytic techniques and leverages the structure of the network to facilitate

both exploration and exploitation of the information.

The process initiates with the information seeker providing a document

corpus to the AIF framework. This can be accomplished in one of two ways. The

first is that the seeker can provide an externally-generated document corpus to the

framework. The alternative is that the framework can use information retrieval

tools and techniques to create the corpus for the user. The critical assumption of

the AIF framework is that, regardless how the corpus was acquired or created, it

should represent a wide breadth of documents that cover a domain. This corpus

should not yet be restricted to subtopics or specific searches. Any search used to

create this collection should be very broad and very high-level. For example, if the

information seeker needs to explore the information landscape to understand

Hurricane Irma, the search terms used to create this corpus should be “Hurricane

Irma”, not something more specific such as “Damages from Hurricane Irma”. This

will allow AIF to generate a wide range of topics for the seeker to explore, where

one or more topics relating to damages would be represented.
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Figure 3. Automated information foraging high-level process

3.2.1 Phase I: text analysis. Once the corpus has been generated, the

framework then creates a baseline dictionary by first extracting all of the terms that

will eventually comprise the concepts in the semantic network. These terms can be

unigrams or n-grams (from noun phrases or named entity recognition), and their

corpus-wide frequency (i.e., the number of occurrence of that term) are determined
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and stored. The terms are ordered and used as features for modeling the corpus in

vector space. The set of possible terms, their ordering in vector space, and their

frequencies are stored as a Corpus Dictionary.

To construct the Documents Layer, the AIF framework must first clean the

data. Text documents, such as news articles and HTML pages, are often noisy,

containing advertisements, author or source attributions, multimedia, or links to

other documents. These superfluous textual elements often have little or no

relevance to the main body of the text, and may skew the semantic network by

adding irrelevant concepts or extraneous links. These elements are identified and

removed from the text. In many cases, especially with news articles, similar or

duplicate content may be published by separate sources. AIF identifies similar

documents and removes duplicates when they are encountered. Without this step,

link weights in the semantic network may become overemphasized. As documents or

textual elements are filtered out, the Corpus Dictionary is updated accordingly,

ensuring that the term frequencies are reflected accurately.

Snippets are constructed from the resulting documents in the previous step.

Snippets are distinct subdivisions within the document, but the entire document

content is represented by a set of snippets. Based on the specific runtime

configuration of the AIF, snippets may be subdivided by paragraph boundaries,

article sections (which contain one or more paragraphs), or as a whole document

(one snippet per document with the entire body of text).

The final step of Phase I is the construction of the semantic network that

models the concepts of the corpus and their interrelationships. For each snippet,

each term that comprises it are identified from the Dictionary, and the terms are

ranked by their salience in the document. Depending on the runtime configuration

of the AIF framework, a certain percentage of the most salient terms are then
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included as concepts in the semantic network. The assumption in the framework is

that if two terms occur in the same snippet, they are related, and a semantic edge

will connect them. The strength (weight) of those edges, however, are not fixed but

rather are based on a weight function. Only those concepts that reside in a common

snippet will have a link in the semantic network, regardless of whether they share a

common document. This restriction is intended to limit the effects of large

documents that may lack strong cohesion across the entire body of text. When a

pair of concept nodes in the semantic network already exist, the weight of that

relationship will be increased if that node-node link is discovered in a new snippet.

By the conclusion of this step in the process, the semantic network (i.e., the

Concepts Layer) will model the semantic relationships across the corpus. Structures

in the topology of that network will have emerged organically as document snippets

are added to the hierarchical graph.

3.2.2 Phase II: semantic network topology analysis. After the

construction of the semantic network, Phase II of the AIF framework’s processing

will analyze the structure of that network to identify a complete set of topics across

the corpus. The assumption in this step is that collections of highly related and

cohesive graph clusters (also referred to as graph communities) exists in the

topology of the semantic network. A commonly used metric for quantifying cluster

quality is modularity, which measures the degree to which a cluster’s membership

has dense (or strong) edge interconnections while edge connections between clusters

is relatively weak [13]. Each cluster is interpreted semantically as a topic in the

corpus, based on the denseness of the weighted concept term relations. They are

instantiated as new nodes in the Topics Layer, with connections to their constituent

concept nodes in the Concepts Layer. Modularity clustering can be used for

hierarchical clustering, allowing for large, less-cohesive clusters to be iteratively
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decomposed further into more cohesive communities.

Because the nodes in the Topics Layer represent textual topics in the

corpus, they must be presented to the information seeker as such. The current AIF

framework identifies a set of terms to be used as representative terms for that topic

(i.e., keywords). However, due to the varying size of the topics’ concept membership

and the hierarchical nature of the topic, the number of constituent terms may be

too large to serve as a useful surrogate for that topic. Therefore, our approach

identifies representative terms (derived from the topic cluster’s concept nodes) as

keywords for presentation to the seeker. The framework identifies representative

keywords from the concepts comprising the topic/cluster. One method identifies the

most salient concept terms, while another method analyzes the subgraph of

concepts in the Concepts Layer that comprise the topic, and scores each concept’s

betweenness centrality (Bc)
[34] for that cluster’s subgraph. The complete set of all

topics across the corpus are presented to the informations seeker as a hybrid

collection of keywords so the seeker can understand the gist of that topic.

The human information seeker, being presented with a set of topics that

cover the breadth of the corpus’s information space, has the initiative to explore

these topics to gain an understanding of the domain. After choosing one or more of

the generated topics, the seeker may wish to explore the depth of that topic. Using

the hierarchical graph, the AIF capability can present the concepts and edges in the

semantic network that comprise only the selected topic, which is a subgraph of the

larger network. Using the snippets linked to the constituent concepts, the seeker can

choose to exploit this textual content and assess the relevant and/or lucrative

information as evidence against decisions or hypotheses.

Each topic is a modular structure when compared against the larger

semantic network, as identified by the graph clustering algorithm. However, these
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clusters are identified hierarchically, and the selected topic cluster may not be

semantically cohesive from the seeker’s perspective because it may still cover

multiple subtopics. In these cases, the seeker can direct the AIF capability to further

decompose the topic into sub-clusters that are more cohesive. Upon decomposing

the topic, the new sub-clusters are then added to the Topics Layer and linked with

adjacent topics corresponding to the adjacencies in its Concepts Layer nodes.

The AIF hierarchical graph-based schema facilitates the presentation of

corpus topics as well as the snippets that are linked to the concepts, providing the

seeker with options across the exploration-exploitation spectrum. One can either

traverse the breadth of the topics, decompose selected topics into smaller cohesive

topics, or explore the detailed concepts comprising the topics. Therefore, both the

breadth and depth of information is available to the information seeker. The

snippets and their source documents are linked from these concepts to gain access

to their raw textual content, enabling the exploitation of their content to enrich the

information product.

The information seeker now has access to a more concise and navigable

model of the information, generated organically from the topology of the concepts

and relationships embedded in the entire corpus. This set of resulting topics, much

easier to visualize and navigate than the corpus itself, may still be rather large and

wide in its breadth of scope. Depending on the specific structure of the Concepts

Layer and the level of cluster decomposition, a potentially large number of topics

may be generated, some of which will have lesser relevance to the information

seeker. Additionally, documents taken from the web (especially news articles) often

have additional unrelated text snippets, such as advertisements and article teasers,

causing the generation of topics that are semantically unrelated to the original

corpus. For example, a corpus of news articles pertaining to Hurricane Irma may
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contain mentions of articles about terrorism. While these topics seem anomalous or

tangential to the information seeker, the AIF framework is correctly identifying

these semantic concept clusters as distinct topics in the corpus.

As discussed in the Pirolli foraging and sensemaking model, information

seekers need to reduce the information space from a “raw” collection, to a relevant

collection, then to a lucrative collection of information. The last step of the AIF

framework’s processing flow assists the information seeker in restricting the

corpus-wide set of topics down to a relevant set, and used iteratively to further

restrict this down to a lucrative set.

The information seeker can provide the AIF capability with a more refined

search criteria, based on his exploration of the topics. Continuing the previous

example of Hurricane Irma, the seeker discovered an interesting set of topics relating

to the health effects of the storm’s aftermath. The refinement search provided to

the AIF capability can be more specific, such as “health”. Since the entire corpus

was constructed around the broad search for “Hurricane Irma”, there is no need to

add this term as a refinement search constraint, as it is implied in the corpus itself.

The AIF relevance assessment step will score all topics based on this

refinement search. It employs a spreading activation algorithm (SAA) across the

semantic network contained in the Concepts Layer. Each of the concept nodes

matching the criteria in the refinement search terms are activated, and that

activation is propagated (though at a decreased level) to adjacent concepts, until an

activation threshold is met on a per-node basis [38]. Once the propagation ceases,

each topic is scored based on the ratio of the sum of its concepts’ activation level

relative to the number of concepts in the topic. The presentation of topics to the

information seeker are then restricted to those topics that contain activated

concepts, and ranked by this activation score, where the highest scoring topics are
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considered most relevant. The seeker can choose to clear the relevance scoring,

reverting back to the complete set of topics, select a new refinement search criteria,

or to add a new refinement search that will further activate the Concepts Layer

nodes with an additional activation signal, in essence combining multiple SAA

propagations.
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Chapter 4

The Corpus

The Corpus is comprised of the bottom-most two layers of the Automated

Information Foraging (AIF) hierarchical graph-based schema, the Documents Layer

and the Snippets Layer. These two layers model the information content in its raw,

unstructured textual form. The AIF schema provides for one graph node per unique

document (e.g., article, blog post, web page) instantiated within the Documents

Layer. Each snippet node represents a discrete subset of the document, such that

there is at least one snippet per document, where a snippet can be a paragraph or

section of a document. It is from these two layers that the corpus is deconstructed

into its atomic elements, document terms. A term can be a single word or a group

of coincident words representing a noun phrase or a named entity (e.g., person,

organization, location). These terms are then used to construct a corpus dictionary

that maintains statistics on each term in the corpus, especially the frequency of a

term within the corpus. This dictionary will be used throughout the AIF

framework’s processing. This chapter describes the corpus deconstruction process

and the subsequent creation of the Corpus Dictionary, the Documents Layer, and

the Snippets Layer.

