
Rowan University Rowan University 

Rowan Digital Works Rowan Digital Works 

Theses and Dissertations 

7-2-2016 

A mechanical study of cancer drug-receptor interactions, A mechanical study of cancer drug-receptor interactions, 

specifically in G-Quadruplex DNA and Topoisomerase I enzymes specifically in G-Quadruplex DNA and Topoisomerase I enzymes 

Kelly Ann Mulholland 
Rowan University 

Follow this and additional works at: https://rdw.rowan.edu/etd 

 Part of the Bioinformatics Commons, and the Pharmaceutics and Drug Design Commons 

Let us know how access to this document benefits you - 
share your thoughts on our feedback form. 

Recommended Citation Recommended Citation 
Mulholland, Kelly Ann, "A mechanical study of cancer drug-receptor interactions, specifically in G-
Quadruplex DNA and Topoisomerase I enzymes" (2016). Theses and Dissertations. 1733. 
https://rdw.rowan.edu/etd/1733 

This Thesis is brought to you for free and open access by Rowan Digital Works. It has been accepted for inclusion 
in Theses and Dissertations by an authorized administrator of Rowan Digital Works. For more information, please 
contact LibraryTheses@rowan.edu. 

https://rdw.rowan.edu/
https://rdw.rowan.edu/etd
https://rdw.rowan.edu/etd?utm_source=rdw.rowan.edu%2Fetd%2F1733&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/110?utm_source=rdw.rowan.edu%2Fetd%2F1733&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/733?utm_source=rdw.rowan.edu%2Fetd%2F1733&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.lib.rowan.edu/rdw-feedback?ref=https://rdw.rowan.edu/etd/1733
https://www.lib.rowan.edu/rdw-feedback?ref=https://rdw.rowan.edu/etd/1733
https://rdw.rowan.edu/etd/1733?utm_source=rdw.rowan.edu%2Fetd%2F1733&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:LibraryTheses@rowan.edu


 
 

A MECHANICAL STUDY OF CANCER DRUG-RECEPTOR INTERACTIONS, 

SPECIFICALLY IN G-QUADRUPLEX DNA AND TOPOISOMERASE I ENZYMES 

 

 

 

 

by 

Kelly Ann Mulholland 

 

 

 

A Thesis 

 

Submitted to the 

Department of Chemistry and Biochemistry 

College of Science and Mathematics 

In partial fulfillment of the requirement 

For the degree of 

Master of Science in Bioinformatics 

at 

Rowan University 

May 6, 2016 

 

 

 

  

Thesis Chair: Chun Wu, Ph.D. 



 
 

©  2016   Kelly Ann Mulholland 

 

 

 

 

 

 

 



 
 

Dedication 

I dedicate my thesis work to the late Fredrick Steiner Jr. who always pushed me to 

be the absolute best version of myself and to strive to accomplish my dreams. His infinite 

words of wisdom and encouragement will forever ring in my ears. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iv 
 

Acknowledgments 

I would like to take a moment to thank my research advisor and mentor Dr. Chun 

Wu.  He has always provided me with endless guidance and encouragement and I am 

grateful to have had the opportunity to work beside him. His passion and dedication to his 

work has been absolutely inspiring to me and has been my motivation to continue on my 

educational journey. I would also like to thank my committee members, Dr. Subash 

Jonnalagadda and Dr. Mark Hickman, for their insight and support throughout this 

process. Finally, thank you to the members of Dr. Wu’s research group. 

This work was supported by Rowan Startup and SEED grant and the National 

Science Foundation under Grant NSF ACI‐1429467 and XSEDE MCB160004. 

 

 

 

 

 

 

 

 

 



v 
 

Abstract 

Kelly Mulholland 

A MECHANICAL STUDY OF CANCER DRUG-RECEPTOR INTERACTIONS, 

SPECIFICALLY IN G-QUADRUPLEX DNA AND TOPOISOMERASE I ENZYMES 

2015-2016 

Chun Wu, Ph.D 

Master of Science in Bioinformatics 

Computational methods are becoming essential in drug discovery as they provide 

information that traditional drug development methods lack. Using these methods we 

provide information about the binding behavior of small molecules to two specific targets 

for current cancer therapeutics: G-quadruplex DNA and Topoisomerase I enzyme. The 

first study focuses on the compound Telomestatin, which induces apoptosis of various 

cancer cells with a relatively low effect on somatic cells due to its high selectivity toward 

G-quadruplex over duplex DNA. Three major binding poses were discovered: top end 

stacking, bottom end stacking and a groove binding. A high resolution structure of this 

complex does not yet exist, so this is the first time Telomestatin binding modes have been 

reported. The second study focuses on 8 Camptothecin class Topoisomerase I inhibitors, 

which have been reported to effectively treat multiple types of cancer, however are 

limited by their drug resistance. Recent computational studies have indicated that the 

mutations near the active binding site of the drug can significantly weaken the drug 

binding and may be a major cause of the drug resistance. Here, a complete study of each 

Camptothecin analog in each mutated complex in the active binding site is presented. 

Topotecan and Camptothecin have much smaller binding energy decrease than a set of 

new Camptopthcin derivatives. Lucanthone, a non-Camptothecin, shows comparable 

results to Topotecan and Camptothecin. In addition, we found a trend between the 

distance a mutant is to a ligand and the binding energy. 
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Chapter 1 

An Introduction to Computational Drug Design 

1.1 Motivations for a Computational Approach 

The traditional drug development process has been effective in designing medications 

for multiple diseases and illnesses; however it can often be a very costly process. The 

California Biomedical Research Association released a Drug Development Fact Sheet 

which discussed the timeline a typical drug follows from start to finish.
[1] 

They stated that 

it takes about 12 years for a drug to travel from the laboratory to the pharmacy. In the 

drug discovery process, about 5,000-10,000 compounds are created, and of which only 

about 250 ever move on to pre-clinical studies. Roughly 5 of those 250 compounds are 

submitted for review by the FDA and only 1 will actually be approved to be placed on the 

market.
[2]

 

The traditional drug discovery process involves exhausting laboratory work to 

develop a library of compounds that are speculated to work on a specific target. This 

process, which takes about 3-6 years according to PRMA, is the most costly in terms of 

both money and time.
[2]

 To help solve this issue, computational tools have been 

developed that predict the binding behavior of a library of compounds to a specific target. 

Knowing which compounds have the greatest potential before synthesis is essential to 

quickly developing promising new drug candidates. 

 A computational approach to designing new drugs begins by studying the 

pharmacological target. Tools such as Maestro and AMBER are used to display high 

resolution coordinates in a way that is easy to visualize specific structures.
[3,4] 

A library of 
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compounds can be filtered using high throughput screening (HTS) which screens the 

compounds based on whether or not they bind to the target in question. The lead 

compounds that are generated as a result can then be docked to the target and binding 

energy calculations can help predict which compound have the most favorable binding 

affinity. These methods, which can take as little as one week, assist traditional drug 

design in finding a handful of promising compounds to synthesis for further testing. 

 Utilizing computational methodology to better understand pharmacological 

mechanisms can provide deeper insights that experimental methods simply cannot. Not 

only do they aid in deciphering great drug candidates, but they also allow one to visualize 

the types of interactions that occur. This thesis implicates computational methods in two 

studies that evaluate both telomestatin to telomeric G-Quadruplex DNA and drug 

resistance mechanisms in Topoisomerase I inhibitors. The knowledge presented here will 

facilitate future construction of drugs that target these specific receptors.  

1.2 Basic Methodologies  

1.2.1 Homology model construction. Often times a high resolution structure of a 

receptor is unavailable. When this is the case, a homology model may be created utilizing 

the structure of a homolog as a template. By altering specific amino acids a desired 

mutant of the receptor can be achieved. Tools such as the Protein Preparation Wizard in 

Maestro can then check for inconsistencies in the coordinates, add charges where needed, 

and optimize the geometry of the complex as a whole.  
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1.2.2 Molecular docking. Determining which compounds bind to a particular target 

is the first step of filtering through a large library of compounds. Molecular docking 

software is utilized to accomplish this step. By first obtaining the high resolution 

coordinates of a receptor in question, the docking software generates a molecular surface 

for the receptor.
[5, 6] 

It then generates the active binding site by filling it with spheres that 

denote the potential binding locations for atoms on a ligand. The spheres match to the 

atoms on the ligands to determine the orientations that the ligand may bind. Finally the 

software will score the best orientation and output a binding pose.  

The scoring function will accurately calculate the binding affinity and score the poses 

of an active site higher than the poses of an inactive site. Finally, the function will score 

the correct pose of the active site higher than an incorrect pose of the active.  The output 

of the scoring function is a final pose of the molecule in a binding site and a score that 

represents the strength of the binding which can be related to the binding affinity. The 

Glide docking program with extra precision (XP) was used in this study to perform a 

series of hierarchical searches for optimal ligand pose within the binding site of a 

receptor.  

1.2.3 Molecular dynamics simulations. The binding interactions that occur within a 

complex can be understood using computational tools. Understanding these interactions 

can give insight to the binding behavior of a particular ligand to its target. Molecular 

dynamics (MD) simulations calculate the motion of atoms in a compound using 

Newtonian dynamics to determine the force and acceleration of each atom.
[7] 

They can 

probe the structure, dynamics, position, velocity and interaction of a receptor with high 

spatial and temporal resolution. A MD simulation system utilizes high resolution 
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coordinates of a particular receptor and a set of parameters to determine its force fields.
[7] 

These force fields are set parameters that describe both bonded and non-bonded 

interactions among atoms. Bonded interactions include a drug-based dihedral angle and 

unbonded interactions include van der Waals and electrostatic.  The system maintains a 

constant temperature and pressure, and is surrounded by a solvent of water and ions. 

Implicit and Explicit solvent models can be used to develop a realistic model for 

interactions between solvent and a molecule.
[8] 

The explicit solvent model uses thousands 

of solvent molecules and is therefore computationally exhausting. For that reason, 

implicit models are more commonly utilized. The implicit solvent model treats a solvent 

as a continuous medium using a dielectric constant.
[8]

 

 After the system is prepared, it is run until it reaches equilibrium. The time 

progression of the system can be recorded in the form of multiple snapshots, creating 

what is referred to as a trajectory. These snapshots have their own individual coordinates 

specific to the position of the atoms in the system. The ligand-receptor complex can be 

aligned and clustered into unique structural families based on a root mean square 

deviation (RMSD) of atomic positions to determine the most prevalent binding positions. 

Further analysis of the binding energy can also provide more details on the complex. 

1.2.4 MMGBSA binding energy calculations. The binding energy of a ligand to 

its target receptor can explain a variety of details about the complex as a whole, as well as 

individual components. MMGBSA, or molecular mechanics generalized Born surface 

area, was utilized in this study to calculate the binding energy of all complexes.
[9] 

This 

method was used because it allows for energy decomposition into separate components: 

electrostatic, van der Waals, and surface area. The calculations are performed first on the 
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receptor alone through minimization, then on the ligand alone.
[9] 

Finally, the receptor-

ligand complex is calculated and the output contains the contribution of each component 

on the total binding energy. This value provides a quantitative value in which to find the 

most favorable bindings. Since solute entropy is not included in our analysis, the binding 

energies by MMGBSA may over-estimate the true binding free energy (i.e. the binding 

affinity). However, when the solute conformational entropies in different binding poses 

are comparable, the relative binding free energy can be estimated from the relative 

MMGBSA binding energies.
[10]

 

1.3 Thesis Outline 

In Chapter 2, the effect of drug resistance on Topoisomerase I inhibitors is 

analyzed. Although Camptothecin and its analogs as Topoisomerase I inhibitors can 

effectively treat cancers, serious drug resistance has been identified for this class of anti-

cancer drugs. Recent computational studies have indicated that the mutations near the 

active binding site of the drug can significantly weaken the drug binding and cause the 

drug resistance. However, only Topotecan and three mutations have been previously 

analyzed. Here we present a comprehensive binding study of 10 Topoisomerase 1 

mutants (N722S, N722A, D533G, D533N, G503S, G717V, T729A, F361S, G363C, and 

R364H) and 8 inhibitors including 7 Camptothecin analogs as well as a new generation 

Topoisomerase I drug, Lucanthone. Utilizing Glide docking followed by MMGBSA 

calculations, we determined the binding energy for each complex. We examine the 

relative binding energy changes with reference to the wild type, which are linked to the 

degree of drug resistance. On this set of mutates, Topotecan and Camptothecin have 

much smaller binding energy decrease than a set of new Camptopthcin derivatives 
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(Lurtotecan, LESN-38, Gimatecan, Exatecan and Belotecan) currently under clinical 

trials. Lucanthone shows comparable results to Topotecan and Camptothecin, indicating 

it may exhibit the least drug resistance and is therefore a promising candidate for future 

studies as a Topoisomerase I inhibitor. In addition, a trend is observed from our binding 

energy data that the shorter the distance of a mutant to a ligand, the greater the decrease 

in binding energy (with one exception). The decomposition of the binding energy 

together with 2D interaction diagrams of predicted binding poses help decipher the nature 

of the binding energy decrease. These results may be utilized to further advancement 

Topoisomerase I inhibitors that are resistant to mutations.  

In Chapter 3, the binding complexes of Telomestatin and telomeric G-quadruplex 

DNA are evaluated. Telomestatin, a natural product isolated from Streptomyces anulatus, 

stabilizes telomeric DNA G-quadruplexes. Treatment with this ligand induces apoptosis 

of various cancer cells with a relatively low effect on somatic cells due to its high 

selectivity toward G-quadruplex over duplex DNA. A high resolution structure of a G-

quadruplex in complex with telomestatin does not yet exist, and the binding nature of this 

ligand remains elusive as a result. In this study, we utilized molecular binding 

simulations and MMGBSA binding energy analysis to decipher the binding nature of 

Telomestatin to a telomeric G-quadruplex. We identified three major binding poses: 

bottom stacking, top stacking and a groove binding. The top mode resembles the pose 

observed in an NMR complex of the same G-quadruplex with telomestatin analog, L2H. 

The bottom and groove binding poses were not observed in the previous studies of L2H. 

The bottom stacking mode exhibited the most favorable binding energy among the three 

modes, while also partially intercalating into the telomeric quadruplex. The dynamic and 
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energetic properties of these three binding modes are thoroughly examined. “Flip-

insertion” and “Slide-insertion” were observed in the bottom intercalation mode. Our 

finding also provides insight to design more selective DNA quadruplex ligands as anti-

cancer agents in the future.  
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Chapter 2 

A Mechanical Study of Anti-Cancer Drug Resistance Caused by 10 Topoisomerase I 

Mutations, Including 7 Camptothecin Analogs and Lucanthone 

 

2.1. Introduction 

2.1.1 Topoisomerase I inhibitors. Camptothecin (Figure 1A) is a cytotoxic 

quinolone alkaloid that inhibits DNA enzyme Topoisomerase I (Top1) which is 

responsible for reducing torsional strain in DNA during replication. The compound, 

originally isolated in 1966 by Wall and colleagues from the Chinese Camptothecin 

acuminate tree,
[11]  

showed remarkable anticancer activity in preliminary clinical trials but 

also low solubility and severe adverse drug reaction.
[12] 

The efforts in creating more 

soluble Camptothecin analogs lead to two Top1 drugs, Topotecan (Hycamtin) and 

Irinotecan (Camptostar), which were approved by the FDA in 1996 (Ireontecan is a 

prodrug that is converted into LESN38 which is the actual Top1 inhibitor).
[13, 14]  

 

2.1.2 A history of camptothecin analogs. Hycamtin and Camptosar are widely 

used in treating small-cell lung cancer, ovarian cancer, and cervical cancer as second and 

third-line cancer therapeutics.
[15-17] 

In 2014, the Hycamtin oral capsule was developed and 

approved by FDA. New optimizations are also undergoing to develop more effective 

anti-cancer drugs with less adverse effects (Figure 1A-C) .
[18]   

For example, Lurtotecan, 

which was developed in 1994 by Luzzio et al, exhibited much greater potency than 

Camptothecin as a Top1 inhibitor in cleavable complex enzyme assays and ex vivo cell 

cytotoxicity assays.
[19] 

Belotecan, a water soluble derivative of Camptothcin, was recently 

approved for clinical use in South Korea. Gimatecan and Exatecan showed great progress 
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in solubility and clinical tolerability, making them great candidates as potential oral 

capsules.
[20] 

 

 

  

Figure 1. Topoisomerase I inhibitors 

 

 

 

 2.1.3 Drug resistance in camptothecin analogs. Despite these advances, 

however, drug resistance has been prevalent in Campothecins.
[21-23]

  Point mutations in 

the Top1-DNA cleavage complex, identified in both mammalian and yeast cell lines, are 

suggested to play a major role in drug resistance.
[24] 

In 1999, Pommier and colleagues 

suggested eight mutations in the core domain and C-terminal domain (active binding site) 
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which may lead to Camptothecin resistance (Figure 2).
[25]  

Figure 3 provides a 

visualization of these key residues relative to the Topotecan ligand. In 2004, Chrencik 

and colleagues provided a structural analysis on Topotecan bound to complexes F361S 

and N722S which shed even more light on the role of mutations  in causing the drug 

resistance.
[26]  

As resistance remains problematic to Camptothecin derivatives, experts are 

looking for non-Camptothecin drugs with less drug resistance. For example, Lucanthone 

has been investigated as a promising anti-cancer therapeutic (Figure 1C). Due to its 

ability to intercalate into Top1 as well as its unique scaffold, Lucanthone may exhibit 

lower drug resistance than the Camptothecin class.
[27] 

Yet, further evidence remains to be 

reported.  

