
Rowan University Rowan University

Rowan Digital Works Rowan Digital Works

Theses and Dissertations

12-31-2006

An architecture for intelligent health assessment enabled IEEE An architecture for intelligent health assessment enabled IEEE

1451 compliant smart sensors 1451 compliant smart sensors

Donald Albert Nickles
Rowan University

Follow this and additional works at: https://rdw.rowan.edu/etd

 Part of the Electrical and Computer Engineering Commons

Let us know how access to this document benefits you -
share your thoughts on our feedback form.

Recommended Citation Recommended Citation
Nickles, Donald Albert, "An architecture for intelligent health assessment enabled IEEE 1451 compliant
smart sensors" (2006). Theses and Dissertations. 917.
https://rdw.rowan.edu/etd/917

This Thesis is brought to you for free and open access by Rowan Digital Works. It has been accepted for inclusion
in Theses and Dissertations by an authorized administrator of Rowan Digital Works. For more information, please
contact LibraryTheses@rowan.edu.

https://rdw.rowan.edu/
https://rdw.rowan.edu/etd
https://rdw.rowan.edu/etd?utm_source=rdw.rowan.edu%2Fetd%2F917&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=rdw.rowan.edu%2Fetd%2F917&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.lib.rowan.edu/rdw-feedback?ref=https://rdw.rowan.edu/etd/917
https://www.lib.rowan.edu/rdw-feedback?ref=https://rdw.rowan.edu/etd/917
https://rdw.rowan.edu/etd/917?utm_source=rdw.rowan.edu%2Fetd%2F917&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:LibraryTheses@rowan.edu

An Architecture for Intelligent Health Assessment Enabled
IEEE 1451 Compliant Smart Sensors

by

Donald Albert Nickles

A Thesis Submitted to the

Graduate Faculty in Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE

Department: Electrical and Computer Engineering
Major: Engineering (Electrical Engineering)

Approved: Members of the Committee:

(o; ;te Colleg

Rowan University
Glassboro, New Jersey

C©2006

ABSTRACT

Donald A. Nickles
An Architecture for Intelligent Health Assessment Enabled

IEEE 1451 Compliant Smart Sensors
2006/07

Dr. John L. Schmalzel
Master of Science in Engineering (Electrical)

As systems become increasingly complex and costly, potential failure mechanisms and indicators

are numerous and difficult to identify, while the cost of loss is very expensive - human lives,

replacement units, and impacts to national security. In order to ensure the safety and long-term

reliability of vehicles, structures, and devices attention must be directed toward the assessment

and management of system health. System health is the key component that links data,

information, and knowledge to action. Integrated Systems Health Management (ISHM) doctrine

calls for comprehensive real-time health assessment and management of systems where the

distillation of raw data into information takes place within sensors and actuators. This thesis

develops novel field programmable health assessment capability for sensors and actuators in

ISHM. Health assessment and feature extraction algorithms are implemented on a sensor or

actuator through the Embedded Routine Manager (ERM) API. Algorithms are described using

Health Electronic Datasheets (HEDS) to provide more flexible run-time operation. Interfacing is

accomplished through IEEE Standard 1451 for Smart Sensors and Actuators, connecting ISHM

with the instrumentation network of the future. These key elements are validated using exemplar

algorithms to detect noise, spike, and flat-line events onboard the ISHM enabled Methane

Thruster Testbed Project (MTTP) at NASA Stennis Space Center in Mississippi.

ACKNOWLEDGEMENTS

First and foremost I acknowledge Dr. John Schmalzel for providing the opportunity to participate

in this unique and cutting edge research endeavor and for his unwavering support as my graduate

advisor. Special thanks are also in order for Dr. Shreekanth Mandayam and Dr. Anthony

Marchese for serving on my thesis committee.

Any of the work on this project would not have been possible without the support of the

National Aeronautics and Space Administration (NASA). I am grateful for the opportunity to

conduct the majority of the research and development contained in this thesis onsite at NASA's

John C. Stennis Space Center in Mississippi, working alongside accomplished engineers and

scientists. Special thanks to Dr. William St. Cyr, Dr. Ramona Travis, Dr. Fernando Figueroa,

Lester Langford, Chuck Thurman, and Randy Holland for providing access to facilities,

equipment, and support during my residence.

There are also many individuals on the home front who deserve acknowledgement for

fulfilling important, though less visible, roles. I acknowledge my mother for supporting me in

my decision to continue my education and for encouraging me by showing interest in my work.

I acknowledge my father for his guidance and direction that helps me to make the best decisions

when faced with difficult choices. I acknowledge my loving girlfriend, Rebecca Vanderslice, for

her love and support though I worked long hours and spent time far away from home. My

thanks also go to the rest of my family and friends that have provided encouragement, support,

and guidance throughout.

I also recognize my colleague Jon Morris, who has filled many shoes as friend, hurricane

Katrina survivor, fellow graduate student, and point of contact at Stennis Space Center. I give

my best wishes to Jon and my other comrades who also strove to complete their own graduate

studies alongside of me: Daniel, David, Hector, Hussein, Justin, Lucas, Mark, Nate, and Rob.

iii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS .. iii

LIST OF FIGURES .. vi

LIST OF TABLES... viii

CHAPTER 1: INTRODUCTION.......... ... 1

1.1 Integrated Systems Health Management ... 2
1.2 Survey of Alternative Health Management Approaches 4
1.3 Advantages of Integrated System Health Management... 9
1.4 Rocket Engine Test Stand (RETS) ISHM Development at NASA's John C. Stennis
Space C enter .. 10
1.5 ISHM Core Competency: Smart Networked Sensors................................. 14

1.5.1 Traditional Sensor Systems... 15
1.5.2 The Smart Sensor/Intelligent Sensor Advantage 15
1.5.3 IEEE Standard 1451: Standard for Smart Sensors and Actuators 17

1.6 Statement of the Problem... 20
1.7 Scope and Organization ... 21

CHAPTER 2: BACKGROUND .. 23

2.1 Prior Pertinent Technology ... 23
2.1.1 Integrated Vehicle Health Management 23
2.1.2 Smart Sensors... 26
2.1.3 Multipurpose Smart Sensor Development Platform...................................... 29

2.2 Core Technology Objectives.. 32
2.2.1 Health Assessment Event Detection Routines.. 32

2.2.1.1 Smoothing .. 34
2.2.1.2 Linear Periods .. 35
2.2.1.3 Curve Fitting ... 38
2.2.1.4 Recording Signal Maximum and Minimum....................................... 38
2.2.1.5 Generic Features - Mean and Standard Deviation ... 39
2.2.1.6 Noisy PID Routine... 39
2.2.1.7 Is Flat Routine... 40
2.2.1.8 FindSpike Routine .. 41

2.2.2 IEEE 1451 Smart Sensor Object Model 43
2.2.2.1 IEEE 1451.1 Block Abstract Class .. 46
2.2.2.2 IEEE 1451.1 Component Abstract Class 47
2.2.2.3 IEEE 1451.1 Service Abstract Class... 49
2.2.2.4 IEEE 1451.4 and Transducer Electronic Datasheets.. 49

CHAPTER 3: APPROACH ... 55

3.1 Health Routine Adaptation for Real-time Sensor Applications............ 55
3.1.1 Smoothing.. 57
3.1.2 Highpass Digital Filter... 59
3.1.3 Sliding Window Mean... 63

iv

3.1.4 Sliding Window Standard Deviation ... 65
3.1.5 First and Second Order Derivatives............................. 67
3.1.6 Discrete Fourier Transform.. 69
3.1.7 Sensor N oise Events 70
3.1.8 Sensor Spike and Flatline Events.. 72

3.2 Sensor Real-time Operating System and APIs 74
3.2.1 Health Electronic Datasheets (HEDS) .. 81

3.2.1.1 Application and Organization of HEDS 83
3.2.1.1.1 Basic HEDS 83
3.2.1.1.2 HEDS Routine Configuration Parameters .. 85
3.2.1.1.3 HEDS Intelligent Sensor Organization......................... 88

3.2.1.2 HEDS API and Network Messages ... 90
3.2.2 Embedded Routine Manager (ERM) 93

3.2.2.1 ERM Theory of Operation.................................. 96
3.2.2.2 ERM API .. 103

3.2.3 Network Firmware Update 110
3.2.3.1 Methods for Updating Firmware In Situ.. 110
3.2.3.2 Implementation and Interface .. 113

3.3 Intelligent Sensor 1451 Interface 114
3.3.1 1451.1 Publications............................ 115
3.3.2 IEEE 1451.1 Client Server Communications ... 132

CHAPTER 4: RESULTS ... 146

4.1 Interfacing with Network Messages and Software APIs 146
4.2 Evaluation of Form, Fit, and Function................................ 147

CHAPTER 5: CONCLUSIONS ... 154

5.1 Future Work: Improving Capability 154
5.2 Working Towards the Next Generation...................................... 155

REFERENCES... 157

Appendix A: PRETS MTTP Program PID... 163

Appendix B: GRC Noise Detection Routine 164

Appendix C: GRC IsSpike Routine.. 166

Appendix D: Noisy Signal Detection Real-time Algorithm................... 167

Appendix E: Spike/Flat-line Real-time Algorithm ... 168

v

LIST OF FIGURES

Figure 1.1: Overview of Integrated System Health Management showing critical components
and hierarchy as adapted from [3]. 2

Figure 1.2: IVHM information flow and processing diagram [12].................................... 6
Figure 1.3: OSA-CBM hierarchy and interconnectivity diagram [16]...................................... 7
Figure 1.4: OSA-CBM structural overview........................ ... 8
Figure 1.5: ISHM Technology Maturation Roadmap................................... 13
Figure 1.6: Fundamental comparison of Intelligent, Smart, and traditional sensors.................. 14
Figure 1.7: Smart Sensor component framework for IEEE Standard 1451................................ 18
Figure 2.1: Smart Sensor Development Platform; overall size: 2.77" x 2.86"................... 31
Figure 2.2: Top-level interaction for GRC event detection routines. 33
Figure 2.3: Graphical view of the GF_Smooth function. 35
Figure 2.4: Derivative SNR vs. frequency performance for several time deltas..................... 36
Figure 2.5: Noisy raw signal overlaid with extreme noise events in green and fine noise

events in red obtained from GRC [52]... 40
Figure 2.6: Compact view of 1451 application... 43
Figure 2.7: UML class diagram for the major 1451.1 Abstract Classes.................................. 45
Figure 2.8: The NCAP Block abstract class. 46
Figure 2.9: IEEE 1451 Component abstract class. .. 48
Figure 2.10: The IEEE 1451 Service Class. 49
Figure 2.11: Role of 1451.4 and TEDS in a Smart Sensor solution.. 50
Figure 2.12: Typical TEDS storage and mapping for Basic, TC, and Calibration templates..... 51
Figure 2.13: Typical TEDS storage and mapping for Basic, TC, and Calibration................... 52
Figure 2.14: 1451.4 Rev 0.9 TEDS Template for an accelerometer. 53
Figure 3.1: Component interactions in ISHM with health enabled Smart Sensors. 56
Figure 3.2: 10OdB SNR sensor data against GRC curve fit and moving average digital filter.... 59
Figure 3.3: Magnitude Response for a 4th order HPF with Butterworth transition. 60
Figure 3.4: HPF performance for MATLAB and Intelligent Sensor implementations 62
Figure 3.5: Real-time mean performance. 65
Figure 3.6: Real-time standard deviation performance. 67
Figure 3.7: Source SNR vs 1st Derivative SNR for 10, 50 and 100Hz sinusoids................... 68
Figure 3.8: 1Vpp sinusoid example with crest factor of 1.414...... 72
Figure 3.9: 1.414V impulse example with crest factor of 6.42. .. 73
Figure 3.10: Intelligent Sensor operating system diagram. 78
Figure 3.11: Possible state transitions for MTTP 82
Figure 3.12: The HEDS object definition and hierarchy... 89
Figure 3.13: Rabbit m em ory m apping................................. ... 94
Figure 3.14: ERM Node layout....................................... 97
Figure 3.15: ERM Routine Descriptor that stores key routine information............................ 98
Figure 3.16: Routine dependency based on priority and association 100
Figure 3.17: Example of a sliding window shared between two routines. 101
Figure 3.18: Example of a block window shared between two nodes................................ 102
Figure 3.19: Health analysis routine function declaration.. 108
Figure 3.20: Example health analysis routine for 64 point DFT with a full window............... 109
Figure 3.21: Smart Sensor firmware update process.. ... 112

vi

Figure 3.22:
Figure 3.23:
Figure 3.24:
Figure 3.25:
Figure 3.26:
Figure 3.27:
Figure 3.28:
Figure 3.29:
Figure 3.30:
Figure 3.31:
Figure 3.32:
Figure 3.33:
Figure 3.34:
Figure 3.35:
Figure 3.36:
Figure 3.37:
Figure 3.38:
Figure 3.39:
Figure 3.40:
Figure 3.41:
Figure 3.42:
Figure 3.43:
Figure 3.44:
Figure 3.45:
Figure 3.46:
Figure 3.47:
Figure 3.48:
Figure 3.49:
Figure 3.50:
Figure 3.51:
Figure 3.52:
Figure 3.53:
Figure 3.54:
Figure 3.55:
Figure 3.56:

Download manager main page...................................... 114
Download manager image upload screen............................... 114
The ISO/OSI protocol model. .. 116
Interface for Request NCAP Block Announcement message........................... 117
Interface response to an NCAP block announcement................................ 118
Interpretation of NCAP Block Announcement message.......................... . 119
NCA_ Block_GoActive publication and message structure............................. 121
Interface message and structure of sample frequency change publication. 122
Interface message and interpretation for NCAP Block_GoInactive publication. 123
Publication for norm al data. 124
Message structure for normal data publication. 126
Publication message format for normal data and health. 127
Health Alert publication for event routines.. 128
Message structure for health alert messages. ... 129
Future State Profile Transition Message 130
Structure of the future state change message. ... 130
Message for commanding an immediate state change 131
Immediate state transition structure. 131
Example of client/server and server return messages. 133
Interface for GoActive client-server communication... 137
Remote Procedure Call invoked by GoActive message and reply.................... 137
Interface message for Golnactive client-server communication....................... 138
GetBlockMajorState message with return message and arguments.................. 138
Message structure for GetBlockMajorState return message............................. 139
Member function for uploading TEDS to a Smart Sensor........................... 140
Message Mapping for the SET_TEDS operation.. 140
Reply message after TEDS have been uploaded.. 140
Message requesting TEDS from an Intelligent Sensor............. 141
Reply to GET_TEDS request... 141
Structure for GET_TEDS reply message... 142
Message for transmitting HEDS to a routine running in a Smart Sensor. 142
Structure for decoding the arguments of the SET_HEDS message..................... 143
Reply message after HEDS are sent and parsed by the Smart Sensor. 144
Message for requesting HEDS from an Intelligent Sensor. 144
Reply to request for HEDS Data.. 144

Figure 4.1: Dynamic C IDE with Intelligent Sensor in Debug Mode. 147
Figure 4.2: Thermocouple sweep using Fluke TC simulator from -200TC to 13700 C............. 148
Figure 4.3: Dual tone sinusoid signal produced by Intelligent Sensor as compared to a

MATLAB simulated equivalent with harmonics at 5Hz and 10Hz.................................... 149
Figure 4.4: DFT spectrum of dual tone sinusoid evaluated by the Intelligent Sensor

and verified w ith M A TLA B . .. 150
Figure 4.5: Sinusoid sweep to demonstrate noise event detection. 151
Figure 4.6: Crest Factor and Spike Event detection on 092806-13-06-35 VPV1170FB......... 152
Figure 4.7: Crest Factor and Spike Event detection on 0914-022D-6271 VPV1170FB.......... 153

vii

LIST OF TABLES

Table 1.1: Test Complex A & B specifications. 11
Table 1.2: E Complex capabilities chart. ... 12
Table 1.3: List of 1451 physical layers. These are used to define the connection between

NCAP and TIM, along with TIM specific TEDS and NCAP visible classes.................... 19
Table 2.1: Smart Sensor Capability Chart ... 31
Table 2.2: Valid values for the first byte of the Object ID. 44
Table 3.1: IEEE 1451-1999 Publication Content Codes for parametric data publications....... 124
Table 3.2: Types of physical parametric data supported by IEEE 1451.1............................. 125
Table 3.3: Table of suggested IEEE 1451 Operation ID assignment 134
Table 3.4: Client/Server Return Code description... 135
Table 3.5: Return Code enumerations for client-server return codes 136
Table 3.6: Valid execution modes................................... 136

V111iii

An Architecturefor Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

CHAPTER 1: INTRODUCTION

There is a rapid and observable acceleration in complexity in numerous modern engineering

systems. This may be readily seen in integrated circuits, such as the latest Intel Pentium 4

processor that contains 1.3 billion transistors or digital cameras that contain as many as 10

million picture elements and rival the performance of their professional film-based counterparts.

The same progression is also true for space vehicles, which--including launch, tracking, and

support systems--contain millions, if not billions, of elements. The motivation for the focus on

health assessment in Intelligent Sensors is in response to the need for an integrated approach to

managing increasingly complex systems. The long-term goal is to provide continuous assessment

of system state with accompanying advisory outputs suitable for automatic, real-time responses

as well as slower, human-in-the-loop decisions. Integrated Systems Health Management (ISHM)

offers further impetus for Intelligent Sensors by distributing sensor-related processing and health

assessment of sensor signals to the sensor domain. The approach of ISHM is to add sufficient

intelligence to all levels of the data acquisition and system control hierarchy to detect potentially

harmful deviation from the operational norm and empower the system to take appropriate action

to prevent catastrophic system failures. This need, coupled with significant advances in

technology over the last few years (reliable high-speed networks, radiation hardened

components, advanced microcontroller architectures, to name a few) provides the necessary

building blocks to localize health assessment at the individual sensing nodes and supply useful

data, information, and knowledge to system processes. Before addressing the design and

An Architecture for Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

development of an intelligent, health-enabled Smart Sensor architecture, it is important to first

review the objectives and architecture of ISHM and relevant technologies.

1.1 Integrated Systems Health Management

Successful ISHM requires smart sensors, smart processes, and smart subsystems that are fully

integrated [1, 2, 3]. ISHM may also retain some form of high-level reasoning to improve the

performance and functionality of the entire system by making effective use of the data,

information, and knowledge (DIaK) made available by the smart components. The topology of

that top level controller may include model-based reasoning, rule-based inference, statistical

analysis, and empirical or expert knowledge [4, 5, 6, 7, 8] Fig. 1.1 illustrates the ISHM

architecture proposed by Figueroa [3], which provides the motivation for the work within this

thesis. This ISHM model has the potential for high performance because it is specifically

designed to take advantage of the distributed computing potential of smart sensors, potentially

offloading ISHM related processing from higher layers. There are important cost and reliability

functions associated with moving a certain number of MIPS from a higher to a lower level of the

architecture, even if the lower layer may have significantly reduced computational bandwidth.

!ms

systems

nt Controllers

ors

Figure 1.1: Overview of Integrated System Health Management showing critical components
and hierarchy as adapted from [3].

An Architecture for Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

Suppose a non-ISHM hypothetical system requires n CPU cycles in order to convert all analog

transducer data into engineering values, and present the results to an operator in graphical and

numerical form. For a small system, this would be contained within a single computer, either a

general purpose machine (i.e., Intel based CPU), or possibly a data acquisition module with a

virtual instrument interface running on a workstation computer. Now add the most basic

elements of ISHM such as computing statistics, 2(f,) DFT spectra, and applying one or more

digital filters on each of the sensor feeds. In this case, the net complexity of each individual

sensor running these algorithms is only O(N) + O(N log N) + O(N). It is assumed that the

basic statistical functions (mean, variance, etc) have linear complexity, the DFT is computed

using a radix-2 FFT approximation, and the variable c denotes the order of the digital filter

polynomial. Thus, each individual sensor (assuming all sensors use the same configuration)

requires a fixed amount of computational power. (Note this is the ideal case, as there typically is

a mixture of low bandwidth and high bandwidth sensing nodes.) Nevertheless, the individual

computing need summed across all sensors adds a multiplier of m to the equation developed

above. Performing these operations in a modest real-time environment for even a dozen sensors

gives rise to a dominating data processing load. While the network capable smart sensor is much

less powerful than even a low-end desktop computer, it possesses enough horsepower to offload

the processing within its scope using its onboard microcontroller. This diverted energy can then

be invested in tools to merge those features, derive inferences, make decisions, and respond to

events.

A fundamental assertion of this work is that the sensors and actuators participating in

ISHM intercommunicate with other elements using IEEE Standard 1451 for A Smart Transducer

Interface for Sensors and Actuators [9]. For clarity, a "Smart Sensor" is defined to be a sensor

An Architecturefor Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

that conforms to elements of the IEEE 1451.X family of standards, and an "Intelligent Sensor" is

a Smart Sensor with added ISHM capabilities.

IEEE 1451 is unique in that it defines a unified and object-oriented model for

encapsulating commercial off the shelf (COTS) networked transducers and actuators. Objects

conforming to the standard may be utilized on different underlying networks or with different

types or classes of transducers by simply changing the respective hardware abstraction layer and

physical interface. These attributes make it easy to scale sensor networks and dramatically lower

maintenance costs associated with sensor maintenance, replacement, and deployment.

ISHM with Intelligent Sensors is necessary to achieve the most effective use of DIaK,

and as we will see in the next section, ISHM makes uses of lessons learned from other

established health management schemes to do this.

1.2 Survey of Alternative Health Management Approaches
Health Management is a recent phrase that is an extension to the more familiar Condition Based

Maintenance (CBM) or Reliability Centered Maintenance (RCM). In all cases, it expresses the

intent of improving On Condition Maintenance (OCM). However, the method by which ISHM

functions and provides useful services is novel. A few implementations of health management

systems currently in use include the US Navy's Integrated Bridge System (IBS) for missile

destroyers, NASA's Integrated Vehicle Health Management (IVHM) for spacecraft, and Open

System Architecture for Condition Based Maintenance (OSA-CBM) intended for a broad suite of

military, industrial, and aerospace systems. While all of these schemes present an approach to

system integration and health management, they were developed to support specific vehicles,

devices, or platforms. A brief overview of IBS, IVHM, and OSA-CBM is provided below.

An Architecture for Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

Integrated Bridge Systems integrate navigational, steering, and propulsion systems to

improve the efficiency and effectiveness of the bridge [10]. This includes everything from

automatically updating paperless charts, to detail information and control of the engine and

machinery rooms to ergonomic and user friendly touch screen displays, all interconnected over a

digital network. While this system provides a limited amount of health management, its primary

purpose is to integrate systems to provide better and more effective command and control. IBS

works in conjunction with Voyage Management System (VMS) and Steering Control Console

(SCC) to accomplish this. IBS is at a maturity level sufficient to allow deployment on Nimitz

class carriers (CVN-74) and Arleigh-Burke missile destroyers (DDG-51) in the US Naval Fleet.

Integrated Vehicle Health Management (IVHM) is jointly developed by NASA Ames

Research Center (ARC) and NASA Kennedy Space Center (KSC). IVHM has been used in a

variety of missions and programs, including Space Shuttle, Deep Space-1, X-33, X-34, and X-37

[11, 12]. IVHM seeks to minimize human in the loop interactions by making more operations

autonomous. IVHM makes use of Vehicle Management Software (VMS) to gather sensor data

and vehicle operating state. Livingstone [13] is used for decision making and diagnosis in

certain IVHM implementations. Both Livingstone and VMS run as separate processes within the

Vehicle Management Computer under VxWorks [12].

An Architecturefor Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

0·

0O

O

_______________________ > 7
Ground Station

Figure 1.2: IVHM information flow and processing diagram [12].

IVHM implements health management by distilling raw data into health summary information

accessible to Livingstone, that in turn makes decisions based on expert vehicle knowledge,

vehicle system models, and vehicle state information [11]. The architecture for formulating

health summary information consists of distributed data acquisition elements, and special high

density solid state health nodes that intercommunicate with sensors and other health nodes [11].

The sensors report data over a digital bus to the health nodes, which then distill it into

information that is communicated to Livingstone. This information may also be intercepted by

other health nodes. One advantage of the ISHM approach described in this thesis is that health-

related processing is distributed and can take place everywhere in the system instead of in

functionally separate units.

OSA-CBM is a recent integrated health management architecture, which has adopted an

open architecture concept. Open architecture is a systems engineering approach that aids the

integration and interchangeability of components from multifarious sources and contains

VMIS

Vehiclh

Vehicle Status

~iph;plp MnnOrrpmpnt r
~~'U"~ "'LUIUtl'lYC"' ~-Vlllt~U~I

L

An Architecture for Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

publicly available interface and compliance specifications. This approach promises work that is

nonproprietary with lowered access barriers to interested developers or users. This is evident in

the OSA-CBM consortium as membership includes major players from defense, aerospace,

industrial, and research organizations. OSA-CBM is still under active development [14, 15], and

as such represents the closest counterpart to ISHM. The hierarchical view of OSA-CBM is

presented in Fig. 1.3 as depicted by Thurston and Lebold [16].

Figure 1.3: OSA-CBM hierarchy and interconnectivity diagram [16].

The goal of OSA-CBM is to develop a hardware and software technology independent

architecture that specifies interfaces and transactions between objects in a condition based

maintenance system. The data model is object oriented, and conforms to UML specifications.

An Architecture for Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

#7 PRESENTATION XSL
1 i

O IHTTP

A -HTTP

/ XML

C 4 lTTP
B XML

M

SXMLMS-

h iLL

Presentation layer is the maninmachine
interface. May query all other layers.

Prognostics considerm health assenssent.
eniploymsimt scheddle. and models; reaaoiaer
that ale able to pivuict future health with
ceitaln"wlevels and erroi bounds.

Signal Processing
computation oil set

Data Acquisition-

proiides low-level
sor data.

onversion, formatting of

e
8 ^^^^^^^

Figure 1.4: OSA-CBM structural overview.

It is also important to note OSA-CBM accommodates distributed data acquisition architectures

such as that afforded by IEEE 1451. However, the primary differences between OSA-CBM and

ISHM lie in the application of the health assessment, monitor, signal processing, and network

communication schema. OSA-CBM uses CORBA as the common communication link; thus

every OSA-CBM element will have a CORBA interface. While this may facilitate integration

with some already existing elements, CORBA is notoriously inefficient in real-time operations.

In contrast, ISHM takes a simplified approach, and uses IEEE 1451 as the common message

service for all intelligent elements.

The Manufacturers and Information Management Open Systems Alliance (MIMOSA)

has developed a protocol for data exchange between asset management systems [17]. This

protocol is the Common Relational Information Schema (CRIS), which is essentially a relational

database that supports interoperable CBM technology systems within OSA-CBM. The

interaction between the levels of the hierarchy shown in Fig. 1.3, and the underlying structures

An Architecture for Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

are shown in Fig. 1.4, per the OSA-CBM Consortium's Milestone 4 Review [18]. This database

(left side of Fig. 1.4) is mapped to the operational behavior (right side of Fig. 1.4). The Common

Object Request Broker Alliance (CORBA) model is used as middleware in between the

functional levels, and provides a standardized interface to the underlying communication

infrastructure.

1.3 Advantages of Integrated System Health Management
Now that the predominant health management and system integration architectures have been

briefly discussed, it is important to ask what ISHM offers that is not currently available from

existing implementation of IBS, IVHM, or OSA-CBM. Part of the answer considers the

qualifications of the Stennis Space Center (SSC) ISHM development team partners and their

incorporation of the latest sensor technologies and integration tools. The SSC ISHM design and

development alliance includes autonomous systems expertise (PI, Figueroa) in the context of the

NASA SSC rocket engine test stands, combined with hardware experts from NASA KSC, event

detection algorithm experts from NASA Glenn Research Center (GRC), seasoned IVHM

veterans from NASA ARC, as well as academic teams from Southern Illinois University at

Carbondale (SIU), and the instrumentation and sensor expertise of Rowan University. These

strategic alliances give the SSC ISHM development effort a distinct and definite advantage over

the competition; many years of practical experience with health management, event detection,

and system development will help ISHM evolve to become the next generation of health

management. Another significant advantage is the efficient and streamlined ISHM architecture

(refer to Fig. 1.1) that incorporates the substantial benefits of Smart Sensors and Actuators to

actively participate in the health management process. Distributed and networked "smart" data

An Architecture for Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

acquisition is the future of instrumentation technology, and distributed "intelligent" instruments

enhanced with health assessment capability represent a critical milestone in the future of health

management.

1.4 Rocket Engine Test Stand (RETS) ISHM Development at NASA's John C. Stennis
Space Center

Current ISHM development is centered at NASA Stennis Space Center in Hancock County,

Mississippi. SSC has a very decorated history, beginning in 1961 as Mississippi Test Operations

(MTO). The establishment of MTO is a direct result of President John F. Kennedy's historic

commitment to sending man to the moon within a decade. The original mission of MTO was to

support the Apollo program as NASA's only national facility for rocket engine testing. On July

1st, 1965, MTO was renamed the Mississippi Test Facility (MTF), and just short of a year later in

April of 1966 the first Saturn V 1st- and 2nd-stages were successfully tested. The first stage is

powered by five F-l engines each capable of producing 1.5 million pounds of thrust using RP1-

LOX. The second stage rocket is powered by five J-2 engines' and is capable of producing over

one million pounds of thrust using LH2-LOX. This milestone led to the successful launch of

Apollo 11 on July 16th, 1969, only three years after the first engine test at MTF. MTF continued

supporting the NASA mission and in 1971 was designated the testing facility for the Space

Shuttle Main Engine (SSME). However, by this time the facility had grown to include NASA's

Earth Resources Laboratory, so the facility was renamed the National Space Technology

Laboratories (NSTL) in 1974 to reflect this expanded mission. Soon after, other offices

including the Naval Oceanographic Office (NOO) moved to NSTL. This part of NSTL history is

1 It is interesting to note that with President Bush's recommitment to a lunar return, an updated version of the
venerable J-2 engine, code named J-2X, is being actively considered for the new Crew Exploration and Cargo
Launch Vehicles (CEV, CaLV).

10

An Architecture for Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

commemorated by the first launch of the Space Shuttle Columbia (STS-1) on April 12th 1981. In

February of 1988, NSTL celebrated the 1 00 0th SSME test, and soon after in May the NSTL was

renamed John C. Stennis Space Center by Executive Order of Ronald Reagan to honor long-time

Mississippi Senator John C. Stennis [19]. At this time there are two dedicated test facilities for

testing SSME (Al, A2), as well as the original test facility (Bl, B2) from the Apollo program.

Over the next decade, additional test facilities were constructed to test components (turbopumps,

SSME blocks, igniters, etc) for the SSME and other emerging engine technologies. Current test

programs include SSME flight certification, flight certification for the expendable RS-68 used in

Boeing's Delta Launch System, and development test programs including hybrid components

and the Integrated Powerhead Demonstrator (IPD).

Stennis Space Center is a unique facility that performs all testing and flight certification

for engines used in manned space flight, as well as providing services to private industry.

Currently there are two complexes that support testing of large scale engines and assemblies,

denoted as Rocket Engine Test Stand (RETS) A and RETS B. Their capabilities are listed in

Table 1.1. Each RETS contain thousands of sensing nodes, which measure temperatures,

pressures, strains, gas spectrophotometry, forces, vibration, acoustic emissions, and also records

video of both the test articles and the RETS infrastructure.

Table 1.1: Test Complex A & B specifications.
Designation Thrust Dynamic Loading Cooling Oxidizer Propellant Features
Al 1.5M-lb 1.1M-lb Vert / 700k-lb Horiz 220k-gal/min LOX LH2 Gimbal
A2 1.5M-lb 1.1M-lb Vert / 700k-lb Horiz 220k-gal/min LOX LH2 Diffuser
B1 13M-lb 11 M-lb Vert / 6M-lb Horiz 330k-gal/min LOX LH2/JP Reconfigurable
B2 13M-lb 11M-lb Vert / 6M-lb Horiz 330k-gal/min LOX LH2/JP Reconfigurable

Currently both positions of RETS A are used in SSME flight certification. During a test of an

SSME on Al, the engine runs for a full 8 minutes and 40 seconds - the same run profile required

for the Space Shuttle to reach low Earth orbit. Extra propellant is supplied to the Test Complex

An Architecture for Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

during this event to allow a full uninterrupted bum. The engine is capable of 330,0001bs of

thrust in atmospheric conditions. Test Stand B is the largest of the RETS, standing over 350ft

tall and having the highest load capacity. B2 is currently occupied by the RS-68 engine test

program. The RS-68 uses LH2 for fuel and LOX for oxidizer, similar to the SSME, but with a

much greater rated output of 600,0001bs. Besides the heavy-duty, earth-shaking, rain-making

engines in RETS A and B, there is also the RETS E Complex that houses several bays for testing

hybrid engines and components. The capabilities of RETS E are provided in Table 1.2.

