
Rowan University Rowan University

Rowan Digital Works Rowan Digital Works

Theses and Dissertations

12-31-2004

An investigation of multi-dimensional evolutionary algorithms for An investigation of multi-dimensional evolutionary algorithms for

virtual reality scenario development virtual reality scenario development

Scott Papson
Rowan University

Follow this and additional works at: https://rdw.rowan.edu/etd

 Part of the Electrical and Computer Engineering Commons

Let us know how access to this document benefits you -
share your thoughts on our feedback form.

Recommended Citation Recommended Citation
Papson, Scott, "An investigation of multi-dimensional evolutionary algorithms for virtual reality scenario
development" (2004). Theses and Dissertations. 1212.
https://rdw.rowan.edu/etd/1212

This Thesis is brought to you for free and open access by Rowan Digital Works. It has been accepted for inclusion
in Theses and Dissertations by an authorized administrator of Rowan Digital Works. For more information, please
contact LibraryTheses@rowan.edu.

https://rdw.rowan.edu/
https://rdw.rowan.edu/etd
https://rdw.rowan.edu/etd?utm_source=rdw.rowan.edu%2Fetd%2F1212&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=rdw.rowan.edu%2Fetd%2F1212&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.lib.rowan.edu/rdw-feedback?ref=https://rdw.rowan.edu/etd/1212
https://www.lib.rowan.edu/rdw-feedback?ref=https://rdw.rowan.edu/etd/1212
https://rdw.rowan.edu/etd/1212?utm_source=rdw.rowan.edu%2Fetd%2F1212&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:LibraryTheses@rowan.edu

An investigation of multi-dimensional evolutionary algorithms
for virtual reality scenario development

by

Scott Papson

A thesis submitted to the

graduate faculty in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE

Department: Electrical and Computer Engineering
Major: Engineering (Electrical Engineering)

ers o ommittee:

I

Rowan University
Glassboro, NJ

2004

ABSTRACT

Virtual reality (VR) has emerged as a powerful visualization tool for design, simulation, and

analysis in modem complex industrial systems. The primary motivation for this thesis is to

develop a framework for the effective use of VR in design-simulation-analysis cycles,

particularly in situations involving large, complex, multi-dimensional data-sets. This thesis

develops a framework that is intended to support not only the integration of such data for visual,

interactive, and immersive displays, but also provides a method for performing risk analysis.

Previously "static" VR environments are enhanced with time-evolutionary capabilities. Four

candidate algorithms are evaluated for this purpose - deterministic modeling, auto-regressive

moving average modeling, genetic algorithm modeling, and hidden Markov modeling. Benefits,

drawbacks, and trade-offs are evaluated with reference to their suitability for development in a

VR environment. The methods developed in this research work are demonstrated by applying

them to multi-sensor data obtained during the in-line, nondestructive evaluation of gas

transmission pipelines.

ii

TABLE OF CONTENTS

LIST OF FIGURES .. V

L IST OF T ABLES ... vii

ACKNOWLEDGMENTS viii

CHAPTER 1- INTRODUCTION ... 1
1.1 Advanced Scientific V isualization & V irtual Reality ... 1

1.1.1 Definitions & Explanation ..
1.1.2 Brief History4
1.1.3 VR Hardware .. 5

1.2 N ondestructive Evaluation .. 7
1.2.1 Needfor Inspection ... 7
1.2.2 Inspection M ethods ... 8

1.3 Previous W ork .. 9
1.4 Thesis Overview ... 11

1.4.1 M otivation ... 11
1.4.2 Objectives of Thesis .. 14
1.4.3 Expected Contributions ... 14
1.4.4 Scope and Organization .. 15

CHAPTER 2 - BACKGROUND .. 17
2.1 Virtual Reality ... 17

2.1. D ata & Object Representations .. 17
2.1.2 Design for Interaction ... 20
2.1.3 D ata Integration .. 21
2.1.4 Benefits of VR 23

2.2 Evolutionary A lgorithm s .. 24
2.2.1 D eterm inistic M odeling .. 24
2.2.2 Filtering Techniques ... 25
2.2.3 Genetic Algorithm s ... 27
2.2.4 H idden M arkov M odeling ... 33

2.3 Scenario Developm ent & Risk Assessm ent .. 37
2.4 Evaluation Criteria .. 38

iii

CHAPTER 3 - APPROACH 40
3.1 Overall V isualizations ... 40

3.1.1 D ata Integration .. 40
3.1.2 D ata Processing .. 44
3.1.3 H ardware /Software ... 44

3.2 D ata Representation .. 45
3.3 Evolutionary M odels .. 48

3.3. 1 Algorithm Goals 48
3.3.2 H igh-Level Structure ... 50
3.3. 3 Evolutionary Algorithms .. 56

3.4 Evolutionary V isualizations .. 67
3.5 Evaluation Criteria .. 68

3.5.1 Versatility .. 69
3.5.2 M odel I/O Fram ew ork .. . 70
3.5.3 Speed ... 70
3.5.4 M em ory ... 71
3.5.5 Interaction with User ... 71
3.5. 6 Software Specific ... 72

CHAPTER 4 - R ESULTS ... 73
4.1 O verall V isualizations ... 73
4.2 Evolutionary A lgorithm s .. 78

4.2.1 Determ inistic .. 78
4.2.2 Autoregressive M oving Average M odels ... 83
4.2.3 Genetic Algorithms ... 90
4.2.4 Hidden Markov Models98

4.3 Evolutionary V isualizations .. 103
4.4 Evaluation Criteria .. 105

44. 1 Rating Scale ... 105
4.4.2 Versatility108
4.4.3 M odel I/O Fram ew ork ... 111
4.4.4 Speed 114
4.4.5 M em ory ... 116
4.4.6 Interaction with User .. 118
4.4.7 Software Specific ... 121

4.5 Evaluation ... 123

CHAPTER 5 -CONCLUSIONS .. 129
5.1 Sum m ary of A ccom plishm ents... 129
5.2 Conclusions... 130
5.3 Recom m endations for Future W ork.. 131

REERE NCES... 133

iv

LIST OF FIGURES

Figure 1.1 - Example VR worlds. 2
Figure 1.2 - Components of VR. .. 3
Figure 1.3 - LCD shutter glasses. ... 6
Figure 1.4 - A semi-immersive VR system. .. 7
Figure 1.5 - An illustration of an active NDE technique. 9
Figure 1.6 - Evolutionary VR world. ... 13

Figure 2.1 - Data point representation 18
Figure 2.2 - Pseudo-color representations. ... 19
Figure 2.3 - Object representations using geons. ... 20
Figure 2.4 - Deterministic modeling I/O .. 24
Figure 2.5 - ARM A model I/O ... 25
Figure 2.6 - Genetic Algorithm I/O .. 28
Figure 2.7 - The overall process for genetic algorithms. ... 29
Figure 2.8 - Roulette-wheel parent selection technique. .. 31
Figure 2.9 - HM M I/O .. 34
Figure 2.10 - A first order, discrete-time M arkov model. .. 34
Figure 2.11 - A first-order, discrete time HM M 36

Figure 3.1 - Creation methodology of a virtual world. .. 40
Figure 3.2 - Multi-sensor data integration for the non-destructive evaluation of gas transmission
pipelines. ... 42
Figure 3.3 - Illustration of a decision tree variable structure. .. 46
Figure 3.4 - Realization of data format. ... 47
Figure 3.5 - Evolution. ... 50
Figure 3.6 - Single-path evolution algorithm. .. 53
Figure 3.7 - M ulti-path evolution algorithm. ... 55
Figure 3.8 - Deterministic I/O ... 56
Figure 3.9 - Crack Growth Chart. .. 57
Figure 3.10 - ARM A I/O .. 58
Figure 3.11 - Genetic algorithm I/O ... 61
Figure 3.12 - Gaussian fitness evaluation .. 63
Figure 3.13 - HM M implementation structure. .. 65
Figure 3.14 - HM M O. ... 67
Figure 3.15 - Relation between algorithm goals and evaluation criteria. 69

Figure 4.1 - Graphical representation of a pipeline section. .. 73
Figure 4.2 - Measurement data from the inspection of a pipeline section. 74
Figure 4.3 - Integration of graphical, functional, and measurement data. 75
Figure 4.4 - Integration of graphical and functional data. .. 76
Figure 4.5 - A virtual environment used for remediation analysis77
Figure 4.6 - Virtual world used for pipeline inspections ... 78
Figure 4.7 - One-dimensional single-path deterministic growth79
Figure 4.8 - Two-dimensional single path deterministic growth. 80

v

Figure 4.9 - Three-dimensional single path deterministic growth. 80
Figure 4.10 - One-dimensional multi-path deterministic growth. 81
Figure 4.11 - Two-dimensional multi-path deterministic growth. 82
Figure 4.12 - Three-dimensional multi-path deterministic growth. 82
Figure 4.13 - MSE for various filter orders. .. 84
Figure 4.14 - MSE for various filter orders and algorithm iterations. 85
Figure 4.15 - Single-path one-dimensional evolution with ARMA model. 86
Figure 4.16 - Single-path two-dimensional evolution with ARMA model 86
Figure 4.17 - Single-path three-dimensional evolution with ARMA model 87
Figure 4.18 - Multi-path one-dimensional evolution with ARMA model. 88
Figure 4.19 - Multi-path two-dimensional evolution with ARMA model. 89
Figure 4.20 - Multi-path three-dimensional evolution with ARMA model. 90
Figure 4.21 - Single-path one-dimensional evolution with GA. 91
Figure 4.22 - Chromosome evolution. ... 93
Figure 4.23 - Profile evolution. ... 94
Figure 4.24 - Single-path two-dimensional evolution with GA. 95
Figure 4.25 - Single-path three-dimensional evolution with GA. 95
Figure 4.26 - Multi-path one-dimensional evolution with GA. 96
Figure 4.27 - Multi-path two-dimensional evolution with GA. 97
Figure 4.28 - Multi-path three-dimensional evolution with GA. 97
Figure 4.29 - Single-path one-dimensional evolution with HMM. 99
Figure 4.30 - Single-path two-dimensional evolution with HMM 100
Figure 4.31 - Single-path three-dimensional evolution with HMM 101
Figure 4.32 - Multi-path one-dimensional evolution with HMM. 101
Figure 4.33 - Multi-path two-dimensional evolution with HMM. 102
Figure 4.34 - Multi-path three-dimensional evolution with HMM. 102
Figure 4.35 - Evolutionary predictions set-up ... 104
Figure 4.36 - Possible evolutionary path. ... 105
Figure 4.37 - Evaluation rating scale. .. 106
Figure 4.38 - User interaction ratings .. 119
Figure 4.39 - Software specific ratings. .. 121
Figure 4.40 - Algorithms Ratings. .. 12
Figure 4.41 - Weight assignments. .. 125
Figure 4.42 - Weighted comparison. .. 126
Figure 4.43 - Contributions to weighted score. .. 127

vi

LIST OF TABLES

Table 1.1 Previous work in VR applications for NDE ... 10

Table 4.1 Visible state values ... 99
Table 4.2 - Computational expense for ARM A modeling ... 106
Table 4.3 - Computational expense for genetic algorithm ... 107
Table 4.4 Computational expense for HM M .. 107
Table 4.5 - Versatility ratings ... 108
Table 4.6 - M odel I/O ratings ... 112
Table 4.7 - Speed ratings .. 115
Table 4.8 - M emory ratings ... 117

vii

ACKNOWLEDGMENTS

This work is funded in part by:

National Science Foundation
Major Research Instrumentation (MRI) Program

Award #0216348

&

National Energy Technology Laboratory (NETL)
United States Department of Energy,

Grant DE-FC26-02NT41648

viii

CHAPTER 1 - INTRODUCTION

1.1 Advanced Scientific Visualization & Virtual Reality

1.1.1 Definitions & Explanation

Advanced scientific visualization (ASV) is the use of visual techniques to aid in problem solving

and data analysis. Generally speaking, ASV can be applied to a range of fields and across broad

scopes of problems [1]. Although ASV is useful for many types of problems, it is usually

employed for handling problems with large or complex data sets, because multi-dimensional

problems are more easily understood when the data is visualized [2]. Meteorologists use ASV to

study weather phenomena, archeologists use ASV to study excavations, political analysts use

ASV to study political trends, mathematicians use ASV to study complex equations,

astrophysicists use ASV to study the cosmos, and so on [3].

Just as there are numerous applications of ASV, there are numerous methods of

employing ASV. A simple x-y scatter plot of data is one type of scientific visualization. For

different problems, different visualization techniques will be more effective then others.

However, some techniques will provide certain advantages across large scopes of problems. One

such ASV technique that offers powerful benefits is virtual reality (VR) [2]. Figure 1.1 below

illustrates various virtual worlds.

1

Figure 1.1 - Example VR worlds.

World (a) illustrates how a civil engineer might visualize a park to address certain environmental

concerns. The visualization in (b) could be used by a geneticist to aid in the visualization of

DNA. Finally, world (c) illustrates the use of VR for ship design by allowing the user to arrange

components within the engine room of a battleship.

2

VR is a system that "gives the user the psychophysical experience of being surrounded by

a virtual, that is, computer generated, environment [2]." Traditionally, there are three

components to VR - immersion, navigation, and interaction [4]. It is the combination of these

three components that creates a virtual world and provides the user the benefits from this type of

visual analysis. This concept is illustrated below in Figure 1.2.

Figure 1.2 - Components of VR.

Immersion refers to the blocking of real world sensory inputs from interfering with the

virtual world. A sense of immersion is usually created through the ability of the visual display

system to minimize contradictions between the real world and the virtual world [5]. Navigation

is the ability of the user to move within the virtual world; navigation includes manipulation of

the orientation of the data being represented. Finally, interaction is the tracking of the user inside

the virtual world, and the ability of the world to react to movements and commands initiated by

the user [6].

Additionally, there are three other components that can be used to describe a VR world -

visual display system, world components, and world data. The visual display system is

3

responsible for handling graphical rendering. The type of display system will have a direct

impact on the immersion, navigation, and interaction experienced in the virtual world. Both the

world components and the world data refer to the content being displayed within the virtual

world.

Since data analysis is the primary focus when VR is being used for the purpose of ASV,

the conclusions drawn from the virtual world are a function of the data being displayed and the

manner in which it is displayed. The sense of immersion, the components, and data being

visualized combine to create presence inside the virtual world. Presence is the sense of actually

being in the virtual world [1]. With greater presence, a more realistic and more useful analysis

can take place. "...virtual reality works (induces presence) because it triggers exactly the same

perceptive mechanisms as reality [7]."

1.1.2 Brief History

In today's world it is easy to see ASV being used to solve many different types of problems.

With computer tools so accessible, it is not difficult to use these resources often. These tools,

however, were not always available, but still ASV was a powerful technique for solving

problems. The roots of modem day visualization techniques date back to 1854 when Dr. Snow

used cartography to help quell an outbreak of cholera [8]. Faraday and Maxwell envisioned lines

of magnetic flux emanating from charged bodies [9]; it was these visions that led to the

development of Maxwell's equations. Kekule, a French chemist, once had a 'waking' dream as

he was walking onto a bus; he saw the manner in which atoms grouped themselves in space [10].

His ideas helped lead to the development of the base structure of carbon. These types of

inspiring visualizations are quite common across many disciplines.

4

Specifically, multi-dimensional imaging has strong roots in many applications of

medicine, engineering, and physics. Medical imaging techniques range from x-rays to magnetic

resonance images (MRI) and computerized axial tomography (CAT) scans. Complex algorithms

were developed and are continually being developed to satisfy the high demands of these and

other medical imaging systems. The visualization of nano-scale electronics has opened new

paths for the development of the transistor. Finally, visualization systems such as the Hubble

telescope have allowed astronomers to visually explore the depths of space.

1.1.3 VR Hardware

In today's technological age, visual display systems are advancing rapidly and allowing visions

to be shared with the masses. Along with visual systems, three-dimensional object and image

capturing capabilities are also evolving. Natural phenomena are being digitally reproduced in

true three-dimensions. Continual advances are being made based off of the needs of industrial

leaders and the visions of countless researchers. One such piece of technology is VR hardware.

The VR hardware system handles the graphical rendering and display of the virtual world

components. Many different types of display systems are available on market, but they can be

broken down in three main groups - fully-immersive, semi-immersive, and non-immersive.

Fully-immersive displays are the most powerful of the three types of systems. A fully-

immersive display requires that the user be fully immersed inside the virtual world; all

contradictory real world sensations are blocked. There are two main types of fully-immersive

systems that are widely used - head-mount displays (HMDs) and the CAVE®. HMDs are useful

in situations where there is a limited amount of physical space that can be devoted to the

hardware system. With a HMD, each eye is shown a unique picture. The picture shown to each

eye corresponds to the stereo view for that eye based on the 3-D world being displayed. Dr.

5

Carolina Cruz-Neira at the Electronic Visualization Laboratory of the University of Illinois was

integral in developing the second commonly used fully-immersive display system, the CAVE®

[8]. The CAVE® is a fully-immersive display system in which the world is projected onto the

four walls, ceiling, and even the floor.

Liquid crystal display (LCD) shutter glasses, similar to those shown in Figure 1.3, are

worn. The shutter glasses are synchronized with the display system and project only one eye's

perspective at a time. Switching between the two views allows the depth information to be

conveyed to the user.

Figure 13 - LCD shutter glasses.

Semi-immersive displays allow some of the contradictory real world senses to be

blocked. Typically, semi-immersive displays will consist of a single screen in front of the user.

The VR system illustrated in Figure 1.4 is a semi-immersive unit. Again, the depth information

can be conveyed through the use of an LCD synchronized stereoscopic display. Non-immersive

displays are the least effective of the three types of systems. A non-immersive display gives the

user little if any feeling of truly being within the virtual environment. A simple computer

monitor is an example of a non-immersive display system.

6

Figure 1.4 - A semi-immersive VR system.

The two additional requirements on VR are navigation and interaction. These are

typically done with the use of tracking sensors. The sensors are responsible for keeping track of

the user's movements. Additional peripheral devices can be used to aid in navigation. A six-

degree-of-freedom (6-DOF) device would allow the user to control translation in x, y, and z, as

well as rotation about the x, y, and z-axes. Haptics devices which allow for the input and output

of tactile data are also used. A glove that allows users to grasp virtual objects and feel textures

would be an example of a haptic interface device [15].

1.2 Nondestructive Evaluation

1.2.1 Needfor Inspection

Since both people and machines are fallible, it is essential that the work done by each be

evaluated. When dealing with physical inspections, two categories can be broadly defined -

destructive evaluation and nondestructive evaluation (NDE). Being able to evaluate the

7

condition of an object or process without harming or disrupting the condition is ideal; NDE tries

to accomplish this. NDE is used heavily in industries where regular maintenance and testing is

required. Aircraft are often subjected to non-destructive testing to ensure their integrity.

Similarly underground pipelines, bridges, and medical applications require inspections where the

object being investigated is not rendered unfit for service. There are three axioms for the

relationship between satisfactory service and NDE - all materials contain flaws; flaws in a

material do not necessarily render it unfit for service; the detectability of a flaw generally

increases with size [16].

The first axiom stresses the need for reliable inspection methods. All materials, no matter

how well created, will contain some number of flaws. But all flaws are not serious. As

described by the second axiom, a flaw in a material does not imply that the system will be unfit

for service. This axiom stresses that in the presence of an anomaly, risk analysis techniques need

to be employed to judge the severity and potential risks involved for the system.

1.2.2 Inspection Methods

NDE inspection techniques generally can be described as passive or active. A passive technique

is one that can be described as monitoring. A passive system will acquire a certain signal and

analyze that given signal. In the presence of a defect or a fault, the signal will be altered. The

signal will reflect the change, and the fault will be discovered. Visual inspections and leak

testing would be considered passive techniques [16]. An acoustic emission analysis would also

be categorized as an example of a passive technique [17].