 

 

 

 
Figure 2. Schematic diagram of mutated residue locations 
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Figure 3. Crystal complex structure of Top 1 with Topotecan in red (PDB ID: 1K4T). 

The mutating residues are shown in blue, and the key catalytical residue, Y723, is shown 

in green. 

 

 

 

 2.1.4 A computational approach to view drug resistance mechanisms. 

Molecular modeling and simulations have been recently used to decipher the mutation 

effects on drug binding affinity.
[28, 29]  

In 2013, Pan and colleagues utilized molecular 

modeling to conduct a study on Topotecan resistance by three specific Top1 mutations. 

They discovered that the mutations E428K, G503S, and D533G also have significant 

influence on the binding affinities of Topotecan and could indeed be responsible for 

resistance seen in this drug.
[29]

  However, a comprehensive study of major mutations on 

major Top1 drugs remains to be completed.   

A) Side View B) Top View 
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In this study, we utilized homology modeling of mutant complexes, Glide extra 

precision (XP) docking and MMGBSA (molecular mechanics generalized Born with 

surface area term) calculations to understand the effects of ten key point mutations on 

binding affinity of eight Top1 inhibitors. We compared these results to the wild type 

crystal complex, Top1-Topotecan complex (PDB: 1K4T), which provided structural 

insights on the drug resistance due to the mutations.
[30, 31]

   The MMGBSA binding 

energy change upon a point mutation was calculated for each inhibitor in each mutant 

complex. A good correlation between our MMGBSA data and the available experimental 

binding data was obtained. Interestingly, we found that Topotecan and Camptothecin 

have much smaller binding energy decrease than a set of new Camptopthcin derivatives 

(Lurtotecan, LESN-38, Gimatecan, Exatecan and Belotecan) currently under clinical 

trials.  Lucanthone shows comparable results to Topotecan and Camptothecin, indicating 

it may exhibit the least drug resistance and is therefore a promising candidate for future 

studies as a Top1 inhibitor. To decipher the binding nature, we further decomposed the 

binding free energy to evaluate the contribution of each energetic component.  
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2.2. Methods 

 2.2.1 Ligand preparation. The eight Top1 ligand structures were either obtained 

from the ZINC database  or created using ChemDraw Professional 15.0.
[32]  

The ligands 

were prepared in three steps using Maestro Elements.
[4] 

First, hydrogen atoms were added 

based valence, then Epik (an empirical pka prediction program) was utilized to determine 

the charge of the molecule at pH 7.
[4] 

Finally, the geometry of each ligand was optimized 

by minimizing the potential energy.  

 2.2.2 Homology model construction. The wild type Top1 crystal structure in 

complex with topotecan, determined by Stalker et al using X-ray diffraction method, was 

obtained from the RCSB Protein Data Bank database (PDB id: 1K4T).
[33] 

The complex 

was prepared using the protein preparation wizard of Maestro program in three steps: 

preprocessing, charge state determination  and geometry optimization.
[4] 

Using this wild 

type complex as a template, the ten mutated complexes were generated by altering each 

of their corresponding amino acids to achieve the point mutation at the desired residue 

location. These mutant complexes were then prepared using the protein preparation 

wizard (Figure 4). 
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Figure 4. Clustering of 8 Topoisomerase I inhibitors to WT and 10 Top 1 mutant 

complexes. For clarity, only WT Top 1 is shown in cartoon. Oxygen atoms are displayed 

in red, Nitrogen atoms are displayed in blue and Carbon atoms are displayed in yellow. 

 

 

 

 2.2.3 Glide XP docking. The Glide docking program with extra precision (XP) 

scoring was utilized in our docking study.
[5, 6]

 This algorithm performs a series of 

hierarchical searches for optimal ligand pose within the binding site of a receptor. The 

first step involved a rough positioning and scoring followed by torsional energy 

optimization using the new and efficient OPLS3 non-bonded potential energy grid to 

endure potential poses.
[34]

 The pose conformations of the best candidate were refined 

once again using Monte Carlo sampling. The final docked pose was accomplished and 

given a docking score, which combines both empirical and force field based terms. After 

generating a receptor-grid file, each ligand was docked to both the Top1 wild type 
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structure as well as each of the ten mutated homology models using Glide XP docking. 

The best ligand pose was output and used in MMGBSA binding energy calculations. 

 2.2.4 MMGBSA binding energy calculations. The MMGBSA binding energy 

was calculated for the complexes.
[35]

 These calculations combine molecular mechanics 

and the continuum solvent model to calculate binding energy in a way that is less 

computationally exhaustive. The complexes were each partially minimized by relaxing 

the ligand and the side chains that were closest to the ligand while all other atoms were 

fixed. For each ligand, the protein-ligand complex (Gcomplex), the free protein-DNA 

(Gpro+DNA), and the free ligand (Glig) were all subjected to an energy minimization in 

implicit solvent (Equation 1). This utilizes the molecular mechanics (MM) methods to 

calculate ligand-receptor interaction energies (GConformation, GGBELE, Gvdw and Glipo), with a 

Gaussian smooth dielectric constant functional method for the electrostatic part of 

solvation energy (i.e. GB term) and solvent-accessible surface for the non-polar part of 

solvation energy (Equation 2).  Finally, the binding energy change of the mutant complex 

was calculated by using the wild type complex as the zero energy reference (Equation 3). 

Analysis of the decomposition of binding free energy values based on electrostatic, van 

der Waals, hydrophobic, and conformation interactions provides a more detailed 

understanding of the effect that resistance places on each complex. Two-dimensional 

diagrams aided in visualizing these decomposition values. 

Equation 1: ∆𝐺 = 𝐺𝑐𝑜𝑚𝑝𝑙𝑒𝑥 − 𝐺𝑝𝑟𝑜+𝐷𝑁𝐴 − 𝐺𝑙𝑖𝑔     

Equation 2: ∆𝐺 = 𝐺𝑐𝑜𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 + 𝐺𝐺𝐵𝐸𝐿𝐸 + 𝐺𝑣𝑑𝑤 + 𝐺𝑙𝑖𝑝𝑜   

Equation 3: ∆∆𝐺 = ∆𝐺𝑀𝑢𝑡𝑎𝑛𝑡  −  ∆𝐺𝑊𝑇      
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2.3 Results 

 2.3.1 Subtle changes in ligand binding pose were discovered. Mutant 

homology model and Glide-docking results discovered subtle changes in ligand binding 

pose as well as side-chain conformation within each complex. We built homology models 

for 10 mutants based on the wild type crystal structure (Figure 3).
[33] 

We then docked 

each ligand to the homology models and performed MMGBSA calculations in which 

three geometry optimizations were conducted on a receptor only system, ligand only 

system and the complex, followed by energy calculation.
[35]

 The MMGBSA binding 

energies and its components are tabulated in the Appendix (Table S1-S8). To visualize 

the subtle binding pose changes of the ligand within the mutant structure, we 

superimposed the structure of all complexes based on the sequence alignment. The 

aligned, 3-Dimensional (3D) representation of each ligand when bound to the complexes 

can be seen in Figure 4. The binding pose of ligand in each ligand-mutant complex is 

very similar to the crystal binding pose in Figure 3, in which the lactone ring of ligand 

binds closely to the active Tyrosine 723 residue.  However, we noticed subtle 

conformation change for both the ligand (Figure 3) and the side chains of the interacting 

residues with the ligand (data are not shown). The 3D structure of both top view and side 

view, 2D interaction diagram and of ∆∆G Decomposition for each complex are included 

in the Appendix (Figure S4-S83). The interacting residues of each complex (mutant and 

wild type) with the ligands is also available and provides insight into which residues are 

present 5Å from the active binding site of each complex (Table S9-19). Again, the subtle 

differences can be observed for different ligands and different mutants. 
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 2.3.2 Agreement between experimental and predicted results. A favorable 

agreement between experimental binding affinity and calculated binding energy validated 

the use of computational methods in this study. To validate our computational results, we 

collected the existing IC50 values for Camptothecin derivatives on WT Top1 (Table 1). 

Encouragingly, there is a good agreement between experimental and our predicted 

values, the correlation coefficient  is 0.9161 (Figure 5A).  In addition, the IC50 fold 

change of Camptothecin in each of these mutated complexes has been also 

experimentally determined (Table 2).
[25, 36-41]  

Our binding free energy data shows the 

same ranking order in the fold change: N722A > G717V > D533N > G503S > R364H 

(Figure S1A). The Resistance Correlation Plot (Figure 5B) shows an excellent agreement 

between the experimental findings and our calculations, giving 0.736 of correlation 

coefficient.  XP docking scores exhibited a lower correlation to the experimental values, 

so MMGBSA data was used throughout the study. 
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A) 

 

B)  

 

Figure 5. Correlation Plots. A) Correlation Between Experimental and Predicted Change 

in Binding Free Energy of Four Ligands to WT Top 1 (Table 1)  B) Correlation Between 

Experimental and Predicted Binding Free Energy Change of Camptothecin to eight Top 1 

Mutants (Table 2). 
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Table 1 

Experimental and predicted binding (free) energy of ligands to wild type Top1. 16, 18,11, 19 

ΔG𝐵𝑖𝑛𝑑𝑖𝑛𝑔 = RT × ln (IC50) 

 

 

 

 

Table 2 

Experimental and predicted binding free energy change of Camptothecin to Top 1 

Mutants. 37,38,25,39,40,41,42   

 

*FC: fold change of dissociation equilibrium constant in comparison to wild type 

 

  

Ligand IC50 Experimental ∆G* (kcal/mol) ∆MMGBSA (kcal/mol)

Topotecan 50 -10.0 -105.2

LE-SN38 77 -9.7 -101.1

Camptothecin 300 -8.9 -93.1

Lurtotecan 416 -8.7 -83.4

Mutant Experimental FC* Experimental ∆∆G (kcal/mol) ∆∆MMGBSA(kcal/mol)

T729A 10 1.4 23.1

G503S 134 2.9 27.9

D533N 220 3.2 30.9

D533G 300 3.4 29.3

G717V 600 3.8 36.9

N722S 974 4.1 45.0
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          2.3.3 Assessment of drug resistance in each ligand. Among the eight Top1 

Inhibitors, Camptothecin, Topotecan and Lucanthone exhibited the lowest mean change 

in the binding energy to the ten TOP1 mutants.  We carried out the MMGBSA binding 

energy calculations of each docked drug in each complex. The data was organized 

appropriate to answer two questions: which drug exhibits the lowest resistance to the ten 

mutants and which mutant complex is responsible for causing the most resistance to these 

eight drugs. To answer the first question, we group our ∆∆G data based on the ligand 

(Figure S1). The mean change in MMGBSA binding energies and standard deviations 

over the ten mutants were calculated and ordered in Figure 6.  In details, the mean change 

in MMGBSA binding energy in the ten mutated complexes for Camptothecin was 19.2 

kcal/mol. This predicted drug resistance was the second lowest following Topotecan. The 

difference in binding energy between the Camptothecin bound to the wildtype complex 

and the mutated complexes ranged from 9.1 kcal/mol (R364H) to 38.8 kcal/mol (F361S). 

Topotecan saw a mean change in binding energy of 18.8 kcal/mol, which was in fact the 

lowest of all the drugs in this particular study. The predictions ranged from 9.8 kcal/mol 

(R364H) to 26.8 kcal/mol ( D533N). Lucanthone, with the third lowest mean binding 

energy, had a value of 21.8 kcal/mol. Complex G717V was the lowest of these 

calculations at 10.3 kcal/mol, while Complex G363C was the highest at 45.8 kcal/mol. 

The mean binding energy for Lurtotecan was 26.0 kcal/mol. Complex T729A at 12.2 

kcal/mol was the lowest, while Complex F361S had the highest at 33.5 kcal/mol. LESN-

38 had a mean binding energy of 28.5 kcal/mol. The lowest can be seen in Complex 

R362H at 15.5 kcal/mol and the highest is Complex D533G at 64.7 kcal/mol. Gimatecan 

had a mean binding energy of 31.5 kcal/mol. The binding energies for this compound 
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when bound to mutated complexes ranged from 13.8 kcal/mol (F361S) to 50.4 kcal/mol 

(D533N). The mean change in binding energy for Exatecan was 32.785 kcal/mol. The 

predicted  ranged from 10.7 kcal/mol (D533G) to 53.4 kcal/mol (R364H). The largest 

average change in binding energy between the wildtype and the mutations can be seen 

when Belotecan is bound to these complexes. The mean predicted binding energy for this 

compound is 38.9 kcal/mol. The lowest change in binding energy can be seen in R364H 

at 28.0 kcal/mol, while the highest can been seen in G503S at 49.7 kcal/mol. Clearly, 

Lucanthone, Lurtotecan, LESN38, Gimatecan, Exatecan and Beotecan have higher mean 

binding energy change than Topotencan, Camptothecin and Lucantohone, indicating that 

the former group might have higher drug resistance than the latter group.    

 

 

 

 
Figure 6. Mean change in binding energy (∆∆G) for each Topoisomerase I inhibitor.      

A) Topotecan B) Lucanthone C) Camptothecin D) Lurtotecan E) LESN38 F) Gimatecan 

G) Exatecan H) Belotecan 
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         2.3.4 Assessment of drug resistance in mutant complex. Among 10 TOP1 

mutants, D533G exhibits the highest mean resistance and T729A the lowest resistance for 

these 8 drugs. To answer the second question, we cluster our ∆∆G data based on the 

mutant (Figure S2). The mean change in MMGBSA binding energy was calculated as 

well as the standard deviation and the center-to center distance from the mutant residue to 

the ligand (Figure 7). The lowest mean change in binding energy can be seen in Complex 

T729A with at 22.0 kcal/mol. The lowest predicted  value for this complex was 

Camptothecin at 10.7 kcal/mol, and the highest was Belotecan at 44.4 kcal/mol. Complex 

R364H has a mean change in binding energy of 22.5 kcal/mol. The predicted values 

range from 9.1 kcal/mol (Camptothecin) to 53.4 kcal/mol (Exatecan). The mean change 

in binding energy for Complex G717V is 23.4 kcal/mol. The lowest change between 

wildtype and this particular mutant complex can be seen in Lucanthone (10.3 kcal/mol), 

while the highest is Exatecan (37.1 kcal/mol). Complex F361S has a mean change in 

binding energy of 26.0 kcal/mol. The predicted values ranged from 13.8 kcal/mol 

(Gimatecan) to 38.8 kcal/mol (Camptothecin).  Complex G503S has a mean of 26.3 

kcal/mol. The lowest change between wildtype and G503S can be seen in Camptothecin 

(11.1 kcal/mol), while the highest is Belotecan (47.7 kcal/mol). The mean change in 

binding energy for Complex G363C is 28.9 kcal/mol. The predicted values ranged from 

14.6 kcal/mol (Lurtotecan) to 45.8 kcal/mol (Belotecan). Complexes N722S/A have a 

mean change in binding energy of 29.2 kcal/mol. The lowest change between wildtype 

and this particular mutated complex can be seen in Camptothecin (21.8 kcal/mol), while 

the highest is Exatecan (41.0 kcal/mol). Complex D533N has a mean change in binding 

energy of 32.5 kcal/mol, making it the second largest change in binding energy of all the 
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mutated complexes. The predicted values range from 16.7 kcal/mol (Camptothecin) to 

50.4 kcal/mol (Gimatecan). The highest mean value is seen in Complex D533G with a 

predicted value of 22.0 kcal/mol. The lowest change between wildtype and this particular 

mutated complex can be seen in Exatecan (10.7 kcal/mol), while the highest is LESN38 

(64.7 kcal/mol). 

Our data suggest a negative correlation between the mutation-ligand distance and 

the binding energy decrease (Figure 7).  We observed that the closer the mutated residue 

is to the active binding site, the higher the decrease in binding free energy for the drug-

mutant complex; and vice versa. There was one exception in this pattern, complex 

R364H, which is about 3 Å from the binding site and showed a lower change in the 

binding free energy. Interestingly, we discovered through the decomposition of each 

drug-R364H complex binding energy that electrostatic interaction generally contributed 

significantly to the stabilization of the histidine in this mutation. Due to its lower polarity 

when compared to the wild type arginine residue, the histidine forms more hydrogen 

bonds with the surrounding residues (Figure S3). In contrast, G363C with the similar 

mutatation-ligand distance followed the general trend and did not get the electrostatic 

stabilization.   
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Figure 7. Mean binding energy change (∆∆G) for each mutant and center-to-center 

distance from mutated residue to ligand. 1) D533G 2) D533N 3) N722A 4) N722S 5) 

G363C 6) G503S 7) F361S 8) G717V 9) R364H 10) T729A 

 

 

 

 2.3.5 Analyzing the largest and smallest changes in binding energy. Whereas 

complex SN38-D533G show largest decrease of binding energy change, Lucanthone-

G717V show least decrease of binding energy change. Complex Resistance was noticed 

in each complex after a thorough evaluation of both 2D interaction diagrams and  

MMGBSA binding energy of each mutated complex (see Figures S4-83). Upon further 

inspection of each mutant-drug complex two complexes were particularly interesting. 