Table 1.2: E Complex capabilities chart.
Cell Thrust Angle LOX (gal @ psig) LH2 (gal @ psig) LN2 (gal @ psig) GH2 (cu. ft @ psig) GN2 (cu. ft @ psig) He (cu. ft @ psig)
1-1 750k-lb Horizontal 48,240 @ 165- 28k 75,653 @33-8.5k 28,000 @ 165 1,875 @ 15k 2,750 @ 4.5k - 15k 1,515 @ 4.5k
1-2 60k-lb Horizontal +100 48,240 @ 165- 28k 75,653 @ 33 - 8.5k 28,000 @ 165 1,875 @ 15k 2,750 @ 4.5k - 15k 1,515 @ 4.5k
1-3 60k-Ib Horizontal +100 48,240 @ 165- 28k 75,653 @33-8.5k 28,000 @ 165 1,875 @ 15k 2,750 @ 4.5k - 15k 1,515 @ 4.5k

RP-1 (gal @ psig) H20 (gal @ psig) GOX (gal @ psig)
2-1 100k-lb Horizontal +100 13.500 @ 150-9.3k 19,500 @ 400 - 4k 3,490 @ 1.8k-9k 1,500 @ 6.6k 3,122 @ 5.6k - 15k 145 @ 6k 1,375 @ 4.5k

JP (gal @ psig) H202 (gal @ psig) Dl H20 (gal @ psig)
3-1 60k-lb Horizontal 700 @ 60 - 2k 1500 @ 3.5k 2,500 @ 3.5k - 4.5k 2,800 @ ATM 151.9 @ 6k
3-2 25k-lb Vertical 700 @ 60 - 2k 1500 @ 3.5k 2,500 @ 3.5k - 4.5k 2,800 @ ATM 151.9 @ 6k

It is apparent that RETS E is very versatile and is able to handle a large amount of fuels,

oxidizers, and thrust capacities with infrastructure for testing high-pressure turbo pumps,

injectors, igniters, etc. Another reason the E Complex is important is that its role for propulsion

development is most compatible with ISHM development. In conjunction with the Data

Acquisition and Control Systems (DACS) Laboratory, new systems such as ISHM may be

connected in tandem with RETS E instrumentation and control systems to perform validation,

verification, and ultimately gain confidence before a site wide or RETS wide deployment. The

Stennis Space Center test suite does not end here, however. For small engines and boosters,

there is the Portable Rocket Engine Test Stand (PRETS), which is a trailer mounted RETS that

can test horizontally mounted engines with up to 1,0001bs thrust output. The PRETS is ideal for

demonstration of engines or instrumentation/control systems, as well as small device trials.

Rocket engine testing is a large responsibility of SSC, and there is an obligation to

provide theses services in a cost effective and efficient manner. As SSC looks to the future,

12

An Architecturefor Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

there is a need to enhance reliability, provide high-quality data with quicker turn around between

tests, and to integrate some measures of autonomy into the test environment to minimize loss or

waste in the event of a failed test due to infrastructure or test article fault. ISHM is a viable

answer to this need, and will help deliver the Test Stand of the Future at SSC. The proposed

technology maturation cycle is given in Fig. 1.5, and shows the eventual extension beyond the

test facilities and into launch vehicles, exploration vehicles, and the International Space Station.

Components

Figure 1.5: ISHM Technology Maturation Roadmap.

The starting point for ISHM is the PRETS. The reasons for starting on PRETS include

utilization of a platform that is not currently part of a major test operation, support of rapid

development due to its relative simplicity (limited number of sensors, processes, subsystems),

and mobility for offsite demonstrations. Simultaneous with PRETS integration is the

implementation of an ISHM on RETS E3 operating in shadow mode to fulfill validation and

verification requirements. Operation on the other RETS can be simulated with the wealth of

historical data that is available. A piping and instrumentation diagram (PID) of the PRETS is

included in Appendix A for reference.

An Architecture for Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

1.5 ISHM Core Competency: Smart Networked Sensors

A key opportunity for a state-of-the-art ISHM is the utilization of Smart Sensors. Smart Sensors

differ from traditional legacy sensors in that they are sensors that are combined with local data

acquisition and adhere to some variant of the IEEE 1451.X standard family. A Smart Sensor

contains an embedded microcontroller and communicates over a digital network. The Smart

Sensors discussed in this thesis conform to the IEEE 1451.1 Standard for Smart Sensors and

Actuators. New opportunities arise when local computing power is available at the sensor.

Some have proposed to use a generic smart sensor's computing power to do anything from

multi-sensor data fusion [20] to ubiquitous computing and ambient intelligence [8]. In this work,

the additional computing capacity is used to provide health-enabled functions to allow the smart

sensor to perform as an intelligent sensor in an ISHM architecture. Fig. 1.6 shows the functional

comparison between Intelligent Sensors, Smart Sensors and their traditional counterparts.

Reference System State
Power Sync (t, V,...) (Run, Test,...)

Figure 1.6: Fundamental comparison ot Intelligent, Smart, and traditional sensors.

The most important difference between Smart Sensors and traditional sensor configurations is in

the key operations of data acquisition, data conversion, and communications. Intelligent Sensors

An Architecture for Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

are Smart Sensors with information generation capability, providing value-added descriptors

about the measured signal(s). The discussion will begin with the more common traditional

sensor, and then turn towards the Smart Sensor/Intelligent Sensor alternatives.

1.5.1 Traditional Sensor Systems

As shown in Fig. 1.6, traditional sensors rely on centralized voltage and time references.

Multiple channels are captured and held simultaneously by a sample-and-hold circuit, and then

converted to digital code values using an analog-to-digital converter. Infrastructure requirements

usually require that this equipment is housed at some central location that is not near any one

particular sensor location. Long runs of analog signals require careful conditioning and a large

amount of shielded cabling. This corresponds to an expensive increase in the analog

amplification and filtering requirements to extract minute sensor signals. Time and voltage

references are located at this central facility, and provide the timestamps and references for all

measurement channels. The sensing configuration is static, as the addition or modification of

sensors requires available channels in the processing facility and independent wire runs from the

facility to the terminating location in the field. In addition, other features such as sampling rate

and post processing options are limited to the capabilities of the central facility. The goal of

Smart Sensor technology is to turn this static instrumentation environment dynamic.

1.5.2 The Smart Sensor/Intelligent Sensor Advantage

The Smart Sensor is an entirely distributed approach to data acquisition and measurement, where

each Smart Sensor node contains the ability to measure one or more attached transducers,

convert the reading into a digital value, and transmit that digital value across a digital bus or

network. On one hand the Smart Sensor solves an entire set of problems existing with the

traditional sensor systems. Cabling is reduced to a minimum, and using a combined power and

15

An Architecturefor Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

signal technology, such as power-over-Ethernet (POE), each sensor merely needs a loop of Cat5

cabling to be fully operational. Faults in cabling due to environmental damage are easier to

detect on the digital network, and network switches may be strategically placed to minimize the

amount of wiring, while providing redundant connectivity. Furthermore, the Smart Sensor

Standard is object oriented; allowing the sensor network to be dynamic as new sensing nodes can

be provisioned very easily. The Smart Sensor Standard allows for multiple transducers per

sensor node, and there is no requirement that each transducer be of the same type. This can

allow redundant physical connections with minimal infrastructure duplication. In order to

provide the basic instrumentation functions of conversion and time alignment, each Smart Sensor

element has its own highly precise measurement and time reference. Smart Sensors are

manufactured using inexpensive off-the-shelf components that only result in an incremental

increase in costs. A few examples are high speed and high accuracy data converters [21], low

drift clock oscillators [22], and voltage references with variation on the order of 2ppm [23]. The

only complication is in the out of box calibration of the voltage references and clock oscillators.

Even though the performance characteristics of the individual components are outstanding, a

problem arises with the overall component variability among a distributed acquisition system.

Standards such as IEEE 1588 [24] address the timing issue, and implementations reportedly have

achieved nanosecond accuracy between nodes, with hardware implementations available from

Intel [25]. Converter reference, onboard temperature sensor calibration, and ADC

characterization take place during initial calibration and commissioning, and the Smart Sensor

checks periodically to determine if the calibration needs to be further adjusted and to ensure the

analog components are within specification. Smart Sensors can be interfaced using a variety of

network standards and architectures including Ethernet, CAN, RS-485, RS-422, 802.11a,b,g,

16

An Architecturefor Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

Bluetooth, and more. Proper choice of network architecture can minimize wiring requirements,

increase reliability, and support a large array of Smart Sensors with high data throughput.

Intelligent Sensors embody Smart Sensor functionality, with the added function task of

performing real-time health assessment.

1.5.3 IEEE Standard 1451: Standard for Smart Sensors and Actuators
The IEEE Instrumentation and Measurement Society has taken the initiative to develop standards

describing key components of Smart Sensor technology. To date, the IEEE 1451.X family of

standards is the only published standard for interfacing Smart Sensors and Smart Actuators. This

represents an important advance over previous uses of the term smart, which simply indicated

the presence of a microcontroller and the mapping of analog transducers and actuators to a

digital communications bus. The IEEE 1451.X family of standards describes a Smart Sensor or

Actuator as a device that consists of a number of key elements. Those elements are a transducer

interface module (TIM), network capable application processor (NCAP), transducer independent

interface (TII), and transducer electronic datasheets (TEDS). Fig. 1.7 graphically shows the

relationship between these elements.

17

An Architecturefor Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

NCAP

IEEE
1451.1 Z IEEE

Etheme e 2... n = 1451.J2-6)
Sta ..- Clt C.lner: Port .

K r n r phy.ics]
Bst tsndard

Publisher U WT45Lc
Purt

IL IL\\\\\\\\\\
" """"""""`„ TIM\

X

N

-C

a
30

'ff
(to

Q.t

oD

5

Figure 1.7: Smart Sensor component framework for IEEE Standard 1451.

The NCAP is the component that connects an object to a 1451 compliant network. The

object may be a 1451 compliant sensor (consisting of one or more TIMS), actuator, data

archiving tool, or model-based reasoning tool. The boundary between object and NCAP can be

software or hardware, depending on what is most suitable for the application. In the case of a

hardware boundary it is the TII that connects NCAP to TIM. IEEE 1451.2 thru 1451.6 provides

physical standards for establishing and interfacing the TII. See Table 1.1 for a listing and

description of these standards. Currently there is support for TII using serial peripheral interface

(SPI), CANopen, Bluetooth, and Zigbee. There is also support for a mixed mode interface,

where the TII contains a mixed mode interface (MMI) supporting both digital and analog signals.

The MMI provides for TEDS, connected via a digital bus, and measurement and control interface

over analog channels.

The TIM contains the necessary instrumentation elements to process and convert raw

analog transducer signals. This includes amplification, filtering, digitization, and linearization.

In a functional sense, the TIM embodies the legacy sensor. Any given Smart Sensor may contain

I.

An Architecturefor Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

up to 255 TIMs. The TIM also contains the TEDS, which contain basic TIM information

(version, manufacturer, revision, etc) and advanced TIM information for the data acquisition and

interpretation of TIM output. As such, the TIM is self describing. Each physical standard also

establishes applicable and relevant TEDS. There are TIM-specific TEDS that include minimum

and maximum sensing capability, accuracy, and the calibration curve for converting to

engineering units. The NCAP also has a TEDS block that contains information about the sensor

hardware, its location, and manufacturing information. There are extensions to TEDS that allow

users to add relevant information that is not part of an existing TEDS template. Chapter 2

discusses TEDS further. Additional details on the TEDS data structure definition and example

TEDS can be found in [26] and [27].

Table 1.3: List of 1451 physical layers. These are used to define the connection between
NCAP and TIM, along with TIM specific TEDS and NCAP visible classes.

Phys Std Description
1451.2 TIM<--4NCAP + TEDS for

enhanced SPI w/ revision for UART
1451.3 Multidrop TIM<--4NCAP Network +

TEDS
1451.4 TIM<--4NCAP interface with analog

and digital modalities for current
loops, microphones,
thermocouples, etc.

1451.5 Wireless TIM--4NCAP using
802.11, 802.15.1, or 802.15.4

1451.6 TIMl<--NCAP using open source
CAN

IEEE 1451.1 [9] is the portion of the standard that defines the object model for the Smart Sensor.

As such, it is minimally required to have an object (sensor, actuator, etc) participate on an IEEE

1451 sensor network. IEEE 1451.2 [28] specifies the details of interfacing TIMS over a TII that

consists of SPI or UART. IEEE 1451.3 [29] defines TIM/NCAP interaction over a TII that is a

multidrop serial (RS-422) interface. IEEE 1451.4 [30] defines a mixed mode interface, as

mentioned earlier, which is ideal for thermocouples, microphones, and other voltage or current

loop devices and represents the simplest and least costly way to add a simplified version of IEEE

19

An Architecture for Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

1451 functionality to a sensor. However, capabilities of such 1451.4 sensors are limited and

mean they are unlikely to possess sufficient computing power to meaningfully contribute to the

ISHM architecture described here. Wireless TII is covered in IEEE 1451.5 [31], and contains

specifications for popular wireless networks such as wireless Ethernet, Bluetooth, and Zigbee.

IEEE 1451.6 [32] is the physical standard that supports a TII consisting of an openCAN bus.

1.6 Statement of the Problem
The next generation of ISHM will be greatly enhanced through the use of Smart Sensors in order

to create Intelligent Sensors. Utilizing Intelligent Sensors minimizes the computational

bandwidth at central nodes and increases reliability across the system due to their distributed

nature. Intelligent Sensors, loaded with health assessment capability, increase the benefit

substantially by determining measurement confidence and signal behavior characteristics at the

earliest possible point in the instrumentation and measurement process. This translates to

improved real-time performance and reliability.

This thesis presents a method for embedding and dynamically updating feature extraction

routines and health assessment algorithms (herein collectively referred to as health assessment

routines) used in health evaluation aboard a networked IEEE 1451 Smart Sensor. Some of the

routines used in this work are adapted from previous researchers, but all routines are

implemented in novel ways as part of embedded sensor-level health assessment to support

ISHM's doctrine for pervasive intelligent elements. The ultimate goal of this work is to develop

a method to dynamically distribute health assessment capabilities into Smart Sensors and Smart

Actuators. Additionally, this groundwork can be evidence in support of an extension to IEEE

1451 setting baseline provisions for future intelligent elements.

20

An Architecturefor Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

The specific aims are to:

* Survey current implementations of sensor-level health management.

* Survey tools and techniques for implementing a complex real-time embedded

microcontroller based, multi-channel measurement instrument.

* Develop an IEEE 1451 compliant Smart Sensor.

* Enhance the Smart Sensor with dynamic health assessment algorithms that operate on

signals in real-time.

* Provide a machine readable health electronic data sheet (HEDS) that specifies algorithm

parameters including limits, thresholds, reporting frequency, and interpretation of results.

* Provide capability for changing HEDS based on system operating state or based on the

occurrence of events.

* Validate the Intelligent Sensor against canonical data to assess computational accuracy

and document the performance of the Intelligent Sensor.

1.7 Scope and Organization
In order to develop a viable method for embedding health assessment routines into IEEE 1451

Smart Sensors, this thesis includes work on the following:

* Identification of RETS real-time requirements that an Intelligent Sensor running under

ISHM must support.

* Develop an NCAP object on the sensor that communicates via Ethernet (IEEE Standard

802.3) to other NCAPs. Use Openl451 specifications [33] as guidelines.

21

An Architecturefor Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

* Develop APIs that allow firmware developers to interface health assessment routines to

Intelligent Sensors with minimal effort. This includes unified methods for handling data

streams, memory, time slices, and other operating system resources.

* Define Health Electronic Data Sheets (HEDS) that identify and characterize the

operational details of health assessment routines running on an Intelligent Sensor.

* Development of remote download tools to update Smart Sensor firmware over the

network.

The second chapter explores pertinent background, providing in-depth discussion of

previous work with Smart Sensors, anomaly detection algorithms, and pertinent feature

extraction routines. The third chapter details the approaches taken to meet the Intelligent Sensor

development objectives. The fourth chapter is dedicated to the benchmarking and performance

results of the completed intelligent sensor. Finally, the fifth chapter discusses the outcomes of

this research, draws conclusions, and suggests areas of future work.

22

An Architecturefor Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

CHAPTER 2: BACKGROUND

This chapter begins by discussing prior technology that is pertinent to this work. Those topics

include the role of sensors, actuators, and health nodes in IVHM, current development with IEEE

1451-compliant Smart Sensors, and a detailed review of the multipurpose Intelligent Sensor

developed at Rowan University. The second part of the chapter discusses technology and

techniques that have been researched and are implemented as part of this work, pursuant to the

problem statement of Section 1.6. Specifically, this includes Smart Sensor implementation,

Intelligent Sensor distributed health assessment routines, real-time embedded system

performance, and Openl451 compatibility.

2.1 Prior Pertinent Technology
This section reviews in detail the three most important premises of this work. The first is the

substantial contributions of IVHM, with a quick reflection on the necessity of health

management. The next section discusses current advances in Smart Sensor technology. The first

clause of the standard was published in 1997, and even though today few instruments are

equipped with Smart Sensor connection points, there have been critical advances in the

development and deployment of Smart Sensors. The final subsection then focuses on the

multipurpose Intelligent Sensor development efforts at Rowan University in support of ISHM.

2.1.1 Integrated Vehicle Health Management
The most primitive method of health management is scenario planning. This type of health

management is typified by the response to the Apollo XIII in-flight accident on April 13 th, 1970.

The events leading up to the flight accident were intermittent anomalous sensor readings, along

23

An Architecturefor Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

with unexplained variations in temperatures, pressures, and voltage levels triggered when the

cryogenic circulation fans were activated [34]. Afterward, the reconstructed chain of events

pointed to faulty valve electrical wiring that caused the #2 oxygen tank to explode. Without

vigilant and predictive health management, anomalous situations had to progress until a

component or system failure took place. Then, when the failure occurred, the only response was

to run scenarios on a test bed in an attempt to determine likely causes and ways to recover from

the failure. While the crew of Apollo 11 were able to bring the situation under control and return

home, this method of manual diagnosis and recovery is insufficient for applications where

systems are located at such distances that there are considerable communication delays, involve

events that occur faster than humans can possibly respond to, or involve complex predictions of

potentially destructive or seemingly unrelated trends occurring over long periods. The difficulty

of trending is signified by an SSC test operator monitoring a routine oxidizer tank filling process,

but given only his or her knowledge of the normal response, is unable to identify a subtle trend in

the decay of a valve's response over a period of many months.

The Integrated Vehicle Health Management (IVHM) approach of the 90's had the goal of

reducing-or even eliminating-manual screening of post-flight data to determine maintenance

schedules. The first iteration of a Shuttle IVHM system was flown on STS-95 in October of

1998, which coincidentally also included the studies of space health effects on Senator John

Glenn, who returned to space as the oldest astronaut. IVHM program implementations also

include Thermal Expert System (TEXSYS) [35], Ground Processing Scheduling System (GPSS)

[36], and Remote Agent Experiment (RAX), which flew onboard Deep Space-1. RAX is the

most recent IVHM experiment; using Livingstone as the inference engine to provide among

24

An Architecturefor Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

other capabilities, an autonomous navigation and mission operations package known as AutoNav

for Deep Space-1 [37].

The IVHM effort for the X-34 is of special interest. The X-34 was intended to be a

pilotless aircraft, although it was never tested beyond towed or captive flight tests. It made use

of IVHM technology and was loaded with diagnostic algorithms to detect component

degradation and system level health monitoring. A highlight of this system is the capability for

an operator to have access to high-level health information and inferences, along with the raw

sensor data and justification for those inferences directly from the diagnostic algorithms [38].

To date very limited work has been done with Smart Sensors as a major component of

IVHM, although vehicle impact IVHM has suggested the use of a non-IEEE 1451 Smart Sensor

[39] that has onboard networking, distributed data acquisition, and signal processing capabilities.

These developments are part of a concept demonstrator program between NASA and the

Australian Commonwealth Scientific and Industrial Research Organisation (CSIRO) for the

NASA Robust Aerospace Vehicle Program (RAV). The specific goal of the concept

demonstrator is a system to detect damage and approximate collision energy to a vehicle's skin

from impact by space debris. This is an interesting application, as it consists of an array of

sensors numbering in the thousands, distributed processing, and system intelligence. The

blueprint for in-flight IVHM consists of low-weight and low-power sensors, in a matrix of

distributed processing Smart Sensors interconnected with a digital bus providing regenerative,

auto calibration, and cross-check of data [ll]. The distributed data processing is to occur in real-

time. Special health nodes have software to perform trending and fault prediction. Based on the

results of the trending and fault prediction analysis, health nodes are also responsible for fault

isolation and adaptive mission planning/scheduling. This model differs significantly from that

25

An Architecture for Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

proposed in ISHM. The principal difference is that ISHM with Intelligent Sensors establishes

the health management doctrine in every node in the system, whereas IVHM only provides select

nodes to perform health analysis. Another significant difference is in the ability of ISHM to

adapt health management models (at the system, process, and sensor/actuator level) to system

state, a capability that is not part of IVHM, which operates on the same model from launch to

landing [12]. In IVHM, the diagnostic algorithms embedded in the health nodes provide fault

isolation, health prognostics, pattern recognition tools, and sensor validation capabilities. Nodes

also contain a model linked to the Livingstone reasoning engine. Self healing and self

calibration are addressed through installation of sensors that contain multiple sensing transducers

or parametric sensing capability. The fabric for sensor communications uses either Fiber Data

Distributed Interface (FDDI) or MIL-STD 1773.

Although each of the IVHM applications described is different, the primary role of

sensors in IVHM is typically that of a traditional sensor. Some of the later developments show

progress towards sensors that resemble Smart Sensors, though not necessarily aware or

compliant to the IEEE 1451 standard. Functionality resembling Intelligent Sensors is located in

nodes separate from sensing/actuating functions and are fewer in number. The approach for

ISHM based on Intelligent Sensors, which is the focus of this work, improves upon the existing

technology by integrating the capabilities of the IVHM health node into the Smart Sensor and

Smart Actuator, providing localized health management that contributes to system-wide health

management.

2.1.2 Smart Sensors

Conventionally, the modifier smart is used to describe any device that contains an embedded

microcontroller. For example, some dishwashers have features called smartwash where sensors

26

An Architecturefor Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

are used to determine the level of soil on dishes and apply the optimum wash cycle [40, 41].

Smart Cards contain the capacity to store, change, and present personal information in a small

credit card form factor. Automobile airbags that adjust their deployment based on vehicle speed,

and road intersections that adjust signal behavior based on traffic patterns are examples of smart

systems. In contrast, this work tightens the definition of a Smart Sensor or Smart Actuator to be

those devices that comply with the IEEE 1451.X Smart Sensor standards. The goal of IEEE

1451.X is to be implementation neutral, but at the same time provide a framework for transducer

modules that can be easily interconnected and provide an automatic identification and self

description capability for smart elements communicating over a network.

Smart Sensors are emerging in the market place. National Instruments has several

product lines of IEEE 1451 compliant Smart Sensors that interface with the LabView

environment as virtual instruments [42]. Endevco [43] also has a number of Smart Sensor

products. The latest developments from Honeywell include a line of equipment health monitors

for detecting mechanical wear, fluid leaks, angle drift, fluid flow, and temperature change [44].

This product line is different in that these devices are intended to be installed as after market

devices (as opposed to part of the standard installed instrumentation base) that evaluates a

specific steady state health parameter. Sensitivity is adjusted manually at the unit, and a single

digital channel is required for interfacing. In addition, independent research groups [45, 46] are

developing Smart Sensor technology, which offer further insights into the flexibility and

adaptability of IEEE 1451. Most of these efforts focus on IEEE 1451.4 TII/TIM interfaces due

to their relative simplicity and pervasiveness in the marketplace, though other interesting

instrumentation projects have been successfully accomplished with the other physical standards

[48]. These developments all represent steps forward for Smart Sensors, however the existing

27

An Architecturefor Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

product suite do not meet the needs of an Intelligent Sensor-i.e., a health enabled Smart Sensor

to support ISHM.

While there are significant efforts at creating and establishing a market base for Smart

Sensors products, there is also a move to establish Smart Sensor networks in unique application

areas. KDNet is in the process of developing the Telemetrics Testbed in Busan City, Korea. The

Telemetrics Testbed [47] applies IEEE 1451 for monitoring and control of national infrastructure

and surveillance applications. Highlights include real-time sensor systems that interact with

pipelines, assess environmental pollution, and monitor structural integrity. The network is

unique in that it is a city-wide WAN that supports many diverse sensing and actuating nodes,

over both wired and wireless links. The network is centered around IEEE 1451.1, 1451.3, and

1451.5.

Yet another unique application is attributed to Engineering Development Corporation of

Columbia, Maryland, who is developing Smart Sensors to evaluate oil casing health through

miles of piping drilled into the ground. Their solution is based on IEEE 1451.2, where the

individual sensors are inline and connected in series with the cabling, reporting the health of the

casing as it penetrates the Earth.

The US Department of Homeland Security, in conjunction with the National Oceanic and

Atmospheric Administration (NOAA), the Department of Defense (DoD), and Oak Ridge

National Laboratory (ORNL) are in the process of testing an IEEE 1451 compliant sensor

network at Fort Bragg, North Carolina [49]. The network contains sensor nodes that detect

chemical, biological, radiological, nuclear, and explosive (CBRNE) threats. Within the near

future it is likely that this, or a network similar to it, will be deployed on a national scale.

28

An Architecture for Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

With all of this development effort, IEEE 1451 will soon have enough installed base to be

recognized as a major player in instrumentation and measurement circles worldwide. In concert

with this effort, a multipurpose Smart Sensor development platform has been developed at

Rowan University. The purpose of this development platform is to sustain the development of

Intelligent Sensors in support of the Stennis Space Center vision for ISHM.

2.1.3 Multipurpose Smart Sensor Development Platform

The development goals for the Smart Sensor development efforts at Rowan University are to

create a device that contains the hardware necessary to support an IEEE 1451.1 interface, time

synchronization, and measurement acquisition in a variety of configurations, and to incorporate

components of health assessment in support of ISHM. That is, the first part of the effort seeks to

develop a Smart Sensor; the second part is to develop an Intelligent Sensor. As such, it is

possible for both technologies to mature in parallel.

The Smart Sensor development platform features a Rabbit 3000 main microcontroller

running at 45MHz, and a secondary 8051F300 microprocessor running at 4MHz. The main CPU

contains 512kB of parallel FLASH, 512kB of program memory, 256kB of battery-backed data

RAM, and 8MB of serial FLASH. The RAM backup battery is estimated to last 30 years. The

main CPU is interfaced to a Standard Micro-Systems Corporation (SMSC) Ethernet

semiconductor with MAC and integrated PHY, supporting both Ethernet 10OBaseT and 100BaseT

over twisted pairs. Initial programming of the main CPU is accomplished through an onboard

JTAG interface. With appropriate firmware, subsequent programming may be performed over

the Ethernet network. The Smart Sensor is also compatible with IEEE 802.11af power over

Ethernet (PoE) [50]. The use of PoE avoids additional wiring for power to the Smart Sensor.

The secondary CPU has 16kB of memory, and is programmable via local connection to the

29

An Architecture for Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

onboard Silicon Labs C2I interface or through the main CPU. The main CPU is also connected

to the secondary CPU via serial peripheral interface (SPI).

The Smart Sensor core contains a versatile analog acquisition system based on the

Analog Devices AD7794 Sigma-Delta analog to digital converter (ADC) [21]. The ADC can

sample at speeds up to 470Hz, with a maximum effective resolution of 23bits. The analog front

end consists of an input buffer with input range of GND+100OmV to AVDD-100OmV, and is most

often used for devices such as strain gauges, thermocouples, or resistive temperature detectors to

avoid loading the transducer. Alternatively, the input buffer may be bypassed to achieve another

60mV in the upper and lower range; however, this increased range is obtained at the expense of

adding a dynamic load to the circuit. Internal gains of 1 thru 128, mod 2 are software

configurable. The gain is achieved using an instrumentation amp which has excellent noise and

linearity performance 2. A precision 1.17V voltage reference (4 ppm/°C temperature coefficient)

is integrated on the chip with the option to connect an external reference. Another valuable

feature is a 100nA current source and current sink for detecting continuity of a transducer. As

with the gain control, the burn-out currents are software configurable. The Smart Sensor is also

capable of generating excitation currents of 10pA, 210pA, or imA, as well as bias voltages of

half the analog supply voltage. Three analog inputs are provided for user connection. Fig. 2.2

shows the completed Smart Sensor, designated SNTS/ROME B.1.

2 AD7794 datasheet specifications show 40nV RMS noise and 21 bits effective resolution when the part is set to a
gain of 64. It is interesting to note that gains of 1 and 2 bypass the instrumentation amp and are performed digitally.

30

An Architecturefor Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

Figure 2.1: Smart Sensor Development Platform; overall size: 2.77" x 2.86".

The first application of the Smart Sensor development platform is for temperature sensing based

on a thermocouple (TC) of type K. To measure temperature, a TC is connected to analog

channel 1, and a second temperature transducer (typically, a semiconductor proportional-to-

absolute-temperature (PTAT) device) to channel 2 for cold junction compensation. The details

can be found in the application note "A Smart Networked Temperature Sensor for ISHM

Applications" [51]. Table 2.1 summarizes the Smart Sensor's capabilities.

Table 2.1: Smart Sensor Capability Chart
Operating System Micro C/OS-II
Bus width 8 bit
CPU clock 45MHz
Basic floating point operations (+, -, x) 350 ticks
Advanced floating point operations (-, \) 900 ticks
FFT (1024-point) 33ms
Power consumption 130mW
Analog burnout current 1 00nA source / 100nA sink
Excitation current O10pA, 210pA, 1mA
Analog-to-digital converter 8-channel multiplexer, 24 bit ZA, 470Hz

sampling frequency, 1.17V reference
On-board health status Monitor RAM battery voltage, onboard

ambient temperature, analog voltage, reference
voltage

An Architecturefor Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

2.2 Core Technology Objectives
The remaining sections of this chapter delve into the technologies that are to be adapted, refitted,

and integrated into the Smart Sensor to make it an Intelligent Sensor in accordance with the goals

of Section 1.6. In particular the health assessment/event detection routines provided by NASA

GRC are reviewed and analyzed for integration into the Intelligent Sensor, followed by an

object-oriented overview of IEEE 1451. Chapter 3 focuses on the actual adaptation,

modification, and integration efforts; including the development of supporting technologies.

2.2.1 Health Assessment Event Detection Routines

The health assessment algorithms used in this work are tools that generate health estimates based

on the detection of characterized signal events, and are a function of system, measurement

modality, measurand, and system state. The algorithms in this section were developed by NASA

GRC at Lewis Field in Ohio. GRC has conducted extensive research in event detection; the

original motivation for the algorithms included here was a 1993 program for the ATLAS Centaur

electric and pneumatic subsystems. The success of these algorithms resulted in further

modification for integration into the Propulsion Checkout and Control System (PCCS), as well as

for use in a system designed for air aspirated engine diagnostics developed by Arnold

Engineering Development Center (AEDC). These diverse applications have resulted in mature

algorithms that are valuable assets as tried-and-true health assessment tools in ISHM. Three

event attributes were selected for integration into the ISHM development work described in this

work:

* Noise,

* Spike,

* Flatline

32

An Architecture for Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

The original GRC interface to these algorithms is either through a command file or direct

user input, as shown in Fig. 2.3. Once the input commands have been read and parsed, the event

signal processing (ESP) routines are invoked, pulling in the source data via the data access

routine (DAR) interface. Once the raw data are preprocessed (smoothed, fitted, etc), the event

detection routines specified by the user commands are executed. When analysis of the dataset is

complete, any detected events are tabulated and reported to the user through the computer

terminal and written to a log file for future reference.

Figure 2.2: Top-level interaction for GRC event detection routines.

These routines are optimized for post processing of engine test data. Datasets are tracked by test

ID and sensor ID. This is fundamentally different from the goal of this work (detailed in the

Approach of Chapter 3) which is the need for algorithms in a real-time embedded Intelligent

Sensor environment, where events are reported as soon as they are recognized rather than

through offline batch processing. This realization is key to providing near real-time health

assessment of systems, the ultimate goal of ISHM. To complicate matters, in a real-time

application processing takes place with an emerging dataset, requiring substantial changes to the

An Architecturefor Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

data access methods, signal processing routines, and event detection routines in Fig 2.3. The

following subsections cover the GRC signal processing and event detection routines in detail to

foster an understanding of what it is they accomplish. This understanding will minimize the

challenges of adapting them to the real-time Intelligent Sensor environment.

2.2.1.1 Smoothing

The smoothing function prepares the raw data prior to processing. Smoothing is used by the

drift/level shift routines when performing the linear curve fit in Section 2.2.1.3. The flowchart

for the GFC smoothing algorithm, GF Smooth, is shown in Fig. 2.4 and works in the

following manner:

1. Define smoothing window (default 25 points) and divide the window into two equal

halves. If the number of points is even, add an extra point. If there are not 25 data

points, processing is aborted (recall that since the dataset is static, this will only happen

once, at the end of the file).

2. Sum the upper half of the raw data window into a single variable

3. Update the upper half of the smoothed data array with the previously computed sum

divided by the half window plus current position

4. Update the sum to include the next raw value

5. Repeat steps 3 and 4 for the points in the lower half of the smoothing window

6. Sum up the contents of the smooth window

7. For each data point, starting at the center of the smoothing window, and extending to the

upper bound of the smoothing window, update each smoothed data element with the sum

divided by the size of the smoothing window.

8. Update the sum to include the next data point

34

An Architecture for Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

GF_Smooth(double *data, double *smoothed_data, int num_pts, int smooth_window)

h§ Si(Smootmh NumPs= S12
B Ihalf wIndow = SmoothWidow I 2 ==>- 1 2 -= True inc(SmoothWindow) SmoothWndow = 16

0 Sum(RawData[511.503])

i] a··· |i---------------------- SmoothData[S11 503]= Sum(Raw0ala[5t->503]). 5umSRawData[503 405) }/{9 186

Clear Sum,

) Sum(RawData[O 7])

Is l------
SmoothedData[0->7] = Sum(RawData[7]) /8.15]

Clear Sum

SumSmRawData[o.16)i

II i---' !-----i·
SmoothData8.502= (Sum(RawDaa[0->16), Sum(RawDaa|17 511|) SumRawData0 494])] 16

S2 SmoothData53] = GrandSum/16

Figure 2.3: Graphical view of the GFSmooth function.

While this smoothing mechanism is used for specific source data, similar results may be obtained

by using an averaging filter.

2.2.1.2 Linear Periods

A provided dataset is broken down into linear periods by analyzing inflection points. Inflection

points are detected by using the second derivative and are useful for identifying linear segments

of a dataset. This approach is advantageous in an embedded Intelligent Sensor application

because it involves less processing than other methods. In contrast, determining a least squares

optimum fit by trying polynomial, exponential, and linear fits to match diverse datasets would be

both time consuming to execute and require more code. The least squares approach also has

drawbacks for datasets that change fast enough to become difficult to fit even with a continuous

An Architecturefor Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

high order polynomial. Thus, the solution is to find individual linear periods using techniques

that are a compromise between generality and accuracy. Using the derivative response for

finding inflection points is not without limitation. The derivative is affected by source signal

quality (SNR) and step size (for discrete signals, such as those from an Intelligent Sensor, this is

the sampling rate). To put this in perspective, consider a forcing function that consists of a

single frequency sinusoid given as sin(21ft). The derivative response [2;f]cos(2gft) is 900 out

of phase from the source and amplified by 2zf . One would casually reason that a smaller time

step not only allows larger source frequencies, but also increases performance in the presence of

noise. This is not necessarily the case, and for the example in Fig. 2.4 shows the forcing function

mentioned earlier combined with noise to an SNR of 35dB. These controls being constant, the

first derivative is then computed for time steps of 10ms, Ims, and 100s for frequencies from 1Hz

to the Nyquist frequency for the respective time step.