Active testing techniques involve an input of energy into a specimen during testing. In

active testing, a given form of energy is input into a specimen, and the specimen's response is

8

monitored. An analysis of the output signal will aid in determining fault characteristics. The

process of active NDE testing is illustrated in Figure 1.5.

Figure 1.5 - An illustration of an active NDE technique.

Signal processing techniques are employed to characterize and draw conclusions from the

received NDE signature. The signal processing techniques can aid in determining the overall

condition of the test specimen. Similarly, certain techniques determine the presence of a flaw.

The flaw can subsequently be characterized by its location, size, or severity. Ideally, the

combination of various pieces of information will yield a 3-D flaw profile.

Magnetic testing and ultrasonic testing are two examples of active inspection techniques

[18]. The ability of any technique to identify a fault is dependent on a number of factors. Each

inspection technique will be suitable for detecting certain types of faults. Therefore to maximize

the number of faults detected, a variety of tests should be performed. Simply obtaining the

desired NDE signature is not sufficient, there also needs to be accurate and reliable methods for

data analysis.

1.3 Previous Work

Many methods have been developed in an attempt to combine multi-sensor data. Most notably, a

model was developed by the United States Joint Directors of Laboratories (JDL) Data Fusion

9

Transducer Receiver Materal
condition

Location of
Energy<:il)) 1 (Test ^))) »;;S~Maeal

S i g nature I flaws

C_____ r^ 7 _ , , xXo-XSize of flaws

NDE / 3-D profile of
Signature flaw

Group [19]. Additionally, artificial neural networks have emerged as a possible candidate for

fusing large amounts of multi-sensor data [20]. Finally, VR has also demonstrated great

potential as a platform in which the data can be integrated [4]. Table 1.1 illustrates some of the

work performed in VR with respect to data analysis and NDE inspection.

Table 1.1 Previous work in VR applications for NDE
Research Investigators Research Focus

Group

A. Dam, D. Performed many experiments across broad ranges of
Brown Laidlaw, R.S. applications using immersive VR for scientific

University Simpson visualization. [2,3]

S. Udpa, L. Udpa, Developed VR environments for displaying NDE gas
Iowa State S. Mandayam, T. transmission pipeline data. [4,8,20]
University Hong, M. Pierce

J. Vora, S. Nair, Showed the benefits of VR technology for aircraft
Clemson A.K. visual inspection training. Research focused on

Univ y Gramopadhye, A.T. presence and comparison studies. [29]
Duchowski, B.
Melloy, B. Kanki

N.S. Lee, J.H. Park, Investigated reality and human performance in a virtual
Hansung K.S. Park world, and how human input can change a virtual

University world. [26]

J. Campos, K. Investigated semantics and software definitions for
University of Hornsby, M.J. exploring VR environments. Specifically, much of the

Maine Egenhofer research focused on time-evolutionary virtual
environments. [54]

10

I

1.4 Thesis Overview

1.4.1 Motivation

Virtual reality is an extremely powerful tool for data visualization applications. VR applications

are often developed specifically for the visualization needs of a given project. In this respect, the

VR tools developed are not universally applicable; they are used explicitly for one type of

visualization for one specific application [3]. However, as VR becomes increasingly popular, a

large number of visualization tools are being developed for broad ranges of visualizations [3].

Similarly, analysis techniques utilizing the benefits of VR need to be developed such that they

can also be used to address the design-simulation-analysis cycle.

Data analysis by means of data integration is a common approach taken for the analysis

of large complex data sets. All relevant information is pooled together and integrated such that

the corresponding analysis is as thorough as possible. VR is a well-suited platform in which a

visual analysis of the data could take place. There are many applications in which multiple

forms of data are integrated and risk analysis is subsequently performed. NDE is one such

example application; it will be examined in this thesis.

As mentioned earlier, digital signal processing techniques are used to isolate areas of

interest and categorize signatures in NDE signals [21]. The development of these techniques in

conjunction with sensor technologies is essential in detecting a wide variety of faults. However,

faults do not just need to be recognized; the risk generated by the fault also needs to be

understood. Discovering a fault before it poses a catastrophic risk is important for safety as well

as for economics. It is important that all techniques support the inspector in making accurate,

precise, time-efficient decisions. The NDE of gas transmission pipelines is one such example

where monitoring and testing are essential to ensure safety and minimize monetary losses.

11

In the United States alone there are over 180,000 miles of natural gas transmission

pipelines [22]. These pipelines form a major link in the nation's energy supply infrastructure.

Given that the pipelines are an integral part of the nation's infrastructure, it is essential that the

network is inspected and checked for integrity. Also, since much of the network is over fifty

years old, the system is subjected to periodic in-line inspections. A device called a 'pig' is sent

into the pipeline to inspect the integrity of the pipeline. There are many different methods for

inspecting the pipelines. The most common are magnetic and ultrasonic testing techniques [21].

In addition to the magnetic and ultrasonic testing techniques, many new methods are being

developed to monitor the pipeline conditions.

As of 1999, the sensors of a pig averaged more then 12 GB of data for every 100 miles of

pipeline that was inspected [4]. Many algorithms and techniques have been developed

specifically to aid in the analysis of these signals. For example, it is important to isolate areas of

the signals with certain characteristics. An NDE signal could correspond to a benign occurrence

(a tap, a T-section, a weld, a valve, etc...) or the signal could correspond to a potentially

dangerous anomaly (a crack, pitting corrosion, mechanical damage, etc...) [4]. In the presence

of an anomaly, gaining an understanding of the anomaly and potential failures resulting from that

anomaly are essential in determining risk. This thesis illustrates stress corrosion cracking and

the potential failures from such an anomaly.

One of the challenges in assessing risk is the integration of all relevant data. When

evaluating the risk of a potential failure it is necessary that the location of the pipeline be taken

into consideration. For example, a pipeline located beneath a field is much easier to excavate

then one underneath a city; also the danger to human life would be higher in a city environment.

Unfortunately, extensive, accurate logs and maps for the locations of the pipelines do not exist.

12

Also, all relevant signal processed data should be taken into consideration. A VR platform for

integration of this multi-sensor data is illustrated in Figure 1.6.

Figure 1.6 - Evolutionary VR world.

Within the virtual world the user has the ability to visualize the relevant data.

Additionally, the user is given the ability to evolve the data over time and create various

scenarios. An evolutionary virtual world allows the user to ask "What if...?" The virtual world

will then evolve over time as a function of the user inquiry and system data. Using the

evolutionary scenario that has unfolded, the user is empowered to more thoroughly analyze the

data and draw relevant conclusions.

13

Time
/

.

/ I
I/ I

user input

II

m

1.4.2 Objectives of Thesis

The main objectives of this thesis are:

1. To develop a framework for multi-sensor data visualization in virtual reality. The

framework should support diverse applications and should operate effectively over

several hardware and software platforms.

2. To develop a methodfor implementing time-evolutionary models for virtual reality.

Both an overall framework and specific evolutionary modules are to be developed.

Evolutionary modules include deterministic modeling algorithms, digital filtering

techniques, genetic algorithms, and hidden Markov models.

3. To compare the suitability of the various algorithms for virtual reality scenario

development The comparison should focus on features that have the most significant

impact in both the development and deployment of the VR environment.

1.4.3 Expected Contributions

This thesis outlines a method for visualizing multi-sensor data in a.VR environment. The goal is

to formalize the integration process to support the use of VR as both a data visualization and data

analysis tool. The formalization of the integration process is important so that the techniques

used in VR data analysis can be applied to many different applications. The thesis also outlines a

framework for the evolution of that data. The framework is to provide a three-way bridge

between the VR world, the user, and the mathematical models being developed to analyze the

data. In conjunction with the evolutionary structure, individual algorithms are implemented to

obtain multi-input time evolutionary virtual worlds.

Specific implementations of the individual algorithms (deterministic modeling, filtering,

genetic algorithms, and hidden Markov models) will illustrate the potential of each method for

14

time-evolutionary VR analysis. Finally, an analysis is performed to determine the strengths and

weaknesses of each algorithm for the VR evolutionary visualization and analysis.

Recommendations for future work are given based on the performance of each algorithm.

Additionally, recommendations are provided for work regarding the use of VR in the design-

simulation-analysis cycle.

1.4.4 Scope and Organization

The scope of this thesis pertains to multi-sensor data visualization and the evaluation of

evolutionary algorithms used for risk assessment in a VR environment. Specifically, the

application being demonstrated represents the NDE of stress corrosion cracks in natural gas

pipelines.

Chapter 2 provides the background for the techniques used in accomplishing the thesis

objectives. First, VR visualizations are described. Next, the four types of evolutionary

algorithms being investigated are presented. This is followed by the description of traditional

methods for performing risk analysis. Finally, the methodology used for the evaluation of the

algorithms is presented.

Chapter 3 provides an explanation of the methodological approach, assumptions, and

techniques used to accomplish the outlined objectives. The methodology for multi-sensor data

integration is presented first. This is followed by the data representation form for time-

evolutionary data predictions. Next, the overall evolutionary structure is described, followed by

the model design and development for each algorithm. Finally, the evaluation criteria are

described.

15

Chapter 4 presents the results for a number of different evolutionary scenarios. The

overall data integration process is first presented. Evolutionary worlds for providing risk

analysis are then discussed. Finally, the comparison of the algorithms is performed.

Chapter 5 provides a summary of accomplishments, conclusions from this work, and

recommendations for future work.

16

CHAPTER 2 - BACKGROUND

2.1 Virtual Reality

2.1.1 Data & Object Representations

When performing a visual analysis it is essential that the data and object representations be

optimized for analysis. Optimization is typically performed with reference to the number of

frames per second displayed, and the complexity and number of components. For the virtual

world to appear smooth and respond to the user's commands in real time, the number of frames

per second must be high. Approximately 60 frames per second is an ideal rate; rates at or below

10 frames per second are noticeably jerky and can result in simulation sickness [1]. At the same

time the frame rates are being optimized, the objects within the world need to be optimally

displayed with suitable detail and complexity to convey the desired image. Because of the finite

amount of machine power available to drive the hardware, there exists a tradeoff between frame-

rate and complexity. The goal is to find a representation of suitable design that requires the least

amount of overhead. For both data and object representations there are many methods of

representation.

Object representations can be broken down into three main groups - raw data, surfaces,

and solids. Each representation type has both positive and negative aspects; no single

representation is superior for all applications. For a specific application, the best representation

is a function of the type and form of the data along with the purpose of the representation.

Raw data representations are the most basic form of data visualization. Each data point is

represented visually with a point or glyph [23]. The point cloud will give a three dimensional

depiction of the raw data. Each point in a point cloud can have an x, y, and z coordinate along

17

with a representative value. For object data, i.e. an object scanner application, there will be no

value, just a cloud of points that approximates the shape of an object. For data / sensor

applications, the point cloud will represent the location of each sensor and the corresponding

value. One such representation of raw data is illustrated in Figure 2.1 below. The data points in

(b) represent time-of-flight measurements of an ultrasonic scan of object (a).

(a) Specimen (b) Data visualization

Figure 2.1 - Data point representation.

As seen in Figure 2.1, the values are represented in a 2-D pseudo-color mapping at the measured

sensor location. Raw data representations can take forms other than a cloud of points. A

visualization of vector fields with arrows is also a raw data representation.

Similarly, surface representations can be depicted with various forms. Pseudo-color

slices are representations that are often used to visualize data. A color slice is a surface

representation of data that interpolates between data points to convey a smooth transition

between measured values. Pseudo-color maps like that used in Figure 2.1 can be used to

represent the data values. The same scan depicted in Figure 2.1, is displayed with a pseudo-color

slice in Figure 2.2 (a). Additionally, a topology can be displayed where the grid level is also a

18

function of the data value. A topology is useful in generating a true 3-diemsnional representation

of the scanned data; Figure 2.2 (b) illustrates this concept.

a) jrseuuo-color slice represenauuon. oJ) 1OupuiuglCa rcprenaULluuI.

Figure 2.2 - Pseudo-color representations.

Mesh grids are also common representations used for the display of surface objects. A

mesh grid represents the contours of an object through the display of a grid of the object's

surface. Furthermore, mathematical functions can be used to describe the surface of an object.

Raw data and surface representations are most often used to display data. However, solid

representations can be useful for displaying objects, because real world objects are solids. The

most basic of the solid object representations is a voxel. A voxel is a 3-dimensional cube unit

that describes the smallest unit of volume that can be discretely represented by the VR system.

In this respect, a voxel is to a 3-dimensional representation what a pixel is to a 2-dimensional

representation.

The next type of solid object representation is 'geons'. Geons refer to the most basic and

primitive of shapes [24]. Sets of geons can be used in various combinations to make

increasingly complex shapes. Geons can be manipulated in terms of scale, translation, skew,

etc., in an attempt to create the advanced objects. Figure 2.3 illustrates basic geons and a few

corresponding complex objects that can be created from basic shapes.

19

1L.\ T, -_ *--NO] _- -^-.0<

Figure 23 - Object representations using geons.

The virtual reality modeling language (VRML) is one structure that uses the same

concept of geons and a hierarchical structure to compose complex objects. The VRML standard

was first designed to allow for graphics to be rapidly transferred from and displayed in different

systems. VRML 1.0 was used quite extensively, and its roots can be traced back as early as

1989. To incorporate features such as interaction and animation, the VRML 2.0 standard was

developed and published in 1997 [25]. The VRML standard has advanced beyond simple shapes

and can incorporate lighting, sound, animation, and scripts. Because of the power and diversity,

VRML files are used extensively in VR applications as the base for physical modeling.

2.1.2 Designfor Interaction

As described in Chapter 1, there are three components that define VR - immersion, navigation,

and interaction. These components all incorporate different aspects of human-computer

interaction. There has been extensive research in the field of graphical user interfaces and the

types of visualizations that work best for a given set of requirements [27]. Much of the research

regarding the interaction on a traditional computer can be directly translated to a virtual

environment. One such aspect of interactions is information hiding. A user should be given the

20

- - .

sop5

amount of control needed to perform a task and no more [26]. If presented with too much

information and too many options, the user can become confused and the process will suffer.

Therefore, when designing a human driven virtual environment it is essential that care be taken

to determine the amount and types of controls that the user will have.

Another aspect of human-computer interaction is navigation within the virtual world.

Normally, the navigation controls are governed by the hardware being used. A joystick or a

control pad would provide the user with a unique method for exploring the virtual world.

Although the hardware is usually fixed, there are some software techniques that can be employed

to aid the user's ability to navigate the world. Visual cues and standards within the world will

greatly aid the user's ability to control navigation and placement within a virtual world. Gridded

references serve as the simplest form of registration. With a grid for reference, the user can

easily become oriented within the virtual world and easily compare lengths and distances. To aid

in the orientation process color-codes can be added to the grid. For example, a grid representing

land could have white at the top and a brown or green towards the ground. Intuitively, users

would be able to orient themselves in this world very easily. As users feel more comfortable and

natural in a virtual world a greater sense of presence will be created.

2.1.3 Data Integration

As sensor technologies have advanced, data integration has become increasingly popular; with

this advancement of sensor technologies the amount of data that can be gathered has increased

sharply. Data fusion methods have therefore been used as one method for combining and

analyzing these large data sets. There are a number of different broad categories that traditional

estimation algorithms can be divided into -classification methods, inference methods, and

artificial intelligence methods [28]. For example, a simple weighted averaging method can

21

provide ample processing for certain applications, whereas classification methods attempt to

divide the feature space into distinct regions. Each region will uniquely represent a certain class

or phenomenon within the data. Inference methods can define boundaries based on geometrical

or statistical observations within the data. Bayesian inference methods are those that are based

on Bayes probability rule [40]. The final group of algorithms is the artificial intelligence (AI)

methods. AI methods represent a high-level and more complex decision making process. Expert

systems, fuzzy logic, and artificial neural networks are all methods that utilize a complex logic or

a high-level probabilistic structure to perform an action or classification.

Within each technique there are additional ways in which the data can be fused. The

most common division within each of the groups is the level at which the data fusion occurs.

Data can be fused at the sensor level; sensor level fusion means that each individual reading will

act upon the output of the system. Other methods utilize high-level structures in which the

fusion takes place. High-level fusion includes groups or sections of data points.

Data integration that takes place in a virtual environment is an experiential type of data

fusion. The data being integrated are fused visually. VR also offers a host of complementary

techniques employed by the virtual hardware such as tactile or auditory outputs. Experiential
,p.

data fusidn allows the data fusion to take place on a platform where the human user is

,empowered to make critical decisions. Instead of attempting to mimic the human decision

process, a VR platform provides the human user additional tools that he / she can use to make

decisions. The focus of VR data fusion is therefore integrating the physical world (graphical

data), the data from sensors (measurement data), data obtained from any analysis (functional

data), and user inputs.

22

2.1.4 Benefits of VR

The main benefit from VR is that it empowers users with a tool for analyzing and understanding

complex structures. Human vision has evolved specifically to allow for complex visual

decisions to be made. More then 50% of the neurons in the human brain are devoted to vision

[2]. VR taps into users' innate capabilities and enhances their abilities. Utilizing this skill is

imperative because there are many examples of phenomena that humans can visualize, but are

difficult to describe statistically.

A benefit of visualization with VR is that it allows users to visualize data and phenomena

in true 3-dimensional forms. Therefore, the natural state of data can be replicated. Many studies

have shown how immersion, navigation, and interaction all allow for complex 3-dimensional

structures to be more thoroughly understood [26,27]. As mentioned earlier, VR is not only a tool

for visualization but it is also a tool for analysis. In a study regarding NDE inspection it was

shown that using VR can increase both the speed and accuracy of the inspection process [29].

Since a virtual platform offers such a range of parameters to be adjusted it is important

certain design aspects be taken into consideration. The optimal benefits of a VR world will vary

with the creator of the world, the user of the world, and also the application being investigated.

As described in section 2.1.1 data representations are world variables that can greatly impact the

benefits gained from using a virtual world. Similarly, the human-computer interactions

described in section 2.1.2 play an important role in determining the benefits from a virtual

environment. It is therefore essential that all algorithms support the required user interaction

with the data.

23

2.2 Evolutionary Algorithms

2.2.1 Deterministic Modeling

Deterministic modeling techniques use models that represent the precise physics of a given

environment. The environmental parameters are directly input into the functional model. From

the functional model and the environmental parameters, a description or predicted behavior is

output. This basic I/O representation is illustrated in Figure 2.4.

Figure 2.4 - Deterministic modeling I/O

Within the larger functional model, smaller components in the model are usually

analyzed separately. The collection of components is assembled and analyzed to obtain a model

for the overall system. Breaking the overall model into its component pieces allows for a more

direct representation of the environmental effects and the physics being modeled. Additionally,

the smaller models have less variability then their large complex counterparts, therefore the

smaller models will be simpler to develop and easier to solve.

Most simply, a deterministic model can be described as a system of equations or

functions from which a solution gives practical insight into the problem being investigated.

Since most of the deterministic models involve varying parameters, differential equations are a

24

i

common form for the models to take [30]. The differential equations will vary in complexity

depending on the nature of the problem.

Assumptions are essential in simplifying the problem in order to obtain a manageable

model. A deterministic model will not provide meaningful results if the assumptions made are

inaccurate. The solutions obtained need not match reality exactly, but should be accurate to the

degree required for solving a specific problem. Selecting appropriate numerical methods is also

essential in deriving a deterministic model. Numerical methods introduce error in a number of

ways including rounding and propagation errors. Although deterministic models can produce

accurate results, the modeling of complex phenomena requires extensive derivation and

experimentation.

2.2.2 Filtering Techniques

Evolution can be simulated through the use of a parametric model, an IIR filtering technique.

The parametric modeling technique is a system identification procedure [32]. A signal y is

estimated and predicted through the weighted sum of previous inputs and outputs. This is known

as an auto-regressive moving average model (ARMA). Figure 2.5 below illustrates basic I/O of

an ARMA model.