Complex LESN38-D533G (Figure 8) exhibited the highest resistance with a binding free 

energy change (∆∆G) of 64.7 kcal/mol. Decomposition indicates a high electrostatic 

(GBELE) and van der Waal (VDW) contribution (Figure 8A). Significant contribution 

from van der Waal results in the loss of hydrogen bonding, which can be seen in the loss 

of hydrogen bonds to both a water molecule and Lys 532 which is not present in the 
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LESN38-D533G complex (Figure 8B-C). The Lucanthone-G717V Complex exhibits 

relatively low resistance when compared to the other 79 complexes (Figure 9A). With a 

binding free energy value of 10.3 kcal/mol, there are both hydrophobic and van der Wall 

contributions that may be responsible for the loss of π-π stacking between TGP11 and 

Ring A that is seen in the Lucanthone-WT complex, but not the Lucanthone-G717V 

complex (Figure 9B-C). This finding is especially interesting due to the fact that 

Lucanthone, a non-Camptothecin Top1 inhibitor, is significantly less resistant to each of 

the mutated complexes when compared to each Camptothecin analog. Furthermore, SN-

38, who’s prodrug was approved by the FDA in 1998 for the treatment of cancers in the 

colon and rectum, exhibits significant resistance to all of the mutated complexes.
[42] 

The 

decomposition of binding free energy along with two-dimensional diagrams obtained 

through molecular docking provides insight into the resistance mechanisms of each of 

these complexes (Figures S4-83).  Understanding the contributions to resistance for 

allows for more accurate drug optimization and design 
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A) Decomposition of ∆∆G 

 

B) Wildtype 

 

C) D533G 

 

 

Figure 8. LESN38-D533G mutated complex. A) Decomposition of ∆∆G into 

conformation, GBELE, hydrophobic and van der Waal components, B) 2D interaction 

diagram of the LESN38-wildtype complex, C) 2D interaction diagram of the LESN38-

D533G complex 
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A) Decomposition of ∆∆G 

 

B) Wildtype 

 

C) G717V 

 

 

Figure 9. Lucanthone-G717V mutated complex. A) Decomposition of ∆∆G into confor 

Lucanthone-wildtype complex, C) 2D interaction diagram of the Lucanthone-G717V 

complex 
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2.4 Discussion 

Due to the limited rotation in cells, strand separation in DNA by polymerase-

helicase complexes can induce supercoiling, creating tension at the replication fork. DNA 

Top1 prevents the torsional stress of supercoiled DNA by nicking a strand of DNA 

resulting in a relaxed complex.
[31] 

This mechanism of action involves a key residue, 

Tyrosine 723, which induces nucleophilic attack on a DNA phosphodiester bond through 

an esterification reaction forming a covalent3’-phosphotyrosine binary enzyme-DNA 

complex.
[43] 

This new bond is then attacked by the hydroxyl group on the DNA strand 

and the double-stranded DNA is released. When relegation does not occur, Top1 will 

remain attached to DNA, blocking the replication fork, and apoptosis will result.
[44] 

Camptothecin and its analogs bind to this active site, inhibit the normal function of Top1, 

and as a result have been extensively studied as cancer therapeutics. To date, there are 

two Top1 drugs approved by the FDA, and even more undergoing clinic development. 

These drugs have been widely used in treating small-cell lung cancer, ovarian cancer, and 

cervical cancer as second and third-line cancer therapeutics.
[15-17] 

However, point 

mutations have been identified as one of the major mechanisms that lead to serious drug 

resistance.
[22,23]

 

Molecular modeling and simulations are powerful tools used to probe the mutation 

effects on drug resistance. Previous research conducted on the effects of mutations on 

Camptothecin has provided insight into the experimentally determined cellular resistance 

exhibited in these complexes.
[24-26,45]

  Pan et al. has investigated the Topotecan binding 

affinity changes due to three point mutations (e.g. E418K, G503S, and D533G) using 

molecular dynamics simulations followed by MMGBSA binding energy calculations.
[29] 
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The binding energy changes from their calculations correlate well with the drug 

resistance data. Although these studies provide invaluable insights on the Topotecan drug 

resistance caused by three common point mutations, the effects that all known mutations 

have on other Top1 drugs remains elusive. In this study, we utilized glide XP docking 

followed by MMGBSA calculations to analyze the role ten mutations play on the 

resistance of Top1 to Camptothecin, seven Camptothecin derivatives, and a non-

Camptothecin, Lucanthone.  

To validate our calculations, we first correlated our predictions against known 

experimental data. The correlation coefficient between our MMGBSA binding data and 

the experimental IC50 of four compounds to the wild type Top1 is 0.916. The correlation 

coefficient between our binding energy changes and the experimental IC50 change due to 

ten point mutations is 0.736.  Following this validation, we extended our analysis to eight 

drugs and ten mutations. By applying the same calculations to every ligand-mutant 

complex, we determined that resistance is indeed exhibited throughout. Interestingly, 

Camptothecin, Lucanthone and Topotecan have the lowest mean resistance to the 

mutated complexes. The next-generation drug, Lucanthone, is expected to exhibit 

differences in resistance as it does not share a similar molecular scaffold to the 

Camptothecin analogs. However, it is surprising that SN-38 (FDA-approved Camptosar) 

and the other Camptothecin analogs show significantly higher resistance to Camptothecin 

and Topotecan.  

Providing an alternative perspective, the mean change in binding free energy was 

organized according to mutant complexes to identify the mutation (Figure 7). 

Interestingly, we observed that the furthest residue (T729A at 10+Å distance) from the 
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ligand has the least resistance while the residue closest to the ligand (D533G/N at 3Å 

distance) has the highest resistance overall (Figure 7). This finding confirms that the 

location of the mutation indeed plays an important role in the functionality of the Top1-

drug complex. Complex R364H was the only outlier, and when compared to the closest 

reside, complex G363C, we discovered that the histidine may be responsible for the 

lower binding energy because it forms more hydrogen bonds with the surrounding 

residues due to its low polarity (Figure S3). 

Computational methods are becoming more and more important in drug discovery 

as these methods economically provide detailed structural and energetic information that 

traditional drug development methods lack. By understanding drug-target interactions in 

detail, researchers are able to efficiently design promising drug candidates. In our study 

we utilized Glide XP docking and MMGBSA calculations to analyze resistance 

mechanisms of ten mutations surrounding the active binding site of Camptothecin, its 

analogs and a next-generation Top1 inhibitor, Lucanthone. To validate our calculations, 

we first correlated our predictions against known experimental data. The correlation 

coefficient between our MMGBSA binding data and the experimental IC50 of four 

compounds to the wild type Top1 is 0.916. The correlation coefficient between our 

binding energy changes and the experimental IC50 change due to ten point mutations is 

0.736.  Our data shows that a binding energy change is present in every drug-mutant 

complex. However, the magnitude of the change depends on the specific mutation and 

the ligand structure. Among the eight Top1 inhibitors, Camptothecin, Topotecan and 

Lucanthone exhibit the lowest mean change in the binding energy to the ten Top1 

mutants. Among 10 Top1 mutants, D533G exhibits the highest mean resistance and 
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T729A the lowest resistance for these 8 ligands.  Interestingly, we observed that the 

furthest residue (T729A at 10+Å distance) from the ligand has the least resistance while 

the residue closest to the ligand (D533G/N at 3Å distance) has the highest resistance 

overall.  Our detailed binding information will be valuable for future Top1 inhibitor 

modifications.  Our study on Top1 inhibitors supports the use of computational 

approaches in assessing mutation effects on drug resistance quickly and with reasonable 

accuracy for other anti-cancer/anti-virus drugs where point mutations are one of the 

major sources of drug resistance.   
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Chapter 3 

A Mechanical Study of Telomestatin Binding to Telomeric G-Quadruplex DNA 

 

3.1 Introduction 

       3.1.1 G-Quadruplex DNA as a pharmacological target. G-quadruplex DNA 

consists of multiple stacked guanine-tetrads bound by Hoogsteen base pairing (Figure 

10A).
[46, 47]  

Computational tools have identified over 350,000 putative G-quadruplex 

sequences in the human genome, both the promoter regions of genes as well as within 

telomeres.
[48, 49]

 Recent experimental research has confirmed the existence of G-

quadruplexes in human cells.
[50-56]

 For example, in 2013 Lam and colleagues discovered 

evidence of G-quadruplexes in sub-telomeres, gene bodies and gene regulatory regions 

using a quadruplex specific antibody.
[57]  

These complexes are over-represented 

specifically in DNA damage regions and happen to appear more frequently in tumors 

than in normal tissues.
[58-61] 

For that reason, quadruplexes have gained interest as 

emerging pharmacological targets for developing cancer therapeutics.
[58-62] 

The formation 

of stable G-quadruplexes in the telomere inhibits telomerase by preventing the 

hybridization of the DNA single strand with the telomerase RNA template. Telomerase 

elongates the telomere by synthesizing telomeric ‘TTAGGG’ repeats,
[63, 64]

 which is 

otherwise shortened and eventually leads to apoptosis. Because telomerase is 

overexpressed in about 85% of cancers,
[65] 

inhibiting telomeric G-quadruplexes is a 

promising anti-cancer strategy.
[66] 
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Figure 10. Structure of a telemeric DNA quadruplex (A), telomestatin (B), telomestatin 

analog L2H (C).  5’ and 3’ of the DNA chain are indicated by a red and blue ball, 

respectively. 

 

 

 

 3.1.2 Telomestatin as a G-Quadruplex stabilizer. G-quadruplex-specific 

ligands enhance this mechanism by binding to and stabilizing the telomeric G-

quadruplexes.
[67-69]

 In addition, G-quadruplex-specific ligands compete with POT1 

(protection of telomeres protein 1), which uncaps telomeres, activates a DNA damage 

response mechanism, and eventually triggers apoptosis of cancer cells.
[70, 71] 

Telomestatin, a natural product isolated from Streptomyces anulatus, presumably 

stabilizes telomeric G-quadruplexes (Figure 10B).
[72-74]

 Treatment with this ligand 
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induces apoptosis of various cancer cells with a relatively low effect on somatic cells due 

to its high selectivity toward G-quadruplex over duplex DNA.
[75] 

Recent studies on 

Telomestatin’s potency in multiple cancer cell lines (e.g. leukemic, neuroblastoma, 

cervical cancer, etc.) suggest the potential of this natural product as a promising cancer 

therapeutics (Table 3).
[75-78]  

For example, in 2012 Miyazaki and colleagues determined 

that Telomestatin eradicates glioblastoma multiforme (GBM) cells, during both in vitro 

and in vivo studies, through telomeric g-quadruplex disruption.
[75] 

 

 

Table 3 

Summary of using telomestatin in treating various cancers 
75,76,77,78 

Cell Line Target Disease 

c-Myb Telomeric G-quadruplex Glioblastoma multiform 

MYCN Telomeric G-quadruplex Neuroblastoma 

SiHa Telomeric G-quadruplex Cervical cancer 

HeLa Telomeric G-quadruplex Cervical adenocarcinoma 

MCF-7 Telomeric G-quadruplex Breast cancer 

K562 Telomeric G-quadruplex Acute myeloid leukemia 

 

 

 

 

          3.1.3 Telomestatin analog, L2H.   Although Telomestatin has proved to be a 

model compound for Quadruplex inhibition studies, its low solubility has made it 

difficult to probe its high-resolution structure in complex with a G- G-quadruplex.
[79] 

In 
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2013, however, Chung et al provided the first NMR structure of a Telomestatin analog, 

L2H2-6M(2)OTD (L2H), binding to an intramolecular (3+1) human telomeric G-

quadruplex (Figure 10C). They determined that the binding occurs through π-stacking 

and electrostatic interactions.
[79] 

Although L2H has provided useful binding information, 

a detailed binding analysis of the natural product, Telomestatin, will serve as an 

important tool for more effective analog construction in the future.  

          3.1.4 A computational approach study telomestatin binding behavior. 

Molecular dynamics stability simulations was used probe the structure, dynamics and 

interaction of G-quadruplexes with high spatial and temporal resolution.
[80] 

In this study, 

we utilized AMBER DNA (parmbsc0) and drug (GAFF) force fields to simulate the 

binding process between telomestatin and the intramolecular human telomeric G-

quadruplex, started from unbound state. We observed top end stacking, bottom end 

stacking and frontal groove binding modes. The top mode resembles the pose observed in 

the NMR complex of the same G-quadruplex with L2H. The bottom and groove binding 

poses were not observed in the previous studies of L2H. The dynamic and energetic 

properties of these three binding modes are thoroughly examined.  Our binding energy 

analysis on the three binding poses and the NMR pose of L2H deciphers the structure-

activity relationship.  Its implication on designing better telomestatin analog is discussed.  
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3.2 Methods 

 3.2.1 Simulation system construction. We constructed a DNA-ligand system 

using the NMR solved human telomeric G-quadruplex structure (Figure S84 left, PDB 

ID: 2MB3
[79]

) and a telomestin molecule that was in this study10 Å away from the 

DNA(Figure S84 right). This system was solvated in a water box of truncated octahedron 

with 10 Å water buffer plus K
+
 as counter ions to neutralize the system.  A refined 

version of the AMBER ff99 (parmbsc0)
[81]

 was applied to represent the DNA fragments, 

TIP3P model
[82]

 was used represent water, and the recently developed K
+ 

model by 

Cheatham group was used for the system.
[83] 

The partial charges for a telomestatin 

molecule were obtained using standard AMBER protocol: the electrostatic potential of  

the telomestatin molecule was obtained at the HF/6-31G* level after geometry 

optimization at the same level; the electrostatic potential using the RESP (Restrained 

ElectroStatic Potential) method determined the partial charges;
[84] 

and other force field 

parameters were taken from the AMBER GAFF
[85]

 force field.  The telomestatin force 

field in Mol2 format can be found in the Appendix (Figure S92).  These AMBER force 

fields are the most common ones used in nucleic acid simulations.
[86-89]

  We were able to 

simulate the binding process of doxorubicin, an anti-cancer drug, to a B-DNA fragment 

(d(CGATCG)2).
[90] 

We observed three binding modes including end-stacking, minor 

groove binding and intercalation mode. Based on the observed binding dynamics in the 

intercalation mode, we proposed the “Flipping-insertion” mechanism, which is different 

from the previously assumed “Rise-insertion” mechanism. 
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Figure 11. Comparison of the all binding modes between telomestatin and telomestatin 

derivative (PDB ID: 2MB3) to telomeric G-quadruplex. 5’ and 3’ of the DNA chain are 

indicated by a red and blue ball, respectively. 
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 3.2.2 Simulation protocols. The ten simulation runs were conducted using 

the AMBER 14 simulation package
[91]

 with refined force fields using Parmbsc1.
[3, 92]

 

After energy minimization for the initial structure of the system, a total of 10 runs were 

performed with different initial random velocities. A production run (1000.0 ns) at 300 K, 

included a short 1.0 ns molecular dynamics in the NPT ensemble mode (constant pressure 

and temperature) to equilibrate the system density in which the G-quadruplex and ligand 

were subjected to Cartesian restraints (1.0 kcal/mol/Å) and 999.0 ns dynamics in the 

equivalent NVT ensemble mode (constant volume and temperature). SHAKE
[93]

 was 

applied to constrain all bonds connecting hydrogen atoms, enabling a 2.0 fs time step in 

the simulations. The particle-mesh Ewald method
[94]

 was used to treat long-range 

electrostatic interactions under periodic boundary conditions (charge grid spacing of ~1.0 

Å, the fourth order of the B-spline charge interpolation; and direct sum tolerance of 10
–5

 

). The cutoff distance for short-range non-bonded interactions was 10 Å, with the long-

range van der Waals interactions based on a uniform density approximation. To reduce 

the computation, non-bonded forces were calculated using a two-stage RESPA 

approach
[95] 

where the short range forces were updated every step and the long range 

forces were updated every two steps. Temperature was controlled using the Langevin 

thermostat with a coupling constant of 2.0 ps. The trajectories were saved at 40.0 ps 

intervals for analysis.  

 3.2.3 Convergence of simulations. The root mean square deviation (RMSD) of 

DNA backbone heavy was calculated against the starting structure. The flat and small 

RMSDs (Figure S85) indicate that these systems were stable and the simulations reached 

a steady state. Atom contacts between the DNA fragment and the drug molecule were 
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calculated using an atom-to-atom distance cutoff of 3.0 Å. The simulation systems 

reached a steady state, as indicated by the stable contact number (Figure S86). We 

defined stable complex as a complex with the number of atom contacts greater than 20. 

Free drugs bound to different sites as shown in the last snapshots for the ten runs (Figure 

S87), indicating a good sampling of binding sites.  

 3.2.4 Binding mode identification.   Because the DNA backbone was relatively 

stable in the binding process, we aligned the DNA backbone of the stable complexes 

from the trajectories by a least square fitting. The aligned complexes were clustered into 

different structural families based on the 2 Å pair-wise RMSD cutoff of the drug 

molecule only using Daura algorithm,
[96]

 in which the number of neighboring structures 

was calculated for every structure based on the RMSD cutoff. The structure with the 

largest number of neighbors together with its neighboring structures were removed to 

form a structure family and the process continued for the remaining structures until all 

structures were assigned to a structural family. The centroid structure (i.e. the structure 

having the largest number of neighbors in the structural family) was used to represent the 

family. The centroid structures of populated structural families (>1% of total structure 

population) are shown in Figure S88. Based on visual inspection, the centroid structures 

were further merged into super-families corresponding to major binding modes (top 

stacking, bottom stacking and groove binding). 

