Rowan University

Rowan Digital Works

Theses and Dissertations

12-31-2004

Automated evaluation of radiodensities in a digitized
mammogram database using local contrast estimation

Min Taek Kim
Rowan University

Follow this and additional works at: https://rdw.rowan.edu/etd

Let us know how access to this document benefits you -
share your thoughts on our feedback form.

Recommended Citation

Kim, Min Taek, "Automated evaluation of radiodensities in a digitized mammogram database using local
contrast estimation" (2004). Theses and Dissertations. 1173.

https://rdw.rowan.edu/etd/1173

This Thesis is brought to you for free and open access by Rowan Digital Works. It has been accepted for inclusion
in Theses and Dissertations by an authorized administrator of Rowan Digital Works. For more information, please
contact LibraryTheses@rowan.edu.


https://rdw.rowan.edu/
https://rdw.rowan.edu/etd
https://rdw.rowan.edu/etd?utm_source=rdw.rowan.edu%2Fetd%2F1173&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.lib.rowan.edu/rdw-feedback?ref=https://rdw.rowan.edu/etd/1173
https://www.lib.rowan.edu/rdw-feedback?ref=https://rdw.rowan.edu/etd/1173
https://rdw.rowan.edu/etd/1173?utm_source=rdw.rowan.edu%2Fetd%2F1173&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:LibraryTheses@rowan.edu

~ Automated evaluation of radiodensities in a digitized mammogram
database using local contrast estimation

by

Min Taek Kim

A Thesis Submitted to the
Graduate Facylty in Partial Fulfillment of the
Requirgments for. the Degree of
MASTER OF SCIENCE
Department: Electrical and Computer Engineering

Major:  Engingering (Electrical Engineering)

Approved: Members of the Committee

In Charge of Major Work

For the Ma]or Department

For the College

Rowan University
Glassboro, New Jersey
2004



ABSTRACT

Mammographic radiodensity is one of the strongest risk factors for developing breast
cancer and there exists an urgent need to develop automated methods fo; predicting this
marker. Previous attempts for aﬁtomatically identifying and qﬁantifying radiodense tissue
in digitized ;rlammograms have fallen short of the ideal. Many algorithms require
significant heuristic parameters to be evaluated and set for predicting radiodensity. Many
others have not demonstrated the efficacy of their techniques with a sufficient large and
diverse patient database. This thesis has attempted to address both of these drawbacks in
previous work. Novel automated digital image processing algorithms are proplosed that
have demonstrated the ability to rapidly sift through digitized mammogram databases for
accurately estimating radiodensity. A judicious combination of péint—processing,
statistical, neural and contrast enhancement techniques have been 'employed | for
addressing this formidable problem. The algorithms have béen developed and exercised
using over 700 mammograms obtained from multiple age and ethnic groups and digitized
using more than one type of X-ray‘digitizer. The automated algorithms developed in this
thesis have been validated by comparing the estimation results using 40 of these
mammograms with those predicted by a previously established manual segmentation
technique. The automated algorithms developed in this thesis show considerable promise
to be extremely useful in epidemiological studies when correlating other behavidral and

genetic risk factors with mammographic radiodensity.
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CHAPTER 1: INTRODUCTION

Can;er results from a mutation that has the potential to cause thetuncontrollable growth

and spread of unhealthy cells. If cancer does spread by metastasis, it may result in death

to the individual. The mutations éan be caused by both external stimuli and internal

stimuli and may go undetected up to as much as ten years after the occurrence of thel
stimulus. In America today, cancer is the second leading cause of death, second only to

heart disease. About 1.3 million new cancer cases were diagnosed in 2003. This year
alone, approximatvely half a million Americans are expected to die 'due to caﬁcer related

deaths, accounting for more than 1,500 deaths per day [1].
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FIGURE 1.1 Cancer related deaths in the U.S.




For women, breast cancer is the third leading cause of death, only surpassed by
lung and digestive cancers. It is anticipated that about 40,000 deaths will occur due to
breast cancer in the United States this year, accountin;c,J for 15% of all cancer related
deaths, as shown in Figure 1.1. Though not the leading cause of cancer related deaths
among women, breast cancer is the most frequently diagnosed non-skin cancer today. As
Figﬁre 1.2 shows, it ac;:ounts for 33% of all new cancers. An estimated duarter of a
million new cases of invasive breast cancer occurred among women in 2003. In addition
to the invasive breast cancer, approximately another 56,000 new cases occurred among

women in 2003, of which roughly 85% were ductal carcinoma in situ [1].

¥
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FIGURE 1.2 Estimated new cases of cancer in 2003.




. The earliest sign of breast cancer is usually an abnormality that can be seen in
mammograms before it is ever felt by the women or health care provider. Because early
detection results in a better disease prognosis, mammograms have beén shown to save
lives and increase treatment options. According to the most recent studies, it has been
shown that mortality due to breast cancer has declined 1.4% every year between 1989
and 1995 and 3.2% every year afterwards. These declines can be attributed to the
increase of early cietections measures such as re;gular mammography screenings [2].

Even though the exact mechanism of why a patient acquires breast cancer is not
well known, there has been much research done to gain knowledge in potential risk
factors. Studies have identified risk factors that can help doctors determine whether a
woman has a higher probability of acquiring breast cancer. Knowledge of such risk
fac;tors can allow doctors to advise patients on how often they should be screened for
early signs of breast cancer, making it more likely that any abnormal growth will be
detected early. This thesis introduces an algorithm that can be used an important tool for

doctors to analyze a patient’s risk for acquiring breast cancer.

1.1 Breast Anatomy

The human breast, otherwise known as the mammary gland, is composed of various
components. Each breast contains 15-20 sections called lobes that surround the nipple.
Inside the lobes, there are 30-80 smaller structures called the lobules. Contained at the
end of each lobule are bulbs which ultimately create the milk. These structures are linked
together by small tubes called ducts, which carry milk to the nipples. The only muscle

tissues located within the breasts are found in the nipple and around the lobules. A layer



of fat, also known as adipose tissue, surrounds the glands and ducts within the breast [3].

Figure 1.3 shows an illustration of the anatomy of the breast.

There are many factors that contribute to the actual size and density of the breast.
Studies have shown that genetics, nutrition, and conditioning factors play a major role in

the size, composition, and shape of the breast. In normal breast development, the

Chest wall

Pectoralis muscles

surface
Areola
Duct

FIGURE 1.3 Breast anatomy.
effects of the major reproductive hormones estrogen, progesterone, and prolactin play the
most important role [4].
The size and composition of the breast also changes throlughout a women’s life.
The changes can occur due to the cyclic changes of menses, altered physiology and
anatomy during pregnancy and lactation, and the aging factor. During the menstrual
cycle, it has been demonstrated that the breast changes due to the ovarian hormone levels.

The breast tissue has been found to be less dense during the follicular phase than in the



luteal phase among premenopausal women. During pregnancy and lactation, the breast
tissue becomes denser due to the increased amount of glandular tissue contained within

the breast. During menopause, the glandular components of the breast are replaced by fat

and connective tissue, which can be attributed to the decline in ovarian functions [5].

1.2 Breast Density and Parenchyma

The density of a breast can be defined by the amount of its ducts, lobules, and
interlobular fibrous tissue. Tﬁere are many implications to the density of the breast.
First, there are important clinical repercussions to dense breasts. Breasts that contain
mostly adipose tissue are very radiolucent in nature and therefore easily reveal the
presence of small tumors. Dense breasts are very difficult to evaluate with

mammography. For the smaller tumors located within the breast, there is poor contrast in
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FIGURE 1.4 Mammogram showing the two different regions located within the breast,
radiodense and radiolucent.



comparison to a radiodense mammogram. Figure 1.4 shows an example of radiodense
and radiolucent tissﬁe. The second and most important irhplication of high radiodense;
tissue in a breast is its link to an increased risk for breast‘ cancer [6, 7]." Studies have
shown that breast density is one of the strongest predictors of breast cancer.. This 'qan
simply be attributed to the fact that there is more glandular tissue within a radiodense
tissue, which in turn contains more cells that have the poten';ial to turn into canpe;oﬁs
cells.

The mammographic parenchymal patterns have been shown to consistently
change based on breast cancer risk factors such as age, menopause, social status, parity,
and body size. It has also been shown that parenchymal density is also related to alcohol
consumption, nutritional variables, family history of bréast cancer, and race. Because it
has been shown that radiodensity is one of the highest'n'sk markers for breast cancer,
understanding how it can be changed can play a vital role in cancer prevention. In one
study, researchers investigated nearly 1000 pairs of monozygotic (identical) and
dizygotic/fraternal (non-identical) twins in North America and Australia. Radiologists
who were blinded to the patient information analyzed the mammograms for radiodensity.
The percentage of dense breast tissue was correl‘ated twice as strongly among
monozygotic twin pairs as among dizygotic twin pairs, showing that radiodensity can be
traced to a heritable gene. Based on this study performed by Boyd, er al it was
determined that “the percentage of dense tissue on mammography at a givén age has high
heritability. Because mammographic density is associated with an increased risk of
breast cancer, finding the genes responsible for this phenotype could be important for

understanding the causes of the disease [15].”



1.3 Mammography

Mammograms are one of the most impoftant tools for a do;:tor to evaluate, diagnose, and
follow breast cancer. The recent decline in canc;er related deaths can be attributed to the
increése in mammography screenings, as well as improved cancer treatments. There is
no evidence that suggests other imaging methods have reduced the mortality rate of
breast cancer like mammography.

It is estimated that there are over 50 million mammograms are performed
annually. The US Food and Drug Administration reports that mammography can find 85
to 90 percent of breast cancers in women over the age of 50 and can discover a lump up
to two years before it can even be felt [8]. According to the American Cancer Society,
when the breast cancer is confined to the breast, the five-year survival rate is close to
100% [9]. The early detection of the cancerous cells helps to reduce the severity of
treatment 'in addition to minimizing the amount of pain and discomfort the women
experiences. It has been stated that women over the age of 40 should have yearly
mammograms as well as clinical and self examinations. These guidelines were
developed because the occurrence of breast cancer for women between the ages of 20-29
is only about 0.3%, and about 77% percent of the women who have breast cancer are

over the age of 50 [1].

1.4 Mammography Procedure
The Mammography Quality Standards Act (MQSA) passed by Congress in 1992 and
administered by the Food and Drug Administration (FDA) sets certain guidelines for the

certified technician when performing a screening. The breast must first be placed



between the two compression plate‘s. The MQSA requires the compression. of the breast
to be a certain thickness. Unfortunately, this standard cannot always be met due to
differences in the size and shapes of breast.

A conventional mammography process is shown in Figure 1.5. The breast is
placed betwefan two plates and the X-ray image is a result of how much radiation passes
through the breast. Different types of tissue have different attenuation rates; as a result,
abnormally dense tissue can be detected. Radiodense tissue has a high attenuation rate,
therefore it will absorb most of the X-rays and will show up as bright spots in the X-ray
after it has been inverted. Abnormalities such as microcalcifications, masses, and cysts

will also show up as very bright spots and can be detected easily as long as the rest of the
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FIGURE 1.5 Mammogram procedure (a) craniocaudal (b) mediolateral oblique.



tissue is relatively radiolucent. This essentially creates problems for women with high
radiodense tissue. The abnormalities may blend in with the high radiodense tissue and

make it very difficult for analysis due to the low contrast. The adipose regions of the

(a) Left Craniocaudal (LCC) View (b) Right Craniocaudal (RCC) View

(c) Left Mediolateral Oblique (LMLO) " (d) Right Meédiolateral Oblique (RMLO)
View View

FIGURE 1.6 Typical‘mammog}am X-ray film set.

breast show up as dark regions in the mammograms. The parenchyma differences seen
among women in mammograms are due to differences in the relative amounts of fat, -

ductal, and lobular tissue located within in the breast.




Mammograms are usually taken from one of two views for each breast; two for
crantocaudal (CC) and 2 for mediolateral oblique (MLO) as shown in Figure 1.6. The
mediolateral oblique view is taken from an angled projection. This method is sometimes
preferred because it allows the technician to place more of the breast onto the film.
Unfortunately, for some automated techniques, the inclusion of the chest muscle makes it
very difficult for boundary estimation. The technician attempts to make sure that the
compression of the breast is uniform throughout.

The craniocaudal view images the breast from above. This method does not have
as much tissue as the MLO methods, but exclﬁdes the chest muscle from the image while
including most of the breast parenchyma. Uniform compression in attempted throughout
as with all procedures.

Even though the scanning procedure haé evolved over the years alléwing for
semi-automation, it still requires the supervision of a trained technician for the images to
develop properly. Most images that have problems occur due to incorrect positioning and
compression. Radiologists are typically concerned with the presence of immediate
déngers to the patient, malignancy and other abnormglities. But, as stated earlier,
radiodensity has become an important part of any mammogram evaluation because of its
correlation with high breast cancer risk. A highly dense breast is also a.concern because
of the complexity it adds due to the relative contrast between the abnorrﬁal regions and
the radiodense reg,i'ons. | | o j | g |

As is the common theme throughout this thesis, variabflity plays a 1b‘ig role }n the
consistencylof the image that is produced. A study has shbwn that there is inC(;nsistency

amongst radiologists in marhmography screening [10]. The amount of inconsistency
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varies between radiologists and depends on the study that uses the mammograms. There

are many factors that contribute to the varying results and cause problems when a study

spans multiple regions and uses different radiologists.

1.5 Risk Factors for Breast Cancer

The American Cancer Society characterizes risk factors into three broad categories.

These three categories include: risk factors that cannot be changed, lifestyle-relatéd risk

factors, and risk factors with uncertain, controversial, or unproven effects on breast

cancer risk. Risk factors that cannot be changed include gender, aging, genetic risk

TABLE 1.1 Breast cancer risk factors with their associated relative risk.

High-Risk Group

Risk Factor Low-Risk Group Relative risk
Age Old Young >4.0
Country of birth North America, Asia, Africa >4.0
c Northern Europe : ‘
Socioeconomic status . - High : Low 20-4.0
Marital Status Never married Ever married - 1.1-19
Place of residence Urban ‘ Rural 1.1-1.9
Place of residence Northern US Southern US 1.1-1.9
Race > 45 years White Black 1.1-1.9
<40 years Black - White 1.1-1.9
Nulliparity Yes No 1.1-1.9
Age at first full-term pregnancy > 30 years <20 years 2.0-4.0
Age at menopause Late ~ Early 1.1-1.9
Weight, postmenopausal women Heavy Thin 1.1-19 °
‘Any first-degree relative with Yes No 2.0-4.0
history of breast cancer
Mother and sister with history of ~ Yes No >4.0
breast cancer )
Mammographic parenchymal Dysplastic: Normal 2.0-4.0

_patterns

factors, race, and family history of breast cancer. Lifestyle-related factors like children,

breast-feeding, alcohol, obesity, and physical inactivity are all risks factors that can be

changed. Factors with unproven effects on breast cancér risk include antiperspirants,
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smoking, and breast implants. In some studies, it has been shown that smoking can
actually reduce the risk of breast cancer; but of course that increases a patient’s risk of
lung cancer, which is the number one cancer related death in America. Table 1.1
describes some breast cancer risk factors vﬁth their associated relative risk [11].

Many studies have shown that breast density may be one of the strongest markers
for bréast cancer risk analysis. . The studies have shown that a strong colrrelation exists

between breast parenchymal density on mammograms and breast cancer risk [12, 13, 14].

1.6 Levels of Breast Cancer and Survival Rates |

Because of i:he importance of mammograms and other screening procedures, it is vital
that the different stages of cancer and risks associated are discussed. The cancer in the
breast is usually categorized through the use of stage definitions. Staging. 1s the process
by which a physician can asse;s the size and location of the cancer. The stage of the
cancer pléys an important role in deterfniﬁing the typé of ‘treatment needed. Most
importantly, the stage of cancer determines the survival rate of the paﬁent after treatment.
If the cancer is detected before it has spread past the 1‘t)reast, the five year survival rate of
the patient is 100%. The American Joint Committee on Cancer places the cancer in a
letter category using the Tumor-Nodes—Metastasis (TNM) classifier system.

The first stage, stage 0, can be designated as in situ, the term in situ meaning in
place.' In this type of cancer, it is contained within the breast ductal system and has not
spread beyond that. Up to twenty percent of d{agnosed breast cancers are of this type.
There are two types of cancers in this stége, lobular carcinoma in situ (LCIS) and ductal

carcinoma in situ (DCIS). Even though the structure LCIS is similar to cancer, it does
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not behave as a cancer and vtherefore is usually not treated as one. LCIS is usually not
considered a malignancy by most doctors but can indicate a high risk for breast cancer.
" DCIS fepreserits cancer cells that are confined to the milk ducts in the breast and have not
spread to the fatty tissue or the lymph no&es. It can usually bé ‘de;tected m mammograms
by the specks of calcium, known as microcalcifications. Stage 1 cancer occurs when the
original'tmnpr is about 2 cm 'in'length or less and is localized within a specific area.
Stage'IIA usually denotes a tumor that is 2 to 5 crﬂ in diameter and has not spread to the
lymph nodes. Stage IIB indicates:a cancer that is 2‘ to S cm in diameter and has spread to
the axillary lymph nodes, or the tumor is over 5‘ cm but has not spread to any of the
nodes. Stage IIIA indicatés any type of cancer that has sﬁread to the axillary lymph
nodes 'as well as the axillary tissues.‘ étage IIIB indicates any breast cancer that has
attached itself to the chest Wall and has spread to the pectoral lymph nodes. Stage IV,
which is the most severe of all stages, indicates that the cancer has spread to other parts

of the body.

TABLE 1.2 Five year survival rates of vérious stages of breast cancer.

0 100%
I 98%
mA | 88%
B . 76%
mMA 56%
1B 49%
v 16%
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The stage in which the cancer is detected plays a big role in determining the
* survival factor of the patient. Table 1.2 provides the 5-year survival rates for cancers at
different stages. The key thing to notice in the survival rates in the percentages for
'anythirllg below staée III. Even at stage IIB, where the tumor has spread to some lymph
nodes or the tumor is 5 cm in diameter, the survival rate is at 76%. This is the point
whére the tumor has grown to a siz;a where it can be felt by the patient. Stages 0 and I are
the most difficult to detect outside of mammography features, but by detecting in these
early stages,l survival in almost guarahteed. This stresses tﬁe importance in regular
mammograms, as well as risk analysis, to insure the earliest possible detection of the
i)réast cancer. It i§ suggested that women over 40 years of age get yearly mammograms,
but if a women has a higher risk of acquiring breast cancer, steps should be taken earlier.
A detailed risk analysis plays é signiﬁcantirole in determining when a woman should

obtain regular mammograms.