Figure 2.5 - ARMA model I/O

25

Where H(z) represents the filter's transfer function in the z-domain. The difference equation for

a discrete-time system with outputy and input x is given in equation 2.1 below

y(n) + aly(n - 1)+... + apy(n - p) = box(n)+ blx(n - 1) +...+ bqx(n - q) (2.1)

Typically, an ARMA model has an input corresponding to zero-mean white noise. The

use of a white-noise input effects applications differently, but the additional input usually allows

for closer match of an unknown system. The filter is considered a pole-zero filter of order (p,q).

Whenp=O, the corresponding filter is an FIR, all-zero filter. The all-zero filter is known as a

moving-average (MA) model and is described by:

y(n) = bx(n) + b,x(n -1) +...+ bqx(n - q) (2.2)

When q=O, the filter is an all-pole filter. The all-pole filter is an autoregressive (AR)

model and is described by:

y(n) = -ay(n - 1) -...- ay(n - p) + x(n) (2.3)

For non-zero values ofp and q the ARMA model is described in equation 2.1. Physical

signals do not typically obey the model exactly, but the ARMA representation serves as a

suitable approximation. The model serves as a suitable approximation, because the filter can

often match real world systems to within a prescribed error tolerance.

Calculating the filter coefficients for the model is a complicated task and therefore there

are a variety of methods that can be employed. The calculation of the ARMA components

focuses on finding an IIR filter whose output matches the given output under a known input.

When the input is noise the all-zero filter is referred to as a MA model. However, if the input is

26

assumed to be arbitrary, the model is referred to as X. Certain implementations for calculating

ARMA coefficients can be more accurately described as ARX, since the algorithm calculates the

coefficients for an arbitrary input [33].

2.2.3 Genetic Algorithms

2.2.3.1 History of Genetic Algorithms

Throughout the field of signal processing it can be seen that a number of algorithms have been

inspired by biological origins. At the forefront of this research is the chromosome, the encoder

of life. Throughout earth's history there has been reproduction and the propagation of a wide

variety of species. Through natural selection and mutations, nature has had the ability to

populate the gene pool with the individuals that are most fit for survival. This concept of

biologic evolution has sparked the attention of signal processors, most notably John Holland.

In the 1970's John Holland realized that nature's model could be used to solve complex

mathematical problems. Just as natural selection acts on organisms, a mathematical system

could manipulate strings of numbers [34]. Through this structure, complex problems could be

solved just as complex organisms have developed in nature. The mathematical systems could

mimic nature and correspondingly manipulate the component members. The overall I/O

relations for genetic algorithms are depicted in the figure below.

27

I -ar--nnnrna rf nn I

Figure 2.6 - Genetic Algorithm I/O

Through this idea, genetic algorithms grew in popularity. Although genetic algorithms

share their name with the natural process, there is no direct relation between the two. The

natural process of genetic manipulation sparked the base idea for genetic algorithms, but the

mathematical interpretation has developed independently. The mathematical algorithms are

extensively used for optimization problems. However, the overall flow and structure of the

model is very suitable to a wide range of mathematical applications [35,36,37,38,39].

2.2.3.2 Algorithm Overview

The overall concept for genetic algorithms is described as follows. A population of individuals

is representative of a solution set, where each individual is an encoded version of the solution.

Each of the individuals is then ranked based on the quality of the solution it would provide.

From the entire population, a given number of individuals are selected to the mating pool.

Individuals with higher rankings are more often selected. These individuals are combined

together to form new solutions. After the mating process, the offspring are subjected to

mutations. Finally, the new individuals are added to the population and a new population

emerges. This process is shown in Figure 2.7 below

28

(Solution set) (Representation) (Solution)

I

Evaluation
--0 Population

Population
Selection , -

I l
o
0

Mating

Replacement , , Mutation I --
*4 4

m_ I I I I I

I
Figure 2.7 - The overall process for genetic algorithms.

The figure above depicts the overall process of genetic evolution, but does not give

insight into the variety of ways that each step can be realized. The following sections outline

some of the popular techniques that are used to carry out the various processes within the overall

genetic algorithm.

2.2.3.3 Genotype and Phenotype Relationship

The first step in setting up a genetic algorithm is to create the chromosome. The chromosome is

the code that represents a solution. The information located directly within the chromosome is

known as the genotype. The genotype is the encoded information about the appearance of the

larger whole, the phenotype. The phenotype represents the outward visual appearance of the

individual, the solution.

There are a variety of structures that are used for the genotype representation. A binary

coding is one such representation. The binary digits in the genotype would be representative of

features within the phenotype. A feature would be coded through a string of l's and O's.

29

Conversely, a string of l's and O's could be decoded to create a representative phenotype. The

genotype representation does not have to be binary, a numerical (base 10) representation could

also be used. The most important factor in creating a genotype is that is accurately encodes the

phenotype, and that the phenotype can be recovered from a known genotype.

2.2.3.4 Population Generation

Each genotype represents only one individual. Groups of individuals create a population. When

initializing the genetic algorithm, an initial population must be set. If there is no known

information about a previous population of similar individuals, a population is typically

populated with random individuals. If the genetic algorithm is being used to evaluate a known

set of solutions then the population will represent the genotypes of those known solutions. The

initialization of the population is important because it is a factor in the time required to reach a

desired result.

2.2.3.5 Evaluation Function

Each individual within the population is given a weight or a score. The score of each individual

is based on the evaluation of its chromosome. A cost function is used to determine the fitness of

each genotype. The cost function or fitness evaluation operates on the genotype. Based on the

genotype, the function estimates how adept the phenotype would be for the given application.

2.2.3.6 Chromosome selection

Natural selection takes place when specific chromosomes are chosen for mating. The

chromosomes that are chosen most often are those that have a higher fitness. If the strongest

individuals mate, the new population will be more fit then the original population. The most

popular method for choosing the individuals for mating is the Roulette Wheel Selection

30

technique. Using this technique, the probability that a given individual will be selected is

directly proportional to its fitness score. The natural selection process allows the possibility of

any member mating, but weights the superior individuals with a greater chance. The concept of

chromosome selection is illustrated in the Figure 2.8.

F Itne ; Prob tty 0fmai*ng
1

0.9

0.8

o.e

1

: 0.

o 0.

I 0.3

invuU Io-
0.2

0.1

nf
1

Individual

Figure 2.8 - Roulette-wheel parent selection technique.

This concept can also be expressed mathematically as:

"

(2.4)P(i) = -

IfJ
j=1l

Where f, is the fitness score for the i-th individual, and N is the total number of individuals.

31

___�__�__T_�_

I I I I : :
: :

·
.

I
, K'

NI' , '' .' t
:

0

0

20%

3 25%

_
v

f·:W'.

iB":6

I
F�d

4Br
11 &

2.2.3.7 Chromosome mating

The process of combining two chromosomes allows for the creation of two new individuals. The

information contained in the two chromosomes is combined such that the new individual

contains a part of both the original parents. In one-point crossover, a random point within the

chromosome is chosen. The first section of the first individual is combined with the second part

of the chromosome in the second individual and vice versa. This process will create two new

individuals that may each have certain characteristics from the two parents. An example of one-

point cross-over is described in equation 2.5.

Cut - point: Cp

parent1 = [cl clC1 2...clM_, clM]

parent2 = [c2o c2 c2 2 ...c2M_ c2M (2.5)

child, = [clo cl ...clp c2 p+..c2M _ c2]

child2 = [c20 c21...c2plp+,l...clM_ clM]

2.2.3.8 Mutation

The mutation function operates on newly formed individuals. The possibility of mutation allows

the algorithm to introduce new features that were otherwise not present in the population. If the

new trait is favorable, then that individual will mate often and create more individuals with that

same trait. The idea of generating a population through a series of mutations is often referred to

as genetic computing [39].

The mutations that occur are randomly determined. If the chromosome has a binary

representation, during a mutation, a 1 will be changed to a 0 and vice versa. The probability of a

chromosome being mutated is traditionally a predefined characteristic of the algorithm. The

mutation rate will then determine how often a sudden change in a chromosome takes place.

32

2.2.3.9 Population Replacement

Finally, after the new individuals are created they are inserted into the overall population. The

introduction of these new individuals can be performed in a number of ways. The simplest

method of performing genetic replacements is a replace-all strategy. In a replace-all strategy the

newly generated population replaces the entire old population. This technique does not take the

fitness of each individual into consideration. If the individual's fitness is to be taken into

consideration, other replacement techniques can be employed.

A selective replacement allows for the least fit members of a population to be replaced by

the new members regardless of the fitness of the new members. Finally, a top-selection process

can be used to obtain a population that has the top members. After the new members are created

the old and new individuals are tested and only the most fit of all the members survive to join the

next generation population.

2.2.4 Hidden Markov Modeling

There are many applications that utilize Hidden Markov Modeling (HMM), but time-series

evolution and risk assessment are two fields that have heavily used HMMs. The input of a

HMM is a set of probabilities, where the probabilities can be obtained from a prior knowledge or

through a learning process. Using these probabilities, an HMM will output a sequence of states.

The sequence of states corresponds to the solution being represented. This concept is illustrated

in Figure 2.9 below.

33

Figure 2.9 - HMM I/O

A first order, discrete time, Markov Model is illustrated in the figure below [40].

Figure 2.10 - A first order, discrete-time Markov model.

A Markov model is a state machine where each transition is associated with a probability.

A particular sequence of states, of length T, is denoted as:

aT = {o(1), o(2),..., c(T)} (2.6)

where, a(l) is the state at time-step 1. Each subsequent state is a function of the previous state.

The transitional state probabilities can therefore be given as:

(2.7)

34

all
33

a. = P(ij (t + 1) I ,i (0))

From state i to statej, the transitional probability, aij, is defined as the probability of

being in state oj at the subsequent time-step, given that that system is in state oi at the current

time-step. For a given instance, the sequence of states would be given as seen in the example

below:

a 4 = {(1i, 3 ,a 3,W) } (2.8)

It is important to note that on subsequent time steps the system need not change states;

the system can remain in a single state for multiple time-steps. Also, for a given instance, the

system is not required to enter into every state.

The Markov model is a suitable state machine model, but it is not applicable to a large

number of real world applications. In real world applications, the user cannot access states

directly. However, some measured or emitted feature from a state is accessible. A hidden

Markov model can therefore be used to illustrate that at every time t, the hidden state o(t), will

be associated with a visible state u(t). The figure below illustrates a first order, discrete time

HMM [40].

35

Figure 2.11 - A first-order, discrete time HMM.

From this model, a particular set of visual states will be defined - rather then a set of

hidden states. The set of visible states observed is defined as:

V T = {v(1), v(2),..., v(T)} (2.9)

A given instance of observed values can therefore be represented as seen in the example below:

V 4 = {Vl, 3,v 4 , v} (2.10)

This sequence represents the order in which the visible states were observed. At each time-step a

given visible state was emitted. The state emitted was a function of the current hidden state. The

transitional probabilities for a visible state are given by:

bjk = P(Vk (t)) I co (t)) (2.11)

36

where the transitional probability from hidden statej to visible state k; bk, is equal to the

probability of visible state k given hidden statej. The hidden state transitions are still defined by

equation 2.7 for a HMM.

There are four ways HMMs can be used - sequence determination, evaluation, decoding,

and learning [40]. Sequence determination is the primary focus of HMMs in this thesis.

Sequence determination means that all transitional probabilities are known. A resulting set of

sequences VT is then determined. In evaluation, the transitional probabilities and the visible

sequences are known. The calculations then focus on determining the probability that the

sequence occurred given the specific set of transitional properties. In decoding, the transitional

probabilities and the sequence of visible states are again given. The focus is determining the

most likely sequence of hidden states that led to the sequence of visible states. Finally, in

learning a set of visible sequences is given. From these instances, the set of most likely

transitional probabilities is determined.

There are a number of algorithms that have been developed for each of the.four usages of

HMMs. The parameters can be compiled in a static or adaptive state. Much of the recent works

outline methods by which the state transition probabilities are adaptively calculated. Other work

has focused on the ability to. adaptively determine the number of hidden states in a network [41].

2.3 Scenario Development & Risk Assessment

For almost any industry the process of risk management is extremely important. The process of

risk analysis is performed to avoid potentially dangerous and costly situations. Risk analysis

tools and risk measurement techniques allow for decisions to be made such that the various cause

and effect chains can be taken into consideration. There are a wide variety of approaches that

37

can be taken towards performing risk analysis, so this section presents the important concept

common to many techniques.

A traditional definition of risk is: "A factor, thing, element, or course involving uncertain

danger; a hazard [42]". Risk can be considered "an uncertainty surrounding the loss from a

given undesirable event resulting from a hazard [43]". Similarly, risk is "the combined effect of

the probability of occurrence of an undesired event and the magnitude of the event [44]". Within

all three definitions there are common threads. Risk is associated with the occurrence of an

event. This event is to some degree unexpected and has unwanted consequences. Risk is

associated with uncertainty and therefore risk analysis or risk predictions will not be absolutes,

but insight into possibilities.

2.4 Evaluation Criteria

Typically, signal processing techniques use a form of error criteria or a cost function to assess

the functionality of an algorithm. Just as a genetic algorithm uses a cost function to assess the

fitness of an individual, a digital image restoration technique would use a mean squared error to

quantitatively describe the algorithm's performance [13]. However, to achieve such a measure,

the algorithm output needs to be compared to a known correct or acceptable output. In

applications such as risk assessment there is no given output that is necessarily superior to any

other [45]. For such applications other evaluation measures need to be considered.

In this thesis, the evaluation of each algorithm is not based on the performance of the

algorithm with respect to the output, but rather to a predefined set of goals or criteria. Since the

evaluation is with respect to a predefined set of goals, quality management and quality control

methodology can be applied [46]. There are seven tools, known as the seven management tools,

that can be employed throughout the development process to ensure algorithms meet the required

38

specifications. These same principles can be applied to an end-evaluation of the evolutionary

algorithms.

The first tool, a matrix diagram, can be taken from the seven management tools. A

matrix diagram supports a graphical representation that focuses on the relationship between

factors [47]. Relationships can be illustrated in terms of positive or negative correlation in

addition to the overall strength of the relationship. Through the use of this tool, an analysis can

be made about the overall interactions between each algorithm and the goal it is trying to reach.

The second management tool that can be taken from the seven management tools is a

prioritization matrix [47]. A prioritization matrix combines both qualitative and quantitative

analysis in the same procedure. Using a prioritization matrix, each algorithm can be given a

score based on a set of evaluation criteria. The evaluation criteria are weighted such that the

most important, critical factors are given the largest values. The overall score is then a reflection

of not only the algorithm's performance with respect to a specific goal, but of the algorithm's

performance with respect to its overall operation. This type of comparison will allow for the

evaluation of the various evolutionary algorithms.

39

CHAPTER 3- APPROACH

3.1 Overall Visualizations

3.1.1 Data Integration

In this thesis, the main purpose for developing a virtual environment is to perform data

inspection and data analysis. In general, the goal of an inspection system or measurement

system is to gather data that represents the true state of reality. A virtual world is the proposed

platform in which the collected data can be integrated with other forms of data for subsequent

analysis. The virtual platform allows for both the experiential integration and evolution of a

range of data types. In Figure 3.1 the overall process of world development is shown. The

figure illustrates the processes by which reality can be modeled and a virtual world created in its

likeness.

Figure 3.1 - Creation methodology of a virtual world.

40

Graphical
Depiction

Modeling

/

The first step in creating a virtual world is to obtain a graphical depiction of reality. A

graphical depiction forms the basis or background for the entire virtual world. The models are

obtained through physical modeling means; dimensioned drawings or images can be used to

formulate the graphical data. Graphical data can be represented with a variety of file formats,

but most traditionally VRML files are used. The detail needed in the graphical data depends on

the specific object being modeled and its relevance in the overall analysis.

The second form of data is measurement data. Measurement data is any data that were

obtained using sensors. It is the simultaneous visualization of multiple sensors that allows VR to

become a platform for data integration and inspection. The main goal in the visualization of

measurement data is to construct a representation that is as close as possible to the true nature of

the data.

The third form of data in the visualization process is functional data. Functional data

representations are derived from mathematical operations. Phenomena in the real world can be

mathematically modeled and described using functional data. Functional data also include

results derived from the analysis of measurement data. The purpose of functional data is to

provide insight or additional information about the virtual world.

All three modalities of data can be integrated on a VR platform. In addition to these three

forms of data, user interaction is possible. The user input is used to guide the evolution of the

virtual world over time. This overall framework provides a basis for outlining the visualization

and analysis needs of world development. Additionally, the framework allows for some

standardization in the process of world creation.

In this thesis, the VR approach is used for the integration of various data types for the

nondestructive evaluation of gas transmission pipelines. First, graphical representations were

41

created to provide an overall background for visualization. Next, the multi-sensor data were

obtained to allow for an inspection of the condition of a specimen. After that, the data were

processed to gain additional insight about the raw sensor data. Finally, a method for user control

was developed for aiding in the decision making process. This data integration scheme is

illustrated in Figure 3.2 below.

Figure 3.2 - Multi-sensor data integration for the non-destructive evaluation of gas transmission
pipelines.

In this application, the graphical data for the virtual world is divided into two sections -

component models and world data. The component models are the individual pieces that

combine to form the pipeline network. There are a wide variety of components that can be found

within a pipeline network. These models include pipe sections, flanges, welds, sleeves, T-

sections, taps, check valves, ball valves, anchors, and anomalies (crack, pit, etc.). The

42

Time
/

/

User Input

I
I

component models are representations of the objects that are under direct investigation. The

world data form a representation of the environment in which the pipeline exists. The

geographic information system (GIS) can be used to obtain such variables as the land topology,

population figures, land usage, location of roads, rivers, etc. The world location data is useful in

dealing with remediation measures.

The multi-sensor data is representative of the information obtained through an inspection

of a pipeline. Various techniques can be used to determine the condition of a pipeline. These

tests include, but are not limited to, magnetic flux leakage data, ultrasonic testing data and

thermal imaging data. Various graphical representations such as color slices and point clouds

can be used to visualize this measurement data within the virtual world.

The final data format is functional data. An example of functional data is a neural

network prediction. Neural networks can be designed to perform an automated classification of

the measurement signal signatures. For example if an MFL scan was performed, a neural

network could be used to identify the areas of benign pipeline sections versus areas that contain

anomalies.

Once all of these data formats are integrated into a virtual environment the user has the

ability to visually inspect not only the data obtained, but also the environment from which the

data was obtained. Additionally, the user can initiate an inquiry wherein the user will be able to

see the evolution of the world over time. As an example, the propagation of a stress corrosion

crack within the pipe wall will be integrated into the virtual world. The integrated world with

evolutionary components is extremely advantageous for performing a risk analysis or a

remediation recommendation.

43

3.1.2 Data Processing

There are a variety of methods for data processing of complex virtual environments. Ideally, all

processing techniques would occur simultaneously and instantaneously. This goal is obviously

not attainable. Therefore it is important that the processing tasks be prioritized. For simplicity,

the approach taken assumes all graphical, functional, and measurement data processes have

occurred prior to their visualization. The graphical representations of such data can be created

on the fly, but the processing of the core data occurs prior to the visualization of the world.

During analysis, the evolution of the world is a function of user input. If user input were

to occur in real-time, all evolutionary predictions, models, and graphical representations would

also need to occur in real-time. However, the same effects can be modeled if the user input is

obtained prior to world rendering. For algorithm comparison purposes, user-input collected prior

to rendering requires a significantly simpler VR implementation interface. In a final

implementation the user would desire a real-time implementation, but for comparison purposes

real-time implementation is not required.

3.1.3 Hardware /Software

Hardware and software choices also have a significant impact on the visualization of any virtual

world. The complexity of the hardware will dictate the level of immersion that a user will

experience. Although important to the user, the virtual world should be designed such that it is

independent of the hardware used for visualization. Ideally the same independence should exist

for the visualization software. However, certain software configuration files are needed for

world visualization. To this end, the software dictates certain implementation features.