20

10

0

z

-20

-30

-40

-50

Frequency (Hz)

Figure 2.4: Derivative SNR vs. frequency performance for several time deltas.

The usable range is dependent on both the time step and frequency; in this example smaller

deltas correspond to better higher frequency response, while low frequency response is

An Architecturefor Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

exceptionally poor. Larger time steps provide good low frequency response, but are

fundamentally limited in maximum frequency. Due to these attributes, GRC determined

inflection points and the associated linear periods using a different method.

GRC's segmentation of linear periods begins with a check to see whether the difference

in time from the last to first data point is less than a user defined minimum period of linear

behavior (MPLB). If the dataset is less than this value, but still contains at least two points, the

only linear period in the dataset is recorded and execution is returned to the calling function. If

the entire dataset is not linear as described in the prior step, then the next action is to remove

linear trends from the data. This is done by taking the difference between the Nth data point and

the Oth data point in the dataset and dividing it by the corresponding difference in time to

determine a slope constant, m, as shown in Eqn. 2.1.

mconst N o (2.1)
tN - to

After calculating the slope constant, the algorithm iterates through each data point as shown in

Eqn. 2.2 to estimate what the value at the current index n would be if only the slope constant and

initial point were used to define the linear segment. The value of qr is the estimate of what the

point at discrete time n should be, based on the computed slope constant.

77 = (t, - to)mcons, + xo (2.2)

The difference between the estimate and the real value is then compared to a register that

maintains the value and location corresponding to the maximum difference found thus far. If the

new difference is greater, the value and location of the data point replaces the contents of the

register. After evaluating each data point in the set, the next step compares the largest recorded

difference to see if it is 2.8 times greater than the user set linearity threshold. If this condition is

true, then the process described above is performed on all points to the left and right of this data

37

An Architecturefor Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

point. This procedure continues recursively until the only differences encountered are less than

the threshold. When this happens, the segment represents a contiguous linear period, and is

recorded. A flowchart of this process is included in Appendix B.

2.2.1. Curve Fitting

Once the dataset has been smoothed and tagged with its linear sections, a curve fitting strategy is

introduced. The underlying purpose for performing this curve fitting is to average the linear

sections approximate the signal in the presence of noise. Since the dataset is already divided into

linear sections, it is logical to accomplish the fit using a first order linear equation applied to each

linear section. Eqn. 2.3 is the simple model of a linear equation that includes a slope, m, and

intercept, b.

y, = mxn +b (2.3)

While more complex approximations may be used, a sufficiently tight difference threshold in the

previous section is sufficient for GRC's applications. The actual first order fit is performed by

LU decomposition. This routine is borrowed from a numerical recipes text, and can be used to

fit higher order curves, if need be. Least squares are used here, as the signal is already severely

constrained, and unlike working with the entire dataset, should converge quickly.

2.2.1.4 Recording Signal Maximum and Minimum

The MaxMin function finds the maximum and minimum magnitudes in an array of data. It loops

through all the data checking each point against the prior minimum and maximum values and

updating the running maximum and minimum values as required. Note that this function uses

the smoothed data produced from Section 2.2.1.1. True is returned if the operation completes

without any problems. False is returned if there is a problem with the input parameters or the

dataset.

38

An Architecturefor Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

2.2.1.5 Generic Features - Mean and Standard Deviation

The GetStats function computes a windowed standard deviation and mean for the dataset. This

is the final preprocessing step before the GRC event detection routines are executed. Processing

in this step is performed on the raw data with the results for each window stored in a standard

deviation and average array. Deviations less than 0.005 are assigned to 0.005 to avoid a sparse

condition. The event detection routines take as input parameters pointers to the respective array,

while single value variables are passed by value unless it is expected that the value is to be

changed by the routine.

2.2.1.6 Noisy PID Routine

Noise is defined for the purpose of this algorithm as the presence of a variance in a given raw

signal that is larger than a given threshold, and that persists continuously for a user-provided

minimum amount of time. Noise is classified as fine and extreme. Fine noise is a signal variance

that is less than extreme, but larger than a nominal expected variance for the given signal.

Extreme noise is assigned when the variance exceeds the Extreme Noise Threshold (ENT),

which must be larger than the Fine Noise Threshold (FNT). This routine is very simple in that it

performs a point-by-point analysis of the entire dataset for a given sensor channel and tests

against the limits of ENT and FNT. If either is exceeded, the time index and type of noise is

recorded. An ENT event supersedes an FNT event, and therefore only the ENT is reported.

Once an event has been found, subsequent checks determine if the condition persists beyond the

user-defined Minimum Event Time (MET), which is the smallest amount of time the event must

continually exist before being declared an actual event. If a noise event is less than MET-i.e.,

the signal returns to a "quiet" behavior before MET lapses, the absence of noise is registered as

the start of a quiet period. Analogous to the MET, the signal is now analyzed for a Minimum

Quiet Time (MQT) threshold. If MQT is exceeded before ENT or FNT noise returns, a

39

An Architecture for Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

suspected event is ignored and all counts are reset. If the noise event returns before MQT is

exceeded, then the MET count resumes. The time index for this routine is in seconds. An

example of noise detection is shown in Fig. 2.5.

Figure 2.5: Noisy raw signal overlaid with extreme noise events in green and fine noise
events in red obtained from GRC [52].

2.2.1.7 Is Flat Routine

Outputs of typical transducers normally exhibit some amount of deviation, even for otherwise

nearly-constant measurands. Besides small fluctuations in the measurement, these variations can

be due to transducer drift processes and signal conditioning errors. The intention of the IsFlat

routine is to determine if a sensor signal is too quiet, indicating a potential fault in the transducer,

or coupling to the measurand such as might occur if a TC became disbanded from an element.

The routine operates on the premise that the raw signal is assumed to be flat and must be proven

to be otherwise. To do this, the data set is broken into subsets of programmable length and

subjected to three tests:

* Test of the slope of the mean values of the dataset.

* Test if the deviation of the signal exceeds a set maximum deviation.

* Test for how much the mean of the signal exceeds a set maximum.

An Architecturefor Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

This algorithm first requires the GF_Fit() routine to perform the least squares curve fit to obtain

the slope for each linear period, as introduced in Section 2.2.1.2 and 2.2.1.3. The slope is used in

conjunction with the total elapsed time of the dataset to determine the delta change over the

dataset. If the delta exceeds a user defined threshold, the signal is considered not flat.

Testing the signal deviation is performed by finding the mean deviation over the entire

data trace. Each data point in the trace is then subtracted from an anchor point (usually the first

point in the dataset). If the difference is found to be greater than the mean deviation by a user

defined number of instances from the mean deviation for a percentage of the signal exceeding

the Maximum Sigma Jitter (MSJ), the signal is considered not flat.

The final method for evaluating the presence of sufficient signal energy is to take the

mean of the incremental data set averages that have been computed using Section 2.2.1.5. From

this the total data points exceeding a user-defined distance from that mean are determined. The

percentage of data points exceeding this measure determines if the signal is not flat. The

percentage is a user definable input parameter. A flowchart diagram is included in Appendix C

to visually describe the operation of this algorithm.

2.2.1.8 FindSpike Routine

Another potentially useful piece of information bearing on the health of the Intelligent Sensor is

the presence of impulsive behavior in the signal. Spike behavior is often indicative of bearing

wear in mechanical systems, intermittent contacts, damaged thermocouples, or the presence of

high-energy noise coupled into a system. The FindSpike routine uses a simple approach to

operate on the raw dataset. If the difference between the value of the current data point and any

of the three preceding data points exceeds a user-defined spike height parameter, a potential

spike has been detected and the start time and position of the first data point is recorded. At this

41

An Architecture for Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

point, there is a possibility that the flagged behavior may persist as another phenomenon, so it is

too soon to make a determination. The routine continues to monitor the signal to determine

whether it returns to values within the permitted spike height. If the duration of the spike

behavior is less than the user set maximum spike width, a spike is reported. If the duration

exceeds the maximum spike width, it is assumed to be a pulse and no report is generated.

Defaults are 280ms for the maximum spike width, and 0.4 (normalized amplitude) for the spike

height; these are highly dependent on the nature of the measurement system and the application.

If the signal returns to a non-spike condition the algorithm continues as though no spike

classification took place, repeating the process for the next set of four points, until the end of the

data set is reached.

42

An Architecturefor Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

2.2.2 IEEE 1451 Smart Sensor Object Model

Thus far, the discussion of IEEE 1451 has been limited to examining the benefits that are

afforded to both ISHM and non-ISHM systems. The rest of this chapter explores IEEE 1451

from an object oriented perspective in preparation to the implementation covered in Chapter 3.

IEEE 1451 covers many facets of Smart Sensor/Actuator behavior; IEEE 1451.1 defines the

overall object and communications structure for a Smart Sensor or Actuator. The physical

standards 1451.2 thru 1451.6 introduced earlier are primarily geared toward implementations

that have TIM(s) separate from the Network Capable Application Processor (NCAP), connected

via an analog, digital, or mixed-mode TII and arranged according to Fig. 2.6.

Sensor Network

- I ---

Network Specifi

IEEE 1451.1
Measurement Application

NCAP Services

NCAP IEEE 1451.x
Communications ModuleI I1 1 I1 1 I 1 I1 I1 I I1 I I I I1 -

Transducer Services Interface

Module Communications
Interface '

: .I Transducer(s)

Transducer Analog InterfaceSignal Conditioner
TransducerMeasurement Interface

TEDS

TIM Services

TIMI IEEE 1451.x
Communications Module

Physical Transducer
Independent Interface t

Figure 2.6: Compact view of 1451 application.

It is important to note the differences in the use of the term NCAP. NCAP, used as a noun,

refers to the physical embodiment that has an IEEE 1451.1 measurement application running on

it. In contrast, an NCAP object is the software instantiation of an object that inherits from the

NCAP Block abstract class. Since 1451.1 is the complete object model that encompasses the

entire Smart Sensor (including the physical standards), it deserves the most attention. IEEE

1451.1 is completely object oriented, and as such, provides a hierarchy of abstract classes which

encompass the primary functionality of the Smart Sensor through inheritance down to the actual

43

r I

An Architecturefor Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

base classes, from which the user can create interface classes. The top-level classes are shown in

the UML diagram of Fig. 2.7. Only the methods mandated as required by the standard, as well

as any optional methods necessary to our specific application, are shown for the sake of

simplicity [53]. All classes inherit from the Entity and Root abstract classes. These two classes

provide internal mechanisms and network visible functionality required to represent and perform

an operation on a network object. The Class ID, Class Name, Object Tag, Object ID, and Object

Dispatch Address are all object identification properties. The Object ID is a unique identifier

that identifies an instance of an object. It must be unique with a system, and is generated by the

local NCAP Block. The Class Name describes the purpose of the class. The Object Tag is

designed to be used as a network-neutral binding point for client/server communications. It is

intended to be assigned as part of system configuration, and is ideal for dynamic sensor

networks. The Object ID is to be interpreted as an array of octets, of which there are two fields.

The first field is a single octet, referenced by Table 2.2. The next field is the actual Object ID,

which on an Ethernet network is the MAC address of the NCAP suffixed by two bytes that

contain the Class ID.

Table 2.2: Valid values for the first byte of the Object ID.
Enumeration Value Definition

AIF CLOSED 0 Closed System
AIF ETHER DCE 1 Ethernet using the DCE algoirthm per Object
AIF ETHER DCE NCAP 2 Ethernet using the DCE algorithm per NCAP
AIF ETHER CUSTOM 3 Ethernet using the custom algorithm
AIFFFBUS 4 FOUNDATIONTM fieldbus
AIF PROFIBUS 5 ProfibusTM

AIF LON 6 LonTalkM
AIFDNET 7 DEVICENETTM

AIFSDS 8 Smart Distributed System
AIFCONTROLNET 9 CONTROLNETT M

AIFCANOPEN 10 CANopenT M

AIF_1451 2 11 IEEE 1451.2
_________________12-255 Reserved for issuance by IEEE

44

An Architecturefor Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

The Object Dispatch Address is a network specific binding for client/server communications. In

an Ethernet implementation it contains the IP address, Port, and Object ID. In this way, all of the

necessary information to locate the sensor and a specific object on that sensor is available. The

method Perform provides a way to execute an object.

IEEE1451 Root

+GetClassName()
+GetClasslD()

IEEE1451_Entity

+GetObjectTag()
+SetObjectTag()
+GetObjectlD()
+GetObjectName()
+GetDispatchAddress()
+GetOwningBlockObjectTag()
+GetObjectProperties()
-Perform()

IEEE1451_Component IEEE1451 Service

+SpecifyRuleBasis() -SpecifyRuleBasis()

Figure 2.7: UML class diagram for the major 1451.1 Abstract Classes.

There are three primary abstract classes that constitute the core of 1451.1, and inherit

from the root and entity abstract classes. They are the IEEE1451_Block, IEEE1451_Component,

and IEEE1451_Service abstract classes. Each of these addresses specific areas of Smart Sensor

functionality: objects, data model and representation, and resource interfacing. Each of these

classes contains additional subclasses that are not shown in Fig. 2.7, but that will be explained in

detail in the respective sections below.

45

IEEE1451_Block

+-GetGrouplDs()
+SetGrouplDs()
+GetBlockMajorState()
+GetBlockManufacturerlD()
+GetBlockModelNumber()
+GetBlockVersion()
+GoActive()
+Golnactive()
+Initialize()
+Reset()
+GetNetworkVisibleServerObjectProperties()
-RegisterNotifyOnUpdate()
-DeregisterNotifyOnUpdate()

An Architecturefor Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

2.2.2.1 IEEE 1451.1 Block Abstract Class

The Block abstract class is directly above the NCAP Block, Function Block, and BaseTransducer

Block abstract classes in the class hierarchy. The UML class diagram for the Block abstract

class is shown in Fig. 2.8. All of the network visible objects are contained within one of these

three subclasses. In order for an object to be network visible, it must be owned by the NCAP

Block since the NCAP is the central control object in the Smart Sensor. All network

communications between Smart Sensor objects occur through an NCAP. Before a Smart Sensor

can communicate on the sensor network, the NCAP must first be registered by executing

RespondToNCAPBlockAnnouncement and setting the NCAP Block active using the inherited

GoActive method. The other methods are effective on dynamically configured networks, where

the number of sensors, their configuration, and capabilities are not known at runtime.

IEEE1451 NCAPBlock IEEE1451 FunctionBlock IEEE1451 BaseTransducerBlock

+GetNCAPBlockState() +GetFunctionBlockState() +IORead()
+GetNCAPManufacturerlD() +IOWriteO
+GetNCAPModelNumber() +SetlOControl()
+GetNCAPSerialNumber() +GetlOStatus()
+GetNCAPOSVersion()
+GetClientPortProperties()
+SetClientPortServerObjectBindings() IEEE1451 TransducerBlock
+IgnoreRequestNCAPBlockAnnouncement()
+RespondToRequestNCAPBlockAnnouncement()
+RebootNCAPBlock() +GetCorrectionMode()
+ResetOwnedBlocks() +GetNumberOfTransducerChannels()
-GetBlockCookie() +GetMinimumSamplingPeriod()

+GetChannelParameterObjectTags()
+GetParameterObjectChannelNumbers()
+GetUnrepresentedChannelNumbers()
+UpdateAll()

Figure 2.8: The NCAP Block abstract class.

46

IEEE1451 Block

+GetGrouplDs()
+SetGrouplDs()
+GetBlockMajorState()
+GetBlockManufacturerlD()
+GetBlockModelNumber()
+GetBlockVersion()
+GoActive()
+Golnactive()
+Initialize()
+Reset()
+GetNetworkVisibleServerObjectProperties()
-RegisterNotifyOnUpdate()
-DeregisterNotifyOnUpdate()

An Architecture for Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

The Function Block abstract class is the hook where application specific functionality

may be linked onto the object model. This gives individual functions the ability to go active, be

reset, perform actions, and respond to specific messages and remote objects similar to an NCAP

Block. IEEE 1451 does not develop any required Function Blocks that are necessary for basic

Smart Sensor operation. This is left entirely to application specific functionality, such as health

assessment routines.

The last subclass under the Block abstract class is the Base Transducer Block abstract

class. This class provides the highest level interface to the actual transducer by defining read,

write, and status methods. Additional parameters are formulated in the Transducer Block

abstract class, which inherits from the Base Transducer Block abstract class. It is here that

bridging between 1451.1, and the respective physical standard (1451.2 thru P1451.6) takes place.

It is possible to have transducers of different physical standards operating under a single NCAP,

each with its own instantiated Transducer Block objects.

2.2.2.2 IEEE 1451.1 Component Abstract Class

The Component Abstract Class is responsible for providing data and time representation, as well

as performing associated functions. In the standard, every data type corresponds to a TypeCode

enumeration, which uniquely identifies each and every data type so that there is no ambiguity

when interpreting data types. There are no publications or subscriptions associated with this

class, as it does not have any network visible objects. The local operation SpecifyRuleBasis is

used to specify rules that govern the objects behavior, such as startup or shutdown operations.

The Parameter Class, which inherits from this class, models network visible variables and

controls access. It has two network visible functions, Read and Write. These methods take an

argument data, which may be a single number, time/value pairs, or array of numbers based on

47

An Architecturefor Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

IEEE1451_Component

+SpecifyRuleBasis()

IEEE1451 Parameter IEEE1451 Action

+Read() +GetActionFailedTimeoutDuration()
+Write()o +lnvokeTransaction()

-+GetActionState()
+AbortTransaction()

IEEE1451_ParameterWithUpdate IEEE1451_TimeParameter lA ransaction(

+UpdateAndRead() +GetUncertainty()
+WiteAndUpdate() +GetTimeType()
+ReadBlockUntilUpdate() +GetEpochRepresentation()
+WriteBlockUntilUpdate() +GetEpoch()
+GetLastTimeStamp()

I EEE1451 _Physical Parameter

+GetPhysicalParameterType()
+GetMetadata()
+SetMetadata()
+GetIntepretation()

IEEE1451 ScalarParameter IEEE1451 VectorParameter

+GetDatatype() +GetDimension()
+SetDatatype() +SetDimension()
+GetUnits() +GetDatatype()
+SetUnits() +SetDatatype()

+GetUnits()
t |s +SetUnits()

IEEE1451_ScalarSeriesParameter

+GetAbscissaUnits(IEEE1451 VectorSeriesParameter

+SetAbscissaUnits()
+GetAbscissalncrement() +GetAbscissaUnits()
+SetAbscissaincrement() +SetAbscissaUnits()
+GetAbscissaOrigin() +GetAbscissalncrement()
+SetAbscissaOrigin() +SetAbscissalncrement()

+GetAbscissaOrigin()
+SetAbsdcissaOrigin()

Figure 2.9: IEEE 1451 Component abstract class.

the parameter's class encoded as an Argument Array. An Argument Array is the standard

represents data in the Smart Sensor and on the wire as a series of bytes consisting of paired

TypeCodes and arguments. For example, an Argument Array to represent a 32 bit floating point

value would be encoded into an Argument Array of five bytes; the first containing OxiA to

indicate FLOAT32_TC, and the remaining four containing the actual value, MSB first. In the

case of an array of floating point values (perhaps in the case of an FFT spectrum), the first byte

would consist of the TypeCode FLOAT32_ARRAY_TC, the next two would contain an integer

count of the number of array elements (the length of each individual element is implied by the

TypeCode) and the remaining bytes would contain each of the individual floating point values.

48

An Architecturefor Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

2.2.2.3 IEEE 1451.1 Service Abstract Class

The Service abstract class is the interface between the operating system, hardware resources, and

the application software. Services that are provided through this abstract class include

client/server communications, publication/subscription communications, and operating system

control (mutual exclusion semaphores and flags, object locks). The class hierarchy for the

Service Abstract Class is shown in Fig. 2.10.

IEEE1451 Service

-SpecifyRuleBasis()

IEEE1451 BasePort IEEE1451 SubscriberPort IEEE1451 Mutex IEEE1451 ConditionVariable

+SetTimeout() +SetSubscriptionQualifier() +Lock() +Lock()
+GetTimeout() +GetSubscriptionQualifier() +UnLock() +Unlock()
+SetMessagePriority() +GetSubscriptionKey() +TryLock() +TryLock()
+GetMessagePriodty() +SetSubscriptionDomain() +Is'Locked() +SetPredicateState()

+SetSubscriptionDomain() +ForceAcquireLock() +Wait()
S-AddSubscriber() +SignalOne()

IEEE1451_BasePublisherPort -DeleteSubsc|ber() +SinaIA l()

IEEE1451_BaseClientPort +GetPredicateState()

+SetPublicationTopic() +ForceAcquireLock()
+GetPublicationTopic() +SetServerObjectTag() +ClearAIIPendingWaits()
+GetPublicationKey() +GetServerObjectTag()
+SetPublicationDomain()
+GetPublicationDomain() 1 4

IEEE1451_SelfidentifyingPublisherPort IEEE1451_PublisherPort IEEE1451_ClientPort IEEE1451_AsynchronousClientPort

+GetPublisherMetadata() +Publish() +Execute() +ExecuteAsynchronous()
+PublishPublisherMetadata() +GetAsynchronousClientResultStatus()
-PublishWithldentification() +GetResult()
-RegisterPublisher() +AbortTransaction()
-DeregisterPublisher() +ForceAquireTransaction()

IEEE1451 EventGeneratorPublisherPort

+GetEventGeneratorState()
+SetEventSequenceNumber()
+GetEventSequenceNumber()
+SetResponseTag()
+GetResponseTag()
+GetLastTimestamp()
+EnableEventPublication()
+DisableEventPublication()

Figure 2.10: The IEEE 1451 Service Class.

2.2.2.4 IEEE 1451.4 and Transducer Electronic Datasheets

The Transducer Electronic Data Sheet (TEDS) is one of the primary components that make a

smart device a Smart Sensor. The TEDS is a collection of machine readable attributes describing

the manufacturer, capabilities, and conversion functions for the transducers connected to a Smart

Sensor. Each transducer contains its own TEDS, which may be attached to the transducer, or

49

An Architecture for Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

may be virtually associated using a virtual TEDS. There are several versions of TEDS, with

1451.2-1997 TEDS being the oldest and 1451.0-2005 TEDS the newest. This work focuses on

1451.4-2004 mixed mode TEDS due to relevance with thermocouples and because this is the

IEEE 1451 version most commonly encountered in practice. IEEE 1451.4 defines a mixed-mode

NCAP to TIM transducer independent interface (TII) that consists of a digital and analog

interface. The digital interface is compliant with the Dallas One-Wire [541 specification. The

nature of the analog signal lines are described within the TEDS. An example of this connectivity

is shown in Fig. 2.11.

Figure 2.11: Role of 1451.4 and TEDS in a Smart Sensor solution.

In a Dot4 transducer block, there exists a unique registration number (URN) containing a family

code (1 byte), serial number (6 bytes), and CRC (1 byte). This URN is assigned by IEEE and

controls access to the TEDS memory. The computation of the CRC, 1-wire master device

configuration, and 1-wire communications is further explored in Annex E and G of IEEE 1451.4

and "DS2430A 256-bit 1-wire EEPROM" [55]. The Smart Sensor implementation described

here will not use Dallas 1-Wire or the MMI to achieve TEDS functionality, but the storage,

retrieval, and parsing of TEDS and use of TEDS Templates will be according to the standard.

An Architecturefor Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

The Dot4 TEDS are stored in memory as a series of continuous bits. In the event of

fragmentation between multiple nodes, each fragment is linked to adjacent nodes. TEDS

memory starts with a 64-bit entity called Basic TEDS containing information about the

transducer that is common to all transducers including:

Bits 0-13: Manufacturer ID (unsigned integer 17-16381)

14-29: Model Number (unsigned integer 0-32767)

30-34: Version Letter (1451 Chr5 'A'-'Z')

35-40: Version Number (unsigned integer 0-63)

41-64: Serial Number (unsigned long integer 0-16,777,215)

Basic TEDS is always the first 64 bits stored in the TEDS memory area. TEDS that follow Basic

TEDS are referred to by the standard as either IEEE, Manufacturer, or User TEDS. TEDS of

these types are either defined by IEEE in the standard, created by a specific transducer

manufacturer, or are user defined, respectively. The major similarity is in how they are

represented through the use of TEDS Templates and the Template Description Language (TDL).

The Template is simply an overlay for the data, providing a direct and unambiguous

interpretation of the data, as shown in Fig. 2.12.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
h

'Legend

TC

Figure 2.12: Typical TEDS storage and mapping for Basic, TC, and Calibration templates.

An Architecturefor Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

Figure 2.13: Typical TEDS storage and mapping for Basic, TC, and Calibration

Templates are written in (TDL), which is a tagged markup language similar in form to the

common Internet hypertext markup language (HTML). A sample TEDS Template is shown in

Fig. 2.13 for thermocouples. Note the use of simple TDL syntax, punctuation, and keywords.

Thus, with a TDL parser and the appropriate TEDS Template, a user is assured that the TEDS

data is readable and properly interpreted. Multiple TEDS may be concatenated to fulfill the

requirements of a particular transducer. In this case multiple templates need to be applied to the

52

TEMPLATE 0,8,36,"Thermocouple"
//The first 0 in the Template field indicates IEEE defined template, the 8 is the number of bits to read from
//the sensor to get the template ID, the 36 is the decimal value of this template ID.

TDL_VERSION_NUMBER 2 //VNersion 2 refers to the final IEEE 1451.4 version 1.0 TDL specification
ABSTRACT IEEE 1451.4 Default Thermocouple Template
ABSTRACT For thermocouples and temperature sensors that provide a voltage output conforming to a standard
ABSTRACT thermocouple curve
SPACING

//Physical Base Units: (ratio, radian, steradian, meter, kg, sec, Ampere, kelvin, mole, candela, scaling, offset)
PHYSICAL _UNIT "°C", (0, 0,0, 0,0, 0, 0,1,0,0,1,-273.15) // Celsius is (kelvin - 273.15 K)
PHYSICALUNIT 'V", (0, 0,0, 2,1,-3,-1,0,0,0,1,0) // Voltage: Volts equals m20kg/(sec3oA)
PHYSICALUNIT "sec", (0, 0,0, 0,0, 1, 0,0,0,0,1,0) // Time: base SI unit is seconds

ENUMERATE ElecSigTypeEnum,"Voltage Sensor","Current Sensor","Resistance Sensor","Bridge Sensor","LVDT
Sensor","Potentiometric Voltage Divider Sensor","Pulse Sensor","Voltage Actuator","Current Actuator","Pulse Actuator"
%ElecSigType, "Transducer Electrical Signal Type", ID, 0, ElecSigTypeEnum,"e","" = "Voltage Sensor"

%MinPhysVal, "Minimum Temperature", CAL, 11, ConRes, -273, 1, "O", "oC"
%MaxPhysVal, "Maximum Temperature", CAL, 11, ConRes, -273, 1, "O", "0C"
%MinElecVal, "Minimum Electrical Value", CAL, 7, ConRes, -25e-3, le-3, "Op", "V"
%MaxElecVal, "Maximum Electrical Value", CAL, 7, ConRes, -25e-3, le-3, "Op", "V"

ENUMERATE MapMethEnum, "Linear","Inverse m/(x+b)","Inverse (b+m/x)", "Inverse
1/(b+m/x)","Thermocouple","Thermistor","RTD","Bridge"
%MapMeth, "Mapping Method", ID, 0, MapMethEnum,"e","" = "Thermocouple"

ENUMERATE TCTypeEnum, "B","E","J","K","N","R","S","T","non-standard"
%TCType, "Thermocouple Type", ID, 4, TCTypeEnum, "e", ""

ENUMERATE CJSourceEnum, "CJC not provided by sensor","Sensor compensated for 0°C cold junction"
%CJSource, "Cold Junction Compensation", ID, 1, CJSourceEnum,"e",""

%Sensorlmped, "Output impedance of the sensor", ID, 12, ConRelRes, 1, 0.00155, "rp", "Ohm"

%RespTime, "Response Time", ID, 6, ConRelRes, 1E-6, 0.146, "rp", "sec"

%CalDate, "Calibration Date", CAL, 16, DATE,"d-mmm-yyyy",""
%Callnitials, "Calibration Initials", CAL, 15, CHR5,"s",""
%CalPeriod, "Calibration Period (Days)", CAL, 12, UNINT, "O", "days"

%MeaslD, "Measurement location ID", USR, 11, UNINT,"0", ""

ENDTEMPLATE

An Architecturefor Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

TEDS. The keywords, or TDL commands, are grouped according to function, and are

segmented into the categories of identification, control, and property. Character strings in TEDS

are limited to A-Z, 0-9, ^A,_,!,@,#, or &, provided that the first character is not a number. It

appears that several manufacturers published provisional 1451.4 TEDS, referred to as "Revision

0.9 TEDS." An accelerometer template is shown in the 0.9 format for reference in Fig. 2.14.

Template Accelerometer, 2 gains, transfer function
abstract IEEE P1451.4 template version 0.9

crc8
"Manufacturer", "RO", 12, "Manufacturer"
"Model number", "RO", 16, "UNINT", "0000"
"Version letter", "RO", 5, "Chr5"
"Version number", "RO", 6, "UNINT", "O"
"Serial no.", "RO", 25, "UNINT", "0000000"
spacing

selector 2, 0, Selector of Template Descriptor = IEEE P1451.4
selector 8, 3, Template ID for IEEE 1451.P templates

"Calibration date", "RO", 16, "DATE"
"Supports multiplexer via no gain selected", "RO", 1, "UNINT",""
"Default gain 00: no, 1:low, 2: high (PIO-A is Isb)", "RO", 2, "UNINT", ""
"Low gain Sensitivity @ Fref", "RO", 16, "ConRelRes", 100E-6, 0.0001, 0, "0.000p", "V/(m/s 2)"
"High gain Sensitivity @ Fref", "RO", 16, "ConRelRes", 100E-6, 0.0001, 0, "O.000p", "V/(m/s 2)"
"Fref", "RO", 8, "ConRelRes", 10.17501895022, 0.015, 0, "Op", "Hz"
"Low Gain F hp electrical", "RO", 12, "ConRelRes", 0.01, 0.001,0,"0.000p", "Hz"
"High Gain F hp electrical", "RO", 12, "ConRelRes", 0.01, 0.001,0,"0.000p", "Hz"

"Phase invertion (0: 0°, 1: 180*)", "RO", 1, "UNINT", "O"
"F Ip electrical", "RO", 12, "ConRelRes", 100, 0.0015, 0, "0.000p", "Hz"
"F mounted resonance", "RO", 9, "ConRelRes", 100, 0.01, 0,"0.000p", "Hz"
"Mounted Q", "RO", 8, "ConRelRes", 0.3, 0.03, 0, "O.OOp", ""
"Amplitude slope", "RO", 7, "ConRelRes", 0.852279961333371, 0.001, 0,"0.00p", ""
"Phase correction @ Fref.", "RO", 6, "ConRes", -3.2, 0.1, "0.0", "1"
"Temperature coefficient", "RO", 9, "ConRelRes", 1E-6, 0.01, 0,"0.OOp", "/0C"
"Sensitivity direction (x,y,z)", "RO", 2, "Direction"
spacing
"Meas. position ID", "RW", 9, "UNINT", ""
selector 2, 0, Selector of template descriptor = IEEE P1451.4
align 8
"User data (ascii)", "RW", 0, "ASCII"
EndTemplate

Figure 2.14: 1451.4 Rev 0.9 TEDS Template for an accelerometer.

There are three types of commands or keywords in a TEDS Template. Identification commands

identify the template and associated TEDS. Control commands direct the flow through the

template. Property commands provide the interpretation of the TEDS. A full list of commands

is available by consulting IEEE 1451.4 [29]. The TEDS file system also provides for error

53

An Architecture for Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

checking by performing a 32-bit checksum on the TEDS. The routine for computing the

checksum involves the following steps:

1. Create a 4 byte integer and initialize to zero.

2. For each line, not including the Validation KeyCode field, add the value of each

octet to the 4 byte sum. Note that each octet is to be treated as an unsigned 8-bit integer.

ASCII characters are to be treated no differently in checksum calculation.

TEDS is limited by the amount of memory available on the Smart Sensor. TEDS is designed to

have very little memory overhead, while providing a robust and reliable mechanism for

identification and configuration of TIMs.

This concludes the examination of IEEE 1451 and its key components. With a

foundation developed detailing the essential components of the Intelligent Sensor (namely

development of health assessment capability for noisy, flat, spiky signals, and an IEEE 1451

interface), focus is now directed toward Chapter 3, where these objectives are implemented.

54

An Architecturefor Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

CHAPTER 3: APPROACH

This chapter formulates the methods used to address and answer the challenges posed by the

problem statement. To summarize the approach, there are a few major concepts that must be

addressed in this chapter to realize an ISHM ready Intelligent Sensor:

* An investigation and selection of exemplar algorithms to be used in the Intelligent Sensor

adapted from GRC algorithms for historical data.

* Memory management techniques to allow seamless buffering of large datasets accessible

by multiple dependent and independent embedded algorithms.

* Providing a mechanism for easily adding, removing, and scheduling health algorithms

through an API in C code, with Health Electronic Data Sheet (HEDS) self-descriptive

capability.

* Developing methods for flashing the sensor operating firmware over Ethernet.

* Loading multiple sets of HEDS and switching between them at runtime for maximum

health algorithm flexibility.

* An investigation of real-time operating systems for embedded processors.

