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ABSTRACT

Michael D. Muhlbaier
BOOSTED ENSEMBLE ALGORITHM STRATEGICALLY TRAINED

FOR INCREMENTAL LEARNING OF UNBALANCED DATA
2006

Dr. Robi Polikar
Master of Science in Electrical Engineering

Many pattern classification problems require a solution that needs to be incrementally

updated over a period of time. Incremental learning problems are often complicated by

the appearance of new concept classes and unbalanced cardinality in training data. The

purpose of this research is to develop an algorithm capable of incrementally learning

from severely unbalanced data. This work introduces three novel ensemble based

algorithms derived from the incremental learning algorithm, Learn++. Leam++.NC is

designed specifically for incrementally learning New Classes through dynamically

adjusting the combination weights of the classifiers' decisions. Learn++.UD handles

Unbalanced Data through class-conditional voting weights that are proportional to the

cardinality differences among training datasets. Finally, we introduce the Boosted

Ensemble Algorithm Strategically Trained (BEAST) for incremental learning of

unbalanced data. BEAST combines Learn++.NC and Learn++.UD with additional

strategies that compensate for unbalanced data arising from cardinality differences among

concept classes. These three algorithms are investigated both analytically and

empirically through a series of simulations. The simulation results are presented,

compared and discussed. While Learn++.NC and Leamrn++.UD perform well on the

specific problems they were designed for, BEAST provides a strong and more robust

performance on a much broader spectrum of complex incremental learning and

unbalanced data problems.
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CHAPTER 1

INTRODUCTION

Supervised classification algorithms, such as neural networks and their many variations,

have been extensively used in a wide range of pattern recognition and function

approximation applications [1]. Traditionally, the learning process takes place in one

step: data is provided to the algorithm along with the correct classification information

and the algorithm learns the patterns in the data associated with each classification. All

subsequently collected data is then used to test the classifier created by the algorithm.

However, an increasing number of practical applications obtain data in installments. A

simple solution is to eliminate the existing classifier, combine all obtained data, and

repeat the learning process. Yet, some applications make this approach impractical or

even impossible: impractical by increasing the training time, in some cases exponentially,

as data is collected; impossible when the application does not allow access to previously

used data. These applications require a technique that can be trained and incrementally

updated, as new data become available, without forgetting the previous acquired

knowledge [2;3].

1.1 Incremental Learning

The ability of a classifier to learn over a period of time is known as incremental (also

called cumulative or lifelong) learning. This style of learning has been given different

definitions throughout literature [4-7]. Some definitions assume the algorithm has access

to all data, others partial access or no access to previously obtained data. For the

purposes of this research it is assumed that incremental learning implies that previously



used data is inaccessible. According to this assumption, an incremental learning

algorithm must be capable of learning from newly obtained data while retaining

previously learned knowledge. This challenging task raises the stability - plasticity

dilemma: a completely stable classifier can retain knowledge, however, cannot learn new

information, whereas a completely plastic classifier can instantly learn new information,

but cannot retain previous knowledge [8;9]. Many popular classifiers, such as the

multilayer perceptron, radial basis function networks, and support vector machine are not

structurally suitable for incremental learning, since they are completely "stable". As

previously mentioned, a trivial procedure for learning from new data using such

classifiers involves discarding the existing classifier and combining the old and new data

to train a new classifier [10;11]. This approach causes all previously learned information

to be lost, a phenomenon known as catastrophic forgetting [12]. To further stress the

importance of proper incremental learning, consider the following example: suppose

your mind was completely "stable", when trying to learn a face, after meeting a new

person, you would have to compare their face against all the faces you have ever seen;

conversely, if your mind was completely "plastic" you would only be able to recognize

the face of the last person you saw. Fortunately your mind is neither completely "stable"

nor completely "plastic", but instead your mind perfectly balances stability and plasticity

in order to learn new information with a minimal loss of previously acquired knowledge.

This balance should be the goal of any incremental learning algorithm.

1.2 Unbalanced Data

Another common problem in pattern recognition is the lack of properly balanced data.

Many real applications make it unpractical to collect equal amount of data from each

2



concept class. This may be due to different costs involved in collecting the data, or

because more samples are difficult, or even impossible, to collect. The relative difference

of individual class's cardinalities within a training dataset is commonly referred to as

unbalanced data within datasets. In some circumstances these cardinalities are correlated

to a quantity often described as class prior probabilities. However, in many practical

applications these different cardinalities are due to data collection issues, and can not be

assumed to be an indicator of the prior probabilities.

In the incremental learning setting, the issue of unbalanced data can be extended

to the discrepancy in the cardinality of each dataset used for incremental learning. In the

absence of other information, and under the generally valid assumptions that (i) no

instance is repeated and (ii) the noise distribution remains relatively unchanged among

datasets, it is reasonable to believe that the dataset that has more instances carries more

information. It is not unusual to see major discrepancies in the cardinalities of datasets

that subsequently become available. However, a large majority of incremental learning

algorithms do not accommodate to differences in dataset cardinalities, resulting in poor

performance under these conditions.

1.3 Scope of Thesis

The overall objective of this research is to develop an incremental learning algorithm

offering superior performance on a broad range of incremental learning problems,

specifically those involving unbalanced data, where unbalanced data can refer to any

combination of the following: the difference in class cardinalities of one data set; the

difference of dataset cardinalities; and the most extreme case, the complete lack or

introduction of all instances from a specific class. Previous work introduced the Leamrn++
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algorithm which performs well on a variety of incremental learning problems [13-17].

However, this algorithm performs poorly or performs inconsistently when used on a

number of unbalanced data problems [18-20]. The clear identification of these problems

led to the development of the following incremental learning algorithms:

1) Leam++.NC, which quickly and effectively learns from data that introduce or

remove all information from one or more New Classes [18;20].

2) Learn++.UD, which handles Unbalanced Data between training sets, allowing

information to be learned even from small datasets [19].

3) BEAST which performs exceptionally well on the broad range of unbalanced data

problems described above.

In this work, these algorithms are analyzed through a rigorous set of experiments to

determine their strengths and weaknesses on various types of incremental learning and

unbalanced data problems. Their theoretical analysis constitutes future work.

1.4 Organization of Thesis

Chapter 2 provides background on ensemble of classifiers systems, including the

Leam++ algorithm. Leam++.NC and Leam++.UD are described in detail in Chapter 3

along with a description of the problems they are designed to solve. In addition, the

problems which these algorithms can not solve are clearly identified. Chapter 4

introduces the BEAST algorithm and discusses the novel methods used to solve

unbalanced data problems. A set of experiments and their results on synthetic and real

world databases are presented in Chapter 5. Finally, a summary of conclusions and

suggestions for future work are presented in Chapter 6.



CHAPTER 2

BACKGROUND

The incremental learning problem is defined in Section 2.1, along with a brief overview

of single classifier solutions to the problem. All work following this section is concerned

with ensembles of classifiers, thus a considerable amount of this chapter is spent on the

history of multiple classifier systems (Section 2.2). The algorithms developed during the

course of this research originated from the Learn++ algorithm are described in Section

2.3.

2.1 Incremental Learning

Before trying to compare and contrast various incremental learning algorithms it is

important to clearly define the desired characteristics of a solution to the incremental

learning problem. An incremental learning algorithm should be able to:

1) learn additional information from new data

2) learn without access to previously used training data

3) retain previously acquired knowledge to avoid catastrophic forgetting

4) accommodate newly introduced classes.

Many incremental learning algorithms that exhibit some of these qualities have been

developed over the last two decades [21-24]. Some algorithms are designed to retain

using a subset of previously used data, in [3;10] the subset is randomly selected and used

in a method called pseudorehearsal; whereas [25;26] encodes the previously used data in

a way that stores the more informative instances. One of the more notable algorithms is

fuzzy ARTMAP which adequately meets all of the above incremental learning



constraints [27-29]. ARTMAP generates a new decision cluster for each perceived new

pattern; each cluster is then mapped to a target class. Since the previously created

clusters are retained, ARTMAP is capable of incremental learning through the generation

of new clusters without access to previously seen data. Furthermore, the new clusters can

be mapped to previously seen targets or to novel targets, allowing ARTMAP to

accommodate newly introduced classes. Although ARTMAP fits perfectly into the

description of incremental learning, it has some drawbacks. In many cases it has been

noted that ARTMAP is very sensitive to the selection of the vigilance parameter, which

controls the threshold that determines whether a new cluster needs to be created, or if

existing clusters can be added to existing ones. ARTMAP is also very sensitive to noise

levels in the training data and to the order in which the training data are presented to the

algorithm. For example, poor selection of the vigilance parameter can prevent the

algorithm from learning complex decision boundaries or cause severe overtraining [30].

However, several methods have been proposed to select parameters and training methods

that will increase the generalization performance [31;32].

2.2 Ensemble of Classifiers

Ensemble systems were first introduced to improve generalization performance by

intelligently combining decisions from multiple classifiers. This is based on the proven

assumption that by combining several diverse classifiers a greater performance can be

obtained over a single classifier [33]. The general process of ensemble learning is, given

training data S = {(xn, yn), n = 1,...,N}, is then divided into subsets, , and used to

independently train a classifier ht. The decisions of all he are then combined in some way

to create an ensemble classification Ht. Figure 2.1 graphically shows this process on a toy

6



dataset. In step (1) the dataset < is shown in the feature space. In steps (2)-(4) decision

boundaries are generated on random subsets of>, these boundaries indicate the decision

of the respective classifiers. In step (5) the three decision boundaries are combined to

create a more robust ensemble decision, shown in step (6).

Figure 2.1 - Graphical depiction of learning with multiple classifiers.



The most interesting, and consequently most researched, aspects of ensemble learning are

the selection of training data subsets, and the methods used to combine classifier

decisions [34-38].

2.2.1 BAGGING

One of the most well known algorithms which combine classifiers to improve

performance are bagging and boosting. Bagging, introduced by Breiman [39] as

"bootstrap aggregating," is undoubtedly the simplest implementation of the ensemble

method sown in Figure 2.1. Bagging works by randomly sampling ), with replacement,

in order to create T subsets, 't, which are then used to train T different classifiers, ht.

The T classifiers are added to form an ensemble, and used to classify test instances. The

ensemble classification, H, is then determined to be the class with the most votes.

BAGGING

Inputs:

* Dataset = {(x,yn), n = 1,...,N}

* The number of classifiers to train, T

For t = 1,...,0T

* Use bootstrapping to select a subset of, 't

* Where +, e E

* Train a classifier, ht, using t as the training set

Classification:

* Get the decision of ht(x) for t = 1,...,T

* The ensemble decision, H, is the class with the most votes

Figure 2.2 - BAGGING algorithm.



2.2.2 BOOSTING

Other basic ensemble algorithm are the boosting [40;41] and LEARN [33] algorithms

which use a more sophisticated approach to generate an ensemble with only three

classifiers.

Figure 2.3 - BOOSTING algorithm.

9

BOOSTING

Inputs:

* Dataset) = {(xn, y), n = 1,...,N}

Training:

* Select NI<N training points from +' without replacement to create >i

* Train classifier hi on>i

* Select data for' 2 such that half of the instances are classified correctly by hi

* Loop until no data remains in+

o Generate a random bit (0 or 1)

If 0
Select an instance from' and present it to hi until the first

instance is misclassified, add this instance to >2.

If 1
Select an instance from'i> and present it to hi until the first

instance is correctly classified, add this instance to '2.

* Train classifier h2 onH 2

* Create ' 3 by selecting all patterns from ) where hi and hi disagree

* Train classifier h3 onH 3

Classification :

Classify the test data instance, x, with all classifiers, hi(x), h2 (X), and h3 (X)

If hi(x) = h2 (x)

H(x) = hi(x) = h2 (X)

If hi(x) <> h 2 (X)

H(x) = h3(X)



The approach in boosting is to ensure that the three classifiers in the ensemble are as

diverse and complementary as possible. The first classifier, hi, is trained with a

randomly drawn subset of the training data. The second classifier, h2, is trained with the

most informative dataset given what hi already learned. This is done by selecting a set of

instances where half of the instances are classified correctly by hi and the other half

misclassified. The third classifier, h3, is then trained on all instances where the decisions

of h, and h2 disagree. Figure 2.3 shows the pseudocode for the boosting algorithm.