4.1 Technical Challenges

There are several technical and practical challenges that this process is

intended to overcome. The first challenge involves the common use of Circular

Reporting in media, where the source of a document may seem like an original

source, but may in fact be a copy from another source. In practice, multiple news

outlets will often publish the same article under their organization’s banner,

resulting in many copies of the same article being published throughout the web

and print. Although the original author is usually attributed to the material, search
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engines and news aggregation databases will have multiple near-identical copies of

the same article. There may be minor differences among the copies, such as

advertisements and links to related articles, but the core content is usually the

same. Circular reporting can significantly skew the term frequency statistics in the

corpus dictionary, and therefore, it is desirable to eliminate these copies before the

dictionary is finalized. The challenge arises in how to identify near-similar

documents.

A secondary challenge is determining how to identify a term from a stream

of tokens (i.e., words) in a document. There are several approaches in the

information retrieval domain. This challenge is exacerbated because (in Chapter 5)

the AIF framework will attempt to resolve terms across multiple snippets that may

have differing case, plurality, or tense. This chapter will discuss various approaches

attempted, and the methods chosen based on in-practice observations.

4.2 Corpus Creation Through the Web

Phase I of the AIF framework’s process, Decomposition and Analysis of the

Unstructured Text, begins with one of two conditions: a corpus is provided to the

AIF framework, or the information seeker provides a broad search criteria for the

automated collection of the corpus. There are numerous methods by which a corpus

can be identified and acquired from the web. This section describes the method

used by the author. No matter which approach is used, creating a document

collection that covers a wide breadth of topics and from as many independent

sources as possible will yield the best results, which is a corpus rich-enough for

information exploration and diverse enough to mitigate bias.

Due to restrictions in end-user license agreements and application

programming interfaces (API), many search engines are not able to provide a search

capability that meets the needs of information foraging. However, there is a data
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source that indexes an extensive collection of news articles, the Global Database of

Events, Language, and Tone (GDELT) Project Global Knowledge Graph index [16].

GDELT monitors and aggregates news from across the globe in over 100 languages,

making this an excellent data source for the AIF framework as it draws from a

diverse set of authors and organizations with varying perspectives. Access to

GDELT data is accomplished through the Google BigQuery API [17], which has a

Structured Query Language (SQL) dialect. One of the GDELT tables is the Global

Knowledge Graph (GKG) that contains extracted entities (names, organizations,

locations) and themes. What is returned, however, is not the documents, but rather

the Uniform Resource Locator (URL) of the published document, stored in the

docid column.

Once the set of candidate document URLs has been retrieved from GDELT,

the AIF framework downloads each one from its specified URL. If the document is

inaccessible (e.g., HTTP 404, behind a paywall, unallowable), that document is

ignored. Once downloaded, the textual content is extracted. For this prototype, the

BoilerPipe library [18] was used, which uses HTML boilerplate detection approaches

to eliminate navigation elements, templates, and some advertisements [19]. This

process produces an unstructured text string that contains the main body of the

HTML document.

4.3 Data Cleaning

The extracted content, in most cases, requires further cleaning. In most

news articles, additional content is present, such as: author, editor, and contributor

attribution, the name of the news organization, email addresses, social media

hashtags, and URL source website. While this is valuable information for an

information seeker to assess source credibility, this extraneous text will skew the

corpus dictionary term frequency statistics and must be filtered. In practice, there
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are also some common phrases that frequently appear in news articles extracted

from websites, such as “click to follow,” “sign up today”, and “related articles.”.

The AIF framework maintains a list of common text strings that should be removed

when encountered as they will also skew term frequency statistics. The document is

scanned for HTML, Javascript, JSON, or XML content that may have survived the

BoilerPipe extraction process.

4.4 Document Layer Nodes

For each remaining document, a new Document Node in the Documents

Layer of the AIF hierarchical graph is created. This node will be assigned several

attributes, as shown in Appendix B, so that the process and the information seeker

will always have access to the document’s metadata. Once the document node is

created in the hierarchical graph, the cleaned text is indexed by the Lucene engine,

allowing for later search [20]. The document identifier used as the primary key in the

index is the vertex identifier (vertexId) of the document node.

4.5 Identifying Terms

Prior to building the corpus dictionary, each document’s cleaned text must

be broken down into its constituent terms using natural language processing (NLP)

techniques. For this prototype, the Apache OpenNLP library was used [21].

The first step in the term identification process is the detection of individual

sentences. Each sentence is then tokenized such that each distinct word is added to

an array of strings, one word (i.e., token) per array element. Many of the

downstream NLP models require tokenized sentences as inputs and is therefore a

required step. A set of Named Entity Recognition (NER) models analyze the

tokenized sentence to identify persons (i.e., names), organizations, and locations

within the sentence. These named entities will become individual document terms.

The next step will use a Part of Speech (POS) Chunking model to create a tree
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structure that identifies hierarchical relationship between groups of tokens and the

parts of speech they form. For example, the sentence, “Hurricane Irma will make

landfall and strike the Florida coast on Wednesday” will result in the POS tree

shown in Figure 4. Each token is represented as a leaf node of the tree, while the

non-leaf nodes represent higher-order parts of speech, such as noun phrases (np),

verb phrases (vp), and prepositions (pp), where the codes are defined by the Penn

TreeBank specification [22].

The AIF framework will create terms from the noun phrases that are

encountered in the sentence tree [23]. The information retrieval community has

shown that using noun phrases can often produce improved search results and term

clustering results [24] which will play an important role in the generation of the

semantic network layer. In this example, the AIF framework will look for the

lowest-level noun phrases (np nodes) in the tree, and extract the noun tokens (nn),

grouping them into a single term. For the example in Figure 4, the following noun

phrases will be extracted: hurricane irma, landfall, florida coast, and wednesday.

Note that this will eliminate some tokens such as determinants (e.g., “the”),

providing a more accurate representation of the concept. Additionally, any terms

that were identified as part of a named entity will not be duplicated, as the named

entity will take precedence. For any noun phrases consisting of a single token, such

as landfall, the token will be stemmed, meaning that its root (i.e., stem) will be

used in its place. All plurality and tense is eliminated thus making term resolution

possible in later steps when creating the semantic network. This stemming process

uses the WordNet Electronic Lexical Database [25,26], accessed via the Java WordNet

Library [27]. Once every sentence in each document has been decomposed into a set

of distinct terms, the corpus dictionary can now be constructed.

33



0
top

1
s

2
np

hurricane irma

7
vp

35
.

3
nn

hurricane

5
nn

irma

4
hurricane

6
irma

8
md

10
vp

9
will

11
vp

17
cc

19
vp

12
vb

make

14
np

landfall

13
make

15
nn

landfall

16
landfall

18
and

20
vb

strike

22
np

the florida coast

29
pp

21
strike

23
dt

25
nn

florida

27
nn

coast

24
the

26
florida

28
coast

30
in
on

32
np

wednesday

31
on

33
nn

wednesday

34
wednesday

36
.

Figure 4. Part of speech trees identify noun phrases

4.6 Corpus Dictionary

The corpus dictionary maintains the complete set of terms and term

frequencies used across the document corpus as well as for each individual document

(and later, snippets). This is accomplished by creating a series of term vectors,

which are ordered lists of values where the index (i.e., key) of each element is one

term in the corpus and the value of that element is an integer representing the
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term’s frequency, as shown in Figure 5. An additional term vector represents the

document corpus vector and its integer values are the sums of all frequencies for

each document’s vector elements. The term vectors and their frequencies are used

throughout the AIF framework’s processes for comparing documents and

quantifying the importance of terms within the corpus and the documents.

1

advisory

0

airport

1

alert

1

approaching
storm

0

zone

. . .

0 1 2 1 1. . .

0 0 1 0 0. . .

1 1 4 2 1. . .

. . .

Document 1:

Document 2:

Document N:

Corpus Total:

Figure 5. Term vectors in the corpus dictionary

4.7 Document Similarity Filtering

The first use of the term vectors addresses the challenge of circular

reporting, where the AIF framework must identify identical or nearly identical

documents. Having documents that use the exact (or almost exact) set and

frequency of terms add no semantic value to the corpus and can cause their term

frequencies to be over-represented in the document corpus vector. The AIF

framework will use each document’s term vector to generate pairwise document

similarity scores using a cosine normalization [28]. This metric takes into account the

direction of the vector where a value of 1 means the documents are the same, and 0

means they have nothing in common. This equation is shown in (1), where D is the

first document’s term vector, and E is the second document’s term vector.
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D = d1, d2, . . . , dn

E = e1, e2, . . . , en

sim(D,E) =

n
∑

i=1

di · ei
√

√

√

√

n
∑

i=1

(di)
2 ·

n
∑

i=1

(ei)
2

(1)

If the similarity score between two documents exceeds a threshold (very

close to 1.0, such as 0.95), one of the documents is removed from the corpus, and its

Documents Layer node is removed accordingly. When this similarity filtering

process is completed, the affected frequencies in the corpus dictionary are similarly

updated to maintain accurate statistics.

4.8 Snippets

Once the set of document nodes has been finalized and filtered, the AIF

framework is ready to subdivide the unstructured text from the each documents

into a set of snippets nodes (for the Snippets Layer). There are three ways that the

AIF framework can be configured to subdivide the documents. The first method

subdivides each document by paragraph, looking for “newline” breaks in the text.

The second method looks for distinct sections in the document, separated with an

introductory title line. Since the text is unstructured and there are no semantic

markings, a title identification heuristic looks for detected sentences (using Apache

OpenNLP) that are adjacent to newlines with no trailing punctuation. Sections

must contain at least one paragraph, but often contain two or more. The final

method is to do no subdivisions at all, using the entire document as a single snippet.