3.1 Health Routine Adaptation for Real-time Sensor Applications
One of the most important aspects of this work is the development of embeddable health

management in order to make a Smart Sensor into an Intelligent Sensor. Rather than using the

Smart Sensor solely as a data source, it is modeled as an information source, providing valuable

health feedback in addition to standard engineering measurements. This development has two

implications; the first is that an Intelligent Sensor must be able to assess its own performance and

55

An Architecture for Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

verify that it is operating within acceptable limits. Second, the Intelligent Sensor must assist

with system level health assessment by extracting useful features from the data that it collects

and communicating these with the ISHM environment. These features may either be examined

in the Intelligent Sensor, or passed on to another processing tool for detailed analysis. An

overview of the ISHM information and data flow is given in Fig. 3.1. Other analytical or

numerical tools, such as MATLAB, may also be connected to the sensor network to assist in

ISHM computations and analysis.

Figure 3.1: Component interactions in ISHM with health enabled Smart Sensors.

As previously addressed, this objective is incompatible with the previously described event

detection algorithms of Chapter 2 because the GRC routines operate on a static buffer that

contains a segment of raw measurement data. Recall that the first preprocessing operations such

as filtering, fitting, and statistical computations are performed on the data sets. Next, event

detection routines examine the data sets looking for signatures or patterns that hint of potentially

An Architecturefor Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

anomalous behaviors. Finally, a report is provided that details any events, the duration, and time

of occurrence. Also recall that in a real-time environment preprocessing and analysis need to

occur on an emerging data set. Similarly, the reporting mechanism needs to be activated when

events occur, as a summary at the end of the run. In the embedded real-time environment, there

is also the demand to consume a minimal amount of computational and memory resources. A

major focus of this chapter is developing alternatives to the GRC routines of Chapter 2 that meet

the above criteria. Furthermore, algorithms that have specific performance capabilities are not

developed in a vacuum but rather are based on experience with historical data and operational

experience. Over time, such algorithms are expected to be updated as more experience is gained.

This understanding helps leverage the event detection expertise of GRC with advances in real-

time signal processing, while also demonstrating the versatility of the Intelligent Sensor.

As a result, there are two preprocessing routines, four feature extraction routines, and

three event detection routines provided as exemplar health assessment routines for evaluating

sensor health in real-time on the Intelligent Sensor. The preprocessing routines are addressed

first, which include the implementation of an 8 point sliding mean digital filter for smoothing the

data used for computing derivatives and a high pass digital filter that only passes signal behavior

indicative of noise. The feature extraction routines consist of a windowed mean, windowed

standard deviation, 1st and 2 nd derivatives, and discrete Fourier transform. Lastly, the event

detection routines are used to detect noise, spikes, and flat-line behavior using the raw and

preprocessed data streams.

3.1.1 Smoothing

While curve fitting may be an important technique because many process models follow

relatively well-behaved polynomial or exponential responses, GRC's primary motivation behind

57

An Architecture for Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

curve fitting was to approximate the true signal in the presence of noise. GRC's method was to

fit to a first-order polynomial and in essence limit the bandwidth of the signal, and start new first

line approximations whenever the signal's concavity changes. While at first glance this appears

sound, the presence of noise (see Fig. 3.2) results in many unexpected concavity changes that

ends up causing the curve fit to become more like a curve trace. Nevertheless, there are many

effective curve fitting techniques, such as fitting to a power series, exponential series,

logarithmic series, least squares approximation (loess, or non-linear Savitzky-Golay techniques),

linear predictive adaptive filters, and radial basis functions. While likely one of these methods

will be beneficial to ISHM and be implemented on the Intelligent Sensor in the future, the task at

this point is to address the underlying objective of GRC: smoothing of signal data. Recall the

entire purpose for using GRC's curve fitting in the first place is to constrain the raw signal to

improve the performance of numerical analysis tools (in particular, recall the derivative

discussion in Section 2.2.1.2). The alternative strategy used here takes into account the

characteristically white noise present at the analog end of the Intelligent Sensor, and implements

a moving average digital filter to smooth the signal.

58

An Architecture for Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

Performance Compwi.on oGRC Linar Fitting v Mn Digial Filtering of a 10dB SNR Hz Sinusod Source
6

- Noisy Signal

E
B

Wme [msI

Figure 3.2: 10OdB SNR sensor data against GRC curve fit and moving average digital filter.

The digital filter is implemented as a difference equation as depicted in Eqn. 3.1, with eight

numerator coefficients and a denominator coefficient of unity.

y(n)= box(n)+b,x(n-1)+---+b.x(n -M)-a,y(n -1)- ---- ay(n -N) (3.1)

Because of its effectiveness, this smoothing routine is used before the derivative routines

discussed below, however the other routines in this thesis use the raw data directly.

3.1.2 Highpass Digital Filter

Part of the flexibility of the Intelligent Sensor is in its ability to contain algorithms of great

diversity; from statistical functions to event detection routines to digital filters, and possibly even

neural networks. As proof of concept, a typical high pass IIR Butterworth digital filter was

chosen. The choice of high pass filter (HPF) is to better support noise detection presented in a

later section. However, the actual filter response is not critical to the issue of embedding a filter

structure in the Intelligent Sensor. The bandwidth requirements of a thermocouple are relatively

low since they are typically attached (bonded) to thermal masses that are significantly greater

An Architecturefor Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

than the thermocouple. The HPF filter was designed for a 50Hz sampling rate, a stop band with

minimum attenuation of -20dB from DC to 10Hz and a pass band of 15 Hz and higher-i.e.,

there should be -3dB of attenuation at 15Hz. These design choices for filter parameters were

chosen based on observed dominant temperature transmitter signals of the MTTP data, which are

found to generally be 5 Hz or less. The MTTP is discussed in the results of Chapter 4, with a

piping and instrumentation diagram (PID) in Appendix A. The realized filter is of fourth order

to accommodate the desired transition band, with the specifications shown in Fig. 3.3.

Magnitude Response (dB)

-1

-1

-A

A"

-4

-1

f

101
Frequency (Hz)

Figure 3.3: Magnitude Response for a 4th order HPF with Butterworth transition.

This filter is implemented using a difference equation, shown in Eqn. 3.1. The respective

coefficients are obtained from the design in Fig. 3.3. As a health assessment feature of the

Intelligent Sensor, it is supplied with a sliding window of four data values, and operates such that

An Architecturefor Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

when the window is not full, each new point results in a multiply/accumulate operation for the

feedforward and feedback sections of the filter. When the window fills, the first filtered output is

recorded for later observation by the event detection routines to follow. Now full, the window

will slide for each new data point, resulting in recompilation of all of the coefficients and the

evaluation of each subsequent filtered data point. The coefficients of the filter are provided for

reference in Equation 3.2.

bO = 0.0466491 aO =1.0000000

bl = -0.1865962 al = 0.7806856

b2 =0.2798944 a2= 0.6791779 (3.2)

b3 = -0.1865962 a3 = 0.1822788

b4 = 0.0466491 a4 = 0.0300717

The performance of the filter has been examined in both MATLAB and the Intelligent Sensor.

The filter meets the design requirements in both environments, providing a minimum of -20dB at

10Hz and below, -3dB at 15Hz, and full OdB at 20Hz and above as shown in the time domain

graphs of Fig. 3.4.

61

An Architecturefor Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

I

Figure 3.4: HPF performance for MATLAB and Intelligent Sensor implementations

While the effort in processing a digital filter is a function of the filter taps, it is still nothing more

than addition and multiplication operations. The Intelligent Sensor development platform is

based on a simple, fixed-point microcontroller that lacks a specific multiply-accumulate (MAC)

I

!I

j

An Architecturefor Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

instruction. However, a MAC instruction is universally found in special-purpose DSP

processors. Kennedy Space Center (KSC) has undertaken the development of a Smart Sensor as

part of their Advanced Technology Lab efforts [56]. The KSC Smart Sensor includes both a

general-purpose microcontroller as well as a DSP processor made by Texas Instruments.

3.1.3 Sliding Window Mean

A useful function in signal analysis is the arithmetic average shown in Eqn. 3.2. Computation of

the mean requires N additions, where N is the number of values the average is to be computed

over, followed by a single division. While not computationally complex, on the Rabbit

processor it takes 283 ticks per addition and 796 ticks for a single division operation.

1 N
X= x (3.3)

N 1

If a particular algorithm required a mean computed over 256 data points, the total computation

for Eqn. 3.3 equates to 2.0ms on the Intelligent Sensor Rabbit CPU running at 44MHz. Since the

target maximum sampling interval is 4ms, computing the mean of a modest sliding window in

this manner appears prohibitive.

The solution to this problem is to use an iterative computation of the mean. This

approach eliminates the need to perform all calculations as each new value is presented, but

instead incrementally adds the contribution of each new point and deducts the contribution of the

oldest points from an already accumulated running sum. The mean is then computed by dividing

the desired incremental sum by the size of the window at that time. Thus, the mean is broken

into two parts: The computation of the sum, and the division of that sum by the size of the

window. This is presented in Equation 3.4a, which computes the intermediate average for the

new data point and adds that to the accumulated average where the number of data points

63

An Architecturefor Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

accumulated is less than the desired window size. The only complication to the iterative method

is the need for a piecewise equation to handle the conditions of a partial window and a full

window. Equation 3.4b addresses this issue, removing the contribution of the oldest data point to

maintain a constant window size. Equation 3.4b should be used only once the window is full.

An1 = A, + S, (3.4a)

An, = An + S, - SN (3.4b)

For each execution of Equation 3.4a, two additions are required, and three are required for

Equation 3.4b. The total CPU usage required is 12.9gps and 19.3|js, respectively.

An
X n N(3.5)

"N

The second part of the computation is the operation shown in Equation 3.5. This single

operation takes 18.1p s. The total CPU usage to compute a mean using Equation 3.4 and 3.5

comes to 31.Ops for a partial window and 37.4ps for a full window. The most costly component

is the division operation. If the window size is a power of two, the division instructions may be

replaced with simple bit shifting, drastically reducing the CPU requirements to that for Equation

3.4. In the case that specific algorithms require a divisor that is not a power of 2 or if the

window is not full, a multiplication by the (constant) reciprocal of the window size would be an

acceptable shortcut. Since the multiplication instruction is 2.25 times faster than division, the

iterative solution of Eqn. 3.5 optimized this way and factoring in the incremental processing of

Eqn. 3.4a would take a total of 17.5ps for a partial window and 23.9pis for a full window. The

computational complexity for the real-time mean presented here is O(n).

64

An Architecturefor Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

40 , 37.4

35 1
31

30 23

25 23.9

20 20-

15-

10-

5-

0-

19.3

partial window, 1/x partial window, div full window, "2 shift full window, div

Figure 3.5: Real-time mean performance.

5.1.4 Sliding Window Standard Deviation

The standard deviation is a useful tool in signal processing for understanding the distribution of a

dataset. Recall that the standard deviation is defined as in Eqn. 3.6.

(3.6)

For the summation, each iteration requires a subtraction operation, squaring operation, and then

summing to provide the accumulated sum. For a sample size of 256 points, 846,848 clock ticks

are required to perform the total additions. The denominator is a constant expression, so the

third operation is division by a constant, along with the final square root to obtain the result. The

division and square root collectively require 1740 CPU ticks. The total computation time for a

256 point standard deviation is 848,588 ticks. That corresponds to 23.lms with the CPU running

at 44MHz.

An acceptable iterative approach to this problem is given in Eqn. 3.7 and 3.8. An

incremental sum is computed for each sensor data point. The difference between Eqn. 3.6 and

0
I

An Architecturefor Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

Eqn. 3.7 deducts the oldest sample to maintain a constant size window when the window is full.

The incremental sum in the partial window case requires two additions plus the square of the

data point at 2,743 ticks for a total of 3309 ticks or 75.24s. In the case of the full window, the

number of ticks increase to 3,592, which yields a time of 81.6 gps.

b = b + 2 (3.7a)

bn-2

NCT -= (3.7b)

b,,, =b +S, -bN,, (3.8)

To minimize the effect of the squaring operation, a multiplication of the datapoint by itself would

provide the same result without a loss of accuracy or precision. Doing this saves 54.3ps for both

a partial window and a full window. The computational complexity for the incremental sum is

O(n).

With the incremental sum computed, the standard deviation at the current data point is

obtained using Eqn. 3.7b. Using the result of Eqn. 3.4 and 3.5, the mean is already computed,

leaving window length as the only variable. Since this part contains a square root, division, and

squaring operation, the computational costs are a bit higher. The division requires 796 ticks, the

square requires 2,743 ticks, the subtraction requires a mere 283, and the square root requires 944

ticks. The total computation load for this part of the process comes to 4766 ticks or 108.3ps;

however, several simple optimizations may be performed without sacrificing accuracy. The

division is replaced by multiplication of the reciprocal (which is essentially a constant), and the

squaring of the mean is replaced with a multiplication of the mean by itself. These optimizations

yield a performance gain of 44.OLps. Thus, the total computational load for the standard deviation

66

An Architecture for Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

is 3,138 ticks (71.3gs) for a full window and 2855 ticks (64.9gs) for a partial window. Refer to

Fig. 3.6 for a graph summarizing the performance specifications.

81- 1 95i

180 -

160 -

140 -

120 -

S100 -

80 -

60 -

40 -

20 -

0-

183.52

64.89
71.32

partial, no opt partial, opt full, no opt full, opt

Figure 3.6: Real-time standard deviation performance.

3.1.5 First and Second Order Derivatives

The first derivative can provide valuable insight to the time dependent behavior of a data set.

Rate of change is an important descriptor when compared to transducer time constants, expected

measurand behavior, and prediction of signal trends. Numerical methods for performing

differentiation in this section are based on the central difference formula given in Equation 3.8.

"dL=f , - L -21 (3.9)
dt 2h

In a real-time application the dataset is causal, so it is necessary to use a backward variation of

the central difference. Eqn. 3.9 is linear and time invariant, and therefore can be rewritten this

way, although now there is a delay introduced of two samples. The error of the central

difference is proportional to the square of the period between measurements (h), whereas the

error for the forward and backward difference is proportional to h. The h is the interval between

183.52

An Architecturefor Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

the discrete values represented by f In theory, the goal is to use an infinitely small interval to

minimize approximation error. However, since we are working with a discrete data set, the

interval is the sample rate of the sensor. Remember that in Section 2.2.1.2 the optimum step size

(sampling period) may not necessarily be the smallest; the ideal sampling period depends on

required derivative quality, the spectrum of interest, and source SNR. The ratio of source SNR

to derivative SNR is shown in Fig. 3.7 for 10, 50, and 100Hz. The figure reinforces earlier

arguments and shows that higher frequencies (i.e. larger sample period) signals require less input

SNR at the lower ends of the spectrum, though level off at a lower maximum. In terms of

loading, the central difference requires 14.5 ls per computation, making its impact almost

inconsequential to overall Intelligent Sensor operations.

03

25

20

- 15

10

Z 50,

I 0

Ž -5

D -10

-15

-20

-25

SNR Input (dB)

Figure 3.7: Source SNR vs 1st Derivative SNR for 10, 50 and 100Hz sinusoids.

The discussion thus far concerns only the first derivative, although the second (and higher-order)

derivatives can also be important. For example, opening and closing characteristics associated

with variable position valves may require that the 2 nd derivative of valve position be determined.

An Architecture for Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

Building on the foundation for numerically computing the first derivative, a second derivative

may be computed according to Eqn. 3.10.

d 2fn_ 1
= [dt-2 - 2h2 -2 + f] (3.10)

Here there is dependency on the current and the previous two data values. The second derivative

has a net performance of 37.0|js. Higher order derivatives follow similar form to those described

here and may be obtained by using the central difference formula.

3.1.6 Discrete Fourier Transform

The Discrete Fourier Transform (DFT) is also a valuable health feature that is a key part of the

health enabled Intelligent Sensor implementation. The DFT is extremely useful for signal

processing, spectral analysis, and filtering applications, but it is also CPU intensive. The DFT

requires significant computational capability compared to the other routines already described,

on the order ofO(n2). Using optimized FFT libraries that are available for the Rabbit, it is

possible to perform a 256-point FFT in about 8.5ms, as the complexity reduces to O(nlog[nD.

The only requirements are that the waveform to be analyzed contains an integer power of two

elements, and the signal values are interpreted as 16-bit signed integers. This loss of precision,

as shown in Chapter 4, has a minimal impact in most cases. While there are other routines [57,

58] that may be faster, there are also more adverse effects on precision. The natively supported

windowing function is a Hanning window, although other windowing techniques may be

implemented and utilized as needed. The number of descriptors in the FFT must be chosen based

on the desired frequency resolution and signal bandwidth. Generally, the sampling rate divided

by the desired frequency step in Hz will yield an acceptable number of FFT descriptors. The

69

An Architecturefor Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

catch here is the size of the frequency step depends on the nature of the features one wishes to

detect. Since the default application utilizing thermocouples has a characteristically large time

constant, frequency resolution on the order of several Hz is sufficient. For the worst case

estimate using the established maximum sampling rate of 250Hz (and therefore maximum band

limited signal frequency of 125Hz), 126 FFT descriptors yields a very high resolution of about 1

Hz per descriptor. Using 126 descriptors for the forward FFT operation, unless the spectrum is

to be transformed back to the time domain (theoretically, there is no need to do this unless the

spectrum is to be convolved with another function, such as in the context of an FIR filtering

operation), HEDS can specify that only a representative 64 descriptors be returned to ISHM,

conserving network bandwidth.

3.1.7 Sensor Noise Events

Noise events are triggered when the observed noise exceeds predefined thresholds. Example

sources of noise include the transducer, analog instrumentation (wiring/amplifiers/filters),

environmental disturbances, and conversion/code noise introduced by the ADC. Separating

these contributing factors from deviations in the measurand is very difficult. One simple

measure of noise content is to determine the amount of energy in non-signal bandwidths. That is,

if the expected bandwidth of the signal is 0-5 Hz, then energy in higher frequency terms is

considered noise. This is especially easy for low to moderate bandwidth signals, such as those

typically associated with valves, thermocouples, and temperature transmitters. The chosen

method to evaluate signal energy is based on the HPF developed in Section 3.1.6. This routine

calculates the magnitude of the filter output vs the raw output in decibels (dB) and compares it to

a settable threshold measured in decibels (dB). When the output of the HPF exceeds the

70

An Architecturefor Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

threshold, a noise event is signaled by the Intelligent Sensor. It is understood that the noise event

continues up until which time the Intelligent Sensor provides notification that the event has

ended. While up to now the discussion has centered on the energy of the filter output, energy is

defined in Eqn. 3.11 as the area of the signal squared. The problem with this is that in the case a

signal does not decay (i.e. a cosine), the integration across all time would suggest infinite energy.

E= [f(x)]2 dt (3.11)

Since this is a discrete signal with finite time boundaries, an ideal solution is to find the signal

power, which is the time average of energy as shown in Eqn. 3.12. This yields the mean-square

value of the signal, which becomes the root mean square (RMS) by taking the square root of

Eqn. 3.12.

P = [f(x)]2dt (3.12)

On the Intelligent Sensor we estimate the mean square power by accumulating the squares of

each discrete value for a window of 25 points. Dividing the accumulator by the window size

(25) yields the mean square of the dataset. The ratio of filtered signal power over the raw signal

power (measured in dB) is then compared to a HEDS-settable threshold, indicating the presence

or absence of noise. It is important to realize that the size of the dataset of which the RMS is

computed affects the algorithm's sensitivity, and is analogous to the Minimum Event Time

(MET) and Minimum Quiet Time (MQT) parameters for the GRC NoisyPID algorithm. An

algorithmic flowchart is provided for the noise detection algorithm in Appendix D.

71

An Architecturefor Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

3.1.8 Sensor Spike and Flatline Events

The spike detection routine described in Chapter 2 provides a brute-force method for detecting

spikes. In that routine, a spike is identified for events lasting for less than a set cutoff time and

that are greater than a preset magnitude. Shortcomings of this routine include its inability to

make the positive identification until after the event ends and limited generalization of input

parameters. Similarly, due to the impulse nature of a spike (i.e. infinitely large amplitude over a

unit area), the spike doesn't contain enough power to show up as high frequency noise in a

spectrum analysis or digital filter application. Therefore, for the Intelligent Sensor, a method

that is immune to these limits is to evaluate the signal crest factor. Crest factor (CF) is defined

in Eqn. 3.13, and is simply the peak signal value divided by the root mean square (RMS) signal

value evaluated over a finite time interval.

Peak
CF = (3.13)

RMS

The significance of this measurement can be understood by considering the crest factor of some

common signals. The relationship of the peak, RMS, and mean values are shown for one half

period of a sine in Fig. 3.8.

Peak = 1.0

MS = 0.707

I N X = 0.638

Figure 3.8: 1Vpp sinusoid example with crest factor of 1.414.

The crest factor for a DC signal is 1.0 as the peak and RMS are both the same. For a pure

sinusoid, CF is 1.414, as shown in Fig. 3.8. On the other hand, the crest factor for an impulse

with a peak of 1.414V as shown in Fig. 3.9 (with magnitude 41% higher than that of the

sinusoid) is 6.42. While the short duration and limited energy of the impulse in Fig. 3.9 result in

An Architecturefor Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

low average and RMS readings, paired with the larger peak value (which is typically large for an

impulse), the CF becomes considerably larger.

Peak = 1.414

RMS = 0.22

X = 0.04
Figure 3.9: 1.414V impulse example with crest factor of 6.42.

Crest factor can be used to check for flatness, or the presence of a nearly-DC signal value. Due

to the limited resolution of CF in low peak conditions (for example, a IVpp sine has a CF of

1.414, but a DC IV signal has a CF of 1.000, only a delta of 0.414), the difference between peak

and mean signal values are also compared to the flatness threshold to determine the existence of

a flat condition. To this end, a crest factor entry for the health electronic data sheet (HEDS)

provides a threshold for a maximum and minimal allowable limit to address the detection of

spike behavior, and a percent difference of the peak and mean minimum threshold is also

provided for flat signal behavior, as shown in the algorithmic flowchart in Appendix E.

An Architecture for Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

3.2 Sensor Real-time Operating System and APIs
Health enabled Intelligent Sensors in ISHM require real-time processing capability to meet

deadlines for measurement acquisition, measurement presentation, health processing, and health

information presentation. The nature of the deadline qualifies it as hard or soft [59]. For a hard

deadline, on-time completion of the associated activity results in the system receiving full benefit

from that activity. On the other hand, completion after the deadline results in no benefit from

that activity. In the context of Intelligent Sensors, measurement acquisition and presentation are

hard deadlines, as without timely measurements the integrity of onboard health assessment

routines and other ISHM processes depending on sensor data are jeopardized. The amount of

risk introduced by missed deadlines varies; best case the missed deadline translates to a delay in

processing while waiting for the late measurement, however if the activity is so late that it is

skipped to avoid conflict with the next deadline, a missing feature has now been introduced.

Soft deadlines are those events that provide optimum benefit to the system when

completed on-time, but may be completed marginally earlier or later at the cost of somewhat

decreased benefit. Completion outside of an allowable margin results in zero benefit. The

execution of health assessment algorithms and transmission of health information is considered a

soft deadline because while still a critical part of Intelligent Sensor doctrine, the nature of health

assessment (not to mention the need to buffer data, run intensive algorithms, etc) requires more

scheduling flexibility.

Taking this and applying it to the Intelligent Sensor with a 50Hz sampling frequency, the

hard real-time requirement for data acquisition and transmission is 20ms. This means that every

20ms a new measurement is sampled, converted, and transmitted to ISHM. While ISHM may

have tolerance for missing measurements, those arriving too late have no value and in sufficient

74

An Architecturefor Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

quantity limit ISHM decision making effectiveness. However, the suite of health-enabled

algorithms will all have some variation of real-time requirements that are between 20 and

1500ms to allow enough time for data buffering and processing, although health information

evaluated for time t has limited utility when the delta from t to now becomes large. The upper

real-time limit applies mostly to the DFT, as it requires 64 samples, or 1280ms worth of data to

operate, plus a enough time to present the result.

Computer systems and embedded systems with real-time constraints commonly employ a real-

time operating system (RTOS) to provide a structure for multitasking in time-critical applications

[60]. The three major types of operating system architectures in order of decreasing complexity

are preemptive multitasking, cooperative multitasking, and simple task scheduling. Note that a

simple task scheduler is not necessarily real-time operating systems, as it typically does not

contain other ancillary tools, such as interprocess messaging, semaphores, and task control flags.

Nevertheless, all operating system architectures operate on the principle of periodically storing

the state of the CPU on the system stack, loading the context of another CPU process, allowing

the CPU to devote resources to the new process for a period of time (a time slice), then

performing another context switch... etc. This periodic change of context is structured so as to

best meet the application service requirements.

The performance of an RTOS is a function of the overhead associated with context

switching, which is a strong determining factor for the maximum frequency of operating system

context switching. However, in an embedded system there are additional factors that influence

the overall performance. The number of CPU cycles it takes to perform a context switch

depends on the size of the OS Kernel, the time it takes to access memory, and availability of

specialized instructions. Additionally, embedded processors operate under limited power and

75

An Architecturefor Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

lower clock speeds. In real-time systems, critical service events are often triggered externally by

interrupts, which result in additional unscheduled context switching [61]. Managing these

scheduled and unscheduled events is the goal of the RTOS. The next paragraph briefly discusses

the primary differences between the major architectures, along with analysis of suitability to the

Intelligent Sensor.

While the bare bones task scheduler is not a fully featured RTOS, it is often used as a

common approach to obtain inexpensive real-time performance where the real-time requirements

are fairly forgiving. The task scheduler simply moves tasks between the CPU for active

processing and back to the stack for storage. While it is possible to assign task priorities, the

typical objective is to minimize processing such that it is guaranteed that each task will run and

complete in a predictable amount of time. It is this determinism that is very difficult to gauge,

and during a burst of processing, may result in the system becoming backlogged. A basic task

scheduler is not sufficient for the Intelligent Sensor application, where many events are taking

place continuously (messages are transmitting, measurements are taken, and health evaluations

are processed, with very little room for overhead).

The cooperative multitasking environment is typical among general purpose computers,

such as those running the Microsoft Windows, UNIX, or Linux operating systems. Starting with

the Kernel, each task is popped from the system stack and allowed to process for a fixed period

referred to as a time slice. After the time slice has elapsed, the Kernel allows the next task to

run, and so on. While this type of operating system typically does not prioritize tasks (it is

possible to change individual priorities, although this is not done on a normal basis), every task is

guaranteed to run for a fixed duration of time during each iteration of the task list. However, the

task is not guaranteed to have sufficient time to run to completion during a single time slice. The

76

An Architecturefor Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

typical OS system time slice is between 10ms and 15ms for personal computer and workstation

platforms. Any peripheral interrupts on these systems are processed in the order received. This

type of configuration is not suitable for a real-time application where interrupts are frequent and

critical, or events must take place at a fixed time interval whether or not every task has been

serviced. For these reasons such an operating system is not ideal for real-time applications. The

Rabbit microcontroller supports cooperative multitasking through the use of costates and

cofunctions. These keywords allow blocks of code or functions to be run in sequential order.

Processing is switched from one costate or cofunction to another when the processor encounters

nothing else to do in the current costate or cofunction, such as when a delay statement is used or

the costate is forced to suspend.

The final choice, the preemptive multitasking kernel, is the best method for the Intelligent

Sensor real-time application. Preemptive kernels (also referred to as real-time kernels) contain

objects called tasks, which are responsible for executing code on the processor. Program control

and flow is handled by the OS scheduler, which checks semaphores, flags, and time delay

attributes before attempting to execute a task. Each task is assigned a priority, with the highest

priority task assigned to interrupt handling. The event with the highest priority that is ready to

execute will start execution until it is preempted by a higher priority task. When preempted, the

current task context is stored until that task regains control of the CPU. The user may also cause

a task to sleep after some number of executions through the task, thereby voluntarily permitting a

lower priority task to run. Tasks may also relinquish control due to the state of a flag or

semaphore, which may be set or cleared based on interrupts or other events. Since peripheral

interrupts have the highest priority, they preempt all other tasks. The system time slice interrupt

is adjustable up to the maximum frequency recommended by the hardware manufacturer, and

77

An Architecturefor Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

can achieve microsecond task switching speeds in many architectures. A graphical view of the

execution process is shown in Fig. 3.10.

Figure 3.10: Intelligent Sensor operating system diagram.

The principal advantage of preemptive multitasking is that it gives the systems engineer the

ability to ensure that critical tasks run on time. Generally, the highest priority tasks encompass

actions that are part of the hard real-time requirements. In the Intelligent Sensor, the hard real-

time operations include preparing the data converter to sample, processing an external peripheral

interrupt when the converter has completed, and retrieving the data from the serial peripheral

interface (SPI) bus. Handling of network messages (both inbound and outbound) is a high

priority task. Advanced steps may also be taken to control task execution. Determining when a

task is ready to run is based on whether the task is suspended (that is, set to delay for a time

An Architecturefor Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

interval, which must be greater than the OS tick), the status of semaphores, and the state of flags.

There are two types of semaphores; those used for counting and those used to indicate a binary

condition. An example of a counting semaphore is one that tallies the number of items in a

queue as each new sample is retrieved from the data converter. Once the semaphore value is

above zero, the conversion task is enabled, and samples are converted until there are none (the

semaphore returns to zero) or the task is preempted by another higher priority task. The binary

semaphore is used to indicate if a resource is available (bit is cleared) or if it is in use (bit is set).

This type of task control prevents different tasks from corrupting the integrity of data due to

simultaneous access. Similar in function is the flag group that can represent 16 flag conditions.

A task may be set to run only if certain bit combinations in the flag group are set or cleared.

Flags are used to keep track of the progress of health assessment routines. Using flags,

semaphores, sleep statements, and prioritization, the real-time kernel is able to control program

flow and optimally perform task switching. However, there are some very important pitfalls to

avoid. One is to avoid subdividing tasks into such small component parts that there is a large

amount of CPU processing overhead performing context switches versus application processing.

Another is the problem of priority inversion, where a higher priority task ends up waiting for a

lower priority task to release a resource. This means that the lower priority task is now actually

of higher priority (or the converse: the higher priority task has been demoted) because of the

dependency relationship. Finally, it is also possible to starve tasks, and keep the from running at

all! All of these things must be kept in mind when developing a real-time application.

Now that the preemptive multitasking kernel is established as the RTOS of choice for the

Intelligent Sensor, a specific vendor must be chosen from the many reliable real-time kernels

available. One of the more popular commercial options is Wind River's VxWorks [62].

79

An Architecturefor Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

VxWorks is a full featured development suite. Z-World has developed the Rabbit OS that may

be purchased as part of a Rabbit development kit [63]. SoftTools Inc., who develops third party

compilers and integrated development environment (IDE) support for the Rabbit microcontroller

family, offers TurboTask as a real-time operating system, which requires the use of the SoftTools

integrated development environment (IDE) and compiler [64]. Since SoftTools products are not

a normal distribution for Rabbit products, this option would result in additional costs, though not

as costly as VxWorks. The last alternative is open source and freeware products, such as Micro-

C/OS-2, created by Jean Labrosse, and maintained by Micrum. Micro-C/OS-2, also abbreviated

MUCOS, is freely available [65] for download and has been ported to over 100 different

platforms, including Intel x86, Rabbit 2000, and Rabbit 3000. Furthermore, Micro-C/OS-2 is

approved by the Federal Aviation Administration (FAA) [66] for use in flight critical systems.

While price is always an attractive benefit, the fact that C code written for the Rabbit 3000 port

of uC/OS-2 can be cross compiled to a machine running an x86 port of uC/OS-2 is particularly

attractive for developing virtual Intelligent Sensors and Intelligent Sensor testbeds. The most

significant shortcoming of MUCOS compared to other more costly RTOS alternatives is the

limitation of 64 individual tasks, with none sharing the same priority level, and no ability to

control the time slicing of individual tasks. However, for many embedded applications these

issues are workable.

With the Intelligent Sensor OS chosen, the remaining sections focus on two application

programmer interfaces (API) developed to support health assessment in Intelligent Sensors. The

first focuses on health electronic data sheets (HEDS), and the second concentrates on the

embedded routine manager (ERM) for managing embedded health assessment routines.

80

An Architecturefor Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

3.2.1 Health Electronic Datasheets (HEDS)

Thresholds, coefficients, and other necessary parameters used by the suite of health evaluation

algorithms and routines are stored and transmitted to the Intelligent Sensor using a health

electronic data sheet (HEDS) structure, which is an extension of the IEEE 1451 TEDS. While

the HEDS developed for this work are not exhaustive, it serves the purpose of establishing a

baseline for future health enabled Intelligent Sensors. The HEDS are transmitted between host

and Intelligent Sensor over a network such as Ethernet. HEDS are nonvolatile and are stored in

the battery backed RAM on the Intelligent Sensor CPU motherboard. HEDS may also be copied

from Intelligent Sensors for archival or cloning purposes. This allows the HEDS to be reloaded

to new Intelligent Sensors as need dictates, analogous to the update and recall of TEDS. Section

3.2.3 lists each of the health routines and the respective HEDS structures and messages that were

developed for this work.

A routine is identified by its health algorithm class (HAC) and Object ID. The HAC is a

four byte unsigned integer that identifies the function of a routine that is consistent across a

network of sensors - for example any instances of a statistics routine that computes mean,

standard deviation, and correlation would be identified on the sensor network with the same

HAC. Generally the HAC is used in the context of publish-subscribe communications where the

specific underlying Intelligent Sensor is traceable using a publication topic. The Object ID is a

nine byte unsigned integer used in the context of client-server communications to connect to a

specific health assessment routine on a specific Intelligent Sensor. The individual routines

running on the Intelligent Sensor are considered a special type of IEEE 1451 Function Block,

and as such contain a unique Object ID assigned by the sensor in a fully dynamic system, or

defined by the system architect at configuration time in a static system. In the static

81

An Architecturefor Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

configuration of the Intelligent Sensor, the lower 4 bytes of the HEDS Object ID encompass the

HAC to promote uniformity and consistency.