For the comparison and evaluation being performed, a semi-immersive VR system was

used. The world visualizations occur in a stereoscopic, navigable environment. The software

44

used for visualization is vGeo® [23]. vGeo® handles the graphical representations and

rendering of all objects. Lighting, shading, and navigation are also controlled under this same

software platform. Tracking is obtained via a flock-of-birds sensor array. Evolutionary

predictions and model analysis calculations are not supported by vGeo® and therefore take place

on a different platform prior to run-time.

3.2 Data Representation

The data representation format is an integral part of the evolutionary algorithm implementation.

The evolutionary parameter represents real world phenomena that are input to the evolutionary

algorithms. Subsequently, the output will be represented graphically in VR. It is therefore

important to define a variable that is conducive to real world representations, input into an

evolutionary algorithm, and representations in a VR environment used for both visualization and

analysis.

One method in which this can be realized is through the use of a representative decision

tree structure. The decision tree being used in this thesis allows for each branch of the tree to

grow from a node. Nodes can represent decisions, actions, or physical features. For each time

step, the branches will grow from their respective nodes a certain distance in N-dimensions.

Figure 3.3 below illustrates a 2-dimensional tree structure.

45

Cinrrlp

Figure 3.3 - Illustration of a decision tree variable structure.

The format of the data type is (Branches x Nodes x Dimensions). Therefore a tree with 3

branches, 5 nodes per branch, and 2 dimensions would be a 3 x 5 x 2 array. These are the

dimensions of the tree displayed in Figure 3.4 below. The 2 dimensional tree on the left is

described numerically by the matrix on the right. Each row of matrices in the array corresponds

to 1 of the 3 branches. Each column of matrices in the array corresponds to 1 of the 5 nodes.

The inner matrix (2 x 1) describes the growth rate for the given node and branch in 2 dimensions,

x and y. In this thesis, growth rate is being defined as the node value; this value represents the

growth (distance) from nodet.l to nodet.

46

Branch 1

Branch 2
Start

Branch 3
nodes

OW0
:1o
f .f

II
i0
*'7

_'-

A.

1Z,
i

10
I

0.

[I] [11 [2]

1 [I -E]
l '*0 1 :''' '1 . ' V-.

Figure 3.4 - Realization of data format.

The mapping of the tree will dictate the behavior for each node inside the virtual world.

For testing each application, 1, 2, and 3 dimensional evolutionary variables will be used. For the

application of modeling stress corrosion cracking in a pipeline, a mapping can be made between

the tree structure and the physical crack profile. For a direct physical map, each node would

represent the location of the crack at a given time-step in an x-y-z coordinate system. However,

the mapping made in this thesis is used for crack growth along a pipe wall, and therefore defines

2 distinct spatial dimensions - propagation along the axis of the pipe, propagation along the

circumference of the pipe. This mapping scheme makes the assumption of uniform crack depth

along the length of the crack. This scheme also assumed a uniform time-step between nodes.

Additionally, a third dimension could be incorporated into this structure to the represent temporal

data.

47

is

___ __

id ,S .. 5:.;. 5. C: : E ~ ~ ~ . .S:~ ~5i'

i'
iN

io

M,

3.3 Evolutionary Models

3.3.1 Algorithm Goals

The implementation of all the evolutionary algorithms follows a number of goals and

assumptions. In general, the goals of the VR evolutionary algorithms focus on providing a

powerful tool by which a user can perform an analysis and visually observe the corresponding

changes in the virtual world. The goals for the algorithms are:

1. Applicable over diverse datasets and components: This includes diversity of both form

and function. An example of diversity is the dimensionality capabilities of the

algorithms. The algorithms are sequentially built from 1 to 3-dimensional datasets so that

the deduction for an N-dimensional dataset is possible. Also, as described in Section 3.2

a generic model can be used such that parameterization of the model output can be

formulated separately.

2. Exhibit real-time deployment and integration capabilities: Each algorithm should have

a mechanism to allow for multiple-levels of interaction. The algorithms should actively

involve the user in the necessary evolution calculations. Although desirable, real-time

deployment of the algorithm need not coincide with real-time deployment of the

visualization of the evolutionary model. Also, system dependencies and computational

costs should be kept to a minimum.

3. Non-phenomenological. As an initial step, the algorithms should adhere to basic

physical laws, but do not need to be phenomenological. The algorithms do not need to

explicitly model the physics of the environment. The algorithms are to operate on a

meta-level instead of specific physical models.

48

4. Contiguous, but stochastic. The evolutionary path should evolve smoothly; sudden

jumps in the state of the world are nonphysical and therefore undesirable. Paths should

be controllable, but stochastic. A user should be able to reproduce similar results in

subsequent runs, but should not obtain identical results.

5. Awareness. Awareness is defined as the algorithm's knowledge of the environment in

which it is operating. Such knowledge allows for greater complexity of the evolutionary

worlds. Also, algorithm awareness makes the communication between evolutionary

algorithms possible. The user is in control of the predictions and path of the models.

While controlling these paths, the amount of information hidden from the user will

depend on the level of awareness of the given algorithm.

6. Easily interfaced with the user. The parameter I/O should be intuitive and efficient. A

user within a virtual world is assumed to have a limited understanding of the calculations

of the evolutionary algorithm. A front-end should be built into the algorithms to allow

the user to select from a limited number of adjustable parameters.

7. Simple I/O to the VR visual rendering core. The output of the algorithms should be in

a format that can easily be translated into a visual representation. This factor is highly

dependent on the evolutionary prediction format.

8. Not application or implementation specific. The algorithms should not hinge on a

single command or implementation structure of a software platform. The translation of

the algorithms from one software platform to another should not introduce a noticeable

change in the performance of the algorithm. Again, this reiterates the idea that the

algorithm must have a simple interface by which the predictions can be translated into a

49

visual representation. The visual representation should be adjustable depending on the

requirements of the display software.

3.3.2 High-Level Structure

In this thesis, evolution is defined as a process by which a user inquiry initiates a corresponding

temporal change within a virtual world. Using this definition, evolution can be subdivided into

two different categories - single-path evolution and multi-path evolution. Single-path evolution

allows the user to evaluate a solitary possible path as it changes over time. During the

evolutionary process the user can interact with variable data and influence the direction and

nature of the evolution. In multi-path evolution a user would define a desired value and / or a

duration in time. The evolutionary algorithm would then generate possible data paths to

illustrate different means by which these desired values could be obtained. The figure below

illustrates the concept of single and multi-path evolution.

(a) Single path evolution. (b) Multi-path evolution.

Figure 3.5 - Evolution.

In order to implement and perform an unbiased evaluation of various evolutionary

algorithms a high-level structure is needed. The high-level structure allows for uniformity

50

1

C

I t

I 1111M

among the algorithms with respect to the process of generating the desired predictions.

Additionally, a high-level structure allows for a simple interface between the user and each of the

evolutionary modules. There are two core functions common in both single and multi-path

evolutions -prediction and correction. For this thesis, prediction is defined as the process by

which calculations for the output of evolutionary nodes are made. Equation set 3.1 below

illustrates the outcome from calculating a prediction.

[Yo Y1 Y2 Y3]=[fA(Xo) fA(X fA(X 2) fA(X 3)]

{Calculate Prediction} (3.1)

Y4 = fA(X4)

wherefA is the function that describes the nature of the model, and Xn is the model input.

Equation set 3.1 illustrates how a prediction would be calculated at time-step 4. The outputs Yo-3

are calculated in the same manner. Each evolutionary algorithm will have a unique method of

calculating the prediction, but all of the algorithms will have the output similar to Equation set

3.1. The second function, correction, is the process by which the evolutionary model is updated.

This is illustrated in Equation set 3.2.

Y 4 = fA (X4)

{Parameter Correction} (3.2)

[Y5 Y6 Y7 Ys]=[fB(X5) fB(X6) f(X 7) f(Xs)]

These equations illustrate how modelfA is updated to modelfB. Subsequent model

calculations for inputs x5-8 use the new functionfB. Again, each evolutionary algorithm will have

a unique method for performing a correction. By using a combination of both functions, single

and multi-path evolution can be implemented without concern for the manner in which the

prediction and correction are performed.

51

3.3.2.1 Single-path Evolution

Single path evolution allows the user to initiate a prediction based on the dataset at a given

instant. The user is given an evolution adjustment parameter, a, to control the prediction path.

Additionally, the user has the ability to either generate a new prediction or update the prediction

model, correction. The flowchart illustrated in Figure 3.6 provides a conceptual model of the

implementation for high-level single-path evolution. The overall structure is independent of the

prediction and correction model implementations.

52

ParameUSjte,,.r

Correction

i

Cwj M
0 :jlo: | ' , L . E

Plliarameter^/
Cor ti r 'ection ."'

.. i. z 2 _ : .. ' ;
ffi~~~ ~ ·:·' " > e 5 X r 0 l-

,.,, ., .: . .:: . _. . .

.. S~~~~~~~~ -, .
. E .. - .. ·-

:, ..+- .; ;.... 0 .S . ; .
: '.': 1. . t d z tp$ 2 '

Figure 3.6 - Single-path evolution algorithm.

53

i

k

i

3.3.2.2 Multi-path Evolution

In this thesis, multi-path evolution allows the user to specify both a desired parameter value and

a desired duration in time, only a desired parameter value, or only a desired duration in time.

The model has tolerance parameters that can be adjusted to determine the acceptable difference

between the predicted values and the desired values. In this thesis, fully constrained evolution is

defined by the user specification of both parameter and time values. Alternately a user can input

only a value or only a time; these are value-constrained evolution and time-constrained evolution

respectively. The equation set below, 3.3, defines the three types of evolutionary constraints.

Fully - Constrained

f, (tc) = fc
Value - Constrained

(3.3)
f, (t) = f(3.3)
Time - Constrained

fn (tc) = f

Wherefc and tc are the value and time constrains, andfand t are a value and time at an

arbitrary state. Like single-path evolution, multi-path evolution can also be implemented using

the prediction and correction functions. Figure 3.6 illustrates the dataflow model for the multi-

path evolutionary algorithm. First, the user initiates a multi-path evolution and defines the goal.

The goal consists of a desired value and/or time constraint along with the number of paths to be

generated. From this information, the high-level algorithm corrects for a set of parameters.

Predictions are generated to construct a path. After each prediction the overall path is checked.

If the goal was reached, the path is saved. If no additional paths are required, the algorithm is

finished. However if additional paths are required, a new set of parameters is obtained. If the

goal is not reached to within the predefined tolerances, the path is evaluated against the goal.

54

The comparison focuses on determining whether or not it is still possible for the path to reach the

goal. If it is determined for the given parameters the goal will never be reached, the parameters

are corrected in an attempt to gain more suitable parameters.

Figure 3.7 - Multi-path evolution algorithm.

55

Emt

The dimensionality of the algorithm is determined by the dimensionality of the dataset

and the individual modules for prediction and correction. The high-level algorithm is

independent of dimension so it will remain constant even as the dimensionality of the modules is

altered.

3.3.3 Evolutionary Algorithms

3.3.3.1 Deterministic Models

The deterministic representation in this thesis is modeled using known growth rates. Essentially,

a deterministic implementation will resolve to the calculation of a desired parameter. In order to

simply the process, the model implementation did not use first principles, but rather assumed that

the results of the required rate calculations were known. The figure below illustrates how the

prediction and parameter correction functions are utilized.

Figure 3.8 - Deterministic IO.

The input of the prediction function is the known growth rate of the evolutionary

parameter. The deterministic model translates this growth rate directly into a single new node.

The parameter correction function requires that the growth rate be changed. The growth rates

56

Prediction

Correction

Growth
Rate

/_

I

were obtained from a priori information about the nature of crack growths. Figure 3.9 below

illustrates a typical trend of stress corrosion cracking growth versus the stress intensity factor.

Figure 3.9 - Crack Growth Chart.

The stress intensity factor describes the concentration of stress at the tip of the crack.

There are typically three stages within the cycle of crack growth. Stage 1 begins when the stress

intensity reaches a threshold, Kisc. In stage 2, the crack growth is independent of the intensity

factor; the rate of crack growth is determined from environmental factors such as temperature

and environmental corrosives. Once the intensity has reached a high enough level, the growth

enters the third state which is characterized by a rapid increase in the growth rate. Failure occurs

at the material's fracture toughness, K 1c.

57

Stage 3

I

Stage 1

I

O0

C)a
P,

aX

I
da

dt

K1,sc K1c
Stress Intensity KI

Stage 2

3.3.3.2 Autoregressive Moving Average Models

The second evolutionary module investigated was an IIR filter model, specifically an ARMA

model. The figure below illustrates how the ARMA model was used to implement the prediction

and correction functions.

Figure 3.10 - ARMA IO

The prediction function utilizes the natural I/O structure of the ARMA model for use

within the evolutionary environment. The input of the model is either a user input or random

noise. The use of user input as the x(n) is more accurately referred to as an ARX model. The

system uses the input signal and filter coefficients to obtain an output y(n), the y(n) represents a

set of nodes for the evolutionary parameter.

58

Prediction

Correction

'tr r.. . mt~,~' ~, ~' ~~ r' I

I I . ;-i , >P,*;^ 1 ; , j I 1

AR:~~~~~~~~ [1a. a2... aP1

MA:[ba- b bO24i ... ijl

I # � :7 l� #� 1 �' 7� � r-
; , MUS.- n \ C

The correction function is responsible for calculating the filter taps. The Steiglitz-

McBride iteration was used as a means of calculating the desired coefficients. This technique

uses a combination of different methods. The system identification or parametric modeling first

uses Prony's method; Prony's method is a sequential technique, in that it first finds one set of

coefficients (poles) and then calculates the second set (zeros). The filter is not necessarily stable,

but it can find the coefficients exactly if the signal being modeled is truly an ARMA signal of

proper order.

In order to calculate the coefficients, Prony's method uses a variation of the covariance

method of AR modeling. The overall steps for calculating the coefficients are described below

[33]:

- Perform an AR fit using a variation of the covariance method

- Filter the roots

- Use a least squares fit

- Use signal thresholding to create the final model

This method is equivalent to Shank's method in that it computes the denominator

coefficients by minimizing the equation below:

j2 () = l ,b+i (a * h(n) - (n))2 (3.4)

The equation represents finding the poles by ignoring, or 'skipping', the zeros that are

present in the impulse response. This approach is more commonly known as a modified Yule-

Walker method. Since the poles are known, the remaining coefficients are found by minimizing

equation 3.5

59

H(eJi)- B) e) (3.5)
A*(eJ°')

The Steiglitz-McBride iteration is different from Prony's method in that it is an iterative

approach for calculating the system coefficients. The method provides a fast iterative technique

for finding the numerator and denominator coefficients simultaneously. The algorithm also

attempts to minimize the mean squared error between the known output and the predicted output.

The Steiglitz-McBride iteration is described below [33]:

-Pre-filters h and x using l/a(z)

- Solves a system of linear equations to solve for a and b

Again, the algorithm attempt to minimize the function described in equation 2.6

min -=0 x(i) - h(i) 2 (3.6)
a,b

Like the Prony method, the Steiglitz-McBride iteration provides a direct fitting approach.

Due to this approach, the filter is not guaranteed to be stable. The Steiglitz-McBride iteration

can be run for any number of iterations in an attempt to more closely match the given set of

coefficients. The Steiglitz-McBride algorithm uses the Prony method as an initial estimation.

The various implementation parameters - number of poles, number of zeros, and the number of

iterations for the algorithm - are all adjustable design parameters. These design parameters are

not altered by the correction function; the correction function only updates the filter taps.

60

3.3.3.3 Genetic Algorithm Models

Genetic algorithm models were also considered as an evolutionary prediction module. Genetic

algorithms have a great deal of parameters that must be defined in order to obtain the desired

functionality. The entire population of individuals within the genetic algorithm represents

multiple solution sets. When a given individual is chosen, the chromosome is decoded via a

mapping function, and a set of node values for the evolutionary parameter is obtained. The

prediction function generates solutions by evolving the entire population and extracting a

representative individual. The correction function keeps the genetic algorithm design parameters

constant, but updates a set of user defined values. These concepts are depicted in Figure 3.11

below.

Figure 3.11 - Genetic algorithm I/O

61

The overall process of genetic evolution is described in Section 2.2.3. As seen in the

description, genetic algorithms have a great deal of variability to them. The ensuing paragraphs

will outline the methods that were implemented in this thesis to realize the genetic algorithm

structure. The first step in setting up a genetic algorithm is to determine the genotype to

phenotype mapping. Since the evolutionary parameter is already a coded version of the solution,

the evolutionary parameter format was used directly as the input to the genetic algorithms, the

genotype. A single individual is a set of nodal values; these node values include known growth

rates as well as the predictions. The solution set, the entire population, is therefore multiple sets

of nodal values as seen in the equations below

1 1 1 1
Co C1 C2 ... CM

22 c2 2
C0 C C2 ... CM
3 3 3 3

Co Cl C2 ... CM (3.7)

Co C
N

C ... CM

where the superscript denotes the individual (1 to N), and the subscript represents the

chromosome number (0 to M). In the case of multiple dimensions and multiple branches, c, will

be in matrix form. When initializing the algorithm, the population is randomly generated. Each

chromosome is generated using a uniform distribution for a discretized set of values between a

prescribed upper and lower bound. Random generation for the initial population ensures

diversity among the solution sets.

The next step in a genetic algorithm is the evaluation of the population. The evaluation

function is based on a Gaussian fitness curve. A Gaussian curve was used over a Euclidean

distance estimation because the use of a Gaussian allows for more degrees of freedom within the

evaluation. Also, in an attempt to more closely match a natural solution set, it was desirable for

62

the solution set to exhibit a Gaussian distribution of the individuals. The process for evaluating a

single individual, i h, is given below

M

Eval([cO cl c'...c])=f' = (3.8)
j=o

The fitness of each individual is the sum of the evaluation of each chromosome of that given

individual. For a given chromosome, the user can define the mean and variation of the Gaussian

curve. Typically, the mean is equal to a known value of an a priori signal. The fitness score is

then based on the value the solution exhibits along the Gaussian member function with the user-

given mean and standard deviation. An example of this process for the ih individual is illustrated

in Figure 3.12.

I I

I cO Vcl C2

Figure 3.12 - Gaussian fitness evaluation

A roulette wheel parent selection technique is then used to select the individuals that will

mate. The probability that the i h individual will be chosen is given by Equation 3.9

P(i) (3

j=l

63

C

. . .

After the individuals are selected for mating, a random one-point cross-over per dimension is

then used to combine the individuals to create the children.

A bit-wise mutation function was implemented. The defined mutation rate is applied to

each chromosome of each newly generated individual. If selected for mutation, the given

chromosome is replaced by a random value within the predefined lower and upper bounds. The

equations below describe a mutation for chromosome with index value 1 of the i h individual.

M([co cl...c4])=[co f(c.)...4] (3.10)

f(c) = rand

After being subjected to the mutation function, the new individuals are inserted into the

new population. Since a replace all strategy is implemented, N/2 matings are performed to create

N new individuals. These N individuals create the entire population at the subsequent time step.

Once the population has evolved over several generations, a representative sample needs to be

output. This representative individual will represent a set of nodes that can be used as output of

the evolutionary function. In order to select only 1 of N individuals, the same process used for

mate selection is employed. However, instead of selecting 2 mates, only 1 representative

individual is selected.

The parameter correction function requires changing only a small number of the total

parameters used within the genetic algorithms. The majority of the parameters are kept

consistent to assure that the results are reproducible over a number of runs. The main change

that can be made via the parameter correction function is an update of the user input; only the

Gaussian fitness evaluation parameters are altered. Also, the user has the ability to select the

number of iterations of the overall evolution. By selecting a low number, the population will

64

have a large amount of random individuals, whereas with a high generation number, the

individuals will exhibit a lower amount of randomness and a higher correlation to the known

inputs.

3.3.3.4 Hidden Markov Models

Hidden Markov Models are the final module being investigated. For this model, each dimension

will have individual visible-state probabilities. Transitional and visible-state probabilities will be

determined prior to run-time, but the visible state transitional probabilities can be altered using

the parameter correction function. As an initial assumption, this thesis assumes that the

transitional probabilities will be based on the structure of the HMM, not as a fit from acquired

data. The model developed uses three hidden states and three visible states. Figure 3.13 below

depicts this model.