1.7 Statement of Problem
The estimation of radiociense tissue has trélditic;nally been a subjective determination by
trained radiologists using Wolfe’s Classification. The main problem is the variability
associated with the subjective nature. of radiologists [10]. The same image may produce
different results depending on the radiologist, and sometimes for the same radiologist.
Later work by Boyd, Jensen, et al improved on the subjectivity of Wolfe’s work but was
still based on observer decisions.

A completely automated system for estimating the amount of radiodense tissue

indicated in mammogram images has considerable potential to provide a rapid, objective
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and cost-effective procedure for estimating breast cancer risk. There have been several
attempts by previous researchers to arrive at such a system.

There are many issues that must be taken into consideration when analyzing a
digitized mammogram. One issue is that the quality of the image depends mostly on the
technician who acquires the image. Factors such as kilo-voltage peak, milli-ampere-
seconds, anode/filter combinations, focal spot, positioning, aﬁd compression all play a
pivotal role in the contrast, sharpness, and resolution of an image. Even if these variables
can be minimized with a standard procedure, there is still the issue of patient diversity.
The previous algorithms created in this résearch attempt to account for these problems
but have difficulties when new image types are introduced to the system.

Many of the algorithms that have been created onlJy focus on a particular dataset
or image type. This caﬁses problems when new images from other datasets are
introduced into the algorithm. ;lfhe ‘previou'satwo algorithms "created at Rowan University
also suffer from the same issues as well as other problems introduced during
' implementation. These problems include:

i. The images were segmentedlfrom algorithms that assumed that the histograms
of the mammogram were bimodal in nature, when in. fz;ct very few of the
mammograms in the databasé followed that trend.

2. There were many portionslof the algorithm that were based on user feedback
rather than image statistics. These inputs prevented the algorit‘h.ms from being

fully automated.
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3. The algorithms’ success was only based on the final numerical output of the
segmentations, rather than a comb&nation of visuals and percentages, this
introduced false positive results.

4. Many of the images were manually filtered; this introduced another step that

made the algorithms non-automated.

This thesis addresses many of the problems associated in other algorithms and
introduces several ideas that at‘gempt to make the algoﬁthm invariant to any non-tissue
changes in the image. The specific aims of this thesis are:

1. To survey current a“ce'ch'niques for the automated segmentation of radiodense

tissue in a digitized mammogram.

2. To evaluate various texture-based filtering, image enhancement, and image

processing methods for segmentation.

3. To validate results compared to expert-annotated images.

4. To implement a new algorithm for use on the FCCC database.

1.8 Scope and Organization of the Thesis

This thesis presents an algorithm that attempts to mimic the overall procedure that a
radiologist performs when analyzing the mammograms. There are several ideas that are
adopted from previous research done at Rowan University but are now implemented in
novel ways. This thesis also introduces a new method of Local Contrast Estimation
(LCE) which will allow for better inter-dataset performance. All implementations

created include:
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- 1. New image pre-processing methods that focus on the problems created during
scanning procedures.

2. Anew ';issue segmentation procedure based on new image enhancement and
image processing techhiqugs.

3. A fnore accurate and more efﬁcient' method to create the parametric mask
ﬁsgd to account for the artificial chaﬂge in compression created during the
mammogram proéedﬁre.

4. (A use of LCE for the estimation of breast density.

5. ‘An investigation of variou; texture segmentation methods as well as other

image processing methods for radiodense tissue estimation.

All algorithms and implementations v;/ere developed using mammograms
obt;i’ned from the Channing Laboratory of ‘the Bﬁgham gnd Women’s Hospital and
Harvard Medical School (Harvard) and mammograms obtained from Fox Chase Cancer
Center (FCCC). The Harvard iméges were obtained pre-digitized in bitmap format. The
FCCC mammograms were obtained from Fox Chase Cancer Center and had to be
digitized on site usiﬁg two fypes of scannérs: the Agfa scanner and the Lumisys. The
mammograms were evaluated by a radic;lbgist as a benchmark for the results obtained in
this thesis. The results of-this research are intended for use in a study conducted at Fox
Chase Cancer Center (FCCC), which examines correiationl between dietarsf patterns and
breast density.

This thesis is organized into five chapters. Following the introduction, Chapter 2

provides a description of previous techniques for the quantification of radiodense tissue
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and details the mathematical concepts used in the algorithm, such as edge and texture
detection. Chapter 3 gives an overview of the épproa'ch‘ taken in this thesis. Chapter 4
details the approach taken and displays all results obtained. Finally, Chapter 5 provides a

conclusion of the work presented in this paper and an outline of possible future work.
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CHAPTER 2: BACKGRdUND

This chapter is éplit into three major sections. Section 2.1 details some of tile previous
methods that have been used in the 'quantiﬁcation of radiodense tissue in a digitized
mammbgram. Section 2.2 discusses many of the texture methods that are evaluated in

this thesis. Section 3.3 explains all other mathematical techniques that were used.

2.1 Breast Density

In the mid 1970’s, studies were done by J. Wolfe to determine the relatioﬁghip between
the amount of parenchymal tissue located in the digital mammogram and the associated
risk. of breast clancer [6, 7]. These studies show that there is indeed a relationship
betwee;n the amount of radiodense tissue anvd the risk associated with acquiring cancer.
Over the past few decadeé, several other studies have been performed to further
investigate the:relationshiﬁ between radiodensity of breast. tissue and increased risk for
cancer. ‘Many of these trials produced results that were similar to the ﬁndihg that Wolfe
established. [16-26]. Ever since Wolfe’s investigations, it has been shown that woman
with breast density of 60-75% ‘or higher are at a 4-6 times higher chance of acquiring
" breast cancer than compared to women with little or no breast density [12]. Combined
with these findings, several studies have been done attempting to find the cor;elation of
breast density compared to other importaﬁt risk factors. One study done by Boyd et al
showed that breast density is a heritable trait, which cbrrelates to the understanding that
women with family members who have had cancer are at a much higher risk of acquiring

breast cancer themselves [15]. The fact that breast density can be traced genetically,
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which in tum niay allow cancer to be traced through a family, permits for a better
understanding of the pathogenesis of breast cancer.’

As stated earlief, a completely automated system for estimating the amount of
radiodense tissﬁe indicated in mammograrﬁ images has considerable potential to ﬁrovide
a rapid, objective and cost-effective procedu;e for estimatingl breast cancer risk.
Unfortunately, becaﬁse of the rﬁany issues that ‘must be iaken inté‘consideration wﬁen
analyzing a digitized mammogram, an automated algorithm must take into account that
mammograms from varied locations will be inherentiy different. Even if these variables
can be minimized with a standard procedure, there is still the issue of patient diversity.
The Mammography Quality Standards Act was passed in 1992 in Congress to address
some of the programs associated with the variability in mammograms, but the problems

still exist.

2.1.1 Manual Techniques
The estimation of radiodense tissue has fraditionally been a subjective determination by
trained radiologists using Wolfe’s Classification. Wolfe’s Classification involves

classifying mammograms into 4 separate categdries:

N1: The breast is comprised entirely of fat.
P1I: The breast has up to 25% nodular densities.
P2: The breast has over 25% nodular mammographic densities.

DY: The breast contains extensive regions of homogeneous mammographic densities.
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Wolfe’s Classification was popular for many years but had its limitations. The
main dilemma with the method, a problem that it shares with other methods, is the
'subjecti\‘fe ‘nature of the evaiuation. Studies have shown that screenings were inc‘onlsistent
from raoiolo.gist“‘to radiologist [27]. The same mammogram pfoduced varying results.
Later work bSl Boyd, Jensen, et al improved on the subjectivity of 'Wolfe’s work but was
still based on observer decisions [28].

The Breast Imaging Reporting and Data System OBI—RADS) incorporates a four-
+ category clas31ﬁcat10n scheme for mammographic dens1ty, as recommended by the

American College of Radiology [29]. The clasmﬁcatwns include:

ok

. The breast is almost entirely fat.
2. There are scattered fibroglandular densities.
3. The breast tissue is heterogeneously dense This may lower the sensitivity of
mammography
4. The breast is extremely dense, which could obscure a lesion on
mammography. .
This classiﬁcatioh system is more a measure of how likely a lesion can be hidden within
the breast tissue due to the high radiodensity. Radiologists typically estimate the breast
density on mammograms in clinical practice based upon this BI-RADS classification.
' This method has many similarities with Wolfe’s Classification technique, including the
problem of inter-observer variability.
One main problem with previous classification methods is that they are too broad
for use in research pertaining to radiodensity. In one study, the breast density was
classified into six different categories [30]. Again, this method is based on the amount of

perceived radiodensity in the breast tissue and is classified into percentage categories.

The mammograms are classified as being 0 %, greater than 0 to less than 10 %, 10 to less
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than 25%, 25 to less than 50 %, 50 to less than 75 %, of 75 to 100 % dense. Even though
there are now six different categories, there still remaiﬁs the problem of inter-observer
variability, similar to. the other methods. Because of the many problem associated with
manual techniques, research has' been done to create semi-automated and automated

techniques to address the issues.

.2.1.2 Semi-Aﬁtomat’ed Segmentéfion Techniques
The classifications in the previous methods aré all based on the subjective opintons of the
radiologisi. The issue is that the deﬁnitioﬁs of radiodensity are broadly defined in
previous methods and can bé iﬁtemreted differently by each radiologist.  To remedy this
problem, several methods have been introduced t6 creallte interactive rule based systems
for estimation of radiodensity.
Yaffe, Boyd et a/ developed an interactive software to identify radiodense regions
within the breast [31, 32]. This program is still based on the subjective evaluation of a
radiologist, but allows the physician to quantify the actual number with great detail.
. First, the digital mammogram is digitized 'iﬁto 4096 (2'%) discrete grayscale levels per
pixel. Using the prograrﬁ, the radiologist segmeﬁts the image into 3 separate regions:
| radiodense, radioluéent; and non-tissue. An i‘pitiaI‘ threshold is chosen for each region to
. first establish a boundary between non-tissue and tissue regions. Afterwards, a second
threshold is chosen by the user to distinguish between the radiodense and radiolucent
regions.: This method is referred to as the “Toronto” method. Figure 2.1 demonstrates a

step by step illustration of the procedure.
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Magnetic Resonance Imaging (MRI) can also be used as a method for the
quantification of radiodensity, although a very expensive one [33]. An MRI is scanned

by laying the patients in a prone position under two surface coils that are placed q above

FIGURE 2.1 Block diagram of ‘the Toronto interactive computer method for
determination of radiodensg tissue percentages.

each other. The breast is scanned from the cranial to caudal direction with constant
thickness using an imaging device. A program is used with the MRI’s to obtain an
analysis of the radiodensity, similar to how the Toronto method is done. This technique
has potential, but because there is no single, standardized and generally accepted

technique for all breast MR imaging examinations, it is not widely used [34].
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2.1.3 Automated Segmentation Techniques

Although semi-automated techniques havg' been created to address many of the problems

with inter-observer variability, variability still persists. The standardized hardwarc; and

software is used differently depending on the person. Therefore, research has been done

to create automated techniques that remove any subjective observations in the analysis.

A table of some methods is shown in Table 2.1.

TABLE 2.1 Summary of automated segmentation techniques in breast density

analysis.
Proponents Approach Advantages Disadvantages
Louand Fan | Adaptive fuzzy 7.98 % error among 81
[35] K-means mammogram images.
technique to 18 seconds process time
classify pixels as per image.
radiodense. ‘
Zou et al. ~ Rule based . - Maximum difference No object method for
[36,37] histogram 20% from expert validation.

' classifier analysis. ' _
Bovis and Classification 91 % correct Relies on knowledge
Singh [38] using texture ,classification. of the region to be

analysis. segmented.
Classifier is based on
simplistic measures

. of texture.

Saha, Udupa, | Scale-based fuzzy Estimates correlate Does not
et al. [39] connectedness strongly with analysis by | automatically exclude
models radiologist. pectoral muscle.
Neyhart et al. Constrained Automated technique Performance fit to
[40] Neyman-Pearson database tested with.
decision function Weak inter-dataset
Eckert et al. W/Wo performance.
[41] Compression
Adjustment

Lou and Fan created an automated technique for the quantification of radiodense

tissue [35]. Their process uses adaptive histogram equalization techniques along with an
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adaptive fuzzy K-means technique to classify pixels. Within their own database, they
achieved a performance error of 7.98 %.

Zhou et al. developed a rule based histogram classifier to determine the amount of
dense area within a mammogram [36, 37]. Based on the BI-RADS breast density ratings,
a histogram classification is used to place the image into one of the four categories. The
threshold is obtained using a discriminant analysis method or a maximum entropy
principle method, the choice based on the BI-RADS category. Compared to the estimates
of two radiologists, their showing resulted in a 20% max difference. They also showed
that the estimates of the two radiologist differed by 20%, which causes difficulties in
validating any algorithm that is created.

A method has been created to classify the mammograms into density categories
similar to the ACR BI-RADS classification [38]. Three methods are used to obtain
features: Spatial Grey Level Dependency (SGLD) matrices, fractal dimension, and
statistical gray-level measures.

The SGLD matrices model the correlation between pixels within the breast
region. The SGLD matrix is the joint probability oc;currence of gray-levels i and j for
two pixels with a defined spatial relationship in an image. Calculating‘some measure of
scatter of the SGLD matrix around the main diagonal will analyze the texture coarseness.
By the end, fifteen statistical measures are extracted from fhis SGLD matrix. The fractal
dimension is calculated for every pixel in the region and the mean value over ail pixels is
used as the fractal dimension feature. Statistical features like the mean, homogeneity,
standard deviation and skewness of grayscale values of the breast tissile fegipn are all

used as features.
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:Based on the many features obtained from the three methods, the images were
classified into three categories, ‘dense’, ‘glandular’ or ‘fatty’, by using supervised
learning techniques. The K-Nearest neighbdr classifier obtained the best results, ‘scoring
a 91% recognition rate. The researchers discuss two problems with these techniques
[38]. First, radiologistsllanalyze texture variations in a complex and subtle manner and
classifiers based on simplistiév‘ measures of texture do not perform well; second, the
differences in imaging conditions lead to a non-rigid variation in the mammographic
intensity distribution. These two conditions are stated as reasons for why textures may
not be a valid method for this research.

One of the more promising methods developed recently is an automated method
has been developed by researchers at the University of Pennsylvania. They use principles
of fuzzy connectedness to quantify radiodensity [39]. One of the main principles in this
method is the idea that objects within the image stay together as a whole. These objects
can be easily identified by an observer, but computers have trauble due to the many
variation created within the image. For classification, the researchers define a fuzzy
affinity, which is used to define a relationship between two pixels. Based on this affinity,
the correlation of pixels is determined.

First a region of reference is identified using the highest 32% of intensities. Next,
a “fuzzy connectivity scene” is generated to determine the likelihood that a region will be
correlated with the reference region. A fuzzy connectivity scene is created .for the dense
region of the breast tissue and segmented using an automatic threshold selection method.
It has been shown that this method correlated highly with the observation of a trained

radiologist.
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The Neyhart and Eckert methods are both automated techniques based
constrained Neyman-Pearson deciston rules. These techniques will be discussed further

in Chapter 3 and Chapter 4 [40, 41].

2.2 Textures |

Texture refers to the properties that represent the surface and structure of the object. It is
basically a way to measure the object’s three dimensional surface characteristics from a
two dimensional image. Usually, these characteristics can be used for processes such as
image segmentation based on texture, as well as image classification. A formal definition
of texture segmentation could be the following: a partitioning of an image into regions,
each of which contains a single texture distinct from its neighbors. From a deﬁnition
standpAoint, segmentation based on textures seems very simple and straightforward.
Unfortunately, textures exhibit various characteristics that are not always the same based
on the orientation and size of the texture. Therefore, it usually takes extensive testing
before the proper patterns can be discerned and used. To start with, consider the two
terms “te'xture” and “segmentation” separately [42].

Mathematically, image segmentation is well-defined. For any image I(x,y), which
consists of an array of pixels, the goal is to label the pixels into some group. Figure
2.2(a) shows an example of an image with three separate groups. It can be seen visually,
that there are three separate groups in the image by either distinguishing between the
shapes or the colors of the obj.ects. Unfortunately, this is a very simple example and does
not represent what is typically seen in a image segmentation pféblem. An object can be ‘

considered a region that consists of a connected group of pixels that share the same
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statistics. This sounds simple enough, but actually choosing what statistic to use can
drastically change the results obtained from an image. Figure 2.2(b) can be used as an
example. The stones on the object are a good example of how the statistics chosen for
comparison can affect the segmentation results.. If one type of statistic is chosen, the
result may classify each individual stone as an object. On the other hand, another type of
statistic may group all the stones into one object. Therefore, there are many results that
can be obtained from segmentations and no one result is the right one. Basically, the

right result is the one that is most suitable for the user.

o

: i i

FIGURE 2.2 (a) Three different objects in the image can be classified by using either the
shape or color. This is an example of a simple segmentation problem. (b) The image is
more complex and can have different segmentation results based on the statistic chosen.
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The concept of texture is even more-complicated than that of segmentation. Even
though image segmentation has a formal definition, texture does not have one due to its
valriability; A typical definition in the ﬁeld is “one or more basic local patterns that are
repeated in a periodic manner.” prever, it is ’rulot always clear exactly what the pattern
is or how it is fepeated. It is also unclear whether all objects have textures or some
contain‘no ‘te)’(tu're at all. Simply, a texture consisis of objects called texture primitives or
texture elements, also referred to as texels. The texels can be considered as the smallest
element that can be considéred .that texture. As stated previously, textures are very scale
depen(ient. The main goal in.texture description is to create a mathematical
representation of the phrases that are usually commonly used to describe texture, phrases
such as: fine, coarse, grained, smooth, etc

There are two approaches to defining texture, which may be thought of as “top-
down” and “bottom-up.” Top-down models clzﬁm that there 1s a basic element, called a
texel, sometimes referred as a primitive. These elements are defined by a placement rule,
which defines how and where the elements are placed. This definition works well if the
texture consists of modular primitives, such as, bricks or piles of pennies. The bottom-up
approach claims that texture is a property that can be derived from the statistics of small
groups of pixels, such as mean and variance. This works better for textures like sand and
grass where it is difficult to see individual elements. Because of the wide vanation of

texture definitions, there is no defined delineation between the two types of methods.