System state is a system, subsystem, or process wide parameter that identifies modes of

system operation where behavior is expected to change. A change of system state can either

result in a routine pausing execution, restarting using new parameters, or continuation as though

nothing has changed. One example is the engine exhaust thermocouple and run tank purge valve

feedback on the MTTP. Assume that the MTTP can transition between the states shown in Fig.

3.11. Each of the abbreviations in the states of the state diagram corresponds to following states:

Maintenance, Idle, PreTest, Ready, Test, PostTest, and Abort.

Figure 3.11: Possible state transitions for MTTP.

It is expected that the test article (TA) exhaust temperature will be at ambient during all states

except Test, PostTest, and possibly during Abort. During Test the exhaust temperature will vary

as the engine is throttled. During Abort and PostTest, a decaying temperature would be expected

as the article is no longer energized. In the case of the Intelligent Sensor connected to the run

tank purge valve, it may be aware of the various states, but may not change how it uses its health

routines between states in the same way as the exhaust temperature Intelligent Sensor. Thus,

HEDS allow the health routines to be state aware, establishing health management in the

Intelligent Sensor through an optimal piecewise approach. This approach is optimum because it

consists of expert system/process/subsystem knowledge, data analysis, feature extraction, and

82

An Architecturefor Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

event detection. At runtime all HEDS parameters that are state dependent are stored in the

Intelligent Sensor; the central ISHM management node only needs to broadcast two arguments

regarding state changes: That information is the state that the system, subsystem, or process is

transitioning to and the UTC network synchronized time (as type TimeRrepresentation) at which

the transition takes place. There is a section describing the application and functional description

of HEDS and a section dedicated to the API for interfacing with HEDS that follow.

3.2.1.1 Application and Organization ofHEDS

The payload of HEDS falls into two major categories:

* Basic HEDS

* Health routine configuration parameters

These categories establish the HEDS record for a given routine. Multiple records may exist for a

given routine to account for any applicable state changes that the routine must be adapt to. The

major categories are discussed in detail in the subsections to follow, followed by a section on the

organization of HEDS in the Intelligent Sensor.

3.2.1.1.1 Basic HEDS

The Basic HEDS covers the essential information necessary to identify and configure the routine

that is common to all routines. That information includes:

* Total number of supported system state changes (0-32767)

* Manufacturer ID (0-32767)

* Model (0-32767)

* Major Version Number (0-255)

* Minor Version Number (0-255)

* Reporting method (On Event, or At Time)

83

An Architecturefor Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

* Window Length (2-32767)

* Window Type (sliding window or block window)

* Default state (any valid StateID)

* Health Algorithm Class (HAC) (1-32767)

* Return Message TypeCode (0-255)

* Return Message Argument Count (0-65536)

The manufacturer, model, and version information is not strictly controlled as is the case of IEEE

1451 TEDS. This information is required simply for version control and creating deployment

packages. Reporting method specifies when the routine should report. Valid choices are

OnEvent, that is, report when an event takes place, or report periodically according to the time

epoch specified by AtTime. The specific event or time interval is coded into the routine and do

not need to be passed as a parameter. The next field is the length of the data window. While the

window has physical limits, it is also checked to ensure that there is sufficient memory available

to satisfy the memory requirements for a given window size. Window type corresponds to either

a sliding window or a block window for the purpose of supplying a list of data points to the

health assessment routine, and is not to be confused with a signal processing window that

truncates the input signal. A sliding window continues inserting new data points until it reaches

a full condition. After reaching the full condition the oldest point is purged upon the insertion of

the newest point. This provides continuous coverage of the dataset and eliminates discontinuities

at fixed window boundaries. The block method is analogous to a fixed window, where the

window grows until it reaches a full condition; the entire window is purged once processing on it

has completed. Other window types, such as variable size windows, may be added to fulfill

future needs in subsequent revisions. The next Basic HEDS parameter is the default system state

84

An Architecture for Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

that the routine should assume on startup. Currently, the version of the HEDS engine on the

Intelligent Sensor can accept up to 32 state identifiers. The next field is the health algorithm

class (HAC), which identifies the classification of the routine on the Intelligent Sensor network.

The final two messages describe the return network messages of the routine by TypeCode and

argument count. Note that the argument count is only used if the corresponding TypeCode refers

to an array type; a non array TypeCode is assumed to consist of only one argument.

It is important to insure that the window type and window length are defined and within

bounds for the routine to run. It is also important to ensure the reporting method is properly

defined to obtain any desired health messages from the routine.

3.2.1.1.2 HEDS Routine Configuration Parameters

The health routine parameters contain the information required by the routine to perform its

analysis. This includes, but is not limited to, thresholds, filter weights, polynomial coefficients,

multipliers, or synaptic weights. The number of parameters, their interpretation (integer, float,

double precision, etc), and names are the part of HEDS that is solely defined by the user. As it is

user defined, there must be a clear and precise control document for each routine that specifies

the exact parameters so that applications interfacing with the Intelligent Sensor are aware of the

correct formatting for this part of the HEDS. Note that the Intelligent Sensor handles the

configuration parameters (in terms of network messaging and internal messaging) assuming the

data is presented as an array of octets. As such, there is no need to perform network to host byte

conversion, and no interpretation of individual HEDS configuration fields are made by the API.

The meaning of the HEDS configuration parameters are only realized inside the actual routine.

It is common to create the configuration HEDS as a c-style struct that identifies variable names

to known data types. It is further recommended that these data types be synonymous with IEEE

85

An Architecturefor Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

1451 TypeCodes for cross-platform consistency. The complete HEDS record (Basic +

Configuration) definitions for the routines implemented in Chapter 3.1.1 thru 3.1.8 are included

and commented below.

Smoothing Filter

typedef struct

{

uint8 AnalogChannel;

float NumCoeff[9];

float DenCoeff;

} xSmoothingHEDS;

Butterworth HPF

typedef struct

uint8 AnalogChannel;

float NumCoeff[5];

float DenCoeff[5];

} x_HARHighPassButter4HEDS

//channel to smooth

//numerator filter coefficients

//denominator filter coefficient is 1 for a moving avg filt

//channel to filter

//numerator coefficients

//denominator coefficients

Statistics (mean, standard deviation, RMS)

typedefstruct

{

uint8 AnalogChannel; //channel to analyze

}x_HARStatsHEDS;

Derivatives (1st and 2 nd)

typedefstruct

{

uint8 AnalogChannel;

float MaxRoC;

//channel to compute derivatives on

//max limit on first derivative rate of change

86

An Architecturefor Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

float MaxAccel;

}x_HARCalculusHEDS;

//max limit on 2nd derivative acceleration

Discrete Fourier Transform (FFT)

typedef struct

{

uint8 AnalogChannel;

}xHARDft64HEDS;

//channel to perform FFT on

Noise Events

typedef struct

{
uint8 AnalogChannel;

float EnergyLimitdB;

uint8 NoiseMetaDataTC;

uintl6 NoiseEvtMetaDataLen;

uint8 NoiseEvtMetaData[32];

uintl6 NoiseEndMetaDataLen;

uint8 NoiseEndMetaData[32];

}xHARNoiseHEDS;

//channel to perform FFT on

//maximum noise energy from HPF

//typecode for noise metadata

//length of noise metadata

//actual noise discovery metadata

//end of noise metadata length

//actual end of noise metadata

Spike/Flat Events

typedef struct

{

uint8 AnalogChannel;

float MeanPeakDiffLimit;

float CrestLimit;

uint8 SpikeMetaDataTC;

uintl6 SpikeEvtMetaDataLen;

uint8 SpikeEvtMetaData[32];

uintl6 SpikeEndMetaDataLen;

uint8 SpikeEndMetaData[32];

//channel to perform FFT on

//minimum mean less peak value in percent required to declare a flatline

//maximum crest factor

//typecode for spike metadata

//length of spike metadata

//actual spike discovery metadata

//end of spike metadata length

//actual end of spike metadata

87

An Architecturefor Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

uint8 FlatMetaDataTC;

uintl6 FlatEvtMetaDataLen;

uint8 FlatEvtMetaData[32];

uintl6 FlatEndMetaDataLen;

uint8 FlatEndMetaData[32];

}x_HARSpikeFlatHEDS;

3. 1. 1.3 HEDS Intelligent Sensor Organization

The HEDS are organized in the Smart Sensor into three major components: The HEDS_Block,

HEDS_Record, and HEDS_Data. Refer to Fig. 3.12 for a complete graphical representation of

the HEDS organization. The HEDS_Block is the master descriptor that links the API to the

individual HEDS Records. Since it is the top level object, it also contains HEDS API specific

features such as HEDS version, HEDSBlock identifier, and last HEDS update. In order to link

to the HEDS_Records, the HEDS_Block also contains memory references to the individual

HEDS Records, and maintains a count of the total number of HEDS Records.

The HEDS_Record stores routine specific, but state nonspecific parameters, such as the

Basic HEDS. It is the HEDS_Record, along with each of the HEDSData corresponding to each

system state that fully describes HEDS for a single routine. The HEDS_Record contains

memory references to gain access to HEDS_Data based on system state. A NULL reference

means that when the system transitions to the corresponding state, the HEDS are nonexistent and

the routine does not run. Alternatively, the same HEDS data may be referenced for many

different states. This methodology is chosen so that the only duplication in the HEDS API is the

memory reference and system state pair (in this version less than a total of 10 bytes), opposed to

duplicating the entire HEDS_Data, which is usually much larger in size.

88

An Architecture for Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

UCflQ

Record for HAC 10012

- Total number of HEDS states

Manufacturer ID

unsigned integer 16
Model Number

unsigned integer 16
- Version (Major)

unsigned integer 8
- Version (Minor)

unsigned integer 8
Reporting

unsigned integer 8
Window Length

unsigned integer 16
; Window Type

unsigned integer 8
Default State

ISHM SysState
Health Algorithm Class

unsigned integer 32
Return Message TypeCode

unsigned character
> Return Message Argument Count

unsigned integer 16
> HEDS System State

ISHM SysState
> Memory ref. to start of HEDS Record

HEDS_ MemAddr
_ Length of HEDS State Record

unsigned integer 32

Figure 3.12: The HEDS object definition and hierarchy.

The HEDSData contains the actual health routine configuration parameters. This

component is specific to each and every routine, and is implemented as mentioned previously as

a C-style structure. The HEDS API makes no attempt to interpret the HEDS data; it simply

passes it through memory as arrays of octets. As a result, each time a routine is ready to execute,

the first line of the routine must map the HEDS to an appropriate local structure. The next

section focuses on the HEDS API and network messages that allow other outside objects to

interact with HEDS.

An Architecture for Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

3.2.1.2 HEDS API and Network Messages

The HEDS API contains several interface functions for retrieving and decoding HEDS messages

from the network, initializing and scanning the HEDSBlock and linked HEDS_Records, and

associating HEDS_Data to the individual routines. The API includes the following user

accessible functions:

HEDSFormat

HEDS Init

HEDSAssociate

HEDSMsgDecodeAndUpdate

HEDS MsgEncodeAndSend

The HEDS Init function must be run before any other HEDS functions. It checks the Intelligent

Sensor for an existing HEDS_Block; if one does not exist it invokes the HEDS_Format function,

which allocates a block of free memory and established a HEDS_Block. The HEDS memory

allocation and record storage process is described in the next section.

HEDS Associate is responsible for linking system state HEDSData to routines

supervised by ERM. The function performs the described operation on each routine maintained

by ERM in the routine configuration list (RCL). This function starts by retrieving the routine's

HEDS_Record and resolves the pointer that corresponds to the anticipated system state change

HEDS_Data. Next, the function accesses the RCL record for the same routine, comparing the

pointer to the current system state in use to the pointer of the state that the Intelligent Sensor is in

the process of switching to. If there is a match (match in this context means each bit in the

pointers are equivalent), then no changes need to be made and the routine is left untouched.

Comparison is performed on the pointers to system state dependent HEDS_Data rather than on

the HEDSData itself because several states may utilize the same HEDS_Data, and checking for

90

An Architecturefor Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

equality between two 16-bit pointers is faster and less susceptible to ambiguity than looking for

differences in arbitrary length HEDS_Data. If two adjacent states use the same HEDS_Data, it is

wasteful to clear the routine, reload the same exact HEDS, and start over. In the event that the

pointers do not match, the pointer in the RCL is updated to the location of the HEDSData

corresponding to the new system state. Next, the routine is reset to purge any incomplete data

set. Now, each time ERM synchronizes the routines, the proper HEDS will be loaded via the

RCL for the routine. This function needs to be executed when the Intelligent Sensor comes

online to load the default system state and each time a sensor-level state change event (SCE)

takes place.

HEDSMsgDecodeAndUpdate is responsible for taking a network message that contains

new HEDS information and updating the HEDS_Block with the new information. The function

takes a reference to a buffer and the size of that buffer as input arguments. The buffer reference

is the location of the argument array from a SET_HEDS message placed on the network and

subsequently received by the Intelligent Sensor. The objective of this function is to decode the

argument array into machine-usable components comprising the HEDS_Record and

HEDSData, and then subsequently storing it in local nonvolatile memory. During this process

the HEDS Block is updated with the location and size of the new HEDS and the default system

state is assigned to the associated routine in the RCL. The Object ID of the message, passed as a

separate parameter, identifies the intended routine on a specific Intelligent Sensor that this HEDS

is to be associated to. This function relies on HEDS _Write and HEDS Associate.

HEDS_MsgEncodeAndSend provides the reverse functionality of

HEDSMsgDecodeAndUpdate to prepare the message arguments for response to a GET_HEDS

network request. Once the HEDS for the given Object ID is marshaled into an argument array,

91

An Architecture for Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

the message is passed to the client/server message port. This function utilizes HEDS_Read to

retrieve a routine's HEDS Record and then a call to the NCAP Server Port Queue insertion

function.

The remaining functions are used internally by the HEDS API, and are generally not

intended to be called directly by the application. To better understand the inner workings of

HEDS and in the interest of future expandability, the description for these functions follow:

HEDSWrite

HEDSRead

HEDSRetrieve

HEDSChecksum

HEDS Delete

HEDSDeleteAll

HEDS_Write addresses the details of securing a block of free memory, clearing that

memory, and copying decoded HEDS data into it. This function contains implementation and

compiler specific functions for scanning memory, allocating memory, and writing to memory.

HEDSRead addresses the details of retrieving a routine's HEDS Record. At this time, it

is only used by HEDSMsgEncode. It scans the HEDS_Block for the location of valid

HEDSRecords and traverses the list until the desired record is found. It returns the

HEDSRecord for the routine and each state specific HEDS_Data.

HEDS_Retrieve returns the reference to HEDS_Data stored for a given HEDS Object ID.

This function is used by HEDSAssociate for retrieving a pointer to the HEDS data that

corresponds to the desired system state.

92

An Architecturefor Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

HEDSChecksum performs checksum calculation on a HEDS Record. This is currently a

stub, and is recommended as future work to ensure HEDS integrity.

HEDSDelete removes the HEDS_Record and all HEDS_Data that corresponds to a

health routine Object ID and frees the memory. Because of memory allocation and freeing

issues on the Rabbit microcontroller, this function is not used. In its place, HEDS_DeleteAll is

used to delete all valid HEDS_Records and HEDS_Data on the Intelligent Sensor.

Unfortunately, this means that updating a single HEDS requires removing all existing HEDS. To

keep from having to reload all HEDS every time a single HEDS changes, this topic is identified

as future work.

The HEDS as described are the first critical part of developing extensible and

configurable health enabled Intelligent Sensors. The next piece of the puzzle is an embedded

routine manager (ERM) to manage the instantiation, linking, and execution of health assessment

routines.

3.2.2 Embedded Routine Manager (ERM)

Memory management is a very important feature of real-time embedded systems. Memory on an

embedded system is usually on the order of kilobytes (kB), whereas computer systems are

extensible to the order of gigabytes (GB). The failure of the ubiquitous c-style malloc memory

routine can have dire consequences, and successful calls are indeterministic, making dynamism

and real-time conflicting embedded goals. This is an issue of particular concern with the

algorithms obtained from GRC in Chapter 2, where most of the algorithms dynamically allocate

and free memory for local processing operations and exchange/traverse data vectors through

memory pointers and indirect addressing techniques. As a result, routine timing is difficult to

determine due to the extensive allocation/deallocation of memory resources and at any given

93

An Architecturefor Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

time there may be multiple copies of the same data in memory. Solving the inline

allocation/deallocation problem is easy - allocate required memory at startup and make sure all

memory size requirements are statically defined. The more difficult problems are eliminating

duplication of the dataset, ensuring that results needed by multiple algorithms are available in the

correct order of dependency without redundancy, and ensuring access to the dataset is

standardized. All of these issues are addressed by the embedded routine manager (ERM).

Before getting into the operation of the ERM, it is important to take a look at the Intelligent

Sensor memory map and understand what limitations and advantages are present. The memory

map, available from Rabbit Semiconductor for the Rabbit 3000 MCU [67], is shown in Fig. 3.13.

The Rabbit 3000 contains a root segment, which contains executable code; data segment which

contains C-style (root) variables; stack memory; and the XPC segment, which is extended code

memory. The XPC segment is beyond the logical addressing capability of the processor and

operates on the concept of an 8kB sliding page, where each individual page is directly

addressable via logical addresses. This allows the processor to support up to 1MB of code space.

RAM

Flash
"Memory

Logical Address Space Physical Address Space

Figure 3.13: Rabbit memory mapping.

94

xDo000

OxCFOO

OxCEOO

OxCcoo

An Architecturefor Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

It is important to note that by changing the SEGSIZE variable, the sizes of both the stack and

data segment are changeable. The data segment is capable of containing about 44kB of

variables. Since our application uses TCP/IP there is additional memory used for socket buffers,

so space in the data segment is valuable. In addition, the full 4kB of stack is needed for the

RTOS tasks. While code and data may only be accessed in the regions shown in Fig. 3.13,

additional memory (up to 6MB) may be added to the Rabbit memory management unit (MMU)

that is not directly accessible. On our sensor there is an additional 256kB of RAM that is battery

backed. This is where ERM keeps a large running data buffer and where nonvolatile HEDS are

stored. The consequence of using this memory area is that the memory is not accessible by a C

variable or a 16-bit pointer, but instead a 20-bit physical memory address. XMEM data is

accessible by transferring bytes from a supplied XMEM start address to ROOT variables (such

as an array or structure). Since it is not possible for ROOT to approach the capacity of XMEM,

the copy operation must be limited to the smallest quantity of data that is needed at any given

time, where this extra transfer (both to XMEM and from XMEM) takes an additional dozen

clock cycles due to long pointer calls. In the Rabbit code libraries there are three important

functions for accessing this XMEM region:

* xalloc

* root2xmem

* xmem2root

The purpose of _xalloc is to update the locations and boundaries of allocated memory. It is

abstracted into the MemAlloc ERM member function to assist with achieving platform

independence. The second two functions are used to transfer the contents of a C variable (i.e.

data in root memory) to XMEM and vise versa. The root2xmem and xmem2root functions have

95

An Architecturefor Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

been abstracted to Mem_Set and Mem_Get, respectively. Also note there are additional XMEM

operations for copying between XMEM locations and functions optimized for copying specific

datatypes that are not necessary for this implementation, but available for general use. Those

functions are: xmem2xmem, xgetfloat, xgetint, xgetlong, xmemchr, xmemcmp, and xmemset.

The goal of ERM is to address the key issues of providing a dataset to an algorithm or

routine for processing that may have dependencies on other routines or algorithms without

duplicating the data set. The second premise is to provide an orderly and manageable method to

control the execution of the algorithms or routines in an environment where the number of

algorithms or routines is variable and varies between development mode and production mode.

The next section develops the concept of the ERM and explains how it offers a solution to these

issues. Lastly, a section is provided as an application brief for interacting and using the features

of ERM through the ERM API.

3.2.2.1 ERM Theory of Operation

The ERM can be envisioned as a massive list of records structured as a doubly linked list, with a

control module that supervises access to the list and manages the progression of data processing

throughout the list. Each node in the list contains node-specific information and data/payload, as

shown in for an example node in Fig. 3.14 used in this application.

96

An Architecturefor Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

Size (ung.d int32)
* PendingFlags (untigndtie)

ProcessingFlags (uniagndnte)> Internal Node structure
2 prev (ERMimAdd)

next (ERMAMemAddr
w ERMPayload fortind

^_---_7J

application-specific
node data/payload * 4

members

Figure 3.14: ERM Node layout.

The nodes consist of six fields, the first five of which contain node-specific data. The node-

specific information includes total size of the node, two flag groups internal to ERM that track

the status of each node (if it is processing or already processed) with respect to each available

routine, a pointer to the previous node, and pointer to the next node. The final field is the

data/payload portion that is used by routines as a data source for processing and a destination for

results (routines do not have access to the actual node - only to the payload). The data/payload

is extensible in that it may be expanded to allow the list to manage more than just ADC

codewords or engineering values, but emerging routine output as well. The organization of the

data/payload part is specific to the embedded application and the specific routines that are

present. Several other methods for organizing ERM were evaluated. As a queue, it became

prohibitive (in terms of CPU overhead, flags, and queue descriptors) to keep track of progression

within multiple queues. Single linked lists (used as a FIFO buffer) made it difficult to resolve

the relationship between adjacent lists without the convenient previous node address.

An Architecturefor Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

In order to control the activity of routines, ERM maintains a globally accessible routine

descriptor for each instantiated routine. This descriptor records the occupancy of the window,

location of the front (first node), rear (last node) list pointers, Internal ID for the list, window

type, window size, the location of the current HEDS_Data, the HEDS Data length, the Object ID

of the routine (also HEDS UUID), pointer to function that is to be executed for full and partial

window conditions, location of scratch memory, length of scratch memory, and the routine

association. A routine descriptor equivalent to that used in the Intelligent Sensor with

identification of where the individual data elements originate is shown in Fig. 3.15.

(Routine Descriptor

SWindow Count (unsignedinti6)
Source: ERM First Node (ERM_MemAdd*
(dynamic @ runtime) Last Node (ERM MemAddr)

.Routine Internal ID (unsignedintS)
Window Type (unsigned ints)

Source: HEDS- . Window Size (unsigned int16)
(remote updateable) HEDS_Data Location (ERMMemAcdd

, EDS_Data Length (unsignedintlS)
Source: Routine HEDS UUID/Object ID (unsignedinti)
Configuration Function call for partial window (voidc
(embedded app)' Function call for full window (void)

Scratch Memory Location (ERMjMemAdkn
Scratch Memory Length (unsignedint1)

__outine Association (unsigned int1s

Figure 3.15: ERM Routine Descriptor that stores key routine information.

Some of the data in the routine descriptor is dynamic and updated during runtime (count,

first/last node). Other data is obtained from the HEDS_Record (window type, window size) and

contains links to the HEDS_Data corresponding to the current system state (running

HEDS Associate() due to a system state change alert message will result in this link updating, if

necessary). The last part of the routine descriptor is proprietary to the specific embedded

application including a void pointer that identifies the function to call for a full and partial

window, the location and length of routine "scratch" memory that persists between executions,

and the routine association parameter. The routine association is the way for conveying inter-

routine dependencies, and is represented by a 16 bit value. The high byte and low byte

An Architecturefor Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

correspond to indirect association and direct association. Direct association refers to the

dependence of routines that are sequentially registered (and therefore adjacent in Internal ID).

The master list entity is automatically assigned highest priority (Level 0), as the master list is

responsible for allowing new nodes to be inserted and expired nodes to be removed, causing the

Internal ID to start enumerating at 1. The Internal ID is important as it indicates the order of

execution (1 executes first, continuing sequentially through the routines). For example, an

engineer may wish to run a smoothing routine on the data prior to applying an operation to the

data set. To do this, the smoothing routine would be instantiated first, and then the routine for

the other operation, with both having the same lower byte association. By doing this the

transform will not have access to a set of data until the smoothing routine has first processed it.

This chaining is valuable for breaking signal processing operations into small, manageable, and

reusable components, although for each routine added to the chain there is a delay equivalent to

the routine's window size introduced to each successive routine in the chain. Chaining is not

required; routines may also be configured independently, with each operating on raw or some

level of preprocessed data. The direct method works when there is one preprocessing routine

that is used by one other routine. However, there are cases where a single preprocessing routine

is used by multiple routines, which is not efficiently possible in a direct association. The indirect

association is used to provide the same chaining capability for multiple routines that may not be

adjacent in the priority list. Using the example from above, say there is also a fitting routine that

needs the same smoothing. By setting the high association byte to the priority of the low byte of

the smoothing routine, the fitting routine will now also depend on the smoothing routine. The

association process is shown graphically in Fig. 3.16.

99

An Architecture for Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

Execution Order and Dependence Instantiation Order & Association

A

Figure 3.16: Routine dependency based on priority and association.

The final topic to discuss is the representation of data to the individual routines. Since

the routine descriptor identifies the first and last node of the routine's dataset, nodes between are

accessible by indirectly addressing an integer offset from the routine's first node for maximum

speed. Each node is stored entirely in RAM, and the indirect addressing scheme works because

the master list is statically allocated at run-time, assuring all nodes are adjacent. In addition to

access of elements in a dataset, the user can specify the behavior of the dataset by setting the

window type parameter to SLWIN or BLOCK. These mnemonics refer to the behavior of the

window 3 and identify if it is a sliding window (SLWIN) or a block processing window

(BLOCK). The sliding window operates according to the example in Fig. 3.17, where the

occupancy in the window increases as each point becomes available to the routine. Once the

window becomes full, it continues to stay full and purge the oldest data point as each new one

arrives.

3 Window in this context refers to the list of nodes that constitute a dataset, not to be confused with a window in the
context of signal processing.

1

-- ---- ---------- I

An Architecturefor Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

Routine 0: Insertion
Routine 1: Size of 2
Routine 2: Size of 3

R1 count = 0: R2 count = 0:
SI RO I NULL I NULL NULL NULL I NULL I

R1 count = 1; R2 count = 0;
* R1FR1L * . RO 4 NULL SC NULL | K NULL L NULL

R1 count = 2; R2 count = 0;

* RF R1L I I RO NULL NULL I NULL -

R1 count = 2; R2 count = 1;
- R2F,R2L R1F R 1L RO

N U LL
NULL L

R1 count = 2; R2 count = 2;
"* 4 R2F I "^^P* I R2L I ̂ l^^ I R1F I "^^ I R1L r l^^F*" RO I '^^ INULL I

R1 count = 2; R2 count = 3;
R2 F

I t I
R 2

I I
R2L

I ý I
R 1F

f IIP'
R 1L

I ' I
RO

I

R1 count = 2; R2 count = 3;* NULL I !p I R2F I I R2 ^ I R2L A v R1F "i R1L
Figure 3.17: Example of a sliding window shared between two routines.

The block window operates differently in that data points are inserted into the list up until the

window reaches its maximum limit. When the window is full the routine assigned to the full

condition is executed, and when it finishes all nodes in the window are released. The next new

node for the given routine is the node immediately after the last one that filled the previous

window. Block windows are useful for routines where the algorithm requires a complete dataset

before it can operate. Examples are some smoothing functions that utilize the contribution of

initial and final data points in producing a weighted average and for highly optimized routines

such as the Rabbit implementation of the FFT. There are times when a gap will form in the list,

meaning there will be a node in between two adjacent routines that is available to be used by the

latter routine, though it is not yet doing so. This happens when block and sliding windows are

interspersed due to the behavior of block windows. This is not a problem for the Intelligent

Sensor, as during the time the block window builds back up and the processing demands for that

routine are minimal, the other routines will be able to catch up. The only caution here is to

ensure the ERM master list contains enough nodes to account for any temporal delays in the list.

The ERM API also includes I/O functions for externally indicating iteration progress through the

101

An Architecturefor Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

list of executing routines via toggling of an I/O pin and debugging printf statements that count

the elapsed routine execution time in milliseconds and display ERM status messages. These

features are used to help optimize the loading of ERM during development.

Routine 0: Insertion
Routine 1: Size of 2
Routine 2: Size of 3

R1 count = 0 R2 count = 0
- - RO | *fL· NULL | *-eL· NULL | *"cL^ NULL | yfbpt NULL I *^f^ I NULL ...

R1 count = 1; R2 count = 0;

S R1F,R1L *^P RO "Ll NULL L| NULL 2 NULL -eC NULL

R1 count = 2; R2 count = 0;

* R1F f^ R1L J_ý*"' RO Ir L NULL I IIIII NULL ^c L NULL | -.

R1 count = 1; R2 count = 1;
* R2FR2L R1FR1L RO NULL .- NULL -

R1 count = 2; R2 count = 2;
'* R2F I ^ =^ I R2L r~JL· R1F " ^^^ I R1L I ^T RO I 'r^' NULL ...

R1 count = 1; R2 count = 3;
S R2F | IIII | R2 | I

R2L
I I I R1F,R1L| * | RO ~

R1 count = 2; R2 count = 1;

.* NULL III I NULL 1111 1 NULL I R2F,R2L
R 1

F R1L .-

Figure 3.18: Example of a block window shared between two nodes.

This is important because the ERM places priority on timely execution and requires that each

routine complete a single iteration of processing (in the case of a sliding window this is

processing the newest node, in the case of a block window, this is performing the total

computation when the window becomes full) before moving on to the next routine. Due to the

embedded real-time constraints there is no ability for an individual routine to reserve a node or

dataset for future analysis or defer/commandeer any CPU time. Thus, if ERM is continually

overloaded, unprocessed nodes will queue up in the ERM until the list becomes full.

In conclusion, it has been shown in this section that the ERM establishes a solution for

managing multiple datasets and routine execution in a flexible yet efficient way that improves

the accessibility to Intelligent Sensor resources, touching the key topics of ERM nodes,

data/payloads, routine descriptors, routine association, window types, and loading. Now that an

102

An Architecturefor Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

extensive background and explanation of the ERM is presented, the next section will discuss the

developer's interaction with the ERM through the ERM API.

3.2.2.2 ERMAPI

The ERM API is the gateway to putting the power of ERM to work on the Intelligent Sensor.

The API consists of a collection of functions that cover everything from instantiating routines to

working with individual nodes of the ERM. This section is presented in a descriptive format,

starting with the user accessible functions:

void ERM Init(void)

uint8 ERM_CreateSubList(uintl6 uiAssoc, void (*HandleFull)0, void (*HandlePartial)O, uint32

ScratchSize, HEDSUUID HEDS UUID)

uint8 ERM Insert(ERM Payload *ERMPayload)

uint8 ERM_Retrieve(uintl6 *RoutineID, uintl6 NodeOffset, ERM_Payload *ERMPayload)

uint8 ERM Update(uintl6 *RoutineID, uintl6 NodeOffset, ERM_Payload *ERMPayload)

void ERM Purge(void)

void ERM Sync(void* ptr)

ERM HealthEvent(uintl6 *RoutineID, TIME REPRESENTATION *EvtTimeStamp, void

*HEDS_EvtDataAddr, void *HEDS_Meta_Addr, uintl6 HEDSMetaLen, uint8 HEDSMetaTC);

void ERM_HealthPeriodic(TIME_REPRESENTATION *EventTime, void *ParameterPointer, uintl6

*RoutinelD);

uintl6 ERM_HealthReport(HealthMsg *MsgArguments, uint8 ParameterPointer[], uintl6 *RoutinelD)

The ERMInit function is invoked as part of system startup. This function allocates the

memory used by the nodes of the ERM list and initializes the routine descriptors. It also creates

the first list, which is commonly referred to the Master List or Node Insertion List. The scope of

the master list is global. The master list is the only list that may accept insertions and allow node

deletions. No handle is needed to the master list, as it is automatically assigned an Internal ID of

0 and is internally accessible to the other API functions that must access it.

103

An Architecturefor Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

The ERM CreateSubList function creates and links a new list to a routine. It may be

called at any point in program execution after ERM_Init, however it is commonly suggested to

make all calls together as part of the startup sequence to maximize runtime performance and

prevent any possible "out of list" runtime error messages. The first parameter is the list

association. The association defines groups of dependent routines. Associations are typically set

as #define statements at the top of the user's code to any double byte value other than 0. The

theory behind list associations was discussed in Section 3.2.2.1 and shown in Fig. 3.16. The next

two parameters are the pointers to the code that implements the routine or algorithm that is to be

used on full and partially full datasets, respectively. The same code may be used in both cases if

suitable to the application, or a NULL may be utilized if there are no activities during one of the

conditions. The function whose reference is provided must contain a declaration as shown below

in Fig. 3.19. The final parameter required to create a new list is to include an Object ID. The

Object ID is synonymous with the HEDS Object ID. The user must provide this as a manual

input on this version of the Intelligent Sensor. It is required so that routines will be matched with

respective HEDS, and so routines can be identified as 1451 objects. Other list parameters, such

as size and window type are provided directly by HEDS.

The ERM_Insert function inserts the contents of a locally available ERM payload into the

list position immediately succeeding the position of last node in the master list. This function

requires very few CPU cycles to complete and may be called from an ISR or an OS task. The

input parameter is simply a reference to an ERM payload object (see Fig 3.15).

ERM_Retrieve retrieves the node from the front of a list and provides a memory

reference to the node. The user must identify the routine ID to access the appropriate list, as well

as the desired node in that list provided as an offset from the start of that list. Valid offsets are 1

104

An Architecturefor Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

(the front node) thru the maximum size of the list (the last node). If the node is valid in the

context of the supplied Routine ID, the results are retrieved to the memory space pointed to by

the input parameter. This function DOES NOT remove the node from the list; it may be

retrieved multiple times if necessary. This function uses indirect addressing to resolve the

correct node.

ERM_Update is used to update an existing node in memory. The user must identify the

routine ID of the desired list and the node to update identified as the offset from the start of the

list. This function essentially replaces the existing node with the node supplied as an input

parameter. If the node is valid in the context of the supplied routine, the results are copied from

the memory pointed to by the payload pointer into the node. This function uses indirect

addressing to resolve the correct node, and the offset range is the same as for ERM Retrieve.

The use of ERM_Purge is to flush every list and reset all positions back to zero. This

operation does not remove any existing routines from the ERM. The primary purpose is to clear

all of the lists when the sensor transitions from a sensing state to an idle state. To ensure the

contents of any partial lists are not incorrectly applied to a new measuring operation,

ERM_Purge must be run in between measuring activities.