Figure 3. 13 - HMM implementation structure.

65

c
33

-

This model assumes that the largest growth rates occur for the low hidden state values. I.e. all

visible states from hidden state 1 will exhibit higher nodal values then the visible states from

hidden state 2. Within a given hidden state, the higher visible states will exhibit higher nodal

values. This means that hidden state 2, visible state 3 will have higher nodal values then hidden

state 2, visible state 2. This concept is illustrates in the prediction function description of Figure

3.14.

The prediction function uses the transitional probabilities input into the model to generate

visible states; each visible state corresponds to a single nodal value. Therefore, a set of visible

states will correspond to a set of nodal values, the evolutionary parameter. The parameter

correction function allows the user to alter the transitional probabilities of the visible states. The

hidden state transitional probabilities remain unaltered. The concept for the prediction and

correction functions are illustrated in the figure below.

66

Prediction

Figure 3.14 - HMM 1/0.

3.4 Evolutionary Visualizations

The evolutionary visualizations will take place in the same virtual worlds as the multi-sensor

data fusion. In addition to the multi-sensor data, the evolutionary worlds will display the

evolutionary predictions and the algorithm inputs and outputs. The inputs and outputs will be

displayed as 3-dimensional slider bars. Both sets of I/O will be color coded and labeled

according to functionality. The I/O displays will be fixed on the screen; the coordinate system

will be static and non-navigable. Fixing the displays will allow them to be visible regardless of

the orientation of the world itself.

67

Correction
.-------- E----- -- - - I.

Visible State V Visible State 3

Visible State I Visible State 2 I VisibleState 3

Hiden State 3 I

Visible State 2 Visible State 3

Small growth / Large growth
rates / rates

i, . : · .-· · - . I;

3.5 Evaluation Criteria

The goal in comparing the four algorithms is not to evaluate the algorithms for predictive coding

applications, but to determine the benefits and drawbacks of each of the algorithms for VR

evolutionary scenario development. Each algorithm has traditional positive and negative

features based on previous work (Section 2.2). The objective of the evaluation is to further the

understanding of these features when the algorithms are implemented for VR development.

In order to ensure a fair comparison, the algorithm modules were tested using both the

single path and the multi-path high-level implementation algorithm. Each of the four prediction

algorithms was used as a prediction and correction module within this overall structure. For both

single and multi-path evolution, each algorithm will operate in 1, 2, and 3 dimensions. From

these implementations, an impartial comparative analysis can be performed.

There are two main divisions for the evaluation of the evolutionary models - setup and

runtime. The setup evaluation criteria take into consideration the implementation specifics that

need to be set before the algorithm is run. When dealing in an immersive, navigable, and

interactive environment there are certain variables that need to be setup to allow for a favorable

analysis in VR. Versatility and model I/O are the two implementation criteria being investigated.

The runtime evaluation criteria take into consideration the factors that affect the

functionality of the algorithm during calculations. Since VR is the platform of consideration, the

evaluation will also analyze the runtime performance. The runtime evaluation criteria are, speed,

memory usage, algorithms' interaction with the user (ease of use, and usefulness), and software

specific considerations. Figure 3.15 illustrates the relationship between the algorithm goals, the

evolutionary prediction variable, and the evaluation criteria. The areas shaded in yellow

68

illustrate which goal(s) each of the evaluation criteria is targeting. The following sections, 3.5.1

- 3.5.6, detail each of the evaluation criteria.

Implementation Characteristics Run-Time Characteristics

Gos Evolutionary Model / Interaction Software
Goals Ped.tj Versatility Speed Memory

Prediction Framework with User Specific
Applicable over

diverse data
Real-Time
deployment

Non-
Phenomenological____________ ________________________

Contiguous

Awareness

Interaction with
user

1/0 to VR core

Software specific

Figure 3.15 - Relation between algorithm goals and evaluation criteria.

3.5.1 Versatility

In this thesis, versatility is defined as the ability of the algorithm to adjust to various types of VR

evolutionary prediction formats. The versatility criterion is a measure of the algorithms' abilities

to input and output to various evolutionary formats. Versatility is being measured by analyzing

the changes required in the implementation if the format of the evolutionary variable changed.

Versatility is important in VR simulations because there is a direct relation between the

evolutionary parameter and the required visualization. In order to maintain versatility in the

visualizations, versatility in the evolutionary parameter must also be maintained. Secondly,

optimization of visualizations may require small changes in the evolutionary parameters. Small

changes in the evolutionary parameters should not necessitate large changes in the algorithms'

69

implementations. Finally, versatility of the evolutionary parameter will allow for a variety of

scenarios to be analyzed.

3.5.2 Model I/O Framework

In this analysis, the model I/O framework takes into account the ease of implementing the

required inputs and outputs from the algorithms. The evolutionary parameter input, specifically,

is excluded from this analysis since the implementation concerns for that particular variable are

addressed in Versatility, Section 3.5.1. The model I/O framework takes into consideration the

multi-level nature of the implementation required for interaction with the user.

Model I/O framework is being measured by analyzing the required changes in the

implementation if a new input or output feature is to be added. For example, what are the

implementation concerns to add a new variable that allows the user to control the amount of

randomness within a given prediction? The model I/O framework is important to VR

applications because it reflects the algorithms' abilities to interact within a larger environment.

This ability is critical because VR risk analysis is not a stand-alone application, but rather one

piece of a larger model.

3.5.3 Speed

Speed is a run-time characteristic that has two components for this analysis - the measure of the

time required to calculate an evolutionary prediction and the time required to perform the

parameter correction function. Specific timing runs are not used for the evaluation because they

rely heavily on the specific implementation of the algorithm. Instead the speed comparison is

performed with respect to a typical implementation.

70

Speed is an important variable in most algorithm analysis applications, especially VR

implementations. Since there is substantial calculation overhead for VR display systems it is

important that the evolutionary algorithms running in the background do not hinder the other

system components. Also, it is desirable to the user that there not be a noticeable delay after an

evolutionary inquiry. The ability of the system to quickly respond to a user command is

essential.

3.5.4 Memory

Memory is another run-time characteristic. The memory requirements are important because,

like speed, they affect the overall world performance. The memory evaluation criterion is a

measure of the number and size of the variables needed in order for an algorithm to perform the

required evolution. Like speed, the memory requirements fluctuate according to the specific

implementation used. Therefore the analysis is performed with respect to the overhead required

for a typical implementation of a given algorithm. Since processing power and memory are

critical to VR applications memory is an important run-time characteristic to take into

consideration.

3.5.5 Interaction with User

For this analysis, the interaction of the various algorithms with the user during runtime is

measured by two separate criteria. The first criterion is the ease by which the user can interact

with the system. This includes all the abilities a user could be given in order to support the

evolutionary process. The second factor represents the usefulness of that interaction. The

second factor can also be described as the magnitude of the effect that can be gained through the

interaction.

71

User interaction is extremely important for VR analysis. One of the key features of a VR

environment is the ability of the user to interact with the data. Without interaction, the analysis

would be static and offer little additional benefits to the user over traditional methods. In order

to accomplish a fair analysis, all four of the algorithms were implemented into the same

hierarchical structure. It is this structure that handles the user interaction directly.

3.5.6 Software Specific

For this analysis, the software specific criterion is considered the ability to perform the described

algorithms on a variety of platforms. An algorithm that has strong ties to a given platform is

given a low rating. Ties can be defined by both functionality and performance. Often,

algorithms use built-in functions tied to a specific software platform. When the algorithm is re-

implemented into another platform the integrity of the algorithm may be sacrificed if the required

built-in function is not present. During the implementation of the four types of models, careful

consideration was spent on limiting such functions.

72

CHAPTER 4 - RESULTS

4.1 Overall Visualizations

The first step in creating the VR world is to model the physical features within the world. For

the NDE analysis of gas transmission pipelines, the components that need to be modeled are the

pipeline components, including pipe sections, flange, weld, sleeve, T-section, taps, check valve,

ball valve, anchor, and anomalies. Each component was modeled separately using

SolidWorks®. A script was written to automate the assembly of the component pieces. The

goal is to assemble the pipeline components such that the virtual model matches the actual

pipeline network as closely as possible. One such pipeline network is seen below in Figure 4.1.

Figure 4.1 - Graphical representation of a pipeline section.

Figure 4.1 illustrates various components combined together to form a representation of a

subsection of an entire pipeline network. Each piece was built such that it had suitable detail for

realistic viewing. However, graphical data should be represented using the lowest amount of

computational intensity possible. Therefore, multiple iterations of the design process were

performed in order to minimize component complexity while preserving model realism. During

73

the first set of changes, the overall file size of each component was reduced by approximately

50%, with relatively no loss of visible detail.

Next, the measurement data was obtained. The condition of the pipeline was inspected

using a magnetic flux pig. The MFL pig measured the flux inside of the pipe with 83

circumferential sensors. A circumferential grid was constructed to correspond to sensors'

locations on the pig. At each data point the base value of the grid was scaled according to the

reading obtained at that data point, where large values extend further from the original grid.

Figure 4.2 below illustrates a section of the flux data. The upper portion of the figure illustrates

a portion of a pipe-scan being viewed from outside the pipe. The zoomed in section of the

pipeline shows how a user inside of the pipeline sees the flux data.

Figure 4.2 - Measurement data from the inspection of a pipeline section.

One set of functional data associated with this world is a simulated neural network

classification of the flux surface. The goal of the classification is to represent each of the

pipeline components as a distinct class. This functional data is represented using a custom color

table, where a unique color is assigned to each component / class. Next, the classification data

74

I I

can be integrated into the same world as the graphical and measurement data. An opaque color-

slice is created for viewing internally to the pipe. As the user navigates through the center of the

pipeline, the component prediction is viewable. The color-slice is registered concentric to the

translucent graphical representation of the actual pipeline components. The three-dimensional

translucent representation of the pipeline components allows the user to look through the

pipeline to see data both internal and external to the pipeline itself. Finally, the magnetic flux

data, using the distorted grid, is visualized with an opaque pseudo-color mapping. This world is

displayed in Figure 4.3 below.

Figure 4.3 - Integration of graphical, functional, and measurement data.

Figure 4.3 illustrates a world in which graphical, measurement, and functional data are

visually integrated such that a VR user could carefully analyze the associated pipeline. A similar

75

world was built from the same data files, but using a different set of visual representations. This

world is represented in Figure 4.4. The graphical data in this world is represented with an

opaque model. The neural-net classifications are displayed externally using a translucent color

slice. Both worlds display the same pipeline data, but do so in different ways.

Figure 4.4 - Integration of graphical and functional data.

Both of those worlds, Figure 4.3 and 4.4, are lacking references to the larger environment

in which the pipeline resides. Figure 4.5 shows a virtual world that integrates the pipeline

location information into the virtual environment. The figure shows a topology, beneath which a

pipeline network would reside. Also, the grid above the topology is a representative display of

GIS information.

76

Figure 4.5 - A virtual environment used for remediation analysis.

The world pictured above, and also the one pictured in Figure 4.6, would be useful for a

user considering remediation measures or performing a risk analysis. If a potentially dangerous

anomaly were located in the data, the user would have the ability to break free from the pipeline

and visually analyze the areas surrounding the pipeline. It is also important to notice the grid

present in the background of the virtual world. The grid is color coded to allow the user to easily

become oriented within the virtual world. Figure 4.6 shows a pipeline network registered

beneath the topology. The GIS information is represented using contour slices. Additionally

satellite imagery is incorporated into the model to allow for further visual identification. The a

values and output are used in conjunction with the evolutionary predictions. The function of

such inputs is described in the following sections.

77

r igure 4.0 - virtual worn useu iur pipeline inspectuns.

4.2 Evolutionary Algorithms

The following sections describe the implementation of each of the four evolutionary algorithms -

deterministic modeling, auto-regressive moving average models, genetic algorithm models, and

hidden Markov models. Each algorithm was implemented in 1, 2 and 3-dimensions for both

single and multi-path predictions. The high-level structures, single and multi-path evolution,

described in Chapter 3 formed the basis for these implementations. Stress corrosion cracking is

the evolutionary application being investigated.

4.2.1 Deterministic

As described in Section 3.3.3.1, the implementation of a deterministic model consisted of

simulating a deterministic model as known growth rates. The growth rates were based off a

78

typical stress intensity factor versus crack growth rate model. Various sections of the curve were

used to simulate slowly growing cracks, rapidly growing cracks, as well as variable rates of

crack growth. The phenomena of crack branching was also incorporated into the simulated

deterministic model by splitting the crack at a designated node.

Evaluation of the prediction function required iterating the model in order to obtain a new

set of node values, growth rates. The parameter correction function consisted of updating the

known deterministic rates. Using these functions in the single-path model, an implementation of

1-dimensional single path crack growth can be simulated. The result is illustrated in the figure

below.

- Growth Rate
2

0 5 o10 15 20
Output

20|D---
A. ual
Predidced

5 10 . 20

#Sa #

Figure 4.7 - One-dimensional single-path deterministic growth.

The simulation in Figure 4.7 is split into two sections - the first 10 samples form the basis for the

evolution, and the second 10 samples consist of the evolutionary predictions. During the first 10

samples the output is seen to increase steadily, this is representative of a priori knowledge. Then

the evolutionary model is used to obtain the second set of samples, where the growth rates

correspond to the input, seen in the top plot, as described in the prediction function.

The same procedure can be used for an illustration of 2-dimensional single path growth.

Figure 4.8 represents two such realizations of this 2-dimensional growth. In each of the displays

79

only the output is shown. In order to generate each node, two inputs were used - growth rates

along the x-axis and growth rates along the y-axis.

,A,~~~~~~ ~ ~ ~~ ~~~ ~ - -- - ------------------,,, _

-0 0.2 0.4 0.5 0.8

2

1.5 .

A...............

0.5 --------------

-0

* / i

,,,......... - ----- -------

I 2 3 4
X-Ais X-Ads

(a) (b)

Figure 4.8 - Two-dimensional single path deterministic growth.

Figure 4.8 (a) illustrates evolution without the presence of branching. Figure 4.8 (b)

illustrates how a single node, located at approximately (2, 1.5), can branch into two different and

distinct paths. Finally, single path growth using deterministic modeling was implemented in 3-

dimensions. The only addition from 2-D to 3-D was the incorporation of a growth rate along the

z-axis. The outputs are displayed in the figure below.

0.5 11 - -.

0 .50
0.~~~~~~·

t .

Y-Ais -t 0 V-. Y-Ais 0 Y.AvIQ

(a) (b)

Figure 4.9 - Three-dimensional single path deterministic growth.

80

4

U.O

0.4

0.2

a 0

>-0.2

-0.4

-0.6

-na

..........................--------------------------,

. 1............

¥4.

·

, ,..
! . ,~~~~~. jt

F---------- ------ ----
,.' ,.-....---.....-...................

\ . /-.-.
.............

. --------- ---.+ ----------
-------------:-------------r-- -- ·--------

-.,..AvA A --

Using the same functions for prediction and correction, multi-path evolution can be

realized. Figure 4.10 illustrates three 1-dimensional paths. All 20 points are obtained via the

prediction process; all points are obtained from known, but varying growth rates. The 1-

dimensional, multi-path evolution was fully constrained, as both a time and a target value were

specified.

Figure 4.10 - One-dimensional multi-path deterministic growth.

The inputs, represented in the top plot, are the known growth rates. The outputs, in the

bottom plot, represent the corresponding growth profile. Although each path has a unique

growth signature they all terminate at the specified target values, length of 15 at 20 samples.

Two-dimensional, fully constrained, deterministic, multi-path evolution can be obtained

in the same manner as 1-dimensional evolution. Subsequently, 3-dimensional evolution can also

be realized. Figures 4.11 and 4.12 represent 2 and 3-dimensional evolution respectively.

81

.3

I

X-Axis

Figure 4.11 - Two-dimensional multi-path deterministic growth.

In the figure above, the target values were set to 10 units along the x and y axes; the

tolerance was set to 1 unit. The yellow box therefore represents acceptable termination values.

For this simulation, since the evolution was time constrained, the path needs to not only

terminate within the specified target region, it must consist of exactly 4 points. All 3 paths in

Figure 4.11 exhibit those characteristics and were therefore saved. The same process was

performed for the 3-dimensional evolution. The only addition to the simulation was the

specification of a target value of 10 units along the z-axis.

N

Figure 4.12 - Three-dimensional multi-path deterministic growth.

82

From the dimensionality progression of both single and multi-path growth, deterministic

modeling in N dimensions can be realized through the prediction and correction modules. The

requirement on N-dimensional growth is that N growth rates must be known.

4.2.2 Autoregressive Moving Average Models

Using an ARMA model, the prediction function required evaluating a set of filter coefficients.

The filter coefficients are obtained via the correction function. The correction functions were

implemented using a Steiglitz-McBride method. The ARMA models utilized normally

distributed noise as the filter input. Additional details about the function implementations are

located in Section 3.3.3.2.

The first investigation that was performed on the ARMA implementation was a test to see

if a given impulse response could be simulated. The impulse input was 10 samples long.

Additionally, random Gaussian noise was added to the impulse. Random noise excitation was

used as the filter input. The simulations were run and averaged for 1,000 iterations. The mean-

squared error of the predicted signal was compared to the known input signal. The mean-

squared errors were plotted over a range of filter orders. The results are displayed in Figure 4.13

below.

83

ll
ALj

0

Poles 30 0

Figure 4.13 - MSE for various filter orders.

Using the Steiglitz-McBride iteration it can be seen that the MSE approaches zero as the

filter order, p, approaches 19. This means that the given impulse could be approximated almost

exactly with an AR filter of order 19. In order to achieve the same performance using a MA

filter, the order required is 16. The iterations of the algorithm run during the Steiglitz-McBride

iteration were capable of matching the bn values more closely then the an values to their

respective true values. The dotted lines in Figures 4.13 represent the values at which the MA

and AR filter orders are equal and the MSE is approximately zero. From these results, the

required number of coefficients for future testing of similar signals was obtained, order (10, 10).

Since the Steiglitz-McBride iteration has an additional design parameter, the number of

iterations, further testing was performed on the filter to assess its performance. The order of the

MA and AR filters were varied from 0 to 10. The number of algorithm iterations was varied

from 0 to 20. The resulting MSE was calculated. This simulation was also averaged over 1,000

runs. Simulations where the filter exhibited instability were not included in the MSE calculation

84

results. Figure 4.14 shows the MSE simulation results for various filter orders and algorithm

iterations.

W

0

Figure 4.14 - MSE for various filter orders and algorithm iterations.

The figure illustrates that above 5 iterations, increasing the number of iterations does not affect

the overall performance of the filter. Therefore, all further ARMA model coefficients were

calculated using 5 iterations.

Using the prediction and correction functions 1-dimensional single path evolution can be

obtained. Figure 4.15 illustrates one example of this type of evolution. The trial illustrates a 10

sample known output signal. This initial known signal is used for the initial input into the

parameter correction calculations. This signal was acquired as a crack growth profile as obtained

via the deterministic modeling technique described in Section 4.2.1. The signals obtained from

the deterministic method are used when calculating the initial filter coefficients for all of the

85

ARMA models developed in this section. Using a random noise input into the ARMA model,

the model was used to calculate an additional 10 samples, samples 11 to 20.

, I. 'a .0 . .-e. ~, .oP ' .C ? *

0.5 - >

A-
-0 5 10 15 20

20 . . .

- Predictdl
10 -

5 10 15 20

Figure 4.15 - Single-path one-dimensional evolution with ARMA model.

Two-dimensional single-path evolution can be obtained using sets of coefficients that

represent each dimension individually. The assumption made for this implementation is that

each dimension contains suitable information such that an evolutionary prediction can be

obtained through the past information within that dimension. Figure 4.16 illustrates two

examples of growth and the corresponding ARMA model predictions.

