
Rowan University Rowan University 

Rowan Digital Works Rowan Digital Works 

Theses and Dissertations 

5-8-2002 

Characterization of structural changes in thermally enhanced Characterization of structural changes in thermally enhanced 

Kevlar-29® Fiber Kevlar-29® Fiber 

James W. Downing Jr. 
Rowan University 

Follow this and additional works at: https://rdw.rowan.edu/etd 

 Part of the Chemical Engineering Commons 

Let us know how access to this document benefits you - 
share your thoughts on our feedback form. 

Recommended Citation Recommended Citation 
Downing, James W. Jr., "Characterization of structural changes in thermally enhanced Kevlar-29® Fiber" 
(2002). Theses and Dissertations. 1429. 
https://rdw.rowan.edu/etd/1429 

This Thesis is brought to you for free and open access by Rowan Digital Works. It has been accepted for inclusion 
in Theses and Dissertations by an authorized administrator of Rowan Digital Works. For more information, please 
contact LibraryTheses@rowan.edu. 

https://rdw.rowan.edu/
https://rdw.rowan.edu/etd
https://rdw.rowan.edu/etd?utm_source=rdw.rowan.edu%2Fetd%2F1429&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/240?utm_source=rdw.rowan.edu%2Fetd%2F1429&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.lib.rowan.edu/rdw-feedback?ref=https://rdw.rowan.edu/etd/1429
https://www.lib.rowan.edu/rdw-feedback?ref=https://rdw.rowan.edu/etd/1429
https://rdw.rowan.edu/etd/1429?utm_source=rdw.rowan.edu%2Fetd%2F1429&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:LibraryTheses@rowan.edu


CHARACTERIZATION OF STRUCTURAL CHANGES IN THERMALLY

ENHANCED KEVLAR-29® FIBER

by
James W. Downing Jr.

A Thesis

Submitted in partial fulfillment of the requirements of the
Master of Science Degree

of
The Graduate School

at
Rowan University

5/8/02

Approved by 

Date Approved ]a" 00Iv SO )



ABSTRACT

James W. Downing Jr.
CHARACTERIZATION OF STRUCTURAL CHANGES IN THERMALLY

ENHANCED KEVLAR-29® FIBER
2002/03

Dr. James Newell
Master of Science in Chemical Engineering

The purpose of this exploratory investigation was to elucidate the structural mechanism
accounting for the enhanced compressive properties of heat-treated Kevlar-29® fibers. A
novel theory was set forth that hydrogen bond disruption and concurrent misorientation
of crystallites may account for the observed augmentation of compressive properties. To
examine the said theory, virgin Kevlar-29® fibers were characterized by
Thermogravimetric analysis (TGA) and Differential Scanning Calorimetry (DSC) in an
effort to determine if crosslinking and/or hydrogen bond disruption was responsible for
the improved behavior in compression. Additionally, Kevlar-29® fibers that had been
exposed to treatment temperatures of 400, 440, and 470 °C were profiled by Fourier-
Transform Infrared Spectrophotometry (FTIR) to determine if crosslinking and/or
hydrogen bond obfuscation had been promoted. The results indicate that both
mechanistic changes are occurring within the Kevlar-29®, albeit in different regions of
the rigid-rod polymer. In particular, heat-treatment ofpoly-p-phenylene terephthalamide
results in crosslinking of its skin region and hydrogen bond disruption within the core
realm.



MINI-ABSTRACT

James W. Downing Jr.
CHARACTERIZATION OF STRUCTURAL CHANGES IN THERMALLY

ENHANCED KEVLAR-29® FIBER
2002/03

Dr. James Newell
Master of Science in Chemical Engineering

The purpose of this exploratory investigation was to elucidate the structural mechanism
accounting for the enhanced compressive properties of heat-treated Kevlar-29® fibers.
To this end, PPTA fibers were examined using Thermogravimetric Analyzer, Differential
Scanning Calorimeter, and Fourier Transform Infrared Spectrophotometer. Summarily,
the heat-treatment of poly-p-phenylene terephthalamide results in crosslinking of its skin
region and hydrogen bond disruption within the core realm.



Acknowledgements

Grateful acknowledgement is given to the following persons/organizations for their
significant contributions to this thesis or support of the author thereof:

To my lovely wife, Lori M. Faer-Downing, for her unyielding love and support
throughout this academic journey

To my employer, 3M, for allowing me to utilize its equipment to study a competitive
polymer

To my thesis advisor, Dr. James Newell, Ph.D, for sharing my passion for high-
performance polymers