2.2.1 Texture Description Methods
Because of all the variability, no one texture model has been shown to give great results

all the time. Many methods have been created from scratch and many have been
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borrowed from other fields other than engineering. Models are often conceived by
thinking of the image not as a set of pixels, but rather as a function, I(x,y), defined over a
continuous region of the plane. The process in which the model is discretized and then
. implerﬁented is'of no less importance than the theory behind it. This section will detail

the methods that have been used in this thesis for analyéis.

2.2.2 Gabor Filtering

Gabor filters work on the prinpiplé th;t' each texture will contain within it some Iregion of
frequency that is different from another texture’s frequency regions. By finding this
region and filtering everything else in an image, it has been shown that the textures can
be éegmented using Gabo'r filters [43].

A real impulse response of the Gabor filter in the spatial domain is defined by:

2 2
h(x,y) = 27“; exp{——;—[—;—c_?+y—2]}-cos(27ryox) S (2.1)

xo.)’ X y

which is a sinusoidal modulated Gaussian with a spread of o,and o, in the x and y

directions respectively that has been modulated by a frequency of M, . . The real impulse '

response can be seen Figure 2.3(a). In the frequency domain, the Gabor filter becomes
two modulating ﬁe-quency shifted Gaussians, as shown in Figure 2.3(b). The equation of

the frequency response is given by:

H(u,v) = exp{-27°[c)(u—u,) +o,v’} +exp{-27°[c; (u+u,)+o v’} (2.2)
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FIGURE 2.3 (a) A plot of the impulse function of the Gabor filter. (b) A frequency
domain plot of the Gabor Filter.
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" The Gabor filter ;:an be -used to obtaiﬁ texture segmentation in both the spatial and
frequency domain. In the spatial domaiﬁ, it functions és a wavelet decomposition and
can be used to obtain‘features.based on post;ﬁltered images. In the frequency domain,
the Gabor filter gan‘be used to remove the unWanted frequencf components located in the

image that corresponds to the unwanted textures.

223 Co;occurrence Matrices

Co-occurrence mafricés, also called Spatial Grey Level Dependence Matrices, attempt to

capture texture using a sparse representation [44]. Each matrix in the set corresponds to

~ an offset (e.g. 1 pixels down and 1 pixel to the right). The entry in row i and column jof
each matrix is the nmber of pixels in the image of grey Ié;rél i that have a neighbor of
grey level j in the direction of the offset. From these matrices a number of statistical

quantities can be measured, such as mean, variaﬁce, entropy, energy, contrast, and

coﬁelation. Figure 2.4 showsAan example of how a zero dggree_ co-occurrence matrix

works. Figure 2.5 shows the equations used to obtain the features.

Py(a,b) = {{(k,]),(m. )] € D:k-m=0,|-n|=d, f(k.])=a, f (m,n) = b} |

00 11 4210
0 0.1°1 o 2400
0222 FRlabd)= 1.0 6 1
2233 0012

FIGURE 2.4 A co-occurrence matrix based on a 0, 1 positioning, which is a comparison
of pixels that are to the right of another pixel.
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Essentially, the main problem with the co-occurrence matrices is the number of
calculations required for each region scales according to how many gray levels there are.
For example, when there are four gray levels as shown in Figure 2.4, a matrix that is 4 by
4 is formed as the output, which is 16 numbers that must be calculated. If analyzing
‘ images that have 256 gray levels, the matrix formed becomes very large and over 65,000
numbers must be calculated. For simpler textures that are more distinct from each other,
computation speed can be increased by quantizing the number of gray levels to a smaller

number.

> P’,(a,b)
> P, ,(a,b)log, (P, ,(a,b))

Zl a-bl* P;fd(a,b)
ab

Y Pyu(a,b)

a,b,axb I a-b Ik

FIGURE 2.5 Co-occurrence features; energy, entropy, moments, inverse moments,
respectively.

Once all the features are obtained, both the supervised and un-supervised methods

can be used to obtain a classification of textures.

2.2.4 Law’s Texture Energy Measures

Law’s texture energy measures is a method to create simple spatial filters that can be
used to measure statistics such as average gray-level, edges, spots, ripples, and waves in
texture [46]. These measure are derived from three simple vectors: L; = (1,2,1), Es =

(-1,0,1), and S3 = (-1,2,1), which stand for averaging, edges, and spots respectively. By
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the convolution of the vectors with themselves and the other 2 vectors, 5~new vectors are
obtained, as shown in Figure 2.6(a).” From these 5 vectors, 25 different filters can be
obtained by a mutual multiplication, the first term as a column and second term as a row,

as shown in Figure 2.6(b). The result of the convolution between the image and a filter

L5=[14641] - -1

E5=[-1-2021] @ -4

'S5=[-1020-1] -6

W5=[-120-21] -4

R5=[1-46-41] - -1
' (@

 ocoooo |

.‘ ’ A. ’

Sl Vi
Oo0O0O0O

) -

FIGURE 2.6 (a) 5 vectors created by the convolutlon of Law’s 3 energy measures. (b)
One of the filters created using L5 and S5.

combined w1th an energy calculatmg statlstlc can be used to obtain 25 different features.

‘These 25 features can be used in elusterlng techmques for clas31ﬁcat10n

2.3 Other Methods
Other methods other than textures were used in this thesis. These methods include: gray
Ievel connectivity, image morphology, radlal basis function networks and K-means

clustering. This section will explain in detail these methods.
2.3.1 Gray Level Connectivity

The connectivity between pixels is a fundamental concept that is used to define various

digital image concepts such as regions and boundaries. Two pixels are considered
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connected if they satisfy certain location criteria as well as gray level criteria. For

instance, in a binary image with values 0 and 1, two pixels may be 4-neighbors, but they

are said to be connected only if they have the same value.

V is usually considered to be the conditions in which the gray level relationships

are defined. For example, in a binary image, V={1}. The 1 defines that if two pixels are

considered neighbors by location and they both have values of 1, they are connected. In

gray scale images, the idea is similar, but the definition of V can be anything from a

single value to a region of numbers. For example, in the adjacency of pixels with a range

of possible gray-level values 0 to 255, set V could be any subset of these 256 values.

There are three types of adjacency:

1.

4-adjacency. Two pixels, p and q, with values from V are 4-adjacent if q is in

the set Nu(p), where N,(p) 1is the set of pixels defined by

(x+Ly)(x=1y),(xy+1),(x,y—1)
8-adjacency. Two pixels, p and q, withv values from V are 8-adjacent if q is in
the set Ng(p), where Ng(i)) is a combination of N4(p) and Np(p), which is a set
of pixels defined by (x+1,y+1),(x+1Ly-1,(x-Ly+1),(x-1,y-1)
M-adjacency (mixed adjacency). Two pixels, p and q, with values from V are
m-adjacent if:

a. q1isin Ng(p), or

b. qisin ND(p) and the set Nu(p) N ﬁhtq) has no pixels whose values are

from V.

Mixed adjacency is a modification of 8-adjacency that was created to account for the

problems that can occur when using 8-adjacency. For example, consider the pixel
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arrangement shbwn in Figure 2.7(a) where V={1}. The three pixels at the top of Figure
2.8(b) show the problem that can occur when using 8-adjacency, as indicated by the
dashed lines. By using m-adjacency, it is.irisured that a pixel will not be used twice in

determining connectiveness.

0 | 1 |1 0 | F--2 0 | F-r-1

0| 1|0 0 | ¥ | o 0] L | 0

0 0 1 0O [ 0 1 0 0 1
(2) ' (b) . ®) -

FIGURE 2.7 (a) Example arrangement of pixels. (b) 8-adjacency. (c) m-adjacency.

Connectivity is commonly used in segmentation problems after an image has been
either changed into a binary image or when there is a gray level image that does not vary
much in each region. Because of the fundamentally simple nature of the connectivity
definition, the algorithm has a hard time analyzing images that have a high level of

variance throughout the image [46].

2.3.2 Image Morphology

Dilation and erosion are two basic morphological operations that are commonly used in
image processing. These two methods can be valuable for extracting image components
that are useful for representation and description. Morphology can provide boundaries of
objects, their skeletons, their convex hulls and can also be used in thinning applications

as well as bridge gapping. Morphological operations are based on the simple concept of
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expanding and shrinking objects that are related. The operations are usually performed on
binary images but are occasionally adapted for grey level images [47].

The dilations and erosion transformations are based on the intgraction of an image
A and a structuring set B, often called the structuring element. Structuring element B is
often a circular disc in the image plane but can be any shape. The structuring element
can be any number of dimensions, but is restricted to two dimensions for images.
Structuring element B can be viewed as a coﬁvolution mask. Four important terms come
into play for both dilation and erosior?: , traﬁslation, reflection, complement, and
subtraction. - If we consider A and B to be subsqté of Z%, the translation of A by x is
denoted Ay and is defined by the equation: PR |

.
{

Ax={c:c=a+x,fordeA} (2.3)
The reflection of B is denoted by B and is defined by the equation:

B={:x=-b, forbe B} (2.4)
The complement of A is denoted by A° and the difference of the two sets is defined by A
-B.
Dilation of an object A by a structuring element B is given by the equation:
A®B={x:B.NA# O} (2.5)

The result of this operation is the reflection of B around its drigin and then shifting this
reflection by x. Figure 2.8 demonstrates a dilation procedure.
Erosion of an object A by the structuring element B is defined by the equation:

AOB={x:B_c A) (2.6)
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X = Origin of Object

FIGURE 2.8 Example of dilation.

X = Origin of Object

FIGURE 2.9 Example of erosion.

Erosion combines two sets using vector subtraction of set elements and is the dual
operator of dilation. An example of erosion is shown in Figure 2.9.
Erosion and dilation can be used in a variety of ways, in parallel and series, to

implement other transformations such as thickening, thinning, and skeletonisation.
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2.3.3 RBF Networks
Radial basis functions (RBF) dre characterized by a twb-layer feed-forward neural
network. The network contains a set of inputs and oEtpﬁts With hidden layer nodes in
between that function as the processing units: Ea{ch .of‘ the;e hidden layer nodes
implements a fadial basis function. Figure 2.1 0 SilOWS ‘whgt,the architecture of an RBF
looks like [48].
RBF networks can be used in two ways:
1. Data modeling for function app’roxirn.ation. .For this method, the inputs are
considered the missing samples of the time series or the spatial series. The output
is the value that RBF network approximatés. |
2. Pattern classification applicaﬁon. For ﬂﬁs application, the network may have
any number of inputs that correspond to thé features of a particular class. The

outputs correspond to the different classes that can be possible in the data.

I L Linear Output
nput Layer . !
P y Nonlinear Layer

Transformation Layer

FIGURE 2.10 Radial Basis Functipn‘neural network architecture.
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The activation function most frequently used for the RBF network is the Gaussian. The

Gaussian activation function is given by the equation:

8, (X)=expl~(X - 1) Y (X )] (26)
for j=1,...,L, where X is the inﬁut feature Véctor, Lis the number of hidden units, z f and
Zj are the mean and covariance matrix of the jth Gauséian function. Geometrically,

the RBF becomes a Gaussian in niultidiﬁlensional space, whose difnension is given by
the number of the inputs. The mean vector, u j; represents the location in each
dimension and the Z; models the shape of the Gaussian. Statisticélly, the activation
function is a model of the pro'babilityi density fu,ncﬁon.'
The output layer is modeled as a weighted sum of the hidden layer outputs as
shown in the equation below:
T . . L | 4 . s e
W (X) =D A, (X S @7
’ j=1 . a ' ' N .ﬁ ' .
for k=1,...,M where A, are the Qﬁtput wcighfs; ejcich cérresponding to the connection
between the hidden unit and an output unit.. M represerit;s_ the number of output ilhits. B
'RB'F networks are more commonly used in ‘culrvé fitting and generalization
operations.” Typically, when it éomes to c}aséiﬁcation, 'Mult'i‘-,I,JayerPerceptron (MLP)

networks are more commonly used.
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2.3.4 K-means Clustering

A very popular method for classifying data in an unlabeled data set is widely known as -
means clustering. This technique attempts to discriminate between k different classes
based on the center of each cluster. By approximating the mean of each cluster, the
samples can be categorized by finding the closest cluster mean to it. If a sample of data
is closer to a particular mean than it is to the others, most likely it will belong to that

class. The proximity of data to the mean of the clusters can be calculated using the
squared Euclidean distance given as|x, — 2, ||2 . Once this has been completed the means

of the newly classified data can be calculated and the process will repeat itself. This
iterative step of recalculatiﬁg the means makes the result more and more accurate with
each step. ﬁventually the means of the clusters will no longer change and the k-means
algorithm will have classified all of the data. As long as the number of classes is known,
k-means is effective at separa’?ing the data, even if no other information about the dataset
is available [48].

The algorithm describing k-means clustering is shown in Figure 2.11, where »n is

the number of samples in the dataset and c is the number of clusters.

begin initialize 7, ¢, #1, > ... g ,
do classify n samples according to nearest g;
recompute g;
until no change in g;
return g, g2 ... 4.
end

FIGURE 2.11 Pseudocode for k-mean clustering.
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CHAPTER 3: APPROACH

The initial goal of this thesis was to investigate the use of textures for the automated
segmentation of radiodense tissue from a digitized mammogram. As time passed, the
scépe expanded due to many of the issues and problems associated with the actual use of
the textures. From the beginning of the experimentation phase to the implementation of
the final algorithm, there were many pathways investigated. Some of these steps led to
ideas that would finally be implemented in the Global Contrast Estimation for
Radiodense Tissue Segmentation algorithm. Other paths were not directly applied to the
algorithm, but still benefited this thesis by providing a good idea of for the final direction
of this algorithm. The approach phase was split into three sections. Section 3.1 involved
the investigation of textures as a possible use for the automated segmentation of
radiodense tissue.. Section 3.2 involved the investigation of other pre-processing methods
as a way to make the segmentation procedure more Bayesian, rather than constrained
Neymén Pearson. Section 3.3 _Iinv'olved the final 'implementation of the Global Contrast
Estimation Algorithm, a sigrl,iﬁca;nt deviation ﬁ‘or;l'the methods created previously by the
research groups at Rowan University [40, 41]. In addition to explaining the final
algorithm, the rest of this. chapter details all methods that were tested throughout the

entire research process. .

3.1 Texture Evaluation
Using the original scope of the thesis as a basis for research, textures were the first
segmentation method investigated in order to create an automated segmentation of

radiodense tissue from the mammograms. As was explained in Chapter 2, since there
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were many different definitions of textures as well as different methods for segmentation
several of them had to be tested before any conclusion could be made about textures.
The rest of this section details all the experiments that this thesis conducted with textures.

The results of the experiment are shown in Chapter 4.

3.1.1 Regional Variance Statistics

Before any of the texture methods were tested, an investigation of simple 2-dimensional
characteristics was done for two main reasons: to see if simpler statistics would allow for
preﬁrocessing of the radiodense region and to give a preliminary indication of whether or
not texture segmentation would work in segmenting the mammograms into the
radiodense and radiolucent regions. The 10 Harvard and 34 FCCC images were used for
imaging of the simple characteristics as well as the texture methods introduced later on in
this chapter. The database was used for two different methods in the regional variance
testing.

First, the images were tested globally to see how they would look when each pixel
was replaced by a new value that was equivalent to the variance function of that region.
Variance comparison was chosen because this method eliminated the mean or gray level
characteristics, meeting a main goal of this thesis which was to find a method to compare
other characteristics other than just the gray level value. Figure 3.1 demonstrates a
pseudocode implementation of the regional variance imaging procedure.

Even though these new variance based images were not expected to be much
better than the new images, the hope was that they would show that the radiodense

regions would have some characteristics in common with each other while being
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éomewhat different from the radiolucent regions. Figure 3.2 shows a demonstration of
what this variance function did on canonical images obtained from the SIPI database

[49]. A mask size of 9 x 9 was used for the implementation shown.

Regional Variance Imdging
Image_old \\ the original image
Image new Wmatrix of zeros the size of Image;old
for i=1:1:N \\ length o'ft‘he-rows.of IImage_ old

Jor j=1:1:M \\ length of the columns in Image_old

.. Image new(i;j )=variance(Mask(Irriage_old( i,j))
HP Wheré m'c;sk isa reéion deﬁned by the area around
the coordinates i and j
end

end

FIGURE 3.1 The pséudocode implementation of how the new variance based images
were obtained. ' '

The textures sh;)wﬁ'in Figure 3.2(a) are simple téxtures because compared to each
othe‘r many of their texture characteristics are vastly different. These textures also do not
have multiplg le\%els of primitives, which would have created more complicated results.
Because the fex:tures are simple, the resulting image from the regional Véﬂance imaging,
as shown in Figure 3.2(b) ends up béing separable. The hope was tha.t the results for the

mammograms would look similar to the results of the canonical images.
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Water

(b)

FIGURE 3.2 (a) Two textures obtained from the SIPI database. (b) Results of the
regional variance imaging function for the two canonical textures.

The next step was to measure the statistics of the two regions, radiodense and
radiolucent, of the database. First, the images were segmented into their various regions
based on the percentages given by Dr. Celia Byrne. Since the actual profile of the radio-
density regions obtained by Dr. Celia Byrne was never provided, this procedure had to be
performed by adjusting the threshold of the binary segmentation until the amount of
white pixels within the image was the same percentage given by Dr. Byrne. Because the
masks used were generated by the new algorithm demonstrated in this thesis, there could

be some small error associated with the actual segmentation, though the error should be
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very minimal. The radiodense and radiolucent regions were separated from each other in
order to calculate their individual variances. From these vafiances, several numberg were
calculated: the average variance of the radiodense regioné, the average value of tﬁe
radiolucent regions, the variance of the ‘variances’, an(i the average difference between
the two regions. Figure 3.3 Idemonstrates.a pseudé implémentation of the procedure that
was done.