U

X-as Xais

(a) (b)

Figure 4.16 - Single-path two-dimensional evolution with ARMA model.

86

5

In Figure 4.16 (a) the red nodes represent 6 known nodes. From these 6 known nodes,

the ARMA coefficients were calculated. Using those coefficients, 9 ARMA nodes are

calculated; these 9 nodes correspond to 6 nodes to match the known input and 3 evolutionary

predictions. Figure 4.16 (b) also represents 3 ARMA predictions per branch. From these

simulations, it can be seen that the ARMA model can produce evolutionary predictions based on

the information present in each dimension.

The same approach used in 2-dimensional modeling can be applied to 3-dimensional

modeling. Figure 4.17 (a) shows a single branch of a 3-dimensional ARMA model with 9 nodes,

where 3 of the 9 are evolutionary predictions. Figure 4.17 (b) illustrates a 2 branch growth

model also with 3 evolutionary predictions per branch.

I
14

1.5

Y-4ed -2 0 Y-utd 0 X-i

(a) (b)

Figure 4.17 - Single-path three-dimensional evolution with ARMA model.

The a input within the high-level single-path algorithm acts directly on the filter output.

Thus, the user is able to add a variable level of randomness into the filter output by varying the a

parameter.

Using the same implementations of prediction and parameter correction, multi-

dimensional evolution can be obtained. The 1-dimensional implementation of fully constrained

87

evolution is depicted in Figure 4.18. The initial value is 6 samples long. The goal input is an

additional 4 samples for a total of 10. The initial set of filter coefficients is calculated from the

first 6 samples. These coefficients are then used to calculate 10 node values. The node values

obtained from the ARMA model are subjected to a 20% variation, either positive or negative;

these varied values are output from the prediction function. The level of variation is a pre-set

design parameter that allows the user to specify the amount of randomness present in the output

signals, just as the a parameter works in single-path evolution.

If the prediction values obtained were within the length tolerance they were accepted,

otherwise another set of 10 samples was generated. The same coefficients were used to generate

sets of samples until 100 failed attempts were made. After 100 failed attempts, a new set of filter

coefficients were obtained using the parameter correction function.

Inal Crack
2

: ------ **----- - -

5 10 15 20 25 30
2

eI I I I
0 5 10 15 20 25 30

2
Pa th

OV7-2' i 2 5 v
0 5 10 15 20 25 30

Figure 4.18 - Multi-path one-dimensional evolution with ARMA model.

The figure above shows the initial input and 2 acceptable paths that reached the goal value.

The same procedure for path generation was applied to a 2-dimensional example. Each

dimension was evaluated individually in an attempt to find an acceptable path in the fewest

88

number of iterations. Figure 4.19 illustrates an example of multi-path evolution where the basis

of the parameter correction is a 6-sample path. The evolution is constrained to 10 samples and a

certain target value area.

I5:
tU

9

8

7

6

5

4

3

2

1

a,i 1 2 : 3 S 4 5

Figure 4.19 - Multi-path two-dimensional evolution with ARMA model.

Figure 4.19 shows two possible paths of length 10 that terminate within the defined target

area. If the target area significantly deviates from the pattern within the initial data, the ARMA

model is unable to obtain acceptable paths. The algorithm will generate sets of new coefficients,

but none will be capable of reaching such a goal. After 100 failed attempts of attaining an

acceptable set of coefficients the algorithm simply terminates.

If the same approach taken for 2-dimensional evolution is applied to 3-dimensional

evolution, multiple 3-dimensional paths can be obtained. One such example is illustrated in

Figure 4.20.

89

-+- Original , :
-- Alternmative 1 ------.....
-gf Atemrnative 2

i Target --...L

......------. --- r v-.-

i..............:......................

i ' i . .
? - ---!-.-.-. ------ ---------t------------I-------------

.... i -.............

N

* -ua. XA AMS

Figure 4.20 - Multi-path three-dimensional evolution with ARMA model.

Again a set of 6 values forms the basis for the initial parameter correction. The

coefficients calculated from this function are used to generate sets of 10 nodes. If the nodes

terminate within the 3-dimensional target area the paths are accepted. Two such acceptable

paths are illustrated in the figure above.

From the 1, 2 and 3-dimensional progression it can be seen that an N-dimensional single-

path or multi-path evolution could be achieved through the use of N sets of coefficients. Also,

the user has the ability to set the level of randomness applied to each of the signals. Finally in

multi-path evolution, the user has the ability to set termination points such that the algorithm will

terminate if acceptable paths are not being reached.

4.2.3 Genetic Algorithms

A genetic algorithm was developed in order to achieve evolutionary predictions. The

implementation was based on a typical genetic algorithm structure as described in Chapter 2,

Figure 2.7. The genotypes, a direct representation of the evolutionary format, were normalized

growth rates between -1 and +1. The prediction function required evolving a population of

90

individuals. The correction function allowed user input controls within the genetic algorithm

structure to be altered. The implementation specifics for the genetic algorithm structure are

located in Section 3.3.3.3.

A single population of 50 individuals was created. The population evolved over 30

generations with a mutation rate of .01. Each individual has 9 chromosomes, 6 correspond to the

input signal and 3 correspond to the user input. The input signal represents known growth rates

and was obtained via the deterministic modeling procedure. For the fitness evaluation function,

the standard deviation for the first 6 nodes was set to .15 and the mean was set to the input signal

value. The standard deviation used for the predicted values was .3 and the mean was user-input

at .6. After the population evolved for 30 generations, a representative individual was selected.

Figure 4.21 (a) and (b) illustrate two such representative individuals from different populations,

with different input signals. In each case, 6 values corresponded to matching the initial path and

3 points represent predictions.

1.5

1

-5

-1

1.5

01

o

-"' 2 4 6 8 10 -0 2 4 6 8 10
Sampb Salmp

(a) (b)

Figure 4.21 - Single-path one-dimensional evolution with GA.

Using the parameters described above it is seen in Figure 4.21 that the individuals

evolved towards a fit of the input data. An analysis of the entire population, similar to that

91

.AA

I -- Dncih Dath I

L
2.ram

-.-

-t K · � ·

performed in Figure 4.22, showed that most individuals in the respective populations were also

approaching the same general form as the ones displayed in Figure 4.21. This means that the

samples displayed are truly representative of the population's solution. This also implies that the

population is evolving towards a single, potentially optimal, solution. Lowering the standard

deviation of the Gaussian curves allowed for tighter fits of the predictions to the data. Similarly,

if the deviation was increased, the fit of the individuals within the population to the known signal

were not as precise.

The same design parameters were used to evolve an input signal, but the population was

allowed to evolve over 100 generations. The values of all the individuals were averaged, and

tracked through the generations. Figure 4.22 shows the chromosome history for the first 6

values.

92

1

0.8

0.6

0.4

D 0.2

0

-0.2

-0.4

-0.6

-0.8

-1

Generation

Figure 4.22 - Chromosome evolution.

From this plot it can be seen that as the population evolves, all of the individuals begin to

resemble the input signal by converging towards the known values. The population exhibits a

great deal of randomness during the early generations and gradually settles to the desired values.

Because of the mutation rates, there is still some amount of oscillation around the ideal values.

Figure 4.23, shows the phenotype of the average individual across a range of generation values.

93

1

1.5

1

0.5

0

-0.5

1.5

1

0.5

0

-0.5

Target

Figure 4.23 - Profile evolution.

The first plot represents the target value; these values are the mean values used in the fitness

evaluation function. As the population evolves, the average individual is seen to evolve towards

the target value.

Next, 2-dimensional evolution was performed using the same basic structure. The 2

dimensions were allowed to evolve independent of each other. Independent populations were

used because the convergence was faster and the fit to the data was more accurate as compared

to a single multi-dimensional population. The 2-dimensional structures were evolved over 40

generations for a population size of 80. The mutation rate was increased to .1 to allow for a

greater amount of diversity during high generation numbers. Representative individuals from

two different growth scenarios are displayed in Figure 4.24.

94

__

5
Y_&e.

(a) (b)

Figure 4.24 - Single-path two-dimensional evolution with GA.

Finally, 3-dimensional single path evolution was obtained in a manner similar to that of

2-dimensional evolution. The three population sizes were set to 70 and the generation number to

50. The resulting evolutionary paths are illustrated in Figure 4.25

II

NI

(a) (b)

Figure 4.25 - Single-path three-dimensional evolution with GA.

Figure 4.25 (b) shows an example of a branched path growth. Each individual in this

population therefore consisted of matrix nodes, instead of single valued nodes. The overall

fitness of the individual is based on the combined fitness for both branches. The branches are

not evaluated independently.

95

Using the same prediction and parameter correction functions as single-path evolution,

multi-path evolution can be obtained. In multi-path evolution an entire population is evaluated

in the same manner as single-path evolution. An output path, a single individual, is then chosen

from the population. If that path satisfies the goal, then it is stored. If the path does not satisfy

the constraints then a new individual is chosen. The path selection is repeated until either a valid

path is selected or there have been 20 failed attempts to obtain an individual. When a suitable

path is not attained, a new population is generated and evolved in an attempt to generate more

suitable individuals. Multi-path, 1-dimensional evolution was achieved using a population of

size 30, evolved over 20 generations, mutation rate of .01, a prediction standard deviation of .3,

and a user standard deviation of .6. The results are displayed in Figure 4.26

Initial Cck

Figure 4.26 - Multi-path one-dimensional evolution with GA.

Next, a 2-dimensional goal was set. The same evolutionary parameters used in 1-

dimensional evolution were used for the 2-dimensional evolution. The original input, and two

possible paths from the population are illustrated in Figure 4.23. The initial signal consists of 6

96

points, the target signal consists of 12. The evolution is fully-constrained as both a target value

area and a desired number of points are specified.

8

7

6

8 '1 2 3 4
X-A3ds

Figure 4.27 - Multi-path two-dimensional evolution with GA.

Finally, 3-dimensional evolution was achieved by adding a third population that

represented the z-axis. Again the same evolutionary parameter set was utilized to achieve 3-

dimensional evolution. The result is shown in Figure 4.28

N

6

4

2

0
1(

- - Original
- .. -" -e- Alterative 1

... : I-- --- Alterative 2
* Target

' --. , ' -

4
2

Y Axis u u X XSYAFigS 48 - MultiXAxsl

Figure 4.28 - Multi-path three-dimensional evolution with GA.

97

:. :,4- -:--------I 1 '---·(- '''''''''''''''''''''''--- ------ ----

------- ;k - -v.;........................

..w
ar ~ ~-.--.....-.. -... - - -- -------

--- Original
.......... ... _ Alternative 1

- Altemrnative 2
----- , ... Target .

I,'- I I I I

I A:

. .

---,--------
, 5-1

I

From the 1, 2, and 3-dimensional implementations of both single and multi-path

evolution it can be seen that N-dimensional evolution would be realizable. Each dimension

could have a population from which representative individuals could be selected. Multiple,

single dimensioned populations, have a number of advantages over a single multi-dimensional

population. Each population is much smaller in size and requires a lower number of generations

to converge to an acceptable answer. Also during the output selection process if one-dimension

does not meet a certain criteria that single dimension can be reselected instead of the entire

growth profile. This implies that for N, 1-dimensional populations of size p there would be pN

individuals of N-dimensions. The final benefit is that separate populations are more conducive

to parallel or distributed processing implementations then a single larger population.

4.2.4 Hidden Markov Models

The last of the evolutionary algorithms that was implemented was a hidden Markov model. The

HMM focused on providing transitional and visible state probabilities such that a representative

growth profile could be obtained. Because there was not an overwhelming amount of data to

train with, the algorithm implementation assumes some a priori knowledge about the phenomena

under investigation. Experiments can be performed in order to achieve a suitable amount of

reliable data to allow for a physically accurate probabilistic model [48]. Assuming this

information is known, the HMM structure and state transition probabilities can be set prior to

running the algorithm. The structure used in these experiments consists of 3 hidden states, and 3

possible visible states emitted from each hidden state. The prediction function therefore

consisted of evaluating the HMM for a given number of iterations. For each iteration, the hidden

state is transitioned and a visible state is observed. The correction function required updating the

98

visible state transition probabilities. Section 3.3.3.4 explains the implementation specifics for the

HMM.

In order to achieve 1-dimensional growth, a HMM was developed with 3 hidden states

and 3 visible states. The states were fully connected; there was a finite, non-zero probability that

a given hidden state could transition into any 1 of the 3 hidden states. Initial probabilities were

based off the characteristics of the initial signal obtained via deterministic modeling. For signals

with large growth rates the hidden state transitional probabilities favor hidden state 1. When the

growth rates are small, the transitional probabilities favor hidden state 3. The hidden state

transitional probabilities were fixed; the visible state probabilities were adjusted through user

input and the parameter correction function. The visible state values are given below.

Table 4.1 Visible state values
VIl=.7 v,2 =.8 v, 3 =.9

v21 =4 v 22 = .5 v23 =6

V3 =1 =. V3 2 =2 2 33 =.3

Using this structure, a 1-dimensional single path evolution was obtained. Figure 4.29 shows two

single-path evolutions for a HMM growth profile.

I

Smris

Figure 4.29 - Single-path one-dimensional evolution with HMM.

99

The first set of 10 points represents the initial signal obtained from deterministic

modeling. The characteristics within this signal determined the hidden state transitional

probabilities. The HMM was then evaluated over 20 runs. The first 10 nodes correspond to the

initial signal and the second 10 nodes correspond to evolutionary predictions.

Similar to 1-dimensional, 2-dimensional growth was realized. The overall structure of

the model was not changed. In order to follow the same trend as the other evolutionary modules,

a second structure was designed for growth in the second dimension. The overall structure of the

HMM was the same; however the hidden state transitional probabilities were altered to allow a

fit to the given 2-dimensional data. Figure 4.30 illustrates the realization of this HMM structure.

4

3

2

1

L

4

.*3

I
>2

' I

- 2 4 8 0 2 4
X-A*ds X.Ajd

Figure 430 - Single-path two-dimensional evolution with HMM.

Finally, single-path 3-dimensional growth was realized by adding a third model to

simulate the evolution in 3 dimensions. Figure 4.31 illustrates the output from this model. From

the dimensionality progression, an N-dimensional HMM can be realized through the use of

additional independent hidden states. Although not implemented, the model could have shared

hidden states and exhibited dimension-independent visible states.

100

I~ - - I. . I I ~~~~~~~~~I
I-- ungmn I

j-0I 5

I
.

Z . ; _ II I - . '· :. F · i

I
U

N

10

Figure 4.31 - Single-path three-dimensional evolution with HMM.

Next, the prediction and correction functions were used to create multi-path growth.

Under the given structure, the model was evaluated until an acceptable number of paths were

reached. If the goal was not realizable, the visible state probabilities were slightly altered. One-

dimensional multi-path evolution is described in Figure 4.32 below.

0

6

.4

M-

2

(I
~0 2 4 6 8 10 12

X-Axis

Figure 4.32 - Multi-path one-dimensional evolution with HMM.

Just as single path evolution used an addition structure to realize 2 and 3-dimensional

evolution, multi-path evolution could be achieved in the same manner. From the known HMM

the evaluation of the model resulted in 2 and 3-dimensional growth profiles. The evolution was

101

- Original
-- Path1
--- Path2

* Target !

--------- i- -I------ ---- ----------:...:.~.......i :....... :

fully-constrained, both a target value area and the number of nodes was specified. The results

from typical runs are shown in Figures 4.33 and 4.34.

5

4
oA

3

2

1

WO 2 4 6 8
X-Axds

Figure 433 - Multi-path two-dimensional evolution with HMM.

U)

t4

Figure 434 - Multi-path three-dimensional evolution with HMM.

Using a set of HMMs N-dimensional single and multi-path evolutions can be realized.

There are a number of methods in which the models can be structured in order to achieve this

realization. The exact number of dimensions and the resolution of each dimension would both

102

-- Original
*-o- PathI

- Path2--- Path2
* Target .'............................

----------------- ----------------- - ----------------

--

e __ -
n

i

have an impact on the ideal structure. Since the HMMs implemented were discrete, the

resolution of the models was a function of the visible state outputs. A series of visible states

would allow for finer resolution to be obtained at the cost of computational complexity.

Similarly, altering the desired resolution may require changing the structure of the hidden states.

The hidden states are transparent to the end VR user, but are available to the evolutionary

designer.

4.3 Evolutionary Visualizations

The evolutionary visualizations took place within the same world as the multi-sensor data fusion

described in Section 4.1. Within this world there were two coordinate systems, one navigable

and one static. The static coordinate system was used in order to communicate the evolutionary

information with the user. The graphical, functional, and measurement data were represented in

the navigable coordinate system. In addition to an output meter, a graphical representation of

crack growth was displayed.

Crack growth can be mapped from the evolutionary parameter format in a number of

ways. In a direct mapping approach, a 3-dimensinal evolutionary variable would be used. Each

of the three dimensions would map directly to a point on the crack in x, y, and z dimensions. If

the crack is assumed to be a surface crack, then a 2-dimensional evolutionary variable can be

employed. The first dimension would correspond to the propagation of the crack along the main

axis of the pipe. The second dimension would correspond to the crack propagation along the

circumference of the pipe. In addition to these two spatial approaches, time can also be

predicted. If time is not a dimension of the evolution, then it is assumed that there is a constant

time interval between the evolutionary predictions. However, time can be incorporated into the

103

model such that an evolutionary prediction would represent the total time elapsed since the

previously predicted data point.

Figure 4.35 illustrates a virtual environment set-up for the prediction of a crack on the

surface of a pipeline. The pipe section forms the graphical basis of the world. Within the pipe

section, a crack has been physically modeled. In addition to the physical world, the user inputs

and outputs can also be seen.

Figure 435 - Evolutionary pre

Once the user sets the various evolutionary inputs, any one of the evolutionary algorithms

could be used to predict the growth of the crack. For this particular implementation only part of

the crack was input into the algorithm and the remainder of the crack was predicted.

Additionally, the propagation of the crack beyond the known geometry was also predicted. This

example can be seen in Figure 4.36. After (or during) the evolution of the crack, the VR user

104

would have the ability to look at the area surrounding the pipeline, Figures 4.5 and 4.6 illustrate

this concept. From the information in the surrounding area and the information contained within

the evolutionary prediction, the user can draw informed conclusions.

Figure 4.36 - Possible evolutionary path.

4.4 Evaluation Criteria

4.4.1 Rating Scale

The rating scale for each of the evaluation criteria features is from 0 to 10. The scale is shown in

Figure 4.37. A rating of 0 represents an unacceptably low result. A 0 rating would necessitate

change for the algorithm to be considered further. Ratings ranging from 1 to 3 represent below

average ratings. Ratings of 4 to 6 represent an average rating. If an algorithm's performance is

105

above average it receives a rating between 7 and 9. Finally, a score of 10 implies the algorithm

is ideal for the described feature.

Figure 437 - Evaluation rating scale.

One of the common threads to many of the evaluation criteria was the computational

complexity of the algorithm. For example, both implementation characteristics take into

consideration the simulations required to test the given implementation. Similarly, the speed

criterion is specifically concerned with the performance of the algorithms' given functions. The

remainder of this section is devoted to a breakdown of computational cost.

For ARMA modeling, the two main functions are prediction and correction. The

prediction function consists of evaluating a filter, and the correction requires calculating filter

coefficients via the Steiglitz-McBride iteration. The table below breaks down the given

computational costs.

Table 4.2 - Computational ex ense for ARMA modelin
Function Operation Number of operations Iterations

Prediction Filter 2p+2q-1 1
Prefilter 2q-3 2 * its

(p+1)M its
Convolution Matrix (p+-)M its

Correction (q+l)M its
Concatenate 1 its
Least fit p+q+l its

p: Number of poles M: Size of input
q: Number of zeros its: Number of iterations

106

The genetic algorithm structure is intricate. Both the prediction and correction functions

evolve a population over a certain number of generations. The table below breaks down the

evolution of a population into the various operations and the computational costs for each.