To the other members of my thesis committee, Dr. Stephanie Farrell, Ph.D and
Dr. Kevin Dahm, Ph.D, for sharpening and refining this opus

iii



Table of Contents

1.0 Introduction

2.0 Literature Review

3.0 Mechanistic Discussion

4.0 Experimental

5.0 Results and Discussion

6.0 Conclusions

7.0 Recommendations

iv



List of Illustrations

Figure 1. The Primary Structure of Kevlar®

Figure 2. The Secondary Structure of Kevlar®

Figure 3. The Pleated Sheet Microstructure of Kevlar®

Figure 4. Thermogravimetric Analyzer

Figure 5. Differential Scanning Calorimeter

Figure 6. Fourier Transform Infrared Spectrophotometer

Figure 7. Allylic Site for Free Radical Formation

Figure 8. Thermogravimetric Isotherms of Kevlar-29® Fiber

Figure 9. DSC Thermogram of Kevlar-29® Fiber

Figure 10. FTIR Spectra of Heat-treated Kevlar-29® Fiber

v



List of Tables

Table 1. Tensile and Compressive Strengths of Several Rigid Rod Fibers

Table 2. Tensile and Recoil Compressive Strengths of E-beam Treated Kevlar-29® Fiber

Table 3. Effects of Temperature, Ramp, and Dwell on Ratio of aJc/t of Kevlar-29® Fiber

vi



1.0 Introduction

Poly-p-paraphenylene terephthalamide (PPTA) is produced in the U.S. by DuPont

under the trade name Kevlar®. Kevlar® is an organic fiber with a distinct chemical

composition of wholly aromatic polyamides (aramids). Since its development in 1965 by

DuPont research scientist Stephanie Kwolek, the commercial and scientific interest in

poly-p-phenylene terephthalamide has increased exponentially. This can be attributed to

Kevlar's® unique combination of high tensile strength and modulus, toughness, and

thermal stability. 1 In air, PPTA demonstrates seven times the tensile strength of steel on

an equal weight basis. In sea water, this advantage in tension increases by a factor of

twenty. 2 Thus, applications utilizing this rigid-rod polymer abound in nearly every realm

of industry. Some examples of the diverse products that incorporate Kevlar® fiber,

staple, or floc include brake pads, bullet-proof vests, kayaks, mooring lines, and high

performance tires.3 Moreover, the potential use of Kevlar® in structural composites is

only now being realized, and investigations into this newest group of engineering

materials are being pursued with great zeal.

The exceptional strength of Kevlar® fiber in tension is a direct result of its

primary, secondary, and tertiary chemical structure. The primary, or molecular structure

of the Kevlar® extended chain can be classified as monoclinic with the following lattice

parameters: a = 7.87 angstroms, b = 5.18 angstroms and c = 12.9 angstroms with a 90°

1



unit cell angle.2 Its "rigid-rod" characteristic is a function of the para substitution of the

benzene ring, 1 as well as the covalent bond strength in the c direction,4 which allows an

axial stress to be distributed evenly throughout the highly linear macromolecular chain.

Kevlar's® primary structure is illustrated in Figure 1.

The secondary structure of Kevlarg, depicted in Figure 2, can be characterized as

a pleated sheet configuration that is oriented perpendicular or transverse to the fiber axis.

Pleats form within the core region when PPTA enters the coagulation bath, in response to

the relaxation of the local stress field at the onset of coagulation. 12 This pleated

conformation of the polymer chains is primarily governed by a consortium of intra- and

intermolecular interactions between the conjugated groups within the PPTA molecular

structure. These interactions include (1) the resonance effect attempting to stabilize

coplanarity of the amide groups and the phenylene groups, (2) the counteracting steric

hindrance found between the oxygen and an ortho-hydrogen of the p-phenylene moieties,

as well as between the amide hydrogen and an ortho-hydrogen of the terephthalic

segment, and (3) the centro-symmetric pairs of hydrogen bonds between the amide and

carbonyl groups. 16 In a PPTA crystal, intermolecular hydrogen bonding between the C=O

and the N-H acts along the b direction. 5 The pleating of the fibrils is superimposed on the

fibrillar structure of PPTA, with a variation from linearity of approximately 5° and a

periodicity of 500 nm as determined by optical microscopy. 17 A schematic of the pleated

nature of the PPTA microstructure is illustrated in Figure 3. Other analytical methods,

including X-ray diffraction and electron microscopy, have corroborated the existence of

the pleated sheet secondary structure of Kevlar® fibers. 16' 18 It is this secondary structure

that establishes the nearly perfect uniaxial linearity that defines Kevlar®. However,

2
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Figure 3. The Pleated Sheet Microstructure of Kevlar®
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Kevlar's® microstructure can not be described as perfectly linear due to the

existence of microvoids and other crystalline defects located mainly around the periphery

of the fibers.19

Additionally, Kevlar® possesses a clearly discernible tertiary structure. During

the course of the spinning and post-treatment stages of Kevlar® processing, a skin-core

morphology develops. The major distinction between skin and core regions is the higher

degree of order and intermolecular bonding in the core region as compared to the skin.

Consequently, the core region possesses an elastic modulus of 60.8 GPa. In contrast, the

skin region of Kevlar's® tertiary structure is virtually non-crystalline, and thus possesses

a significantly lower elastic modulus of approximately 13.4 GPa. 6 However, the skin

may be critical in the prevention of crack propagation within the crystalline core region.