The strong learning algorithm, LEARN, is an extension of the boosting algorithm

in Figure 2.3. The LEARN algorithm adds several complex controls after the training of

hi and h2 to ensure that their associated errors fall within certain tolerances [33].

2.2.3 AdaBoost

In [42] Freund and Schapire seek to improve on previously introduced BOOSTING

algorithms using a more statistical approach for both the training and combining

"experts". Assuming that a set of "experts" are available, which perform slightly better

than random guessing, their algorithm is theoretically shown to reduce error as more

"experts" are added to the ensemble. AdaBoost is an extension of Freund and Schapire's

solution to the online allocation problem, known as Hedge(/?).

2.2.3.1 Hedge ()

Given N strategies (or "experts") the allocation algorithm generates a weight vector pt

which attempts minimize the loss of the system over a number of time steps t = 1,...,T.

There is assumed to be a loss vector, £t, received from the environment. The overall loss

of the system is then:

10



T

L=Zp''te
t=1

(2.1)

The goal is to set pt such that L is minimized. Thus, it is intuitive to allow et to modify p'

such that the strategies that incur more loss are weighted less.

t+1 tA it
w w (2.2)
1_Wt

S wN

S=1 ' (2.3)

where f e [0, 1] and £ e [0, 1], thus also bounding wt between 0 and 1. Furthermore,

equation (2.2) can be expanded to update wit using any function bounded by 0 and 1.

Figure 2.4, shows the Hedge(#) algorithm in its entirety as presented in [42].

Algorithm Hedge(B)

Parameters: pe [0,1]

initial weight vector w1 e [0, ]N with w' = 1

number of trials T

Do for t = 1, 2, ... , T

1. Choose allocation

wt
p N

i=1 7

2. Receive loss vector £' e [0, 1]N from environment.

3. Suffer loss p't .'.

4. Set the new weights vector to be

i+1 t= w -

Figure 2.4 - Algorithm Hedge(8).

11



2.2.3.2 AdaBoost

AdaBoost, short for Adaptive Boosting, combines the online allocation method of

Hedge(f) with the majority voting [43] version of the BAGGING method shown in

Figure 2.2. The algorithm WeakLearn is used to generate a weak hypothesis or

classifier given a set of training data. Unlike the initial boosting algorithms proposed by

Schapire [33] and Freund [43;44], AdaBoost does not require prior information about the

accuracies of the weak hypothesis. Instead AdaBoost adapts to these accuracies through

its weighted majority voting mechanism.

Figure 2.5 shows the pseudocode for the most common version of AdaBoost,

which is designed for multiclass problems. AdaBoost uses WeakLearn to generate T

classifiers using data selected from% according to D,. D, is updated using a method very

similar to that of Hedge(f). Instead of reducing the weights of strategies that incur heavy

losses, the algorithm increases the weights of training examples which are difficult to

classify. This ultimately reduces the loss of the system by increasing the likelihood of

creating a classifier that is complementary to the ensemble. Furthermore, Hedge(f)

requires the / parameter to be constant, where as AdaBoost adaptively optimizes the 8

parameter for each training example. Once AdaBoost is finished training, classifiers

generate the final hypothesis as the weighted sum of the individual hypotheses, where

each hypothesis is weighted proportional to its performance on the entire training data).

12



AdaBoost.M1

Inputs:

* Dataset% = {(x,y), n = 1,...,N}

* Distribution D over all N instances

* Weak learning algorithm WeakLearn

* Integer T specifying the number of classifiers to generate

Initialize the weight vector: wi(i)=D(i) for i=1,...,N

Do for t= 1, 2,...,T

1. Set D, = w,14 w, (i) so that Dr is a distribution.
i=1

2. Call WeakLearn providing it with training data selected according to Dt; get back a

hypothesis ht: X-> Y.

3. Calculate the error of ht: = D,(i).i:ht (xi )#yi
If Et > 1/2, then set T= t - 1 and abort loop.

4. Setf = et / (1 - et).

5. Set the new weight vector:

w P,(i) = x1, ,5if h,(x,) = y,
S, otherwise

Output the hypothesis

Hf (x,) = arg max f log-,Ct:h(x,)=cc Pt)

Figure 2.5 - AdaBoost.M1 algorithm.

2.3 Learn++

Learn++ was proposed as an incremental learning algorithm that exhibits a fine balance

across the stability - plasticity spectrum: it is capable of learning from new data, while

substantially retaining previous knowledge without requiring access to the previously
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used data, even when new data includes instances from previously unseen classes [15].

The algorithm, inspired by AdaBoost, takes advantage of the synergistic learning ability

of an ensemble of classifiers. While both algorithms sequentially generate an ensemble

of diverse classifiers that are combined through a weighted majority voting procedure,

Leam++ is primarily geared towards incremental learning [16;17], while AdaBoost is

intended for improving generalization performance of a weak classifier [42]. Learn++

aims to incrementally learn the newly available information. More specifically, each

classifier generated by Learn++ is trained on a subset of the current training dataset. The

instances of each subset are drawn according to an iteratively updated distribution that is

strategically biased towards those instances that carry novel information. The relative

performance of each classifier on its training data then determines its voting weight to be

used in weighted majority voting [45], where the ensemble chooses the class that receives

the highest total vote from individual classifiers. As new data become available, Learn++

generates additional classifiers, until the ensemble learns the novel information. Since no

classifier is discarded, previously acquired knowledge is not lost. Previous studies have

shown that Learn++ is capable of using any supervised neural network as its base

classifier, thus making the algorithm classifier independent [16].
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Algorithm Learn++

Input: For each dataset k k=1,2, ...,K

* Training data Ak ={(X1,Y1),(X2X,(x2,),,(Xm,mk )}i Y e Y, C{Wp*c

* Weak learning algorithm BaseClassifier.

* Integer Tk, specifying the number of BaseClassifiers to create using k

Do fork = 1,2,...,K

If k#Al, Set t = 0 and Go to step 5 of the following Do loop to adjust

initialization weights

Do for t = eTk+1, eTk+ 2 ,..., e Tk+ Tk:

1. Set D, (i) = (i) w, (i) so that Dt is a distribution.

2. Call BaseClassifier, providing it with tf ek , drawn according to Dt.

3. Obtain a hypothesis ht: X 4 Y, and calculate its the error E = D, (i). If
i:h (xi )y,

,t > V2, discard ht and go to step 2. Otherwise, compute normalized error

A = ct/(iA t ).

4. Call weighted majority voting to obtain the composite hypothesis

Ht,(xi) = arg max log 1

5. Compute the error of the composite hypothesis E, = D,(i)
i:Ht (x,)#yi

6. Set Bt = Etl/(1 - Et), and update the instance weights:

,+(i) = wtx Bt,, if Ht,(xi)= y,
S1 , otherwise

Call weighted majority voting to obtain the final hypothesis

Fugrm2 t:h- (xLr )=n+ + P

Figure 2.6 - Learn+ + algorithm.
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As reported in [15-18;46;47], Learn++ works rather well on a variety of real

world problems, even when new classes are introduced with the new data. However,

learning new classes come at the expense of requiring a large number of classifiers, an

outcome originally thought to be due to well established property of ensemble systems

performing best with large number of classifiers. We now realize, however, that

classifier proliferation is really an artifact of the voting procedure, and the number of

classifiers required to learn new classes can in fact be drastically reduced using a more

strategic classifier combination process. In the following section the fundamentals of this

problem and potential solutions are explained in detail.
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CHAPTER 3

ENSEMBLE OF CLASSIFIERS FOR INCREMENTAL LEARNING

The primary focus of this chapter is to propose novel solutions to specific problems that

are not addressed by existing. Two main problems are discussed, the outvoting problem

(Section 3.1), and the unbalanced data problem (Section 3.3). A novel solution to the

outvoting problem is introduced in Section 3.2 along with a partial solution to the

unbalanced data problem in Section 3.3. The chapter concludes with Section 3.4, which

highlights the limitations of the proposed algorithms along with the identification of

problems which they leave unsolved.

3.1 The Out Voting Problem

Despite its promising performance on a variety of applications, Learn++ has its own

shortcomings. One particularly important issue is the "out-voting" problem which occurs

when a new class is to be learned by an existing ensemble. While Learn++ is capable of

learning new class boundaries, it does so at a cost of generating a large number of

classifiers. To understand the root cause of the classifier proliferation, consider an

ensemble of classifiers that are combined through majority voting. In such a voting

mechanism, individual classifiers vote on the class they predict, and the final

classification is determined as the class that receives the highest total vote from all

classifiers. Leam++ originally used the weighted majority voting, inherited from

AdaBoost, where each classifier receives a voting weight based on its training

performance. This works rather well in practice even in an incremental learning setting,

where new ensemble members are generated with each new dataset to be learned.
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However, if the incremental learning problem involves introduction of new classes, as

well as some or a subset of the previously seen ones, then the voting scheme proves to be

unfair towards the newly introduced class. This is because, instances of a new class that

are introduced by the additional data, will be naturally, yet incorrectly, classified into one

of previously seen classes by the existing classifiers. Since none of the previously

generated classifiers can pick the new class, the decision of the newly generated

classifiers on the new class will be outvoted by the previously trained classifiers, until

there are enough new classifiers to out vote the previously trained classifiers. In other

words, a relatively large number of new classifiers need to be generated that recognize

the new class, so that their total weight can out-vote the previous batch of classifiers on

instances coming from this new class, consequently populating the ensemble with an

unnecessarily large number of classifiers.

We now understand that the out-voting problem is a natural outcome of the voting

process, and it can be rectified by a more strategic classifier combination process. The

goal is therefore to address this out-voting problem by changing the classifier

combination process in such a way that classifiers dynamically adjust their voting

weights in proportion to the predicted confidence they have on their decision, which are

themselves weighed by the confidence of other classifiers in the ensemble.

The clear identification of this problem led to the development of Leam++.NC

(New Class) which is the new name for the previously published Leam++.MT.

Leam++.NC is specifically designed to address this issue of classifier proliferation. The

primary novelty in Leam++.NC is the way in which the voting weights are determined.

Leam++.NC, just like its predecessor Learn++, also obtains a set of voting weights based
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on the individual performances of the classifier, however, these weights are then

dynamically adjusted based on the classification of the specific instance at the time of

testing. The following section explains in detail the Leam++.NC algorithm and why it is

able to greatly reduce classifier proliferation.

3.2 Learn+ +.NC

For any given test instance, Leam++.NC compares the class predictions of each classifier

and cross-references them with the classes on which they were trained. Essentially, if a

subsequent ensemble of classifiers trained on a previously unseen class overwhelmingly

predicts the new class on a given instance, then the voting weights of those classifiers that

have not seen the new class are proportionally reduced. As an example, assume that an

ensemble of classifiers is trained with instances from classes coi and (o2, and a second

ensemble of classifiers is trained with instances from classes cci, 2 and 6 3. For any

given test instance, if the second ensemble picks Cw3, the classifiers in the first ensemble

realize that the they have not seen any data from a third class and reduce their voting

weights proportional to the ratio of the classifiers in the second ensemble that pick class

0)3. We will refer to this ratio as the preliminary confidence of the second ensemble in

predicting class (03. Leam++.NC can keep track of which ensembles have been trained

on any given class. In the above example, knowing that the second ensemble of

classifiers have seen class (03 instances, and that the first ensemble classifiers have not, it

is reasonable to believe that the second ensemble of classifiers are correct in their

decision, particularly if these classifiers overwhelmingly choose class (03 for a given

instance. To the extent that the second ensemble of classifiers are confident of their

decision, the voting weights of the first ensemble of classifiers are then reduced. The
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pseudocode and block diagram of the Leam++.NC algorithm are given in Figure 3.1 and

Figure 3.2, respectively, and the algorithm is formally explained in detail below.

For each database (k) that becomes available to Leam++.NC, the inputs to the

algorithm are (i)k ={1(x1 12),(x 2 , Y2)-,(xmkmk )}, the kth dataset consisting of a

sequence of mk training data instances xi along with their correct labels yi, i = 1,...,mk; (ii)

a classification algorithm BaseClassifier, and (iii) an integer Tk specifying the maximum

number of classifiers to be generated using database 7 k. For each such database, the

algorithm generates an ensemble of classifiers, each trained on a different subset, k, of

the available training data. The instances to be used for training each classifier is drawn

from a distribution Dt obtained from a set of weights wt, maintained on the training data.