Table 4.3 - Computational ex ense for genetic algorithm
Function Operation Number of operations Iterations

Initialize population M * N 1
Evaluation 2 * M * N-N - genNum

Calculate probability N genNum
Evolution

Select mates 4 (N / 2) * genNum
Mate 3 (N / 2) * genNum
Mutate M * N (N / 2) * genNum

M: Length of chromosome genNum: Number of generations
N: Population size

The computational costs of evolution with a HMM are broken down in Table 4.4 below.

The learning function was not used in the previous sections because sufficient data was not

available. However, the learning method for the transitional probabilities is taken into

consideration for the evaluation of a HMM over the range of criteria.

Table 4.4 Computational expense for HMM
Function Operation Number of operations Iterations

Generate random # 1 M
Predictin Evaluate next state 1 M

Prediction
Generate random # 1 M
Evaluate visible state 1M

Learning Forward-Backward -10 5-6 1

M: length of 1 set of visible states
-Will vary as a function of data complexity, but the value given represents a typical range

107

4.4.2 Versatility

Versatility reflects the implementation requirements for the input of the evolutionary parameter.

The rating also reflects the ability of the algorithm to adjust to changes in the format of that

variable. Since versatility reflects implementation considerations it was broken into two separate

elements, man hours and computer hours. Assuming a typical work day, an engineer would

account for 8 hours of man hours, and the remaining 16 hours would be optimally used for

simulations, computer hours. Therefore to optimize daily productivity man hours should receive

a 2:1 weight over computer hours. Using the same ratio, the versatility score of 10 can be broken

into sections, 6.66 for man hours and 3.33 for computer hours.

Typically, man hours for a minor change in an algorithm such as these would require

approximately 2 hours - 1 for analyzing simulations and 1 hour for performing the necessary

changes. The simulations performed would consist of approximately 500 million computations.

Using these 2 values as base values, the scores for all 4 algorithms were calculated by dividing

the algorithm's score by the base value target score. The chart below illustrates each of the four

algorithms versatility performance rating.

Table 4.5 - Versatility raings
Target Deterministic ARMA GA HMM

Value [hours] 2 6 2 6 5
Man Hours Score 0-1 0.333333333 1 0.333333333 0.4

Weighted Score 6.66 2.22 6.66 2.22 2.664
Value [computations] 500,000,000 1,000,000,000 936,100,000 2,789,400,000 500,000,000

Comutr Score 0-1 0.5 0.534130969 0.179250018 1
Weighted Score 3.33 1.665 1.778656126 0.59690256 3.33

Versatility Total Score 10 3.89 8.44 2.82 5.99

108

4.4.2.1 Deterministic

In setting the deterministic parameters directly, it was assumed that a direct mapping can be

made between the deterministic analysis output and the VR evolutionary variable. Often times,

the deterministic output will be a direct and specific measure of the physical state; for such cases

a direct mapping to the visualization model may be difficult or prohibitively costly. In order to

perform the mapping, an additional interface is required to ensure that the output is in the proper

format. An additional interface means that the algorithm is less versatile. In order to code, and

test the interface a total of 4 man hours is needed. An additional 2 hours is needed to analyze the

simulation results and make the necessary adjustments. Performing the required simulations for

the interface and resulting model would take approximately 109 computations. These values

result in a score of 3.89 for deterministic modeling.

4.4.2.2 ARMA

ARMA models are quite versatile to changes within the input parameters. The ARMA

coefficient calculations are based on the filter inputs and corresponding outputs. The actual

format of the data and the corresponding meaning of this format are unimportant to the filter.

However, some simulations should be performed in an attempt to optimize the filter parameters.

It will take less then 2 man hours to analyze the simulations and make the necessary adjustments

to the functions. The simulations being performed require optimizing the number of poles, zeros

and iterations of the Steiglitz-McBride function. Assuming the poles and zeros are both varied

from 1 to 100 and the iterations are varied from 1 to 10, simulating all possible combinations will

require 9.36 x 108 computations. Using the man hours and computer hours required to perform

the necessary changes the ARMA model receives a score of 8.44.

109

4.4.2.3 Genetic Algorithms

The genetic algorithm is seen to have below-average implementation versatility. The algorithm

has a number of parameters that must be set according to the format of the evolutionary variable.

If the evolutionary variable represents a phenotype, an associated genotype must be defined

explicitly for use in a genetic algorithm. Additionally, the cost function must be implemented

such that the proper calculations are performed on the genotype.

A change in the evolutionary variable format would require an analysis of the cost

function being used. In addition to analyzing a variety of cost functions, different normalization

strategies of the fitness score also need to be addressed. To perform a reasonable analysis, at

least 5 different cost functions and normalization strategies should be analyzed. For the

simulations in Section 4.2.3, both Gaussian and Euclidean distance functions were evaluated.

The Gaussian function was evaluated over 3 different normalization strategies, and the Euclidean

distance was evaluated over 2. Assuming 1 hour for implementation and testing of each strategy

and 1 hour for interpreting all of the simulation results, approximately 6 man hours would be

required. For each simulation the number of individuals in the population should be varied from

20 to 50, and the number of generations should be varied from 20 to 60. Performing these two

simulations will assure that the proper genetic algorithm structure is being used in conjunction

with each of the 5 implementations. At 5.57 x 108 computations per implementation, the overall

simulations will require approximately 2.78 x 109 computations. Combing the man hours and

computer hours, the genetic algorithm structure receives a score of 2.82.

4.4.2.4 HMM

Hidden Markov models exhibit average versatility. The concept of a HMM is that for a given

hidden state, a visible state is observed where the visible state is governed by the evolutionary

110

parameter format. The overall setup of a HMM is therefore driven by the format of the

evolutionary parameter. A change in the format would therefore necessitate a change in the

model. However, the model is designed to have both hidden and visible states specifically for

this reason. Therefore the modifications of the evolutionary parameter are intuitive in nature. In

order to implement, train, and test new a HMM structure approximately 1 man hour is needed.

The implementation of approximately 3 structures would be needed to compare and find an

optimal structure for the new evolutionary variable format. Adding in 2 hours for analyzing the

simulation results, a HMM requires 5 man hours. The computational cost for the simulations

would be on the order of 108; for this reason, HHM received full marks for computer hours.

Combining the weighted score results in a score of 5.99 for HMM.

4.4.3 Model I/0 Framework

The model I/O framework is an evaluation of implementation specifics with respect to the

algorithms' ability to interact within a larger environment, and provide for multiple levels of

control for the designer and the end VR user. Each algorithm will again be analyzed with respect

to man hours and computer hours required to perform the given implementation. A typical or

target value for the man hours is considered to be 5 hours. Two hours each for implementing

and testing of both the input and the output, along with 1 hour for analyzing the simulations. The

simulations required are approximately 5 x 107 calculations. The analysis of each of the four

algorithms is described below.

111

Table 4.6 - Model I/O ratings
Target Deterministic ARMA GA HMM

Value [hours] 5 7 10 10 5
Man Hours Score 0-1 0.714285714 0.5 0.5 1

Weighted Score 6.66 4.757142857 3.33 3.33 6.66

Value [computations] 50,000,000 2,000,000,000 85,370,000 4,463,000,000 500,000,000
omputer Score 0-1 0.025 0.585685838 0.011203227 0.1

s Weighted Score 3.33 0.08325 1.950333841 0.037306744 0.333
Model I/O Total Score I 10 4.84 5.28 3.37 6.99

4.4.3.1 Deterministic

The implementation of deterministic models is fairly robust in terms of communication of

variables within the algorithm. However, using the current implementation there was not a

multi-level structure with which the designer could set up; the controls to the algorithm were

predefined. Building in multiple levels of control into a deterministic model would require

approximately 3 hours defining the functions. Testing the model would take approximately 2

man hours, and the analysis of the simulation would also require 2 man hours. In order to assure

that the multi-layer control was function properly many simulations would need to be performed.

This would require 2 x 109 computations. Using these two variables deterministic modeling

received a 4.84 for model I/O framework.

4.4.3.2 ARMA

The ARMA model implementation only requires setting a small number of inputs into the

algorithm. The benefit of such an implementation is that the input structure could be used for a

variety of applications with few changes needed. However, the model coefficients and the

evolutionary variable are the only outputs from an ARMA model. It is seen that the simple

structure of the model is both strength and a weakness. In order to set up a multi-layer 1/O

structure an external implementation is needed. At least 2 different structures should be explored

112

and tested. Taking 3 hours to build and 1 to test, each implementation requires 4 man hours.

After both structures are implemented it takes 2 man hours to analyze the simulations and

finalize the structure. The total time required to build in a robust implementation for function

I/O is 10 man hours. Assuming the number of poles and zeros is varied from 1 to 100, it would

require 9.36 x 108 computations to perform the needed simulations of the I/O structure. The

resulting score of ARMA models is 5.28

4.4.3.3 GA

The genetic algorithms are extremely complicated with respect to the implementation of the

model I/O. The cost and mutation functions require a great deal of care when being

implemented. The selection of sub-optimal parameters can result in the algorithm running

prohibitively slowly or not providing meaningful results. To this end, the genetic algorithms are

only as effective as the implementation parameters allow. This gives the designer a large amount

of control, but the designer is required to have extensive knowledge of the functions being used.

In order to properly incorporate the user and other I/O variables into the implementation at least

5 evaluation functions need to be analyzed. Similarly at least 3 different mutation schemes

should be explored. At 1 hour each for development and testing, the various structures require 8

man hours. Additionally, 2 hours are required for analyzing the simulations. This is a total of 10

man hours. Assuming a population sweep from 20 to 50 and a generation number sweep from

20 to 60 the 8 different implementations require 4.46 x 109 computations. Using these two

factors GA receive a model I/O framework score of 3.37.

113

4.4.3.4 HMM

Hidden Markov Models exhibit high model I/O framework. Unlike genetic algorithms, the set-

up procedure requires little knowledge about the overall structure of the model, but rather

knowledge of the phenomena being modeled. The visible and hidden state structure allows the

designer to implement various control mechanisms for use by the user. Also, since the model is

state-based it is conducive to conveying information to other algorithms about the current state or

settings of the model. Since the process of incorporating the I/O into a HMM is intuitive it

would not take more the 5 man hours to complete the required implementations. However, in

order to assure the structure is suitable for user interaction and tolerant to poor input values,

many simulations need to be performed. Since the model is probabilistic in nature, a high

number of runs of the model will give a very good estimate of its performance. Assuming the

test structure is subjected to 100 test runs, approximately 5 x 108 computations would be required

to assure proper performance. These characteristics calculate to a 6.99 score for model I/O.

4.4.4 Speed

Since the speed and run-time considerations are hardware dependent features, the precise timing

values are not as important as the overall computational complexities of each algorithm. Various

implementation concerns and the ability to optimize the parallel distribution of the computations

would affect a timing simulation. Therefore the speed ratings are in terms of computations as

seen in Table 4.7 below.

114

Table 4.7 - Speed ratings
Target Deterministic ARMA GA HMM

Value [computations] 150,000 200,000 167,540 233,100 150,000
Prediction Score 0-1 0.75 0.895308583 0.643500644 1

Weighted Score 5 3.75 4.476542915 3.217503218 5

Value [computations] 7,000 20,000 16,754 233,100 20,000
Correction Score 0-1 0.35 0.417810672 0.03003003 0.35

Weighted Score 5 1.75 2.08905336 0.15015015 1.75

Speed Total Score 10 5.50 6.57 3.37 6.75

4.4.4.1 Deterministic

The deterministic algorithm shows average speed potential and receives an average score. The

deterministic modeling simulations are instantaneous in the implementations described in

Section 4.2.1. Since the rates are modeled as known growth rates there are no calculations that

need to be performed. However in traditional deterministic modeling implementations there are

specific functions that need to be evaluated. The speed of the evaluation will depend heavily on

the numerical methods that are employed to solve the model. But typically a deterministic model

would require 200,000 computations for a prediction function. Correction would only take about

20,000 computations. These two values result in a 5.5 rating for deterministic modeling.

4.4.4.2 ARMA

ARMA models exhibit above average speed considerations; even for high filter orders the

computational burden is low. The majority of the computational time resides in the correction

function. For filter orders up to 100 and 5 iterations the number of computations required for a

correction is 16,754. The prediction step requires very few computations and is extremely time

efficient. However, since the stability of the filter is not guaranteed, multiple iterations are often

required to achieve desirable results. These factors become more pronounced during the

iterations needed in performing multi-path evolution. A typical scenario assumes 10

115

regenerations of the filter coefficients, and therefore the prediction computational burden is

167,540 operations. Using these two factors ARMA models receive a 6.57.

4.4.4.3 GA

The genetic algorithm receives a below average score for speed. As mentioned earlier, the

complexity of genetic algorithms is a benefit as well as a drawback. In order to achieve

parameter correction a number of generations need to be calculated. As the number of

generations calculated goes up, the time efficiency goes down. Similarly, a population exhibits

more diversity when that population has a large number of individuals. However when there are

more individuals it takes longer to evaluate the population and generate a new population.

Assuming a population of 30 individuals evolved over 30 generations a GA requires 233,100

computations. This results in a speed rating of 3.37.

4.4.4.4 HMM

Hidden Markov models exhibit above average speed. The prediction calculation stage is time

efficient as it only involves generating a hidden state and visible state transition. The prediction

stage will therefore exhibit no more then 150,000 computations. When performing a correction

function, there are a number of checks that need to be performed to ensure that the probabilities

are balanced. Similarly, if the correction function requires learning, the computational costs will

be high. On average a HMM would exhibit 20,000 computations. The resulting rating for HMM

speed is 6.75.

4.4.5 Memory

Memory is the second evaluation criterion that is concerned with the resources required to

perform the evolutionary computations. Memory usage is evaluated on both active and passive

116

variables. Active variables include all the storage necessary for the actual evolutionary data,

whereas the passive variables are the pointers, or counters required by the algorithm for

translating the data. Since the active variables are storing the actual data they are given a 4:1

weight advantage over the passive variables. It is assumed that a 1 x 1 double size array requires

8 bytes of storage. Assuming 15 predictions, the target active memory requirement would

therefore be 120 bytes; assuming one pointer variable the target passive memory requirement is 8

bytes. The table below illustrates how each algorithm performed with respect to the memory

requirements.

Table 4.8 - Memory ratings
Target Deterministic ARMA GA HMM

Value [bytes] 120 200 160 3,600 144
Active Score 0-1 0.6 0.75 0.033333333 0.833333333

Weighted Score 8 4.8 6 0.266666667 6.666666667
Value [bytes] 8 40 8 8 16

Passive Score 0-1 0.2 1 1 0.5
Weighted Score 2 0.4 2 2 1

Memory Total Score 10 5.20 8.00 2.27 7.67

4.4. 5.1 Deterministic

Deterministic modeling approaches receive an average rating for memory usage. Typically the

models require a certain number of coefficients and variables that need to be set for each

prediction. For complicated models the number of variables may be high, but on average there is

a 5:3 ratio for variables to predictions and a 1:3 ratio for pointers to predictions. Fifteen

predictions would therefore require 200 bytes of active memory, and 40 bytes of passive

memory. These values calculate to a score of 5.2.

4.4.5.2 ARMA

117

The ARMA models exhibit very high memory performance. The only storage required for the

ARMA model is the storage of the coefficients. The models required filter orders of 10, and

therefore the active memory requirement is 20 variables or 160 bytes. A single counter is needed

to keep track of the current prediction and therefore ARMA models require 8 bytes of passive

memory. These two memory requirements total a score of 8.0.

4.4.5.3 GA

As mentioned earlier, one of the drawbacks of genetic algorithms is the amount of computations

required. In order to achieve a single path of evolution, an entire population needs to be created.

Since only one of those paths is going to be selected there is a lot of memory overhead that is

required. Assuming 15 predictions and a population size of 30 there are 450 lxl arrays needed.

This translates to 3600 bytes of active information. The only passive requirement is a pointer to

a given individual within the population. The memory score for genetic algorithms calculates to

2.27.

4.4.5.4 HMM

Hidden Markov models require low amounts of storage. The storage requirements of the

algorithm are the hidden and visible state transitional probabilities. Assuming 3 hidden states

and 3 visible states, 18 probabilities are needed. These probabilities require 144 bytes of active

memory. A pointer is required to indicate both the hidden state and the visible state; therefore 16

bytes of passive memory are needed. Since the model requires little overhead and simplistic

storage, the HMM receives a 7.67.

4.4.6 Interaction with User

The interaction with the user is defined as the ability to interact with the algorithm and the

overall effectiveness of that interaction. An interaction score of 0 means that the algorithm has

118

little or no ability to accept input from the user, and the limited input that is accepted has little

effect on the overall process. A score of 5 means the algorithm accepts meaningful and intuitive

input. The input exhibits adequate of control over the algorithm. A score of 10 means that the

algorithm has ideal control inputs and that the inputs offer a high degree of control over the

computations of the algorithm. The graph below illustrates the performance of each of the four

algorithms.

1(

I
6

Rating
4

2

0
Deterministic ARMA Genetic Alg. HMM

Figure 438 - User interaction ratings.

4.4.6.1 Deterministic

The deterministic algorithm exhibits average interaction. Deterministic models in general are

models for specific phenomena. Certain environmental assumptions and outside input factors

will be present within the model. By controlling the inputs factors to the deterministic model,

the model will reflect the output accordingly. The drawback to the interaction with deterministic

models is that the model will follow a certain pre-described set of rules. The controls however

over the model are meaningful and therefore deterministic algorithms receive an average rating

of 5.

119

I
I

I
I
I

4.4.6.2 ARMA

The user interaction with ARMA models is below average. Although the ARMA model was a

combination of input and output samples, the input does not allow the user to have a great deal of

control over the output for a given sample. The control is very indirect; the only variable that the

user has control over is the input variable. There is no mechanism in traditional ARMA

modeling for the user to have control over the filter itself. Since the user had only limited

control and the extent of that control is also limited ARMA models received a rating of 2.

4.4.6.3 Genetic Algorithms

The overall interaction with the user for genetic algorithms is above average. Using a genetic

algorithm model the user has a great deal of control over the evolutionary process. Through the

use of a cost function the user can vary the functional evaluation of the population over time.

Similarly, the user can control the mutation rates such that the user can alter the probability of

dramatic jumps within a population. Each of these factors empowers the user with meaningful

tools in the evolutionary process. Information hiding allows the programmer to build variables

into the algorithm such that the end-user will have inputs that correspond to these variables

within the main computations of the algorithm. Since the user has a wide array of control inputs

that produce effective and powerful control over the evolutionary process genetic algorithms

receive an 8.

4.4.6.4 HMM

Hidden Markov models exhibited an above average amount of control. The overall structure

(number of hidden nodes, visible states, transitions) is preset before the evolutionary process

begins. Adaptive nodal structures can be implemented, but they provide an added level of

120

complexity. However, through the transitional probabilities the user can control the probability

of certain phenomena occurring. Through the use of variable transitional probabilities the user is

given a high degree of control. The control is not an immediate force to a certain state, but rather

the probability of it being in that state. Although the user has some amount of control, the

precise model structure will still be an influence on the output. HMMs receive a score of 7.

4.4.7 Software Specific

The software specific criteria deal with the ties an algorithm may have to a software platform. If

a model has strong ties to specific software such that the model cannot be implemented or

incorporated into any other environment it receives a score of 0. A score of 5 means that the

model has some ties to a software platform but implementation of the model into a different

platform would be possible. A score of 10 reflects an algorithm that would perform identically

on any system regardless of the environment that it was operating in. The score for each of the

models is illustrated in the graph below.

Rating

Deterministic ARMA Genetic Alg. HMM

Figure 439 - Software specific ratings.