The tremendous behavior of Kevlar® in tension can be attributed to structural

characteristics including its stiff, extended chain conformation and nearly perfect uniaxial

orientation. Despite the superlative tensile strength and modulus of PPTA in its fiber

form, it possesses a comparatively low compressive strength due to its highly linear and

regular microstructure. Kevlar's® compressive strength is merely 1/10 of its ultimate

tensile strength.7 Additionally, Kevlar® exhibits a compressive to tensile strength ratio of

between .13 and .25, while that of carbon fiber often exceeds 1.8 This imbalance of the

high tensile and low compressive properties has proved to be a limiting factor in its

widespread incorporation into many structural composites. Compressive weakness

relative to behavior in tension is not unique to Kevlar®, but is quite pervasive within high

performance fibers as illustrated in Table 1.
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Table 1

Tensile and Compressive Strengths of Several Rigid Rod Fibers

High Performance Tensile Strength *Compressive Strength
Fiber (GPa) (GPa)

Polybenzoxazole (PBO) 5.7 0.28

Polybenzothiazole
(PBZT) 4.1 0.2

Kevlar 29 2.8 0.35

Kevlar 49 2.9 0.37

Carbon Fiber (AS-4) 3.6 1.44

*Data from recoil testing
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Aircraft fabricators find that advanced carbon composites more than not win out

over Kevlar®, based largely on its inferior compressive strength and the greater stiffness

that carbon fibers afford the structure.9 Clearly, enhancement of the compressive

properties of Kevlar® would markedly improve the utility and commercialization of this

rigid-rod polymer.

8



2.0 Literature Review

Efforts to improve the compressive strength of Kevlar® fibers have been conducted

by several groups. Approaches to enhance the axial compressive strength of Kevlar®

may be classified into two main techniques. The first entails the incorporation of an

additive or modifier into the Kevlar® microstructure during the wet spinning or

polymerization process with the proposed goal of facilitating the formation of

intermolecular covalent crosslinks. The second involves achieving the same goal by

subjecting the PPTA fibers to a post-spinning treatment, such as elevated temperature or

electron bombardment.

Sweeny et al. 10 attempted to improve the compressive modulus of Kevlar-29® by

incorporating an activated aryl halogen into the molecular sequence of PPTA. The

activated aryl halogen functioned as a copolymer and thus was introduced during the

polymerization of the aromatic polyamides. The resultant prefiber was comprised of

both PPTA and halogenated aryl moieties. The extruded, halogen-bearing polymer was

then subjected to various temperatures for various durations in order to develop aryl free-

radicals. The aryl radicals would then facilitate the formation of crosslinks via a ring-

coupling phenomenon. The degree of crosslinking could be quantified as a function of

percentage of polymeric halide retained. Sweeny et al. 10 recognized that a high degree of

crosslinking could not be accommodated without affecting the interchain hydrogen

9



bonding. Moreover, it was concluded that the crystal structure of Kevlar® would not

accommodate a high level of crosslinking.

Jiang et al.7 also developed an activated form of PPTA by incorporating XTA, a

benzocyclobutene-modified derivative of terepthalic acid, into the polymer backbone

during prefiber production. Various concentrations of the XTA were spun into the

Kevlar® fibers during the dry-jet wet spinning stage of the production process in order to

control the degree of crosslinking. The XTA was triggered into reactive status via heat

treatment at temperatures within the range of 325 and 425 °C. Summarily, the XTA-rich

PPTA fibers appeared to exhibit crosslinking as verified by swelling assays.

Accordingly, recoil tests showed a slight improvement in the compressive strength of

these modified Kevlar® fibers, accompanied by a decrement in tenacity.

An investigation by Newell et al.3 provides an example of enhancement of as-

spun, unmodified Kevlar® fiber. Unlike more common methods including thermal

treatment or the addition of a crosslinking agent during spinning, this paper describes the

use of electron beam bombardment to induce what is purported to be crosslinking in

Kevlar-29®. The recoil compressive strength of the fiber increased significantly within

increasing radiation exposure, reaching 487 MPa at a dose of 1100 KGy. Other key

findings are depicted in Table 2. The augmentation of axial compressive strength

adversely affected the tensile strength of the poly-p-phenylene terephthalamide by

approximately twenty percent.

Sweeney et al. 11 achieved similar results through thermal treatment of an

unmodified form of Kevlar-29® fiber. This group, whose results are summarized in

10



Table 2

Tensile and Recoil Compressive Strengths of E-beam Treated Kevlar-29® Fiber

Radiation Mean Tensile Strength Mean Recoil Compressive
Level (kGy) (MPa) Strength (MPa)

0 2160 +/-60 365 +/-6

100 2043 +/-120 368 +/-8

200 1996 +/-86 381 +/-9

500 1891 +/-71 404 +/- 8

1000 1786 +/-93 472 +/-7

1100 1723 +/-87 487 +/-7
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Table 3, developed a central composite design to study the orthogonal and interactive

effects of three factors on compressive and tensile strength. Three levels of maximum

treatment temperature, soak rate, and soak time (dwell) were examined within the scope

of this study. It was concluded that maximum treatment temperature had a marked effect

on the compressive strength of Kevlar® fiber, with the higher treatment temperature

resulting in a significant enhancement of compressive strength. Moreover, as seen in the

aforementioned studies, this improvement in compressive behavior was accompanied by

a compromise in strength in tension.