If the algorithm is being trained on its first database (k = 1), the data distribution, D, is

initialized to be uniform, making the probability of any instance being selected equal. If

k > 1 then a distribution re-initialization sequence initializes the data distribution. For

each database Wk the algorithm then adds Tk classifiers to the ensemble starting at

t=eTk+1 where eTk denotes the number of classifiers that currently exist in the ensemble.

For each iteration t, the instance weights, wt, from the previous iteration are first

normalized (step 1) to create the weight distribution DA.

m

Dt =wwtwt(i) (3.1)
/ i=1
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Algorithm Learn++.NC

Input: For each dataset k, k = 1,2, ...,K

* Training data k ={(xiyi),(x 2 ,Y2 ).-.(xmk )} ym e5 c{wp I..,

* Weak learning algorithm BaseClassifier.

* Integer Tk, specifying the number of BaseClassifiers to create using 4k

Do for k= 1,2,...,K

If k 1, Set t = 0 and Go to step 5 of the following Do loop to adjust

initialization weights

Do for t= eTk+1, eTk+ 2 ,..., e + Tk:

1. Set D (i) = i) = w (i) (i) so that D is a distribution.
Si=1

2. Call BaseClassifier, providing it with k e k , drawn according to Dt.

3. Obtain a hypothesis ht : X - Y, and calculate its the error e = D, (i) . If
i:ht (x ) #y,

e,> V2, discard ht and go to step 2. Otherwise, compute normalized error

A = ct/(l - ct).

4. Let CTrt = Yk(t) C ({91, ... ,c}, be the class labels used in training ht for dataset

Dk.

5. Call DWV to obtain the composite hypothesis Ht.

6. Compute the error of the composite hypothesis E, = t D, (i)i:H t ( x,)y,
7. Set Bt = Et/(l-Et), and update the instance weights:

w,,t(i) = wt x, Btif H,(xi) = y,
S1 , otherwise

Call DWV to obtain the final hypothesis, Hfinal

Figure 3.1 - Learn++.NC algorithm.
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A subset of k is drawn according to Dt, to obtain tk, the training data subset to train

the tth classifier (hypothesis) ht, using the BaseClassifier (step 2). The error, Et, of ht is

calculated on all instances contained in k.

mk

Et = Dt (i) = Dt(i) |h (xi) i ] (3.2)
i:ht (xi)yi i=

where [| *|] evaluates to 1, if the predicate is true, and zero, otherwise. The BaseClassifier

can be any supervised classifier, whose weakness can be adjusted to ensure adequate

diversity, whereby sufficiently different decision boundaries are generated each time the

classifier is trained on a different training dataset. This weakness can be controlled by

adjusting training parameters (such as the size or error goal of a neural network) with

respect to the complexity of the problem. However, a meaningful minimum performance

is enforced: the probability of any classifier to produce the correct labels on a given

training dataset, weighted proportionally to individual instances' probability of

appearance, must be at least V2. If classifier outputs are class-conditionally independent,

then the overall error monotonically decreases as new classifiers are added. Originally

known as the Condorcet Jury Theorem (1786) [48-50], this condition is necessary and

sufficient for a two-class problem (C=2); and it is sufficient, but not necessary, for C>2.

Therefore, if et > /, the algorithm deems the current classifier, ht, to be too weak,

discards it, and returns to step 2, otherwise, calculates the normalized error st, 0 : <s F 1

(step 3).

P,=E,/(1 - ,) (3.3)

The class labels of the training instances used to generate he are then stored as CTrt (step

4).
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CTrt = Yk(t)C({w,..., 0c} (3.4)

where Yk(t) is the set of concept classes represented by the training data used to generate

ht. The dynamically weighted majority voting (DWMV) subroutine of Leam++.NC,

described below, is then called to combine all hypotheses generated thus far, that is, to

obtain the composite hypothesis, Ht, of the ensemble (step 5). Ht represents the ensemble

decision of the first t hypotheses generated thus far. The error of the composite

hypothesis, Et is then computed and normalized to obtain 0 5 Bt : 1. (step 6).

mk
Et= Dt(i) =IDt(i)[IHt (xi) # |i (3.5)

i:Ht(xi)#yi i=1

Bt=E,/\(1-E,) (3.6)

The instance weights wt are finally updated according to the performance of Ht (step7)

such that the weights of instances correctly classified by Ht are reduced and those that are

misclassified are effectively increased.

(i = w(i) 1-[IH (x)yi Bt f H (x) = y(3
w+,(i) = wt(i)x B t ' = w,)X , otherwise(3.7)

Equation (3.7) indicates that the distribution weights of the instances correctly classified

by the composite hypothesis HI are reduced by a factor of Bt (0 < Bt < 1), which

effectively increases the weights of the misclassified instances making them more likely

to be selected to the training subset of the next iteration. We note that this weight update

rule, based on the performance of the current ensemble, facilitates incremental learning.

This is because, unlike AdaBoost and its variations whose weight distribution update is

based on the performance of the previously generated hypothesis ht, Learn++.NC updates

its distribution based on the performance of the composite hypothesis (that is, the entire

ensemble). This composite hypothesis based weight update procedure forces the
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algorithm to focus more and more on instances that have not been seen or properly

learned by the current ensemble. This allows efficient incremental learning, because the

instances introduced by the new dataset - in particular if they come from a new class -

are precisely such instances that are not yet learned (or seen) by the ensemble. It can be

argued that AdaBoost too looks (albeit indirectly) at the ensemble decision since, while

based on a single hypothesis, the distribution update is cumulative. However, the update

in Learn++ is directly tied to the ensemble decision, and hence been found to be more

efficient in learning new information in our previous trials [46].

3.2.1 Dynamically Weighted Majority Voting

The dynamically weighted voting (DWV) is illustrated in Figure 3, and described below

in detail. The inputs to DWV are (i) the data points to be classified, (ii) classifiers h'; (iii)

Et, normalized error for each ht, and (iv) a vector CTrt containing the classes on which ht

has been trained. Classifier weights are first initialized according to Equation (1). Each

classifier then receives a standard weight that is inversely proportional to its normalized

error st so that classifiers that performed well on their training data are given higher

voting weights.

,= log(l/A,) (3.8)

A normalization factor Zc is then created as the sum of the weights of all classifiers

trained with class o9.

Z = W, (3.9)
t:ceCTrt

For each instance, a preliminary confidence factor Pc is generated for each class.
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I W
Pc(x) = t:h (x)=c (3.10)ZC

Pc is the sum of weights of all classifiers that choose class wo, divided by the sum of the

weights of all classifiers trained with class oc (Zc). The class-specific confidence Pc(xi)

represents the collective confidence of classifiers trained on class oc in classifying

instance xi as class oc. A high value of Pc(xi) indicates that classifiers trained to

recognize class wc have overwhelmingly picked class wc. Classifiers not trained on class

uc then look at the overwhelming preliminary confidence on Oc and conclude that they

are probably incorrect in their classification on xi. Therefore, the voting weights of the

classifier not trained with oc are reduced in proportion to Pc(x1 ), that is, the weights are

lowered proportional to the ensemble's preliminary confidence on Coc.

Wt:cOCTrt = W:cC Tr, (1- ) (3.11)

In other words, the weight of a classifier that has not been trained on a given class,

Wt:ccTr,, will be reduced in proportion to the ensemble confidence on that class.

Furthermore, if a classifier has not been trained on more than one class then the

expression in Equation (3.11) will be applied for each CTrt.

Hfial (xi)=argmax W, (3.12)
M

c  
t:h (xj)=oc

The final composite hypothesis is then calculated as the maximum sum of the weights

that chose a particular class.

26



Inputs: Classifier weights Classes used in training Classifiers Instances
3t, CTr, h, xi
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Figure 3.3 - Dynamically weighted voting algorithm.

3.3 Unbalanced Learning

An interesting problem in the incremental learning setting is the issue of unbalanced data,

which we define as the discrepancy in the cardinality of each dataset used in incremental

learning. If one dataset has substantially more data than the other, this can unfairly bias

the ensemble decision towards the data with the lower cardinality. This is because, the

voting weights of each classifier is determined solely by its performance on its respective

training data. Even though the cardinality of a given dataset may be small, the classifier

may perform well on its own limited training dataset, and therefore receive a high voting

weight. This classifier is most likely to perform poorly - relative to other classifiers
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generated with larger cardinality data - on the unseen instances, since it was trained on

limited data.

In the absence of any other information, and under the generally valid

assumptions that (i) no instance is repeated and (ii) the noise distribution remains

relatively unchanged among datasets, it is reasonable to believe that the dataset that has

more instances carries more information. Classifiers generated with such data should

therefore be weighted more heavily.

It is not unusual to see major discrepancies in the cardinalities of datasets that

subsequently become available. Consequently, in any ensemble based learning algorithm

that employs a classifier combination scheme, the cardinality of each dataset should be

taken into consideration.

An unbalanced data need not be caused simply due to discrepancy among dataset

cardinalities, but may also be due to relative cardinalities of individual classes within the

training data, a quantity often described as class prior probabilities. While class priors

appear conspicuously within the Bayesian setting, they are not as heavily utilized in many

other algorithms. Commonly used ensemble combination schemes, such as voting, sum

or product based combination, often do not take class priors into consideration [51;52].

Learn++.UD (Unbalanced Data), previously published as Leam++.MT2, proposes

a set of modifications to address both aspects of unbalanced data described above.

While, the approach is described specifically for Learn++, it is nevertheless quite general

and can be easily adapted to any ensemble based algorithm such as AdaBoost, or

Leamn++.NC.
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The primary novelty in Leam++.UD is the way by which the voting weights are

determined. Leam++.UD attempts to addresses the unbalanced data problem by keeping

track of the number of instances from each class with which each classifier is trained.

Similar to Leam++, each classifier is first given a weight based on its own training data

performance; however, this weight is later adjusted according to its class conditional

weight factor. For each classifier the class conditional weight factor is the ratio of

instances from a particular class used for training that classifier, to the number of

instances from that class used for training all classifiers thus far within the ensemble.

The pseudocode of the entire algorithm is given in Figure 3.4.

For each dataset (%k) that becomes available, the inputs to the algorithm are (i) a

sequence of mk training data instances xi along with their correct labels yi, (ii) a

classification algorithm BaseClassifier, (iii) an integer Tk specifying the maximum

number of classifiers to be generated during the kth training session, and (iv) a variable

eN, is created to hold the current value of N, which is then updated as the sum of all

class-c instances contained in ' 1 through k. For the first database (k = 1), a data

distribution (Di) - from which training instances will be drawn - is initialized to be

uniform, making the probability of any instance being selected equal. The number of

instances from each class ce {1,...,C} in ' 1 is stored in Nc. If k > 1 then a distribution

initialization sequence re-initializes the data distribution (the IF block in Figure 3.4) and

updates the existing class-conditional weights according to Equation (3.13).

k"-1

LA, i~
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The algorithm then adds Tk classifiers to the ensemble starting at t=eTk+l where eTk is the

number of classifiers that currently exist in the ensemble. For each iteration t, the

instance distribution, Dt, from the previous iteration is first normalized (step 1).

Dt = Dt / Dt(i) (3.14)
i=1

A hypothesis (classifier), ht, is generated by training on a subset of the dataset, tk that is

drawn according to Dt (step 2). The error, st, of ht is then calculated; if et > V2, the

algorithm deems the current classifier ht to be too weak, discards it, and returns to step 2,

otherwise, calculates the normalized performance pt (step 3).

Ct= I Dt(i) (3.15)
i:ht (x )yi

pt =1-2ct, O pt 1 (3.16)

A class conditional weight factor (wt,c) is created for each classifier, which is proportional

to its classification performance on the entire training data k (including the portion

unused during its training) and the number of class c instances on which the classifier

was trained (step 4).

nc
w = Pt kc (3.17)

1i=1 Ni,c

where nc is the number of instances from class coc used in training. The weighted

majority voting algorithm is called to obtain the composite hypothesis, Ht, of the

ensemble (step 5).