121

1
i

4.4. 7.1 Deterministic

In general, deterministic algorithms are relatively software dependent. The deterministic

implementation performed in Section 4.2.1 does not capture the complete nature of deterministic

modeling. Therefore, the implementation results from the deterministic modeling cannot be used

to estimate the software specific nature of the algorithm. In order to assess the software specific

nature of the algorithms, specific deterministic model implementations were investigated. The

models developed by Southwest Research Institute (SwRi) NESSUS, SAFE, and DARWIN are

representative examples [49]. When implementing these models a proprietary program was

developed. In addition to the program, specific functions were also proprietary. Integrating such

a program into a VR environment would require transporting the whole program and adding an

interface. The algorithm's ties to the program are extremely high. Since a significant number of

deterministic models have proprietary functions, the deterministic models received a rating of 2.

4.4.7.2 ARMA

ARMA models are above average for software specific implementations. In order to implement

the ARMA models, built-in MatLab functions were used. The built in MatLab functions provide

an accurate and time-efficient method for computing the required parameters. Even if taken out

of MatLab the specialized functions would not be difficult to encode. Since a filter is relatively

easy to code on any platform ARMA models received a rating of 8.

4.4.7.3 Genetic Algorithms

The genetic algorithm implementation is not software specific. The implementation could be

imported into a variety of other simulation tools in order to accomplish the evolution. However,

the implementation in MatLab takes advantage of the parallel processing capabilities of the

122

software. If imported into an environment where this is not possible or prudent, then the

efficiency of the code would drop significantly. For this reason, the genetic algorithm

implementation received a software specific rating of 5.

4.4.7.4 HMM

The HMM implementation has above average software specific characteristics. There are no

proprietary functions that are required for the algorithm to be implemented. The algorithm runs

from simple commands and the generation of random numbers. Random number generation can

be performed on any platform and therefore the HMM received an above average rating for

software specific characteristic of 8.

4.5 Evaluation

Based on the descriptions above, a chart is compiled from the ranking of each algorithm for the

various evaluation criteria. The rankings of each algorithm according to the various criteria are

plotted in Figure 4.40 (a).

The chart shows that the deterministic algorithm did not exhibit a strong performance in

any given category; For most of the criteria it exhibited an average to below average

performance. The ARMA model received a high rating for versatility, speed, memory, and

software specific, but a low rating for user interaction. Genetic algorithms were below average

for a number of criteria but performed highly with respect to user interaction. Finally, HMMs

performed average to above average across the entire range of evaluation measures.

123

i 0i·. O J2

I
I1

0 f I'D %-v nUt f (- 0

Ruon"

I

;x

*I

*U00

I

0

vf

&4

ii
I
4 .

0 0 0 0 0 00 o0 0 0 0
§0-00000000o - - -e- -N C0 00 00 < o

0

c

I
C,

,,I:o

"T

'L

124

- -
-

- - - - - o I

Next, the evaluation factors are weighted according to importance. The weighting

assignments are seen in Figure 4.41. The weight assignments are based on the importance of the

criteria to VR implementations. Figure 3.7 illustrates the relationship between the evaluation

criteria and the generalized algorithms goals. Combined, memory and speed form the largest

weight because together they will influence the feasibility and practicality of implementing the

given algorithm in VR. User interaction is ranked the highest because the user interaction with

the algorithm is an essential part of the entire process. Without user interaction, the analysis

would suffer in a VR implementation. Finally, model I/O, versatility, and software specific

needs are all given equal weights because they each have equal but different impacts on the VR

implementation.

Software Specific

User Interaction

Memory

Speed

Model 1/O

Versatility
FW Z ; -** IL/ * **_

0 2 4 6 8 10

Memory
13%

Interaction
w/ User

Spee
130O

iftware
pecific
17%

17% Versatility
17%

Model I

Framew(

(a) (b)

Figure 4.41 - Weight assignments.

According to the seven tools of management the rankings in Figure 4.40 (a) can be scaled

according to the weights in Figure 4.41 to assure a fair and thorough comparative analysis. The

resulting scores are displayed in Figure 4.40 (b). For each algorithm, the evaluation factors are

normalized, summed, and displayed in Figure 4.42.

125

- -~~~~~~~` :··~~'l-. 1-.
-~~~~~~~~~~~~~~ - ----~~~~~~~~~~~~~· - -·-tTj
- - - ~~~~~~~~~~~~~~~~~.

-~~~~~~~~~~~~i -

%

* Software Specific
* Interaction w/ User
0 Memory
0 Speed
* Model I/O Framework
* Versatility

nn

Deterministic ARMA Genetic HMM
Algorithms

Figure 4.42 - Weighted comparison.

From the weighted comparison it can be seen that hidden Markov models rank highest for

performing evolutionary computations in VR, followed by ARMA, genetic algorithms and

finally deterministic algorithms. The margin between the algorithms is not sufficient to conclude

that any one algorithm is superior to the rest for all VR evolutionary applications. There are

tradeoffs that exist between the algorithms, but overall HMMs are efficient across the range of

evaluation criteria. For each algorithm, the total score is plotted on a percentage scale to

determine which criteria influenced the overall score the greatest. This analysis plot is illustrated

in Figure 4.43 below.

126

8.00

7.00

6.00

5.00

4.00

3.00

2.00

1.00
I

i

i

I

I ____ a____I_ i

* Software Specific

* Interaction w/ User

O Memory

o Speed

* Model I/O Framework

* Versatility

Deterministic ARMA Genetic HMM
Algorithms

Figure 4.43 - Contributions to weighted score.

From Figure 4.43 is can be seen that deterministic modeling has relatively average

performance across the range of evaluation criteria. Deterministic modeling techniques are often

software specific and perform a very exact analysis. Often for VR risk analysis a probabilistic

approach is more suitable. Versatility, memory and software specific needs are seen to

contribute over half of the ARMA model's score. ARMA models are simple to implement, and

computationally efficient. The drawback to such models is the lack of mechanisms for the

algorithm to interact in the overall virtual environment. Genetic algorithms are seen to exhibit

the opposite behavior of ARMA models. Genetic algorithms afford a vast array of possibilities

for interactions, but the computational cost of those interactions is relatively high. Finally,

HMMs exhibit average to above average performance in all categories. The problem of VR

evolutionary programming evolves a large array of variable conditions. The purpose of this

127

1000/o

9000

80%

70%

60%

50%

40%

30%

20%

10%

no/.
I vu

analysis is not to conclude that one algorithm is superior to all others, but illustrate the various

tradeoffs among the different algorithms when a VR platform is implemented.

128

CHAPTER 5 - CONCLUSIONS

Virtual reality has emerged as a powerful visualization tool for design, simulation and analysis in

modem complex industrial systems. As the hardware and software capabilities inside VR

systems mature, it is essential that the design, simulation and analysis techniques that are

deployed in VR environments keep pace. The primary motivation for this thesis is to develop a

framework for the effective use of VR in design-simulation-analysis cycles. Of particular

interest are situations involving large, complex, multidimensional data-sets. The framework

developed in this thesis is intended to support not only the integration of such data for visual,

interactive, and immersive displays, but also provides a method for performing risk analysis.

The principal objectives of this thesis are revisited below:

1. To develop a framework for multi-sensor data visualization in virtual reality.

2. To develop a methodfor implementing time-evolutionary models for virtual reality.

3. To compare the suitability of the various algorithms for virtual reality scenario

development.

The methods developed for meeting these objectives were demonstrated using the

following environment - the in-line, nondestructive evaluation of gas transmission pipelines.

This environment allowed for incorporating graphical, functional and measurement data.

Additionally, the environment had an evolutionary component capable of accepting user input

and varying over time.

5.1 Summary of Accomplishments

This thesis has attempted to address the objectives described in the previous section as follows:

129

1. Development of a framework for multi-sensor data visualization in VR. An immersive

data fusion environment was defined and created, consisting of (a) graphical data, (b)

measurement data, and (c) functional data. Incorporating user-defined inputs allowed

the user to interact and navigate in the environment. The framework was demonstrated

using multi-sensor data obtained during the in-line inspection of a section of a gas

transmission pipeline. Graphical models of the pipeline components were displayed in

addition to MFL / UT inspection signals, neural network predictions of pipeline

condition, and the geographic location of the pipeline network.

2. Development of time-evolutionary models for l-D, 2-D, 3-D, and N-D VR evolutionary

simulations. Four candidate algorithms were implemented - deterministic modeling,

auto-regressive moving average modeling, genetic algorithm modeling, and hidden

Markov modeling. The results of these evolutionary techniques were demonstrated

using the growth of a stress-corrosion crack on a pipeline section.

3. Comparison of the evolutionary algorithms for scenario development. The following

evaluation criteria were identified - versatility, model I/O, speed, memory, interaction

with the user, and software specific features. A prioritization matrix technique was used

to rate the candidate algorithms and identify strengths, weaknesses, and trade-offs.

5.2 Conclusions

Virtual reality environments show considerable promise for the integration of multi-sensor data.

The system allows a user to rapidly sift through large and complex data sets to isolate features of

interest. Additionally, the VR environment has the ability to evolve as a function of both system

data and user input. The use of data integration and evolution empowers the user to evaluate

scenarios to make informed decisions.

130

Four algorithms were implemented and analyzed as candidates for single and multi-path

evolution. Deterministic modeling for evolution on a virtual platform showed that the technique

lacked certain key features to allow it to stand out as the prime candidate for evolution. ARMA

modeling is a versatile and computationally efficient method for providing signal prediction.

However, ARMA models did not exhibit a high level of user interaction, which is a major

drawback of this technique. Conversely, genetic algorithm modeling showed great promise with

respect to user interaction. However, the technique has large computational costs. Finally,

hidden Markov models exhibited strong characteristics in all of the evaluation categories.

53 Recommendations for Future Work

As follow-on to this work, an implementation of these algorithms could be performed to further

address the design-simulation-analysis cycle for virtual prototyping. The algorithms could be

implemented in conjunction with one another to capitalize on their strengths and downplay their

weaknesses. For example, a HMM could be used to generate multiple solutions to a problem.

The user could evaluate a small number of these solutions as input into a genetic algorithm.

Such an implementation would allow for VR to become an even more powerful tool in the

development cycle.

With respect to the in-line inspection of natural gas pipelines, additional algorithms could

be developed to further integrate heterogeneous data types. Information logs about past activity

and past performance could be used to aid in the risk assessment procedure. Also, functional

models could simulate multiple levels of evolution. The interaction of a number of evolutionary

models would allow for complex evolutions to take place across a range of phenomena within

the virtual environment.

131

In addition to improving the VR design environments, software platforms that allow for

real-time evolutionary parameter computation and display must be investigated.

132

REFERENCES

[1] M. Slater, A. Steed, Y. Chrysanthou, Computer Graphics and Virtual Environment,
Addison Wesley, 2002.

[2] A. van Dam, A. Forsberg, D. Laidlaw, J. La Viola and R. Simpson, "Immersive VR for
Scientific Visualization: A Progress Report," IEEE Computer Graphics and
Applications, pp. 26-52, November-December 2000.

[3] A. van Dam, D. H Laidlaw, R. M. Simpson, "Experiments in Immersive Virtual Reality
for Scientific Visualization," Computers & Graphics, Vol. 26. pp. 535-555, 2002.

[4] T. Hong, A Virtual Environmentfor Displaying Gas Transmission Pipeline NDE Data,
M.S. Thesis, Iowa State University, 1997.

[5] M. J. Schuemie, P. Van Der Straaten, M. Krijn and C. A.P.G Van Der Mast, "Research
on Presence in Virtual Reality: A Survey," CyberPsychology & Behavior, Vol. 4, No. 2,
pp. 183-201,2001.

[6] L. G. Shapiro, G. C. Stockman, Computer Vision, Prentice Hall, Upper Saddle River,
NJ, 2001.

[7] Y. Waem, Cognitive Aspects of Computer Supported Tasks, John Wikey & Sons,
Chichester, 1989.

[8] M. J. Pierce, Scientific visualization of gas transmission pipeline NDE data, M.S.
Thesis, Iowa State University, 1999.

[9] Kraus, and Fleisch, Electromagnetic with Applications, Fifth Edition, McGraw-Hill,
Boston, 1999.

[10] R. Beavon, Chemistry Solutions: F.A. Kekule von Stradonitz, October 2003.

[11] Encyclopdeia.com. Human History. Accessed March 2004.

[12] J. Cremer, J. Kearney, and H. Ko, "Simulation and Scenario Support for Virtual
Environments," Computer & Graphics, Vol. 20, No. 2, pp 199-206, 1996.

[13]R. Gonzalez, R. Woods, Digital Image Processing, Second Edition, Prentice Hall,
Upper Saddle River, NJ, 2002.

[14] S. Pinker, How the Mind Works, W. W. Norton & Company, New York, 1997.

[15]Ed., M. L. McLaughlin, J. P. Hespanha, G. S. Sukhatme, Touch in Virtual
Environments, Prentice Hall, Upper Saddle River, NJ, 2002.

133

[16] D. E. Bray, R. K. Stanley, Nondestructive Evaluation, A Tool in Design,
Manufacturing, and Service, Revised Edition, CRC Press, Boca Raton, 1999.

[17] R. Miller, Nondestructive Testing Handbook: Acoustic Emission Testing, American
Society for Nondestructive Testing, Inc. Vol. 5, 1987.

[18] A. S. Birks, Nondestructive Testing Handbook: Ultrasonic Testing, American Society
for Nondestructive Testing, Inc. Vol. 7, 1991.

[19] D. L. Hall, J. Llinas, Handbook of Multisensor Data Fusion, CRC Press, Boca Raton,
2000.

[20] S. Mandayam, L. Udpa, S. S. Udpa and W. Lord, "Signal processing for in-line
inspection of gas transmission pipelines," Research in Nondestructive Evaluation, Vol.
8, No. 4, pp. 233-247, 1996.

[21] C. Michael, An invariance transformation algorithm for defect characterization of
ultrasonic signals for the nondestructive evaluation of concrete, M.S. Thesis, Rowan
University, 2002.

[22] G. J. Posakony, and VJ Hill, "Assuring the integrity of natural gas transmission
pipelines," Topical Report, Gas Research Institute, November 1992.

[23] VRCO, Inc., vGeo Reference Manual, Version 2.0, January 2003.

[24] W. Kenong, "3-D shape approximation using parametric geons," Image & Vision
Computing, Vol. 15, pp. 143-158, 1997.

[25] Peiya Liu, "The Virtual Reality Modeling Language Explained," IEEE Multimedia, pp.
84-93, July/September 1998.

[26] Nahm, S. Lee, J. H. Park, K. S. Park, "Reality and human performance in a virtual
world," International Journal ofIndustrial Ergonomics, Vol. 18, pp. 187-191, 1996

[27] C. Ware, and G. Franck, "Evaluating Stereo and Motion Cues for Visualizing
Information Nets in Three Dimensions," TOG Info Net Vis., pp. 1-21, April 20, 2000.

[28] C. Luo, "Multi-sensor Fusion and Integration: Approaches, Applications, and Future
Research Directions." IEEE Sensors Journal, Vol. 2, No 2, pp 107-119, April 2002.

[29] J. Vora, S. Nari, A. K. Gramopadhye, A. T. Duchowski, B. J. Melloy, B. Kanki, "Using
virtual reality technology for aircraft visual inspection training: presence and
comparison studies," Applied Ergonomics, Vol. 33, pp. 559-570, 2003.

[30] H. Anton, Calculus, 6 h Edition, Wiley, New York, 1999.

134

[31] E. Kreyszig, Advanced Engineering Mathematics, 8t Edition, Wiley, New York, 1999.

[32] B. Porat, A Course in Digital Signal Processing, John Wiley and Sons Inc., USA, 1997.

[33] User's Guide, Signal Processing Toolboxfor MatLab, Version 5, Parametric Modeling,
2000.

[34] Ed., Lawrence Davis, Handbook of Genetic Algorithms, Thomson Computer Press,
USA, 1996.

[35] T. Collins, "Applying software visualization technology to support the use of
evolutionary algorithms," Journal of Visual Languages and Computing, Vol. 14, pp
123-150, 2003.

[36] H. Pohlheim, "Visualization of Evolutionary Algorithms - Real-World Application of
Standard Techniques And Multidimensional Visualization," Proceedings of the Genetic
and Evolutionary Computation Conference, San Francisco, CA., 1999.

[37] H. Pohlheim, "Visualization of Evolutionary Algorithms - Set of Standard Techniques
and Multidimensional Visualization," Proceedings of the Genetic and Evolutionary
Computation Conference, San Francisco, CA., 1999.

[38] I. Kushchu, "Genetic Programming and Evolutionary Generalization," IEEE
Transactions on Evolutionary Computation, Vol. 6, No. 5, pp. 431-442, October 2002.

[39] D. Whitley, "An overview of evolutionary algorithms: practical issues and common
pitfalls," Information and Software Technology, Vol. 43, pp. 817-831, 2001.

[40] R. O. Duda, P. E. Hart, D. G. Stork, Pattern Classification, Second Edition. Wiley-
Inter-science, 2001.

[41] J. J. Ford, J. B. Moore, "Adaptive Estimation of HMM Transition Probabilities," IEEE
Transactions on Signal Processing, Vol. 46, No. 5, pp 1374-1385, May 1998.

[42] The American Heritage Dictionary of the English Language, Fourth Edition, Houghton
Mifflin Company, 2000.

[43] J. V. Michaels, Technical Risk Management, Prentice Hall, Upper Saddle River, NJ,
1996.

[44] J. D. Andrews, and T. R. Moss, Reliability and Risk Assessment, Second Edition,
ASME Press, New York, 2002.

[45] T. Bedford, R. Cooke, Probabilistic Risk Analysis; Foundations and Methods,
Cambridge University Press, 2001.

135

[46] D. H. Besterfield, Quality Control, Fifth Edition, Prentice Hall, Upper Saddle River, NJ,
1998.

[47] V. E. Sower, M. J. Savoie, and Stephen Renick, An Introduction to Quality
Management and Engineering, Prentice Hall, Upper Saddle River, NJ, 1999.

[48] W. T. Riddell, "Probabilistic Growth of Complex Fatigue Crack Shapes: Toward Risk
Based Inspection Intervals for Railroad Tank Cars," Journal of Mechanical Design,
Vol. 123, December 2001.

[49] SwRI. www.nessus.swri.org. NESSUS accessed January 2004.

[50] S. Haykin, Adaptive Filter Theory, Fourth Edition, Prentice Hall, 2002.

[51] J. M. Carroll, Making Use: scenario-based design of human-computer interactions,
MIT Press, Cambridge Massachusetts, 2000.

[52] L. Rosenblum, and M. Macedonia, "Projects in VR: Integrating VR and CAD," IEEE
Computer Graphics and Applications, September/October 1999.

[53] Y. Yang, X. Wang, and J. X. Chen, "Rendering Avatars in Virtual Reality: Integrating a
3D Model with 2D Images," Computing in Science & Engineering, pp. 87-91,
January/February 2002.

[54] J. Campos, K. Homsby, M. J. Egenhofer, "A model for exploring virtual reality
environments," Journal of Visual Languages and Computing, Vol. 14, pp. 471-494,

.2003.

[55] L. Udpa, S. Mandayam, S. Udpa, Y Sun, and W. Lord, "Developments in Gas Pipeline
Inspection Technology," Materials Evaluation, pp. 467-472, April 1996.

[56] VRCO, Inc. vGeo User's Guide, Version 2.0. January 2003.

[57] D. Bowman, Interaction Techniques for Common Tasks in Immersive Virtual
Environments: Design, Evaluation and Application. Georgia Institute of Technology.
Thesis, June 1999.

[58] F. P. Brooks, Jr., "What's Real About Virtual Reality." IEEE Computer Graphics and
Applications, pp. 16-27, November/December 1999.

[59] J. G. Proakis, D. G. Manolakis, Digital Signal Processing, Principles, Algorithms, and
Applications, Third Edition, Prentice Hall, Upper Saddle River, NJ, 1996.

136

	An investigation of multi-dimensional evolutionary algorithms for virtual reality scenario development
	Let us know how access to this document benefits you - share your thoughts on our feedback form.
	Recommended Citation

	An Investigation Of Multi-Dimensional Evolutionary Algorithms For Virtual Reality Scenario Development