The progression of each method (paragraph to section to whole document)

monotonically increases the size of the snippet. As the snippet size increases, more

36



terms will be linked in the subsequent semantic network. However, there is a cost to

having a wider scope for term relations. The level of relatedness of the terms will

often decrease with size, as does the semantic cohesion of the entire snippet. In

practice, the section-division approach seems to produce the best subjective results,

since article authors will tend to organize related paragraph together in sections.

When whole document snippets are used, the semantic network tends to be

over-connected, causing poor topic clustering, while paragraph-based snippets tend

to miss many obvious term-term relationships.

The snippet nodes are created and added to the Snippets Layer, then linked

to the document node from which it was extracted. These nodes will be assigned

several attributes, as shown in Appendix B, so that the AIF framework and the

information seeker will have access to the snippet’s metadata.
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Chapter 5

The Semantic Network

Constructing the Concepts Layer is the most critical part of this automated

information foraging (AIF) framework as it lays the foundation for all graph

analytic steps to follow. It is through the construction of its semantic network that

the natural language terms in the corpus dictionary take on a semantic meaning to

become concepts based on their interrelationships with other terms. The semantic

network that comprises this layer enables the entire exploration-exploitation

spectrum by establishing concept-concept (i.e., term-term) relationships for

exploration as well as concept-snippet relationships for exploitation. The structures

that organically emerge from the topology of this network allow the information

seeker to discover concept clusters that serve as potential information patches [7].

5.1 Technical Challenges

There are two key technical challenges that are encountered during the

construction of the semantic network. The first is the selection of terms to use in

the semantic network. Having too few concepts will reduce the breadth and depth

of concepts that can inform the information seeker and allow organic topological

structures to form. On the other hand, having too many concepts will potentially

saturate the semantic network with low-value concepts whose interrelationships can

cause weakly cohesive topics to emerge. The process by which salient terms are

identified as candidate concepts should be configurable at runtime to maximize the

value of the semantic network for the information seeker. Having the ability to

tailor the salience level of terms can ensure that the AIF approach can work with

diverse information corpora.

Another key technical challenge is ensuring that the relationships between

concepts in the semantic network accurately reflect the relative strengths of those
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relationships in the corpus. The eventual clustering of these concepts into topics

depends heavily on the weights assigned to these concept-concept links. Weights

that do not reflect the relationship strengths in the corpus will not convey the same

semantic meaning to the information seeker during the exploration of the

information space.

5.2 Identifying Salient Concepts for the Semantic Network

The first step in creating concept nodes for the semantic network is to

identify the salient terms from the snippets. Salience, however, cannot simply use

the highest term counts or frequencies as its measure. Doing so may bias the

membership of the semantic network toward commonly used terms that may not be

indicative of the core and important concepts. Rather, the AIF framework employs

the Term Frequency-Inverse Document Frequency (TF-IDF) numerical statistic for

normalizing term frequencies [29]. The TF-IDF value increases proportionally to the

number of times a term appears in the snippet (used in place of a document), but is

inversely weighted by the term’s frequency throughout the entire corpus. This is a

widely-used approach because of its utility in weighing term relevance for

documents. The variant of TF-IDF implemented is shown in (2), where f tf = raw

frequency of the term in the snippet, Ns = number of snippets, and nt = number of

snippets containing the term.

Vtf,idf = (1 + logftf ) · log(
Ns

nt

) (2)

As each snippet is examined to find candidate concept terms, every term is

scored with a TF-IDF value. After all terms have been scored, they are sorted in

ascending order by that score. It has been observed that when the TF-IDF scores
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are plotted with the scores on the y-axis and the ordinal on the x-axis, as shown in

Figure 6, the scores tend to increase slowly then have a sharp increase. From the

inflection point to the rightmost value, the framework considers these terms the

most significant for the respective snippet, and must be included as concept terms

in the semantic network.
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Ordered TF-IDF Scores for Terms in an Exemplar Snippet

Figure 6. TF-IDF ranking for selecting salient terms

However, instead of only including these most-salient terms, the AIF

framework will extend the salience threshold to a lower index in the term series as a

means to add more context to set of concept terms. More contextual terms ensures

that some lower ordered terms may also be considered salient, thus not

inadvertently missing any significant terms. More importantly, having more
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contextual terms allows a larger number of inter-snippet relationships, allow for the

semantic network to have a higher connectivity. This connectivity is critical for

enabling exploration of concepts and for identifying topics in the network topology.

The AIF framework allows for the actual runtime salience threshold to be set by the

information seeker, allowing the threshold to be tailored to the needs of individual

corpora. This threshold can be set to any value between 0 (include to all terms from

the snippet) to the inflection point (include only the most significant terms).

The framework identifies the index in the term series at which the threshold

is set. If the terms adjacent to the threshold term have the same TF-IDF score,

then the threshold is adjusted leftward to incorporate all “ties.” Once all salient

terms have been identified (all terms to the right of the threshold), each term is

instantiated as a concept node in the Concepts Layer of the hierarchical graph. If a

node for that term already exists, a new one is not created. However, all snippet

nodes that spawned this concept node will be linked to it. These nodes will be

assigned several attributes, as shown in Appendix B, so that the AIF framework

and the information seeker will always have access to the concept term’s metadata.

Many of these attributes, however, are added at a later stage in the processing flow.

5.3 Computing the Weights of Concept-Concept Edges

The next step is the generation of edges between the concept term nodes.

Since the AIF framework assumes that a snippet is a cohesive set of sentences and

terms, all concept term nodes created from a single snippet will be adjacent to each

other in the semantic network. The second assumption is that the closer the

concept terms appear to each other in the snippet, the stronger their semantic

relationship. Therefore, the weight of the edge uses a distance-based scheme that

gives a weight of 1.0 for terms in the same sentence, and decreasing value as they

get farther apart, where distance is how many sentences away the terms are. The
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weight value will always be positive, thus ensuring that all intra-snippet

relationships will be nonzero, however the values may be very close to zero as

sentence distance increases. The weight is computed with an inverse sigmoid

function, where function parameters are able to change the shape and width of the

sigmoid curve, as illustrated in Figure 7. An inverse sigmoid function has several

advantages. Both the upper and lower plateaus are asymptotic, so that a value in

the range of (0..1) is ensured. This function produces a value close to 1 for smaller

inter-sentence distances, and decreases as the distance increases. Additionally, by

being able to alter the rate of change, inter-term relationship strengths can be

tailored. The edge weight (W ) is computed as using:

W =
1

m+ ekx−d
(3)

where m is the maximum weight value (usually 1.0), k affects the steepness of the

curve, d is an offset in the x-axis to translate the curve, and x is the sentence

distance between two terms (0 means the same sentence, 1 means adjacent

sentences, etc). If the same term-pair exists multiple times in the snippet, then the

maximum W for that term-pair is used.

If an edge connecting two concepts already exists, the new W for the edge is

added to the existing edge weight. Therefore, the structures and weights in the

Concepts Layer are an aggregation across all snippets and represent the weight of

the inter-term relationship across the corpus. At the completion of the edge

creation, all edge weights across the semantic network are normalized as a value

between (0..1).

Once the corpus-wide set of concept terms and their relationships are
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Figure 7. Inverse sigmoid edge-weight function

instantiated and modeled into a single graph, the semantic network has been

created. An example semantic network (from the Hurricane Irma corpus) is shown

in Figure 8, in which topological structures can be visualized. These structures

represent cohesive communities of concept terms that can serve as “information

patches” in the Pirolli and Card Information Foraging Theory [7] model. We will see,

however, that the topological structures that will be used as topic clusters

(discussed in chapter 6) may not necessarily be evident in this view of the semantic

network because the edge weights are not shown. As shown at the bottom of the

figure, sets of disjoint subgraphs may also emerge from this process. These disjoint

communities model individual snippets that share no concept term nodes in

common with the rest of the graph. These disjoint communities often model the

tangential snippets common in news articles, but not in all cases. No assumptions

can be made yet regarding their relevance, as this will be addressed in chapter 7.
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Figure 8. Example semantic network
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Chapter 6

Topics

The second phase of the Automated Information Foraging (AIF)

framework’s processing flow analyzes the semantic network to identify and exploit

its topological structures enabling information exploration. This chapter focuses on

identification and modeling of topics that emerge from the corpus through this

topology, and how to present these topics to the information seeker.

6.1 Technical Challenges

Identifying a set of topics from the semantic network topology is a unique

approach to topic modeling. Popular methods in topic modeling, such as Latent

Dirichlet Allocation (LDA), are statistical models that identify topics based on the

likelihood of term co-occurrence [30]. In this approach, there is little or no semantic

understanding of the term relationships. Because one of the goals of AIF is to help

information seekers discover “hidden nuggets” of information based on semantic

relationships, these probabilistic models may not be effective for that end because

these hidden nuggets are often have a lower likelihood of co-occurrence, which is

why they may be hard to find. Another goal of AIF is the facilitation of the breadth

and depth of information topics. While methods such as LDA can certainly

establish a broad set of topics based on the corpus, these topics may vary is size and

scope. If an information seeker chooses to explore a single topic’s concepts and

semantics, that topic may need to be decomposed into sub-topics, a method not well

suited for LDA.

Based on experiments with topic modeling, it was discovered that some

corpora’s topics can overrepresent (or bias toward) locations. This phenomenon is

especially true for news articles, whose reports are often location-based, since the

town and city names are prominently mentioned in the text. The effect is that
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numerous topics emerge for one or more events that occurred at certain cities and

towns. While this is a valid subset of topics, the information seeker may need topics

that are more conceptual or event focused. Accordingly, the AIF framework would

need methods to de-emphasize locations in favor of these abstract concepts, events,

or people. Because the LDA approach does not take semantic analysis into account,

the information seeker will need to analyze the topics in more detail to overcome

this potential location bias.

6.2 Graph Clustering: Community Detection

The AIF framework seeks to create semantically-sensitive topics by

identifying strongly connected sets of nodes within the semantic network, known as

communities. These community structures (also called graph clusters) are a feature

of real-world graphs where there is a high concentration of edges within a node

group, and a low concentration between such groups [31]. A commonly used metric

for quantifying cluster quality is modularity, which measures the degree to which a

cluster’s membership has dense edge interconnections while edge connections

between clusters is relatively low [13]. Modularity can also take into account not just

the density of edges between nodes to identify communities, but also incorporate

the weights of those edges, thus enabling the graph clustering to identify strongly

connected groups of nodes [32].