H (x,)=argmax w , (3.18)
CeYk t:h(xi)=c
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where Ht represents the ensemble decision of the first t hypotheses generated thus far.

The error of the composite hypothesis, Et is then computed and normalized (step 6).

E= t D,(i) (3.19)
i:Ht (xi)*,i

The instance distribution Dt is finally updated according to the performance ofHt (step 7)

such that the weights of instances correctly classified by Ht are reduced and those that are

misclassified are effectively increased.

D,, (i)(= Dt, if H(x) = y(3.20)1 , otherwise
This distribution update rule, based on the performance of the ensemble, ensures that the

algorithm chooses instances to train on are difficult to classify, not yet learned, or not

previously seen by the ensemble. The algorithm achieves incremental learning, because

novel instances introduced by a new dataset are precisely those that are difficult, not yet

learned or not yet seen instances. The final hypothesis of the ensemble can be obtained

by calling the weighted majority voting algorithm, shown in Equation (3.21).

Hfinal (x) = argmax ,c (3.21)
CEYk t:h(xi)=c
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Algorithm Learn++.UD
Input: For each datasetik, for k = 1,2, ...,K

* Training data -k =X1,Yy1),(x2y2"'Xk,',y y, ek c {wp.,o}c

* Nk,c, the number of class-c instances in^k

* Weak learning algorithm BaseClassifier.
* Integer Tk, specifying the number of iterations.

Do for k = 1,2,...,K
Initialize D, (i) = 1 / mk, eT = 0, i = 1,..., mk
IF k > 1, Go to Step 5, evaluate current ensemble on the new dataset k,

k-1
* Update D, and current number of classifiers eT = T .

j=1

k- 1 1N
* Update w, = w, =1 , t= ,...,eTk, c = 1,...,C,i=1 Nic

Do for t = eTk+ 1, eTk+ 2,..., eTk+ Tk
Im

1. Set Dt = D Dt(i) so that DA is a distribution.
/i=1

2. Call BaseClassifier providing it with a subset (tk) ofVk randomly chosen
according to Dt.
3. Obtain a hypothesis ht : X -4 Y, and compute the error = DL(i)

i:h (xi) #y;
If t > 1/2, discard ht and go to step 2. Otherwise, compute

the normalized performance pt = 1- 2et, O • pt •1 .

4. Compute the class specific weight as

wKC = A l,.-. C = =pt k1N i,c
where nc is the number of class-c instances in'8tk

5. Call weighted majority voting to obtain the composite hypothesis

Ht,(x,)=argmax w,C
CEYk t:h,(x,)=c

6. Compute the error of the composite hypothesis

Et= D,(i)
i:Ht (x,)•yi

7. Set Bt = Et/(l-Et), 0 < Bt <1, and update the instance weights:

D,(i=,xB,, 
i f H,(x,)=y1

1 , otherwise
Call weighted majority voting to obtain the final hypothesis.

Hinal (x) =argmax a ,
ce t:h, (x,)=c

Figure 3.4 - Learn++. UD algorithm.
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3.4 Problems with Current Approaches

Although Learn++, Leam++.NC, and Leam++.UD perform well on a variety of

incremental learning problems, they all have certain issues inherent in their design, which

prevent them from learning properly under specific circumstances. Learn++ suffers

severely from the outvoting problem when required to learn new classes. Leam++.NC

uses a dynamic weight update rule that allows the algorithm to overcome the outvoting

problem. However, there are two known incremental learning scenarios under which

Leam++.NC performs poorly, 1) problems where a dataset will simultaneously introduce

novel class information and lack information from previously learned classes; and 2)

problems which feature severely unbalanced datasets. Leam++.UD is designed to

perform well when data between datasets is unbalanced. However, the algorithm is not

designed to handle unbalanced data within datasets, nor the introduction of new classes.

In Chapter 4 we introduce the BEAST algorithm, which combines the concepts from

Leam++.NC and Learn++.UD with some other novel voting techniques. The goal is to

create one algorithm that will perform well on a broad spectrum of incremental learning

problems.
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CHAPTER 4

THE BEAST ALGORITHM

Learn++.NC was developed as a logical solution to the out-voting problem inherent in

Learn++. Leam++.NC introduced the concept of dynamically adjusting classifier voting

weights based on the hypotheses of other classifiers. In other words, each classifier's

weight is dependent on the decisions of other classifiers. This novel approach can be

extended to optimally combine classifiers by incorporating information inferred from

previously trained classifiers. Several methods were developed to help reduce the

adverse effects commonly experienced in incremental learning problems. Each method

was designed to reduce the effects commonly occurring in unbalanced data problems.

Unfortunately, many of these methods exhibited adverse effects when used on a wider

range of unbalanced data problems, resulting in instabilities of the algorithm. The

BEAST algorithm provides a strategic combination of these methods that performs

consistently well over a broad range of incremental learning applications. This chapter is

broken down to first describe the individual components that are found in the BEAST

algorithm, followed by overall look and explanation of the algorithm.

4.1 Different Elements of the BEASTAlgorithm

As mentioned, BEAST is composed of several novel methods which we will discus in

detail. The motivation behind each method is explained as to how and why they work.
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4.1.1 Class Specific Weights

Learn++.UD introduced a method of adjusting classifier weight values based on the

relative amount of data on which they have been trained. The weight for class c and

classifier t is then calculated as follows.

t, Pt kN (4.1)
'i=k N i 'c

where

pt =1-2ec, O I p, 0 1 (4.2)

In Equations (4.1) and (4.2) nc represents the number of class-c instances in the training

data 8 tkk, gt is the error on classifier t calculated in Equation (3.2) and pt is the

performance of classifier t. AdaBoost, Learn++, and Leamrn++.NC calculate the

performance of classifier t according to equation (4.3), which, instead of ranging from 0

to 1 ranges from 0 to infinity, this property in and of itself greatly reduces the outvoting

problem by preventing classifiers that perform exceptionally well on the training data to

be assigned voting weights that are difficult and sometimes impossible to overcome.

p, = log , where , = e, /(I - ,) (4.3)

Analyzing the impact of Equation (4.1), we observe that the weights of classifiers trained

with more instances of a specific class are higher, allowing classifiers with more

"experience" on particular classes to be weighted higher when choosing that class. This

process helps when the number of instances from each class in any given dataset are

correlated to the true prior probabilities of that environment. Thus, if datasets are

unbalanced in a different manner, from one to the next, this weighting method will fail.

Therefore, this cardinality based weighting method should only be used by itself for non-
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incremental boosting, or incremental learning where each dataset's distribution is

correlated to the true distribution of the environment.

4.1.2 Preliminary Confidence and Normalization

Leamrn++.NC introduces the concept of creating a preliminary confidence on each class to

be used to modify the overall decision. This preliminary confidence on class c is defined

as the sum of the weights from classifiers that choose class oc, divided by the sum of the

weights of all classifiers trained on class c. Recall:

I wt
P, = :(x)=c , where Z,= w, (4.4)

Zc t:ceCTr,

The preliminary confidence in equation (4.4) can be represented as the ensemble's

confidence on selecting each class. This information can then be used in a number of

ways to modify how the algorithm proceeds with its final decision.

4.1.3 Preliminary Confidence Transfer Function

Arguably the key method in the BEAST algorithm for handling unbalanced data is

hidden inside the preliminary confidence transfer function. This function could

technically be any monotonically increasing function, whose output is bounded between

0 and 1 when the input is bounded between 0 and 1.

P=f(P) (4.5)

In this work, the transfer function has been designed to compensate for unbalanced data.

The idea is to make it more difficult to classify data that is abundantly available in the

training set, hence the design of the following transfer function.

f(P) =pNPmin(N) (4.6)
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Where Nc is the number of instances from class c and min(N) is the non-zero number of

instances from the least occurring class. Figure 4.1 shows what these transfer functions

would look like for the following rations of Nc/min(N), 1, 2, 4, and 8.

Example Transfer Functions
A4-1

0.9

0.8

0.7

0.6

- 0.5

0.4

0.3

0.2

0.1

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Input

Figure 4.1 - Example of transfer functions generated by equation (4.6)

This transfer function is discussed in more detail in the later in this chapter.

4.1.4 Sub Ensembles and Decision Update

Until now, all known ensemble methods have combined classifiers as one ensemble. We

now propose a process by where classifiers generated on each dataset are combined

separately as sub-ensembles and then the sub-ensembles are combined subsequently to

create the entire ensemble. Effectively, creating sub-ensembles adds a second layer to

the classifier combination process. Since classifiers from each dataset become a sub-
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ensemble, Equations (4.4) and (4.6) need to be modified so that they can handle each sub-

ensemble trained on the kth dataset.

Pk,c -t:ht(x)=c , fort=eT +l,..., eTk+Tk (4.7)
Zk,c

eTk +Tk

Zk, =c W, (4.8)
t=eTk +1

c = (k,cNc k,c min(Nk) (4.9)

In Equations (4.7) and (4.8), eTk represents the number of classifiers that exist in the

ensemble upon the introduction of+k. Thus each sub-ensemble will have a different

preliminary confidence, normalization factor, as well as a different set of class specific

transfer functions. Furthermore, the preliminary confidence of each sub-ensemble is

normalized again according to the relative amount of data they have been trained with,

shown in Equation (4.10).

P N k'c  (4.10)Pk,c = Pk,c Kj=1 1,c
The functionality of equation (4.10) is very similar to equation (4.1), used for class

specific weights, and also fails under the same circumstances as discussed in Section

4.1.1.

These four aforementioned methods by themselves are biased towards certain types of

problems; however, when properly combined they balance each other out to create a

robust algorithm that is suited for a wide variety of incremental learned problems.
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4.2 BEAST

For the purposes of this analysis, the BEAST algorithm is split into two parts. The first

part of the BEAST algorithm is very similar to the Leamrn++.UD algorithm. The second

part of the algorithm contains novel classifier combination methods for computing the

Ensemble Decision, which will be referred to as BEAST-ED and described in section 4.3.

The following is description of how the first part of the BEAST algorithm

operates; it is also described in pseudocode in Figure 4.2. For each dataset Vk that

becomes available, the inputs to the algorithm are (i) a sequence of mk training data

instances xi along with their correct class labels yi, (ii) a classification algorithm

BaseClassifier, (iii) Nk,c, the number of instances, from each class, contained in k, (iv)

and an integer Tk specifying the number of classifiers to be generated using k. For the

first database, the data distribution, Dt, is initialized to be uniform, making the probability

of any instance being selected equal. If k > 1 the distribution Dt is re-initialized in the

same manner in which it is updated (step 5-7).

The algorithm then adds Tk classifiers to the ensemble starting at t-eTk+l where

eTk is the number of classifiers that exist in the ensemble when k is made available. For

each iteration t, the instance distribution, D,, from the previous iteration is normalized

(step 1). A hypothesis (classifier), ht, is generated by training on a subset of the dataset,

>tk, drawn according to Dt (step 2). The error, et, of ht is calculated; if et > V2, the

algorithm rejects classifier he and returns to step 2, otherwise, calculates the normalized

performance pt (step 3).
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The BEAST Algorithm
Input: For each datasetVk, k = 1,2, ... ,K

* Training data :k =[{(Xy1),(x2(.y2)'(Xmky mk) YiYk {o...,c}

* Learning algorithm BaseClassifier.

* Nk,c, the number of class-c instances in^k
* Integer Tk, specifying the number of BaseClassifiers to create using k

Do for k= 1,2,...,K

Initialize D, (i) = 1/ mk, eTk j=1 Tj, i =, k

IF k > 1, Go to Step 5, evaluate current ensemble on the new datasetk,
k-1

* Update Dt and current number of classifiers eTk = Tj.j=1
k-1N

* Update w,c = w, k= ,c ,t=1,,eTk, c = 1,...,C

Dofort= eTk+1, eTk+ 2 ,..., eTk+Tk:

1. Set D (i) = D (i) Zi D,(i) so that Dt is a distribution.

2. Call BaseClassifier, providing it with , e kk, drawn according to Dt.

3. Obtain a hypothesis ht : X -4 Y, and calculate its the error

,= D,(i).
i:ht (xi)# ,

If st > Y2, discard ht and go to step 2. Otherwise, compute the normalized
performance Pt = 1- 2e, 50 pt 1 .