The most important function is ERMSync. This function is solely responsible for

managing the lists within ERM as new nodes are inserted and old nodes become obsolete. In

addition, this function is responsible for providing individual routines CPU time when ready to

run. The determination of readiness to run is a function of routines that have nodes in their scope

that require processing and the presence of valid HEDS for the routine. There is one input

parameter, a void pointer as required by all operating system tasks. This function is

implemented as an operating system task because it must be called on a periodic basis to ensure

105

An Architecturefor Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

the ERM does not get full and to ensure timely health processing takes place. The task is

currently implemented as the lowest priority task, consuming all available CPU until a higher

priority task becomes active. This ensures that sampling and messaging are higher priority and

are not adversely affected (in terms of scheduling) by the health assessment process. This

function relies on several smaller functions to perform the work of moving list pointers,

executing individual routines, cleaning up each list, and removing nodes that have been

expended. For the curious user, the explanation of these functions is left to the in code

documentation, though for reference those individual functions are:

void _ERMProcessRoutine(uint32 *AddrOfNodeToAdd, uintl6 *RoutinelD);

void _ERMInsertNodelntoList(uintl6 *RoutineID, uint32 *currNode);

void _ERMRoutineProcessor(uintl6 *RoutinelD)

void _ERMStatlOUpdate(void);

void _ERMRemoveNodeFromList(uintl6 *RoutinelD);

void _ERMRemoveSingleNode(uintl6 *RoutinelD);

void _ERMRemoveMultiNode(uintl6 *RoutinelD);

void MasterNodeClean Up();

uintl6 uipow(uintl6 uiBase, uintl6 uiExponent);

uintl6 GetArgLen(uint8 IEEE1451_TC)

The next function under examination is ERM_HealthPeriodic. It serves the purpose of

providing a routine (namely feature extraction routines) capability to publish periodic results to

the publisher port. As input it takes a reference to the timestamp of the event, a reference to the

value(s) that are to be published, and the Routine ID to identify the requesting routine. This

function then inserts the value(s) into a buffer maintained by ERM for health messages. Each

routine has a number of message buffers controlled by the #define ERM_MaxHealthMsgBuff

parameter for setting the maximum number of buffers, and #define MaxHealthArgSize for

106

An Architecturefor Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

specifying the maximum size of each buffer. ERMHealthReport then checks these buffers

when packing data + health messages.

The next function is ERM_HealthReport whose purpose is to provide the message

processing side of routine message publication. This function checks the routine specified by a

routine ID input argument for message buffers with any pending messages, retrieves the

routine's oldest message contents to the location pointed to by the parameter pointer, and returns

an array of health publication information consisting of TypeCode, length, and routine specific

information to be used in constructing the IEEE 1451 on-the-wire message. This function needs

to be called for each routine active in the Intelligent Sensor that publishes information through

ERM_HealthPeriodic. The actual encoding of the message as an IEEE 1451 on-the-wire

argument array occurs by the caller of ERMHealthReport, which in the case of this

implementation of the Intelligent Sensor is encapsulated in the PubPortEncodeData() function.

The last function to be examined is ERM_HealthEvent, which provides event detection

routines with the ability to generate a message in response to an event. The input parameters

include the internal Routine ID (passed through ERM as a pointer), current effective timestamp

(generally obtained from the current data point), a reference to a value or series of values used to

determine the existence of the event if desired (the TypeCode of the value/array is determined by

the message argument TypeCode in the HEDS), associated metadata (in this implementation its

typically an array of characters, implicitly decoded as ASCII characters to verbosely describe the

event, although it could be anything else, such as an integer coding scheme), the length of the

metadata, and the TypeCode of the metadata. The last three parameters are obtained directly

from the HEDS and need no manipulation by the code; the only user-definable parameters are

the timestamp and data value(s). Recall that event detection HEDS contain metadata for both the

107

An Architecturefor Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

onset of an event and the absence of an event. The event is not continually reported to conserve

network bandwidth.

Before leaving this section on ERM, the final topic that must be discussed for

completeness is the formatting of the health routine code. All functions must contain the

prototype as shown in Fig. 3.19, as the calls are indirect calls and there is no checking of the

input arguments.

void HAR RoutineName?(uintl6 *RoutinelD, uint32 HEDS Record_Addr, uintl6 HEDS_Length, uint32 pdata_addr, uintl6 pDataSize)

Figure 3.19: Health analysis routine function declaration.

The return value is always void, and the name of the function begins with HAR as an

abbreviation of health analysis routine, followed by a descriptive name of the routine, and

suffixed with either F, P, or nothing to indicate use on full, partial, or all window conditions.

The routine designer needs to supply the RoutinelD when retrieving or updating nodes, so it is

supplied for convenience as a pointer. RoutinelD is simply the ERM's internal routine tracking

identifier, and is passed through each function to ensure that all code is reentrant. The

HEDS_Record Addr is the memory address of the HEDS data for this routine, along with its size

stored in HEDSLength. The user must perform a memory copy using MEM_GET in order to

map the HEDs to a local structure within the routine. It is at this step that the HEDS_Data

obtains its meaning to the routine. The final parameter in the routine call is the address to and

size of a memory segment that is reserved for the routine to store variables or parameters in

between executions. The size of this memory is specified in the ScratchSize parameter when the

list is created. This too must be mapped to a local structure. The basic template for a health

analysis routine is given in Fig. 3.20.

108

An Architecturefor Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

void HAR DFT64F(uintl6 *RoutineID, uint32 HEDS Record_Addr, uintl6 HEDS_Length, uint32 pdata_addr, uintl6 pDataSize)

{
ERM Payload EPLcurr;

x_HARDft64HEDS HEDS;

x HARDft64Vars ScratchVars;

HealthMsg HealthMsgArguments;

Mem_Get(&HEDS Record_Addr, &HEDS, HEDS_Length); //intepret HEDS binary as a structure

Mem_Get(&pdata_addr, &ScratchVars, pDataSize); //retrieve routine variables

memset(&EPL_curr, OxO, PayloadSize); //clear memory for current node

ERMRetrieve(RoutinelD, ERM_RoutineList[*RoutineID].Count-1, &EPL_curr); //copy newest node into local memory space

fftreal(ScratchVars. Descriptors, 64, &ScratchVars.blockexp);

//Update Messages

ERM Retrieve(RoutinelD, 0, &EPL_curr); //copy newest node into local memory space

memcpy(&HealthMsgArguments.TimeStamp, &EPL_curr.TimeStamp, 8);

ERM HealthPeriodic(&HealthMsgArguments, ScratchVars.Descriptors, RoutineID); //Generate health reporting message using HEDS

//descriptors and desired health reporting variable

//reset everything for the next batch

memset(ScratchVars.Descriptors, OxO, 256);

ScratchVars.n = 0;

ScratchVars.blockexp = 0;

//Update Memory

Mem_Set(&pdata_addr, &ScratchVars, pDataSize); //update scratch memory

}

Figure 3.20: Example health analysis routine for 64 point DFT with a full window.

109

An Architecturefor Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

3.2.3 Network Firmware Update

Remote firmware updates are another primary operating requirement for the Intelligent Sensor

and serve a variety of purposes. Firmware update is a mechanism for updating the Intelligent

Sensor operating system, IEEE 1451 subsystems, health assessment routines (not to be confused

with the routine parameters embodied in HEDS), and other proprietary application code.

Intelligent Sensors running in a lab environment may be frequently flashed if the coding

workstations are separated from the development and testing facilities4. The next section

discusses methods of in situ firmware updates, followed by a section addressing the chosen

Intelligent Sensor implementation.

3.2.3.1 Methods for Updating Firmware In Situ
There are several aspects of firmware updates. Processors that have dynamic code linking

capability would permit the ability to selectively update portions of the firmware and relink it to

the existing base operating firmware, much in the way a Windows PC can download new DLLs

or executables. The new code, unless critical to the operating system, usually does not require

the system to be restarted. For typical small scale embedded systems, this type of advanced

capability is new and has not been adequately field demonstrated in mission critical systems.

Typically, CoTS devices such as MP3 players, calculators, and other small embedded equipment

statically update the complete operating firmware by downloading the new firmware over an

interface network or bus to a separate memory, then restarting the microcontroller with a special

instruction so it will first copy the new firmware into protected program memory, verify validity,

then restart in normal operating mode. Rabbit processors support a similar type of remote

firmware update on configurations that contain two FLASH memory chips by using the first one

4 Though a very useful feature on the ground, mission safety protocol requires Intelligent Sensors certified for space
flight that perform in mission critical roles to have any type of firmware update mechanism disabled in hardware
once the checkout process is complete.

110

An Architecturefor Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

(OxO - 0x40000) for storing the new program binary and the second (0x40002 - 0x80000) for

running the code that handles the download process [68]. The code entry point is controlled by

toggling the chip select pin on the respective FLASH memory chip. This method is potentially

dangerous as the validity of the downloaded binary is not verified until after it is downloaded and

the previous program is overwritten. There is also the risk of a power failure, which could cause

the CPU to reboot into code that is not complete.

There is also a solution for Rabbit based devices that utilize a daughter board. The

daughter board interfaces to the JTAG and several Rabbit I/O pins. The procedure starts with

downloading the firmware image to the Rabbit CPU and storing it in any available buffer. Once

the download is complete, it is transferred to the daughter board. The daughter board then places

the Rabbit CPU into program mode and loads the new firmware via the JTAG interface. The

daughter board is essentially emulating the connection to the development workstation and

integrated development environment (IDE). This method surpasses the reliability of the online

updating process described earlier, at the cost of additional hardware.

There is a more clever approach that leverages the advantages of hardware based updates

without requiring a second FLASH chip and mitigates the risks of a bad firmware image. The

Rabbit CPU gives us a special advantage because it can execute code from either FLASH or the

root segment of RAM (refer to the Rabbit memory map in Section 3.2.2). As such, it is possible

to compile a small application into FLASH that on startup checks some status flags (also stored

in FLASH) to determine what firmware should be copied into RAM, where to copy it from,

validate the CRC, etc. After copying the firmware, the execution point is changed to start

execution in RAM. After a subsequent warm boot, the Rabbit processor is running the newly

copied firmware. Sample libraries are provided by Rabbit Semiconductor for developing this

111

An Architecturefor Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

type of firmware download strategy [69]. The application in FLASH will persist between power

cycles, and eliminates the need to attach to the JTAG port to reload firmware. A graphical

representation of this process is shown in Fig. 3.21.

ý Download New firmware is downloaded
Manager and stored in peripheral FLASH

CPU is then warm booted,
Reboot fetching code from

program FLASH

Determines if there is a valid
application image. If so,
copies image to RAM and
sets CPU register to load from
RAM.

CPU is then warm booted,
fetching code from RAM

User application begins executing

The process is repeated by
issuing a reboot command

Figure 3.21: Smart Sensor firmware update process.

The downloaded programs may be stored in the onboard program FLASH or peripheral FLASH

if it is available. This method supports multiple program binaries, up to the maximum amount of

available memory. This is advantageous, because even if the program is downloaded but fails

(for example, a bad pointer assignment in the code), a previously downloaded and verified

program can be designated as the failsafe. There are also configuration options to avoid

downloaded programs that exceed a user settable limit for watchdog timeouts and resets. This

means there is no risk of affecting the reliability of the Intelligent Sensor due to bad firmware,

whether the firmware was corrupted during the download/copying process or through an

application fault. The Intelligent Sensor deviates from this implementation strategy by only

storing images in peripheral FLASH to maximize the available program FLASH for other uses.

An Architecturefor Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

3.2.3.2 Implementation and Interface

The sensor contains a small boot agent that resides in FLASH that performs the function

described in the prior section of determining the image to load, loading the image, and restarting

the CPU. Since the starting address of FLASH is OxO, the boot agent will be first to start in a

default configuration that may exist after an unexpected power failure or software exception.

Variables that correspond to behavior (where to load the image from, which specific image to

load, etc) are stored in the user area of FLASH, and are protected between power cycles. In this

implementation firmware images are stored only in the 8MB of serial FLASH peripheral

memory. The reason for this is to provide more execution FLASH to maximize addressable

memory space. The firmware update suite includes the boot agent discussed previously and a

download manager application that resides in FLASH. The Intelligent Sensor is preconfigured

out of the box to boot to the download manager, where application software may then be

downloaded and executed over the Ethernet network. Should the download manager or boot

agent become corrupted, they must be reloaded via the JTAG interface.

The only interface functions that the user needs to call are the download system

initialization (dlp_init) and the reboot (dlp reboot) command. All other activity is handled

behind the scenes and without user intervention. The compiler must be set to compile code to

flash, run in RAM for the process to work successfully. The options for transferring the firmware

image from host to client is through an HTTP interface or a TCP socket stream. The TCP stream

is useful for automated or machine-based reconfiguration scenarios, such as the proposed Health

Assessment Database or Health Assessment Repository [70] where user interaction is minimal.

The HTTP interface is ideal for development use or manually configured and maintained sensor

networks, where firmware will be distributed to a small handful of sensors by an individual.

Considering the current milestones of ISHM and the availability of HTTP-based code examples,

113

An Architecture for Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

HTTP via web browser was the chosen interface. Images of the HTTP based download agent are

shown in Fig. 3.22 thru 3.23.

VieCw Erat download manager suns Stats

Upload new fimwate image Upkod

Figure 3.22: Download manager main page.

Fie Eit vew Fav rtes Tds ei l

search -Favor .

Fimnware Image o Upload Browse

Runnew fmard after upload?

| Upload j Home

my 'MCertwter

Figure 3.23: Download manager image upload screen.

With the success of this download demonstrator, it will be recommended as part of the future

work to implement a TCP download interface to support automated update capability through

ISHM.

3.3 Intelligent Sensor 1451 Interface

The final requirement of the Intelligent Sensor is a functional IEEE 1451 interface. It is

important to realize that the Smart Sensor standard is very comprehensive and looks ahead at

An Architecturefor Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

sensors and actuators that are part of a fully dynamic, self identifying, self configuring network.

All of that potential capability is not required for every application or to achieve compliance, nor

is it reasonable to expect a fully mature product at the end of an early development cycle.

Therefore the development objective is to reduce IEEE 1451 to the bare minimum set of objects

and capabilities to allow the Intelligent Sensor to interface to an IEEE 1451 network. This

reduction has been coined "1451 lite" for its minimalist approach. As the IEEE 1451 paradigm

was discussed in depth in Chapter 2, the focus here is on the actual parts of 1451 that are

implemented to provide that minimal interface, as well as the added capabilities in support of

health assessment that are beyond the domain of the standard (however follow conventions and

techniques conforming to the standard). It is expected that there will be revisions to the

implementation as the Intelligent Sensor/ISHM mature and as a result of future revisions of the

1451 standard. In terms of an interface control document, the following sections are organized

by the two major components of the NCAP interface: Publication/Subscription messaging and

Client/Server communications. The following sections identify each message supported by the

Intelligent Sensor, along with functional purpose, explanations of arguments, formatting, and any

deviation from the standard. The messaging structure is loosely based on the Boeing/Agilent

Openl451 interface control document [33].

3.3.1 1451.1 Publications

Publications are messages that do not have a specific end host, and are primarily used for

discovery, configuration, batch operations, and communicating information from one source to

multiple destinations with minimal network traffic. The messages are sent to every node on the

network, and each individual node examines the message to determine if it is relevant. The

messages minimally contain a message type identifier, message length, header length,

115

An Architecturefor Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

publication key that identifies the purpose of the message, and a publication domain that is used

as a message domain filter. The IEEE 1451 publication port is synonymous with the broadcast

or multicast address of an Ethernet network, though publications are still filtered by the Ethernet

stack at the port level. The publication/subscription port reserved for commands is 11000, and

port 12058 is reserved for measurement data and health information. This differentiation keeps

the Intelligent Sensors from filtering and decoding one another's data packets, since the

publication contents are not decoded until the application layer (refers to the ISO model in Fig.

3.24). This capability may be of use in future applications where Intelligent Sensors are aware of

neighboring sensor activity, such as in the application of swarm intelligence [8] or multi-sensor

data fusion [20, 71].

Exchange
Layer IUnit

-_ _ -Appli cati iRPjota.L ------

--- Px.sj.ateinniEr.ot1.cjl ------

- - - - --Session Protocol _

------- --------Tr --r--p- Pr-t---- --- Trnspart PujQt!cQl --------
Communication Subnet Bourj

SNetwork +- Network

Data Link - Data Link

SPhysical +-- Physical

APDU

PPDU

SPDU

TPDU

Packet

Frame

Bit

Figure 3.24: The ISO/OSI protocol model.

For a dynamic sensor network, the standard is designed so that each sensor may be

discovered and then subsequently queried to determine its capability and functions. Batch

operations that apply to a group of Smart Sensors may include tasks such as commence

116

An Architecturefor Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

measurement, halt measurement, reboot, or identify. Even on a statically configured network,

some level of self identification is required, as is shown in the announcement messages to

follow.

The first interface message that will be present on the network during sensor network

commissioning is the RequestNCAP_BlockAnnouncement. This packet is transmitted by a

sensor network configuration tool, and has the form of Fig. 3.25.

ublisher Port Mes a

Name Typ e Details

Total Message Length uintl6 x000F____

Publication Key uint8 PSK REQUEST NCAP BLOCK ANNOUNCEMENT (x04)

Publication Topic uint Ox00

Figure 3.25: Interface for Request NCAP Block Announcement message.

The intention of this message is to solicit a response from each NCAP object with the pertinent

information needed to establish further communication. As such, the message contains no topic

or payload, only the header as described in the previous paragraph, with the Publication Key

(0x04) identifying the purpose of the message. By default, an NCAP that initializes and boots

successfully will be default to BL_INACTIVE state. In this state, the Smart Sensor is permitted

to listen for and respond to these announcement messages. The Publication Domain is a

technique for filtering messages between groups of sensors on the same network. By default, the

Intelligent Sensors are configured to broadcast to and receive publications from the

OxFFFFFFFFFFFFFFFF domain, although this will later be modified to divide sensors into

functional groups. Once the sensor receives the request to announce itself, it in turn responds

117

mf.re

I

:04
_ ___

An Architecturefor Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

with an NCAP BlockAnnouncement message. In an alternate configuration the Smart Sensor

may be configured as part of its boot sequence (the startup configuration set) to publish this

message automatically and periodically until instructed otherwise.

Publisher Port Message Format:

CD Number of U Number of
Type Msg Len Header Len Publication Domin Args in Pub , Bytes in ATr

CL Contents < (Object Tag)

0 1 2 3l4- 5 617181910J11112113 14115116-17 18L19
OCxFl Ox00 Ox2F &x0- ,,F6 0x02 o 0,1 011 02 1[OJ OngIj J 0I 0 OxOIM Ix02 Ox1A Ox01 OxOB

Argument #1: Object Tag Argument #2. Object Dispatch Address

IP Port Object ID
20 21 22 23 24 25 26 27 28 29 30 J31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46

ChlDo0 ChlDs ChlDs ChlDr ChlDe ChIlD ChlD 4 ChlD 3 ChID2 ChlDI ChIlD OXI 6 IPI IP2 IPI IPo P1 Po 0x03 MAC5 MAC 4 MACa MAC2 MAC, MACo OIDi OIDo

Figure 3.26: Interface response to an NCAP block announcement.

The return message published on the sensor network is shown in Fig. 3.26. This message

contains two important pieces of information that identify the responding NCAP: the Object ID

and the Object Tag. Both serve as an identifier of the NCAP node (or more generally, any object

on the sensor), however the Object Tag is a logical identifier issued at configuration and the

Object ID is algorithmically created for each Smart Sensor object. To keep Smart Sensor

technology consistent with SSC deployment and naming conventions, the NCAP Object Tag is

the technical identification of the sensor or actuator node. Examples of Object Tags are

TT1185GM, TT1206GO for temperature transmitters; PE1134GO, PE1140GO for pressure

sensors. This nomenclature will suffice until the Smart Sensors are configured to support

multiple sensing/actuating devices per NCAP. At this time a neutral NCAP Object Tag will be

chosen that is unrelated to the individual transducer nodes, but instead the function (i.e. B1 GOX

Pressure) or location (i.e. Bl Subsystem A34). The Object ID, on the other hand, provides

enough information to direct the message to the specific destination object on a specific sensor.

The Object ID consists of a one byte identifier indicating how the ID is generated, the Sensor's

MAC address, and two bytes that correspond to an UUID that is unique to each specific object

118

An Architecture for Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

on the sensor. The two byte UUID need not be unique among all sensors on the network as the

MAC fields eliminate inter-sensor ambiguity. As part of the announcement process, the reply

message also contains an Object Dispatch Address (ODA). The ODA specifies how an object

can locate and send a message to the announcing sensor's NCAP. The ODA is a concatenation

of the Sensor's IP address, PORT and NCAP Object ID. The IP address/port combination is

used to make a logical connection to the Smart Sensor, which in turn establishes a connection to

the sensor through the network infrastructure. Once the individual sensor has been resolved, the

Object ID is then available to address the NCAP. This completes the NCAP announcement

process along with interpretation of the NCAP Block_Announcement message is shown in Fig

3.27.

Publisher Port Message Structure:
Name Type Details

Total Message Length uintl6 Ox002F

Publication Key unint8 PSK NCAP BLOCK ANNOUNCEMENT (0x02)
Publication Donain uintSjS IOxFFFFFFFFFFFFFFF
Publication Topic uint8 Ox00

1st Argument Type Code uint8 OBJECT TAG TC (0xiA)

Object Tag T _ uint8[11] ___ Sensor Channel ID (ChID)

ObjectDispatchAddress.IP uint8[4] Sensor Publisher IP Address
ObjectDispatchAddress.Port uint8[2] Sensor Publisher Port
ObjectDispatchAddress.OID uint8[91 NCAP Object ID

Figure 3.27: Interpretation of NCAP Block Announcement message.

There are two more optional operations associated with the announcement process. They are

Ignore_NCAP_Block_Announcement and Force_NCAP BlockAnnouncement. While they are

optional, they are important for preventing a broadcast storm resulting from the announcement

process, especially for large sensor networks. A possible implementation is to locally invoke the

Ignore_NCAP_Block_Announcement after receiving and replying to a

Request_NCAP_Block_Announcement. This sequence will prevent the sensor from responding

119

An Architecturefor Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

to any other announcements. The network configuration application may try several more

RequestNCAP BlockAnnouncement messages to ensure that all sensors had a chance to

receive the message and generate a response. The configuration application can issue a

publication with the Force NCAP BlockAnnouncement publication key to solicit an

announcement from a sensor that is ignoring requests for announcements.

Now that the sensor is registered on the network and in the idle state, the next step to

reaching full operational status is to determine what messages the sensors subscribe to. On a

dynamically configured network, the configuration tool then queries each sensor for its

supported operations. At this point, however the ISHM Smart Sensor network is static, so all

sensor supported operations and messages are known prior to commissioning.

The final step to setting up the sensor network is to set the individual blocks on board

each Intelligent Sensor into the BL_ACTIVE state. Recall from Chapter 2, there are three major

blocks consisting of the NCAP Block, Transducer Block, and Function Block. Up to this point

we have been discussing the NCAP Block, however to achieve an operational Smart Sensor we

need to also set the Transducer Block active, and to engage in health assessment we need to start

the respective Function Block(s). There are two methods to start the remaining blocks. One is to

start each one individually, using Client/Server communications. This method is discussed in the

section on client/server messaging. The other method is to issue a blanket publication to all

sensors in a publication domain using the NCAP Block_GoActive publication. The publication

message format and message mapping is given in Fig. 3.28. A Publication Key of 0x07 is

defined for this operation. This function causes the NCAP Block, as well as any owned block

(transducer block and function blocks) to transition to the BL_ACTIVE state. This publication

does not elicit a response message from the activated blocks.

120

An Architecturefor Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

.r Port Me

Msg Len

1 2O)x00 Ox0F
oublisher

Port Messa

g

e S :

Q-

5

x0

I-
C3

3x0JxQl

Name Type Details
Message Type uinty xFtal_________ ______________

Total Message Length uintl6 OxO0OF

Publication Key unint8 PSK NCAPBLOCK GO ACTIVE (0x07)

Publication Topic uint8 Ox0

Figure 3.28: NCA_ Block_GoActive publication and message structure.

The status of the blocks may be ascertained by issuing the client/server communication

GetBlockMajorState either before or after the transition is requested.

The next publication changes the transducer sampling frequency. While potentially

useful, blanket setting of the sampling rate must be used with care (for example, it would be

disastrous to have both accelerometers and thermocouples all sampling at 50Hz)! An effective

strategy for this publication is to segment network domains by sensor type or function - thus

causing the publication to be received by a select subset of the entire sensor population. On the

SSC RETS, there are two levels of data acquisition: High speed DAS from 50 kHz to 200 kHz

and Low speed DAS at 250 Hz. Sensors deployed as part of the existing RETS must fall into

either of these two categories, and as such this publication is very useful (see Fig. 3.29 for the

packet format and message structure). Be aware that migration to Smart Sensors supporting

multiple analog channels, where individual channels may contain different types of transducers

with different sampling requirements, will require the development and use of a client/server

message to address individual Transducer Block elements.

121

An Architecturefor Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

Pub
Topic

x14Ox0
rullauiurT rCU wltmssaU 3gNe - uI

Name Type Details
Messag Type uintS OxP:7
Total Message Length uintl6 Ox0016

Publication Key unint8 PSK USER DEFINED CHANGE SAMPLE RATE (0x81)
Publication Domain PiItSfS IxFFFFFFFFFFFFF
Publication Topic uint8[16] NULL (Ox0)
#Args in Pub Contents uint16 Qx0001
1st Argument Type Code uint8 FLOAT32 TC (OxOA)
SamptilngRate Divider float32 Desired sampling frequency in floating point decimal

Figure 3.29: Interface message and structure of sample frequency change publication.

In this message the Publication Key is set to 0x81, which is part of the user defined keys. Upon

deciphering the Publication Key, the sensor then knows that the arguments to follow describe the

sampling rate interpreted as an IEEE 754 single precision floating point number (float32

TypeCode). The Intelligent Sensor performs checking prior to setting a new sampling rate to

ensure the value is within the allowable range of the sensor. If it is out of range, the sampling

rate is not changed. The sampling rate is not retained between resets or power cycles, reverting

to the default rate of 1 Hz. For this version of the Intelligent Sensor, the minimum is 1Hz and

maximum is 50Hz, with a step size of one millisecond. Due to the minimum time resolution of

milliseconds (as a result of the 1 ms periodic interrupt), the sampling rate argument is converted

to sampling period and rounded to the nearest whole millisecond. For example, a sampling rate

of 60Hz (16.667ms period) becomes 62.5Hz (16ms period), as the 670ps is beyond the

resolution.

The next publication is the user-defined NCAP_Block_Golnactive publication.

Curiously, while there is both a client/server and publication version of GoActive, the converse is

not true. This could be for the fact that the most difficult and important part is getting everything

online and running; for once all of the nodes are known transitioning to inactive as simple as

122

An Architecturefor Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

switching through each individual NCAP to shut it down. Regardless, in this implementation a

publication version of Golnactive is useful for quickly and easily shutting down the network post

test. The packet structure for this user defined publication is shown in Fig. 3.30.

0.CLx85Ox8
Publisher Port Mess

:

Pub-
Topic

j14
Ox0

Name Type Details

Total Message Length uintl6 Ox0018

Publication Key unint8 PSK USER DEFINED NCAPBLOCK GO INACTIVE (0x80)

Publication Topic uint8 NULL (Ox0)

Figure 3.30: Interface message and interpretation for NCAPBlock_GoInactive publication.

In this case, the message consists of only a header, as the Publication Key provides the necessary

indication of the requested action. The consequence of issuing this publication places the NCAP

Block, any active Function Blocks, and any active Transducer Blocks into the BL_INACTIVE

state. There is no reply message generated by any of the blocks that respond to this message.

In addition to commands, measurement data is also handled through the publisher port.

Publication of measurements allows for multiple data-centric entities to collect measurements

from a single message without additional network overhead. While 1451 supports multiple

forms of measurement publication described in Table 3.1, we are focusing on representing only

normal data from that list. As with all other publications reviewed thus far, the first 14 bytes is

the same header format, with the Publication Key identifying the purpose of the message as

PSK_PHYSICAL_PARAMETRIC_DATA (OxOB), an appropriate publication domain, and a

publication topic that consists of the SSC sensor channel ID.

123

An Architecture for Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

Table 3.1: IEEE 1451-1999 Publication Content Codes for parametric data publications.
Enumeration Value Meaning

PCC NORMAL DATA 0 The usual contents of the publication for the defined topic
P METADATA The information requested as a result of the invocation of the

PCC ADAPublishPublisherMetadata operations.

ANDNORMALATAThe publication contains both the meta and normal data, defined
PCCBOTHMETA however, for the application or publication.

PCC GROUPED NORMAL DATA 3 Same as 0, but for a group of similarly formatted data
PCC GROUPED METADATA 4 Same as 1, but for a group of similarly formatted metadata.
PCC GROUPED BOTH META AND NORMAL DATA 5 Same as 2, but for a group of similarly formatted meta and normal
Reserved Values 6-127
Open to Industry 128-255

The publication topic contains 16 byte positions, right padded with zero if necessary. Deviating

from the standard, the publication topic is to be decoded as ASCII characters, opposed to integer

octets. The next field is the number of arguments expected in the publication contents, which is

two for normal data publications. The first argument has a TypeCode of UINTEGER8_TC that

corresponds to the publication content code (PCC). The Intelligent Sensor knows to expect a

Publication Topic

B6 17 18 19 20 21 22 23 24
IDS ChID7 ChlDO ChlDs ChlD 4 ChlDa ChlD2 ChlDI ChlDo

;ingletonData-TimeSi
Sec

UTseconds)
36 37 38
Seca3 Secz2 Seci

SingletonData.Value

IEEE 754 32-bit floating point
47 48 49 50

Eng3 fEng2 fEngi fEngo

Figure 3.31: Publication for normal data.

PCC from the publication key decoded earlier in the message. Since this is normal data, the PCC

is set to PCC_NORMAL_DATA (OxO). The next argument alerts the Intelligent Sensor as to

what kind of data to expect. The physical parameter (TypeCode

PHYSICAL_PARAMETER_DATATC) can be obtained from Table 3.2, although for this

application PP_SCALAR_ANALOG (OxO) is used as the data represents analog measurements

of scalar data that are not dimensioned, but contains units. The arguments for this physical

parameter include a timestamp and a data value.

124

Publisher Po

Typ Msg

OxFT Ox00I7I
Publicat

25 26
Ox0 Ox0

An Architecturefor Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

Table 3.2: Types of physical parametric data supported by IEEE 1451.1.
Enumeration Value

PP SCALAR ANALOG 0
PP SCALAR DISCRETE 1
PP SCALAR DIGITAL 2
PP SCALAR ANALOG SERIES 3
PP SCALAR DISCRETE SERIES 4
PP_SCALAR_DIGITAL_SERIES 5
PP VECTOR ANALOG 6
PP VECTOR DISCRETE 7
PP VECTOR DIGITAL 8
PP VECTOR ANALOG SERIES 9
PP VECTOR DISCRETE SERIES 10
PP VECTOR DIGITAL SERIES 11
Reserved Values 12-127
Open to Industry 128-255

For the temperature sensor, the units will be degrees Celsius, and the measurements are non-

integer. On the other hand, SCALAR_DISCRETE is intended for physical quantities that are

scalar, may or may not contain units, and is represented by an n-length integer. An example is a

counter. Similar to the discrete case is SCALAR_DIGITAL, where the physical quantity

contains no dimensions or units, and the values are not interpreted as integers or real numbers.

Examples are binary sensors (proximity switch) or a coding (barcode). Each of these cases is

again available with the suffix _SERIES, which essentially means that the data represented

within consists of a series of values at that particular timestamp, that are computed at uniform

intervals with respect to a physical quantity. Examples of series include frequency response,

mass spectrum, and frequency spectrum. Each of the cases thus far presented are again repeated

with the prefix PP_VECTOR_ in the place of PP_SCALAR_. Vector quantities include

velocity, acceleration, electromagnetics, and are expected to be used as single dimensional

vectors in the case of a single axis (for example, one axis accelerometer).

The next eight bytes to follow is the UTC timestamp, which consists of [s] and [ns] since

the UTC epoch. Time is represented internally as a structure TimeRepresentation (refer to the

125

An Architecturefor Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

structural mapping of the message in Fig. 3.32) that contains both the second and nanosecond

fields.

Publisher Port Message Structure:

Name Type Details

Total Message Length uint16 Ox0033

Publication Key unintB PSK PHYSICAL PARAMETRIC DATA (OxOB)

Publication Topic uintS[161 Sensor Channel ID (SCID) - always 16 bytes, zero padded

1st Argument Type Code uint8 UINTEGER8 TC (0x33)

2nd Argument Type Code uint8 PHYSICAL PARAMETER DATA TC (OxIF)

SingletonData.TimeStamp.Sec uint32 Measurement UTC Timestamp [SI Seconds]
SintataeX tmp~isec Utht32 MassrenesV UTC Timestemp (S1 nanosecondsl
Args in Argument Array uintl6 Ox0001

SingletonData-Value float32 Measured Temperature in Degrees Celsius

Figure 3.32: Message structure for normal data publication.

The remaining bytes in the message describe the argument array that contains the measurement

values. Byte 44/45 of the message indicates the length of the argument array. Byte 46 indicates

the appropriate way to interpret each element of the argument array. Together, these two pieces

of information provide enough information to decode the elements of the argument array. In the

case of normal data, there is only one actual argument encoded in the argument array, interpreted

as FLOAT32_TC, though a series representation may be preferable to publish multiple

measurements, achieving higher sampling rates with minimal increases in network bandwidth

overhead.

Typical metadata includes measurement type, units, limits, uncertainty, etc. Metadata

can be stand alone or grouped with normal data. Metadata publishing capability is not supported

in this early version of the Intelligent Sensor in favor of incorporating the more useful benefits of

health reporting. To minimize network traffic, there is no standalone health reporting option, but

126

An Architecturefor Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

instead health reporting is appended to normal data. Thus, the solution is a message designated

PCC_NORMAL_DATA_ANDHEALTH, assigned user-defined PCC 0x80, and user-defined

publication key PSK_USER_PHYSICAL_PARAMETRICDATA_AND_HEALTH assigned

PSK 0x83. The general on-the-wire message format is shown in Fig. 3.33.