The main reason for obtaining these statistics was to see if the variances of the '
regions stay consistent through each image and if there any discernable differences

between the variances of the two regions. As mentioned earlier, it was the hope of this

Database .Variance Statistics
Database \\ the 10 Harvard and 34 FCCCimages
Threshold \ the thresholds based on the correct percentages
given by Dr. Celia Byrne
Jor i=1:1:N \\ number of imdges in database
radiodense = segment(Database(i), Threshold(i))
W group all pixels that are above the threshold
radiolucent = segment(Database(i), Threshold(i))
W\ group all the pixels that are below the threshold
radiodense variance(i) = variance(radiodense)
radiolucent variance(i) = variance(radiolucent)
\\ find the respective variances of both sections

Continued
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end

variance_radiodense_variance = variance(radiodense_variance)
\\ find the variance associated with the variance of all radiodense
regions

variance_radiolucent variance = variance(radiolucent variance)
\\ find the variance associated with the variance of all radz"olucent
regions

average_radiodense_variance = average(radiodense_variance)

\| find the average associated with the variance of all radiodense
regions

average_radiolucent_variance = average(radiolucent variance)
W\ find the average associated with the variance of all radiolucent
regions

difference_regions = difference(average_radiolucent variance,

average_radiodense_variance)

\\ find the difference between the two averages

FIGURE 3.3 The pseudocode implementation of the function that calculated variances of
the two different regions as well as the statistics associated with them.

thesis that not only would these bits_qf information give a prelimiﬁafy indication of
whether or ﬁot the statistics between the regions were different, but alsé, that the
information would stay consistent between all the i~mages of the database. It was a
measure of the intra-'and inter-regional similarities. The results for this procedure are

shown in Chapter 4 of this thesis.
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3.1.2 Gabor Filtering

As stated in the background, Gabor filtering for textures has become more widespread in
the past few years. The fgct that it uses the frequ‘ency components as a basis for
segmentation allows for the use of fast and efficient algorithms to achieve the final goal.
Due to these reasons, Gabor filters were chosen as the first implementation of texture
based segmentation for the mammograms. By having the Gabor filters, it also allowed
the comparison between a frequency based method as well as spatially based ones, which
wiil shown later in this thesis.

To use the Gabor filters as an ‘automated‘ procedure in the segmentation of
radiodense tissue, the images had to éontain one fundamental statis;cic, the two regions
used for separation had to contain some regions in the frequency domain that were
drastically different from each other. Since this was the first time that the statistics of the
two regions was being obtained in this work, this was not known. Therefore, the first
step in this procedure was to obtain the frequency profiles of the two regions, radiodense
and radiolucent, and determine which frequencies, if any, \'Jvere different enough from
each other in which they could be used for Gabor filtering. One constraint was that since
it was not possible for the region to change from image to im-age, the choice of region
would have to work with all images, which would allow the procedure to be automated.

Various regions of known radiodense and radiolucent were selected to test for the
frequency content. 50 regionsvwere selected in sizes of 30 x 30 pixels for both the
radiodense and. radioluéent portions of the 10 Harvard images. Only the Harvard set was

used for this implementation of the code. Once the frequency profile of the regions was

obtained using a 2-dimensional FFT; the average pfoﬁle was computed for both the

48



radiodense and radiolucent regions. These two profiles were then compared to find the
regions that were the most different from each other. Figure 3.4 demonstrates this

procedure.

T S—— 2-Dimensional
i 50 regional . FFT

averaged |,
_— . - frequency !

- 50 frequency ) - profile for- -
profiles for i radiodense
radicdense’ ' tissue
tlssqe highest

region of

50 frequency difference

profiles for | ~averaged

radiolucent ' frequency

tissue . profile for

: " radiolucent
. " tissue

50 regional
samples for
radiolucent X
tissue : 2-Dimensional

FIGURE 3.4 The procedure used to obtain the optimal regioﬁ for placement of the Gabor .
filter in the frequency domain for texture segmentation of the radiodense tissue from the
radiolucent tissue. : '
The hope was that the region of frequencies chosen from the samples of the known
radiodense and known radiolucent regions would stay consistent throughout all the
images, which would then allow for a decent segmentation of both regions based on
frequency.

Once the region of maximum difference was chosen, the algorithm was exercised

on the database with different size Gabor filters, which were chosen to make sure all

scenarios were investigated. The results are shown in Chapter 4.
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3.1.3 Co-occurrence Matrix

The co-occurrence matrix texture segmentation was chosen because of the man& various
features that could be obtained from the maﬁix, which lends itself to an automated
segmentation through some form of statistical clustering. The co-o&urrence matrix also
allowed for a spatial transformation view of Ttexture':s. The one major problem .wlit‘h the
co-occurrence matrix v;las that it was very corhputationally expensive depending on the
number of gray levels in the image. As the background cﬁap;[er on co-occurrence
explained, for every N numbef of gray levels, there was N° numbers that had to be
‘obtained for the co-occurrence matrix for each corresponding point on the image. Given
that at 256 gray levels each implemenfation could take up to an hour depending on the
speed of the comﬁuter, various measures héd to Be taken'.in' order to speed up the actual
implementation.  The - co-occurrence pljocedufe was split into twﬁ pafts, the
implementation of the actual algorithm and thé automated 'clustering of thé features.

The co-occurrence algorithm was created to take Iin'to account .various known .
Aissues. First, as shown in ‘Figur‘e‘ 3‘.5, ‘even ’though‘the mammogram Image was
rectangular, the actual tissue information was located in a much smaller area. For
exémple, the resolution of the inﬁage‘ ;arés 926 x 676, which C(;II’FeSpldl'lded to 625,9_76 h
pixels. Therefore, it i'equiréd that mahy‘nuxht;ér of caléulatiéns if the cé-occurfence
algorithm was done on each ‘pi'xel,‘ vll"egardlelss‘ of whether ‘it was needed or n‘ot. The
number of actual pixels vx({itﬁi’n the ti'ssue‘region was 156,679.‘ This meant that unlesé -
steps were taken to \‘oﬁnlyt c.:Aalculgte" the fegtgfes‘in_the,tiés'ue rég;ion‘, this image woil.ld.i‘»
waste approxiinatély 75% of thé Calculation$ of the X-'réy 'r;:giAon.“ Ta acdommoﬂate for.

this, the information of the mask was sent in to the co-occurrence matrix so that it would
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only calculate the important areas of the image. . The second issue was taking into
account the symmetric nature of the co-occurrence matrix. As shown in the Figure 3.6,
the information contained within any matrix is symmetric along the northwest-southeast
diagonal,.therefore if implemented properly; the number of calculations could be reduced

by almost half at most.

FIGURE 3.5 The breast is only located on a small percentage of the mammogram.

'l The codé was implemented so that only the portions on the matrix that were
below the diagonal or on it were calculated. It was because of the place keeping that the
nﬁmber .of calculations were not completely reduced by half. Figure 3.7‘ shows a
pseudocode implementation of what was done toobtain the co-occurrence matrix.

Once the féafures; the energy, the entropy, the inverse difference, and the contrast,
of the co-occurrence features were calculated, they were:prepared for the automated

clustering technique. Because these features were images, they had to be changed into
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single vectors before the algorithm could be implemented. Therefore, the non-tissue
portion of the images had to be made into a third class to make the registration of pixel
locafioﬁs easier for the algorithm. Of course, if it was shown visually that the
segmentation based on the co-occurrence niatrix features worked properly, the final

version of the code could have been lir‘npleme'n'ted by only outputting the percentage of

Py(a,6) S {[(k.1),(m,n)l € D:k-m=0,|I-n|=d, f(k,])=a, f (m, 7)) = b} |
0011 4210
oo0o11 2400
0.2.2 2 . Rb-= 106 1
2 2 3 3 ' 0 012
@
®)

FIGURE 3.6 (a) Symmetrlc co-occurrence matrlx of a 4 level texture. (b) The co-
occurrence matrix of a 32 level cloth texture. ' o

Co-occurrence Feature Extraction
Feature \\ the feature that is being calculated in the co-occurrence matrix

Continued
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Image \\ the image being analyzed
Degree \\ The angle of co-occurrence being measured
Mask \\ (he ti;vsue location information
Levels \\ the number of levels in the image
SJor n=1:1:N \\ number of rows in the image
, for m=1:1:M \\ number of colutﬁns in the image
ifMask(n,m)=—=1 -
Feature(n, m) = Calc_Cooc(region(Image(n, m)))
else
Feature(n,m) =0
end
end‘
end
Calc_Cooc(region(Image( n,m )))
Temp \\ the region being analyzed
Co_Matrix \\ a Levels x Levels matrix
F eatt;re_output \\ the feature output; whichever one it may be
for i=I1:1:Levels
| Sor j=I:1:i,
\\ only calculate up to the column that maiches the current
row to take advantage of the symmetric nature of the
co-occurrence matrix
Co Matrix(i,j)= Co_occufrence( i,j, Temp)

Continued
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Co_Matrix(j,i)=Co_Matrix(i,j)
end
end
Feature_output = Statistics(Co_Matrix)

\\ the feature output may be a vector or a scalar

- [
3 o

*t

FIGURE 3.7 The pseudo-code implementation of the feature extraction based on the co-
occurrence matrix. oo

radiodensity. But the main purpose of this thesis was to take a different approach to
analyzing the images. The scenario .where the experimental percentage was close to Dr.

Celia Byrne’s but didn’t make any sense visuaily Wantéd o be avoided at all costé. The

results for this procedure will be shown in Chapt;r 4 of this thesis.

3.1.4 Laws Texture Mask
Law’s tc;Xture mask was the third implementation of texture segmentation done in this
thesis. It offered a simple spatial filtering approach to the problem, unlike the other two
methods introduced earlier which required some form of transformation. One of the
reasons that Law’s texture mask was chosen for this thesis was the many diffefent
features that could be obtained. As, shown in the background chapter, Law’s mask has
- five different characteristics that can be convolved with one another to create a mask used
f;or filtering. This allowed for 25 different features from the differént combinations.
Five of these features were the results of a filtering procedure using masks created by the

convolution of a Law’s texture characteristic by itself. For example, as shown in Figure
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3.8, the gray level characteristic convolved with itself created the mask shown. As can be
seen by the resulting mask, the results from these masks were rotation invariant so did not

. have ;[o be added to any other result to make it so. The other 20 results obtained from the

-1— 4 16 24 16 4
[146417*l6|= | _ |6 24 36 24 6
| Levels f 4 16 24 16 4
_ 1 4 6 4 1

FIGURE 3.8 The mask created from the convolution of one Law’s Texture
Characteristic by itself.

masks of the inter-convolution' of 5 characteristics had to be added together with it’s
cq;responding rotated mask result for it to be rotation invariant. For example, the result
from the Edgés-Ripples mask had to be combined with the Ripples-Edges mask to make
it rotation invariant. With the combinations, there were a total of 15 features that were
then sent into the -automated clustering algorithm, K-means. The results for this

~ procedure will be shown in Chapter 4 of this thesis.

3.2 Other Image Prdcessing Methods
Various other texture methods were experimented with after the initial three shown

~ previously in Section 3.1. Because of the results obtained from the first three as well as
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some preliminary results obtained from other methods, it was decided that textures was
not the right path to follow. All results showed that the information contained within the
two regions were similar to each other, and could not be discernable by anything else
other than the gray levels. At this point, this thesis started investigating other approaches
to this' problem, mainly ones that emulated the thought processes of the radiologist
involved. Rather than attempting to create an automated segmentation process based on
statistics that weren’t even coqsidered by the radiologist, it was decided that it would be
more ideal to find a method that closely followed the steps that were taken by the
radiologist. It was not until the final stages of investigation that an algorithm was created
that indirectly followed methodology taken by the radiologist. This portion of the
procedure will detail all the intermediate steps of experimentation that led to theiﬁnal

implementation of the Local Contrast Estimation algorithm.

3.2.1 Non-Linear Transformations

Non—llinear transformations were invéétigated not as a '.method for autométedl
segmentation, but rafher a me‘ihoc;l{;::'.t:‘o 'pr;':pro'ges§ the. im§§§§- The @m;ages were sent
through a power transformation to discern if it would hélp in a;ﬁalyzing thé images. The
theory behind the transformation was tha; §ihce' thls thesis yvas‘ivorking with images that
had regions that needed to be dis'tinguished. {)y their perceived brightness, a better

separation between the brighter and darker levels would make segmentation easier. For

example, let us examine a vector of numbers, /, that was used for demonstration.
I contained 10 numbers ranging from 2 to 7 and was sent through a simple power

transformation to the 4th, as-shown in Figure 3.9.

56



(@)

16 81 16 256 | 81 625 | 1296 | 1296 | 625 | 625

(®)

FIGURE 3.9 (a) Vector / and its pictorial representation. The image has been

normalized before displaying. .(b) Vector [  after it has gone through a power
transformation.

Let us assume that right half of the vector /, was considered radiodense while the left

half was considered radiolucent. . The goal of the power transformation was to. reduce
relative brightness of the radiolucent re’gi.on in relation to the radiodense regions. As
Figure 3.9 (b) shows, this was the case. One of the major problems with this method was
if there was a single pixel that was significantly brighter than the rest, which could have
been caused by errors during the X-ray process or the séanning process, fhe power
transformation readjusted the image so that only single pixel was bright, since the other
areas of the image were suppressed. Because of these problems, the use of a median

filter was introduced into the procedure. To further reduce the problems discussed, a
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regional power transformation was applied to the images as well. The results for this

procedure will be shown in Chapter 4 of this thesis.

3.2.2 Gray Level Connectivity

Gray level connectivity introduced an interesting idea for creating a solution to the
problem of identifying the amount of radiodense tissue in a digital mammogram. Rather
than just taking the gray level information or trying to obtain a statistic based on texture
to classify the various components, in allowed for a more visual approach to the problem.
Even thought the method was not successful in terms of segmentation of the radiodense
tissue, it introduced many ideas that would later be used in the final algorithm.

One of the main problems with using a histogram based approach to the problem was that
it did not take into account the regions and patches that the groups of pixels formed. By
definition, radiodense tissue is comprised of all ‘interconnected’ components, and
therefore it is highly intuitive to look at the mammograms in the same manner. For this
reason, a radiologist does not look at the ipdividual pixels separately; but rather as large
groups with similar brightness, when the determination of radiodensity is made. For
example, Figure 3.10 shows an image of a mammogram from the Harvard set as well as
the mask of the radiodense region it cgeatgd after it was segmented. The region defined
by the segmentation mask createci a region of radi;)deI;se 1.)ixeul’s.ﬁ‘ Rather than being
scatteréd throughout the image randomly, most régfons exhibited some sort of pattern

when it came to the location of the radiodense pixels. All mammograms from the test

* database followed the same pattern. ..

: ™
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(a) (b)

FIGURE 3.10 (a) Image with a radiodensity percentage of 1.5 percent from the Harvard
database. (b) The basic shape or region of the radiodense tissue after segmentation.
Aside from small portions, most regions are grouped.

Before the procedure for the gray level connectivity is explained, let us
investigate another example of why the grouped regions will play the most important role
in determining what regions are radiodense and radiolucent. Figure 3.11 demonstrates
two examples that were created for this example. Each image contained same percentage
- of bright pixels and the same percentage of -dark pixels. If we look at the images as
mammograms and analyze them as such, it is easy to understand that it is highly unlikely
that these two images would produce the same result, which would be 50% radiodensity.
A radiologist would most likely hgve classified (a) as either a 100% radiolucent or a
100% radiodense image (again, this further shows that the analysis of the mammograms

is a highly subjective procedure and could be different based on the radiologist), while

classifying (b) as a 50% radiodense and 50% radiolucent image. Even thoﬁgh these two
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classifications would be different to a radiologist, a histogram:approach would disregard

the regional information and only analyzed ba;é‘d of a total gray level pixel count.

(b (b)

FIGURE 3.11 (a) An image made from equal amounts of dark and light pixels, but
arranged in a checkerboard manner. (b) The same amount of bright and dark pixels as (a)
but grouped.

The gray level connectivity approach was only implemented on a few of the
images for the sake of evaluation. As will be shown in Chapter 4, the algorithm was too
simple to take into account the amount of separate regions that some images contained.

These separate regions still had to be classified based on their relative gray levels and that

still led to the problem of establishing the correct threshold.

3.3 Local Contrast Estimation for Threshold Selection
There were many problems associated with the previous methods, the Constrained
Neyman Pearson (CNP) [40] and the Spatially Varying Constrained-Neyman Pearson

(SV-CNP) [41], that were implemented for this research:
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1. The images were segmented from algorithms that assumed that the histograms
of the mammogram Were‘ bimodal in nature, when in fact very few of the
mammograms in the database followed that trend.

2. There were many portions of the algorithm that were based on user feedback
rather than images statistics. These characteristic prevented the algorithms from
being fully automated.

3. The algorithms’ success was only based on the final numerical output of the
segmentations, rather than a combination of visuals and percentages, this
introduced false positive results.

4. Many of the images were manually filtered; this introduced another step that

made the algorithms non-automated.

This thesis attempted to address many of these problems by introducing a new
approach to the problem. Rather than taking components from the previous algorithms
and adding new idea to them, the Local Contrast Estimation algorithm introduced in this
thesis was created from scratch and therefore each step will be explained in detail. This
section will outline this procedure as well as reviewing many of the problems that were
inherent to the previous methods. Figure 3.12 shows a block diagram of the new
algorithm introduced in this procedure.

After being scanned and digitized, the mammograms were preprocessed to get
remove noise introduced during the procedure. After, the noise reduction, the tissue

segmentation mask was created using a new method. After tissue segmentation, the
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image was adjusted using a new compression mask. Finally, the Local contrast

estimation of the image was done to find-the correct threshold to use. -

Tmage Pre<Processing "

- “Tikste Seginentationt

v 1 - ? ' ’ “ N T - i l/" 1
- Compression Mask «, &~

VL Image Compressmn
‘ Adjustment

v
Threshold Based on Global
. Est1mate of- Range

€/ _
.- Radiodensity Estimation of
g Mammogram'- - .