12



Table 3

Effects of Temperature, Ramp, and Dwell on Ratio of ao / at of Kevlar-29® Fiber

Temperature
°C

400

440

470

Average
Ratio

0.46

0.63

0.90

Ramp
°C/min

2.5

7.5

Average
Ratio

0.67

0.62

0.60

Average
Ratio

0.49

0.71

0.67

Dwell
min.
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3.0 Mechanistic Discussion

Clearly the enhancement of compressive properties can be realized in both

modified and unmodified Kevlar-29® fibers by employing a post-spinning stimulus such

as thermal or ionization treatment. However, the structural mechanism accounting for the

observed increase in compressive properties and accompanying decrement in tenacity has

largely been a source of debate. In particular, unresolved is whether this compressive

enhancement was due to a crosslinking phenomenon or hydrogen bond obfuscation and

concurrent crystallite misorientation.

It was originally assumed that the effects of crosslinking within the PPTA could

provide the only explanation accounting for the enhanced compressive strength. Such

crosslinking would provide a covalent bond lattice in the a direction. There is strong

empirical reason to support this theory; however many of these studies relied upon an

activated, or modified, form of poly-p-phenylene terephthalamide that would readily

form a chemically labile moiety in order to promote free radicals upon heat treatment.7'10

The Kevlar-29® studied in the study by Sweeney et al. 11 was devoid of such activated

species, and whether or not such crosslinking could occur within chemically unmodified

PPTA specimens has not yet been validated. But if not due to the predominance of

transaxial intermolecular covalent crosslinks within the core region, another structural

14



phenomenon must account for the markedly improved compressive properties of the

Kevlar® fibers that had been treated at 400, 440, and 470° C.

Sweeny 10 claimed that a high degree of crosslinking could not be accommodated

within the current crystal structure and without disruption of intermolecular hydrogen

bonding. It is likely that the secondary, or radially oriented pleated sheet, structure of

Kevlar® poses a steric limitation to the development of crosslinks within the core region

of the PPTA. Moreover, in a study which characterized the pyrolytic behavior of aramid

fibers, Mosquera et al. 13 concluded that below 500 °C, only minor changes associated

with loss of hydrogen bonds is prevalent, and that no noticeable framework changes take

place until 545 °C - the temperature at which notable chain scission begins.

As mentioned earlier in this work, Jiang et al.7 concluded that lateral covalent

crosslinks had been established via thermal treatment based upon swelling trials. This

group concluded that the enhancement of compressive properties was a direct result of

crosslinking, exclusively. This swelling study involved placing a small section of a

Kevlar® fiber on a glass slide and introducing the polymer to a few drops of sulfuric

acid. Solubility of the PPTA fiber was then evaluated. Fibers treated above 330 °C were

characterized as insoluble and this finding was attributed to bulk crosslinking within the

fiber. However, this conclusion does not take into consideration the tertiary structure of

the Kevlar® fiber. It is quite possible that the skin region, devoid of a highly crystalline

packing order, was crosslinked while the core region was not. A crosslinked skin region

could possibly render the fiber insoluble by creating an impermeable sheath around a

highly linear and uncrosslinked core region.

15



The correlation between crystallite perfection and tensile behavior of Kevlar® is

well documented. Barton 14 has studied x-ray peak shape parameters for PPTA fibers

variously treated to produce a range of tensile moduli. He demonstrates an excellent

correlation between the axial paracrystalline distortion parameter and the tensile

modulus. From this work, he concludes that overall crystal perfection is the controlling

feature for the tensile modulus. Additionally, Hindeleh and cohorts 15 report a correlation

between tensile modulus and transverse crystallinity, which is highly dependent upon

hydrogen bonding. These studies illustrate the strong relationship between the tensile

behavior of the PPTA fibers and its transverse and axial crystalline perfection.

Accordingly, the relationship between crystallite perfection and behavior in compression

should not be overlooked.

Lee et al. 12 validated that when Kevlar( fibers are subjected to a temperature of

400 °C under an applied low tensile force (.1 g/d), misalignment of the crystallites

ensues. Secondly, the author asserts that misalignment of the crystallites increases with

temperature and time of heat treatment, accompanied by a decrement in tensile modulus.