4. Compute the class specific weight as

Wt,c = Pt k C-ki=1 N, c
where nc is the number of class-c instances in tk

5. Call BEAST-ED to obtain the sub-ensemble composite hypothesis Ht.

6. Compute the error of the composite hypothesis E, = I D, (i)
i:Ht (xi)#y,

7. Set Bt = Etl/(1 -Et), and update the instance weights:

D1.,(i) = D,(i)x {Bt (i) , if HI(xi)) =
B +l E E to obti1 , otherwisei Hn

Call BEAST-ED to obtain the final hypothesis, Hinal

Figure 4.2 - The BEAST algorithm.
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A class conditional weight factor, wt,, is created for classifier t, which is proportional to

its classification performance on the entire training data k and the number of class coc

instances on which the classifier was trained (step 4). The BEAST-ED algorithm is

called to obtain the sub-ensemble composite hypothesis, Ht (step 5). The error of the

composite hypothesis, Et is computed and normalized (step 6). The instance distribution

Dt is finally updated according to the performance ofHt (step 7) such that the weights of

instances correctly classified by Ht are reduced effectively increasing the weights of the

misclassified instances.

One of the major differences from previous work, in step (5)-(7), the instance

distribution weights are updated by the performance of the sub-ensemble, as opposed to

the entire ensemble. Each sub-ensemble then focuses on maximizing its performance on

its own training data. In past algorithms, such as Leam++, instance weights are updated

such that misclassified instances from previous training are given higher weights, thus

making the weighting of instances from one dataset subject to the performance of

classifiers generated on another dataset. Although this may be desirable when there are

no methods to handle unbalanced data, its effects are undesirable when such methods are

in place.

4.3 BEAST-ED

The heart of the BEAST algorithm is contained in the methods used to combine

individual classifier decisions into one ensemble decision. The pseudocode for BEAST-

ED can be found in Figure 4.3.

The inputs to BEAST-ED are (i) a sequence of n instances [xi, X2,...,Xn] to be

classified, (ii) he the individual classifier hypothesis, (iii) wtc the hypothesis weight
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matrix, (iv) Nk,c the number of instances from each class contained in+ k, and (v) Tk the

number of classifiers created using T k. Note: the set of classifiers trained on k will be

commonly referred to as sub-ensemble k.

Initialization) Calculate a normalization factor, Zk,c, for each class co, and each sub-

ensemble k as the as the sum of the class o weights of classifiers in sub-ensemble k.

eTk +Tk

Zk,c = w (4.11)
t=eTk

where eTk can be calculate using Tk in Equation (4.12)

eTk j=1 (4.12)

for each instance xi, for i = 1, 2,...,n

Step 1) Calculate the preliminary confidences of each sub-ensemble k for each class wc

as the sum of the classifiers from sub-ensemble k who chose class Gc for xi, divided by

the corresponding normalization factor found in Equation (4.11).

Z WC
P, t:h,(x,)=c (4.13)

kc

Step 2) Apply the transfer function to each preliminary confidence calculated in Step 1).

As mentioned in Section 4.1.3, the transfer function can be any functionf(Pk,c); however,

the following transfer function is used throughout the remainder of this work.

,kc = ( ) = (p) k, n(Nk) f 1k (4.14)

Equation (4.14) reduces the confidence on classes where data is abundantly available in

training. This procedure assumes that classifiers will be biased towards classes which

appeared more often in training.
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Step 3) Update sub-ensemble confidence k,, according to how many instances from

class to, sub-ensemble k was trained on relative to the number of instances from class Oc

that all sub ensembles have been trained on.

k, k, kc (4.15)j=1 1,c
Equation (4.1.5) increases the weights of sub-ensembles trained with more instances of a

specific class, allowing sub-ensembles with more "experience" on class c to be weighted

higher when choosing that class.

Step 4) Calculate the ensemble confidence on class wc as the sum of sub-ensemble

decisions on class Go. The ensemble decision, or final hypothesis, on xi then becomes the

class corresponding to the highest ensemble confidence value.

Hfa(x,)=argm)ax (4.16)
k=1

Steps (2) and (3) could potentially be combined into one step, as they both act as

modifiers to the sub-ensemble confidences. However, they are kept separate to easily

allow future modification to the transfer function and to separate the functions of each

step.
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Figure 4.3 - BEAST-ED algorithm.

As discussed throughout section 4.1, the properties of every step in the ensemble

decision process, when separated from each other, work only on a limited number of

cases. This is due to individual methods overcompensating for the problems they are

meant to solve. However, when combined correctly these inconsistent methods work

together to provide consistent results on a wealth of incremental learning problems.

These problems can range from the introduction and removal of classes to unbalanced
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Algorithm BEAST-ED
Input:
* Sequence of n instances [xi, X2,..., xn].
* Classifiers ht.
* Hypothesis weight matrix, w,,c.
* Nk,c, the number of class-c instances in from k

* Integer Tk, specifying the number of BaseClassifiers created using 4k

Calculate eTk =j=1 T
Create normalization factor, Z, for each class for each sub-ensemble

eTk+Tk

Zkc= w,, for c =1,...,C and k=1,...,K
t=eTk

Do for each i=1,2, ...,n
Obtain preliminary confidence

1. =t:h(x,)=c for t= eTk-,... eTk c= 1,...,C and k= 1,...,K
k,c

Apply transfer function to decision

2. Pk f(),(c) k,c (k), forc =1,...,C and k=1,...,K

where min(Nk) : 0
Update the sub-ensemble decisions

3. k P kc, forc = 1,...,C and k = 1,...,Kj=1 j,c
Compute the ensemble decisionK

4. Hfinal(x,) = arg max  ,c
k=1 I



data, within datasets and/or between datasets. Please refer to Appendix A, which

provides an experimental analysis of BEAST with a particular focus on how the

preliminary confidence is created and adjusted using BEAST-ED.
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CHAPTER 5

IMPLEMENTATION RESULTS

In Chapter 4 the four algorithms capable of incremental learning, Learn++, Learn++.NC,

Leam++.UD, and BEAST were described in detail. In addition to their respective

functionality, the circumstances under which each algorithm is designed to perform well

was described. To summarize: Learn++ is designed for incremental learning, in

particular the introduction of novel classes. However, Leam++ suffers from the

outvoting problem which can experience performance drops under certain circumstances.

Learn++.NC, based off of Leam++, is designed to solve the outvoting problem, and is

specifically intended for incremental learning problems that introduce new classes.

However, Leam++.NC may also experience performance drops if the new training data

simultaneously introduce new classes and remove previously learned classes.

Leam++.UD is designed to handle the unbalanced data problems that may occur during

incremental learning. However, the algorithm only handles unbalanced data between

datasets, not unbalanced data between classes in one dataset. BEAST combines the

original concept of Learn++, the novel concepts of Leam++.NC and Learn++.UD with

additional concepts to handle the shortcomings mentioned above. The BEAST algorithm

is designed to address the cases which both introduce new classes and remove previously

seen ones. It also uses the weight adjustment transfer function to handle unbalanced data

problems between classes in each dataset. The simulation results for all four

aforementioned algorithms are presented in this chapter - testing each algorithm on a

variety of synthetic and real world incremental learning problems. The ensemble

approach to the incremental learning problem requires an integer value, Tk, specifying the
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number of classifiers to generate on T k. Results in this chapter are based on a

predetermined number of classifiers for each application. In some cases, the number of

classifiers needed to incrementally learn an additional dataset varies between trials. One

solution in determining Tk is to generate an excessive number of classifiers and use a

validation dataset to find the optimal number of classifiers to retain for each trial. Results

using this method can be found in Appendix B.

5.1 Organization and Motivation of Simulations

5.1.1 Synthetic Incremental Learning Problems

It is often helpful to be able to visualize both the incremental learning problem and the

way in which a particular algorithm solves such a problem. This is often impossible on

real world problems whose feature spaces span larger than 3-dimentional spaces. Thus it

is necessary to create synthetic problems in a 2-D feature space which allow us to

visually asses the ability of each algorithm. Three such synthetic databases were

generated for this purpose. The first synthetic database presented in Section (5.2.1)

contains four classes, each with a Gaussian distribution. This database introduces two of

the four classes during incremental training in order to test the algorithms ability to

incrementally learn novel classes. The second database, in Section (5.2.2), again contains

four classes, each with a Gaussian distribution. All four classes are available in every

training dataset; however, each dataset is significantly unbalanced. The third database, in

Section (5.2.3), contains four spiral shaped classes whose variance increases with the

radius. The algorithms are incrementally trained with no more then three classes in any

dataset; this emulates the addition of novel classes while simultaneously removing all

instances from previously seen classes.
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One key benefit in using synthetic data is the knowledge of the actual data

distributions. With known distributions, the posterior probability can be calculated,

allowing us to compare the algorithms to the Bayes classifier. This will be discussed

further in section 5.2.

5.1.2 Experimental Incremental Learning Problems

As helpful as synthetic problems are in visualizing how an algorithm performs, it is

essential to also benchmark the algorithms on real world data. Section 6.3 shows the

results of experiments on two real world databases, one of which is from the UCI

machine learning repository, which is widely accepted to be a benchmark database [53].

5.1.3 Presentation of Results

The most important aspect of conducting these simulations is the way the experiments

and their associated results are presented. Consequently a great effort was made to

provide the most informative presentation of the experimental setup and results. For each

experiment the nature of the associated database is discussed along with how it is broken

down into training and testing datasets. The data distributions of the training datasets are

of particular importance as they are used to characterize an array of unbalanced data

problems.

The results generated from each experiment are presented in tabular form. The

results are collected for each algorithm at the end of each training session, and include the

overall generalization performance and the performance for each class. Second, visual

comparisons between the algorithms are shown by plotting the generalization

performance of each algorithm as classifiers are subsequently added. Another way of

analyzing the performance data is through examining the probability density function
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(PDF) of the final performance figures for each algorithm. Such PDFs are estimated

using Parzen windows, a nonparametric density estimation technique.

Assume we have n observations of a parameter x; Parzen windows generates n

kernel functions around each x and averages them together to calculate the PDF of

parameter x. All results presented in this work use a Gaussian for the kernel function.

An example of this technique can be found in Figure 5.1, where the estimated PDF is a

solid line, the kernel functions are dotted lines, and the five input observations are dots.

Parzen Window Example
-------T----------~--- --------I---------------------------------I-----------

---------- --__ ___---I------ ----- --- ---------- ------------ -------- -

----+---------- t-- - -------- --- ------- -- -------------1----- -- -----

II

----T--------l-- ----- /----------------

U)
cU)

0

Q-

n
<§

004

0.8 0.82 0.84 0.86 0.88 0.9 0.92

Input
0.94 0.96 0.98

Figure 5.1 - Parzen window example showing the estimated PDF calculated from five
observations.

Finally, a set of plots are generated for each algorithm showing the individual

class performances as classifiers are added to the ensemble. This visual aid is typically

the most informative representation of each algorithm's behavior. Different
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visualizations of the results are beneficial in properly analyzing each algorithm and

comparing them against each other. Many of the novel concepts coming from this

research are a direct result of properly understanding the behavior of these ensemble

methods through various visualization techniques.

5.2 Simulation Results on Synthetic Databases

The presentations of results described in Section 5.1.3 are complimented with additional

visual presentations. All experiments conducted in this section are in two dimensional

environments with known data distributions. Thus, the following graphics aids are added

to each experiment.

1) A 3-D plot of the data distribution of the environment which can be shown by plotting

the class-conditional likelihood functions, P(xj|c). Equation (5.1) can be used to

calculate the probability density function for a Gaussian class distribution centered at x, =

,ul and x2 = /U2 with a uniform variance of q2.

1 -0.5((x,-1 u)2 +(X 2 )2)/c 2 (5.1)
P(x \,) = --a e (5.1)

2) 2-D sample plots of the experimental data for each training dataset and the test dataset.

3) A 3-D plot of the posterior probability, P(c4Ix), calculated using the Bayes classifier,

equation (5.2).

ZP(xk|k)P(wk)
Pw(he x)t= , c) (5.2)

(P(x\OP Ik
k=l

where the prior probability, P(<c) is either known or can be calculated as
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Nk
k=1

where Nc is the number of instances from class Gcw contained in the training data. In this

work all synthetic databases are known to have equal prior probabilities.