Publisher Port Messace Format:

Type Msg Len Header LenPublication Domain Publication Topic

0 1 | 2 3S 4 5 6 71181 9 10111112 13' 14 15 16 17 18 19 20 21 22 23 24
OxFl L ix0 OxliE 0x83 (Or i O 04 O 0, ChlDo ChlDs ChlD ChlDr ChlDe ChlD5 ChlD4 ChlDs ChD2 ChlD1 ChlDo

Publication Topic SingletonData TimeStamp SingetonData eStmp Nu n SingletonDataValue
Publication Topic Nanoe Arg. ArrayonDatVaue

Contentsite "Value" <
(UTC seconds) (UTC nanoseconds) IEEE 754 32-bit floating point

25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 41 42 43 44 45 46 47 48 49 50

Ox0 Ox0 Ox0 Ox0 Ox0 Ox00 x02 0x33 0iix80 OxiF Ox I Secs Sec, SecI Seco nSec nSec2 Sec nSc m x0A fEngs Eng2 fEngS fEngo

F Number of
S Args inArg - Health Algorithm Classification s's SingletonData TimeStamp. S

<| Array (HA) (UTC seconds)

51 52 53 54 55 56 57 58 59 60 61 62 63
Ox01 Ox00 Ox03 Ox2F HACG HAC, HAC1 HACo Gx2B Sec S Sec Setc Sc

S umber of Arg 2.3: Information forming "health
- -yt i A info." May contain raw data values,

6 i y s health assessment features or
< computed results from routines.

68 69 i70 71 72 73 74 75
k Infn fn1 Inf ... I Inf

Figure 3.33: Publication message format for normal data and health.

The message structure is designed to publish a health message for each routine running in ERM

that utilizes the periodic health reporting feature via ERMHealthReport(). As such, for every

routine that publishes periodic health information, there are 18 bytes added to the total message

size for identifying the routine with its HAC (bytes 55 thru 58) and providing the timestamp of

the health information (bytes 60 thru 67). Then, the length of the health information depends on

the associated TypeCode and the number of elements if the health information is an array format.

Thus, the size of the message becomes variable, and is a function of the number of reporting

routines, the reporting frequency of each routine, and the specific argument type of each routine.

The next publication message is for health routines that generate alerts or notifications

whenever an event or condition is met. This type of message is typically associated with event

detection routines, and is used to alert ISHM of a significant event that is taking place or has

127

An Architecturefor Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

ceased. Due to the asynchronous behavior and nature of this message, it is not grouped with

health information and normal data, but is instead processed as a separate message. The message

contains the standard publication header, with a user defined PSK of 0x82 for

PSK_USER_HEALTH_EVENT, as shown in Fig.3.34. This message contains either three or

four arguments in the publication contents (Fig 3.34 shows all four).

Publisher Port Messa e Format

S Msg Len Headeren Publication Domain Publication Topic

i 1 2 3 4 5 6 7 8 9 10 11 12 13 114 15 16 17 18 19 20 21 22 23 24
OxF7 Ox00 0x28 OxW0 OxF; 0x82 00 0 1 02 0SO 04 O O Or ChlDio ChlDs ChlD0 ChlDr ChlDe ChlD5 ChlD4 ChlD3 ChlD2 ChlD ChlDo

Publication Topic Pub onProfiteEfectTimeSe ProfileEffectiveTime. NanoSec | N

S (unsigned 32bit integer)e ll UT a eo s #3 (metadata) ...
(U__mTC's sow h (UTC nanoseconds)

25 26 27 28 29 30j:31 32 331i343536 37 38 3940 41 42 431 44 45 46 47148
Ox0 Ox0 Ox0 Ox0 Ox0 |OxO0 i 04 Ox2F HA HIAC2 I HA, IHACo

O
x2B SecI Se92 Secl Seco nSec3 nSec2

ns
ec, nSec0 OxIA ln

Argument #3: MetaData associated with Zl j , i f or
health event ASCII character array E Number of ntains raw data v es, health routine results, or

.. transmitted as octets. Describes health Bytes in Arg. otherupprtingvales as deemed necessary
event and status

49 50 51 49-+n 50+in 51+n I 52+n 53+0 I !54+n i55t+n 53+n+mn
Ary, Aryn,1 Ary, . Aryo ki m inf ij| |rtnti| hfj Info

Figure 3.34: Health Alert publication for event routines.

The first three arguments are mandatory, and consist of the reporting algorithm's HAC, the

timestamp for when the event begins, and the event metadata. The metadata is an array of octets,

interpreted as ASCII that verbosely describes the event that is taking place. The metadata is

provided to the Intelligent Sensor through HEDS, and event detection routines customarily

contain a metadata record for when an event is first detected and when an event expires, while

the routine is constantly checking for either of those cases to transpire. While this literal

messaging technique is useful, by changing the TypeCode of the metadata and updating the

HEDS it is possible to convert from a verbose alert to a coded alert. Coded alerts (i.e. Error

0x42) may be more practical in an autonomous system, while the operator console would

provide the mapping of the coded alerts to a literal description (i.e. "the transducer on Sensor

PE1140GO has failed"). The coding structure for this message follows in Fig. 3.35. The fourth

128

An Architecturefor Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

and optional field is for any supporting justification of the event. Depending on the specific

application, it is favorable to broadcast the indicators that were used in determining the status

change of the event. HEDS includes the TypeCode and number of arguments (if applicable)

when this field is utilized; otherwise the field is suppressed in the message.

Publisher Port Message Structure/Payload:
Name Type Details

Total Message Length uintl6 Ox0029+n+m

PublicationKey unint8 PSK USER HEALTH EVENT (0x82)

Publication Topic uint8[16] Sensor Channel ID (SCID) - always 16 bytes, zero padded

1st Argument TypeCode uint8 Ox2F (unsigned int32)

2nd Argument TypeCode uint8 Ox2B (time representation)
#Args in Argument #2 uint32 Tirestarp UTO seconds co responding to event start
2nd Argument uint32 Timestamp UTC nanoseconds corresponding to event start

3rd ArguMeWt TypeCode uint8 OxA (octet array, intepreted as a character array)
Args in Argument #3 int n based on size ometadata

3rd Arumnent uint8|[n Metadata provided by health routine HEDS for event alerts
4th Argument TypeCode uint8 Varies based on health routine; float, octet, integer, etc.

4th Argument uint8jm| Information or "evidence" providing the basis of the health alert.

Figure 3.35: Message structure for health alert messages.

The last and final publication is the system state change message, which is issued before

a system, subsystem, or process state change is anticipated. Since the HEDS for all supported

states are already loaded, this packet simply indicates the state profile that the Intelligent Sensor

must switch to and the UTC time when the change becomes effective. This message contains the

typical publication header with user-defined PSK 0x83 as PSK_USER_FUTURE_

STATETRANSITION_NOTIFICATION.

129

An Architecturefor Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

Pub,
Topic

140
Ox0

I1

1±

17
Ox2F

System State Profile Identifier

32 33 34 35
SS, SS, SS, SSo

Figure 3.36: Future State Profile Transition Message

Publisher Port Messa e Strucure/Pa toad:

Name Type Details

Total Message Length uint16 Ox0024

Publication Key unint8 PSK USER STATE PROFILE FUTURE TRANSITION NOTIFICATION (0x84)

Publication Topic, uint8[16] Sensor Channel ID (SCID) - always 16 bytes, zero padded

1st Argument TypeCode uint8 Ox2F (unsigned int32)

2nd Argument TypeCode uint8 Ox2B (time representation)

2nd Argument (ns) uint32 Timestamp UTC nanoseconds corresponding to state profile eff. time
3rd Argument TypeCode uint8 Ox2F (unsigned int32)
3rd Arguhent uist32 State proflil identifier that shall be set active

Figure 3.37: Structure of the future state change message.

This means that the state transition map may be downloaded in entirety before starting, although

unexpected changes can cause it to need updates as system events occur. For example, going

back to the previous example (Fig 3.11), the system expects to transition between Idle, Pretest,

and Test. However, due to an ignition problem, the system unexpectedly transitions to abort.

The decision to abort may be a result of exceeding the timeout for ignition or the confirmation of

a critical fault condition reported by an Intelligent Sensor. Subsequently, purge valves will

activate as part of the Abort procedure, and if the downloaded transition maps for the affected

Intelligent Sensors are not updated, the sensors will report uncommanded activity on the purge

valves. To address this issue, a message with publication key PSK_USER_IMMEDIATE_

130

An Architecture for Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

STATE_TRANSITION_NOTIFICATION (PSK 0x84) is published, indicating that all stored

transitions that are to occur after the provided timestamp are invalid and the transition to the

CL

O5
0x85

Pub.
ropic

140
OxO

E

17
Ox2F

ProfileinvalidTime. Nant

(UTC nanoseconds
27 28 29

nSecs nSec2 nSeci

System State Profile Identifier

32 33 34 35
SS3 SS2 SSi SSO

Figure 3.38: Message for commanding an immediate state change

new profile takes effect immediately. Keep in mind when reviewing this example that the

behavior of the Intelligent Sensor depends on the level of capability afforded to the health

algorithms; they may be designed only to verify that the signal is reasonable (i.e. less than some

dB of noise) or to track specific activity (i.e. valve feedback signal should indicate 50% ±5%

open at all times during this state, but the next state should show decreasing values at a rate of

7.5- ±1.0-% until fully closed. The state transition message is shown in Fig. 3.38 with the
ms ms

mapping structure in Fig. 3.39.

Publisher Port Message Structure/Payload:
Name Type Details
Message Type uint8 OxFT
Total Message Length uintl6 ix0024

Publication Key unint8 PSK USER STATE PROFILE IMMEDIATE TRANSITION NOTIFICATION (0x85)
Publication Domain uint8 xFFFFFFFFFFFFFFF
Publication Topic uint8[161 Sensor Channel ID (SCID) - always 16 bytes, zero padded
Args in Pub Contents uirrt Ox04 or 0)xO003 dependSig on inclusion of supporting evidence
1st Argument TypeCode uint8 Ox2F (unsigned int32)
1st Argument uint32 Hsalth Algorithm Class (HAC) to identify algorithm
2nd Argument TypeCode uint8 Ox2B (time representation)
2nd Argument (s) uint32 Timrestarp TC seconds corresponding to last valid state
2nd Argument (ns) uint32 Timestamp UTC nanoseconds corresponding to last valid state
3rd Argument TypeCode uint8 Ox2F (unsigned int32)

Figure 3.39: Immediate state transition structure.

131

E-

22
Ox2B

An Architecturefor Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

3.3.2 IEEE 1451.1 Client Server Communications

This section covers peer-to-peer messaging over the Smart Sensor network. The peer-to-peer

communication is modeled as the ubiquitous client-server structure, where the definition of client

is reduced to the individual object requesting data or service, and a server is the object that

provides fulfillment of the request. This means that there are no statically defined client and

server objects; the role depends on the originator of the conversation. The server is stateless and

does not retain client information to participate in a conversation; each client to server message

is handled individually. Client-server communications requires the client to be aware of how to

send messages to the server's destination. For this to be possible, the Smart Sensor's NCAP

must already be in the BL_ACTIVE state and registered on the network using the announcement

publications examined in the previous section. The interface documentation for Openl451

specifies that each client-server interaction should occur over a client port that is unique [33].

While the intention of Openl451 is to standardize these ports with IEEE to promote

homogeneity between implementations, at the time of publication no blocks of IP ports have

been assigned or designated. As a result, in this version all client-server communications take

place over port 11000, with a path for upgrading to message-specific port assignments flagged as

a future goal. The list of supported client/server messages in the Intelligent Sensor are:

1. GoActive

2. Golnactive

3. GetBlockMajorState

4. GetTEDS

5. SetTEDS

6. GetHEDS

7. SetHEDS

132

An Architecturefor Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

Because of the point-to-point nature of these messages, the message structure is drastically

different from the previously developed broadcast publications. Each client to server message

contains a Message ID, Message Length, Client's Block Cookie, Server's Object ID, Operation

ID, and an Execution Mode. The encoding of any applicable arguments at the end of this header

segment is the same as for publications. Once the message has been deciphered and processed

by the server, a reply is always generated and returned to the client. The server to client message

elements are Message ID, Message Length, Return Code, Server's Block Cookie, Execution

Mode, Server's Object ID, and Operation ID. Any return arguments are encoded and appended

to the message header. The basic client to server and server to client message headers are shown

in Fig. 3.40, followed by an explanation of the individual fields.

Object ID (Server)

5 6 7 8 9 10 11 12 13
0x03 MAC5 MAC4 MAC, MAC2 MACi MACo OID, OIDo

eaae

3 Len

| x1

oI

EM

Block Cookie Object ID (S

7 8 9 10 11 12 13 14 15 16 17 18 19 20
BCI BCo iEMI 0x03 MAC5 MAC 4 MACs MAC2 MAC1 MACo OIDi OlDo OPIDI OPIDo

Figure 3.40: Example of client/server and server return messages.

The Block Cookie is a parameter maintained by the server object that will change should

the context of that server object change. The server's Block Cookie is cached by the client and

used by the server to verify that the client is aware of any (potentially critical) changes to the

server object before processing the message. A failure to match the Block Cookie results in the

abort of the client request and generates a reply message to the client with the appropriate Return

Code. The Block Cookie defaults to zero, and increments for each and any change in the

server's context.

133

An Architecturefor Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

The Object ID is used to identify the specific object that is the recipient of the message.

The first byte identifies the method of Object ID generation, as it is a network and 1451 specific

parameter. Since we are using Ethernet, we create a custom Object ID using Ethernet DCE (i.e.

0x03) consisting of the Smart Sensor's MAC address (uniquely identifying the sensor) and an

individual object identifier (unique between every object on a given sensor) for each object, as

discussed in the NCAP announcement reply message for the specific instance of the NCAP

Object ID in Section 3.3.1.

The Operation ID specifies the operation that is intended to be carried out by the

message. IEEE 1451.1 offers enumeration guidelines for assigning Operation IDs, and is based

on the hierarchy of the specific operation with respect to the Root Abstract Class and whether the

method is part of IEEE 1451-mandated functionality or part of industry/application specific

functionality. Please see Table 3.3 for this table of guidelines, borrowed from IEEE 1451.1.

This table ensures that all operations defined in 1451.1 have a unique Operation ID, and that

Table 3.3: Table of suggested IEEE 1451 Operation ID assignment.

Values reserved for IEEE Values available to industry groups
1451 Standard and application developers

0 - Root Class 0-2047 none
1 2048-3071 3072-4095
2 4096-5119 5120-6143
3 6144-7167 7168-8191
4 8192-9215 9216-10239
5 10240-11263 11264-12287
6 12288-13311 13312-14335
7 14336-15359 15360-16383
8 16384-17407 17408-18431
9 18432-19455 19456-20479
10 20480-21503 21504-22527
11 22528-23551 23552-24575
12 24576-25599 25600-26623
12 < N <32 2048N through 2048N+1023 2048N+1024 through 2048N+2047

134

An Architecturefor Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

there is plenty of room to accommodate application/vendor specific functionality. The specific

Operation ID for each client-server message will be introduced in the section that discusses the

message.

The Client/Server Return Code is generated after the server has finished processing (or

attempting to process) a particular client-server message. The Return Code is an unsigned 32 bit

integer interpreted as four 1-byte fields. Those fields are listed in Table 3.4, and represent the

return value for the Server Object, method Perform, and method Port, which are utilized in

processing the client's command.

Table 3.4: Client/Server Return Code description.Bits in Client-ServerField Name Bits Client-Server Information
_____________ Return Code ____________________

S High-order 8 bits intepreted The return code of the client-side Port Object Execute or GetResult operation.
portCode as an Ulnteger8 Values shall be selected from the MajorReturnCode enumeration.

performCode Netxt 8 bits intepreted as an The return code of the server-side Object Perform operation. Values shall be
S UInteger8 selected from the MajorReturnCode enumeration.

operationinorCodeNetxt 8 bits intepreted as an The Minor Field of the OpReturnCode of the operation invoked on the Server
Ulnteger8 Object.

operationMajorCodeLower-order 8 bits inter- The Major Field of the OpReturnCode of the operation invoked on the Server
preted as an Ulnteger8 Object.

The Return Code enumeration specified in Table 3.5 indicates the acceptable values for all four

fields of the client/server return code identified in Table 3.4. Note that while each field is

constrained to the same enumeration, some individual enumerations are not applicable due to

scope. For example, communications based return codes are not applicable to the execution of

the operation (identified by operationMinorCode and operationMajorCode) and execution return

codes may not be applicable to the communications subsystem as identified by portCode and

performCode. Refer to IEEE 1451.1 (pp 58-62) for each specific case.

135

An Architecturefor Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

Table 3.5: Return Code enumerations for client-server return codes.
|Client-Server Return Codes:
Perform Code Name Perform Value Perform Code Meaning

MJ NOP OPERATION Ox01_ Interface Only Implementation

MJ FAILED NON SPECIFIC 0X03 Nonspecific failure

MJ BUSY 0x05 Server busy & does not support multiple requests

MJ ILLEGAL OPERATION 0x07 Requested Op. ID is not valid on Server

MJ FAILED OUTPUT ARGUMENT 0x09 One or more missinglinvali output arguments

MJ FAILED DEMARSHALING OxOB Unable to translate arguments to parameter

MJ OPERATION INTERRUPTED OxOD Perform was interrupted and did not complete

MJ INSUFFICIENT RESOURCES OXOF Server object lacks sufficient resources

MJ TRANSDUCER ERROR Ox11 Transducer failed during operation

MJ NOT PROPERLY CONFIGURED DX13 Object detected some state not configured properly

User-Defined Ox81 - OxFF Industry/Application Specific

The execution mode parameter indicates the contents of the return message and behavior

of the client in the context of client-server messaging. Valid execution modes are provided in

Table 3.6. The presence of a return value (OxO) in the client port message indicates that the

client will block waiting for a response from the server until a timeout occurs as the return

message contains arguments required by the client. If the client times out before receiving a

response, any received response is invalidated because the client block cookie is not updated, and

the client can choose to attempt another request.

Table 3.6: Valid execution modes.
M R Enumeration Value

EMRETURNVALUE 0
EM NO RETURN VALUE 1
Reserved 2-255

If no return value is to be provided (0x01), the client continues processing immediately once the

client port message has been sent. The server generates a response message consisting of only a

header, as any arguments are unexpected and discarded. In summary, the Execution Mode

136

An Architecturefor Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

indicates the presence of arguments in the return message and whether the client waits for the

response before continuing or sends the message and continues immediately. Now that the basic

client/server messaging structure has been examined, we will use this base to construct the

complete messages for peer-to-peer communications.

We begin by developing messages for the GoActive message. This is used to place

individual blocks into the BL_ACTIVE state. Practical uses include starting/stopping individual

health analysis routines, transducer blocks, or the NCAP block. The message structure, provided

in Fig. 3.41, can be thought of as a function call in Fig. 3.42.

Object ID (Server)

5 6 7 8 9 10 11 12 13
0x03 MAC5 MAC 4 MACs MACMAC2 M AC MAC ID, OID

Block Cookie
(Server Port)

7 8BCl BCo

w:J16
OxOl

O01

Object ID (Server)

10 11 12 1C13 1 14 15 I16 17 1I18
x03 MAC5 MAC4 MAC, MAC2 MAC, MAC, OlD, OID,

Figure 3.41: Interface for GoActive client-server communication.

[retusrncodeou, t argumentarrayJ=G oAclive(exec.mode, SererrObjiectID, in._argumentarray);

Figure 3.42: Remote Procedure Call invoked by GoActive message and reply.

The client port message provides the Object ID of the server object to invoke an operation on,

and the execution mode indicates the client behavior while execution occurs. The response from

the server is the status or client-server return code (see Table 3.4) and any applicable arguments.

For this example there are no arguments in either the client-server or server-client messages.

The Operation ID of Ox1006 corresponds to the "handle" of the GoActive command.

The Golnactive command transitions the object referenced by the Object ID to the

BL_INACTIVE state. It is identical to the GoActive message except for the Operation ID, which

137

An Architecture for Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

in this case is 0x1007. Please see the corresponding client-server and return message in Fig.

3.43.

Object ID (Server)

5 6 7 8 9 10 11 12 J13
1x03 MAC5 MAC4 1MAC MAC2 AC21MAC, MACo OIDi OlDo

Block Cookie
(Server Port)

7 8BCi BCo

0

016
Ox01

Object ID (Server)

10 11 12 131 14 15 16 1 17
1x03 MAC5 MAC4 MAC3s MAC2 IMACi MACo OID

Figure 3.43: Interface message for Golnactive client-server communication.

The next client-server message of interest is GetBlockMajorState. This method allows

the caller to retrieve the operational status of the object identified by the Object ID parameter.

The valid selections for operating state are BL_ACTIVE, BL_INACTIVE, and

BLUNINITIALIZED. Since the client issuing this message expects return arguments, the

execution mode is set to zero (see enumeration in Fig. 3.45) and the return message contains a

single value argument interpreted as an unsigned 8-bit integer (0x33 TC). For completeness the

message structure is shown in Fig. 3.44, with the mapping structure for the return message in

Fig. 3.45.

Client Port Message Format:

Type Msg Len Object ID (Server) Operation ID

0 1 2 314 5 6 7 8 9 10 11 12 13 14, 15 16
OxED Ox0 0x11 BCr BC: o 0x03 MACs MAC4 MAC3 MAC2 MACI MACo OIDr OlDo Ox10 jx02 OxO

Server Port Message Format:

e Msg Len Cie e Rtie CeArgument o
Bc CsgkLen iei''t/ere B

et ||Jd Object ID (Server) Operation ID nt

0 11 2 314156 7 8 19 10 1112 13 1 14 15 161718 19120 21122 23 24
OxDS Ox00 0x18 SRC SR SRC BC, BCo Ix OI 0x03 MACs MAC4 MAC3 MAC2 MACi MACo OID, OIDo 'Ox10 x02 OxO Ox01 Ox33 BL

Figure 3.44: GetBlockMajorState message with return message and arguments.

138

An Architecturefor Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

Server Port Message Structure:
Name Type Details

Total Message Length uintl6 Ox018
ClientJServ Retu', Code uint32 See Return Code Table for enumerations
Block Cookie (Server Port) uintl6 BC (Set initially, changes when server context changes)

ObjectlD uint|8]1 ObjectlD referenced in original message (for verification on client)
Operatiorn 10 uinit OP GET BLOCK MAJORSTATE (Xxi02)
Argument Count uintl6 Ox00001 (Number of arguments in the contents of the message)

1st Argument uint8L BL UNINITIALIZED, BL INACTIVE, BL ACTIVE)

Figure 3.45: Message structure for GetBlockMajorState return message.

The next level of functionality that is required is the ability to read and write TEDS to the

Intelligent Sensor. Typically TEDS are limited to the domain of the local NCAP and are paired

with the transducers to provide self identification and configuration capability. Since the

Intelligent Sensor is an integrated TIM/NCAP multi-purpose solution, there is no discrete TIM

containing transducer specific TEDS. Therefore, when a transducer change is made, it is not

possible to swap the actual TEDS records at the same time. The solution is to provide an

interface to Intelligent Sensor TEDS memory through client/server messaging. Since TEDS are

interpreted by an IEEE sanctioned template, the message contents consist of a field for the TEDS

Template ID and an octet array field for the corresponding TEDS data, as shown in Fig. 3.46 /

Fig. 3.47. Multiple sets of TEDS may be transmitted simultaneously by adding another TEDS

Template ID/TEDS data pair of arguments at the end of the first and incrementing the message

argument count by two. Basic TEDS may be loaded by indicating a NULL TEDS Template ID,

as Basic TEDS are not assigned an ID. According to 1451.4, the Intelligent Sensor is Tier 1

Compliant, meaning that there is support for Basic TEDS, although other more advanced

templates may be transmitted, though not actually used at this point.

139

An Architecture for Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

Object ID (Server)

5 I 6 I 7 I 8 I 9 11 I 12 I 13
Ox03 IMAC5 I MAC , I MAC2 MACI I MACMA MAC OlD OlDo

E
(0

"g-

Argument #2,4,6....m:
TEDS Data

25 26 ... 24+n
TDo TD| ... TDn,x1D

Figure 3.46: Member function for uploading TEDS to a Smart Sensor.

Client Port Message Structure:
Name Type, Details

Total Message Length uint16 L = Ox19+Ynm+0x6*m

Object ID uint8[9] Identifies object on server to receive this message

Execution Mode uint8 EM NO RETURN VALUE (Ox01)

Argument #1 TypeCode uint8 UINTEGER16 TC (Ox2D)

Argument #2 TypeCode uint8 OCTET ARRAY TC (0x1 D)

Argument #2 uint8[n] TEDS Data

Figure 3.47: Message Mapping for the SET_TEDS operation.

The Smart Sensor will prohibit assigning TEDS to any object (as indicated with the Object ID)

that is not a member of the Transducer Block class. The SETTEDS return message indicates if

the upload was successful by utilizing the client-server return code in the return message

structure shown in Fig. 3.48.

Block Cookie
(Server Port)

7 8BCi BCo

Object ID (Server)

10 11 12 13 14 15 16 17 18
0x03 I MAC5 I MAC4 MAC3s MAC2 MAC I MACo OID, OlD

Figure 3.48: Reply message after TEDS have been uploaded.

140

w
16

0x01

·

· , · ·

An Architecture for Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

The next message, GETTEDS, performs the opposite operation of SETTEDS and is

used when an outside entity wishes to acquire the TEDS that are currently loaded in the

Intelligent Sensor. The Object ID is used to indicate the Transducer Block from which to obtain

the TEDS. Thus, the TEDS for each Transducer Block must be individually requested. Since

the Intelligent Sensor is 1451.4 Tier 1 compliant, there is no need to handle the case of a

multinode transducer, so it is guaranteed that each Transducer Block will only have a single

transducer connected to it. The message structure for initiating the TEDS retrieval is shown in

Fig. 3.49.

Object ID (Server)

5 6 7 8 9 10 11 12 13
0x03 MAC5 MAC4 MAC3 MAC MAC2 MAC MAC OID OID<

16
Ox0

Figure 3.49: Message requesting TEDS from an Intelligent Sensor.

The return message provides the Intelligent Sensor's TEDS encoded in an argument array as

shown in Fig. 3.50. There will be an element in the argument array for each TEDS Template

ID/TEDS data pair. The TEDS Template is encoded as an unsigned integer, and the TEDS data

is interpreted as an octet array. The execution mode in this pair of messages is set to

EM_RETURNVALUE, as the server is returning arguments.

Block Cookie
(Server Port)

7 8
BCI BCo

f Arguments
in Message

Contents

21 | 22
2*m

Argument
#1,3,5 .. m-1:
Template ID

24 ~ 25I
TDL| TDLo

Object ID (Server)

10 11 12 '13 114 I 16 5 16 17 18
3x03 MACs MAC4 MAC3 I MAC2I MAC MAC, OID, OIDo

Argument
#2,4,6...m

count

27 1 28
fl

Figure 3.50: Reply to GET_TEDS request.

141

I

a a a..

An Architecture for Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

Server Port Message Structure:
Name Type. Details

Total Message Length uintl6 L = x1D+-tnm,+0x6*m

Block Cookie (Server Port) uintlt |BCi|BCI
Execvtion Made uint6 EMBDTURN[VALUE (Qxe)
ObjectlD uint8[9] ObjectlD referenced in original message (for verification on client)

Arguments in Msg Coenets uintl6 2*m, where m is the number of TEDS templates to load
Argument #4 Type~ode uint8 UTGR$TC (Ox2D)
Argument #1 uint6 ITEDS Template ID
Argument #ZTypeCoe uint8 OCTET ARRAYJTC (x0D)
Argument #2 Count uintl6 |n, where n is the number of octets in the TEDS data

Figure 3.51: Structure for GET_TEDS reply message.

The next client-server message is for the upload and download of HEDS. Recall from the

previous section on HEDS that each routine contains a basic component and a routine-specific

component. Also remember HEDS are linked to routines by matching the HEDS ID with the

routine's Object ID to ensure there is never an accidental use of HEDS designed for another

application/configuration, while the HAC is a functional descriptor. Thus, each routine obtains

its HEDS through individual SETHEDS messages targeted for the specific routine objects. The

SET HEDS message and structure is shown in Fig. 3.52 / Fig. 3.53.

Client Port Message Format

BloArgo Arg. #1: Checksums for the
Type Msg Len e Object ID (Server) Operation ID ntin Mr H f #1 Chcksums fCorettho

°(Client Port) CoHEte HEDS Data

1 0 1 1 | 2 3I 4 5 6 7 8 9 1 10 11 12 13 14 15 16 *1 .18 19 20 1721 22 23 24 25
[OxEDQ L jEC BCotIB1l x 0x03 MAC, MAC4 MAC3 MAC2 MACI MACo OIDi OIDo COx2 3Ox3 0x01t OxO OxO3 0x30 m CS I CS CSi CSO

Num Octets Nm ArgO in0Arg. T Najrs of en0
SNum Octets in sic HES a D o System State #1 Number of octets in HEDS Record octets for the ObjectD

BASIC HEDS Data in Syste State HEDS Record System StateICombination

22+4m 23+4m 24+4m 25+4rm I260+4m1 i1 35+4m 36+4m 37+4m 38+4m 39+4m 4+4m I 41+4rn 42+4m I43+4m I44+4m I45+4m 42+4m+4n 3+4m+4n|44+4m+4n 45+4rm+4n I. 4444m+4n+p
BOxtD Ox0 OxOC IHBo IltH0 H1

1
Ox

01
O1 x02 O3x4 2 30 57 SS SS2 SS , SSo IjD P HR. HRI HRp

Figure 3.52: Message for transmitting HEDS to a routine running in a Smart Sensor.

142

An Architecturefor Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

Figure 3.53: Structure for decoding the arguments of the SET_HEDS message.

The message contains three arguments: an array of checksums, Basic HEDS, and HEDS data

paired with corresponding system state identifiers. The checksums are in array form, each

represented by an unsigned 32 bit integer, and evaluated the same as for the 1451.4 TEDS. The

Basic HEDS are fixed length (11 bytes) and interpreted as an array of octets. The HEDS data are

variable length and also interpreted as octets. Note that the pairing of system states and HEDS

data as part of an array allows many states to be associated with the same HEDS data. While a

client message containing HEDS data with no state relationship is an illegal mode, a state may

have no HEDS data, indicating the routine is not to run during that state. HEDS may be

appended at anytime once the sensor is in the BL_ACTIVE state, although for best performance

it is advisable to not append new HEDS during live measurement. This message format reduces

redundancy of the HEDS data while allowing flexibility. After parsing and processing a

SET HEDS request, the Intelligent Sensor will reply with the message shown in Fig. 3.54

indicating the status of the operation.

143

An Architecture for Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

Block Cookie
(Server Port)

7 8BC BCO
Object ID (Server) Operation ID

10 11 12 13 14 15 16 17 i 18 19 1120
0x03 MAC5 MAC4 MAC, IMAC 2 MAC MACo OID, OIDI I x2C Ox0

Figure 3.54: Reply message after HEDS are sent and parsed by the Smart Sensor.

The final client-server message is to invoke GET HEDS to retrieve HEDS from an

Intelligent Sensor. This is extremely useful for both development and deployment, where HEDS

may be backed up for archival or captured for cloning to other sensors of the same configuration.

The message transaction consists of the request shown in Fig. 3.55, followed by the message and

structure of the reply in Fig. 3.56.

I

1

Object ID (Server)

5 6 7 8 9 10 11 12 13
Ox03 1 MAC5 MAC4 MAC3 I MAC2 MACi jMACo OlIDi 1ODo

16
Ox0

Figure 3.55: Message for requesting HEDS from an Intelligent Sensor.

Server Port Messaae Format:

Block 3 | |Cookie #r in u Number of A in M#1.-Checksums forthe
Type Msg Len Client/Server Return Code Object ID (Server) Operation ID ContestMs EDCm HEtS DateContents HEDS Chksm HEDS'Data
0 1 3 4 5 62 1718 9 10 11 12 13 14 15 16 17 18 1920 21 22 23 24 25 ~126 27 28 29

O|xDS L CSRCCSR CRCS BC, BCo 0xt:. 0x03 MACs MAMAC41MAC3 MAC2 MACI MACo OIDi OIDo Ix2C 0X02 Ox0 0x03 :030 m CS, CS2 CSr CSo

Num Octets in
Num

eleei i
N um of I Numberf octets in HEDS Record octets for the ObjectlD

BASIC HEDS & 1HEDS Data" . System State HEDS Record System State Combination

S26+4m 27+4s 28+4m 29+4m 30+4m ... 39+4m 40+4N 4T+4m 42+4m 43+4m 44+4m 45+4m 46+4m47+4m148+4m149+4rn 46+4m+4n 47+4m+4nl48+4m+4n 49+4m+4n ... 48+4m+4n+p
OxiD NO0 Jx0 HBoC HBI H ... HBio |00f I OxO 0 x02 O0 n SS2 SS$ SS OxiD p HRo HRI HRp

Figure 3.56: Reply to request for HEDS Data.

The format and flow of the arguments in Fig. 3.55 and Fig 3.56 are the same as for the

SET_HEDS message. Since that the number of HEDS/state pairs on any individual sensor is

variable, the end of the message is marked with an ellipsis to indicate that the arguments may

repeat for another HEDS/state pair.

144

An Architecturefor Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

In summary, this chapter presents the implementation of the key components that

constitute the first generation of Intelligent (health-enabled, ISHM ready) Smart Sensors. Those

core competencies include the development of the ERM, design of HEDS, development of an

IEEE 1451.1 compatible interface, and deployment of exemplar event detection routines. This

chapter serves as both a technical reference documenting the technology embedded into the

Intelligent Sensor and an interface control document for specifying the interface to the Intelligent

Sensor. Now in Chapter 4 the completed deliverable is presented and evaluated.