FIGURE 3.12 The block diagram of the Local Contrast Estimation procedure.

3.3.1 Evaluation of Previous Methods

One of the main problems with the previous algorithms was their tendency to base the
accuracy of the algorithm on only the percentages, disregarding all the information that a
visual représenfation of the segmentation would give. What this showed was that several

parameters could be added to the system, making the test percentages very accurate for
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the present database at that time, but the algorithm had a very hard time predicting the
percentages of new images. For example, the CNP threshold was computed by the author
by first obtaining a preliminary Bayesian Threshold; which introduced its own problems
because the histograms of the images did not follow a bimodal trend, and this threshold
was adjusted by several parametérs to allow for a Neyman Pearson Threshold. The

equation used in the procedure is shown below:

2

M+ a—o -U 3.1

TCNP —_ 12:u2 +( )(#2 l) ( )
a 2

In this equation, valuesy,, u,, o, were all obtained from the image statistics, and

therefore allowed for the calculation through an automated process. Unfortunately, the
o parameter was based solely on the author’s input and therefore negated any chance of
the algorithm being automated. Therefore, an analysis of general performance was done
using the all datasets based on the parameters obtained ﬁoﬁ only the Harvard dataset.

The segmentation in the SV-CNP was done by adjusting the threshold obtained
' from the CNP and adjusting it based on the location of the pixel. This introduced several
problems into the procedure. First, by using the CNP as a part of the method, this still
left that supervised parameter within the process, and compounded the problems
associated with both methods. By maintaining the « parameter and adding this new
parameter based on the perceived compression, the algorithm was now burdened with
several fitting variables.

The idea that a radiologist takes into account compression when analyzing a
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FIGURE 3.13 (a) Original Harvard image. (b) Image after segmentation using SV-CNP.

- R . *, o
) v o .

mammogram was a valid theorj,- but the .‘amount. ca_n"be e(nt‘irely subjective based on the
radiologist as well as the mammogram. The author of the "SVV-:CNP took into account the
c;)mpression without the knowledge of how much and how. Basically, the adjustments
were based on the researcher’s assumptions rather than actual physics.  This extra
parameter Was a way 'tr;' fit the results without worrying about the basic heuristics of the
final image. As Figure 3.13 will show, even though the percentage obtained from the
SV—CNP was close to the one given by the Toronto method, the actual segmentation
image obtained from it was incorrect. The radiodensity region has been over fit due to
the high amount of comi)ensation due to the compression mask. As.a result, in this
thesis, an analysis of all the datasets was done with visual and pefcentage quantification.
Another problen;L associated with the previous two algorithms was that they were

not very noise resistant. The proponents of both previous methods had many of the
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mammograms filtered and de-noised manually before being introduced into their
algorithm. Even though this sufficed for the purposes of testing, the algorithms had
trouble analyzing any new image that was introduced to it; the new images had to be
filtered manually z;s well. Because the main focus of this work was to create an
‘ élgorithm that could be used on a large détabase, the manual preprocessing of features
were not acceptable. This thesis created many features within the coding that made it
very resistant to noise as well as several filtering procedures that made sure that any

image analyzed would not suffer from noise problems.

3.3.2 Image Preprocessing
In .an ideal world, all images would have been scanned in the same way every time and
there would have beén no problems when it came to noise in the overau system.
Unfortunately, that was not the case and therefore the images always contained séme sort
of noise due to inconsistent scanniﬁg and as weli as sensor problems. This first stage of
preprocessing was designed to remove sdmé of the major noise contained‘ within the
image that would make it difficult ‘for the masking algorithm to segment the tissue frém
the X-ray. Figure 3.14 demqnstrates how many of the mammograms looked before
preprocessing.

The mgjor problem with some of these mammograms was the white borders
found within the edges. This type of error ‘was created during the creation of the
mammograms and therefore could not be controlled during the scanning or the analysis

portion of the procedure. These edges varied between thicknesses of just a few pixels to
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several hundred pixels depending on how the mammograms were created. As long as the

breast region and the white stripes were not connected, this issue did not cause any major

Stripes caused during
mammogram scan
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FIGURE 3.14 Raw scanned n&émmof;ram image.

problems in the implementation of the maskingl~algdfithh1; :-But in some cases, the white
stripés were large enough that they were connected to the tissilie:: region. This caused the
tissue segmentation algorithm,.\;v}yi.g.}l. w'i.ll,‘,be Ehscussedlaterln thJS ‘chai)ter to perceive
this region as tissue rather than X-ray reg'ion“d-ile to the large'aymounf of bright pixels.

Depending on the size of this error, the ﬂnal. percentage ‘gi,v“en‘for the radiodensity could

i - .
L .o
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have been off by a considerable amount.

To remedy this problem, an algorithm was created to remove as many of the

stripes as possible. A pseudocode representation of the algorithm is shown in Figure
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3'.15. The algorithm was implemented to take into account many of the characteristics
that all mammograms had.

First, the algorithm rotated the mammograms so that the tissue was always
present on the left half of the image. Tﬁjs was chosen as the standard when the research
started before this thesis and therefore all algorithms were created based on it. The
rotation was based on some statistic of 4, which was one of 4 regions, where the regions
were defined as 50% blocks of the imége from the edge. An example is shown iﬁ Figure
3.16. First the regions with the shortest length were disregarded as being as the portion
desired. With the remaining two re gi'ons, the region with the highest average }was chosen
as the left portion of the image. This portion of the algorithm was added to make sure

that all images were correctly oriented whether or not they were digitized properly.

Mammogram \\ the mammogram being ar;alyzed |

Mémmogram = Orient(Mammogram) \\ the mammogram is rotated so that
it is always has the same qrientation

Threshold = statistics(left_half mammogram) \\ a initial threshold is
selected based on the left half of the mammogram. 1.5 Sigma from the mean
is choslen as the z;ﬁreshold.

T emp=imbw(ﬁlammogrqm_ Threshold) \\ the lhammogram is turned into a

black and white image based on the threshold obtained.

Jor i=1:1:length(rows) \\ analyze each column of the image
White(i ) = Connected_white(Temp(i))

Continued
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\\ the last pixel of the first group white pixels in chosen as the value

end

Transition=Valley(White) // the two valleys of the function White, one from
the left and one from the right is chosen as the boundary points. All

information before the first point and after the second point is zeroed.

FIGURE 3.15 The pseudocode implementation of the stripe removal algorithm.

Arop = Largest

Rotate to make top of
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FIGURE 3.16 Detection of image position for prbber rotation.
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Once the mammograms were oriented correctly, the standard deviation and the mean of
the left 50% of the image were obtained. This information was used to obtain a
preliminary threshold, which was chosen as the point 1.5 sigma away from the mean, for
a breliminary segmentation of the mammogram. The ideal here ’was that since the stripes
located on the mammogram were almost always the brightest pixels on the image, this
threshold would segment out a majority of non-stripe regions from the image, thus

allowing the next portion of the algorithm to locate regions this regions for removal.
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FIGURE 3.17 The preprocessing procedure performed a basic stripe removal procedure
on all mammograms before tissue segmentation.
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Once th_e image was segmented by the threshold obtained, each-column. was analyzed for
the first group of white pixels. The“last pix"el of these groupslwa;s used for the
determination of the valleys. Anythiné z.lb‘ox'q;= _tl}e uppep'r;oisut valley and below the
bottommost value was zeroed out. Figure 3.17 shc;w; an example of this procedure. This
procedure was not expected solve all problems. associated with the stripes. Therefore,
other noise resistant features were added to the segmentation. mask introduced later on.
Other noise. problems of the mammogram were taken into account during the

implementation of the other parts of the algorithm.

3.3.3 Tissue Segmentation
As stated before in this thesis, there were many problems when dealing with the
mammograms obtained for the database. These images were very noisy and therefore,
any algorithm created for the analysis of radiodensity had to be created so that it could
work in the worst case scenarios. One of the major changes and advances that this thesis
attempted to make was to make the code very robust and resistant when handling these
types of situations. In this thesis, both image processing and image enhancement
techniques were used to create a more defined and detailed mask than was created in the
previous versions of this research. The previous algorithms for masking were not very
robust and needed supervision for obtaining the correct results. Because the main goal of
this re,seqrch was to create an automated algorjthm, this was not acceptable.

First let us look at what done previously for the tissue segmentation algorithm aﬁd
why it was inadequate for the entire database. Figure 3.18 outlines what- was previously

done in the SV-CNP.
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(b) (d)

FIGURE 3.18 (a) The original image. (b) The image after a 50 x 50 bimodal histogram
distribution evaluation (c) The RBF created by the using the last white box. (d) The
segmentation mask created.

In the SV-CNP, the initial breast boundary was estimated by using a form of bimodal
histogram estimation. The image was divided into 50 x 50 segments and tested to see if
each block exhibited a bimodal Gaussian histogram or a relatively right shifted
histogram, in then which it was considered part of the tissue and was assigned a value of
1. If the histogram was unimodal and further to the right compared to the other
histograms, the block was assigned a value of 0. Figure 3.19(b) represents the histogram
of the black bounded region shown Figure 3.19(a), which was a region located well -
within in the breast tissue. It can be seen that the region exhibited a unimodal Gaussian
distribution as well as being centered more to the right of the histogram. In the region
defined by the white bounded box in Figure 3.19(c), which was an area where the tissue
met the rest of the X-ray, the corresponding. histogram in Figure 3.19(d) showed that the

region was more bimodal as well as being centered more to the left of the histogram.

Once this was done for all 50 x 50 segments in the image, the image shown in Figure
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3.18(b) was obtained from the procedure. Since this was a rough estimate of the breast

edge, the edges were smoothed by using an RBF network.

(©)

FIGURE 3.19 (a) A region located within the tissue. (b) The histogram of the tissue
region. (c) A region of transition between the X-ray and tissue. (d) The histogram of the
corresponding region.

This method made several assumptions that caused it to fail when new images
that it wasn’t tested with were added to the database. First, it assumed that all

mammograms would exhibit the differences in terms of the tissue regions and the X-ray

region. Unfortunately, this was not the case. Even in the datasets used for validation in
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this thesis, there were two sets of mammograms, the Harvard Set, and the mammograms

‘obtained from Fox Chase Cancer Center, and they were vastly different from each other.

(b)

FIGURE 3.20 (a) Mammogram from Harvard database. (b) Mammogram from FCCC
database.

Figure 3.20(a) shows a typical image from the Harvard Database. The X-rays
from the Harvard set were very detailed in the distinction between the tissue region and
the X-ray region. In other wo.rds, the overall means of the X-ray region and the breast
tissue were significantly different from each other. Unfortunately, when dealing with the
images in the FCCC database, as shown in figure 3.20(b), this was not always the case.
The X-rays from the FCCC database all had several problems associated with them.
First, unlike the Harvard sets, the FCCC had the issue of having very low means of the
radiolucent regions. This made it very difficult to distinguish between the tissue region
and the radiolucent regions. Second, many of the X-rays contained white stripes that ran

down the middle of the X-ray, as shown in Figure 3.21. These stripes in many cases were
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brighter than many of the regions on the breast tissue itself. If these stripes were not
connected to the breast tissue itself, it did not cause too many problems. Unfortunately,
many of the stripes were large enough and close enough that they ended up entering the

tissue region, and therefore the previous algorithms had trouble creating accurate masks.

The white
stripes were
sometimes
brighter than
the tissue
itself

FIGURE 3.21 The images from the. FCCC database had problems with stripes running
through the image. A

Because of these problems, the previous method produced many tissue masks that were
off quite significantly, which would have introduced a high percentage of error in the
final evaluation. The new tissue m‘as.king'algorith'm demnonstrated in-this thesis attempted
to address these problems by being very aaapfive and resistant to noise.

A. Image Enhancement for Tissue Segmentation
There were five major steps to the image enhancement portion of the tissue segmentation

process:
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1. Histogram ’stretching (or equalization depending on the image)
2 . Binary transformation
3. Morphdlogical operations,

4 Labeling of connéctéd components

5. Extraction of the final binary image for use in the estimation of the breast edge.

The histogram stretching/equalization were performed so that the binary
transfoﬁnations could be done using the same thresholding techniques for any image.
The binary transformation was done using either Otsu’s method, applied on images
obtained from medical gradve scanner (optical density greater than or equal to 3.85) or
using an experimentally determined method, involving the derivative of the image’s
histogram to find the optimal threshold, which was used on images obtained from a
standard scanner (optical density less than or equal to 3.85). In the second method, the
gray level at which the differeﬁce in pixei counts above an experimentally determined
gray level value was less than or equal to a chosen value was used as the binary threshold
for the enhanced image (for the images this has been tested on, the chosen difference in
pixel count was 250, and minimum gray level was 0.5, with 256 gray levels ranging from
0 to 1). Figure 3.22 shows the histogram of a mammogram to which this second
technique was applied to, its derivative and the optimal binary threshold for the image.

Next, morphological operations, such as erosion and dilation, were performed in
order to better separate the breast from the other objects present in the mammogram
(patient information, view, white borders if the image was not cropped after scanning).

In the final step, the different objects in the enhanced image were labeled, and only the
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connected component containing the largest number of membgr pixels was retained. An
example of a typical mammogram during enhancement is shown in Figure 3.23, where
the order of operations from left to right, top to bottom was: original image, image after
histogram equalizati.on, binary transformation using the ﬁigtogram derivative method of
thresholding, image after erosion/dilation, labeling of -connected components, final

. enhanced image.
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FIGURE 3.22 Histogram of a mammogram, its derivative and optimal binary threshold.
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FIGURE 3.23 Typical mammogram scanned usmg a non-medical grade scanner
subjected to the image enhancement process.

A. Generalized RBF Mask for Tissue Segmentation

The next step in the algbrithm was to generalize the mask cfeated through the image
enhancement procedures, which would hopefully remove the noise that has been
introduced throughout the procedure. First, the algorithmkconverted the 2-dimensional
image obtained from the enhancement procedure in;co a l-dimenlsional function that
represented the preliminary edge of the breast. This function was thén averaged by
groups of four, which gave an initial generalized function of the breast edge. Taking into

account the actual size of the images create by the image enhancement method, 400 by
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.300'pixels, several different sizes were experimented with. Thé assumption was that the
breast edge could be looked as a very low fréquency ‘function and' any fligh frequency
' component would most likely havejb‘een ;1ue to noise introduced into the system. From
exberimental analysis, it was shown'that groups gf_yfpur providé fhe closest resuits. It was
from this averaged function, that the final breaét edge was calqulated through an iterative
ﬁinctién that incorporated RBF networks, which is explaiﬁed next.

Thg heuristics of the breast as well as “several real world scenarios” enabled several
educated. First, as was discussed earlier, the breast edge would not vary erratically
because it was a véry 10w frequency function. This allowed any high frequency changes
to be vie\yed aé noise. Second, overall both sides of the breast would always be
somewhat symmetric to each other due to the circular nature of the breast. Based on
these assumptions, the RBF mask was created to be an iterative function where the breast

edge was determined pixel by pixel rather than as a collective group in a single run. A

flow of the RBF procedure that was created is shown in Figure 3.24.

> Obtain enhanced image
=» Group averaging for generalization
=» Obtain initial RBF mask
‘ =» Starting from cent.er, check pixel by pixel for mean square error
=» Only include pixels that have MSE below threshold for next iteration of mask

=» Implement until no changes are made

AFIGURE 3.24 The flow of the iterative RBF estimation of the breast edge.
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There were several conditions that were introciuced into the iterative RBF network. First,
the initial five points and last five points were always set at zero. This condition was.
based on the fact that _all of the breast tissue had to be located on the X-ray; otherwise,
any radiodensity percentage would not be accurate to begin with. The zero bounding also
aécomplished a second functioh by preventing the neural net from overestimating at the
edges. |

As the results will show, this method for tissue segmentation was more robust

compared to the previous versions.

3.3.4 Compensation for Tissue Compression
Compression adjustment was based on an idea that was introduced in the previous
research done at Rowan University. The previous method created is shown in Figure
3.25. In the compression model introduced by the SV-CNP technique, there were several
problems. First, and most importantly, the model of compression decay in the algorithm
was based on assumptions rather than actual physical models. Tﬁis problem has not been
addressed in this thesis for several reasons:

1. Obtaining physicals models of breast tissue and obseﬁing compression was

not in the scope of this thesis
2. Actually testing women for compression of breast tissue was not possiBle

considering the legal and medical issue associated.

The second problem was the actual implementation of the compression algorithm.

The method in which the algorithm was implemented contained several components that
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were not very accurate and added even more error to a system that was already laden with
them. As stated before, the degree in which compression changes the amount of
radiodense tissue is still unknown. But for algorithmic purposes, the code for

N :

compression was recreated to provide a more accurate model. - R

B e s i e e i

a . T Lg;‘l’w;m
n ) -
-|" From~ g0
*mask,. AT - e : S
boundaries | 1 ‘,
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. N 0 ' ) “
From, ““ifcoo. 0 T
boundaries, | — J.. . . ...
Obtain ‘ L R
family of (b) |
‘curves

Multiple
filter
operations to -
obtain final
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FIGURE 325 The compression model used in the SV-CNP. (a) The tissue
segmentation mask created in a previous step. (b) The boundaries of the tissue
segmentation mask. (c) The family of curves generated between the two boundaries. (d)
The final compression mask obtained after multiple filtering operations.

Previously, once a high number of curves were generated for the mask, a

Gaussian decay was interi)olat_ed onto the family of curves to represent the compression

experienced during the scanning prbéedure. These curves were then filtered many times
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to theoretically create a smoothed over mask that would represent the compression decay.
Unfortunately, due to issues with resolution and sampling, the algorithm ran into several
problems. When there were too many curves, the center was represented adequately, but
the edges became saturated and a separation of lines became lost. If there were too few
lines, the center of the tissue has too many non-filled pixels that would result in poor
results during the filtering phase. Most of the compression mask ended up looking like
the image shown in Figure 3.26. As Region A in Figure 3.26 shows, the centers of the
masks were overall lower in valﬁe than the sides because of the separation of lines; which
was a product of using an averaging filter for smoothing. The filtering itself caused many
problems. Region B of Figure 3.26 shows how even though the values at the chest wall

should all have been similar; the filtering operation introduced a false variation in values.