There are several widely used methods for identifying clusters within graphs.

The AIF framework imposes several requirements for selection of an algorithm.

• The algorithm must be efficient at scale for real-world corpora that may

contain an excess of thousands of nodes and tens of thousands of edges.

• The clusters are identified hierarchically as a means to facilitate information

exploration in breadth and depth.
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• The algorithm must incorporate edge weights to assess the strength of a

cluster rather than simply the density of its edges.

• A predefined number of partitions cannot be used to determine clusters. For

information foraging, the number of clusters will be dependent on the corpus.

For the AIF framework, three popular classes of algorithms were

investigated to determine an optimal approach to community detection. These

classes are: Graph Partitioning, Divisive Hierarchical Clustering, and Hierarchical

Maximum Modularity Clustering. These approaches (discussed in Chapter 2) were

compared against semantic networks produced by the framework.

6.2.1 Graph partitioning. Graph partitioning optimizes a function that

determines the ratio of the number of edges between modules to the number of

edges within modules. This method, although efficient and widely used for various

applications, requires a predefined number of clusters to be provided to the

algorithm. Having the information seeker specify this value could inject potential

bias into the process. An automated iterative approach could try ranges of values,

but this approach is inefficient and requires a heuristic stopping condition. Other

approaches proved more effective.

6.2.2 Divisive hierarchical clustering. The Girvan-Newman approach

to Divisive Hierarchical Clustering uses the Betweenness Centrality (Bc) Metric of

the graph’s edges to find clusters by removing the edge with the highest Bc score,

then recomputing the Bc scores for the entire graph again. This is repeated until all

edges have been removed or a modularity-score stopping condition is achieved,

resulting in a dendrogram.

Betweenness Centrality is a measure of the centrality of nodes (and

extended to edges) in a graph based on all-pairs shortest paths [34]. For every node
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and edge in a graph, Bc is the number of paths that pass through it. For weighted

graphs, Bc measures the sum of weights is used. In the Girvan-Newman algorithm,

removing the edges with the highest Bc score essentially removes the most highly

traversed edges across the all-pairs paths, thus eliminating the likely inter-cluster

edges. Once all edges have been removed or when a modularity threshold is reached,

the resulting dendrogram is analyzed to find the hierarchically-generated clusters.

In practice, this algorithm worked very well for small and moderate sized

graphs of a few hundred edges. However, with a large graph containing thousands of

edges, it proved very inefficient, primarily because after each edge removal, every

remaining edge’s Bc must be recomputed.

6.2.3 Multi-level algorithms for modularity clustering. Girvan and

Newman first used the modularity score for assessing the quality of the community

structures in the graph. Rossi, et al. developed a hierarchical maximal modularity

algorithm that extends the Noack and Rotta approach by testing clustering

significance using random graph generation and recursive hierarchical

clustering [35,36]. This method is also useful for graph visualization applications [37]

that can hierarchically decompose not just the semantic network as a whole, but

also individual clusters’ subgraphs while maintaining inter-cluster connections. The

approach lends itself to the information foraging problem because information

seekers will follow the data both in breadth (across clusters) and in depth

(decomposing clusters) as needed, and these inter-cluster links can provide an

exploration path such that AIF visualizations and user interfaces can take

advantage of this added information. The Rossi algorithm meets each of the AIF

requirements for clustering the concepts in the semantic network, and is used for

such in the AIF prototype.
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Figure 9. Example topic layer showing concept clusters

6.3 Creating the Topics Layer

For each cluster of concepts identified by the Rossi community detection

algorithm, a new node is added to the Topics Layer of the AIF hierarchical graph,

and edges are added between the topic node (i.e., cluster node) and each of the

semantic network concept nodes that comprises it as well as edges to adjacent

topics. Figure 9 shows the resulting Topic Layer after the first-level hierarchical
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decomposition has been applied to the semantic network in Figure 8. The size of the

topic node indicates the relative size of its cluster (in terms of the number of

constituent semantic network concept nodes). Additionally, the disjoint subgraphs

in the semantic network are modeled as disjoint topic clusters.

Each cluster is interpreted semantically as a topic in the corpus, based on

the denseness and strength of the weighted concept term relations. These topics

represent strong relationships of concepts potentially spanning multiple snippets

and documents from the corpus. These relationships are formed not from likelihood

of co-occurrence, but from actual links in the text, facilitating the possibility of

linking concepts with low frequency to related concepts of higher frequency.

Each of the topics is linked to the concept nodes that comprise it.

Therefore, the AIF framework can extract the semantic network subgraph, Gt, that

represents the topic as shown in (4).

Gt = (Vt, Et) (4)

where: T = the set of concept nodes comprising a topic,

Vt ∈ T ,

Et ∈ (ut, vt),

ut, vt ∈ Vt

6.4 Cluster Subgraph Analysis

By extracting the semantic network subgraph that represents the topic, the

AIF framework provides additional capabilities for information foraging. Just as the

entire semantic network’s topology was analyzed for structure, so too can each Gt

subgraph. For instance, the same community detection algorithm that generated
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these topics can be applied to Gt to create a lower-level set of sub-topics for selected

cluster nodes. This allows two possibilities: automated decomposition of topic

clusters to create a larger set of smaller topics in the Topics Later, and allowing the

information seeker to hierarchically explore the “depth” of the topic by examining

lower-level subtopics.

The AIF framework analyzes and maintains several additional metrics about

the topic’s semantic network subgraph. emax, the maximum possible number of

edges among concepts in Gt, is shown in (5). ec, the completeness of Gt, as shown in

(6), is used to assess the density of edges within Gt as the ratio of actual number of

edges to the maximum possible number of edges.

emax =
|V | · (|V | − 1)

2
(5)

ec =
|E|

emax

(6)

Another analysis that is computed is the Betweenness Centrality (Bc) for

each node in each Gt. By computing Bc within the context of the Gt subgraph, this

process identifies the concept nodes that are “most central” for that topic. This

centrality metric is only done when the completeness metric is significantly less than

1. When ec is exactly 1, no Bc can be computed as there is no concept of centrality

for a complete graph. When ec is close to 1, the resulting Bc scores are not

statistically meaningful. The Bc scores will be used in section 6.6 to identify

surrogate concepts/terms to represent each topic to the information seeker.

The degree of each topic node (Dt), the number of the topic node’s

adjacencies within the Topics Layer, is computed as a potential ranking order for
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presenting topics to the information seeker. Additionally, each of the snippets that

are linked to this topic through its concept nodes are ranked (relative to each topic)

based on the number of links between the snippet and the topic’s concepts. When

the snippets are presented to the information seeker, they will be presented in this

order, where the most referenced snippets are shown first.

6.5 Automated Cluster Decomposition

The community detection algorithm produces a set of concept node clusters

that accurately reflects the topological structures in the semantic network that

maximizes the modularity metric of the graph. In practice, this produces a Topics

Layer with a wide spectrum of topic sizes. Often, as the topic size increases (based

on the cardinality of its concept nodes), the subjective cohesiveness of the concepts

in the cluster diminishes because the larger clusters cover a wider range of concepts.

These larger clusters’ Gt may also have their own topological structures representing

subtopics. The community detection algorithm can be executed against Gt to

decompose the cluster into sub-clusters. When this is done, the parent cluster node

in the Topics Layer can be removed, and the sub-clusters can be inserted in its place.

This thesis did not research methods to identify when a cluster should be

automatically decomposed into sub-clusters. This is a research area that would

significantly improve the results of the AIF framework’s approach. For the results

discussed in Chapter 8, the AIF framework executed the community detection

algorithm twice, once for the whole semantic network, then again for each topic’s Gt.

This produces a larger set of topics, but these topics are smaller and more cohesive

than a single pass of the community detection algorithm. A more effective approach

would be selective decomposition of certain topics based on analysis of each Gt.
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6.6 Topic Keywords

The topics represent a collection of concepts from the semantic network

associated with the textual snippets and documents from which those concepts were

derived. When presenting topics to the information seeker, a representative, or

surrogate set, of concept terms should be used in lieu of the full set of snippets.

This serves as a summary of the topic, and is referred to by the AIF framework as a

collection of “keywords”. This approach is familiar to the information retrieval

community since this is how LDA topic models represent topics. But for many

moderate-sized or large topics, the number of concept terms may be too numerous

to be an effective summary, and therefore must be restricted to the most salient

keywords. The framework has several methods to choose the representative

keywords, as shown in Table 1. The number of keywords for each topic will be

restricted to a presentation threshold, specified at runtime.

Table 1

Approaches for Selecting Topic Keywords

Approach Description
Concept type Segregate the concepts into their distinct concept types (e.g.,

location, person, organization, other) and rank them using an-
other metric.

Max TF-IDF Rank all the concept nodes by their maximum TF-IDF score
(there is one score for each snippet).

Centrality Rank all the concept nodes by their Bc score relative to Gt.

In practice, based on subjective assessment, the Betweenness Centrality

method provided the most representative keywords. This makes intuitive sense as

the Bc score represents the most central nodes to the subgraph, or those nodes that

are most traversed when random walks are performed within the subgraph. Based
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on the topology of the Gt subgraph, not every node will receive a nonzero Bc score.

Therefore the number of Bc keywords may be zero (for a fully connected Gt), or

may be below the presentation threshold. In these cases, the set of keywords may be

augmented with the top ranked concepts with the highest maximum TF-IDF scores.

6.7 Manipulating Edge Weights to Affect Topics

Relationships among concepts in the semantic network are constructed

based on their co-occurrence in textual snippets. Therefore, the resulting topics

(clusters of these concept nodes) will emerge based on the frequency of those

co-occurrences and their relative strengths in the corpus. If certain concept terms

occur more frequently than others, their is a higher likelihood that they will have

more and stronger relationships with other concepts.