145

An Architecturefor Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

CHAPTER 4: RESULTS

This chapter takes the blueprint for the Intelligent Sensor developed in Chapter 3 and focuses on

two key results: (1) the performance of the Intelligent Sensor in terms of command and control

via the provided interfaces (namely network and coding) and (2) the performance of the

Intelligent Sensor as a measurement instrument. There are two sections that follow, addressing

each of these issues.

4.1 Interfacing with Network Messages and Software APIs

The Intelligent Sensor Baseline 3.20 firmware was used for all testing in this section, and is

available for download [72]. Using this baseline, it is possible to implement the health

algorithms described in Chapter 3 using the ERM and HEDS APIs. Once linked and compiled, I

was then able to command the Intelligent Sensor to generate an NCAP Block Announcement,

change the sampling period, load HEDS, commence measurement, and cease measurement.

During the measurement process and without any HEDS loaded, only measurements were

published. After loading HEDS, the measurements were appended with health parameters

generated from the associated algorithms. Health alerts were also received when signal activities

corresponding to noise, flat and spike events were observed. Testing was performed to ensure

that ERM handles linked routines properly. Maximum sustainable sampling rate with all health

algorithms active is 50Hz. Network messages of measurement data and health data are issued at

the same rate, though jitter slightly due to the task switching of the OS. Network transactions for

these events are available for design reference [72]. The Intelligent Sensor is also able to coexist

with other Intelligent Sensors on the same network, and can operate in either a debugging mode

146

An Architecture for Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

(connected to a Dynamic C IDE) or as a standalone unit. See Figure 4.1 for a view of the

Dynamic C IDE running the 3.20 Baseline. In addition to IDE debugging (watches, stack trace,

execution trace, and code stepping), there are debugging options in SNTSHeaders.lib for

printing additional information to the standard 10 (STDIO) window.

P* Eat Coc pe Run Impect oa w ifses indow eW

W Q* o' ASR 7 ZO

-

rhannel 0 Name JLS SdNS f1 CPe
Channel 1 Name: JLSSNSa 22 L..L .h12 c
Channel 2 Name: JLSNTS lb
This SNTS is set to rz samplint rate. i

nitia o Coplte String Operating Syetem. '" .
This SNTS is operating on a G Network.
Starting sock init()
Interface 0 is aualified for DHCP.
DLP > ipaddr: 0.0.0.0 Messag Type:C @Sx2;2 Pk Lae .1r;
nitializing Kernel... 2e
reating OS tasks... T
outine have been created and registered with ERM.
alid HDS record found (HEDS Records:0, R out ines:2)t

Initialization Complete. Starting Operating System.

-ata Soce o pne to local pocrt 1100t 20
t ad ot sct Mae Typ: P b OxF7 Packet Length:15a

ata read on socket. Message Type:C2S 0x Packet Length: 1
ata ready on socket. Message Type:C2 OxE Packet Length:207; 2 a
Data ready on socket. Message Tye:C2S OxED; Packet Length:61a
Created new HEDS Obj ect for health algorithm w/ Object ID d 2 D2

->Created new state transition record for state I 1I4n4 20. C a42124
->There are 1 state transitions available for this routine 21 ad

HEDS for routine ID 1 have been assocIaed n
Data ready on socket. Message Type:Pub' F7; Packet Length:22; 5422 ccC2e222 : .22, . a,,4
ata ready on socket. Message Type:Pub F7 Packet Length:15; 2. a
cvd Ncap Go Active Publication. Setting NtAP active

2 Id j e -J -

» W J rgw a ___ L|« o E8G a;te ~e __· ·Cs j ________ - aH __ St i J P ic___

Figure 4.1: Dynamic C IDE with Intelligent Sensor in Debug Mode.

The next section discusses the details of the instrumentation and algorithms.

4.2 Evaluation of Form, Fit, and Function
Source data streams into the Intelligent Sensor for validation and verification include K-type

thermocouple, sinusoid function generator, and previously recorded data from the MTTP

Program. TC measurements are made using the Fluke Model 724 Temperature Calibrator as the

data source, simulating a K-type thermocouple. The simulator's operational range is -2000 C to

An Architecturefor Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

13700 C. The Intelligent Sensor is able to accurately measure the temperature within ±2°C over

the extended/industrial temperature range (-400C to 85 0C) when the sensor is operating in an

ambient temperature of 22°C with minimal air disturbance. A graph of the temperature sweep

captured from the Intelligent Sensor is shown in Fig. 4.2. The sensor tends to deviate when the

sweep is performed in an environment with fluctuating ambient temperature. This is due in part

to the non-isothermal nature of the analog connecting block to the onboard temperature sensor

and the location of the onboard temperature sensor near heat sources on the main board. The

onboard ambient temperature sensor returns a voltage that is directly proportional to the

temperature in oC. The coefficient is typically 0.81mV/ 'C ±20C [21], and the individual sensor

has been calibrated using a single point calibration. Potential solutions are creating an

isothermal environment around the Intelligent Sensor or attaching a separate temperature sensor

directly to the connecting block and then shielding the block from nearby heat sources.

Thermocouple Sweep: Fluke 724 Temp. Calibrator
1400

1200

1000

800

£ 600

200

0

2-0O
0 10 15 20

6 2 30 3 40 4b
Time [s]

Figure 4.2: Thermocouple sweep using Fluke TC simulator from -200'C to 13700C.

i ~ ~~ I I . ----

/ \S \

i'-
s '\ ,

Si·
4.4

4 .

/ \

//

/ \ 5

4.i

/

/ \

i/
/ \

/ \ ii'

·

An Architecturefor Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

This test establishes the most fundamental function of the Intelligent Sensor - to accurately

measure temperature. The next task is to evaluate the part of the Intelligent Sensor that makes it

Intelligent - the quality of the ERM-based health routines. The evaluation is performed against a

canonical sinusoid forcing function to establish credibility. Further evaluation is performed

against recently obtained MTTP Program data to examine the overall capability against real data

where there are events of interest (keep in mind the algorithms presented here are designed for

general purpose use, as MTTP data was not available during the algorithm design phase).

Sianal Reconsruction for dual harmonic sinusoid at 5 and 10 Hz

E

Time (ms)

Figure 4.3: Dual tone sinusoid signal produced by Intelligent Sensor as compared to a
MATLAB simulated equivalent with harmonics at 5Hz and 10Hz.

The basic sinusoid of Fig 4.3 is used to observe and verify the behavior of the DFT

approximation as shown in Figure 4.4. The forcing function of Fig. 4.3 is applied to the input of

the Intelligent Sensor and synthesized by MATLAB. The Intelligent Sensor reconstructed signal

and DFT is compared to the MATLAB generated signal and associated DFT in Fig. 4.4. In both

cases the Intelligent Sensor is indicated in blue and the MATLAB trace is in red. It is clearly

An Architecturefor Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

evident that the Intelligent Sensor performs well reconstructing the signal and approximating the

DFT.

OFTfor dual harmonic smnusoid a 5 and 10 Hz
1600

1400

1200

1000

800

600

400

200

Sensor FFT

-- MATLAB FFT

`I

9 10 1 20 25
frequency (Hz)

Figure 4.4: DFT spectrum of dual tone sinusoid evaluated by the Intelligent Sensor
and verified with MATLAB.

The next evaluation is of the highpass filter and noise detection algorithm chain. For this

analysis, a sinusoid signal was created on the HP function generator that steps from 1 to 25 Hz in

5Hz increments (see Fig. 4.5). Since noise is considered signal activity beyond 15Hz, the

Intelligent Sensor will trigger events when the frequency exceeds that limit.

An Architecture for Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

0.45

0.4

0.35

- Raw
-RawRMS

HpfRMS
* Noise Events

time (ms)

DFT of Sinusold Sweep

0

5 10 15 20
Frequency Bin

Figure 4.5: Sinusoid sweep to demonstrate noise event detection.

Once the algorithm chain enters the 15Hz region, a single event is started and then soon ended,

due to the transition. Once completely in the 15Hz region, the HPF returns the same signal

energy as the raw signal contains, resulting in a continuous noise event up until the end of the

data.

0.3

0.25

0.2

0.15

0.1

0.05

0

-0.05 *

~

r n ~~_______~V,._...~_~_~_~_.

An Architecture for Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

The final evaluation is for the crest factor and spike event algorithm chain. Recently

available MTTP data contains a good candidate for evaluation of this algorithm chain. The live

test data is from tests 0092806-13-06-35, 0914-022D-6271, 0914-019C-6230, and 0914-018D-

6223 utilizing the feedback signal of VPV 1170. This signal was chosen for its characteristically

spiky nature. Fig. 4.6 and Fig 4.7 show VPV1170FB for 0092806-13-06-35 and 0914-022D-

6271. Overlaid onto the graphs are the crest factor and spike event status.

55

Raw Value

- rms25

maxmag25

EstCrest

ActCrest

-Events

45

35

c 25
o

0
0.
0 15

5

-5

-15

W) U U 0 (N o a) U U U n COM (N Q 0 0) 0 0) NO IT M CO (N

Time (ms)

Figure 4.6: Crest Factor and Spike Event detection on 092806-13-06-35 VPVI170FB.

An Architecture for Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

75

65

55

45

C 35

0
a.
* 25

15

5-55

-5

-15 Time (ms)
F- 0 Cr 4)7: Cet 0o 0 Sp 0 0k e CD Ee dte) Ct io CO n 09 1 0) C2D6)71 0P 0l -l -
It isintrstD to LnO th e t -oru C e t con 0 CoD Mi e-C 0 (i W i- W- Mu iN i 4o

0em t- - D (D LD sO On du O O ing) t -o q 'T T i s du i- pt It It us) e ID 8Io- 0
C00w (prv (D OD O Cl o ' (v 00 O 0n an (D 0t Of t he (D Wi 0 (a i n CD 0 e 0 (N t CD C
00 00 00 CO CO O 0) U) C) 0 0 O U) CU) C) U) O C14 CU) C14 C)) CU) CV) U) M
?2CDC 000000 00 00))2)0O

Figure 4.7: Crest Factor and Spike Event detection on 0914-022D-6271 VPVI 170FB.

It is interesting to note the thorough detection of spike events in Fig 4.6, though in Fig 4.7 it

seems to "miss" the spike events during the open phase. This is due in part to the use of25-point

window (providing lots of averaging), and the width of the spikes (raising the effective RMS) as

can be seen in the graphs. Adjusting the size of the RMS and Max window would make the

algorithm more sensitive to spikes of larger width. Also, if a known good signal typically has a

very low crest factor, the crest factor threshold may also be lowered without incurring any false

positives, while improving detection of less severe spikes.

An Architecture for Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

CHAPTER 5: CONCLUSIONS

This research contributes to instrumentation technology through the realization of an IEEE 1451

compatible Smart Sensor that has the added capability to execute health assessment algorithms

and signal processing routines while processing measurements in real-time. While successful,

this work is by no means complete. There are several areas that are recommended for future

work, some of which focus on improving the current baseline to resolve issues or limitations, and

others that represent and evolutionary expansion to increase the contribution of the Intelligent

Sensor to ISHM.

5.1 Future Work: Improving Capability
Several issues have been identified that should be addressed in the near term development

spirals.

The first is resolving the ambient temperature issue. Suitability of the range of the

onboard temperature sensor must be determined, and perhaps a more thorough calibration is

required. Thermal synchronization between connecting block (an unavoidable TC junction) and

the sensor is required, but may be achievable with shielding or external RTDs connected to the

second or third analog input channel.

Another issue is the efficiency of the data acquisition subsystem. Currently the ADC

operates in single sample mode to allow intermediate sampling of alternate channels (ambient,

onboard voltage, etc). While the most aggressive solution is to use a more feature rich ADC

(resulting in costly hardware development), other soft fixes may be achieved by using the

continuous sampling mode for the main analog channel, but switching out to single sample mode

154

An Architecture for Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

for the occasional alternate channel. The last option is to interface the ADC to the 8051 auxiliary

CPU, freeing the Rabbit from controlling the data acquisition directly.

A full implementation of TEDS is required to support the truly dynamic nature of the

Intelligent Sensor and IEEE 1451. IEEE 1451.1 provides psuedocode for parsing template

description language (TDL) and can be the start for writing more advanced calibration TEDS.

5.2 Working Towards the Next Generation
There are many potential 'directions to aim future research efforts. Those areas consist of

improving the IEEE 1451 interface, the addition of instrumentation-grade time synchronization,

further development of HEDS, integrating the network firmware update to interface with a

configuration/deployment tool, and integration of additional health assessment routines.

IEEE 1451 is a key component of ISHM. The 1451 capability in this baseline is a work

in progress due to the need to work on other health-related capabilities at the same time.

Furthermore, some 1451 standards are undergoing initial revision. It is important to fully

develop the 1451 object model and interface specification, and to keep this up to date, as

adoption of 1451 as an instrumentation framework by those in industry will inadvertently pave

the way for ISHM proliferation, even if they are not ready or feel ISHM is worth the gamble at

this point in time.

Time synchronization is necessary to ensure Smart Sensors remain time aligned while

operating over extended periods of time. The only high accuracy instrument grade

synchronization protocol for Ethernet networks is IEEE 1588, although lesser accuracy is

obtainable by using NTP. Integration is a mix of both hardware and software goals, as there is

the need for precision oscillators, hardware for packet timing, and the ability to adjust the timing

hardware to compensate for drift.

155

An Architecturefor Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

The HEDS presented in this work offers the essential capability for configuration of

health assessment routines. As ISHM development continues, there is an advantage to formally

define the core components of HEDS and standardizing these across the board. A thorough

development of HEDS would not be complete without integration into IEEE 1451, setting the

standard for the future of health management. In conjunction, adding more capability to ERM

will be necessary to support additional algorithm demands - such as saving list state for long

term analysis, framework to support real-time fuzzy logic or neural network operations, a

modularization to support different independent ERM subsystems on different channels, and

more intelligence to automatically avoid serving a linked routine with nodes from the associated

routine's list when it is in its delay phase and has not yet begun to produce output. Finally, more

control of ERM's utilization of resources - essentially tighter integration as an operating system

plug-in.

The firmware update service developed through this work demonstrates the powerful

capability of remotely updating Smart Sensors anywhere in the world. The next level of

achievement is to integrate the functionality into a configuration/deployment tool that can pull

together application specific firmware that is stored in a VOB or database, compile it on the fly,

and distribute it to a network of Intelligent Sensors for truly dynamic network configuration.

The last and final suggestion is integration of a complete set of health assessment or

signal processing routines especially designed for specific Intelligent Sensors deployed on an

ISHM-capable vehicle. The current routine suite demonstrates capability, and is not an integral

part of a component or system model. This action is paramount if there is to be any benefit of

the ISHM data, information, knowledge, and action paradigm.

156

An Architecturefor Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

REFERENCES

[1] Figueroa, F., Morris, J., Nickles, D., Schmalzel, J., Rauth, D., Mahajan, A., Utterbach, L.,
Oesch, C., "Intelligent Sensor and Components for On-Board ISHM," Proceedings of the 42 nd

AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Sacramento, CA, 9-12 July
2006.

[2] Nickles D., Rauth D., Schmalzel J., "Enhanced Smart Sensor for Integrated System
Health Management," Sensors Applications Symposium 2006, Houston, TX, 7-9 February 2006.

[3] Schmalzel J., Figueroa, F., Morris, J., Mandayam, S., Polikar, R., "An Architecture for
Intelligent Systems Based on Smart Sensors." Proc. IMTC 2004, Como, Italy, 18-20 May 2004.

[4] Lewis S., Edwards T., "Smart Sensors and System Health Management Tools for
Avionics and Mechanical Systems."

[5] Bos, A., "Model-based Health Tracking," S&T Corp. and Delft University of
Technology, 2001.

[6] Jaw, L.C., Dong, W.N., Bloor, G., Daumann, A., "Anomaly Detection and Reasoning
with Embedded Physical Model," 2002 IEEE.

[7] Figueroa F., Solano W., Thurman C., Schmalzel J., "A Future Vision of Data
Acquisition: Distributed Sensing, Processing, and Health Monitoring." Proc. IMTC 2001,
Budapest Hungary, 20-23 May 2001.

[8] Delsing, J., Lindgren, P., "Sensor Communication Technology Towards Ambient
Intelligence," Institute of Physics Publishing, Measurement Science and Technology, Lulea,
Sweden, 2005.

[9] "IEEE Standard for Smart Transducer Interface for Sensor and Actuators - Network
Capable Application Processor Information Model," IEEE 1451.1, 2000.

[10] "Intelligent Ships: The future of the US Navy," Intelligent Ships Symposium, 2002.

[11] Fox, Jack J., "Impact of Integrated Health Management Technologies on Group
Operations for Reusable Launch Vehicles and Spacecraft"

[12] Schwabacher, M., Samuels, J., Brownston, L., "The NASA Integrated Vehicle Health
Management Technology Experiment for X-37" Proc. SPIE AeroSense 2002.

[13] Williams, B. C., Nayak, P. P., "A model-based Approach to Reactive Self-Configuring
Systems," 13th National Conference on Artificial Intelligence, 04-08 Aug. 1996, Portland, OR.,
pp. 971-978.

157

An Architecturefor Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

[14] Open Systems Architecture for Condition Based Maintenance, http://osacbm.org,
Applied Research Laboratories, Box 30, State College, PA.

[15] Crow E., Reichard K., Banks J., Weiss, L., "Integrated System health Management for
Increased Autonomy, Reduced Operational Risk, Improved Capability," 8 Feb 2005, Penn State
Applied Research Laboratory, State College, PA.

[16] Lebold, M., Thurston, M., "Open Standards for Condition-Based Maintenance and
Prognostic Systems," MARCON 2001.

[17] Discenzo, F., Keller, K., Mitchell, C., Nickerson, W., "Open Systems Architecture
Enables Health Management for Next Generation System Monitoring and Maintenance," White
Paper, 10 April 2001.

[18] Discenzo, F., "OSA-CBM Description," OSA-CBM Milestone 4 Review, Virginia
Beach, VA, 21 September 2000.

[19] Regan, Ronald, Executive Order 12641, May 20 th, 1988.

[20] Hall, D., Llinas, J., "An Introduction to Multisensor Data Fusion," Proceedings of the
IEEE, January 1997.

[21] Analog Devices Inc., "AD7794/5 6-Channel, Low Noise, Low Power, 24-/16-Bit Sigma-
Delta ADC with On-Chip In-Amp and Reference," 6/2006.

[22] Epson Inc., "SG-3030JC 32.768kHz Crystal Oscillator with +5/-23ppm Tolerance."

[23] Analog Devices Inc., "ADR421: Ultraprecision, Low Noise, 2.500V, 3ppm/oC XFET
Voltage reference," 6/2005.

[24] Institute of Electrical and Electronics Engineers, Inc., "IEEE 1588-2002 Standard for a
Precision Clock Synchronization Protocol for Networked Measurement and Control Systems,"
Technical Committee on Sensor Technology TC-9 of the IEEE Instrumentation and
Measurement Society, http://grouper.ieee.org/groups/1588.

[25] Intel Corp., "Hardware-Assisted IEEE 1588 Implementation in the Intel IXP46x Product
Line," White Paper, March 2005.

[26] National Instruments, Inc., "Sensor Calibration with TEDS Technology,"
http://zone.ni.com/devzone/cda/tut/p/id/4043, 2006.

[27] "IEEE 1451 Website," National Institute of Standards and Technology (NIST),
Gaithersburg, Maryland.

[28] Institute of Electrical and Electronics Engineers, Inc., "IEEE 1451.2-1997 Standard for a
Smart Transducer Interface for Sensors and Actuators - Transducer to Microprocessor

158

An Architecture for Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

Communication Protocols and Transducer Electronic Data Sheet (TEDS) Formats," Technical
Committee on Sensor Technology TC-9 of the IEEE Instrumentation and Measurement Society,
1997, http://grouper.ieee.org/groups/1451/2.

[29] Institute of Electrical and Electronics Engineers, Inc., "IEEE 1451.3-2003 Standard for a
Smart Transducer Interface for Sensors and Actuators - Digital Communication and Transducer
Electronic Data Sheet (TEDS) Formats for Distributed Multidrop Systems," Technical
Committee on Sensor Technology TC-9 of the IEEE Instrumentation and Measurement Society,
2003, http://grouper.ieee.org/groups/1451/3.

[30] Institute of Electrical and Electronics Engineers, Inc., "IEEE 1451.4-2004 Standard for a
Smart Transducer Interface for Sensors and Actuators - Mixed-Mode Communication Protocols
and Transducer Electronic Data Sheet (TEDS) Formats," Technical Committee on Sensor
Technology TC-9 of the IEEE Instrumentation and Measurement Society, 2004,
http://grouper.ieee.org/groups/1451/4.

[31] Institute of Electrical and Electronics Engineers, Inc., "IEEE 1451.5 Standard for a Smart
Transducer Interface for Sensors and Actuators - Wireless Communication Protocols and
Transducer Electronic Data Sheets (TEDS) Formats," Wireless Sensor Working Group of the
Technical Committee on Sensor Technology TC-9 of the IEEE Instrumentation and
Measurement Society, http://grouper.ieee.org/groups/1451/5.

[32] Institute of Electrical and Electronics Engineers, Inc., "IEEE 1451.6 Standard for a Smart
Transducer Interface for Sensors and Actuators - A high-speed CANopen based Transducer
network Interface for Intrinsically Safe and non-Intrinsically Safe applications," CANopen
Transducer Network Interface Working Group of the Technical Committee on Sensor
Technology TC-9 of the IEEE Instrumentation and Measurement Society,
http://grouper.ieee.org/groups/1451/6.

[33] Agilent Technologies, Inc., and Boeing Company, "1451.1 On-the-Wire Format for IP,"
Rev. 1, April 2002.

[34] Chronology of Apollo 11: http://history.nasa. gov/Timeline/apollo 13 chron.html.

[35] Glass, B.J., Erickson, W.K., Swanson, K.J., "TEXSYS: A Large Scale Demonstration of
Model-Based Real-Time Control of a Space Station Subsystem," Proceedings of the Seventh
IEEE Conference on Artificial Intelligence Applications, February 24 th , 1991.

[36] NASA Kennedy Space Center, "Research and Technology 1996 Annual Report,"
Memorandum 112650, http://rtreport.ksc.nasa.gov/techreports/96report/96report.pdf, 1996.

[37] Rayman, M.D., Varghese, P., Lehman, D.H., Livesay, L.L., "Results from the Deep
Space 1 Technology Validation Mission," 5 0 th International Astronautical Congress, Amsterdam,
Netherlands, 4-80ct99.

159

An Architecture for Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

[38] Clancy, D., Zakrajsek, J., Kruhm, D., "NASA IVHM Technology Experiment for X-
vehicles (NITEX) Project Plan," May, 1999.

[39] Hedley, M., Johnson, M., Lewis, C., Carpenter, D., Lovatt, H., Price, D., "Smart Sensor
Network for Space Vehicle Monitoring," International Signal Processing Conference 2003.

[40] Erickson, T., "Turbidity Sensing as a Building Block for Smart Appliances," IEEE
Industry Applications Magazine, pp3 1-36, Vol. 3, Issue 3, May 1997.

[41] Okey, M.C., Ruane, P.M., "Advances in Appliance Control: The Breaking of a
Paradigm," IEEE International Conference on Controls Applications, Dearborn, MI, 15Sept96.

[42] "Sensors plug & Play: Smart Sensor for Faster Setup and Development," National
Instruments Webcast, http://sine.ni.com/apps/utf8/nievn.ni?action-display offerings by
event&event id=14329&event subtype=WEB EVENT DEMAND&site=NIC&l=US.

[43] "Two Approaches to Providing Smart Sensor capabilities: Incorporating Identification
Capabilities per IEEE 1451.4 or Complete Data Acquisition and Networking Capabilities",
Endevco Product Brochure, http://www.endevco.com/resources-brochures/networksensors.php.

[44] Honeywell Corp. Sensing and Control Division, "Equipment Health Monitoring Systems,"
Datasheet, December 2004, http://www.honeywell.com/sensing.

[45] Smart Sensor Systems Inc, 720 SW 14th St, Loveland CO 80537.

[46] ESensors Inc, 4240 Ridge Lea Rd, Amherst, NY 14226.

[47] Lee, K., "Synopsis of IEEE 1451: Empowering the Smart Sensor Revolution," Sensors
Conference/Expo 2005, Chicago, IL, 07 June 2005

[48] Wall, R. W., Ekpruke, A., "Developing an IEEE 1451.2 Compliant Sensor for Real-
Time Distributed Measurement and Control in an Autonomous Log Skidder" University of
Idaho, Proc. of the 2 9 th IES.

[49] The SensorNet Project, http://www.sensomet.gov/, Oak Ridge National Laboratory
(ORNL), United States Department of Energy (US DoE), United States Department of Defense
(US DoD), National Oceanic and Atmospheric Administration (NOAA), and United State
Department of Homeland Security.

[50] "IEEE Standard for Information Technology 802.3af - Telecommunications and
information exchange between systems - Local and Metropolitan Area Networks - Amendment:
Data Terminal Equipment (DTE) Power via Media Dependent Interface (MDI)," 2003, IEEE
Press.

[51] Nickles, D., Schmalzel, J., "Intelligent Validation of Intelligent Sensor for Integrated
Systems Health Management," Sensors Applications Symposium 2007, San Diego, CA, 2007.

160

An Architecturefor Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

[52] "Event Detection Interface Control Document and User Manual for ISHM Testbed and
Prototypes Project, Version 1.0," 1 April 2005, NASA Glenn Research Center, Cleveland, OH.

[53] Lee, K. B., Song, E. Y., "Object-Oriented Application Framework for IEEE 1451.1
Standard," IEEE Transactions on Instrumentation and Measurement, Vol. 54, No.4, August
2005.

[54] Dallas Semiconductor Corp., "1-Wire Master Device Configuration," Application Note
2965, http://www.maxim-ic.com/AN2965.

[55] Dallas Semiconductor Corp., "DS2430A: 256-Bit 1-Wire EEPROM with Unique 64-bit
Factory-Lasered Registration Number," November 10 th, 2005.

[56] Oostdyk, R., Mata, C. T., Perotti, J. M., Lucena, A. R., Mullenix, P., "A Kennedy Space
Center implementation of IEEE 1451," Proceedings of SPIE Sensors For Propulsion
Measurement Applications Conference, April 20 -2 1st, 2006, Orlando, FL.

[57] James C. Schatzman, 1996, "Accuracy of the discrete Fourier transform and the fast
Fourier transform," SIAMJ. Sci. Comput. 17: 1150-1166.

[58] M. Frigo and S. G. Johnson, 2005, "The Design and Implementation of FFTW3,"
Proceedings of the IEEE 93: 216-23 1.

[59] , "Rigorous Development of an Embedded Fault-Tolerant System Based on Coordinated
Atomic Actions" IEEE Trans. On Computers, Vol. 51, No.2, February 2002.

[60] Petters, S., Farber, G., "Making Worst Case Execution Time Analysis for Hard Real-
Time Tasks on State of the Art Processors Feasible." Institute for Real-Time Computer Systems,
Technische Universitat, Munchen, Germany.

[61] Baynes, K., Collins, C., Fiterman, E., et al, "The Performance and Energy Consumption
of Three Embedded Real-Time Operating Systems" Dept of Electrical and Computer Eng.,
University of Maryland at College Park, Proc. CASES 2001, Atlanta Georgia, 16-17 November
2001.

[62] Wind River, VxWorks Center, http://www.windriver.com/vxworks/index.html, Alameda,
CA.

[63] Rabbit Semiconductor Inc., "RabbitSys User's Manual for Rabbit Semiconductor
Microprocessors and Integrated C Development System," December 15 th, 2005.

[64] SofTools Inc., "TurboTask User Manual," 2004.

[65] Labrosse, J. J., "MicroC/OS-II: The Real-Time Kernel 2 nd Edition", CMP Books,
Lawrence, KS, 2002, ISBN 1-57820-103-9.

161

An Architecturefor Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

[66] Radio Technical Commission for Aeronautics, Inc., "DO-178B: Software Considerations
in Airborne Systems and Equipment Certification," December 1, 1992, Certified July, 2002.

[67] Rabbit Semiconductor Inc., "Rabbit 3000 Microprocessor User's Manual," Copyright
2002 - 2006.

[68] Rabbit Semiconductor, Inc., "Technical Note 224: Implementing a TCP-Based
Download Manager," February 16th, 2001.

[69] "Remote Application Update," Application Note 022-0092 Rev A, Rabbit
Semiconductor, CA.

[70] Turowski, M., "A Health Assessment Database System for Integrated Systems Health
Management," Master's Thesis, in preparation.

[71] Ogaro, J. A., "Heterogeneous multi-sensor data fusion using geometric transformations
and Parzen Windows for the nondestructive evaluation of gas transmission pipelines," Master's
Thesis, 2004.

[72] Intelligent Sensor Online Resources, http://tcrc.cc/IntelligentSensor

162

An Architecturefor Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

Appendix A: PRETS MTTP Program PID

163

An Architecturefor Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

Appendix B: GRC Noise Detection Routine

Enter NoisyPID

Retrieve Newest
Datapoint

ifNOEVENT tre

ax>aM true tatus = Suspectinor return
S& EST =currTime enr StartSuspMinora.<=am

true
. tm >„ Status = SuspectMajor returna> M

^ EST = currTimere '(StartSuspMajor)

return (noevent)

true
if SuspectMinorte

as>amY true
S&& e teEQST= Ox0

Ca<=aM

true
(CTn-EST) > St

at us
Confi

rmM
inorMMnET

return
(StartConfMinor)

Sreturn (SuspMinor)

true EQST = OxO return
a.>sM am --- Status SuspedtMajor

< E Q O> >EST = curr(StartSuspMajor)

SMinEQT EQST= EST= Ox0

if SuspectlMajor tr
ue return(QuietMinor)

etruea.>tM e >WEQST =Ox0

\/nET ^ 'IEQ....C^M.I.,

return ^\(CTMESE ^ tme (StartuConfM~ajor)
return (SuspMajor)

> taus =us u peeupinor

EQST Ox0teEQST= currTime |^ sta

(CT-EQST)= true Status= NEVENT
s.MirEQT EQ = EST 0x0

(Quret~usp~ajor)

^QueturSuspMajor)^

164

An Architecture for Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

true

true

true

An Architecture for Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

Appendix C: GRC IsSpike Routine

Enter
GFFindSpike

Retrieve current
data value

Retrieve previous
data value

true

if (NOEVENT)

true
fabs (current value-last -Status = SpikeStart = currTime return

value) >= MinSpikeHeight / ConfirmSpike SpikeMag = fEng \ (ConfirmSpike)

return (NOEVENT)

if (ConfirmSpike)

cunValue-SpikeMag<
t rue

MinSp ke
S
S

l l
eg &&

St atus =
NOEVENT return (NOEVENT)

MaxSpikeTime

curValue > SpikeMag tr
e

return
S&&SpikeStart SpikeMag = fEngnfirmSike

S<MaxSpikeTime (ConfirSpke

Creturn (NOEVENT)

166

An Architecture for Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

Appendix D: Noisy Signal Detection Real-time Algorithm

Enter
ERMRoutineProcessor

true
Is List Full?

Execute HAREVTNoiseF

Execute HAREVTNoiseP

Enter HAR EVTNoiseP

Get HEDS for EvtNoise

Get local variables for EvtNoise

Is listfill >= true
HPF order?

Compute RMS incremental
Sum for raw signalSet RMS Incremental Sum

for raw signal to 0
Compute RM5incrementa

SSum for HPF signal
Set RMS incremental Sum

for HPF signal to 0
- increment local counter

RMS Caunt
etlocal counter

(RMS Count) to 0
Save local variables for EvtNoise

Save local variables for EvtNoise
return

return

Enter HAR_EVTNoiseF

Get HEDS for EvtNoiseI-Get local variables for
EvtNolse

Compute RMS Incremental
Sum for raw signal

Compute RMS incremental
Sum for HPF signal

iftRMS Coun truae
< list size

Increment local counter

ifRMS Coun true
calculalit sizeRMS r raw signal
calculate RMS for raw signal

calculate RMS for HPF signal

calculate power ratio in dB

< if Pcalc >
true

Pthresh
F Submit Event Start Alert

increment local counter
(RMS Count)

Save local variables for EvtNoise

return

ifR true

calculate RMS for raw signal

calculate RMS for HPF signal

calculate current power ratio in
dB

calculate previous power ratio in

cPcalcPthres truePcal < Pthresh
Submit Event Start Alert

cPcalc< Pthres true

PSubmit Event End Alert

Save local variables for EvtNoise

(return)

167

An Architecture for Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors

Appendix E: Spike/Flat-line Real-time Algorithm

Enter
ERM RoutineProcessor

s List Full? true

Execute
HAR_EVTSpikeFlat

return

* The maximum, minimum, and RMS
is computed by the HAR_Stats routine
prior to this routine. Only the CF is
computed here.

Execute
HAR_EVTSpikeFlat

Get HEDS for EvtSpikeFlat

Get local vanables for
EvtSpikeFlat

Compute Crest Factor (cCF) as *
Max/RMS of current 25 points

Compute Crest Factor (pCF) as
Max/RMS of prev. 25 points

cCF > CFthresh true&&

pCF < CFthresh FSubmit Spike Event Start Alert

true
cCF < CFthresh&&

pCF > CFthresh
Submit Spike Event Stop Alert

cCF < CFthresh & true
(cMax - cMean)*100 <

Flatnessthresh

SSubmit Flat Event Start Alert

pCF < CFthresh &
(pMax - pMean)*100 <

Flatnessthresh && cCF > true
CFthresh ||

(cMax - cMean)*100 >
Flatnessthresh Submit Flat Event Stop Alert

Save local variables for EvtNoise

C return

168

	An architecture for intelligent health assessment enabled IEEE 1451 compliant smart sensors
	Let us know how access to this document benefits you - share your thoughts on our feedback form.
	Recommended Citation

	An Architecture for Intelligent Health Assessment Enabled IEEE 1451 Compliant Smart Sensors (Rowan University 2006 Theses)