Logically, misalignment would be even more pronounced when such a tensile force is

absent. Lee et al. 1 2 also discovered that upon heat treatment under tension, the pleating

conformation begins to vanish, the de-pleated region working inward from the skin, or

boundary region. Thus, the decrease in tensile strength and improvement in compressive

behavior observed by Sweeney et al. 11 could potentially be attributed to the

aforementioned spatial distortion of the crystallites resulting from the destruction of

interchain hydrogen bonding and concurrent destruction of pleated sheets within the core.

16



While the theory that covalent crosslinks between crystallites would limit

structural maneuverability and therefore reduce creep abounds, the role of hydrogen

bonding has been largely ignored in articles addressing induced thermal crosslinking of

Kevlar® microfibrils. Microfibril/fibril buckling within high performance fibers is

directly related to compressive strength (ao) according to the following equation:

ac = C i E (R/L) 2

where C is an empirical constant; E, the axial rigidity of the test specimen; R, the radius

of the fiber; and L, the length of the fiber.8

It is reasonable to believe that any compromise of Kevlar's® nearly perfect

uniaxial orientation, in particular the misalignment of crystallites, would correlate with an

increase in axial rigidity (E) and, ultimately, an increase in compressive strength. Since

transaxial and axial alignment of crystallites is contingent upon interchain hydrogen

bonding, the destruction of these bonds would likely yield an improvement in

compressive strength. Without the existence of transaxial bonds, the polymer chains are

unlikely to orient uniformly into pleated sheets, and would consequently develop a

chiasmatic or crossing orientation. The resulting chiasmas, or plexuses formed at the

treatment temperatures studied may very well account for the observed increase in

structural rigidity and compressive strength. Moreover, misorientation of the crystal

structure comprising the pleated sheet configuration within the core structure would

result in an increase in the radius of the fiber, thereby decreasing compressive

17



deformation by increasing the diametric area upon which to distribute a compressive

load.

Clearly the theory that hydrogen bond disruption may account for measurable

crystal misalignment and, consequently, enhanced compressive strength and lower tensile

strength, warrants legitimate consideration. The objective of this work was to determine

which structural change, crosslinking and/or hydrogen bond disruption, was responsible

for the enhancement in compressive strength of the Kevlar® fibers heat-treated by

Sweeney et al.11

18



4.0 Experimental

Treated and untreated Kevlar-29® fibers were subjected to a variety of analyses

in order to elucidate the structural mechanism by which the compressive strength of the

Kevlar-29® studied by Sweeney et al. 11 had been enhanced. The treated Kevlar-29®

fibers were those prepared by Sweeney et al. 11 in a Thermodyne oven under nitrogen

purge at temperatures of 400, 440, and 470 °C. These PPTA fibers were characterized by

the Thermogravimetric Analyzer (TGA), Differential Scanning Calorimeter (DSC), and

Fourier-transform Infrared Spectrophotometer (FTIR) illustrated in Figures 4, 5, and 6.

Thermogravimetric experiments were conducted using a Mettler-Toledo TG-50

TGA under an inert nitrogen purge in an effort to quantify mass loss associated with

crosslinking at elevated temperatures. Differential Scanning Calorimetry assays were

performed using a Mettler-Toledo DSC25 with a TC1 5 TA controller in order to observe

thermal transitions (endo or exotherms) within the polymer. A Fourier Transform

infrared spectrophotometer was used to investigate specific peak intensities of the heat

treated Kevlar-29® fibers. The FTIR was a Perkin-Elmer Spectrum One

spectrophotometer with HATR assembly. All requisite calibrations were performed prior

to characterization of the heat-treated Kevlar-29®.

The purported thermally induced crosslinking phenomenon would most likely

occur through a free radical reaction. Based upon bond dissociation energies, the most

19



Figure 4. Thermogravimetric Analyzer
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Figure 5. Differential Scanning Calorimeter
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Figure 6. Fourier Transform Infrared Spectrophotometer
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likely location of the free radical formation is at the ortho and meta positions of the aryl

group. This site is indicated in Figure 7.

In order to establish a single covalent crosslink between the Kevlar®

macromolecules, dehydrogenation must occur. This would involve the loss of two

hydrogen atoms from an aryl ring component. In order to achieve the level of lateral

enhancement witnessed in the unmodified, heat-treated Kevlar® study, dehydrogenation

would need to occur on a widespread scale within the fiber. Quantification of this

statement is difficult. However, at least one crosslink per nine repeat units could account

for a crosslink density capable of achieving improved compressive strengths.' 0 Hydrogen

losses at these crosslink densities should result in a detectable mass loss that may be

captured via TGA measurements. Detection is likely given the sensitivity of the

microgram TGA balance, which is capable of detecting a mass loss as miniscule as one-

millionth of a gram.