4) 2-D plots showing the classification of each algorithm on the entire feature space.

This highlights the decision boundaries generated by each algorithm; the classification of

the Bayes classifier will also be plotted for comparison.

Note: all results presented in this section are averaged over 40 independent trials.

5.2.1 Synthetic Experiment 1 - Incremental Learning

The first synthetic database is designed to tests the algorithm's ability to learn new class

information. Table 5.1 shows the information concerning the four Gaussian class

distributions, all of which have a uniform variance. Figure 5.2 shows the probability

density functions (PDFs) of these four classes.

Table 5.1 - Gaussian distribution information of the first experiment.
Class 1 Class 2 Class 3 Class 4

Piu 1 1 -1 0

/2 -1 1 0 0
Variance 0.30 0.30 0.30 0.15
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Figure 5.2 - Four PDFs corresponding to the classes described in Table 5.1.

This database was split into three training sets and one test dataset. The first

training set,' i, only contains information from classes co and W2. The second dataset,

'2, introduces class o3 which is easily separable from the first two classes. The third

dataset, '3, introduces a fourth class which overlaps with the first three classes.

Table 5.2 - Instance distribution of the Experiment 1.
Class 1 Class 2 Class 3 Class 4

l_ 100 100 0 0

_2 50 50 150 0

_ _3 50 50 50 200

Test Data 200 200 200 200
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Figure 5.3 - Example training and testing data from Experiment 1.

The test is designed to observe the algorithm's behavior in learning an easily

distinguishable new class, and learning a new class that coincides with previously

obtained knowledge. The instance based data distribution for this experiment can be

found in Table 5.2. Furthermore, Figure 5.3 shows an example of the three training

datasets and the test dataset.

Since we know the distribution information, we can also calculate the posterior

probability for each class. Figure 5.4 shows the posterior probability plot for the Bayes

classifier, the highest posterior probability, given that the prior probabilities of all classes

are equal.
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Figure 5.4 - Posterior probability output of the Bayes classifier over the entire feature space.

All four algorithms are restricted to generating MLP classifiers with identical network

architectures, 0.025 error goal and 30 hidden layer nodes. On each training dataset the

algorithms are allowed to create 5 classifiers, 15 classifiers total. Table 5.3 shows the

average performance results for this test along with the 95% confidence interval on the

generalization performance.
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Table 5.3 - Generalization performance from Experiment 1.
Class 1 Class 2 Class 3 Class 4 Gen. ± CI

-7 96.1% 95.4% - - 48.1%±0.3%

+ -2 95.3% 94.8% 77.0% - 66.8%±1.9%
3 3 95.3% 94.6% 88.3% 16.8% 73.7%±1.2%

z % 95.5% 96.2% - - 48.0%±1.1%

| 2 92.6% 92.9% 97.7% - 70.8%±0.3%

SZ3 85.6% 85.5% 67.7% 89.1 82.0%±0.5%

~~ 95.8% 95.6% - - 47.8%±0.2%

1 )2 92.0% 92.4% 97.6% - 70.5%±0.4%

+ -3 85.4% 84.7% 71.1% 89.3% 82.6%±0.5%

'Z 96.0% 96.2% - - 48.0%±0.1%

% ^2 94.5% 94.9% 95.5% - 71.2%+0.2%

' Z3 90.5% 90.7% 82.6% 70.3% 83.5%+0.6%
Bayes Classifier 86.1%

2 4 6 8 10 12 14

Figure 5.5 - Generalization performance vs. number of classifiers.
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Performance Probability Densities - Experiment 1

cn
0
a-

0.65 0.7 0.75 0.8 0.85 0.9
Performance

Figure 5.6 - Theoretical performance probability density functions.

Table 5.3 and Figure 5.5 indicate that the final performances of the four

algorithms are very similar, with the exception of Learnm++. Learn++ is unable to learn

the last class introduced with the number of classifiers provided. However, Leam++ also

retains more information on previously seen classes than the other three algorithms,

implying that the algorithm is more robust in nature than the others. Leam++.NC and

Leam++.UD are least stable in behavior, as seen by the drop in performance on

previously seen data. BEAST is designed to fall on the optimal point of the stability-

plasticity spectrum, where it seeks to be stable with previously learned information and

plastic on newly introduced information. This is only possible to the extent that the

newly introduced information does not conflict with previously learned information,

56



under which circumstances the algorithm maintains a balance between stability and

plasticity.
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Figure 5.7 - Decision boundaries over the entire feature space.

Figure 5.7 shows the decision boundaries of each algorithm along with the decision

boundary of the theoretically best performing classifier. Leam++.NC and Leam++.UD

are very similar to the Bayes classifier; however, BEAST approximates the Bayes

classifier most closely. To further analyze how each algorithm handles learning new
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classes, it is helpful to investigate the performance on each class separately as new

classifiers are generated.
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Figure 5.8 - Class specific generalization performances from experiment 1.

Figure 5.8 shows all four algorithm's performance on each class. Again, it is

evident that Learn++ is the most stable as it is very hesitant to allow newly generated

classifiers to outvote the existing ensemble. Unfortunately, in many cases this will

prevent the algorithm from learning properly. On the other hand, Leamrn++.NC and

Learnm++.UD are much more plastic and learn newly introduced classes much faster,

especially in the case of Learn++.NC which is designed for this scenario. However, they

both learn the new information at the expense of sacrificing previously learned

information. Although these algorithms can learn extremely fast they are somewhat
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volatile in nature. BEAST also learns extremely fast but it is not at volatile as its

predecessors.

The second dataset introduces a new class that is easily separable from the

previously learned classes. Under these circumstances BEAST and Learn++.NC learn

the new class immediately and the other algorithms soon follow. The third dataset

introduces a new class that conflicts with all previously learned classes. Again,

Learn++.NC and BEAST learn the new information immediately. However, in this case

the performance on the other classes drops after the first classifier is trained on the third

dataset. Learn++.NC continues to perform better on the new class and worse on

previously learned classes as classifiers are added. BEAST, strives to maximize the

performance on all classes, and consequently performs only slightly worse on the newly

introduced data in order to perform better on the other three classes.

5.2.2 Synthetic Experiment 2 - Unbalanced Data

The second synthetic experiment is designed to tests the algorithms ability to continually

learn information when presented in an unbalanced manner. Table 5.4 shows the

information concerning the four Gaussian class distributions, all of which have a uniform

variance. Figure 5.10 shows the probability density functions (PDF's) of these four

classes.

Table 5.4 - Gaussian distribution information of the second experiment.
Class 1 Class 2 Class 3 Class 4

,Ui 1 1 -1 -1

1ia-n -1 1
Variance 0.35 0.35 0.35 0.35
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Figure 5.9 - Example of the four PDF's corresponding to the classes described in Table 5.4.

This database was split into four training sets and one test dataset. All training

sets contain instances from all four classes; however they are severely unbalanced. All of

the datasets contain a large number of instances from Class cow and few instances from all

of the other classes with the following exception, dataset 2-4 contain a large number of

instances from classes 2-4 respectively. This experiment is designed to test the

algorithm's abilities to learn from sequentially presented data in the presence of

unbalanced data distributions. The actual instance distribution for this experiment can be

found in Table 5.5. Furthermore, Figure 5.10 shows an example of the four training

datasets and the test dataset
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Table 5.5 - Instance distribution of the Experiment 2.

Class 1 Class 2 Class 3 Class 4

1 l 100 10 10 10

)2 100 100 10 10

100 10 100 10

4 100 10 10 100

Test Data 200 200 200 200

Dataset 1 Dataset 2
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Figure 5.10 - Example training and testing data distributed according to Table 5.5.
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Again, since we know the distribution information, we can also calculate the posterior

probability for each class. Figure 5.11 show the maximum posterior probability of the

Bayes classifier, given that the prior probabilities of all classes are equal.

0."1O.iA
0,;

OE

-2I veaW't

Figure 5.11 - Posterior probability output of the Bayes classifier over the entire feature space.

The BaseClassifier for all four algorithms is an MLP classifier with the following

network architecture: 0.05 error goal and 25 hidden layer nodes. On each training

dataset the algorithms are allowed to create 10 classifiers, 40 classifiers total. Table 5.6

shows the average performance results for this test.
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Table 5.6 - Generalization performance from Experiment 2.
Class 1 Class 2 Class 3 Class 4 Gen. ± CI

+ 98.8% 64.7% 61.5% 76.1% 75.3%±1.6%

' "2 97.9% 86.4% 62.0% 66.8% 78.3%±1.0%

' Z3 95.0% 80.0% 80.0% 64.7% 80.7%±0.9%

'4 98.5% 72.3% 73.3% 87.1% 82.8%+0.7%

u ), 98.9% 63.2% 64.2% 77.5% 76.0%±1.7%
+ )2 95.9% 93.6% 52.3% 46.4% 72.1%±2.1%
E 33 97.2% 69.7% 88.4% 38.2% 73.4%±2.0%

+ -4 98.8% 42.3% 68.5% 93.2% 75.7%±1.2%
g Z) 98.0% 67.7% 73.9% 80.6% 80.0%±1.4%
-+ 2 94.2% 95.2% 62.3% 43.3% 73.8%±1.9%

E Z3 90.8% 91.9% 95.7% 28.7% 76.7%±1.6%
ý Z4 94.1% 43.4% 69.5% 98.2% 76.3%+1.9%
:, 95.3% 81.2% 78.5% 81.0% 84.2%±1.2%

m >2 95.7% 89.1% 80.7% 82.2% 86.9%±0.6%

ý Z3 94.7% 88.6% 87.6% 80.3% 87.8%±0.6%
74 94.8% 86.1% 86.4% 89.1% 89.1%±0.3%

Bayes Classifier 91.3%

Generalization Performance - Experiment 2

5 10 15 20 25 30 35 40
Number of Classifiers

Figure 5.12 - Generalization performance vs. number of classifiers.
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Table 5.6 and Figure 5.12 indicate that BEAST outperforms the other algorithms.

Furthermore, Figure 5.13 shows the theoretical performance PDFs, of which the

theoretical performance of the Bayes classifier and BEAST are extremely close. In fact

they do not have a statistically significant difference, whereas, there is a very significant

statistical difference between BEAST and the other three algorithms. Additionally,

Figure 5.14 shows that the decision boundary of BEAST is very similar to that of the

Bayes classifier. Note that the decision boundaries of other algorithms tend to favor

Class 1, since they have seen much more data from this class.

Performance Probabbility Densities - Experiment 2

C)r

U)
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0Z

0g

0

64

Performance

Figure 5.13 -Performance probability density functions from experiment 2.

I
I

It

I



Learn++. NC

CNI

L>
LI

-2r -1 U 1 2r -2 -1 U 1
Feature 1 Feature 1

Leam++.UD BEAST

CM4

a)
LL

-2 -1 0 1 2 -2 -1 0 1 2
Feature 1 Feature 1

Bayes

LL

-2 -1 0 1 2
Feature 1

Figure 5.14 - Decision boundaries over the entire feature space.

Analyzing individual class performances as the new training datasets are

introduced will help to better understand why each algorithm performs the way it does.

Figure 5.12 indicates that the average performance of Learn++ steadily increases as

classifiers are added and datasets introduced. One may be tempted to assume that this

performance would continue increasing if more classifiers were added. However, Figure

5.15 shows that Learn++ learns from the abundance of information on classes 2-4 in
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datasets 2-4 respectively, while simultaneously forgetting information on the other

classes which don't have such a generous amount of data. Meanwhile, Leam++.NC

reacts almost identically to Leam++ on this experiment but with more drastic changes.

Leam++.UD might be expected to perform well on this problem considering that it is

designed to handle unbalanced data. However, Leam++.UD is designed to reduce the

adverse effects of unbalanced data between datasets, not between classes. Leam++.UD

does perform well on the classes which have generous amounts of data, but performs

poorly on those classes with fewer instances. BEAST is clearly superior in this

experiment as it contains methods to handle unbalanced data both between classes in the

same dataset and between datasets on the same class.