RegionB ' oo - 700

0 100 200

FIGURE 3.26 Final compression mask created by the SV-CNP.
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The SV-CNP used the Homotopy Continuation algorithm (3.2) to model the

family of curves between the breast edge boundary and the chest wall boundary.

t

Vi = Sorea + v (ﬁdge - fches,) (3.2)

Essentially, this equation was a model of only a single row, making the analysis of each
row independent from each other. This independence combined with the fact that the

function was only based on the current family line and the distance to the edge of the

For Each Row

=» Find length X of row in pixelsi fgpm phest Wa{l to breast edge

;) Using X, create function tha"tvr dg‘e'cféa;"es frbr'n \*/a;iue Ato vah;; B
o The Gaussian ha's béen ﬁtteq for this implemezntation

‘= Interpolate the function created onto the row analyzed

b s . B , L

RN
Region A

FIGURE 3.27 The new line by line implementation of the compression mask algorithm.
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row, allowed for a line by line implementation as shown in Figure 3.28. The new
implementation of the algorithm allowed for the filtering process to be eliminated, which
in turn removed all the problems associated with it. Figure 3.27, region A is no longer
drastically lower than the rest of the tissue and region B is uniform throughout as it
should be. |
The application of the mask also differed in the implementation developed in this
thesis. Rather than applying the compression to fhe threshold, the actual image was
adjusted. Because it was still unknown how much the compression played a role in the
analysis of the radiodense breast tissue, the compression was set as low as possible. The
images were put through an element by element multiplication with the masks, which the

result was then subtracted from the original mask. The results are shown in Chapter 4.

3.3.5 Local Contrast Estimation (LCE)
From the various experiments tﬁat were done with regional analysis, it was decided that
this thesis need to take a different approach to the problem of radiodensity segmentation.
As stated before, tﬁ% previous algorithrr'ls, Were' laden with too many heuristic variables
that did not correlate well with the image statistics. Even though the results from the
other approaches investigated in this thesis did not fare well, the basic principle of
analyzing the two regions, the radiodense and radiolucent, as groups rather than separate
pixels was used in the development of the Local Contrast Estimation.

The Local Contrast Estimation worked under one main concept: similar tissues of
thg breast are interconnected to each other. As stated in Chapter 1, the Breast is

composed of three different types of tissue; fibrous, adipose, and glandular. The
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radiodensity of a mamrhogram is essentially an analysis of how much glandular tissue 1s
located in the mammogram compared to other types of tissue. Since the main function of
the glandular tissue is to create milk during and immediately following pregnancy, the
tissue is all interconnected.

Since the interconnectivity is taken into account by the radiologist during the
analysis of the mammogram, the approach this thesis has taken was that the best estimate
could only be achieved if the methodology was the same. A preliminafy test for the
interconnectivity was done in Section 3.2.2, but without any good results. The idea was
fundamentally sound, but the imageé found within the two databases were too raﬁdom to
use gray level connectivity. Also, unless the algorithm produced only 2 connected
regioﬁs, which it never did, using this method also left the problem of classifying the
many different regions. Local Contrast Estimation introduced in this thesis solves this
problem by analyzing the boundaries created by these regions rather than the regions

themselves. Figure 3.28 shows a flow of how LCE works.

=>» Obtain range of ¢’s
For each ¢, e
o Find artificial boundary that is created _
o From boundary locations, evaluate local c‘Xontra'sg fgom algorithm
o Sum and.average" all local estimation to obtain a global estimate
=» Choose the threshold with thé:}'lli ghesﬁ glél;al épﬁtréé%’ éét’\if‘ri‘atio;i

- =» Segment and quantify image

FIGURE 3.28 The flow of the Local Contrast Estimation.
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The equations that define this system are shown below:
For every mammogram, X, which is a discrete image of M x N represented by a set gray

levels G =[0,1...,L —1], it is segmented by threshold 7, LCE -

To obtainT, " o » first a range of threshold are obtained using equation 3.2:
for n=0:N,

T =G, —a*G,+n*o
TN)=G,,., +b*G,,

mean

(.2)

where G, is the mean of all pixel values in the breast regions, G, is the

standard deviation of the pixels in the breast region, a and & are experimental

% *
percentages, N = number of thresholds, and & = b*Gyy +a*Gyy :

For each T(n), the binary segmentation is obtained using equation 3.3:

(3.3)

s, =T(rk)={l;ifrk ZT(")}

O;if r, <T(n)

where r; = the pixels of the mammogram and 7¢n) = to the current threshold.

From s; , a boundary function is obtained by using equation 3.4:

R,(x,y)=[(=s,(x~-L,y-1D) =25, (x,y D=5, (x+1y-D+
s (x=Ly+1)+2s,(x,y+D)+5,(x+1,y+DV/9;
R, (x,)=[(-s,(x-Ly-1)-25,(x=-Ly)-s5,(x-Ly+1+ (3.4)

5, (x+Ly-D+2s,(x+1Ly)+5,(x+1y-D]/9;
R=\R*+ R | |
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where R, = the vertical edge component, R;, = the horizontal edge component and

R = to the total edge component.

For each R(x,y) > 0, aJx K sub image of X{(x,y) centered arouﬁd x and y is
analyzed using equation 3.5:
wa)=7r’X(x,y) - a=12,.,4 ’ | -(3.5)

where 4 is the total number of instances where r(x,y) >0

The global contrast is defined by equation 3.6:

C(n) = v(aj

(3.6)

average

The final predicted threshold is defined by:

Tye =T(w) nwhere {C(n) = max(C(n)))

The first step in the algoﬂﬂﬁn is to estimate the range of 7"s that will iae used in
aﬁalyzing the l-ocal contrast. After the initiai separation of the tissue portion of the X-ray
with the noisey portion, a histogfam analysis is done to prc;duce' a méan and standard
de;\riation of the distribution. Based on this distribution, the thresholds are determined by

equatidn 3.2. This procedure is shown in Figure 3.29.
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FIGURE 3.29 The range estimation of the threshold values. A is the lowest threshold
used. B is the highest threshold used.

The next step in the Local Contrast Estimation is the binary segmentation of a
| mammogram using a threshold 7, as shown by equation 3.3. After segmentation, a mask
that outlines the artificial boundary created by the segmentati(;n is obtained using
equation 3.4. Once the boundary image B(ij) is obtained using tilese criteria, the
locations are sent to the next part of the algorithm for the contrast analysis, as shown in

Figure 3.30.
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, L - . - -Basedonthe Binary
S : mask; the artificial
boundaries are
located and sent to
‘the next portion.

Using threshold
t, a mask of the
radiodense
region is created

Each white pixel
defines a location
where contrast
estimations is to be
performed

FIGURE 3.30 The artificial boundary estimation B(i,j) that was obtained based on a
bingry segmentation using threshold ¢

The contrast at each location defined by the previous step is ‘analyzed using four
different collections of pixels. Four regions are used so that any type of edge: vertical,
horizontal, northwest-southeast diagonal, and northeast-southwest could be analyzed as
shown in Figure 3.31. These collections of pixels are then analyzed using the LCE,
which the implementation is shown in Figure 3.32(a). Once all the local contrast
estimations are estimated, they are all summed and averaged to obtain the global contrast

estimate, as shown in Figure 3.32(b).
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(b)

FIGURE 3.31 (a) Each white pixel /¥ in boundary image B(i,j) shown in A corresponded
to a region B that was perceived to be a transition point between radiodense and
radiolucent. (b) The different collections of pixels that were obtained to be analyzed by

the local contrast estimation.
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LOCAL CONTRAST ESTIMATION

For each collection

method: Calcu_late
median

Horizontal |

Vertical Split into two groups,

7 numbers higher than median

Southwest-Northeast 7 number lower than median

Diagonal l

Southwest-Northeast Find Difference of two group means
) MH - ML

Diagonal

: a local contrast $

estimation is The highest function of 4 methods

calculated = Local Edge Function

@

GLOBAL CONTRAST ESTIMATION

Contrast = max(Contrast(i))

Local

Contrast(i) = mean(Group,, ) —mean(Group, )

N
Z Contrast,,, (i)
=1
N

where i is one of four collection methods

Contrast ., =

N
Z Contrast, ., (1)
=1
N

Contrast g, =

N being the total number of Local Contrasts

(b)

FIGURE 3.32 (a) Procedure for Local Contrast Estimation. (b) The procedure for Global
Contrast Estimation. 3 o
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The main theory behind the LCE is thgt if threshold T is the correct estimate, the -
global contrast estimate would be the hjghest compared to other thresholds. Figure 3.33
shows two regions, one where the image is segmented by the correct threshold. (b) and |
one where the image is segmented by the incorrect threshold (a). If an incorrect threshold
is chosen for segmentation, the relative contrast at a perceived edge is not that high,
indicating that it is a false boundary. When the correct threshold is chosen, the coﬁtrést

between the two regions is much higher.

(b)

FIGURE 3.33 (a) Region defined as the edge when segmented with incorrect threshold.
(b) Region defined as the edge when segmented with correct threshold.

So finally, once the global contrast estimates are obtained for every threshold

defined by ranges obtained previously, a function of thresholds to global contrast
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estimates is obtained, as shown in Figure 3.34. Based on the function, the threshold with

the highest threshold is chosen as the optimal threshold to use for segmentation.

0.14 T T T l" T T ¥
ol N\ = .The threshold that is
chosen based on
highest global
Q o12t
o - contrast values
g
g 0.1}
=
=]
& 01
!
2.
3 L |
& 0.09
0.08|- 1
007 | t 1 3 13 1 1 1 L
046 048 05 052 054 056 058 06 062 064 0.66
Threshold (#)

FIGURE 3.34 Once a global estimate is obtained for all thresholds, the highest estimate
with its corresponding threshold is chosen as the optimal one to use for segmentation.

3.3.6 Assumptions
For the different portions of the algorithm to function properly, there are several
assﬁﬁlptions that are made. For the border removal function:

1. Ifthere is a border in the X-ray, it will have the highest pixel value.

2. The border will always be the outermost portion of the x-ray. For instance, the

mass of white pixels will not be followed by a mass of black pixels. In this case,
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the white mass of pixels no longer becomes a bqrder but rather just a white noisy
vstripe. |
For masking:

1. Each image has a row length of approximately 1000 pi;(els. If not, the masking
algorithm will change the size accordingly. All parameters were set based on this‘
pixels sizg.

2. TItis assumed that the breast will always be semi-circular in nature on the

" mammogram. From the test mammograms, all images fit this assumption.
" For compression:
1. The compression decay model follows a homotopy pattern.
2. The function for decay is similar to a guassian.
Fof the; Local Contrast Estimation:

1. The two breast regions are best analyzed as layers rather than a point processing
approach.

2. The threshold will never be below or above certain values in the overall
distribution.

Overall:

1. Anynew mammograms introduced into the system will be similar to any noise
patterns that were previously observed. This is based on the assumption that any
major noise will be noticed by the person who performs the'mammpgrams on the
person. (This of course will most likely not be true and will require the addition
of other measures to prevent incorrect results due to noise.)

2. The estimates by the trained radiologist are correct and can be reproduced.
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Many of these assumptions are based on a limited number of test inputs for

validation, and therefore can be better assessed once more training data is obtained.

. 3.}4'S’ummary
, :To ;qmmadze,fhis approach, there are _Ehrge »mai or:ideas in this chapter:
1. An investigation of texture based methods for segmentation.
2. An investigation of various imag’e;'pr\bce.:ssing. and erglancement techniques for
preprocessing as well as segrn;;qtation.
3. Introduction of the Loéélg“éoétrésf Eétfmétio‘n- aflgorilfﬁm that f)rovides a more
accuratg estimate compared }0 the Toronto method.‘% o
Iflve'stigating textures and differéﬁdésta, a;,sgciated-x\;/i;c’h both regions help in
“Undérstanding,which type of methods can’ be used in segmentation. Both imaging
processing techniques introduced in Section 3.2 helped in the theoretical implementation
of thg LCE. The final implementation of the LCE was created to be resistant to noise in
‘ -vaﬁdition to being able to span multiple databases without problems. All methods were

tested on the Harvard and FCCC databases. The results are shown in Chapter 4.
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CHAPTER 4: RESULTS |

All algorithms were tested using two sets of data: 10 mammograms from the Channing
Laboratory, Brigham and Women’s Hospital, Harvard School of Medicine (Harvard) as
shown in Figure 4.1 and 34 mammograms from Fox Chase Cancer Center (FCCC) as
shown in Figure 4.2. Both of these sets were analyzed by Dr. Celia Byrne using the
Toronto method for use as a standard for all algorithms compared in this thesis. The
percentages obtained by Dr. Byrne are shown in Table 4.1.

The Harvard and FCCC mammograms are very different from each other and
accurately demonstrate the need of an algorithm that is able to spaﬁ muitiple datasets
without probl.ems.' The Harvard datdse} is characterized By an overall high tissue mean
compared to the‘ rest of the X-réy, leading t(; an easier localization of breast edge. The

FCCC dataset has the problem of having a -very low contrast between all tissue types.

11051702 11599502 14480101 15839502 19131709

L e

§§

20110811 26253102 26799401 I27786202 28657701

FIGURE 4.1 The 10 Harvard images used in testing the algorithms.
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04706501 04706500 06917201 06917200 06943101 06943100 20392001

103083801 03083800 04011001 04011000 06943101 06943100

FIGURE 4.2 The 34 FCCC images used in testing the aigorithms.
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TABLE 4.1 Percentages obtained by Dr. Celia Byrne using the Toronto method.

Image Radiodensity Image Radiodensity
% %
1.50% 16.20%
2.50% 19.10%.
12.90% 15.20%
13.30% 6.50%
21.40% 13.30%
22.50% 16.80%
33.60% 17.40%
40.80% 39.10%
50.10% 35.70%
55.30% 56.00%
17.80% 21.70%
15.60% O 38.80%
19.10% 011 35.00%
18.60% 2000 | 22.90%
16.50% ' 14.20%
21.50% 26.00%
30.70% 30.10%
53.30% 31.80%
©52.20% 40.40%
11.10% 23.40%
12.70% 34.10%
14.70% 9.90%

To make a good estimation of general performance, results from both datasets were
combined. : ey —

For all methods that were evaluated but were not included in the final algorithm,
only a subset of the results is shown. This subset includes five images frqm the Harvard

“database and five images from the FCCC database, as shown in Figure 4.3. These images
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were selected due to their wide ranges in radiodensity percentage as estimated by the
radiologist. For all algorithms that were included in the final implementation, the results
for all 44 images from the database are shown along with a qualitative anaiysis of their
performance compared with previous methods. For some methods, a demonstration done
on canonical images obtained from the SIPI (Signal and Image Processing Institute)
database are also shown. The results from the canonical images are meant to show

accuracy of code as well as an example of the approach. The images are shown in Figure

4.4.

11599502 14480101 19131702 26253102 28657701

06917201 06943101 22272101 22765901 03083801

dat . 'ﬂ.fix; : ‘;* <
FIGURE 4.3 Subset of images chosen for displaying intermediate methods that are not
used in the final implementation of radiodense tissue segmentation.
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FIGURE 4.4 The canonical images obtained from the SIPI database that will be used
throughout Chapter 4. ‘

4.1 Rowan University Digitized Mammogram Database
During the past few years, an extensive database of digitized mammograms has been
collepted at Rowan University. This database represents an excellent opportunity for
studic;,s based on race, location, diet, and age. The database consists of twé major groups:
1. Mammograms from Chinese American (CA) patients.
2. Mammograms from.Family Risk Analysis Program (FRAP) patients.
All mammograms were séamned ﬁéing two types of scanners. The Agfa scanner was used
originally and produced joint photographic experts group (jpeg) images. Because the
Agfa only has an optic}?ll density of 3.0 and is not considered a medical grade scanner, the

images from the Agfa are characterized by low contrast and high amounts of noise as

99



shown in Fighre 4.5(a). Because the images areln jpeg fO;mat, there are only 256 (8-bit)
gray levels in each iﬁlage. The Lumisys is currently the scanner being used for all thé
digitization of all mammograms. This scanner has an optical density of 3.85 and is
considered to be a medical grade scanner. The Lumisys scans all mammograms into
4096 (12-bit) gray level DICOM (Digital Imaging and Communications in Medicine)
format and does a very good job of not introducing noise into the scanned images, as
shown in Figure 4.5(b). The Lumisys also produces higher contrast images making any

analysis easier.

(a) (b)

FIGURE 4.5 (a) Mammogram from CA database scanned using the Agfa. (b)
Mammogram from CA database scanned using Lumisys. They are not from the same
patient.

The Chinese American database only contains RCC and LCC images. It contains

55 pairs (LCC and RCC) of mammograms that have been scanned using the Agfa

images. There are 134 pairs (LCC and RCC) of r‘nan‘lmog’rams\tﬁat have been scanned
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using the Lumisys. In total, there are 189 pairs of mammograms, which equates to 378
total mammograrﬁs in the Chinese -Aﬁlerican.database. The FRAP database on the other
hand contains many image groups that contain RMLO and LMLO images as well as the
RCC and LCC. The FRAP database c;)nfains 339 images that have all been scanned by
the Agfa in jpeg foﬁnat. In total, there are 717‘ mammograms in the database. Table 4.2

shows the number of mammograms in Rowan database.

TABLE 4.2 The Rowan University digitized mammogram database.

# of Agfa # of Lumisys
images images Total
Chinese
American 110 268 378
FRAP 339 0 339
Total 449 268 e

4.2 Regional Variance Statistics

As was stated in Chapter 3, the main focus of the variance imaging was to obtain a
preliminary indication of how well texture based methods would work on the breast
tissue. The results of variance imaging are shown in Figure 4.6. For the Harvard images,
variance imaging creates almost no separation of gray levels in comparing the radiodense
and radiolucent regions. The imaging method suppresses the tissue region and only
enhances the regions near the edges. This was to be expected due to high contrast located
within the edges. The FCCC images show some difference between the radiodense and

radiolucent regions. This indicates that even though textures for segmentation may be
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FIGURE 4.6 Variance imaging results.
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FIGURE 4.7 Variance imaging results on canonical images.

viable, the two different databases may behave differently depending on what procedure
is used. When the technique is used on canonical images, it performs relatively well, as
shown in Figure 4.7. Even though there are many variations within each type of texture,
the overall mean between textures are distinct.