Untreated Kevlar-29® fibers were subjected to TGA isotherms at select

temperatures in order to quantify mass loss and gain insight into the initiation

temperature necessary to promote significant levels of crosslinking within the PPTA

fibers. The ramping rate used in these TGA experiments was 100 °C/minute. During the

ramp, an empty crucible was situated upon the microbalance. When the target

temperature was reached, the balance was zeroed and a 2 - 5 mg. sample of Kevlar-29®

was then placed within the crucible. The time at temperature for isothermal experiments

was invariably 23 minutes. Recall that the earlier clinic experiment which served as a

background for this paper had utilized three levels for the time factor: 5, 7, and 10

minutes soak times. Therefore, the selected isothermal treatment times would be more

23
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than adequate to initiate the structural changes induced within the earlier experiment by

Sweeney et al. 11 All isotherms were performed in an inert nitrogenous environment to

preclude side reactions such as oxidation.

Hopes of improving the compressive properties of Kevlar® must recognize, of

course, that a high degree of crosslinking could not be accommodated without affecting

the efficiency of the interchain hydrogen bonding.1 0 In order to discover what structural

change (crosslinking and/or hydrogen bond disruption) was occurring within the PPTA

fibers at elevated temperatures, a DSC scan was performed on 5 mg. of untreated Kevlar-

29® fibers. The temperature sweep began at 25 °C and ended at 600 °C, and entailed a

slow heating rate of 5 °C/minute in order to capture the structural change. Both the

reference and sample DSC pans were heated under an inert nitrogen purge of 1 L/minute.

Fourier Transform Infrared Spectrophotometry analysis was also performed in an

effort to elucidate the structural mechanism accounting for the compressive

improvements of Kevlar-29® fibers treated at 400, 440, and 470 °C. According to the

chemical formula and structure of PPTA, the following IR band assignments can be

made: 1018 cm' 1 for an in-plane, C-H vibration, characteristic of para-substituted

aromatic compounds, particularly polyaramids. 12 Given the location of free-radical

formation of Kevlar-29® fiber, significant crosslinking should be manifested as a

decrease in intensity for this band. The band assignment for out-of-plane C-H vibrations

of two adjacent hydrogens in an aromatic ring (para substitution of the aromatic) would

be 827 cm 1.112 The loss of hydrogen-bonded amide functionality (3432 cm') was also

assessed to estimate the degree of interchain hydrogen bond destruction.7 FTIR scans

were performed in reflectance mode, applying a wavenumber range of 650 - 3600 cm'1.

25



64 total scans were performed for each of the three assays, corresponding to the three

different maximum treatment temperatures employed by Sweeney et al. 11

26



5.0 Results and Discussion

As detailed earlier, if free radicals were being created on a widespread scale

within the core region of the Kevlar® fibers at temperatures of 400, 440, and 470 °C, the

TGA with its sensitive microbalance should be able to capture and quantify such a mass

loss. This mass loss would correlate to the dehydrogenation of aryl hydrogens during the

formation of free radicals that serve as a precursor to interchain crosslinks. Greater mass

loss would correspond to higher imposed crosslink densities.

Interestingly, the isotherm at 400 °C indicated that no detectable decrement in

mass had occurred during the 23 minute interval within the untreated, as-spun Kevlar-

29® fibers. This result is illustrated in Figure 8. Accordingly, an isotherm temperature

was then selected beyond 470 °C, the highest temperature level enacted by Sweeney et

al. 11 An isotherm at 480 °C demonstrated that no mass loss of untreated Kevlar-29® fiber

had occurred within the 23 minute interval. Thus neither the isotherm at 400 or at 480

°C, each with an aggressive holding time of 23 minutes, resulted in substantive mass

losses according to the TGA analyses performed at these conditions. It is worth noting,

however, that the samples that had undergone these isotherms experienced a noticeable

color change, from yellow (virgin Kevlar-29® fiber) to dark brown/black (post-isotherm

Kevlar-29® fibers).

27
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Recall that Mosquera13 had purported that Kevlar® is thermally stable up to about

545 °C; below this temperature only minor change associated with the loss of hydrogen

bonds occur. In order to test the validity of this claim, an isotherm at 540 ° C was first

performed. The results demonstrated that no significant mass loss had occurred within

the PPTA fibers during the 23 minute hold time. Secondly, a temperature beyond the

critical 545 °C mark was selected, utilizing the same treatment interval. Remarkably, an

isotherm at 560 °C did indicate a mass loss of 0.1 mg., or 4.5%. The thermogram

depicting this higher-temperature isotherm is also included in Figure 8.

These thermogravimetric findings support the claim by Mosquera13 that no

significant mass loss occurs within Kevlar® fibers below 545 ° C. If crosslinking is

initiated at treatment temperatures of 400, 440, and 470 ° C, this structural change is not

accompanied by appreciable or detectable mass loss, according to the predescribed results

obtained on the Mettler-Toledo TG-50 TGA. This raises doubt as to whether the

structural mechanism accounting for enhanced compressive strength within heat-treated

Kevlar® fibers is primarily, or exclusively, crosslinking.

If crosslinking was the predominant mechanistic change accounting for the

enhancement of compressive properties within thermally-treated Kevlar-29®, the

formation of crosslinks should result in a detectable exotherm within the DSC profile.