An interesting observation from Figure 5.12 is how the generalization

performance on BEAST drops significantly upon the addition of the first classifier in

each ensemble. BEAST combines the decisions from all classifiers generated on each

dataset and then combines each of those decisions to get the final decision. Thus, when a

new dataset is introduced, one classifier is trained on that data, that single classifier has

the same amount of voting power as all the classifiers from the previous sections. In this

experiment, upon creation, the 1 1th classifier is the sub-ensemble trained on+ 2 and has

as much voting power as classifiers 1-10, which constitute the sub-ensemble trained on

1i. Since the 1 1th classifier performs well on class 1 and 2, and poorly on classes 3-4,

the performance on class 2 shoots up and the performance on classes 3-4 drops

significantly. However, as more classifiers are trained on the current dataset, BEAST

recovers from the performance drop on classes 3-4. This situation occurs again with the
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introduction of dataset 3 and 4, although, the effects are less noticeable since more sets of

classifiers are then able to vote.

Leam++ - Experiment 2 Leam++.NC - Experiment 2

(U

Cl)

~1)
C.)
C

0)
0I

a)

C.)
C

Ct
'I)
0.

)

5 10 15 20 25 30 35 40
Number of classifiers Number of classifiers

Figure 5.15 - Class specific generalization performances.

5.2.3 Synthetic Experiment 3 - Spiral Database

The third experiment is performed on the spiral database, which has been created

and defined specifically for this research. The database can be created to have any

number of spirals where each spiral can be defined in polar coordinates as follows:

90=r+o00  (5.4)

where 00 is the start angle of the spiral and r is the radius. Equation (5.4) defines the

spiral; in order to draw samples from this distribution, a random variable is required. E is
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defined to generate a random number according to a normal distribution with zero mean

and unit variance. The variance element must be a function of the radius of the spiral so

that the data becomes more "noisy" as the spiral grows. Equations (5.5) - (5.7) provide a

method of drawing n instances from the aforementioned spiral distribution.

ri = ti +otE, for i= 1,2,...,n (5.5)

and

06 =ti +O +co t ,5, for i =1,2,...,ln (5.6)

where

it=2n r,y for i = 1,2,...,n (5.7)

In equations (5.5) and (5.6) 0oo represents the variance at a radius of one. Since n samples

are drawn from n Gaussian distributions, each with its own mean and variance, we can

compute the likelihood function

n 1 _0.5 ((9-li)2 2 pq2
P([O,r] |I o-) = '-e (5.8)

n vF2- i=i oai

where

Ui = aoti, Wri = ti, Oi = ti + Oi (5.9)
Thus the posterior probability can be calculated according to equation (5.2). Both the

sampled data and the posterior probability can then be converted to Cartesian coordinates

using by

x, =rcos(O)

x2 =r sin(O)

Table 5.7 shows the parameters for the four spiral classes used in this experiment.
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Table 5.7 - Distribution information of the spiral database.
Class 1 Class 2 Class 3 Class 4

O0 0 T/2 7C 37/2
go 0.05 0.05 0.05 0.05

2*Cp'

0 'o'

Figure 5.16 - Graph of the four PDF's corresponding to the spiral classes described Table 5.7.
The PDF's are shows in polar coordinates (left) and cartesian coordinates (right).

The first two synthetic experiments tested the algorithms ability to incrementally learn

new classes and learn from unbalanced data. Recall in experiment 1, that we only tested

the algorithm's ability to learn newly introduced classes. In this experiment we test the

algorithms ability to learn information from new classes, when information from

previously seen classes are unavailable. The database will be split into four training and

a test dataset. None of the four training sets will contain information on all four classes,

more specifically, datasets 1-2 only contain data from two different classes, datasets 3-4

contain instances from three of the four classes. This is a particularly difficult problem

since the algorithm is forced to learn from the new information without access to
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instances from certain previously learned classes. Table 5.8 shows the actual instance

distribution used for experiment 3.

Table 5.8 - Instance distribution of the spiral database.
Class 1 Class 2 Class 3 Class 4

200 0 200 0
32 0 200 0 200
Z3 50 150 0 150

_ 4 0 150 50 150

Test Data 200 200 200 200

Dataset 1 Dataset 2

5

CM
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Figure 5.17 - Sample training and testing data distributed according to Table 5.8.
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Using Equation (5.8) we can calculate the likelihood functions, which then can be used in

Equation (5.2) to calculate the posterior probability for each class. Figure 5.18 shows the

maximum posterior probability and classification of the Bayes classifier.

-10

Figure 5.18 - Posterior probability output of the Bayes classifier over the entire feature space.

All four algorithms generated MLP classifiers with identical network

architectures of, 25 hidden layer nodes and an error goal of 0.025. On each training

dataset the algorithms are allowed to create 5 classifiers, 20 classifiers total. Table 5.9

and Figure 5.19 show the tabular and graphical results for this test.
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Table 5.9 - Generalization performance on the swirl database.
Class 1 Class 2 Class 3 Class 4 Gen. ± CI

+ 97.9% - 97.5% - 48.9%±0.1%

+ '2 63.6% 47.9% 62.5% 45.5% 54.9%±1.3%

C 33 83.4% 93.1% 9.5% 92.6% 69.7%±1.5%

4 56.1% 97.7% 42.3% 98.2% 73.6%±3.7%

S97.5% - 97.3% - 48.7%±0.1%

+ : 2 92.0% 24.2% 18.7% 25.4% 40.1%±1.0%

E 3 56.0% 66.2% 35.4% 57.4% 53.7%±1.3%
0 >4 49.3% 98.6% 71.1% 98.8% 79.5%±1.2%

g %) 97.6% - 97.9% - 48.9%±0.1%

+ -2 9.7% 94.5% 7.6% 95.1% 51.7%±0.9%

§ Z3 84.4% 96.2% 15.6% 95.0% 72.8%±0.6%
4 34 83.1% 96.7% 83.4% 97.3% 90.1%±0.5%

S 97.5% - 97.7% - 48.8%±0.2%

C '2 91.8% 54.8% 52.0% 24.1% 55.6%±0.9%

W 73 91.4% 91.4% 66.1% 53.7% 75.6%±0.7%

S4 89.5% 92.6% 91.1% 92.3% 91.4%±0.4%
Bayes Classifier 98.5%

Generalization Performance - Swirl Database

2 4 6 8 10 12
Number of Classifiers

14 16 18 20

Figure 5.19 - Generalization performance vs. number of classifiers.
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Table 5.9 and Figure 5.19 show the ability of BEAST to quickly and efficiently learn the

information available from each dataset. Leam++.UD also displays desirable

characteristics under these test conditions. The performance of Leam++ and

Leam++.NC are relatively poor. Figure 5.20 illustrates that the performance PDF of

Leam++ is inconsistent and does not generate repeatable results.

Performance PDFs - Swirl Database

cn
0)

-0

a-

§
g

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
Performance

Figure 5.20 - Performance probability density functions from the swirl database.

Figure 5.21 shows the decision boundaries of the three algorithms along with the decision

boundary of the Bayes classifier. This figure clearly illustrates that Leam++ and

Leam++.NC have difficulty classifying two of the spirals. It is also clear that BEAST

decision boundary is most similar to that of the Bayes classifier, in fact, there are very

few differences between their boundaries.
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Figure 5.21 - Decision boundaries over the entire feature space.

Once again, it is interesting to analyze the class-specific-performance results of

these algorithms, shown in Figure 5.22. Learn++ is only able to learn new class

information at the cost of previously learned information. Leam++.NC appears to be

biased towards the set of spirals introduced in< 2 and cannot properly learn information

from the other two classes. While the results obtained using Leamrn++.UD appear to be
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volatile, the end result is a good balance between individual class performances. The

BEAST algorithm is the most robust and learns as much information as possible from

each dataset without compromising too much existing knowledge.

Leam++ - Swirl Database

------- ------- -- -7 -------------
II {·

-Qj----------- -- --'----
CO /f

5 10 15
Number of classifiers

Learn++.UD - Swirl Database

5 10 15 20

Learn++.NC - Swirl Database

20
Class 1

-*- Class 2
- Class 3

Class 4

cu15
0S

m
0

rg
U)0

a)
13L

Number of classifiers

The BEAST - Swirl Database

Number of classifiers Number of classifiers

Figure 5.22 - Class specific generalization performances.

5.3 Simulation Results on Experimental Databases

All experimental results in this section are presented as explained in section 5.1.3. In the

previous section, all results were calculated as an average of 40 independent trials. This

technique is optimal for synthetic data since new training and testing data can be

randomly sampled from the environment at the beginning of each trial. This luxury is not
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available when working with real world data since the numbers of samples are limited.

Consequently, k-fold cross validation is used to ensure the calculation of accurate and

representative performance figures. Cross-validation breaks the entire database into k

blocks of data; for each trial one block is used for testing, and the remaining k-i blocks

are combined for training. This procedure is repeated k times, such that every block of

data is independently used for testing, resulting in more accurate figures of generalization

performance. A graphical depiction of this cross validation process is seen in Figure

5.23.

Entire orieinal database

k-1 blocks are combined and used for training One block used for testing

----------------------------------------------- -- ---------------------- --
Trial 1

Trial 2

Trial 3

Trial k-1

I
Block Jk-1

Trialk Block 1

Figure 5.23 - k-fold cross validation diagram [54].

Note: all of the results presented in this section have been created using 10-fold cross

validation.
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5.3.1 Volatile Organic Compounds Recognition Database

The Volatile Organic Compounds (VOC) database is generated from a real world

problem of identifying one of five VOCs based on the responses of 6 chemical sensors.

Each sensor is coated with a different polymer, the collection of which constitutes the 6-

feature instances. The individual VOCs were ethanol (ET), octane (OC), toluene (TL),

tricholorethylene (TCE), and xylene (XL). Figure 5.24 shows an example of sensor data

collected on each of these VOCs.

1 Ethanol Toluene

0.8[ o

0

0

0

0

0

0

0

0

0

0

1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 12 3 4 5 6 1 2 3 4 5 6

Figure 5.24 - Example instances drawn from the VOC recognition database.

The database was split into 10-blocks, 9 of which were combined and split into

three training datasets, 'i~3. The remaining block was used for testing, according to

the abovementioned k-fold cross validation procedure. The instance distribution used in

this experiment can be seen in Table 5.10; note that the number of test instances from any

given class may vary by one since the database could not be evenly divided by 10. This

experiment is designed to test the algorithms under some of the harshest unbalanced data

conditions. '2 and '3 both introduce instances from new classes in addition to

providing a very limited number of instances from previously learned classes.
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Table 5.10 - Instance distribution for the VOC database experiment.
Class-4 ET OC TL TCE XL

_i 0 40 0 40 40

i32 0 5 40 5 5

'33 40 5 5 5 5
Test 6 6 6 8 11

Each algorithm was sequentially trained on'i~:3, creating five MLP classifiers on each

dataset. The MLP classifiers all had 35 hidden layer nodes and were given an error goal

of 0.025. The numerical performance results of this test can be found in Table 5.11. The

graphical display of performance as classifiers are created is shown in Figure 5.25.

Table 5.11 - Generalization performance on VOC database.
Ethanol Octane Toluene TCE Xylene Gen. + CI

- 97.8% - 93.6% 77.5% 55.4%±1.1%

Z2 - 80.9% 81.4% 93.9% 66.9% 66.2%±1.6%

3 36.9% 80.5% 92.6% 89.9% 68.1% 73.6%±1.6%

S- 97.6% - 92.7% 77.1% 58.1%±1.1%

S 2 - 61.1% 98.8% 91.6% 67.5% 65.5%±1.5%

J 3 96.4% 67.4% 94.4% 88.0% 62.4% 79.6%±1.5%

g - 97.7% - 92.7% 77.2% 58.1%±1.2%

S 2 - 72.0% 96.9% 93.5% 71.6% 68.5%±1.4%

J 3 93.8% 66.8% 96.0% 93.9% 64.0% 81.0%±1.4%

s .. - 97.5% - 93.5% 76.6% 58.1%±1.1%

>2 - 87.8% 93.8% 94.4% 71.9% 70.9%±1.3%
m 88.4% 87.6% 93.5% 94.2% 67.7% 84.3%±1.4%
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Figure 5.25 - Generalization performance vs. number of classifiers from VOC experiment.