 3.2.5 Parameters for characterizing DNA-drug complex. We calculated four 

order parameters to characterize the DNA-drug binding process: the center-to-center 

distance (D), the drug-base dihedral angle, ligand RMSD and MMGBSA binding energy 

(G). Distance was defined as the distance from the DNA center to the drug molecule 
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center. The dihedral angle was defined as the dihedral angle between the plane of the first 

G-tetrad of the DNA quadruplex and the drug’s ring plane. Atom contact number 

between the DNA quadruplex and the drug molecule was calculated using an atom-to-

atom distance cutoff of 3.0 Å. MMGBSA
[97]

 (Molecular Mechanics-Generalized 

Born/Surface Area) module in the AMBER package (GB1 model with mBondi radii set, 

salt concentration of 0.2 M, and surface tension of 0.0072 kcal/Å
2
) was used to analyze 

the energetics of the bound complexes to avoid the large energy fluctuation of explicit 

solvent. A recent  study
[10]

 shows that GB models make good predictions even for 

charged molecules when the relative solvation free energy is considered. For our analysis, 

ions were removed from the systems by assuming that MMGBSA gives a good estimate 

on the solvation energy of charged DNA systems. This is supported by our previous 

study, which the binding energy of doxorubicin, an anti-cancer drug, to a B-DNA 

fragment (d(CGATCG)2) was successfully assessed by this MMGBSA protocol.
[90] 

Note 

that since the solute conformational entropy is not included in our analysis, the binding 

energies by MMGBSA may over-estimate the true binding free energy (i.e. the binding 

affinity). However, when the solute conformational entropies in different binding poses 

are comparable, the relative binding free energy can be estimated from the relative 

MMGBSA binding energies.
[10]
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Figure 12.   A representative trajectory of the top stacking mode. Center-to-center 

distance (R), the drug-base dihedral angle, ligand RMSD and MM-GBSA binding energy 

(G). 5’ and 3’ of the DNA chain are indicated by a red and blue ball, respectively. 
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Figure 13.   A representative trajectory of the bottom stacking mode. Center-to-center 

distance (R), the drug-base dihedral angle, ligand RMSD and MM-GBSA binding energy 

(G). 5’ and 3’ of the DNA chain are indicated by a red and blue ball, respectively. 
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Figure 14.  A representative trajectory of the groove binding mode. Center-to-center 

distance (R), the drug-base dihedral angle, ligand RMSD and MM-GBSA binding energy 

(G). 5’ and 3’ of the DNA chain are indicated by a red and blue ball, respectively. 
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3.3 Results 

          3.3.1 Three drug binding modes were observed.  Starting from an unbound state 

(see the method section), ten simulation runs (1000 ns of each) were carried out. The 

convergence of the binding simulations was confirmed (see the method section).  At 1000 

ns, the ligand was bound to the G-quadruplex:  the ligand binded to the two ends of the 

quadruplex in seven runs (run 1-7, Figure S87) and binded to the groove/side of the 

quadruplex in the remaining three runs (run 8-10, Figure S87). The stable complexes, 

extracted from the ten trajectories (see the method section), were categorized into 

structural families based on a clustering analysis as described in the method section. By 

setting a threshold of 1% population, eight structural families of complexes were 

identified (Figure S88). These eight structural families were further merged into three 

binding modes: top stacking, bottom stacking and groove binding.  End stacking to the 

top of the quadruplex accounted for 16% of the total population, end binding to the 

bottom of the quadruplex accounted for 63% and groove binding made up 16% (Figure 

11).  In the top binding mode, telomestatin stacks on the top of the G-tetrad. This mode is 

similar to the binding pose of a telomestatin derivative, L2H, to the same telemetric G-

quadruplex in the NMR solved complex structure. In the bottom end stacking mode, 

telomestatin is sandwiched between a G-tetrad and G-triad.  In the groove binding mode, 

telomestatin inserts into the groove. Therefore, it is interesting that the latter two binding 

modes are the two additional modes for telomestatin, and that L2H is only able to access 

the first binding mode of telomestatin. The bottom binding mode is particularly 

interesting, because it is stable (63% of population) and G-quadruplex specific. The 

partial intercalation between G-tetrad and G-triad, increase its binding affinity to the G-
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quadruples. This mode differs from the ligand binding pose observed in existing G-

quadruplex-ligand complex structures.
[69, 79, 98-108]

 

          3.3.2 Bottom binding mode is the most stable mode of the three modes.  To 

examine the relative stability for the three binding modes observed, MMGBSA binding 

energy calculations were conducted on each complex (Table 3). Top stacking, which is 

the binding pose observed in the L2H NMR complex, displayed the lowest binding 

energy towards the quadruplex (-24.0±1.3 kcal/mol). Bottom stacking, on the other hand, 

displayed the highest total binding energy (-53.8±20.0 kcal/mol) making this binding 

pose the most favorable of the three. Telomestatin’s ability to intercalate in this bottom 

stacking pose may explain this (Figure 11C). The groove binding displayed the moderate 

total binding energy (-32.7±0.2 kcal/mol).  To decipher the binding nature, the binding 

energy was decomposed into van der Waal (VDW), hydrophobic interaction (SUR), and 

electrostatic interaction (GBELE). As expected, the bottom stacking pose exhibited the 

most favorable VDW (-77.5+26.7 kcal/mol), which is 38 kcal/mol more favorable than 

that of top stocking pose and 28 kcal/mol more favorable than that of Groove binding 

pose.  Although the bottom binding pose is ~8-10 kcal/mol less favorable than those of 

the other two binding poses, the total binding energy is much stronger than those of the 

other two binding modes.  

To characterize the binding pathway of the three modes, we calculated four order 

parameters as described in the method section. Here we show the data for a representative 

trajectory for each mode (Figure 12-14). For the bottom binding mode, the data for 

another trajectory is included in the Appendix (Figure S89).  
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 3.3.3 Top stacking of telomestatin displayed a similar binding pose to the 

L2H NMR complex. In the representative trajectory of the top stacking mode, 

telomestatin made initial interaction with the top of the telomeric quadruplex at about 21 

ns from the unbound state (Figure 12). From about 21-236 ns of the trajectory, 

telomestatin flips orientation and the quadruplex exhibits base flipping. The top binding 

system exhibits large fluctuations in each of the four order studies indicating that 

telomestatin binding to the top of the quadruplex is not as favorable as the bottom or 

groove. For example, MMGBSA calculations determined binding energy fluctuating 

between -10 and -35 kcal/mol (Figure 12). Because the binding pose fails to allow 

telomestatin to intercalate into the G-Quadruplex the binding affinity less favorable. 

Additionally, it is unclear where this system reaches a final steady state. 

 

 

Table 4 

MMGBSA Binding Energy of Telomestatin and L2H2 to G-Quadruplex DNA
[31-33, 72 109]

 

Ligands Binding Pose ΔVDW ΔSUR ΔGBELE ΔTOT ΔΔG TRAP IC50 IC50

Telomestatin Top Stacking -39.4±2.9 -3.1±0.3 18.5±2.0  -24.0±1.3 29.8

Telomestatin Bottom Stacking -77.5±26.7 -4.3±1.3 28.0±1.3 -53.8±20.0 0

Telomestatin Groove -49.2±0.5 -3.7±0.1 20.3±0.5  -32.7±.0.2 21.1

L2H (NMR) Top Stacking - - - - - 20 nM 7.4 µm

5 nM 0.5-4.0 µm

 

ΔVDW   Change of VDW energy in gas phase upon complex formation (Units: kcal/mol) 

ΔSUR    Change of energy due to surface area change upon complex formation (Units: kcal/mol) 

ΔGBELE   Change of GB reaction field energy + gas phase Elec. energy upon complex formation (Units: kcal/mol) 

ΔTOT = ΔVDW +ΔSUR + ΔGBELE Change of potential energy in water upon complex formation (Units: kcal/mol) 
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 3.3.4 Bottom stacking of telomestatin has the greatest percent population and 

strongest binding energy. Two representative trajectories for the bottom binding were 

analyzed, the result of one trajectory is shown here and the other trajectory is included in 

the appendix (Figure S89). In this representative trajectory, telomestatin made the initial 

interaction with the bottom of the telomeric quadruplex at about 53 ns (Figure 13). 

Interestingly, a deep intercalation of telomestatin can be seen at 133 ns. How does this 

intercalation occur? By watching the trajectory, we discovered that the initial contact 

with the G-quadruplex is concurrent with the flipping out of the bases and welcome 

telomestatin into the quadruplex. As a result, the ligand is sandwiched between the 

bottom layers of the quadruplex. We name this interaction mechanism as “flip-

intercalation” (Figure S90).  We compared this entrance mechanism to an additional 

bottom stacking trajectory and found that telomestatin intercalates in a different manner 

(Figure S91).  In this system, the ligand enters the quadruplex from the loop closest to the 

N-terminal where the short loop allows for easy insertion. Clearly, this intercalation is 

responsible for the high affinity of the bottom stacking mode of the telomestatin-

quadruplex complex.  

In this trajectory, the intercalation completed within the 450 ns and the ligand 

stayed there in the remaining time.  In the other trajectory (Figure S89), telomestatin 

completed intercalation within the first 50 ns and stayed there for the remaining 950 ns. 

Both trajectories support that the bottom stacking mode is indeed the most favorable of 

the three binding modes seen in the telomestatin-quadruplex systems. 
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 3.3.5 Groove binding of telomestatin provides additional support for the 

selectivity of this ligand to G-quadruplex DNA. In the representative trajectory of the 

groove binding mode, telomestatin made initial contact with the telomeric quadruplex at 

19 ns (Figure 14). After about 51 ns the ligand settles in its final pose. Additionally, this 

system reaches a steady state after about 200 ns, with minor fluctuations throughout the 

remainder of the trajectory.  The terminal MMGBSA binding energy is ~20 kcal/mol, 

which is much lower than ~75 kcal/mol of the bottom binding mode.   
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3.4 Discussion 

Interest in G-quadruplex DNA as a promising target for future cancer therapeutics 

has increased after it was recently discovered that quadruplex existence is greater in 

malignant tumors than in normal tissues.
[110] 

Telomestatin is a natural product that has 

been gaining interest as a potential quadruplex stabilizer (Figure 10B). It’s planar shape 

allows it to create pi-pi stacking with the quaduplex, increasing its affinity towards the 

target.
79

 More importantly, telomestatin’s macrocyclic scaffold hinders its ability to bind 

into a duplex intercalation, and in turn it exhibits low DNA duplex affinity.  However, the 

lack of efficient and systematic synthetic routes along with some of telomestatin 

molecular limits
[111,112]

 (high hydrophobicity and low solubility) has prevented this family 

of inhibitors from reaching to the market. To address the issues, multiple total 

syntheses
[111,112] 

were developed to obtain telomestatin and  its analogues.
[78, 113] 

Among 

these attempts, Rzuczk et al have recently developed a telomestatin derivative L2H 

containing two alky amine sidechains and six oxazole rings.  The solubility of L2H was 

greatly increased as the two charge sidechains added. Yet, the biological activities of 

L2H were slightly reduced (Table 4):  a) Whereas telomestatin has an IC50 (Inhibition 

Concentration at 50% activity) value of 0.5-4.0 µM in various cancer cell lines
[76-78, 114]

, 

L2H have IC50 of 7.4 µM.
[109] 

b) Whereas telomestatin has TRAP IC50 of 5 nM
[72]

 , L2H 

has TRAP IC50: 20 nM
[109]

 (TRAP: The telomere repeat amplification protocol for the 

human reverse transcriptase, telomerase, that is used for determination of telomerase 

activity).  This reduction is expected, because the side chain charge is supposed to 

increase the binding affinity of L2H to the DNA G-quadruplex backbone and thus 

improve the potency of L2H.  To understand why, high resolution structures of both 
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telomestatin and L2H in complex with a telomeric G-quadruplex are a must. Although 

the NMR structure of L2H in complex with a human telomeric G-quadruplex have been 

solved by Wan et al in 2013, a high resolution structure of telomestatin with a G-

quadruplex is not yet obtained probably due to its low solubility.
[79] 

In this study, we 

utilized molecular dynamics simulations and MMGBSA binding energy calculations to 

provide a thorough analysis of the binding of telomestatin to a telomeric G-qaudruplex 

DNA. By comparing with the NMR structure, we want to tackle the mentioned question.  

   In the NMR study
[79]

, only one binding mode was observed, in which  L2H binds 

to the top of the quadruplex in a stacking manor. In contrast, in our simulations we 

observed that telomestatin binds in three modes to the same telomeric G-quadruplex 

structure: Top end stacking (13% total population), bottom end stacking (63% total 

population), and in the front groove (16% total population). The top end stacking mode 

most closely resembles the L2H binding pose seen in the NMR structure. On one hand, 

sharing this common binding mode might explain why both L2H and telomestatin can 

stabilize the telomeric G-quadruplex, inhibit the telomerase, and restrict cancer cell 

growth. On the other hand, lack of two additional binding modes, in particular the 

intercalative mode in the bottom of the G-quadruplex, might be the reason L2H is less 

potent than telomestatin.  Therefore, although the addition of two positively charged alkyl 

amine side chains on two of the six oxazole rings was successful in improving the 

solubility of the compound, this addition actually prevents the ligand from adopting the 

intercalation mode,  thus reducing the potency of the compound. For example, the NMR 

structure of L2H shows the compound  laying on residues G21, G17, G9 and G3. The 

residues above the compound, T19 and T2, are unable to close in on L2H. The large 
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sidechains prevent this from occurring (Figure 15B). In contrast, the planar scaffold of 

telomestatin allows residues T13, A14 and A24 to close in around and a thus responsible 

for the partial intercalation (Figure 15A).   In fact, our MMGBSA and trajectory analysis 

show that this intercalation mode is much more stable than the other two modes, thus this 

mode might contribute most to the higher binding and higher potency of telomestatin 

over L2H. If this is true, then future development should keep a planar scaffold to favor 

the intercalation binding mode to the G-quadruplex. The solubility issue should be solved 

by adding polar/charged functional groups in the plane.  

 

 

 

 

Figure 15. A 3-Dimensional representation of residues surrounding Telomestatin in 

bottom stacking mode (A) and L2H in top stacking mode (B) 
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 Computational methods have become essential in drug discovery as they provide 

structural information where experimental results may lack. In this study we utilized 

molecular dynamics simulations as well as MMGBSA binding energy calculations to 

evaluate the elusive binding behavior of telomestatin to telomeric G-quadruplex DNA, 

which has been previously unreported. We have identified three binding modes: top end 

stacking, bottom end stacking and groove binding. The first mode resembles the pose 

observed in a NMR structure of the same telomeric G-quadruplex with telomestatin 

analog, L2H, with a binding energy of -24.0+1.3 kcal/mol. Groove binding mode was not 

observed previously to the best of our knowledge, but showed comparable binding 

energy to the top stacking mode (-32.7.7+0.2 kcal/mol). Interestingly, the bottom 

stacking mode showed the best binding energy (-53.8+20.0 kcal/mol). Telomestatin’s 

planar scaffold allows the compound to bind to three sites on telomeric G-quadruplex 

with comparable binding affinity to the NMR L2H complex. For this reason, maintaining 

a planar scaffold is critical in developing quadruplex targeting ligands. Not only does it 

increase binding selectivity, but it will promote intercalation thus inducing overall 

binding affinity.  These findings may aid future attempts at creating a promising 

telomeric G-quadruplex stabilizer. 
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Appendix A 

A Mechanical Study of Anti-Cancer Drug Resistance Caused by 10 Topoisomerase I 

Mutations, Including 7 Camptothecin Analogs and Lucanthone 

 

Table S1. Decomposition of MM-GBSA binding energies (kcal/mol) for SN-38.  

Target ∆ Conformation ∆ GBELE ∆ Hydrophobic ∆ VDW ∆ Sum ∆∆ Conformation ∆∆ GBELE ∆∆ Hydrophobic ∆∆ VDW ∆∆ Sum

1K4T 4.0 8.4 -24.4 -89.2 -101.1 - - - - -

G363C 2.2 8.6 -15.9 -75.5 -80.5 -1.9 0.2 8.5 13.7 20.5

G717V 2.5 13.4 -16.3 -76.8 -77.3 -1.5 4.9 8.1 12.4 23.8

N722A 2.9 14.4 -15.9 -74.6 -73.2 -1.1 6.0 8.5 14.6 27.9

N722S 2.9 14.4 -15.9 -74.6 -73.2 -1.1 6.0 8.5 14.6 27.9

R364H 3.0 3.1 -16.7 -75.0 -85.6 -1.0 -5.3 7.7 14.2 15.5

G503S 2.4 16.5 -15.5 -80.4 -77.0 -1.6 8.1 8.8 8.8 24.1

D533N 2.9 14.9 -15.3 -77.7 -75.3 -1.2 6.5 9.1 11.4 25.8

F361S 2.3 5.7 -23.0 -55.2 -70.3 3.8 -2.8 1.4 34.0 30.8

T729A 6.9 6.8 -15.6 -75.4 -77.3 2.6 -1.7 8.8 13.8 23.7

D533G 14.7 24.3 -13.5 -61.9 -36.4 -4.0 15.8 10.9 27.3 64.7 ∆G 

= ∆Conformation + ∆GBELE + ∆Hydrophobic + ∆VDW, GBELE= 

GB+Coulom+Hbond, Hydrophobic=LIPO,  VDW= VDW+Pi stacking +self-contact 

correction. ∆∆G = ∆G_Mutant - ∆G_Wildtype 

 

Table S2. Decomposition of MM-GBSA binding energies (kcal/mol) for Topotecan.  