In many corpora, certain types of concepts (e.g., locations, persons,

organizations) may have over-represented interrelationships. For example, news

articles often report on events that occur at a specific location, rather than cover a

wide breadth of a topic with contextual information. Other types of news articles

(and corpora) may be about a prominent person or organization, and thus that

concept node’s adjacencies may be overly strengthened.

One advantage of using a semantic network, is that it models these

relationships. During the semantic network construction process (chapter 5), the

framework identifies concept terms that are named entities through the Named

Entity Recognition process, and tags each concept based on its entity type. The

AIF framework can manipulate the weights of the edges adjacent to specific types of

entities (i.e., concepts) to add or reduce bias in the topics. For example, the

information seeker may observe that the topics generated by the framework are

biased toward locations, and wants to reduce this bias by 20%. The AIF framework

can locate all edges in the semantic network adjacent to location-type concept nodes,
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then scale their weights by 0.8. The community detection algorithm will analyze the

semantic network and create a new topic layer that reflects the changes in concept

relationship weights. The scaling can also be used to increase a bias in concept

types if the information seeker needs this new view of the information landscape.
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Chapter 7

Relevance Assessment

Depending on the specific structure of the Concepts Layer and the level of

cluster decomposition, a potentially large number of topics may be generated, some

of which will have lesser relevance to the information seeker. Additionally,

documents retrieved from the web (especially news articles) often have additional

unrelated text snippets, such as advertisements and article teasers, causing the

generation of topics that are semantically unrelated to the original corpus. For

example, a corpus of news articles pertaining to Hurricane Irma may contain

mentions of articles about terrorism and entertainment news. While these topics

seem anomalous or tangential to the information seeker, the AIF framework is

correctly identifying these semantic concept communities as distinct topics in the

corpus. Because AIF is intended to facilitate efficient exploration of the topics, a

very large topic set may adversely affect that efficiency. Therefore, the AIF

framework needs a mechanism by which topics can be ranked and filtered based on

a relevance metric, while still allowing for information and topic discovery. Just as

with topic generation, as discussed in Chapter 6, this relevance assessment metric is

based on the topology of the semantic network using the inter-relationships among

concepts to guide the exploration.

7.1 Technical Challenges

Relevance is often a subjective attribute to the information seeker, and is

therefore challenging to quantify. Additionally, the relevance of a topic may not be

known a priori, posing a challenge to the AIF framework. The information seeker,

however, typically has some preexisting notion of topics that are known to be

relevant, or through the exploration of the unranked topics, may have discovered

such relevant topics or concepts. The AIF framework will leverage those known or
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likely relevant concepts to find other topics associated with them in the semantic

network using a form of information retrieval known as associative information

retrieval (AIR). Given that associative information retrieval techniques operate on

the semantic (or associative) network, AIF must employ a method that can quantify

and rank the topic clusters, not individual concepts. The relevance assessment

approach must be able to leverage what is known to be relevant, while still proving

a means to discover other relevant topics not yet known.

7.2 Spreading Activation Algorithm

The information retrieval community has investigated the heuristic rule of

using associative retrieval through a technique called spreading activation (SA) [38].

This iterative algorithm consists of one or more pulses or signals that begin from

one or more nodes in the semantic network and propagate to adjacent nodes at

some decreased level, as shown in Figure 10. For any single unit in the network (in

the AIF framework, this unit is a concept node in the semantic network), SA first

computes the input signal, Ij , as illustrated in (7). The output values of each node

can be either a binary (0 or 1) value or a real number (0..1). For the AIF

framework, a binary output is used. If Ij exceeds a threshold kj as shown in (8), the

node is activated and its output is propagated to its adjacencies.

Node j

Figure 10. Spreading activation unit
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Ij =
n
∑

i

Oiwij (7)

where: Ij = the total input of concept node j,

i = the node propagating the signal to j,

Oi = the output of node i to node j,

wij = the edge weight between i and j,

n = the number of adjacencies to j

Oj = f(Ij) =















0 Ij < kj

1 Ij ≥ kj

(8)

This iterative propagation continues until the termination condition is met,

or all Ij are less than kj for all j. The value of kj is configurable at runtime,

allowing for the information seeker to tune the threshold to the specific network

topology or desired level of information exploration. Because the semantic network

is potentially cyclic, the SA algorithm used in the AIF framework also ensures that

nodes are not re-activated from these cycles.

7.3 Spreading Activation Constraints

The topological structures in the semantic network that are used to cluster

the topics may adversely affect the propagation of the SA signal. Specifically, the

modularity-based clustering of the semantic network will encourage intra-cluster

propagation but discourage inter-cluster propagation. Therefore, SA algorithms

often use application-specific path constraints to create preferential paths for

propagation [38].
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The AIF framework provides a runtime variable that can adjust an edge’s

input signal, Oi based on whether the i and j nodes are members of the same

cluster. This new input signal, I
′

j , will allow inter-cluster edges to propagate a

minimum input signal if the sending node is activated, as shown in (9) given the

adjusted output signal O
′

i in (10), where m = [0..1]. This improves propagation of

the signal to new topic clusters because inter-cluster edge weights can often be very

small (close to zero).

The runtime configurable variable m, provides the information seeker with

the ability to ensure that inter-cluster propagations have a minimum signal value,

but they will not fall below the current edge weight. For instance, if m is set to 0.5,

then the propagated signal will be either 0.5 or the edge’s weight wij, whichever is

higher, if nodes i and j are members of different clusters.

I
′

j =
n
∑

i

O
′

iwij (9)

O
′

j = f(I
′

j) =































0 I
′

j < kj

1 I
′

j ≥ kj ∧ i ∈ Gt ∧ j ∈ Gt

max(wij ,m)

wij
I

′

j ≥ kj ∧ i ∈ Gt ∧ j /∈ Gt

(10)

7.4 Initial Node Activations

Executing the SA algorithm on the semantic network first requires the

identification of one or more seed nodes to serve as the initial activations in the

iterative process. This is accomplished through a refinement query where the

information seeker provides a search term based on a known relevant concept. The

seed concepts can be identified through a priori knowledge or through the
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exploration of the topics (prior to or after executing the SA algorithm). The AIF

framework will search the existing concepts in the semantic network for matches

against the refinement query, and select them as the initial SA nodes. Because the

concepts in the semantic network are n-grams and the user has the ability to specify

multiple refinement query terms, several concept nodes may be matched as initial

seed nodes, causing a wider propagation of relevance.

7.5 Topic Relevance Scoring

Using spreading activation, all nodes in the semantic network will have an

activation score, Ij . However, it is likely that a large subset of nodes will have a

score of zero because they had no incoming signals. The AIF framework, however,

needs to have a relevance score for each topic as a quantitative attribute for

ranking. The Topic’s relevance score, Rt is a ratio of the sum of all its concept

nodes’ relevance scores in the semantic network to its node cardinality of the

subgraph Gt, as shown in (11), where |v|t is the cardinality of nodes in Gt.

Rt =

∑|v|t
i=1 I

′

i

|v|t
(11)

Once each topic is assigned its Rt score, the information seeker is presented

with a list of relevant topics sorted in descending order by Rt. Any topics whose

Rt = 0 can be optionally omitted, providing the seeker with a smaller, manageable

set of topics to explore.

7.6 Extensions to Relevance Assessment

Although not yet implemented in this prototype, there are other mechanisms

to seed activations into the semantic network. One area that should be investigated

is user feedback. As the information seeker selects specific topics, opens, or saves
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snippets, these foraging actions could add input signal and/or activate the concept

nodes associated with them, respectively. This feedback would create a more

comprehensive view of what relevance means to the information seeker.
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Chapter 8

Example Use Case

The Automated Information Foraging (AIF) framework is intended to assist

information seekers throughout the exploration-exploitation spectrum, facilitating

the understanding and discovery of topics within the corpus and to identify relevant

and lucrative information documents. To demonstrate the AIF processing flow, this

chapter describes using AIF on a real-world example from the information seeker’s

perspective, identifying topics relating to health dangers from Hurricane Irma

(2017). The information domain relating to Hurricane Irma is a good exemplar use

case for several reasons. Firstly, this information space has been widely covered in

both local and national (United States) news outlets. This coverage is diverse in its

frequency of publication from various news outlets, where some documents are

one-time reports on specific events and situations, and others contain daily or

hourly updates. Secondly, the published documents are representative of typical

digital (i.e., web-based) news publications that contain unrelated snippets,

advertisements, and exhibit circular reporting. Lastly, it is a domain in which most

potential information seekers will have at least some familiarity and knowledge.

However, unless they live in a region that is frequently afflicted by such storms, they

may have knowledge gaps and pre-conceived ideas (i.e., biases) about important and

relevant subtopics.

8.1 Corpus Generation

Initiating the AIF framework, the information seeker provides a broad,

high-level domain topic, “Hurricane Irma”. The AIF capability queries the Global

Database of Events, Language, and Tone (GDELT) Project Global Knowledge

Graph index [16] and subsequently downloads article content from the web (where

available and permitted).
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The AIF framework queried GDELT for the URLs of the first 1000

documents relating to “Hurricane Irma”. After eliminating those URLs whose

documents are inaccessible (e.g., behind a paywall or receiving an HTTP 404 error),

and then identifying and removing duplicate documents, a corpus of 362 documents

was created. After cleaning the documents, each was subdivided into snippets by

looking for section breaks (document sections with distinct titles and one or more

paragraphs), resulting in 1823 snippet nodes in the Snippets Layer. AIF identified

the significant terms in the snippets and created a semantic network (in the

Concepts Layer) of 2391 nodes and 19125 relationship edges among them.

8.2 Observations From the Generated Topic Set

There are several observations that can be drawn from examination of

generated set of topics, as well as from a more detailed analysis of the their

underlying concepts and snippets.

8.2.1 Topics for information exploration. The first observation is

that topics generated by AIF does indeed cover a wide breadth across the domain.