Crosslink formation is exothermic due to the thermodynamically favorable conformation

that such interchain covalent bonds would promote. Conversely, the destruction of

interchain hydrogen bonding and thus the pleated sheet structure would be captured as a

DSC endotherm. As a result, the DSC serves as an excellent tool for determining which
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structural change, crosslinking or hydrogen bond destruction, is accounting for improved

compressive properties and compromised behavior in tension.

The DSC scan, shown in Figure 9, depicts a gradual exotherm that begins at

approximately 380 °C and continues until a temperature of 540 °C is achieved. It is

likely that this exotherm corresponds to a crosslinking event within the Kevlar-298

fibers. According to the DSC thermogram generated within this study, the maximum

crosslinking rate commences at approximately 470 °C.

Above 540 °C, a large endotherm was observed in the DSC scan, most likely

corresponding to degradation of the PPTA and the formation of pyrolytic products such

as hydrogen cyanide, benzene, toluene and benzonitrile. 12 The endotherm present at 540

°C, presumably representative of the onset of pyrolysis of the PPTA fibers, mirrors the

earlier TGA result that also indicated degradation of the aramid fiber accompanies this

treatment temperature.

Crosslinking in polymers is an exothermic phenomenon due to the

thermodynamically favorable conformation achieved by the formation of an interchain

lattice structure. When order within the polymer structure is decreased as a result of

thermal treatment, as is the case during polymer melting, an endothermic event ensues.

Therefore, the destruction of interchain hydrogen bonds can be characterized as an

endothermic event within the DSC spectra. No such endothermic event was detected in

the DSC spectra of untreated Kevlar-29® fiber. Perhaps hydrogen bond destruction was

below the level of detection of the calorimeter, or simply not prevalent to such

a degree as to elicit a distinct endotherm. Conversely, a clear exotherm was identified and

supports the theory that crosslinking is occurring within the polymer chain. It is possible
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that an endo- and exothermic event is occurring simultaneously, with the dominant

thermodynamic change being detected by the DSC.

The TGA and DSC results indicate different, although perhaps not mutually

exclusive, information as to the structural mechanism accounting for improved

compressive properties in heat-treated Kevlar-29® fibers. The FTIR, however, is

arguably the most sensitive technique for discerning if crosslinking and/or the entropic

effect of hydrogen bond obfuscation are taking place within the polymeric fibers.

The peak intensity of Kevlar-29® fibers at approximately 824 cm-',

corresponding to the out-of-plane C-H vibration, decreased with increasing treatment

temperatures. Similarly, the peak intensity at 1018 cm 4', reflecting the in-plane aryl C-H

vibration, decreased within increasing treatment temperatures. This indicates that the loss

of hydrogen atoms from the benzene ring increases with increasing treatment

temperature. This finding may be explained by the formation of free radicals in the

initiation stage of crosslink formation.

A clear decrement in peak intensity and area was observed with increasing

treatment temperatures at an approximate wavenumber of 3432 cm"1, corresponding to

the loss of hydrogen-bonded amide functionality. This result indicates that interchain

hydrogen bond destruction is occurring within the Kevlar-29® fibers that had been

treated at 400, 440, and 470 °C. The FTIR scan illustrates that both hydrogen bond

destruction and crosslinking is taking place simultaneously at the treatment temperatures

utilized by Sweeney et al. 11 A split view of the FTIR spectra is depicted in Figure 10.

Summarily, the results of the TGA thermogram indicate that no significant mass

loss corresponding to dehydrogenation of aryl hydrogens is realizable at temperatures

32



Ak ____- _400 C
-o_

440 C

V.

470 C

/ I

3600.0 3000

'KevIartreatedST5 SR2.5Max470. 002
Kevlar-treated-ST5-SR 5-M ax440.002
Kevlar-teated-ST5-SR7.5-M ax4b0.002

2000
cm-1

Heat Treated (evlar
Heat treated Kevlar
Heat Treated Kevlar

Figure 10. FTIR spectra of Heat-treated Kevlar-29® Fibers

33

1500 1000 650.0

.... lbl[

; I;



below 560 °C, supporting the theory that hydrogen bond destruction is accounting for the

observed increased compressive and decreased tensile properties within heat-treated

PPTA fibers. Conversely, the results of the DSC thermal profile indicate that

crosslinking is the mechanism accounting for the observed changes in mechanical

properties. The FTIR scans indicate that both structural changes arise when Kevlar-29®

is heat treated at thermal treatments of 400, 440, and 470 °C.

Initial impressions may lead one to conclude that these results are irreconcilable.

However, an understanding and appreciation of the tertiary structure of poly-p-phenylene

terephthalamide may provide a plausible interpretation for the findings detailed within

this work.

It is likely that both structural changes are promoted within different regions of

the polymer when exposed to elevated temperatures. The microstructure comprising the

skin region may be crosslinking, while the inner core region experiences an entropic

effect of hydrogen bond destruction and misorientation of the crystallites within the

pleats.