Target ∆ Conformation ∆ GBELE ∆ Hydrophobic ∆ VDW ∆ Sum ∆∆ Conformation ∆∆ GBELE ∆∆ Hydrophobic ∆∆ VDW ∆∆ Sum

1K4T 4.0 0.4 -25.8 -83.8 -105.2 - - - - -

G363C 3.6 3.7 -16.2 -81.0 -89.8 -0.4 3.3 9.6 2.8 15.4

G717V 3.8 4.1 -16.0 -83.2 -91.3 -0.3 3.7 9.8 0.6 13.9

N722A 4.2 10.6 -16.7 -78.9 -80.9 0.2 10.2 9.1 4.9 24.3

N722S 4.2 10.6 -16.7 -78.9 -80.9 0.2 10.2 9.1 4.9 24.3

R364H 4.3 -1.8 -17.0 -80.9 -95.4 0.3 -2.2 8.8 2.9 9.8

G503S 5.7 -1.5 -12.7 -76.9 -85.5 1.6 -1.9 13.1 6.9 19.7

D533N 3.1 18.8 -16.7 -83.6 -78.5 -1.0 18.4 9.1 0.2 26.7

F361S 5.0 -2.8 -12.8 -79.4 -89.9 0.9 -3.2 13.1 4.4 15.3

T729A 5.5 -0.7 -12.6 -78.5 -86.3 1.4 -1.1 13.2 5.3 18.9

D533G 4.7 1.0 -13.6 -77.1 -85.1 0.6 0.6 12.2 6.7 20.1 ∆G 

= ∆Conformation + ∆GBELE + ∆Hydrophobic + ∆VDW, GBELE= 

GB+Coulom+Hbond, Hydrophobic=LIPO,  VDW= VDW+Pi stacking +self-contact 

correction. ∆∆G = ∆G_Mutant - ∆G_Wildtype 
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Table S3.  Decomposition of MM-GBSA binding energies (kcal/mol) for Camptothecin.  

Target ∆ Conformation ∆ GBELE ∆ Hydrophobic ∆ VDW ∆ Sum ∆∆ Conformation ∆∆ GBELE ∆∆ Hydrophobic ∆∆ VDW ∆∆ Sum

1K4T 3.3 12.6 -22.8 -86.1 -93.1 - - - - -

G363C 1.3 13.6 -15.7 -76.7 -77.5 -2.0 1.0 7.1 9.4 15.5
G717V 1.0 16.6 -16.0 -77.7 -76.1 -2.3 4.0 6.8 8.4 17.0

N722A 2.0 18.7 -15.9 -76.0 -71.2 -1.3 6.1 7.0 10.1 21.8
N722S 2.0 18.7 -15.9 -76.0 -71.2 -1.3 6.1 7.0 10.1 21.8
R364H 1.9 6.2 -16.5 -75.6 -83.9 -1.4 -6.4 6.4 10.5 9.1

G503S 0.8 11.7 -15.2 -79.2 -81.9 -2.5 -0.9 7.6 6.9 11.1

D533N 1.3 14.5 -15.2 -77.0 -76.3 -2.0 1.9 7.7 9.2 16.7

F361S 6.8 15.8 -11.4 -65.3 -54.2 3.5 3.2 11.4 20.8 38.8

T729A 0.1 11.1 -15.3 -78.2 -82.3 -3.2 -1.5 7.5 7.9 10.7

D533G 6.9 10.7 -11.5 -69.9 -63.7 3.6 -1.9 11.4 16.2 29.3 ∆G = 

∆Conformation + ∆GBELE + ∆Hydrophobic + ∆VDW, GBELE= GB+Coulom+Hbond, 

Hydrophobic=LIPO,  VDW= VDW+Pi stacking +self-contact correction. ∆∆G = 

∆G_Mutant - ∆G_Wildtype 

 

Table S4. Decomposition of MM-GBSA binding energies (kcal/mol) for Exatecan.  

Target ∆ Conformation ∆ GBELE ∆ Hydrophobic ∆ VDW ∆ Sum ∆∆ Conformation ∆∆ GBELE ∆∆ Hydrophobic ∆∆ VDW ∆∆ Sum

1K4T 3.2 23.8 -33.0 -66.9 -72.9 - - - - -

G363C 6.0 38.9 -19.1 -65.1 -39.3 2.8 15.1 13.9 1.9 33.6

G717V 4.9 40.8 -19.4 -62.1 -35.8 1.7 17.0 13.6 4.9 37.1

N722A 7.3 44.6 -19.6 -64.2 -31.9 4.1 20.8 13.4 2.7 41.0

N722S 7.3 44.6 -19.6 -64.2 -31.9 4.1 20.8 13.4 2.7 41.0

R364H 10.6 42.0 -19.6 -52.6 -19.6 7.4 18.2 13.4 14.3 53.4

G503S 7.8 32.9 -18.7 -59.9 -38.0 4.6 9.1 15.7 7.0 35.0

D533N 3.0 39.7 -13.4 -62.2 -33.0 -0.2 15.9 21.1 4.7 40.0

F361S 5.7 15.9 -30.2 -45.5 -54.2 2.6 -7.9 12.1 21.4 18.8

T729A 4.2 35.9 -24.3 -71.7 -55.8 1.0 12.2 -1.7 -4.8 17.1

D533G 0.5 33.2 -22.2 -73.7 -62.2 -2.7 9.4 -1.8 -6.8 10.7 ∆G 

= ∆Conformation + ∆GBELE + ∆Hydrophobic + ∆VDW, GBELE= 

GB+Coulom+Hbond, Hydrophobic=LIPO,  VDW= VDW+Pi stacking +self-contact 

correction. ∆∆G = ∆G_Mutant - ∆G_Wildtype 

 

Table S5. Decomposition of MM-GBSA binding energies (kcal/mol) for Gimatecan.  

Target ∆ Conformation ∆ GBELE ∆ Hydrophobic ∆ VDW ∆ Sum ∆∆ Conformation ∆∆ GBELE ∆∆ Hydrophobic ∆∆ VDW ∆∆ Sum

1K4T 6.0 22.6 -34.3 -84.2 -89.8 - - - - -

G363C 6.9 36.1 -24.6 -75.8 -57.5 0.8 13.4 9.7 8.3 32.3

G717V 7.5 35.8 -25.0 -77.0 -58.7 1.4 13.2 9.3 7.2 31.1

N722A 6.0 36.4 -25.6 -74.6 -57.7 0.0 13.8 8.6 9.6 32.0

N722S 6.0 36.4 -25.6 -74.6 -57.7 0.0 13.8 8.6 9.6 32.0

R364H 5.8 24.4 -26.1 -75.7 -71.7 -0.3 1.7 8.2 8.5 18.1

G503S 2.3 34.2 -24.7 -79.8 -68.0 -3.7 11.6 9.6 4.4 21.8

D533N 6.0 40.6 -14.4 -71.6 -39.4 0.0 18.0 19.9 12.6 50.4

F361S 3.6 14.2 -33.0 -60.9 -76.0 -2.4 -8.4 1.3 23.3 13.8

T729A 7.5 36.7 -25.6 -74.8 -56.1 1.5 14.1 8.7 9.4 33.7

D533G 6.5 39.9 -14.9 -71.2 -39.7 0.4 17.2 19.4 13.0 50.1  

∆G = ∆Conformation + ∆GBELE + ∆Hydrophobic + ∆VDW, GBELE= 

GB+Coulom+Hbond, Hydrophobic=LIPO,  VDW= VDW+Pi stacking +self-contact 

correction. ∆∆G = ∆G_Mutant - ∆G_Wildtype 
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Table S6. Decomposition of MM-GBSA binding energies (kcal/mol) for Belotecan.  

Target ∆ Conformation ∆ GBELE ∆ Hydrophobic ∆ VDW ∆ Sum ∆∆ Conformation ∆∆ GBELE ∆∆ Hydrophobic ∆∆ VDW ∆∆ Sum

1K4T 3.6 13.7 -32.6 -84.7 -100.0 - - - - -

G363C 12.7 25.1 -21.6 -70.4 -54.2 9.2 11.4 11.0 14.2 45.8

G717V 3.9 28.9 -23.6 -73.2 -64.0 0.3 15.2 9.0 11.5 36.0

N722A -4.6 28.1 -21.5 -71.0 -69.0 -8.2 14.4 11.1 13.7 31.0

N722S -4.6 28.1 -21.5 -71.0 -69.0 -8.2 14.4 11.1 13.7 31.0

R364H 4.8 13.0 -23.2 -66.6 -72.0 1.2 -0.7 9.4 18.1 28.0

G503S 9.3 22.4 -13.5 -68.5 -50.3 5.7 8.7 19.1 16.2 49.7

D533N 3.4 38.1 -23.6 -70.2 -52.2 -0.2 24.4 9.0 14.5 47.8

F361S 5.8 13.6 -30.3 -57.9 -68.7 2.2 0.0 2.3 26.8 31.3

T729A 8.9 26.0 -23.8 -66.7 -55.6 5.3 12.3 8.8 18.0 44.4

D533G 2.5 30.5 -21.7 -67.5 -56.2 -1.0 16.8 10.9 17.1 43.8 ∆G 

= ∆Conformation + ∆GBELE + ∆Hydrophobic + ∆VDW, GBELE= 

GB+Coulom+Hbond, Hydrophobic=LIPO,  VDW= VDW+Pi stacking +self-contact 

correction. ∆∆G = ∆G_Mutant - ∆G_Wildtype 

 

Table S7. Decomposition of MM-GBSA binding energies (kcal/mol) for Lucanthone.  

Target ∆ Conformation ∆ GBELE ∆ Hydrophobic ∆ VDW ∆ Sum ∆∆ Conformation ∆∆ GBELE ∆∆ Hydrophobic ∆∆ VDW ∆∆ Sum

1K4T 2.7 14.8 -24.3 -64.9 -71.7 - - - - -

G363C 9.1 20.1 -25.1 -56.9 -52.8 6.4 5.4 -0.8 8.0 18.9

G717V 3.3 15.9 -20.6 -60.0 -61.4 0.6 1.1 3.8 4.9 10.3

N722A 4.5 27.2 -15.5 -63.5 -47.3 1.7 12.4 8.8 1.4 24.4

N722S 4.5 27.2 -15.5 -63.5 -47.3 1.7 12.4 8.8 1.4 24.4

R364H 6.2 5.2 -18.9 -51.0 -58.5 3.4 -9.6 5.5 13.9 13.2

G503S 0.4 22.5 -17.4 -61.3 -55.9 -2.4 7.7 7.0 3.6 15.9

D533N -0.3 25.8 -11.9 -61.5 -47.8 -3.0 11.1 12.5 3.4 24.0

F361 2.7 25.9 -13.2 -61.7 -46.3 0.0 11.1 11.2 3.2 25.5

T729A 2.2 19.2 -12.9 -65.0 -56.5 -0.5 4.4 11.4 -0.1 15.2

D533G 2.4 24.2 -14.7 -63.8 -51.9 -0.4 9.4 9.6 1.1 19.8 ∆G 

= ∆Conformation + ∆GBELE + ∆Hydrophobic + ∆VDW, GBELE= 

GB+Coulom+Hbond, Hydrophobic=LIPO,  VDW= VDW+Pi stacking +self-contact 

correction. ∆∆G = ∆G_Mutant - ∆G_Wildtype 

 

Table S8. Decomposition of MM-GBSA binding energies (kcal/mol) for Lurtotecan.  

Target ∆ Conformation ∆ GBELE ∆ Hydrophobic ∆ VDW ∆ Sum ∆∆ Conformation ∆∆ GBELE ∆∆ Hydrophobic ∆∆ VDW ∆∆ Sum

1K4T 13.0 -25.3 -21.1 -49.9 -83.4 - - - - -

G363C 16.0 -17.5 -21.0 -46.2 -68.8 3.0 7.8 0.1 3.7 14.6

G717V 23.8 -17.2 -21.5 -50.2 -65.1 10.9 8.1 -0.3 -0.3 18.3

N722A 26.4 -12.1 -20.5 -46.1 -52.3 13.4 13.2 0.6 3.9 31.1

N722S 26.4 -12.1 -20.5 -46.1 -52.3 13.4 13.2 0.6 3.9 31.1

R364H 39.4 -4.2 -22.5 -63.1 -50.4 26.4 21.0 -1.4 -13.1 32.9

G503S 26.0 -19.7 -21.5 -35.7 -50.8 13.1 5.6 -0.3 14.2 32.5

D533N 21.6 -17.3 -21.8 -37.5 -55.1 8.7 7.9 -0.7 12.4 28.3

F361S 26.5 -19.5 -21.5 -35.3 -49.8 13.6 5.7 -0.4 14.6 33.5

T729A 14.5 -13.1 -21.2 -51.4 -71.2 1.5 12.2 0.0 -1.4 12.2

D533G 20.6 -16.6 -22.3 -40.0 -58.3 7.6 8.7 -1.1 9.9 25.1 ∆G = 

∆Conformation + ∆GBELE + ∆Hydrophobic + ∆VDW, GBELE= GB+Coulom+Hbond, 

Hydrophobic=LIPO,  VDW= VDW+Pi stacking +self-contact correction. ∆∆G = 

∆G_Mutant - ∆G_Wildtype 
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Table S9. Interacting residues on WT with ligands 

 

*The distance cutoff between a ligand and contacting residues/water molecules is 5Å. 

 

 

 

 

 

 

 

Camptothecin Topotecan LE-SN38 Lurotecan Exatecan Irinotecan Belotecan Luanthone Gimatecan %

H20 H20 H20 H20 H20 H20 H20 77.8

DT9 DT9 DT9 33.3

DT10 DT10 DT10 DT10 DT10 DT10 DT10 DT10 DT10 100.0

DG12 DG12 DG12 DG12 DG12 DG12 DG12 DG12 DG12 100.0

DC111 DC111 DC111 33.3

DC112 DC112 DC112 DC112 DC112 DC112 DC112 DC112 DC112 100.0

DA113 DA113 DA113 DA113 DA113 DA113 DA113 DA113 DA113 100.0

DA114 DA114 DA114 DA114 DA114 DA114 DA114 DA114 88.9

TGP11 TGP11 TGP11 TGP11 TGP11 TGP11 TGP11 TGP11 TGP11 100.0

ALA351 ALA351 ALA351 ALA351 44.4

ASPN352 ASN352 ASN352 ASN352 ASN352 ASN352 ASN352 ASN352 ASN352 100.0

LYS354 LYS354 22.2

ILE355 11.1

GLU356 GLU356 GLU356 GLU356 GLU356 GLU356 GLU356 GLU356 GLU356 100.0

ARG364 ARG364 ARG364 ARG364 ARG364 ARG364 ARG364 ARG364 ARG364 100.0

LYS374 LYS374 22.2

ILE377 11.1

TRP416 11.1

LYS425 LYS425 LYS425 33.3

TYR426 TYR426 TYR426 33.3

ILE427 ILE427 ILE427 ILE427 44.4

MET428 MET428 MET428 MET428 44.4

LEU429 11.1

ASN430 11.1

PRO431 11.1

LYS436 11.1

ARG488 ARG488 ARG488 33.3

LYS532 LYS532 LYS532 LYS532 LYS532 LYS532 LYS532 LYS532 LYS532 100.0

ASP533 ASP533 ASP533 ASP533 ASP533 ASP533 ASP533 ASP533 ASP533 100.0

ILE535 ILE535 ILE535 ILE535 ILE535 ILE535 ILE535 ILE535 88.9

ASN631 11.1

HID632 HID632 HID632 33.3

GLN633 11.1

ALA715 11.1

THR718 THR718 THR718 THR718 THR718 THR718 THR718 THR718 THR718 100.0

ASN722 ASN722 ASN722 ASN722 ASN722 ASN722 ASN722 ASN722 ASN722 100.0

PTR723 PTR723 PTR723 PTR723 PTR723 PTR723 PTR723 PTR723 PTR723 100.0
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Table S10. Interacting residues on D533G with ligands. The highlighted row indicates the 

mutated residue is present within 5Åof the ligand. 

 

*The distance cutoff between a ligand and contacting residues/water molecules is 5Å. 