This provides the information seeker with the ability to explore the complete

information space in a manner that is much less costly in terms of the time required

to read the entire corpus. Some of the topics are expected based on common

knowledge of hurricanes affecting Florida, including the following:

• Topics #165 and #250: Electrical and Sewer Utility outages.

• Topic #22: Sparking electrical transformer.

• Topic #24: Downed trees, debris, and closed roadways.

• Topic #91: Sinkholes that have formed.

• Topic #70: Closure of Orlando-area theme parks.

63



However, one of the goals of AIF is to help information seekers overcome

potential biases and extant, a priori knowledge. This example has identified several

such topics including:

• Topic #139: Carbon monoxide poisonings resulting from electrical generators.

• Topic #247: Insurance claims relating to hurricanes and flooding.

• Topic #72: Deployment of US Navy ships for Search and Rescue efforts.

• Topic #81: Looting and arrests.

• Topics #208 and #213: Government response to the management and

transportation of prison inmates in evacuated areas.

• Topic #17: Destroyed sea turtle eggs on the beaches.

• Topic #1: Owners getting medicine for pets prior to evacuations.

8.2.2 Irrelevant topics. The second observation is that there are several

topics that are irrelevant or tangential to even the broad search criteria provided by

the informations seeker. Despite being irrelevant, these topics were correctly

identified from snippets in the corpus. In most cases, these snippets are links to

other published articles embedded in the HTML content of news articles. Such

snippets would be challenging to identify, and false-positive matches for these

snippets could risk removing relevant information. Examples include:

• Topic #62: International Trade.

• Topic #120: Terrorism.

• Topic #31: Polymath celebrities.
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8.2.3 Topic presentation. The third observation is that the keywords

are not always indicative of their relevance to the information seeker’s broad search.

One example is Topic #2, whose keywords are “artifact, loan, historic palm cottage,

nancy holcomb”. These keywords do not seem to related to “Hurricane Irma”.

However, when the one examines the snippet that is associated with that topic, the

relevance becomes apparent. The snippet states,

Nancy Holcomb, a historic preservation outreach coordinator for the

Naples Historical Society, takes artifacts that are on loan and packages

them for safekeeping at the Historic Palm Cottage in Naples, Fla. The

Palm Cottage was built in 1895 and has withstood all weather events

including Hurricane Donna in 1960.

In this example, the topic was indeed relevant and is likely a topic that would

expand the information seeker’s understanding of the domain. However, to fully

meet the AIF goal of saving time and reducing the analytic burden of analyzing the

documents in the corpus, more research is needed to identify the optimal method for

relaying the gist of the topic to the information seeker.

8.2.4 Size of the topic set. The final observation is that AIF produced

a large set of 342 topics that may be time consuming to browse and explore. This is

a large number of topics to analyze, so the user can restrict this to a smaller and

more focused set of topics by using a relevance assessment.

8.3 Relevance Assessment

To reduce the wide topic set to a more relevant and lucrative set, the

information seeker can direct the AIF framework to execute a relevance assessment

against the topics by entering a refinement query. For this example, the seeker

specifies the terms “health AND dangers” to restrict the results further. The AIF
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framework then identified 7 relevant topics and generated a ranked list that topic

subset, as shown in Table 2. The resulting set of relevant, focused topics provide the

information seeker with the ability to exploit the snippets and documents as

evidence against a hypothesis or decision. This set of topics exposes the seeker with

specific snippets that include:

• Excessive heat caused by power outages endangering elderly patients in a

rehab center (Keywords: rehab, elderly people, tragic deaths).

• Carbon monoxide poisoning risks results from electrical generators, and

chemical spills resulting from flooded industrial areas (Keywords: carbon

monoxide, poison, chemical plant).

• Mosquito-borne illness (Keywords: mosquito, entomologist).

• Storm surge flooding a neighborhood (Keywords: storm surge, flooding,

neighborhood).

These topics include results based on common-knowledge, such as flooding

from storm surges. But more importantly, these results also include topics that were

non-obvious to an information seeker unfamiliar with the domain, such as carbon

monoxide poisoning, highlighting benefits of this approach.

8.4 Benefits and Opportunities

This example illustrates some of the benefits of the AIF framework, namely

the ability to both explore topics within the corpus and exploit snippets and

documents as evidence against specific refined topics. This example also highlights

opportunities for improvement and future research, most importantly, the need to

have a more informative title or textual summary for each topic rather than use

keywords (i.e., key terms) from the semantic network.
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Table 2

Relevant Topics from the Refinement Search

# Size Keywords
1 Concepts:17

Snippets:5
Articles:2

location, deputy, advantage, pinellas, access, base, purse, road-
way, broward health medical center, broward county sher-
iff, sarasota county sheriff, marion county, clearwater beach,
nicholas rossell, scott israel, lido key, coon key

2 Concepts:7
Snippets:4
Articles:3

wake, slam, flooded neighborhood, dangerous storm surge
flooding, destruction irma, heres a look, us national hurricane
center

3 Concepts:17
Snippets:5
Articles:4

ant, poison, monoxide, plant, carbon, cut, example, chemical,
hurricane harvey, danger, dangerous, crosby, chemical plant,
atmosphere, florida health department, turkey point, texas

4 Concepts:16
Snippets:9
Articles:9

mental, entomologist, cycle, people, reapri, treatment,
caribbean islands, mosquito, hurricane katrina, dialysis,
chronic, illness, disease, diabetes, american journal, kidney dis-
ease

5 Concepts:23
Snippets:2
Articles:1

big ask, rightfully, rehab, industry, state health care officials,
lax regulatory approach, hollywood rehab center, repercus-
sions, elderly people, tragic deaths, rehab centers, swelter,
awaken, repercussion, lax, care industry apologists, broward
county tragedy, industry s image, isolated incident, drubbing,
apologist, tragedy, drub

6 Concepts:15
Snippets:7
Articles:6

requirement, goal, nurse, committee, representative, slosberg,
justice, lawsuit, lawyer, senator, senior citizens, health and
human service, stockton, delray beach, nelson

7 Concepts:9
Snippets:7
Articles:6

airport, hiv, health, flight, track, gobeil, delta air lines, ameri-
can airlines, atlanta
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Chapter 9

Experiments

This chapter summarizes a set of experiments intended to further an

understanding of how the key AIF framework parameters affect the information

seeker’s ability to explore the information in a corpus.

9.1 Key Parameters

The AIF framework has several key parameters that affect the configuration

of algorithms as listed in Table 3. Document Segmentation is the method used to

subdivide each document into one or more snippets. The Concept Extraction

Threshold specifies the top percentile of concepts that were identified within each

snippet, as ranked by their TF-IDF scores. Cluster Decomposition specifies how

many levels of topic clustering is executed. The first pass is for the whole graph.

The second pass is for each topic cluster’s subgraph Gt, etc. The Edge Weight

Distance is the k value in equation (3) that affects the steepness of the distance

function’s curve. As the k-value increases, the curves becomes less steep and

therefore raises the edge weight between concepts when their distance falls between

the curve’s plateaus. Finally, the Location Edge Weight Adjustment is used to

weaken the adjacent edge weights on concepts that are a location.

Table 3

Key Parameters for the AIF Framework

Parameter Symbol Values
Document Segmentation S { article, section }
Gt Cluster Decomposition Ct 1, 2, .. n
Concept Extraction Threshold Tc [0.5 .. 1.0]
Edge Weight Distance k-value Wk [0.5e .. 4e]
Location Edge Weight Adjustment Wl [0.001 .. 1.0]
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9.2 Metrics

For each experiment, a set of metrics is collected and used to assess the

experimental run, as listed in Table 4. The metrics provide insights into the size of

the Snippet, Concept, and Topic layers of the AIF framework’s data store.

Table 4

Metrics for the AIF Framework Experiments

Metric Symbol Description
Snippets Ns The number of snippets generated.
Concepts Nc The number of Concept Nodes generated.
Topics Nt The number of Topic clusters generated.
Duration D The runtime of the AIF process.
Precision P Fraction of relevant topics over generated topics.
Recall R Fraction of generated topics over the total relevant topics.

For assessing the utility of the AIF framework for exploratory search,

precision and recall are the most important overall metrics. Precision, computed in

(12), assesses the framework’s ability to generate topics that are relevant to the

information seeker, where Pt is the true positive rate, or the number of generated

topics that also appear in the answer key. Recall, shown in (13), assesses how

completely the topics cover the breadth of the corpus, where Ntk is the number of

topics in the answer key.

P =
Pt

|Nt|
(12)

R =
Pt

|Ntk|
(13)
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9.3 Method

Each experiment uses the same corpus of news articles relating to the Health

Effects and Damages from Hurricane Irma. This is a 52-document subset of the full

Hurricane Irma corpus, because assessing (scoring) the results from the larger, more

broad corpus would be very challenging and imprecise due to the scale of concepts

and topic clusters produced. A smaller corpus makes the experiment more

manageable. Each document in the corpus was analyzed, and if any part of the

document discussed health or damages, it was included in the experimental corpus.

Through a manual analysis of the corpus, an answer key of valid topics was

created and used to score the precision and recall metrics for each test. As noted in

Chapter 5, the AIF framework’s method of creating concept nodes can be

significantly improved through Entity Resolution and synonym resolution

techniques. Therefore, some of the topics overlap semantically. For instance, the

concepts wind, gust, gale refer to the same semantic concept, but may appear as

separate topics. This is accounted for in the answer key that assesses whether each

topic (with respect to precision and recall) are valid. For each experiment run, the

appropriate parameters are set prior to execution and the resulting hierarchical

graph is analyzed and scored.

9.4 Results and Discussions

All experiments described in this section were executed using an Apple

MacBook Pro 2.3GHz Intel Core i7, running macOS 10.13.2. The execution

environment was Oracle Java 1.8 using a maximum heap of 1 GB.

9.4.1 Concept extraction threshold. The first experiment compares

various Concept Extraction Threshold values using both section and whole-article

snippet segmentation. The threshold value Tc specifies the top percentile of

concepts for each snippet (ranked by TF-IDF) that will be added or updated in the
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semantic network. A Tc value of 0.3 includes the top 30% of TF-IDF scored

concepts. Therefore, the larger the Tc parameter is, the more concepts from each

snippet will be added (or have their weights updated).