For overall variance comparisons, the statistics correlate well with what was seen
in the images. The radiodense and radiolucent variances throughout the ten images are
vastly different from each other, as shown in Figure 4.8 and Figure 4.9. The average
variance value for the radiodense regions was 0.021, with a standard deviation of 0.018.
The radiolucent regions also had similar results where the average variance of 0.0029 had
‘a standard deviation that was 0.0026. However, the results do show that there is a

relative difference between the radiodense and radiolucent regions. For all statistics, the
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FIGURE 4.8 Variances of radiddense regions throughout the 10 images. »

‘aouelep

FIGURE 4.9 Variances of radiolucent regions throughout the 10 images.
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relaﬁve difference Was 0.0183. Within the .sarhe fmagé, this d_ifferencé was mofe drastic;
therefore éllowing for an initial assumi)tion based on the results. The relative‘ difference
Bet\Neen the two régions, radiodensé qnd radiolucent, indicate that a fextu.re segmentation
may be Apc')ssible, but the vast changes between images also indicates that fhé Aplrocedure

must be adaptive.

4.3 Gabor Filtering

Figure 4.10 shows the collection of all known 20.x 20 'rédiodense samples, based on Dr.
Celia Byrne’s estimate, that were used to do a detailed frequenqy analysis for Gabor
ﬁl'téring'. The 20 x 20 radioluceﬁit safnpleé a;e shown in Figme 4.11. These samples were
selécted from the subset of images' shown in Figure 4.4. For the analysis of the frequency
dbmains; the mean of each sample was honhélized before the two' dimensiolnalll Fast
AF‘ou‘rier "Transforﬂm . was evaluated.  Figure 4.12 | shows the chresponding 'Fourier
Transforfnl shown in ldg \ﬁf_:\& for fhe radiodenée tissue. Figure 4.13 shows the

corresponding Fourier Transform for the radiolucent tissue.

FIGURE 4.10 Known radiodense samples from subset of images shown in Figure 4.3.
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FIGURE 4.12 The mean normalized radiodense samples with -their 'corresponding
Fourier Transforms. ' S : ‘ '
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FIGURE 4.13 The mean normalized radiodense samples with their- correspondlng
Fourier Transforms : - :

The theory behlnd the frequency analy51s was to find a range of frequenc1es that
’were more prevalent in radlodense tissue than in radlolucent tissue. To accomplish this
task all frequency proﬁles were averaged into two matrices, one- representing the
| radlodense tlssue and another representing the radlolucent tissue. The ratios of these two
images.were then obtained; as shown in F igure 4.14. It was expected that regions of
bright patches were gomg to appear upon analy51s whlch would have indicated the vast’
‘:frequency dlfferences in the two tlssue types Unfortunately, the 1nformat10n only shows

very Small.‘ regions_‘ wher_e the ratio between radiodense and radiolucent regions are high
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enough for Gabor passband frequency selection. The frequency analysis was also
restriéted to the lower spatial frequency domains because overall energy. of the high
frequenvéy regions was insignificant. As a result, there were only a few sets of
frequenciés that could be chosen for Gabor filtering testing. These freciuencies
éqrrespond to the blocks location in Figure 4.14 of: (3,17), (5,3), (19,5), and (9,2).
Therefore, the results shown in Figure 4.15, which are a éollection of results based on

using Gabor window sizes 6f variance, o,=.5,.75, 1, 1.5 in the 4.1, just became a form
of low pass blurring. The Gabor variances were kept symmetric, therefore o, =o,.

H(u,v)=exp{271’[0} (u—uy)+ov?} +exp{-27’[c] (u +u,) + o, v’} 4.1

FIGURE 4.14 The ratio of thé aiféihge"rad‘io”d"ehse»5a1{d:réididli1'cénf frequency regions.
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Original image Post Gabor

19131702

22765901

Origihal image

14480101

26253102

22272101

03083801

Post Gabor

'

FIGURE 4.15“_A collection of results for the Gabor Filter ba'se,d on o, values of .5, .75,
1, 1.5 as well as passband frequency locations of (3,17), (5,3), (19,5), and (9,2).
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4.4 Co-occurrence Matrix
Figure 4.16 represents typical results obte{ined by using co-occurrence matrices for the
Harvard images. These results were genérated from using various co-occurrence

comparisons such as (0,1) and (0,2). Other co-occurrence values were used and

Image Energy Inertia Entropy Homog.

11599502

14480101

19131702

26253102

28657701

FIGURE 4.16 Results of coeoécurrence matrices for some Harvard images.
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produced similar results as the ones shown in Figure 4.16. A mask size of 9 x 9 was used
because it was shown have the best tradeoff between resolution and consistency. The
results for the ¢nergy,' ent;‘opy, nioménts, and inver_sé :mvoments,vrespectively, do not even
remotely correspond to the actual regions. This implies that for the Harvard images, the
texture qualities for both régions are very similar. As a result, when using a unsupervised
clustering method such as K-means, the selgmentation result does not classify the correct

~ parts of the breast tissue, as shown in Figure 4.17.

28657701
@ - (b

FIGURE 4.17 (a) Result of a K-mean clustering’A of co-occurrence features for a Harvard
image. (b) Desired segmentation results based on Toronto method.

When the same technique is used for the FCCC images, the results obtained
appear to be more'promising. The energy, entropy, and homogeneity statistics provide
some separation between the radiodense and radiolucent tissue, as shown in Figure 4.18. |

As a result, the unshpervised cluétering image shown in Figure 4.19 is better correlated
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with the actual profile created from the Toronto technique. However, the results are still

not concise enough to be used for biomedical applications.

B : B Lo

Image Energy Inprt_iﬁk ¢ | Entropy Homog.

06917201

22272101

22765901
5

03083801

AFIGURE 4.18 Results of co-occurrence matrices using the FCCC images.
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06943101
(a) )

FIGURE 4.19 (a) Result of a K-mean clustering of co-occurrence features for a FCCC
image. (b) Desired segmentation results based on Toronto method.
4.5 Law’s Texture Mask
Law’s texture energy measures were used in the evaluation because of the high number
of features that could be obtained. For each image, a set of 15 differeﬁt features was
obtained. Of course, a greater number of features do not necessarily mean better
performance, but it provides another insight to the {/iability of textures in this application.
Figure 4.20 demonstrates a typical suite of results obtained from using Law’s
texture energy measure on one of the Harvard images. The results obtainéd from the
technique do not add any additional information to the segmentation process; the
additional images actually provide a worse separation of the two tisslue»types than using
juét the gray level comparisons by themselves. The FCCC images sho'wn'in Figure 4.21

are also similar to the Harvard images, providing no additional information.
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11599502

FIGURE44.20 Typical results for the Harvard images using Law’s energy texture
measures.

The results from the texture segmentation methods show that the radiodense and
radiolucent regions do not exhibit mﬁch difference in their texture éfoperties. Even the
" methods that work for one database do not work well when evaluated using another
database. There are just too many variations from mamrﬁograms obtained from different
areas and databases. Becaus§: of this, a method thgt requires the statistics to be defined

from image to image, like textures, is not viable.
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06943101

FIGURE 4.21 Typical results for the FCCC images using Law’s energy texture
: measures.

4.6 Non-linear Transformatiorls

Results for non-linear transformations; both pixel-based and regional-based for the
Harvard images are shown in Figure 4.22. The regional-based method performs better
than the pixel-based method because a single noisy pixel will not affect the result in a
'ﬁegative way. Using non-linear transformations allows for a better separétion of

radiodense and radiolucent tissue; unfortunately, this procedure is entirely subjective
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Image - | Pixel-based - Region-based

14480101

19131702

26253102

28657701

FIGURE 4.22 Results of non- llnear transformatlon using both pixel based and regional
‘based for the Harvard i 1mages
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Image | Pixel-based Region-based

06917201

06943101

22272101

22765901

03083801

FIGURE 4.23 Results of non-linear transformation using both pixel based and regional
based for the FCCC images.

117



and does not base the transformation on any statistic. Still, using this type of method for
preprocessing images that have similar tissue characteristics, like the Harvard set does, is
promising. However, using non-linear transformation for FCCC images results in poor
- outcomes, as shown in Figure 4.23. If the results are éompared with what Dr. Celia
Byme obtained using the Toronto method, putting the. images. though a non-linear
transformation will cause the images to always have a lower estimate than the one she
obtained. Because the technique does not work. well with both databases, it is not a

viable method.

4.7 Gray Level Connéctivity
To obtain the connected components for the mammograms, the images were first
evaluated for the lowest gray level valued connected component. In this evaluation, it
was assumed that the lowest connected component was radiolucent and.anything with
higher values was radiodense. This is not always the case for the images, but as the
results show, this evaluation demonstrates how most radiodense regions are grouped ‘up ,
into large regions. This characteristic allows the use of regional estimation methods, such
as the Local Contrast Estimation introduced in this thesis.

Once the lowest connectéd level was évaluated, additional regions were obtained
. by a random selection pf a pixel that- was not in .a previous region. From this pixel,
connectivity was éstablisﬁéd as ‘Io}l;g as tﬁe connécAted;”pixel was within a certain preset
range. Because of this preset value, this method is not completely automated because it
~ has to-be changed for each image.- Regardless, the method shows why evaluating

radiodensity as regions rather than pixels can produce more accurate results. Figure 4.24
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15839502

26253102

28657701

FIGURE 4.24 Connectivity results for three Harvard images.
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06943101

22272100

22818600

FIGURE 4.25 Connectivity results for three FCCC images.

120



shows results obtained from three Harvard images. Even though they are not completely
accurate, the regions demonstrate the connective nature of radiodense and radiolucent

tissue. Figure 4.25 shows typical results from the FCCC database.

4.8 Image Preprocessing

Figure 4.26 demonstrates some results of the stripe removal procedure from the Harvard
set. The stripes are not completely removed, but do not pose much of a problem because
results from f[hé masking algorithm show th.;:xt the complete algorithm is very noise

. resistant. The results for the FCCC images are shown in Figure 4.24.

Stripe Removal

.
:
i
&
]
£l

FIGURE 4.26 Stripe removal results for_ some of the Harvard images.
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Stripe Removal

Image Stripe Removal

ey e

FIGURE 4.27 Stripe removal results for some of the FCCC images.

| 4.9 Tissﬁe Segmentation
"fhis_ section‘i,s'the first portion of the results that can be compared with previous methods
that havé been created at Rowaﬁ University. One of the main problems with the previoﬁs
method for tissue segmentation is that it was too generalized and very vsuscep'tible to
noise. Figure 4.28 shows a comparison of the mask created by the method introduced in
this thésis and the method created previousl‘y at Rowan University [1] for some of the
Harvard methods. The _greén lines represent the edge detected by the method in this

thesis. The yellow lines répresent the edge created by the previous method. The results
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for the method introduced in this thesis are more precise than the previous method.” The

results of the FCCC images, compared in Figure 4.29, again demonstrate the accuracy of

the method introduced in this thesis.

H F
4 £
§ 3
H H

¢ YO a

FIGURE 4.28 A comparison of the tissue segmentation method introduced in this thesis
(green) and the tissue segmentation method created by Eckert (yellow) for some Harvard

images.
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FIGURE 4.29 A comparison of the tissue segmentation method introduced in this thesis
(green) and the tissue segmentation method created by Eckert (yellow) for some FCCC -
images. . o

The imagés also play an important role in the cdmparison of final results. The

radiodensity results from Eckert’s method are based on maské that were créated manually
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rather than through the method that was introduced in his thesis. Therefore, the final |

results also show an accurate indication of true automated performarce.

4.10 Compression

‘figur‘e 4.'30 shows an exémple of the compression -r'nasks t'hat were created by the Eckert
mefhéd. The;e are several lméjor problérn‘s with thesé.mas‘ks..' The maximum and
minimum valué of compression ‘applied: i§ based on the breast lleng‘lch,v whére A is the
.ma)-(imum value and B ils the.‘minimu;r; value. Equations 4.2 and 4.3 4repr}esent the
relationship between the A and B values:

z

Xe

T,(x,)=B=kT e ‘ : 4.2)
2 -x X
o) == g5 ' 43
2log(= ‘
)

The vEcker't procedure assumes that the function of compression is represented by a

Gaussian curve. This assumption is reasqnaﬁle, but is made even more subjective by the
"amount of compression applied.' For slorryle imageé, the Eckert method assumes that there |
- is;moré than 200% cofnpreééiori in vari:ous parts of ltﬁe'breast. ThlS assumption is not
based on aﬁy mathematical principles but rather.experimental values tha;r vmay have been‘
a fésul;c of over ﬁtti_ﬁg’. As the ﬁnal .resulté of. Eckert’é method shéw, many bf thé fmal
‘ ﬁrbceg.sed ima'gesw_do not ;:onélﬁtélwell.with what 1s ‘considere.d to be the conhective
nature of radiodéﬁse tissue. Beéauéé of the uricer;ainty of the écfual compfessiori amount

and the function that it follows, this thesis. only assumes ‘that at most, compression
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increases the radiodensity by 20%. The compression function was also left as a Gaussian
curve. | |

In addition to some - problems - with the theoretical concepts behind - the
combression, there are some .implementation issues with the code. Because the mask was
crea.ted by fitting as many lines as possibl»e between the breast edgé énd chest wall, this
caused resolution and scaling problems. Figure 4.31 shows how when lines are. fit in this
method, the sides of the breast become saturated but the center of the breast still contains
many empty spaces. Because of tﬁe empty spaces, when put through the multi-pass low-
pass filtering operation that the method uses, the centers become overall lower than the

sides. As a result, the Gaussian decay that is modeled is inaccurate. Also, because the
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FIGURE 4.30 Compression mask created by Eckert method.
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FICURE 4.31 The pr_obléms associated with the SV-CNP compression mask.

.corr_ipres'sion mthe Eckei;t method‘ is baséd on the incorrect tissue mask, more error is
intrnoduced.' 1nto ltﬁe process. |
Fiéure 4.32 shows some exarﬁples of the new compression masks created by this
“thesis for the: Ha'rvard database. ~The main aspect to observe is- ilOW the function
: 'décreases from the brvéast‘ edge t6 the chesf wall. At all pbints al.‘ong ‘;he chest wall, the
5 l\.falues should Be:the same. ‘The breast edge should alsov have the sdtﬁe values. F.igure'
4.33 sho‘ws 10 different FCCC i’magés that have .be'en. put through 'lthe same p;ocedure.
Because of the combination Qf this process along with chér aspects of the Eckert

“approach, some of the - final quantitié's that Eckeit obtained are a result of multiple
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FIGURE 4.32 Compression masks created by the method introduced in this thesis for the
10 Harvard images.
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FIGURE 4.33 Compression masks created by the method introduced in this thesis for 10
FCCC images.
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incorrect procedures. Even the main focus of the Eckert approach, compression.
adjustment, is implemented through several fitting procedures that are questionable. The
results shown in the next section compare the outcomes both quantitatively (percentages)

and qualitatively (images).

4.11 Local Contrast Estimation vs. Previlous Methods
The section first shows the resuhs of each algorithm, the CNP? SV-CNP, and the LCE
sepafately. The Harvard dataset only has one set of results. For the FCCC database,
there are two different sets: one containing all FCCC images and one for all non-flagged
images. The flagged images were all ifnaées that Dr. Celia Byrne was unconfident about
the percentages that she had provided. In addition, the second half of this section shows
a comparison of the three me‘;hbds forlthe' two databases combined.

| Figure 4.34 and Figure 4.35 show results obtained for the Harvard images using
the CNP m¢thod that has béen previously created at Rowan University. The final
segmentation results look well defined and tend to correlate with what are the high
‘radiodense regions. The percentages ovbtained from 4thisl method, as shown in Table 4.3,
perform very well compared to Dr. Celia Byrne and show that it is correlated at a value of
0.911 and has a MSE value of 1091.2 (Table 4.4, Figure 4.36). Unfortunately, there is
one crucial problem with this method. If we observe Equation 4.4, used to obtain the

thresholds used for segmentation:

‘ 7 2
it -0 || KB~ H
Tewp == 2#2 +[ J( = ]] (44)
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FIGURE 4.34 Visual results of first four Harvard images using CNP method.

Radiodensity

Estimate of Radiodensity
Image Toronto Estimate of
Number Method CNP MSE of CNP
11051702 214 21.07 0.11
115989502 12.9 14.95 420
14480101 40.8 71.00 912.04
15839502 13.3 7.50 33.64
19131709 1.5 0.34 1.34
20110811 25 1.65 0.72
26253102 225 23.70 1.44
26799401 55.3 47.82 55.95
2778620 50.1 58.00 62.41
28657701 33.6 38.00 19.36

TABLE 4.3 Percentage comparisons of the CNP method to the estimates given by Dr.
Celia Byrne using the Toronto method.
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26799401

27786202 28657701

FIGURE 4.35 Visual results of last six Harvard images using CNP method.

it is seen that even though ;j, s oy o are based on image statistics, the o parameter is
“based only on experimental analysis of what & ‘would give the best results. Because it is

‘not based on any image statistic, the results obtained for Harvard database were produced
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‘using three « parameters for only ten images. This essentially makes this algorithm a

semi-automated procedure where a new « parameter is chosen for each new group of

50.0
40.0

30.0

FIGURE 4.36 Comparison of percentages between Toronto method and CNP for
Harvard images. '

TABLE 4.4 Correlation and MSE of the CNP to Toronto for all Harvard images.

Correlation of CNP and
Toronto for Harvard images

0.911871657

MSE Harvard images
1091.21
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images. . Therefore, when the algorithm is exercised on a new database where the «

. parameter has not been previously chosen for it, it does not perform well. The results in

Table 4.5 show the performahce that the CNP achieved for FCCC images. The CNP

| TABLE 4.5 The percentages obtained for FCCC database for the CNP. The Correlation

and MSE are compared with the Toronto method.