 

 

 

 

 

 

 

Camptothecin Topotecan LE-SN38 Lurotecan Exatecan Irinotecan Belotecan Luanthone Gimatecan %

H20 H20 H20 H20 H20 H20 H20 77.8

DT9 DT9 DT9 DT9 44.4

DT10 DT10 DT10 DT10 DT10 DT10 DT10 DT10 DT10 100.0

DG12 DG12 DG12 DG12 DG12 DG12 DG12 DG12 DG12 100.0

DA13 11.1

DC112 DC112 DC112 DC112 DC112 DC112 DC112 DC112 DC112 100.0

DA113 DA113 DA113 DA113 DA113 DA113 DA113 DA113 DA113 100.0

DA114 DA114 DA114 DA114 DA114 DA114 DA114 DA114 88.9

TGP11 TGP11 TGP11 TGP11 TGP11 TGP11 TGP11 TGP11 TGP11 100.0

ILE350 11.1

ALA351 ALA351 ALA351 33.3

ASN352 ASN352 ASN352 ASN352 ASN352 ASN352 ASN352 ASN352 ASN352 100.0

ILE355 11.1

GLU356 GLU356 GLU356 GLU356 GLU356 GLU356 GLU356 GLU356 88.9

ARG364 ARG364 ARG364 ARG364 ARG364 ARG364 ARG364 ARG364 ARG364 100.0

LYS374 LYS374 22.2

TRP416 TRP416 TRP416 TRP416 44.4

LYS425 LYS425 LYS425 LYS425 LYS425 55.6

TYR426 TYR426 TYR426 TYR426 TYR426 55.6

ILE427 ILE427 ILE427 33.3

MET428 MET428 MET428 33.3

LEU429 LEU429 22.2

ASN430 11.1

PRO431 11.1

LYS436 LYS436 22.2

ARG488 ARG488 ARG488 ARG488 ARG488 ARG488 ARG488 ARG488 88.9

LYS532 LYS532 LYS532 LYS532 LYS532 LYS532 LYS532 LYS532 LYS532 100.0

GLY533 GLY533 GLY533 GLY533 GLY533 GLY533 GLY533 GLY533 GLY533 100.0

ILE535 ILE535 ILE535 ILE535 ILE535 ILE535 ILE535 ILE535 100.0

HIS632 11.1

THR718 THR718 THR718 THR718 THR718 THR718 THR718 THR718 88.9

ASN722 ASN722 ASN722 ASN722 ASN722 ASN722 ASN722 ASN722 ASN722 100.0

PTR723 PTR723 PTR723 PTR723 PTR723 PTR723 PTR723 PTR723 PTR723 100.0
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Table S11. Interacting residues on D533N with ligands. The highlighted row indicates the 

mutated residue is present within 5Åof the ligand. 

 

*The distance cutoff between a ligand and contacting residues/water molecules is 5Å. 

 

 

 

 

 

 

 

Camptothecin Topotecan LE-SN38 Lurotecan Exatecan Irinotecan Belotecan Luanthone Gimatecan %

H20 H20 H20 H20 H20 H20 H20 77.8

DT9 DT9 DT9 DT9 44.4

DT10 DT10 DT10 DT10 DT10 DT10 DT10 DT10 DT10 100.0

DG12 DG12 DG12 DG12 DG12 DG12 DG12 DG12 DG12 100.0

DA13 11.1

DC112 DC112 DC112 DC112 DC112 DC112 DC112 DC112 DC112 100.0

DA113 DA113 DA113 DA113 DA113 DA113 DA113 DA113 DA113 100.0

DA114 DA114 DA114 DA114 DA114 DA114 66.7

TGP11 TGP11 TGP11 TGP11 TGP11 TGP11 TGP11 TGP11 TGP11 100.0

ILE350 11.1

ALA351 ALA351 ALA351 33.3

ASN352 ASN352 ASN352 ASN352 ASN352 ASN352 ASN352 ASN352 ASN352 100.0

LYS354 11.1

ILE355 11.1

GLU356 GLU356 GLU356 GLU356 GLU356 GLU356 GLU356 GLU356 88.9

ARG364 ARG364 ARG364 ARG364 ARG364 ARG364 ARG364 ARG364 ARG364 100.0

LYS374 11.1

TRP416 TRP416 TRP416 TRP416 44.4

LYS425 LYS425 LYS425 LYS425 LYS425 LYS425 66.7

TYR426 TYR426 TYR426 TYR426 TYR426 TYR426 66.7

ILE427 ILE427 22.2

MET428 MET428 MET428 33.3

LEU429 LEU429 22.2

ASN430 11.1

PRO431 11.1

LYS436 LYS436 22.2

ARG488 ARG488 ARG488 ARG488 ARG488 55.6

LYS532 LYS532 LYS532 LYS532 LYS532 LYS532 LYS532 LYS532 LYS532 100.0

ASN533 ASN533 ASN533 ASN533 ASN533 ASN533 ASN533 ASN533 ASN533 100.0

ILE535 ILE535 ILE535 ILE535 ILE535 ILE535 ILE535 ILE535 88.9

HIS632 11.1

THR718 THR718 THR718 THR718 THR718 THR718 THR718 THR718 THR718 100.0

LEU721 LEU721 22.2

ASN722 ASN722 ASN722 ASN722 ASN722 ASN722 ASN722 ASN722 ASN722 100.0

PTR723 PTR723 PTR723 PTR723 PTR723 PTR723 PTR723 PTR723 PTR723 100.0
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Table S12. Interacting residues on F361S with ligands 

 

*The distance cutoff between a ligand and contacting residues/water molecules is 5Å. 

 

 

 

 

 

 

Camptothecin Topotecan LE-SN38 Lurotecan Exatecan Irinotecan Belotecan Luanthone Gimatecan %

H20 H20 H20 H20 H20 H20 66.7

DT9 DT9 DT9 DT9 44.4

DT10 DT10 DT10 DT10 DT10 DT10 DT10 DT10 DT10 100.0

DG12 DG12 DG12 DG12 DG12 DG12 DG12 DG12 DG12 100.0

DA13 11.1

DA14 11.1

DA15 11.1

DT110 11.1

DC112 DC112 DC112 DC112 DC112 DC112 DC112 DC112 DC112 100.0

DA113 DA113 DA113 DA113 DA113 DA113 DA113 DA113 DA113 100.0

DA114 DA114 DA114 DA114 DA114 DA114 DA114 77.8

TGP11 TGP11 TGP11 TGP11 TGP11 TGP11 TGP11 TGP11 TGP11 100.0

MET263 11.1

HIS266 11.1

TYR268 11.1

ALA351 ALA351 22.2

ASN352 ASN352 ASN352 ASN352 ASN352 ASN352 ASN352 ASN352 88.9

LYS354 11.1

GLU356 GLU356 GLU356 GLU356 GLU356 GLU356 GLU356 GLU356 88.9

GLY363 11.1

ARG364 ARG364 ARG364 ARG364 ARG364 ARG364 ARG364 ARG364 ARG364 100.0

LYS374 11.1

TRP416 TRP416 22.2

LYS425 LYS425 LYS425 LYS425 LYS425 55.6

TYR426 TYR426 TYR426 TYR426 44.4

ILE427 11.1

MET428 MET428 22.2

LEU429 11.1

ASN430 11.1

PRO431 11.1

LYS436 11.1

ARG488 ARG488 ARG488 ARG488 ARG488 ARG488 ARG488 88.9

LYS532 LYS532 LYS532 LYS532 LYS532 LYS532 LYS532 LYS532 LYS532 100.0

ASP533 ASP533 ASP533 ASP533 ASP533 ASP533 ASP533 ASP533 ASP533 100.0

ILE535 ILE535 ILE535 ILE535 ILE535 ILE535 ILE535 ILE535 ILE535 100.0

HIS632 HIS632 22.2

GLN633 GLN633 22.2

ARG634 11.1

ALA635 11.1

ALA715 11.1

THR718 THR718 THR718 THR718 THR718 THR718 THR718 THR718 THR718 100.0

ASN722 ASN722 ASN722 ASN722 ASN722 ASN722 ASN722 ASN722 ASN722 100.0

PTR723 PTR723 PTR723 PTR723 PTR723 PTR723 PTR723 PTR723 PTR723 100.0
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Table S13. Interacting residues on G363C with ligands 

 

*The distance cutoff between a ligand and contacting residues/water molecules is 5Å. 

 

 

 

 

 

Camptothecin Topotecan LE-SN38 Lurotecan Exatecan Irinotecan Belotecan Luanthone Gimatecan %

H20 H20 H20 H20 H20 H20 H20 77.8

DT9 DT9 22.2

DT10 DT10 DT10 DT10 DT10 DT10 DT10 DT10 DT10 100.0

DG12 DG12 DG12 DG12 DG12 DG12 DG12 DG12 DG12 100.0

DC111 11.1

DC112 DC112 DC112 DC112 DC112 DC112 DC112 DC112 DC112 100.0

DA113 DA113 DA113 DA113 DA113 DA113 DA113 DA113 DA113 100.0

DA114 DA114 DA114 DA114 DA114 DA114 66.7

TGP11 TGP11 TGP11 TGP11 TGP11 TGP11 TGP11 TGP11 TGP11 100.0

ALA351 ALA351 22.2

ASN352 ASN352 ASN352 ASN352 ASN352 ASN352 ASN352 ASN352 ASN352 100.0

LYS354 11.1

ILE355 11.1

GLU356 GLU356 GLU356 GLU356 GLU356 GLU356 GLU356 GLU356 88.9

PHE361 11.1

ARG364 ARG364 ARG364 ARG364 ARG364 ARG364 ARG364 ARG364 ARG364 100.0

LYS374 11.1

ARG375 11.1

ILE377 11.1

TRP416 TRP416 TRP416 33.3

THR417 11.1

GLU418 11.1

ILE420 11.1

LYS425 LYS425 LYS425 LYS425 LYS425 LYS425 66.7

TYR426 TYR426 TYR426 TYR426 TYR426 55.6

ILE427 ILE427 22.2

MET428 MET428 22.2

LEU429 11.1

ASN430 11.1

PRO431 11.1

LYS436 11.1

ARG488 ARG488 ARG488 ARG488 ARG488 ARG488 ARG488 77.8

LYS532 LYS532 LYS532 LYS532 LYS532 LYS532 LYS532 LYS532 LYS532 100.0

ASP533 ASP533 ASP533 ASP533 ASP533 ASP533 ASP533 ASP533 ASP533 100.0

ILE535 ILE535 ILE535 ILE535 ILE535 ILE535 ILE535 ILE535 88.9

ASN631 11.1

HIS632 HIS632 HIS632 33.3

GLN633 11.1

ARG634 11.1

THR718 THR718 THR718 THR718 THR718 THR718 THR718 THR718 THR718 100.0

ASN722 ASN722 ASN722 ASN722 ASN722 ASN722 ASN722 ASN722 ASN722 100.0

PTR723 PTR723 PTR723 PTR723 PTR723 PTR723 PTR723 PTR723 PTR723 100.0
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Table S14. Interacting residues on G503S with ligands 

 

*The distance cutoff between a ligand and contacting residues/water molecules is 5Å. 

 

 

 

 

  

Camptothecin Topotecan LE-SN38 Lurotecan Exatecan Irinotecan Belotecan Luanthone Gimatecan %

H20 H20 H20 H20 H20 H20 66.7

DT9 DT9 22.2

DT10 DT10 DT10 DT10 DT10 DT10 DT10 DT10 DT10 100.0

DG12 DG12 DG12 DG12 DG12 DG12 DG12 DG12 DG12 100.0

DA13 11.1

DA14 11.1

DA15 11.1

DC111 11.1

DC112 DC112 DC112 DC112 DC112 DC112 DC112 DC112 DC112 100.0

DA113 DA113 DA113 DA113 DA113 DA113 DA113 DA113 DA113 100.0

DA114 DA114 DA114 DA114 DA114 DA114 66.7

TGP11 TGP11 TGP11 TGP11 TGP11 TGP11 TGP11 TGP11 TGP11 100.0

TYR268 11.1

HIS266 11.1

ALA351 ALA351 22.2

ASN352 ASN352 ASN352 ASN352 ASN352 ASN352 ASN352 ASN352 88.9

LYS354 LYS354 22.2

GLU356 GLU356 GLU356 GLU356 GLU356 GLU356 GLU356 77.8

ARG362 11.1

ARG364 ARG364 ARG364 ARG364 ARG364 ARG364 ARG364 ARG364 ARG364 100.0

LYS374 11.1

TRP416 11.1

LYS425 LYS425 LYS425 LYS425 LYS425 55.6

TYR426 TYR426 TYR426 33.3

ILE427 11.1

MET428 MET428 22.2

LEU429 11.1

ASN430 11.1

PRO431 11.1

LYS436 11.1

ARG488 ARG488 ARG488 ARG488 ARG488 ARG488 ARG488 88.9

LYS532 LYS532 LYS532 LYS532 LYS532 LYS532 LYS532 LYS532 LYS532 100.0

ASP533 ASP533 ASP533 ASP533 ASP533 ASP533 ASP533 ASP533 ASP533 100.0

ILE535 ILE535 ILE535 ILE535 ILE535 ILE535 ILE535 ILE535 100.0

HIS632 HIS632 22.2

GLN633 GLN633 22.2

THR718 THR718 THR718 THR718 THR718 THR718 THR718 THR718 THR718 100.0

LEU721 11.1

ASN722 ASN722 ASN722 ASN722 ASN722 ASN722 ASN722 ASN722 ASN722 100.0

PTR723 PTR723 PTR723 PTR723 PTR723 PTR723 PTR723 PTR723 PTR723 100.0
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Table S15. Interacting residues on G717V with ligands 

 

*The distance cutoff between a ligand and contacting residues/water molecules is 5Å. 

 

 

 

  

Camptothecin Topotecan LE-SN38 Lurotecan Exatecan Irinotecan Belotecan Luanthone Gimatecan %

H20 H20 H20 H20 H20 H20 H20 77.8

DT9 DT9 DT9 DT9 44.4

DT10 DT10 DT10 DT10 DT10 DT10 DT10 DT10 DT10 100.0

DG12 DG12 DG12 DG12 DG12 DG12 DG12 DG12 DG12 100.0

DC111 DC111 22.2

DC112 DC112 DC112 DC112 DC112 DC112 DC112 DC112 DC112 100.0

DA113 DA113 DA113 DA113 DA113 DA113 DA113 DA113 DA113 100.0

DA114 DA114 DA114 DA114 DA114 DA114 DA114 77.8

TGP11 TGP11 TGP11 TGP11 TGP11 TGP11 TGP11 TGP11 TGP11 100.0

ALA351 ALA351 22.2

ASN352 ASN352 ASN352 ASN352 ASN352 ASN352 ASN352 ASN352 ASN352 100.0

LYS354 11.1

ILE355 11.1

GLU356 GLU356 GLU356 GLU356 GLU356 GLU356 GLU356 GLU356 88.9

PRO357 11.1

PRO358 11.1

ARG364 ARG364 ARG364 ARG364 ARG364 ARG364 ARG364 ARG364 ARG364 100.0

GLY369 11.1

LYS374 LYS374 22.2

ARG375 11.1

TRP416 TRP416 TRP416 33.3

GLU418 11.1

ASN419 11.1

ILE420 11.1

LYS425 LYS425 LYS425 LYS425 LYS425 LYS425 66.7

THR426 TYR426 TYR426 TYR426 TYR426 TYR426 66.7

ILE427 ILE427 22.2

MET428 MET428 22.2

LEU429 11.1

ASN430 11.1

PRO431 11.1

ARG488 ARG488 ARG488 ARG488 ARG488 ARG488 66.7

LYS532 LYS532 LYS532 LYS532 LYS532 LYS532 LYS532 LYS532 LYS532 100.0

ASP533 ASP533 ASP533 ASP533 ASP533 ASP533 ASP533 ASP533 ASP533 100.0

ILE535 ILE535 ILE535 ILE535 ILE535 ILE535 ILE535 ILE535 88.9

THR718 THR718 THR718 THR718 THR718 THR718 THR718 THR718 THR718 100.0

LEU721 11.1

ASN722 ASN722 ASN722 ASN722 ASN722 ASN722 ASN722 ASN722 ASN722 100.0

PTR723 PTR723 PTR723 PTR723 PTR723 PTR723 PTR723 PTR723 PTR723 100.0
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Table S16. Interacting residues on N722A with ligands. The highlighted row indicates the 

mutated residue is present within 5Åof the ligand. 

 

*The distance cutoff between a ligand and contacting residues/water molecules is 5Å. 