Table 5 shows that by raising the Tc parameter, the number of concepts, Nc,

also increases, as does the processing time, D. However, as the number of concepts

increases, the number of topic clusters, Nt decreases. This is attributable to the fact

that as the concept nodes increase their degree also increases by virtue of having

more connected nodes from the snippets. Additionally, because the number of

interconnections per snippet increases, their respective weights are reinforced. This

illustrates that as more information is added to the semantic network, stronger

communities form in the semantic network’s topology.

Table 5

Results of the Concept Extraction Threshold Experiment

Parameters Counts Scores
S Ct Tc Wk Wl Ns Nc Nt D P R

section 1 0.3 2e 1.0 1823 2391 66 0:05:25 0.97 0.80
section 1 0.5 2e 1.0 1823 4548 50 0:11:08 0.96 0.82
section 1 0.7 2e 1.0 1823 6976 36 0:24:41 1.00 0.80
section 1 0.9 2e 1.0 1823 7786 32 0:35:31 1.00 0.88
section 1 1.0 2e 1.0 1823 8004 29 0:44:50 0.96 0.84
article 1 0.3 2e 1.0 53 1153 19 0:04:03 0.95 0.60
article 1 0.5 2e 1.0 53 2909 17 0:14:25 0.94 0.80
article 1 0.7 2e 1.0 53 5006 17 0:13:52 1.00 0.88
article 1 0.9 2e 1.0 53 6223 17 0:22:36 1.00 0.82
article 1 1.0 2e 1.0 53 7372 16 0:33:58 1.00 0.84

The biggest difference between the section and whole-article segmentation is

in the number of snippets (Ns) and topic clusters (Nt) generated. Both have very
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high precision scores because with such few topics generated, every one was a

relevant topic. Both sets also show high recall scores because multiple answer key

topics are covered by a single generated topic. This is inflated because each

generated topic cluster is comprised of multiple sub-clusters that are more cohesive

and are more aligned to the answer key. However, subjectively, these larger topics

are more difficult for information seeker to quickly understand their contents.

9.4.2 Topic cluster decomposition. Because of the inflated recall from

the previous experiment, this next experiment focuses on cluster decomposition.

Because each topic cluster can contain two or more sub-clusters, if the AIF

framework generates a set of sub-clusters for each topic cluster’s subgraph, Gt, it is

expected that a larger set of smaller, more cohesive topic clusters will emerge.

Table 6 compares the results of a 1-pass and a 2-pass clustering on both

section and whole-article segmentation. As expected, there is a drastic increase in

Nt for both 2-pass tests. For the section-based segmentation approach, there is also

a significant increase in both precision and recall. This intuitively makes sense

because second level clustering will produce better clusters. However, for

whole-article based segmentation, precision drops and recall remains the same. This

leads to the conclusion that when concepts are allowed to generate relationships

with other concepts throughout the entire document, the community structures

formed are not as cohesive. While this may not be true for all types of source

documents, this makes sense when using news articles from the internet. As stated

in Chapter 5, news articles are noisy and contain content for irrelevant or tangential

information, such as news teasers and advertisements. A noisy document will lead

to a noisy, loosely cohesive semantic network.
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Table 6

Results of the Cluster Decomposition Experiment

Parameters Counts Scores
S Ct Tc Wk Wl Ns Nc Nt D P R

section 1 0.5 2e 1.0 1823 4548 50 0:11:08 0.96 0.82
section 2 0.5 2e 1.0 1823 4548 342 0:28:56 1.00 0.96
article 1 0.5 2e 1.0 53 2909 17 0:14:25 0.94 0.80
article 2 0.5 2e 1.0 53 4548 133 0:51:51 0.89 0.82

9.4.3 Distance function for edge weights. The next experiment

examines the effects of changing the inverse sigmoid curve used in the edge weight

distance function described in Chapter 5. The k-value of the function describes the

steepness of the curve and extends the width (i.e., distance) between the curve’s

plateaus. Larger k-values increase the steepness and therefore only close concept

distances will have significant weights, while decreasing the k-value will allow more

distant concepts to have larger weights.

As shown in Table 7, a larger k-value significantly raised the Nt count and

slightly raised the precision and recall. This illustrates that for this corpus, the

topological structures in the semantic network are slightly improved by restricting

the significant inter-concept relationships. There was no effect on whole-article

segmentation scores. Distances were not a discriminator for whole-document

segmentation because the distance function curve’s plateau is reached well before

the end of the document. With documents that greatly vary in length, a distance

metric spanning 8+ sentences may be meaningless.
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Table 7

Results of the Edge Weight Distance Function Experiment

Parameters Counts Scores
S Ct Tc Wk Wl Ns Nc Nt D P R

section 1 0.5 4e 1.0 1823 6213 76 0:28:35 1.00 0.86
section 1 0.5 2e 1.0 1823 4548 50 0:11:08 0.96 0.82
section 1 0.5 1.5e 1.0 1823 4549 53 0:15:00 1.00 0.86
section 1 0.5 e 1.0 1823 4548 50 0:14:51 0.96 0.82
section 1 0.5 0.5e 1.0 1823 4548 50 0:14:10 0.96 0.82

9.4.4 Location weight adjustment. The final experiment examines the

effect of reducing the weights of edges that are adjacent to location concepts. The

rationale for this experiment is that based on reporting styles of some news articles,

they are often written from the perspective of a single city or town, and that

location name is often repeated in the article. Therefore some communities in the

semantic network may become biased toward those locations. By providing a means

to reduce the weights of edges adjacent to location nodes, the AIF framework can

alter the community structures away from these locations for a more semantically

meaningful network.

As shown in Table 8, there is no significant change in precision, but the

recall score rose slightly. This slight improvement makes intuitive sense because not

all topic clusters were location-centric. But even this slight improvement may help

the information seeker to discover relevant topics.

9.4.5 Experiment summary. Based on these experiments, the optimal

base configuration for the AIF framework is section segmentation with 2-pass

clustering. Depending on the corpus, an optional location edge weight adjustment

may also improve the results. The most important factor for high precision and
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Table 8

Results of the Location Edge Weight Adjustment Experiment

Parameters Counts Scores
S Ct Tc Wk Wl Ns Nc Nt D P R

section 1 0.5 2e 1.0 1823 4548 50 0:11:08 0.96 0.82
section 1 0.5 2e 0.1 1823 4548 53 0:10:59 0.94 0.84
section 1 0.5 2e 0.01 1823 4548 58 0:10:53 0.97 0.86
section 1 0.5 2e 0.001 1823 4548 57 0:10:22 0.97 0.86

recall is having smaller, more cohesive topic clusters. In these tests, automatically

decomposing all topic subgraphs into their sub-clusters was a critical step in

producing better results for exploratory search. However, the downside to this is a

very rapid growth in the number of topics, which can be detrimental to the

information seeker. An important area for future research will be the intelligent

decomposition of select topics, rather than blindly decomposing all topics in a

second-level pass. Doing so will identify cohesive topics while controlling scale.
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Chapter 10

Ongoing Research

This thesis provides a framework for continued research in Automated

Information Foraging. Although the AIF prototype demonstrates promise in

satisfying the goals outlined in Chapter 1, there are several areas that can benefit

from ongoing research to enhance upon its usability and capability. This chapter

outlines several areas that, if realized, could provide significant improvement.

10.1 Documents and Snippets

10.1.1 Beyond unstructured text. This thesis focused on the use of

unstructured text documents comprising the information corpus. Information

seekers, however, rely upon multi-modal information including imagery, video,

audio, and databases. By incorporating non-textual information into the Snippets

and Concepts layers would expand the richness of information available for analysis.

10.2 Semantic Network Construction

10.2.1 Entity resolution. Upon analysis of the semantic network

constructed by the AIF framework, several concept nodes are sometimes created for

the same real-world entity because of the variations in their naming. For example,

President Donald Trump appears multiple times in the semantic network as:

“President Donald Trump,” “President Trump,” “Donald Trump,” and simply

“Trump”. Although these concepts are linked in the network, a more accurate

semantic network would employ entity resolution techniques to identify these names

refer to the same entity, then fuse them into a single concept node. By resolving

these entities, the semantic network topology would be more accurate and

significantly alter the structures (i.e., topic clusters).
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10.2.2 Term synonyms. Similarly, identifying if concept nodes are

synonyms and fusing or linking these concepts together may yield a more accurate

semantic network. Since the AIF framework is already using the WordNet database

for term stemming, its use could be expanded for synonym detection among nodes.

Once challenge is that if concept nodes use n-grams (as opposed to unigrams), one

or more unique words in the n-gram may be a synonym of another n-gram or

n-gram constituent. An appropriate means for resolving this would require further

research, but may yield significant improvements to the network’s construction.

10.3 Topic Generation

10.3.1 Topic summarization. Perhaps the most useful improvement

upon the current AIF framework is a more easily understandable and readable

summary of the topic’s contents. The current method of using representative

keywords from the semantic network subgraph for that topic, Gt, provides an

accurate proxy for the topic. This set of distinct n-grams, however, can be difficult

to understand quickly. A better method may be to provide a textual summary of

the topic’s contents. But this textual summary should provide a multi-document

summary of the snippets linked to the topic, highlighting the keyword in that

summary. A textual summary would be easier to read and understand in a rapid

manner. Recent research in multi-document text summarization would be an initial

focus area for improving presentation of the topics to the user.

In addition to text as a proxy for the topic’s contents, visual cues such as

images or word clouds can also be presented alongside the textual summary. These

visual cues will also align with the notion of providing an information scent to the

seeker, as described in Pirolli’s Information Foraging Theory research [7].