Image

Radiodensity
Estimate of
Toronto

Radiodensity
Estimate of

| 06917201

106917200
06943101
06943100
20392001

22574400
22645201

22733501
1 22765901
22765901
23152500

RO 3R

22574401

| 22845200

22808000

6943101
06943100

Correlation of
CNP and Toronto
on FCCC images

-0.390753886

MSE FCCC
images
21732.72

Correlation of
CNP and Toronto
on FCCC images
(without flagged)
0.30616301
MSE FCCC

images (without
flagged)
1438

A PR
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FIGURE 4.37 Cbmparison of CNP vs. T oronto method for FCCC images.
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pefcentages for all FCCC images, ‘shown in Teble 4.4 (Figure 4.37), are actually
negzitively correlated with the estimates given by the Toronto method at a value of -0.390 |
With‘e MSE of 21732. The results without the flagged images obtain a correlation value
~of 0.306 and a MSE of 14381.5. This shows that the 'CNP isvery dependeht on a
changing a parameter, and this essentially makes it a supervised algorithm.

Figure l4.l38 and Figure 4.39 show the results obtained’ frerh the SV-CNP
algorlthm If the performance is evaluated on just the percentages alone, the algorithm
works well. The percentages obtained from the SV CNP, as shown in Table 4.6 (Figure
4.40, Table 4.7) were correlated at a value of 0.92 and'had a MSE of 495.1 compared to
the values given by Dr. Celia Byrne using the Toronto method. ;Even though these
_ numbers are better than the ones obtained by the CNP, they can be misleeding. The SV-
CNP has tWo main issues as previously discussed. First, it uses the same parameters that
the CNP uses for initial threshold selection. The threshold is still based on the «
parameter that is user dependent. Second, the compressio‘n masks semétimes compensate
for more -thah 200% in some locations. Beceuse of this adjustrhent, some regions are
‘alweys elassiﬁed‘ as radiolucent'regardless of how hlgh the gray levelj \%alhes are. As a
result, eve‘nv though the SV-CNP uses the same « parameters-as stated, the ﬁnel
segmentation result does not correlate very well with the actuai radiedense'regions. In all
‘ the Harvard images,’ SV-CNP assumes that these is almost no fadiodense tissue close to
the ehest wall,‘while most of the time it autematical}y'ciassiﬁes tissue close to the breast
edge as rediodense. For this to be the case realistically for Aall 10 Herx}ard images'ahd all

34 FCCC images is highly unlikely.

136



11051702

114480101

11599502

15839502

. FIGURE 4.38 Results of first four Harvard images using SV-CNP.

Radiodensity
, Estimate of Radiodensity
Image Toronto Estimate of MSE of SV-

Number Methed SV-CNP CNP
11051702 214 316 104.0
11599502 12.9 11.0 37
14480101 .40.8 47.8 48.7
15839502 133 12.7 04
19131709 1.5 04 - 12
20110811 25 6.0 11.9
26253102 225 20.6 3.6
26799401 55.3 38.4 2846
2778620 50.1 450 26.0
28657701 33.6 36.9 10.9

TABLE 4.6 Percentage comparisons of the SV-CNP method to the estimates given by
Dr. Celia Byrne using the Toronto method.
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| FIGURE 4.39 Visual results of last six Harvard images using SV-CNP.

Table 48 (Figure 3.41) shows the results obtéined with the FCCC images using
‘ the-SV-CNP. The pérfonﬂance of the algorithm decreases with a correlation of 0.48 and
a MSE of 15127.58. Without the flagged images, the performance increases to a
'corrélatioh of 0.733 and a MSE of 5425.79. As stafed before, the SV-CNP has many

issues that make one question the validity of the results. Also, the FCCC compression
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adjustments have been made for the database alone. Therefore, the two separate

60.0
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. G m Toronto
40.0 : @ SV-CNP
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20.0

FIGURE 3.40 Comparison between the SV-CNP and Toronto method for the Harvard
images.

TABLE 4.7 Correlation and MSE of the 'S{/—CNP: to Toronto for all Harvard images. Of
all three methods, the SV-CNP has the highest correlation with the Harvard images.

Correlation of SV-CNP and
Toronto on Harvard images

10.920639398 - A

MSE Ha}vard ifnages
495.10

~
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TABLE 4.8 The percentages obtained for FCCC database with the SV-CNP. The
Correlation and MSE are compared with the Toronto method.

Image Radiodensity
Number | Estimate of Radiodensity
Toronto Estimate of MSE of SV-
Method CNP
Correlation of

06917201 SV-CNP and

06917200 Toronto on

06943101 FCCC images

06943100

20392001 0.481121229

20392000 MSE FCCC

W’iﬁﬁt%mgﬁ%‘ i m a g es
72100 15127.58

22574401 Correlation of

22574400 SV-CNP and

22645201 ‘Toronto on

22645200 FCCC images

22733501 fWithOUt f|8996d!
122733500, .; 0.7329646
22765901 MSE FCCC

22765901 images (without

23152500 flagged)

22808000

27216101

03083801
03083800
T

i

06943101
06943100

databases have their own polynomial fit for the compression adjustments, which do not

adequately evaluate cross database performance.

140



40.0 -
20.0
10.0

FIGURE 441 Cdr_npa’rison of SV-CNP vs. Toronto method for FCCC images.
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Figure 4.42 and Figﬁre 4.43 demonstrate the results obtained using the LCE for
the Harvard images. Like tﬁe :CNP, the LCE correlates very well with the regions that are
coﬁsidered highly radiodense. But unlike the CNP, the algorithm does not use any
v'ariableé such as a to fit the éegmentation based oh ‘e'xperimental results. The

segmentation results are based on image statistics alone. The percentages obtained from

11599502

14480101

15839502

FIGURE 4.42 Results of first four Harvard images using LCE.

the LCE method fof thé Harvard images, as showri in Tablé 4.9 (Figure 4.44 Table 4.10)
have a correlation-of 0.868 and a MSE of 879'.1. Thgs'e values are lower than what both
the CNP and SV-CNP achieved for the Harvard datéset. '

The .FC,C.C results demonstrate that the LCE is the better algorithm When it comes

to cross-database performance. Unlike the CNP and SV-CNP, the LCE uses the same
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parameters that it used for the Harvard dataset in the FCCC dataset. The percentages for

the FCCC images using the LCE, as shown in Table 4.10 (Figure 4.45), has a correlation

19131709 | 20110811

|
86202

277

28657701

FIGURE 4.43 Results of last six Harvard images using LCE.
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TABLE 4 9 Comparlson of the LCE method to the Toronto method for Harvard

database
‘Radiodensity .
Estimate of | Radiodensity
Image - Toronto Estimate of
Number Method LCE MSE of LCE
- 11051702 21.4 24.38 8.9
"11599502 12.9 9.06 147
14480101 40.8 -42.29 2.2
15839502 13.3 5.96 53.9
19131709 1.5 6.82 28.3
20110811 25 14.60 - 146.4
26253102 225 14.92 57.5
26799401 55.3 54.18 1.3
2778620 50.1 38.50 134.6
28657701 33.6 - 54.37 431.4

60.0
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40.0 4

30.0 -+

20.0

100 L K

FIGURE 4.44 Comparison between LCE and Toronto for Harvard database.

TABLE 4.10 Correlation and MSE of the LCE to Toronto for all Harvard images.

Correlation of LCE and
Toronto on Harvard images

0.868014326

MSE Harvard images

- 879.10
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TABLE 4.11 The percentages obtained for FCCC database with thé SV-CNP. The
Correlation and MSE are compared with the Toronto method.

Image
Number

Radiodensity
Estimate of
Toronto
Method

Radiodensity
Estimate of
LCE

MSE of LCE

06917201
06917200
06943101
06943100
20392001
20392000

)7
22574401
22574400
22645201
22645200

22765901
23152500
22808000

03083801
03083800

=

069431 01
06943100

Correlation of
CNP and Toronto
on FCCC images

© 0.848833784

MSE FCCC
.images

4052.28

" Caorrelation of

CNP and Toronto
on FCCC images
(without flagged)

0.881965271

MSE FCCC
images (without
flagged)

281‘1 69

of 0.849 and a MSE of 4052.28. Unlike the other algorithms, the performance does not

take a major hit when analyzing the second database. In fact, when the flagged images
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FIGURE 4.45 Comparison of LCE vs. Toronto mg:thod for FCCC images.
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are taken out, the LCE performance actually increases compared to the results for the
Harvard database with a correlation of 0.882 and a MSE of 2811.69.

Figure 4.46 shows a comparison of all methods using the Harvard Database.

Based on these results, the SV-CNP has the best average percentage difference compared

to the Toronto method with a value of 5.3%. The CNP has the second best average

difference at 6.14% and the LCE has a value of 7.41%. These results were expected

since both the CNP and the SV-CNP were fit to the Harvard dataset.

70.0 = mToono
» BCNP
8SV-CNP

10.0

00 iﬁ ’ : - :
11051702 11590502 14480101 15839502 19131703 20110811 26253102 26799401 2778620 28657701

FIGURE 4.46 Comparison of all four methods on the Harvard database.

- Figure 4.47 shows a comparison of all methods on the FCCC database. Based on
these results, the LCE obtains the best average percentage difference with a value of
8.47%. The SV-CNP obtains a value of 15.2% and the CNP gets the worst score with a

value of 21.72%.
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FIGURE 4.47 C'ornparisc;n of all four methods on the FCCC database.
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Figure 4.48 shovws a cemparison of all four'methods using only the unflagged

FCCC images. The LCE has the best perforrnance w1th an average percentage difference

& et »;u:-.t»»a

\’

of 7.93%. The SV CNP has a percentage drfference of 8. 79%, and the CNP has the worst -
performance w1thlan average percentage difference of 17.89%.

Table 4.12 shows a comparison of | various perfcrmance measures, éuch as the
correlation, average percent difference, and the MSE ef both datasets combined with and
without the flagged images. The LCE performs the hest.in all categories. Figure 4.49
shows a bar comparison for all methods with the flagged images. Figure 4.50 shows a

bar comparison without the flagged images.

- TABLE 4.12 Comparison of Correlat1on MSE and average percentage drfference to the
Toronto method for all databases with and without ﬂagged 1mages

CNP_ | SVONP | ICE

Correlation compared
- _to Toronto method - _
(with flagged) ~ 0.147 : - 0.565

Correlation compared
to-Toronto method
(without flagged) 0.306 0.733

MSE compared to
Toronto method (with
flagged) 22823.930 15622.682

MSE compared to -
Toronto method : :
{(without flagged) 14381.540 5425.792

Average % difference
compared to Toronto - .
method (with flagged) 18.186 3 12.924

Average % difference

compared to Toronto

method (without ~
flagged) . 17.889 o 8.791
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4.12 Summary
The results show that textures may not be suitable for the segmentation of radiodense
tissue. For the FCCC dataset, some separation ié .ac:hievedllll‘sihg fexture segmentation but
not enough to be viable for this process. Thé Harvard dataset produces no separation and
indicates that any regional difference in the FCCCV daté.sgt may have been due to the high
~ contrast between the radiodense and radiolucent fegions. Pérhapé texture based methods
may work on other datasets, but for the two that have been studied in this thi(:sis, textures
produced no usable results.l Because the méin' focus éf this reééarch was lto create an
algorithm that can span multiple databases, textures could ﬂot be used.
Fortunately, the _resulfs for the' LCE aléo’rithm look very promising. In all .‘
'comparable performance statvistics, the LCE performs better than the twé previous
algorithms. For both databases, LCE shows that it i§ correlated at values higher than 0.8
to the estimates giilen by Dr. Celia Byme. Considen'ng that wthe results are based on only
image statistics rather than user input, these results are very promising.lv The LCE has the
‘potential to provide cost effective and’ objec't.ive evaluationé of marhrﬁolgfamé at many |

locations and spanning different databases.
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CHAPTER 5: CONCLUSIONS

‘ Mammogfaphic radiodensity is one of the strongest risk factors for developing breast
cancer. Recent discoveries relating to the ﬁeritability of this chaltra.cterist.ic indicate that
there exists a genetic marker for breast .density. This shows promise that investigatiohs in
isolating thié marker may ultimately lead to understanding the céuses of this debilitating
disease. PrAevirous' attempts for automatically identifying and quantifying radiodense tissue
in. digitized mammograms have fallen short of the ideal. Many algorithms require
significant ﬁeuristic parameters to be evaluated and set for predicﬁng radiodenéity. Many
ofhers havel not demonstrated the efficacy of their techniques with a sufficient large and
diverse patient database. This thesis has at;cempted to address both of these drawbacks in

previous work.

5.1 Summary of Accomplishyqents P
The major research accomfjiishrﬁents of tiﬁs thesis work include —

1'. The developmqu of a pmerghengive databqse of digitized mammograms. The
Rowan :dailta'base'in‘élu?d;\;s?(;;/ér %aa‘hlaminc;é;;ms.'obtained from multiple age and
ethnic groups and digitized using more than one type of X-ray 'digitizer.., This
databése is available on the Worlcil'Wide Web- (password prbtected for security
~and conﬁdentiql@ty) for researchers from oj[herhinsfritutions aﬁd_has the potential to
be aA valuabie )resource in tliis areé f"or future ﬁse.

2. The development of a completely automated technique for analyzing digitized

mammograms to predict the location and quantity of radiodense tissue. The

technique involves the following steps:
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.a. - Preprocessing (iigitized images for noise removal using a combination of
‘poii}t aﬁd statistical procéssing techniques;

b. 'B;east tissue segmentatién using fnbfphological i_mdgé enhancement and

* radial basis function artiﬁ;:ial neural ne'tworksl; |

c. Comﬁensétidn for X—ray'artifat:ts'of breast tissue compression that occurs
és part of .the ‘mammography procedure using Gaussian interpolation
‘models;

d. Segmentation of radiodense tissue using a novel local contrast estimation

algorithm,

3. VComparison of the results obtained by exercising the automated radiodensity
estimation algorithms (ieveloped in this thesis with fhe following previous |
techniqueé, usi'ng:44 digitized fnammdgrams from 2 separate‘databases: '
| a. The “Toronto” method, which is a previously estai)lishgd manual

‘segmentation technique that has bee;ﬁ used as the reference (validation)
* standard. |
b. The Constrained Neyman-Pearson qlgorithm, which is a semi-automated
technique developed earlier at R<').w‘an Univefsity.
c. The Spatiaily-Varying Constraineci Neﬂm-quson algorithm, which 1is
an automated téchnique developéd earlier at Rowan University.
4. Demonstration of the automated algorithm’s ability to sift through entire

databases of digitized mammograms to isolate radiodensity markers.
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The automated digital image processiﬁg aigorithms developed in this thesis have
demonstrated the ability to rapidly sift through digitized mammogram databases for
estimating radiodensity. Such algorithms are extremely ﬁseful in epidemiological étudies
when correlating other» behavioral and genéﬁc risk féctors with mammographic
radiodensity. Initial approaches towards arriVing at a completely automated solution led
to the investigation of image-texture methods for segmenting radiodense tissué.
However, the estimaﬁon Tesults- did ‘not appear promising. Eventually, a judicious
combination of point-pr&essing, statistic'al,‘ ﬁeﬁral and contrast enhancement techniques
proved to be thé optimal éolut@_{m fof thlS .fglf;tlidaia-zlné 'qdnénaihed optimization problem.

The algjorithm'introducé’d‘in‘ this theSis‘Wérl%ed well with mammograms that had
clearly defined radioden:‘ézé_' and» radioluqeﬁt'eregions. This was expected because of the
fundamental theory of connecti;/enéss:; that is the main concept behind the algorithm. The |
algorithm had difficulties in .tw‘0' aréas: ' |

1. With images that had radiolucent regions comparable to the X-ray region;
the tissue segmentation algorithm had difﬁculties establishing fhe correct
boundaries for the tissue. Many of thése images that the algorithm had
trouble with were the same imagés that the radiologist .had flagged — -
indicating that the radiologist also had low confidence in her estimate. |

2. There were several images that were similar in appearance and statistics.
Bebaﬁse of -fhe similar statistics of the maminograms, the algorithm
estimated the radiodensities. as similar quantities whereas the radiologist

estimated the densities as si‘gniﬁcantly' different.
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Regardless of the problems, the algorithm is highly correlated with radiodensity estimates
made by a radiologist — a correlation of 86% was obtained for 44 images analyzed using
the automated method and the “Toronto” method. The average difference in estimates

" between the two methods was 8.2%.

5.2 Recommendations for Futufe Work

The algorithin presented in this thesis provides an option for quantifying radiodense
tissue in digitized mammograms quickly, efficiently, and objectively. The results show
that the performance is very promising, but there are still impfovements that can be made
on the algorithm and the procedure." Two 'maip_ ‘é;eas f"_or improvement are: inter-
observer variability in breast deﬁsify estimatién and obtaining aécurafe heuristics of
breast compression.

The algorithm introduced in this thésié implemented many novel ideas to
minimize the problems that can occur because of inter-database differences.
Unfortunately, the algorithm in this thesis suffers from the same issue that all algorithms
" in this ﬁeld of wofk do; the accuracy of the results is based on a radiologist’s estimate.
Regardless of how well trained the radiologist is, these estimates are still subjective.
Therefore, two algorithms may be trained to different estimates of radiodensity, perform
well based on these estimates, and yet still be drastically different from each other.
Because ther§: is no way to judge which of the estimates was more correct, the
performance of the algorithm also becomes subjective by' nature. Creating a set of
canonical irriéges with. percentages that multiple radiologists agfeéd on would give this

algorithm, as well as all future work, a better validation set to train to. This would be the
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only way that a true approximation df.:’c‘hgng;formance can be made.
Because the function or the amount of tissue compression that occurred was not

known, the adjilstment for it, was ‘képt‘;v_ery. low in tlps thesis. Tt is still not known what

LIRS

role compression plays in changing the arr"101.1,nt’ ofl radiodense tissue. Even if
| compression does play Aat'r.olf':‘, thefe is s_ti,l,ljlwihcertainty whetﬁer or not a radiologist
actually adjusts for it. The reéﬁlté i—;1di:cate that there may not be much compfession
involved. An experimental analysis :of the compression of breast tissue would give
valuable information that would help in understanding the role of compress»ion. As with
the percentages, an inter-observer study on how each individual radiologist accounts for

compression would help create a model that all future algorithms can follow.
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