 

  

Camptothecin Topotecan LE-SN38 Lurotecan Exatecan Irinotecan Belotecan Luanthone Gimatecan %

H20 H20 H20 H20 H20 H20 H20 77.8

DT9 DT9 DT9 DT9 44.4

DT10 DT10 DT10 DT10 DT10 DT10 DT10 DT10 DT10 100.0

DG12 DG12 DG12 DG12 DG12 DG12 DG12 DG12 88.9

DC111 0 DC111 22.2

DC112 DC112 DC112 DC112 DC112 DC112 DC112 DC112 DC112 100.0

DA113 DA113 DA113 DA113 DA113 DA113 DA113 DA113 DA113 100.0

DA114 DA114 DA114 DA114 DA114 DA114 66.7

TGP11 TGP11 TGP11 TGP11 TGP11 TGP11 TGP11 TGP11 TGP11 100.0

ALA351 ALA351 22.2

ASN352 ASN352 ASN352 ASN352 ASN352 ASN352 ASN352 ASN352 ASN352 100.0

PHE353 11.1

LYS354 0 LYS354 LYS354 33.3

ILE3355 11.1

GLU356 GLU356 GLU356 GLU356 GLU356 GLU356 GLU356 GLU356 GLU356 100.0

PRO357 11.1

PRO358 11.1

ARG364 ARG364 ARG364 ARG364 ARG364 ARG364 ARG364 ARG364 ARG364 100.0

LYS374 LYS374 22.2

ARG375 11.1

ILE377 11.1

TRP416 TRP416 TRP416 33.3

THR417 11.1

GLU418 11.1

ASN419 11.1

ILE420 11.1

LYS425 LYS425 LYS425 LYS425 LYS425 LYS425 66.7

TYR426 TYR426 TYR426 TYR426 TYR426 TYR426 66.7

ILE427 ILE427 ILE427 33.3

MET428 MET428 22.2

LEU429 11.1

ASN430 11.1

PRO431 11.1

LYS436 11.1

ARG488 ARG488 ARG488 ARG488 ARG488 ARG488 66.7

LYS532 LYS532 LYS532 LYS532 LYS532 LYS532 LYS532 LYS532 88.9

ASP533 ASP533 ASP533 ASP533 ASP533 ASP533 ASP533 ASP533 88.9

ILE535 ILE535 ILE535 ILE535 ILE535 ILE535 ILE535 77.8

HIS632 11.1

THR718 THR718 THR718 THR718 THR718 THR718 THR718 THR718 88.9

LEU721 11.1

ALA722 ALA722 ALA722 ALA722 ALA722 ALA722 ALA722 ALA722 ALA722 100.0

PTR723 PTR723 PTR723 PTR723 PTR723 PTR723 PTR723 PTR723 88.9
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Table S17. Interacting residues on N722S with ligands. The highlighted row indicates the 

mutated residue is present within 5Åof the ligand. 

 

*The distance cutoff between a ligand and contacting residues/water molecules is 5Å. 

  

Camptothecin Topotecan LE-SN38 Lurotecan Exatecan Irinotecan Belotecan Luanthone Gimatecan %

H20 H20 H20 H20 H20 H20 H20 77.8

DT9 DT9 DT9 DT9 44.4

DT10 DT10 DT10 DT10 DT10 DT10 DT10 DT10 DT10 100.0

DG12 DG12 DG12 DG12 DG12 DG12 DG12 DG12 88.9

DC111 DC111 22.2

DC112 DC112 DC112 DC112 DC112 DC112 DC112 DC112 DC112 100.0

DA113 DA113 DA113 DA113 DA113 DA113 DA113 DA113 DA113 100.0

DA114 DA114 DA114 DA114 DA114 DA114 66.7

TGP11 TGP11 TGP11 TGP11 TGP11 TGP11 TGP11 TGP11 TGP11 100.0

ALA351 ALA351 22.2

ASN352 ASN352 ASN352 ASN352 ASN352 ASN352 ASN352 ASN352 ASN352 100.0

PHE353 11.1

LYS354 LYS354 LYS354 33.3

ILE3355 11.1

GLU356 GLU356 GLU356 GLU356 GLU356 GLU356 GLU356 GLU356 GLU356 100.0

PRO357 11.1

PRO358 11.1

ARG364 ARG364 ARG364 ARG364 ARG364 ARG364 ARG364 ARG364 ARG364 100.0

LYS374 LYS374 22.2

ARG375 11.1

ILE377 11.1

TRP416 TRP416 TRP416 33.3

THR417 11.1

GLU418 11.1

ASN419 11.1

ILE420 11.1

LYS425 LYS425 LYS425 LYS425 LYS425 LYS425 66.7

TYR426 TYR426 TYR426 TYR426 TYR426 TYR426 66.7

ILE427 ILE427 ILE427 33.3

MET428 MET428 22.2

LEU429 11.1

ASN430 11.1

PRO431 11.1

LYS436 11.1

ARG488 ARG488 ARG488 ARG488 ARG488 ARG488 66.7

LYS532 LYS532 LYS532 LYS532 LYS532 LYS532 LYS532 LYS532 88.9

ASP533 ASP533 ASP533 ASP533 ASP533 ASP533 ASP533 ASP533 88.9

ILE535 ILE535 ILE535 ILE535 ILE535 ILE535 ILE535 77.8

HIS632 11.1

THR718 THR718 THR718 THR718 THR718 THR718 THR718 THR718 88.9

LEU721 11.1

SER722 SER722 SER722 SER722 SER722 SER722 SER722 SER722 SER722 100.0

PTR723 PTR723 PTR723 PTR723 PTR723 PTR723 PTR723 PTR723 88.9
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Table S18. Interacting residues on R364H with ligands. The highlighted row indicates the 

mutated residue is present within 5Åof the ligand. 

 

*The distance cutoff between a ligand and contacting residues/water molecules is 5Å. 

 

  

Camptothecin Topotecan LE-SN38 Lurotecan Exatecan Irinotecan Belotecan Luanthone Gimatecan %

H20 H20 H20 H20 H20 H20 H20 77.8

DT9 DT9 DT9 DT9 44.4

DT10 DT10 DT10 DT10 DT10 DT10 DT10 DT10 DT10 100.0

DG12 DG12 DG12 DG12 DG12 DG12 DG12 DG12 DG12 100.0

DC111 DC111 DC111 33.3

DC112 DC112 DC112 DC112 DC112 DC112 DC112 DC112 DC112 100.0

DA113 DA113 DA113 DA113 DA113 DA113 DA113 DA113 DA113 100.0

DA114 DA114 22.2

TGP11 TGP11 TGP11 TGP11 TGP11 TGP11 TGP11 TGP11 TGP11 100.0

ALA351 ALA351 ALA351 33.3

ASN352 ASN352 ASN352 ASN352 ASN352 ASN352 ASN352 ASN352 ASN352 100.0

LYS354 LYS354 22.2

ILE355 ILE355 22.2

GLU356 GLU356 GLU356 GLU356 GLU356 GLU356 GLU356 GLU356 88.9

HIS364 HIS364 HIS364 HIS364 HIS364 HIS364 HIS364 HIS364 HIS364 100.0

LYS374 11.1

LYS532 LYS532 LYS532 LYS532 LYS532 LYS532 LYS532 LYS532 LYS532 100.0

ASP533 ASP533 ASP533 ASP533 ASP533 ASP533 ASP533 ASP533 ASP533 100.0

ILE535 ILE535 ILE535 ILE535 ILE535 ILE535 ILE535 ILE535 88.9

TRP416 11.1

LYS425 LYS425 LYS425 LYS425 LYS425 55.6

TYR426 TYR426 TYR426 TYR426 44.4

ILE427 ILE427 22.2

MET428 MET428 MET428 33.3

LEU429 LEU429 22.2

ASN430 11.1

PRO431 11.1

LYS436 LYS436 22.2

ARG488 ARG488 ARG488 ARG488 ARG488 ARG488 ARG488 ARG488 88.9

ASN631 11.1

HIS632 HIS632 HIS632 33.3

GLN633 11.1

ALA715 11.1

THR718 THR718 THR718 THR718 THR718 THR718 THR718 THR718 THR718 100.0

LEU721 LEU721 22.2

ASN722 ASN722 ASN722 ASN722 ASN722 ASN722 ASN722 ASN722 ASN722 100.0

PTR723 PTR723 PTR723 PTR723 PTR723 PTR723 PTR723 PTR723 PTR723 100.0
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Table S19. Interacting residues on T729A with ligands 

 

*The distance cutoff between a ligand and contacting residues/water molecules is 5Å. 

 

 

 

  

Camptothecin Topotecan LE-SN38 Lurotecan Exatecan Irinotecan Belotecan Luanthone Gimatecan %

H20 H20 H20 H20 H20 H20 H20 H20 88.9

DG12 DG112 DG12 DG12 DG12 DG12 DG12 DG12 88.9

DA114 DA114 DA114 DA114 DA114 55.6

DT10 DT10 DT10 DT10 DT10 DT10 DT10 DT10 DT10 100.0

DA113 DA113 DA113 DA113 DA113 DA113 DA113 DA113 DA113 100.0

DC112 DA112 DC112 DC112 DC112 DC112 DC112 DC112 DC112 100.0

DT9 DT9 DT9 33.3

DA13 11.1

DC8 11.1

TGP11 TGP11 TGP11 TGP11 TGP11 TGP11 TGP11 TGP11 TGP11 100.0

ALA351 ALA351 ALA351 ALA351 ALA351 55.6

ASN352 ASN352 ASN352 ASN352 ASN352 ASN352 ASN352 ASN352 ASN352 100.0

ILE355 11.1

GLU356 GLU356 GLU356 GLU356 GLU356 GLU356 GLU356 GLU356 88.9

ARG364 ARG364 ARG364 ARG364 ARG364 ARG364 ARG364 ARG364 ARG364 100.0

LYS374 11.1

TRP416 TRP416 22.2

LYS425 LYS425 LYS425 LYS425 LYS425 55.6

TYR426 TYR426 TYR426 TYR426 TYR426 TYR426 66.7

ILE427 ILE427 ILE427 ILE427 ILE427 55.6

MET428 MET428 MET428 MET428 44.4

LEU429 LEU429 22.2

ASN430 ASN430 22.2

PRO431 11.1

LYS436 LYS436 22.2

ARG488 ARG488 ARG488 ARG488 ARG488 ARG488 ARG488 ARG488 88.9

LYS532 LYS532 LYS532 LYS532 LYS532 LYS532 LYS532 LYS532 LYS532 100.0

ASP533 ASP533 ASP533 ASP533 ASP533 ASP533 ASP533 ASP533 ASP533 100.0

ILE535 ILE535 ILE535 ILE535 ILE535 ILE535 ILE535 ILE535 88.9

GLN633 11.1

THR718 THR718 THR718 THR718 THR718 THR718 THR718 THR718 THR718 100.0

ASN722 ASN722 ASN722 ASN722 ASN722 ASN722 ASN722 ASN722 ASN722 100.0

PTR723 PTR723 PTR723 PTR723 PTR723 PTR723 PTR723 PTR723 PTR723 100.0
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Figure S1. Change in binding energy (∆∆G) of Top I inhibitors to mutants 
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Figure S2. Change in binding energy (∆∆G) of Top I inhibitors A-H bound to mutated 

complexes. A) Camptothecin B) Topotecan C) SN-38 D) Lurtotecan E) Exatecan F) 

Gimatecan G) Belotecan H) Lucanthone 
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Figure S3. Comparison of mutated complexes G363C and R364H 
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Figure S4. Camptothecin Bound to Complex N722A. A) 3D top view of complex B) 3D 

side view of complex C) Decomposition of ∆∆G D) 2D Representation of the binding 

within the complex 
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Figure S5. Camptothecin Bound to Complex N722S. A) 3D top view of complex B) 3D 

side view of complex C) Decomposition of ∆∆G D) 2D Representation of the binding 

within the complex 
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Figure S6. Camptothecin Bound to Complex G717V. A) 3D top view of complex B) 3D 

side view of complex C) Decomposition of ∆∆G D) 2D Representation of the binding 

within the complex 
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Figure S7. Camptothecin Bound to Complex D533G. A) 3D top view of complex B) 3D 

side view of complex C) Decomposition of ∆∆G D) 2D Representation of the binding 

within the complex 
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Figure S8. Camptothecin Bound to Complex D533N. A) 3D top view of complex B) 3D 

side view of complex C) Decomposition of ∆∆G D) 2D Representation of the binding 

within the complex 
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Figure S9. Camptothecin Bound to Complex G503S. A) 3D top view of complex B) 3D 

side view of complex C) Decomposition of ∆∆G D) 2D Representation of the binding 

within the complex 
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Figure S10. Camptothecin Bound to Complex R364H. A) 3D top view of complex B) 3D 

side view of complex C) Decomposition of ∆∆G D) 2D Representation of the binding 

within the complex 
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Figure S11. Camptothecin Bound to Complex F361S. A) 3D top view of complex B) 3D 

side view of complex C) Decomposition of ∆∆G D) 2D Representation of the binding 

within the complex 
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Figure S12. Camptothecin Bound to Complex G363C. A) 3D top view of complex B) 3D 

side view of complex C) Decomposition of ∆∆G D) 2D Representation of the binding 

within the complex 
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Figure S13. Camptothecin Bound to Complex T729A. A) 3D top view of complex B) 3D 

side view of complex C) Decomposition of ∆∆G D) 2D Representation of the binding 

within the complex 
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Figure S14. Topotecan Bound to Complex N722A. A) 3D top view of complex B) 3D 

side view of complex C) Decomposition of ∆∆G D) 2D Representation of the binding 

within the complex 
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Figure S15. Topotecan Bound to Complex N722S. A) 3D top view of complex B) 3D 

side view of complex C) Decomposition of ∆∆G D) 2D Representation of the binding 

within the complex 
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Figure S16. Topotecan Bound to Complex G717V. A) 3D top view of complex B) 3D 

side view of complex C) Decomposition of ∆∆G D) 2D Representation of the binding 

within the complex 
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Figure S17. Topotecan Bound to Complex D533G. A) 3D top view of complex B) 3D 

side view of complex C) Decomposition of ∆∆G D) 2D Representation of the binding 

within the complex 
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Figure S18. Topotecan Bound to Complex D533N. A) 3D top view of complex B) 3D 

side view of complex C) Decomposition of ∆∆G D) 2D Representation of the binding 

within the complex 
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Figure S19. Topotecan Bound to Complex G503S. A) 3D top view of complex B) 3D 

side view of complex C) Decomposition of ∆∆G D) 2D Representation of the binding 

within the complex 
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Figure S20. Topotecan Bound to Complex R364H. A) 3D top view of complex B) 3D 

side view of complex C) Decomposition of ∆∆G D) 2D Representation of the binding 

within the complex 
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Figure S21. Topotecan Bound to Complex F361S. A) 3D top view of complex B) 3D side 

view of complex C) Decomposition of ∆∆G D) 2D Representation of the binding within 

the complex 
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Figure S22. Topotecan Bound to Complex G363C. A) 3D top view of complex B) 3D 

side view of complex C) Decomposition of ∆∆G D) 2D Representation of the binding 

within the complex 
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Figure S23. Topotecan Bound to Complex T729A. A) 3D top view of complex B) 3D 

side view of complex C) Decomposition of ∆∆G D) 2D Representation of the binding 

within the complex 
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Figure S24. SN38 Bound to Complex N722A. A) 3D top view of complex B) 3D side 

view of complex C) Decomposition of ∆∆G D) 2D Representation of the binding within 

the complex 
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Figure S25. SN38 Bound to Complex N722S. A) 3D top view of complex B) 3D side 

view of complex C) Decomposition of ∆∆G D) 2D Representation of the binding within 

the complex 
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Figure S26. SN38 Bound to Complex G717V. A) 3D top view of complex B) 3D side 

view of complex C) Decomposition of ∆∆G D) 2D Representation of the binding within 

the complex 
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Figure S27. SN38 Bound to Complex D533G. A) 3D top view of complex B) 3D side 

view of complex C) Decomposition of ∆∆G D) 2D Representation of the binding within 

the complex 
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Figure S28. SN38 Bound to Complex D533N. A) 3D top view of complex B) 3D side 

view of complex C) Decomposition of ∆∆G D) 2D Representation of the binding within 

the complex 
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Figure S29. SN38 Bound to Complex G503S. A) 3D top view of complex B) 3D side 

view of complex C) Decomposition of ∆∆G D) 2D Representation of the binding within 

the complex 
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Figure S30. SN38 Bound to Complex R364H. A) 3D top view of complex B) 3D side 

view of complex C) Decomposition of ∆∆G D) 2D Representation of the binding within 

the complex 
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Figure S31. SN38 Bound to Complex F361S. A) 3D top view of complex B) 3D side 

view of complex C) Decomposition of ∆∆G D) 2D Representation of the binding within 

the complex 
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Figure S32. SN38 Bound to Complex G363C. A) 3D top view of complex B) 3D side 

view of complex C) Decomposition of ∆∆G D) 2D Representation of the binding within 

the complex 
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Figure S33. SN38 Bound to Complex T729A. A) 3D top view of complex B) 3D side 

view of complex C) Decomposition of ∆∆G D) 2D Representation of the binding within 

the complex 
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Figure S34. Lurtotecan Bound to Complex N722A. A) 3D top view of complex B) 3D 

side view of complex C) Decomposition of ∆∆G D) 2D Representation of the binding 

within the complex 
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Figure S35. Lurtotecan Bound to Complex N722S. A) 3D top view of complex B) 3D 

side view of complex C) Decomposition of ∆∆G D) 2D Representation of the binding 

within the complex 
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Figure S36. Lurtotecan Bound to Complex. A) 3D top view of complex B) 3D side view 

of complex C) Decomposition of ∆∆G D) 2D Representation of the binding within the 

complex 
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Figure S37. Lurtotecan Bound to Complex D533G. A) 3D top view of complex B) 3D 

side view of complex C) Decomposition of ∆∆G D) 2D Representation of the binding 

within the complex 
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Figure S38. Lurtotecan Bound to Complex D533N. A) 3D top view of complex B) 3D 

side view of complex C) Decomposition of ∆∆G D) 2D Representation of the binding 

within the complex 
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Figure S39. Lurtotecan Bound to Complex G503S. A) 3D top view of complex B) 3D 

side view of complex C) Decomposition of ∆∆G D) 2D Representation of the binding 

within the complex 
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Figure S40. Lurtotecan Bound to Complex R364H. A) 3D top view of complex B) 3D 

side view of complex C) Decomposition of ∆∆G D) 2D Representation of the binding 

within the complex 
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Figure S41. Lurtotecan Bound to Complex F361S. A) 3D top view of complex B) 3D 