Information Scent assists the seeker is quickly recognizing potentially relevant or

lucrative information patches for further exploration.
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10.3.2 Auto-decomposition of topic clusters. Another research area

that will significantly improve the AIF framework is auto-decomposition of

individual topic clusters. The framework identifies topic clusters hierarchically,

where any cluster may contain zero or more sub-clusters. When examining the

clusters generated after one iteration of the clustering algorithm, the resulting

cluster set contains clusters with zero or more sub-clusters. Having large clusters

with multiple sub-clusters can cause a lack of internal cohesion within that cluster,

while topic clusters that cannot be decomposed are highly cohesive. The challenge

for the AIF framework lies in the means to detect when a topic cluster should be

automatically decomposed into constituent sub-clusters by the framework. Research

should identify the metrics that can be used to detect when decomposition is

warranted, and strive to maintain a balance between the number of topic clusters

and their internal semantic cohesion.

10.3.3 Overlapping topic clusters. The AIF framework currently uses

a Max-Modularity Graph Clustering algorithm to detect community structures (i.e.,

topic clusters) in the semantic network. This approach assigns each node in the

semantic network to exactly one cluster. Fortunato identifies several promising

techniques for overlapping community detection in graphs [31], such as the Clique

Percolation Method [39]. Having concept nodes that span one or more clusters may

provide clusters that are more cohesive.

10.4 User Feedback in Relevance Assessment

Ultimately, the AIF framework will be used to assist the information seeker

in exploring the information domain. During this exploration, the information

seeker will select topics for exploration and snippets for analysis. If the snippets are

relevant or lucrative to a hypothesis, the seeker will save the snippets for further

detailed analysis or to be used as evidence to refute or substantiate a hypothesis.
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Each of these foraging actions models important information about the seeker’s

notion of relevance and can further provide an input signal into the spreading

activation used in relevance assessment. This feedback would create a more

comprehensive view of what relevance means to the information seeker by

incorporating topological structure of the semantic network, a priori knowledge via

refinement queries, and human-in-the-loop feedback from information exploration.

10.5 Temporal Differences in the Information Space

By using document metadata (e.g., document publication date), the AIF

framework can construct multiple semantic networks where each network models

only those documents published within specific dates. This analysis can assist the

information seeker in identifying temporal trends in the information space, and how

they evolve and relate over time. Some topics may have limited lifespans while other

may span larger time frames. The resulting temporal trends can be a valuable tool

in understanding the information domain with limited information or in hindsight.
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Chapter 11

Conclusions

Chapter 1 outlines a set of goals for an automated information foraging

(AIF) framework that facilitates both information exploration and exploitation

while mitigating potential biases. Additionally, there is a set of AIF technical goals

for accomplishing these information retrieval goals. This chapter revisits these goals

and identifies successes and areas for improvement.

11.1 Exploration of the Information

The first goal of the AIF framework is that when given a document corpus

covering a specific domain, it analyzes that corpus and provides a presentation of

the full breadth of topics that comprise that domain. As shown through the

example use case in Chapter 8, the AIF framework can successfully provide a topic

list that spans the breadth of the corpus. Rather than generating a set of

documents that closely match a search query, as is done in search engines

(potentially biasing the results), this approach provides users with a set of topics

that can be used to expand their search, potentially identifying topics that they

would not have known to search a priori. This kind of information discovery allows

the information seeker to explore multiple, alternative hypotheses where it will be

apparent what topics are consonant or dissonant with their extant beliefs or biases.

The underlying assumption behind the AIF’s ability to realize this goal is

that the corpus contains this wide breadth of unbiased documents. The AIF

framework does provide a mechanism to accomplish this using GDELT as a news

article index.

While the results show the AIF framework’s approach to realizing this goal

a success, there are two key areas for improvement. The first area is the mechanism

used to present the topic contents to the information seeker. The current approach
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identifies representative keywords (i.e., n-grams) from the topic’s concepts. While

this approach is similar to competing topic modeling approaches, such as Latent

Dirichlet Allocation (LDA), a series of seemingly unordered terms is difficult to read

quickly, and requires mental analysis to potentially understand their relationship to

each other. Multi-document text summarization is a likely means to improve this

feature.

The second area for improvement is automatic topic cluster decomposition.

The current AIF method for clustering topics considers the modularity assessment

for the entire semantic network to create a whole-graph set of topic clusters. This

generates a Topics Layer with some very large clusters (with sub-clusters) while

other topic clusters may be small (and fully decomposed). Unless a balance is

achieved between the number of topics and their semantic cohesion and relative size

(i.e., number of constituent concept nodes), efficient information foraging is

degraded. Over-decomposition will generate a large number of topics, while

under-decomposition will result in topics that are not semantically cohesive. After

the first iteration of this algorithm, AIF should then decide on a cluster-by-cluster

basis whether it should be further decomposed into sub-clusters, rather than a

universal iterative decomposition of all topic clusters.

Despite these areas for improvement, the AIF framework provides the means

to generate a wide set of topics that can identify both widely reported news events

as well as news events and stories only reported by one article. The resulting topics

produced by the AIF allow the information seeker to explore the full breadth of

topics in the corpus, potentially discovering topics that are not known a priori.
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11.2 Exploitation of the Information

One of the key tenets of the Pirolli Information Foraging Loop in the

Sensemaking model, is the need for information seekers to find raw information,

then filter it down to a relevant set, then to a smaller lucrative information set. The

latter two sets are stored for analysis and for use as evidence to substantiate or

refute hypotheses. This process of analysis and filtering information is the

exploitation of the information. The AIF framework facilitates information

exploitation through two key ways. The first method is the Relevance Analysis

approach that uses a refinement query to filter the topics down to a smaller

highly-relevant set. The terms for this refinement query are discovered through the

information seeker’s exploration of the information topics and their associated

document snippets. The second method is the AIF framework’s ability to provide

full traceability between the Topics, Concepts, Snippets, and Documents. The

traceability facilitates analysis of the source materials in the snippets that spawned

the topics, which can be used as evidence against hypotheses and for continued

analysis.

11.3 Analysis of the Semantic Network Topology

There are several advantages to modeling the information space via a

semantic network. Using community detection / graph clustering techniques, topics

are extracted from the underlying structures and communities of concept nodes

found in the corpus. This is a form of topic modeling that can allow for a variable

number of topic clusters based on concept co-occurrence relationships in the corpus.

An additional advantage to using this approach for topic modeling is that even small

communities resulting from a single news article mention can be identified as its

own topic, which may not always be possible with other topic modeling approaches.

Using spreading activation, relevance scores for each topic are generated
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based on a seed query, providing both a filtering and ranking of topics. This

approach also relies on the topology of the semantic network and the relative

weights between concept nodes to identify potential relevance. Inter-concept

relationships as well as inter-topic cluster relationships facilitate exploration of the

information via navigation through network adjacencies.

By analyzing the topology of the semantic network subgraph that comprises

a single topic, the AIF framework can further facilitate depth-wise exploration of

the information. This can provide more detailed analysis of topics and also be used

to identify sub-topics. Additionally, significant topic concept terms can be identified

as representative keywords for that topic by scoring the betweenness centrality of

the subgraph nodes representing the topic’s concepts.

The hierarchical graph-based schema provides

topic-concept-snippet-document traceability, allowing the information seeker to

quickly access the documents and document snippets relating to topics.

One significant area for improvement is in the construction of the semantic

network. The current AIF framework does not account for concept node terms that

can be represented by more than one n-gram. The semantic network can benefit

from approaches in Entity Resolution and synonym analytics. By resolving concepts

that represent the same or very similar entities, duplicative concept nodes will be

reduced, which should in turn cause more cohesive topic clusters to form.

11.4 Summary

The automated information foraging (AIF) framework described in this

thesis provides information seekers with the ability to explore the full breadth of

information contained within a document corpus. By identifying the natural

language terms and forming a semantic network based on the co-occurrence of those

concept terms within document snippets, the AIF framework extracts the clusters of
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information and presents them to the information seeker, allowing for the discovery

of information topics that may have been unknown or dissonant to the seeker.

These capabilities help overcome inherent cognitive biases over the information as

well as potential biases resulting from the use of search engines. Finally, the

framework facilitates an information seeker in exploiting the information by filtering

it down to a lucrative set of information snippets that can be used to form,

substantiate, or refute hypotheses, an essential requirement for sensemaking.

The AIF prototype provides a starting point for research into Information

Foraging techniques. As discussed in Chapter 10, the development of this

framework and the subsequent analysis of its products has identified numerous

topics for continued research into both the computer science and cognitive science

needs to realize the Automated Information Foraging vision.
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Appendix A

Abbreviations and Symbols

The abbreviations and symbols used throughout the document are listed in this

appendix.

Symbol Description
AIF Automated Information Foraging
AIR Associative Information Retrieval
API Application Programming Interface
Bc Betweenness Centrality
GB Gigabytes
GDELT Global Database of Events, Language, and Tone
Gt Semantic Network subgraph comprising a single Topic
HTML Hypertext Markup Language
HTTP Hypertext Transfer Protocol
IR Information Retrieval
LDA Latent Dirichlet Allocation
NER Named Entity Recognition
NLP Natural Language Processing
SA Spreading Activation
SQL Structured Query Language
TF-IDF Term Frequency - Inverse Document Frequency
URL Uniform Resource Locator
XML Extensible Markup Language
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Appendix B

Data Dictionary

The meta-data attributes for all nodes in the hierarchical graph-based schema are

listed in this appendix. The nodes in the hierarchical graph are assigned a class

designating the layer in which it resides.

Layer(s) Key Description or Value
All class Layer: {document, snippet, concept, topic}
All vertexId Unique Identifier for this node.
document text.raw The original downloaded content.
document,snippet url The URL from which the document was down-

loaded.
document,snippet text The filtered, cleaned text.
concept name The concept term’s name.
concept type ngram, location, person, organization
concept partition The topic-cluster identifier this concept node

belongs to.
concept bc The betweenness centrality score within its

topic cluster subgraph.
concept tfidf.max The maximum TF-IDF score for this concept

term across its snippets.
concept activation The current activation score for the relevance

analysis
topic partitionId The cluster identifier this topic.
topic keywords List of keywords for this topic.
topic completeness The completeness metric for this topic’s Gt

topic degree The degree of the topic node in the Topics
Layer
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