It is feasible that crosslinking is not detected through TGA analysis because the

bulk of the fiber is experiencing hydrogen-bond destruction. Thus, dehydrogenation of

the aryl hydrogen is below the level of detection of the TGA. The FTIR analysis, when

performed in reflectance mode, would detect the crosslinking within the skin region as

the beam must penetrate the skin. Additionally, the infrared beam would partially

penetrate the core region as well before experiencing full reflection, thus capturing the

structural change within the core region as well. During thermal profiling via DSC

analysis, heat would penetrate the fiber from the boundary inward, and therefore

34



crosslinking within the skin region is the dominant thermodynamic change captured by

this instrument. These analyses have demonstrated that thermal enhancement of Kevlar-

29® is achieved through both structural changes, crosslinking and hydrogen bond

destruction, working in concert to promote the augmentation of compressive strength.
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6.0 Conclusions

The thermal enhancement of compressive properties in Kevlar-29® fibers is achieved

through two mechanisms: (1) free-radical formation within the external skin region of

PPTA, resulting in the formation of interchain crosslinks and (2) hydrogen-bond

disruption resulting in the destruction of the highly ordered, pleated sheet configuration

within the core region of PPTA. Interchain covalent crosslinks improve the compressive

strength of the aramid fiber by limiting the structural maneuverability of the fiber skin,

thus augmenting its rigidity. Hydrogen bond disruption within the core region results in

misorientation of crystallites within the core region, thus enhancing the compressive

properties of Kevlar® by compromising its nearly perfect linearity.

Several high-temperature Thermogravimetric isotherms were undertaken in order

to characterize the degree of dehydrogenation within the PPTA fibers, corresponding to

the formation of covalent, interchain crosslinking between the aryl moieties. No

significant mass loss was detected at a temperature of 540 °C or below. Substantive mass

loss was discernible at a temperature of 560 °C, which can be attributed to pyrolysis of

the Kevlar-29® fiber. The TGA results indicate that no detectable mass loss related to

the bulk development of crosslinking throughout the fiber occurs at elevated temperatures

as high as 540 °C.
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The Differential Scanning Calorimetry profile did not indicate the presence of a

distinct endotherm at elevated temperatures below 540 °C. Therefore, a distinct event

relating to hydrogen bond disruption within Kevlar-29® fiber was not captured by the

DSC. In contrast, DSC indicates that a crosslinking event is occurring within heat-treated

Kevlar-29® fiber. This is evidenced by a gradual exothermic event that develops at a

treatment temperature of approximately 380 °C and continues until a temperature of 540

°C is achieved. At a temperature of 540 °C, a clear endotherm is observable, most likely

corresponding to degradation of the polymer into volatiles such as hydrogen cyanide,

benzene, toluene, or benzonitrile. The DSC endotherm supports the earlier pyrolytic

characterization of aramid fiber by the TGA thermogram.

Fourier Transform Infrared Spectrophotometric assays of heat-treated Kevlar-29®

fiber provide the greatest insight into what structural changes account for the improved

behavior of the polymer in compression. The FTIR indicates that both structural

mechanisms, crosslinking and hydrogen bond destruction, account for the improved

compressive properties of the polymer. FTIR spectra of Kevlar-29® subjected to

temperatures of 400, 440, and 470 °C demonstrate a decrease in hydrogen bond and aryl

hydrogen functionality with increasing temperature.

A cursory evaluation of these results may lead the reader to deem them

incompatible. However, with an appreciation of the tertiary structure of PPTA and test

methodology utilized within the scope of this text, these results are resolvable. It is likely

that both the entropic effect of hydrogen bond disruption and interchain crosslinking are

promoted within heat-treated poly-p-phenylene terephthalamide, albeit in distinct regions
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of the polymer matrix. The anisotropic microstructure comprising the skin is crosslinked,

while the core region characterized by a pleated sheet configuration experiences the

entropic effect of hydrogen bond disruption and a concurrent misorientation of the

crystallites. Crosslinking of the skin region and misorientation of core crystallites serve

as the structural mechanisms that promote the enhancement of compressive strength of

heat-treated Kevlar-298 fiber.
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7.0 Recommendations

This work highlights the need to differentiate between the distinct morphologies of

the core and skin regions of heat treated Kevlar-29® fiber. The author utilized various

thermal and non-thermal analytical techniques to elucidate the structural changes

occurring within the PPTA fibers. Therefore, a logical extension of this work would

employ other characterization techniques, such as Scanning Electron Microscopy, Optical

Microscopy, or X-ray Diffraction, to characterize the core and skin regions individually.

Most of the non-thermal characterization of Kevlar® has focused on the bulk polymer as

an isotropic material rather than dissecting the polymer in terms of a skin and core region

with unique morphologies. The current work demonstrates the need to treat and examine

the skin and core regions of heat-treated Kevlar® fibers as separate morphological

entities, each providing a unique contribution to the improved compressive properties of

the aramid fiber.
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