side view of complex C) Decomposition of ∆∆G D) 2D Representation of the binding 

within the complex 
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Figure S42. Lurtotecan Bound to Complex G363C. A) 3D top view of complex B) 3D 

side view of complex C) Decomposition of ∆∆G D) 2D Representation of the binding 

within the complex 
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Figure S43. Lurtotecan Bound to Complex T729A. A) 3D top view of complex B) 3D 

side view of complex C) Decomposition of ∆∆G D) 2D Representation of the binding 

within the complex 
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Figure S44. Exatecan Bound to Complex N722A. A) 3D top view of complex B) 3D side 

view of complex C) Decomposition of ∆∆G D) 2D Representation of the binding within 

the complex 
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Figure S45. Exatecan Bound to Complex N722S. A) 3D top view of complex B) 3D side 

view of complex C) Decomposition of ∆∆G D) 2D Representation of the binding within 

the complex 
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Figure S46. Exatecan Bound to Complex G717V. A) 3D top view of complex B) 3D side 

view of complex C) Decomposition of ∆∆G D) 2D Representation of the binding within 

the complex 
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Figure S47. Exatecan Bound to Complex D533G. A) 3D top view of complex B) 3D side 

view of complex C) Decomposition of ∆∆G D) 2D Representation of the binding within 

the complex 
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Figure S48. Exatecan Bound to Complex D533N. A) 3D top view of complex B) 3D side 

view of complex C) Decomposition of ∆∆G D) 2D Representation of the binding within 

the complex 
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Figure S49. Exatecan Bound to Complex G503S. A) 3D top view of complex B) 3D side 

view of complex C) Decomposition of ∆∆G D) 2D Representation of the binding within 

the complex 
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Figure S50. Exatecan Bound to Complex R364H. A) 3D top view of complex B) 3D side 

view of complex C) Decomposition of ∆∆G D) 2D Representation of the binding within 

the complex 
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Figure S51. Exatecan Bound to Complex F361S. A) 3D top view of complex B) 3D side 

view of complex C) Decomposition of ∆∆G D) 2D Representation of the binding within 

the complex 
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Figure S52. Exatecan Bound to Complex G363C. A) 3D top view of complex B) 3D side 

view of complex C) Decomposition of ∆∆G D) 2D Representation of the binding within 

the complex 
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Figure S53. Exatecan Bound to Complex T279A. A) 3D top view of complex B) 3D side 

view of complex C) Decomposition of ∆∆G D) 2D Representation of the binding within 

the complex 
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Figure S54. Gimatecan Bound to Complex N722A. A) 3D top view of complex B) 3D 

side view of complex C) Decomposition of ∆∆G D) 2D Representation of the binding 

within the complex 
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Figure S55. Gimatecan Bound to Complex N722S. A) 3D top view of complex B) 3D 

side view of complex C) Decomposition of ∆∆G D) 2D Representation of the binding 

within the complex 
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Figure S56. Gimatecan Bound to Complex G717V. A) 3D top view of complex B) 3D 

side view of complex C) Decomposition of ∆∆G D) 2D Representation of the binding 

within the complex 
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Figure S57. Gimatecan Bound to Complex D533G. A) 3D top view of complex B) 3D 

side view of complex C) Decomposition of ∆∆G D) 2D Representation of the binding 

within the complex 
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Figure S58. Gimatecan Bound to Complex D533N. A) 3D top view of complex B) 3D 

side view of complex C) Decomposition of ∆∆G D) 2D Representation of the binding 

within the complex 
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Figure S59. Gimatecan Bound to Complex G503S. A) 3D top view of complex B) 3D 

side view of complex C) Decomposition of ∆∆G D) 2D Representation of the binding 

within the complex 
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Figure S60. Gimatecan Bound to Complex R364H. A) 3D top view of complex B) 3D 

side view of complex C) Decomposition of ∆∆G D) 2D Representation of the binding 

within the complex 
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Figure S61. Gimatecan Bound to Complex F361S. A) 3D top view of complex B) 3D 

side view of complex C) Decomposition of ∆∆G D) 2D Representation of the binding 

within the complex 

 

A) 

 

C) 

 

B)

 

D) 

 

 

∆
∆

G
 (

kc
al

/m
o

l)
 



142 
 

Figure S62. Gimatecan Bound to Complex G363C. A) 3D top view of complex B) 3D 

side view of complex C) Decomposition of ∆∆G D) 2D Representation of the binding 

within the complex 
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Figure S63. Gimatecan Bound to Complex T729A. A) 3D top view of complex B) 3D 

side view of complex C) Decomposition of ∆∆G D) 2D Representation of the binding 

within the complex 
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Figure S64. Belotecan Bound to Complex N722A. A) 3D top view of complex B) 3D 

side view of complex C) Decomposition of ∆∆G D) 2D Representation of the binding 

within the complex 
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Figure S65. Belotecan Bound to Complex N722S. A) 3D top view of complex B) 3D side 

view of complex C) Decomposition of ∆∆G D) 2D Representation of the binding within 

the complex 
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Figure S66. Belotecan Bound to Complex G717V. A) 3D top view of complex B) 3D 

side view of complex C) Decomposition of ∆∆G D) 2D Representation of the binding 

within the complex 
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Figure S67. Belotecan Bound to Complex D533G. A) 3D top view of complex B) 3D 

side view of complex C) Decomposition of ∆∆G D) 2D Representation of the binding 

within the complex 
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Figure S68. Belotecan Bound to Complex D533N. A) 3D top view of complex B) 3D 

side view of complex C) Decomposition of ∆∆G D) 2D Representation of the binding 

within the complex 
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Figure S69. Belotecan Bound to Complex G503S. A) 3D top view of complex B) 3D side 

view of complex C) Decomposition of ∆∆G D) 2D Representation of the binding within 

the complex 
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Figure S70. Belotecan Bound to Complex R364H. A) 3D top view of complex B) 3D 

side view of complex C) Decomposition of ∆∆G D) 2D Representation of the binding 

within the complex 
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Figure S71. Belotecan Bound to Complex F361S. A) 3D top view of complex B) 3D side 

view of complex C) Decomposition of ∆∆G D) 2D Representation of the binding within 

the complex 
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Figure S72. Belotecan Bound to Complex G363C. A) 3D top view of complex B) 3D 

side view of complex C) Decomposition of ∆∆G D) 2D Representation of the binding 

within the complex 
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Figure S73. Belotecan Bound to Complex T729A. A) 3D top view of complex B) 3D side 

view of complex C) Decomposition of ∆∆G D) 2D Representation of the binding within 

the complex 
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Figure S74. Lucanthone Bound to Complex N722A. A) 3D top view of complex B) 3D 

side view of complex C) Decomposition of ∆∆G D) 2D Representation of the binding 

within the complex 
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Figure S75. Lucanthone Bound to Complex N722S. A) 3D top view of complex B) 3D 

side view of complex C) Decomposition of ∆∆G D) 2D Representation of the binding 

within the complex 

 

A) 

 

C) 

 

B) 

 

D) 

 

 

 

∆
∆

G
 (

kc
al

/m
o

l)
 



156 
 

Figure S76. Lucanthone Bound to Complex G717V. A) 3D top view of complex B) 3D 

side view of complex C) Decomposition of ∆∆G D) 2D Representation of the binding 

within the complex 
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Figure S77. Lucanthone Bound to Complex D533G. A) 3D top view of complex B) 3D 

side view of complex C) Decomposition of ∆∆G D) 2D Representation of the binding 

within the complex 
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Figure S78. Lucanthone Bound to Complex D533N. A) 3D top view of complex B) 3D 

side view of complex C) Decomposition of ∆∆G D) 2D Representation of the binding 

within the complex 
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Figure S79. Lucanthone Bound to Complex G503S. A) 3D top view of complex B) 3D 

side view of complex C) Decomposition of ∆∆G D) 2D Representation of the binding 

within the complex 
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Figure S80. Lucanthone Bound to Complex R364H. A) 3D top view of complex B) 3D 

side view of complex C) Decomposition of ∆∆G D) 2D Representation of the binding 

within the complex 
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Figure S81. Lucanthone Bound to Complex F361S. A) 3D top view of complex B) 3D 

side view of complex C) Decomposition of ∆∆G D) 2D Representation of the binding 

within the complex 
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Figure S82. Lucanthone Bound to Complex G363C. A) 3D top view of complex B) 3D 

side view of complex C) Decomposition of ∆∆G D) 2D Representation of the binding 

within the complex 
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Figure S83. Lucanthone Bound to Complex T729A. A) 3D top view of complex B) 3D 

side view of complex C) Decomposition of ∆∆G D) 2D Representation of the binding 

within the complex 
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Appendix B 

Binding of Telomestatin to a Telomeric G-Quadruplex DNA Probed by All-Atom 

Molecular Dynamics Simulations 

 

Figure S84. Initial structures of the first two simulation systems. 5’ and 3’ are indicated 

by a red and blue ball, respectively. 
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Figure S85.  RMSD of system and ligand of each trajectory  
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Figure S86. The contact number between telomeric G-quadruplex DNA and 

Telomestatin in ten runs.  
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Figure S87. Last snapshots of quadruplex-telemestatin simulations (system 1, 1000 ns). 

5’ and 3’ arced cd  indicated by a red and blue ball, respectively. 
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Figure S88. Representative structures of the most populated complex structure families 

(population ≥ 1 %) from the clustering analysis of the combined binding trajectories. 5’ 

and 3’ are indicated by a red and blue ball, respectively. 
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Figure S89.   Aditional trajectory of the bottom end stacking mode. Top: representative 

structures with time annotation. 5’ and 3’ are indicated by a red and blue ball, 

respectively. Bottom: Center-to-center distance (R), the drug-base dihedral angle, ligand 

RMSD and MM-GBSA binding energy (G). 
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Figure S90. The time evolution of flip-intercalation seen in the bottom end stacking 

mode of telomestatin-quaruplex. 

 

 

 
59 ns 

 
61 ns 

 
65 ns 

 
121 ns 

 
131 ns 

 

  



173 
 

Figure S91. A time evolution of intercalation of telomestatin into the short loop of the G-

quadruplex. This can be seen in bottom end stacking mode. 
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Figure S92.  AMBER GAFF force field of Telomestatin in Mol2 format. 

 

@<TRIPOS>MOLECULE 

ZINC03975327 

   56    64     0     0     0 

SMALL 

USER_CHARGES 

 

@<TRIPOS>ATOM 

      1 C1         -1.7520    8.7965   -4.4785 C.3       1 TEL        -0.0756 

      2 C2         -1.5640    7.4833   -3.7635 C.2       1 TEL         0.0245 

      3 C3         -2.5316    6.5930   -3.4550 C.2       1 TEL         0.0532 

      4 N1         -1.9403    5.5571   -2.7937 N.2       1 TEL        -0.3885 

      5 C4         -0.6532    5.7934   -2.7328 C.2       1 TEL         0.2795 

      6 O1         -0.3957    6.9761   -3.3116 O.3       1 TEL        -0.1850 

      7 C5          0.3202    4.8794   -2.0972 C.2       1 TEL         0.0492 

      8 C6          1.6720    4.9468   -2.1590 C.2       1 TEL         0.0243 

      9 O2          2.1492    3.9137   -1.4412 O.3       1 TEL        -0.1912 

     10 C7          1.1049    3.2471   -0.9205 C.2       1 TEL         0.2039 

     11 N2          0.0032    3.7961   -1.3365 N.2       1 TEL        -0.3876 

     12 C8          1.2113    2.0673    0.0016 C.3       1 TEL         0.1684 

     13 H1          1.3664    2.4475    1.0202 H         1 TEL         0.1428 

     14 C9          2.4448    1.2090   -0.3681 C.3       1 TEL        -0.0941 

     15 S1          1.7183   -0.4638   -0.1457 S.3       1 TEL        -0.1953 

     16 C10         0.0021   -0.0041    0.0020 C.2       1 TEL         0.3015 
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     17 N3         -0.0156    1.2977    0.0092 N.2       1 TEL        -0.4672 

     18 C11        -1.1596   -0.9133    0.0903 C.2       1 TEL         0.0396 

     19 C12        -1.1468   -2.2127    0.4918 C.2       1 TEL         0.0015 

     20 O3         -2.4164   -2.6613    0.4246 O.3       1 TEL        -0.1780 

     21 C13        -3.1874   -1.6632   -0.0212 C.2       1 TEL         0.2685 

     22 N4         -2.4431   -0.5933   -0.2030 N.2       1 TEL        -0.3907 

     23 C14        -4.6403   -1.6861   -0.2954 C.2       1 TEL         0.0621 

     24 C15        -5.5406   -2.6706   -0.0733 C.2       1 TEL        -0.0065 

     25 O4         -6.7392   -2.2198   -0.5138 O.3       1 TEL        -0.1764 

     26 C16        -6.5629   -0.9903   -0.9999 C.2       1 TEL         0.2706 

     27 N5         -5.2996   -0.6443   -0.8538 N.2       1 TEL        -0.3902 

     28 C17        -7.5335   -0.0626   -1.6190 C.2       1 TEL         0.0599 

     29 C18        -8.8509   -0.2014   -1.8716 C.2       1 TEL        -0.0034 

     30 O5         -9.2668    0.9449   -2.4638 O.3       1 TEL        -0.1776 

     31 C19        -8.2157    1.7592   -2.5646 C.2       1 TEL         0.2715 

     32 N6         -7.1566    1.1662   -2.0550 N.2       1 TEL        -0.3889 

     33 C20        -8.1119    3.1224   -3.1301 C.2       1 TEL         0.0595 

     34 C21        -9.0435    3.9206   -3.6893 C.2       1 TEL        -0.0033 

     35 O6         -8.4207    5.0705   -4.0462 O.3       1 TEL        -0.1778 

     36 C22        -7.1354    4.9637   -3.7082 C.2       1 TEL         0.2718 

     37 N7         -6.9302    3.7901   -3.1482 N.2       1 TEL        -0.3888 

     38 C23        -6.0183    5.9182   -3.8748 C.2       1 TEL         0.0596 

     39 C24        -5.9870    7.1586   -4.4026 C.2       1 TEL        -0.0045 

     40 O7         -4.7062    7.5936   -4.3226 O.3       1 TEL        -0.1804 

     41 C25        -3.9786    6.6275   -3.7560 C.2       1 TEL         0.2790 
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     42 N8         -4.7589    5.6096   -3.4699 N.2       1 TEL        -0.3916 

     43 C26         2.4859    5.9821   -2.8915 C.3       1 TEL        -0.0757 

     44 H2         -1.9424    9.5835   -3.7488 H         1 TEL         0.0981 

     45 H3         -0.8507    9.0350   -5.0432 H         1 TEL         0.0919 

     46 H4         -2.5988    8.7209   -5.1606 H         1 TEL         0.1002 

     47 H5          3.2700    1.3797    0.3233 H         1 TEL         0.1400 

     48 H6          2.7537    1.3748   -1.4002 H         1 TEL         0.1181 

     49 H7         -0.2821   -2.7791    0.8048 H         1 TEL         0.2370 

     50 H8         -5.3414   -3.6342    0.3719 H         1 TEL         0.2385 

     51 H9         -9.4602   -1.0637   -1.6444 H         1 TEL         0.2384 

     52 H10       -10.0891    3.6877   -3.8270 H         1 TEL         0.2384 

     53 H11        -6.8251    7.7029   -4.8121 H         1 TEL         0.2383 

     54 H12         2.6914    6.8204   -2.2259 H         1 TEL         0.0983 

     55 H13         3.4265    5.5395   -3.2194 H         1 TEL         0.0915 

     56 H14         1.9286    6.3352   -3.7592 H         1 TEL         0.0983 

@<TRIPOS>BOND 

     1    1    2 1 

     2    1   44 1 

     3    1   45 1 

     4    1   46 1 

     5    2    6 1 

     6    2    3 2 

     7    3   41 1 

     8    3    4 1 

     9    4    5 2 
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    10    5    6 1 

    11    5    7 1 

    12    7   11 1 

    13    7    8 2 

    14    8    9 1 

    15    8   43 1 

    16    9   10 1 

    17   10   11 2 

    18   10   12 1 

    19   12   13 1 

    20   12   17 1 

    21   12   14 1 

    22   14   15 1 

    23   14   47 1 

    24   14   48 1 

    25   15   16 1 

    26   16   17 2 

    27   16   18 1 

    28   18   22 1 

    29   18   19 2 

    30   19   20 1 

    31   19   49 1 

    32   20   21 1 

    33   21   22 2 

    34   21   23 1 
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    35   23   27 1 

    36   23   24 2 

    37   24   25 1 

    38   24   50 1 

    39   25   26 1 

    40   26   27 2 

    41   26   28 1 

    42   28   32 1 

    43   28   29 2 

    44   29   30 1 

    45   29   51 1 

    46   30   31 1 

    47   31   32 2 

    48   31   33 1 

    49   33   37 1 

    50   33   34 2 

    51   34   35 1 

    52   34   52 1 

    53   35   36 1 

    54   36   37 2 

    55   36   38 1 

    56   38   42 1 

    57   38   39 2 

    58   39   40 1 

    59   39   53 1 
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    60   40   41 1 

    61   41   42 2 

    62   43   54 1 

    63   43   55 1 

    64   43   56 1 
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