These results show significant differences in generalization performance between the four

algorithms. Learn++ is incapable of learning the required information about Ethanol

from '3 with only five classifiers. Learnm++.NC and Leam++.UD display similar

performances; however Learn++.UD learns at slower pace compared to the abrupt

learning style of Learn++.NC. The BEAST algorithm exhibits a considerable

performance increase over its predecessors, Learn++.NC and Learn++.UD; this increase

is shown to be statistically significant from the final performance PDFs, as seen in Figure

5.26.
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VOC database - Performance PDFs
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Generalization Perfromance

Figure 5.26 - Performance probability densityfunctions from VOC experiment.
Leam++ - VOC database Leam++.NC - VOC database

2 4 6 8 10 12 14 2 4 6 8 10 12 14
Number of classifiers Number of classifiers

Figure 5.27 - Class specific generalization performances on the VOC database.
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Figure 5.27 shows the class specific performance results. The performance plots from

Leam++.UD and Leam++.NC clearly show their different learning characteristics

although their end performances are statistically similar. BEAST exhibits more favorable

characteristics; it is capable of rapidly learning the new class information, like

Leam++.NC, while preventing performance drops from previously learned information.

This is not to say that the performance on previously learned classes does not drop, but

rather, the learning of new information in favor of existing knowledge is more properly

balanced, resulting in the maximization of each class performance. Leam++ is clearly

unable to learn instances from the Ethanol class with five classifiers; however, one may

assume that with the addition of more classifiers trained on '3 the performance on this

class will increase. Thus an additional test was conducted where Leam++ was allowed to

create 15 classifiers onZ)3, results of this test can be found in Figure 5.28.

Figure 5.28 shows the performance of the Learn++ algorithm when allowed to

generate 15 classifiers on+) 3. The result is a significant increase in performance from the

previous experiment with Learn++. This new performance is comparable to that of

Leam++.NC and Learn++.UD but still fall significantly short of the performance attained

using the BEAST algorithm.
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Figure 5.28 - Class specific generalization performance ofLearn++ with 10 additional
classifiers.

5.3.2 Optical Character Recognition Database

The optical character recognition (OCR) database consists of 10 classes with 64

attributes, obtained from handwritten numeric characters 0 - 9, digitized on an 8-by-8

grid. Several examples of these characters can be seen in Figure 5.29. The database was

split into five subsets to create four training subsets, '' - 4 , and one test subset. The

data distribution, shown in Table 5.12, was designed to determine the algorithms' ability

to learn two new classes with each additional dataset, while retaining knowledge from

previously learned classes.
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Figure 5.29 - Example data samples from the OCR database.

Table 5.12 - Instance distribution for the OCR database.
Class - 0 1 2 3 4 5 6 7 8 9

250 250 250 0 0 250 250 0 0 250
>2 100 100 100 250 250 100 100 0 0 100

_ _3 0 0 50 150 150 50 50 400 400 0

Test 55 57 55 57 56 55 55 56 55 56

All algorithms were allowed to create five classifiers, for each dataset presented,

for a total of 15 classifiers. Table 5.13 lists the class specific performance and the overall

generalization performance after training with each dataset, >k. All performance

numbers and the 95% confidence intervals were obtained through 10-fold cross

validation. Figure 5.30 illustrates the generalization performance (on the test data) of each

algorithm as new classifiers are added to the ensemble.
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Table 5.13 - Generalization performance on OCR database.

Class - 0 1 2 3 4 5 6 7 8 9 Gen. ± CI

S i 99% 97% 98% - - 98% 99% - - 98% 59%±0.4%

2g * 99% 97% 99% 63% 63% 98% 99% - - 98% 71%±4.7%

3 98% 97% 99% 95% 97% 97% 99% 36% 26% 95% 84%±3.6%

Z Zl" 99% 96% 98% - - 97% 99% - - 98% 59%±0.3%

+ +)2 99% 96% 98% 97% 98% 97% 99% - - 95% 78%±0.6%

| 3 91% 51% 93% 96% 97% 95% 93% 97% 95% 80% 89%±2.3%

~ Ei 99% 96% 98% - - 97% 99% - - 97% 58%±0.5%

' Z2 99% 95% 97% 99% 98% 96% 97% - - 91% 77%+0.9%

Z )3 77% 43% 89% 98% 97% 91% 94% 99% 99% 60% 84%±2.8%

3. 99% 96% 99% - - 97% 99% - - 98% 58%+0.6%

^ -32 99% 96% 99% 90% 92% 97% 99% - - 97% 77%±1.1%

3 98% 89% 98% 92% 93% 97% 98% 96% 89% 89% 94%±0.9%

OCR database
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(I(41
0

IU)
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I
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Figure 5.30 - Generalization performance vs. number of classifiers from OCR exp
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These results show a considerable increase in the performance of BEAST over the other

three algorithms. All four algorithms perform almost identically when training on the

first dataset. The second training dataset introduces two new classes and provides some

information on previously learned knowledge. Under this condition Leam++.NC,

Leam++.UD and BEAST all perform in a similar manner, Lear++ performs worse on

the newly introduced classes but would presumably finish learning the new classes if

allowed to generate more classifiers, an experiment to validate this assumption is

presented later in this section. The third training dataset presents a rather difficult

problem: it introduces two new classes, completely removes instances from three

previously learned classes, and contains a limited number of instances from the other

classes. Under these harsh conditions, Leam++.UD becomes unsteady and only learns at

the cost of previously learned information. Leam++.NC initially displays a drop in

performance, due to its volatile nature when classes are introduced and removed;

however, the algorithm begins to recover from this effect as classifiers are added to the

ensemble. Learn++ is able to finish learning the classes introduced in+-2 but is unable to

properly classify the classes introduced in> 3. However, BEAST is able to learn the new

information available from '3 without sacrificing any significant information learned

from '>i and' 2. Furthermore, the results offered by BEAST are extremely consistent,

whereas the other algorithms perform better on some trials than on others, indicated by

the 95% confidence intervals in Table 5.13 and the final performance probability density

functions shown in Figure 5.31.
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Figure 5.32 - Class specific generalization performances on the OCR database.
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Figure 5.32 shows the instability of Leam++.UD when learning from '3, the algorithm

cannot retain previously learned information, while learning novel information.

Learn++.NC performs well relative to Learn++.UD in that it does not completely forget

previously learned classes to accommodate newly introduced classes. However, it does

perform poorly on the classes whose instances are unavailable in '3. BEAST also

displays a drop in performance after the addition of the first classifier trained on'-3. As

explained previously, this is due to the sub-ensemble fusion technique of the BEAST,

where at the point where the performance drops the third sub-ensemble is comprised of

only one classifier. Figure 5.32 clearly shows that the addition of classifiers to the third

sub-ensemble allows BEAST to stabilize and learn the newly introduced information

without sacrificing knowledge learn from <i and4 2. Learn++ performs exceptionally

well on 8 of the 10 classes, the two classes it performs poorly on are the two classes

introduced in )3. From looking at Figure 5.32 one may think to allow the Learn++

algorithm to generate more classifiers on+ >3. Figure 5.33 shows the results of allowing

Leam++ to generate 15 classifiers on+) 3 as opposed to 5.
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Figure 5.33 - Class specific generalization performance ofLearn ++ with 10 additional classifiers.

Figure 5.33 shows that Learn++ eventually learns the two classes introduced in '3.

However, as well as learning the classes in'83 Learn++ also looses information from the

classes absent in'> 3.
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CHAPTER 6

CONCLUSIONS

Three novel incremental learning algorithms, Learn++.NC, Leam++.UD, and BEAST are

introduced in this thesis. The algorithms were all developed to solve various unbalanced

data problems common to incremental learning. Leam++.NC uses preliminary decisions

in assigning voting weights allowing the algorithm to dynamically adjust the classifier

voting weights for each test instance. The approach overcomes the out-voting problem

inherent in the original version of Learn++ and prevents proliferation of unnecessary

classifiers. However, this efficiency is only prevalent in those cases where one or several

new classes are introduced with subsequent datasets.

Leam++.UD is specifically designed to handle unbalanced data between datasets

in incremental learning settings. Such imbalances in data distribution can cause the

generalization performance to decreases with additional classifiers. The novelty of

Learn++.UD is in its use of class conditional weight factors to assign voting weights to

classifiers in the ensemble. For each classifier, this factor is the ratio of the number of

instances from a particular class used for training, to the number of instances from that

class used for training all classifiers in the ensemble. The actual voting weights are then

determined as individual training performances of the classifiers, adjusted by the class

conditional weight factors.

A primary goal of this research was to develop an algorithm capable of

incremental learning in the harshest environments. This could include unbalanced data

between classes, or between datasets, or the introduction and/or removal of all

information from certain classes. This goal was only partially attained by Leam++.NC
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and Leam++.UD. The BEAST algorithm introduced in this research meets the goals for

learning under such harsh conditions. The success of the algorithm is due to the seamless

combination of several contradicting and complimentary methods of solving unbalanced

data problems. The first of these methods is the class specific weights found in

Leam++.UD. Second, the concept of a normalized preliminary confidence, introduced

by Leam++.NC. This preliminary confidence can then be used and modified to adapt to

the current problem by calculating the preliminary confidences of each sub-ensemble and

applying a transfer function to them. In this work, the function was designed to make it

more difficult to classify data that was abundantly available during training. Finally, the

sub-ensemble confidences are updated one last time such that the weights of sub-

ensembles trained with more instances of a specific class are higher; allowing sub-

ensembles with more "experience" on particular classes to be weighted higher when

choosing that class. These methods by themselves are biased towards certain types of

problems; however, when properly combined they balance each other out to create a

robust algorithm that is suited for a wide variety of incremental learning problems.

6.1 Summary ofExperimental Findings

The BEAST algorithm displays a number of favorable results through simulations on

synthetic and real world databases. Even under some of the harshest incremental learning

conditions, the algorithm continues to consistently perform well. However, it should be

noted that most of the experiments in Chapter 5 were designed to simulate the conditions

where previous algorithms fail and the BEAST prevails. There were a multitude of

experiments conducted where other algorithms performed as well as, but not better then,

the BEAST algorithm.
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6.2 Contributions of this Work

The goal of this research was to design an algorithm that is capable of incrementally

learning from severely unbalanced training datasets. This goal was obtained through the

introduction of three novel incremental learning algorithms:

1) Leam++.NC, which uses the concept of dynamically adjusting classifier voting

weights based on the hypotheses of other classifiers. This approach has been

shown, through experimental results, to quickly and efficiently learn new classes

that are introduced in subsequent training datasets.

2) Leamn++.UD is designed to compensate for cardinality differences between

training datasets by using class-conditional voting weights that are a function the

amount of instances used in training.

3) BEAST adopts the novel concepts in Leam++.NC and Learn++.UD and combines

them with additional methods for handling a variety of unbalanced data problems.

A comparison between Leam++ and the three aforementioned algorithms was carried out

to characterize each algorithm's behavior on incremental learning problems complicated

by different unbalanced data.

6.3 Recommendations for Future Work

Although the BEAST algorithm has shown tremendous increases in performance over its

predecessors, there are several things that should be explored to further increase the

algorithms capabilities.

6.3.1 Preliminary Confidence Transfer Function

During the course of this research only one transfer function was explored. Being one of

the key elements of the algorithms success this is an important matter for future research.
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Perhaps interesting results can be obtained by using class specific performances measures

to modify these confidences. The algorithm would probability benefit more from

performance measures similar to positive predicted value or negative predicted value.

The goal would be to incorporate as much knowledge as can be inferred from the

problem to intelligently fuse both the classifiers and the sub-ensembles.

6.3.2 Sub-Ensemble Combination Techniques

Once the preliminary confidence of each sub-ensemble is modified the current algorithm

merely sums them and chooses the class with the maximum confidence. This leaves

room for much expansion for existing classifier combination techniques to be used for

combining the sub-ensembles. One worth noting is decision templates, where a decision

profile for each class and for each sub-ensemble can be calculated. Then, when presented

with a new dataset the previously generated sub-ensembles can create and/or update their

profiles based on the newly available data, potentially allowing these sub ensembles to

learn what they do not know and adjust themselves accordingly. Allowing the algorithm

to learn from even harsher environments than those presented in this work.

Consider a problem where one dataset contains instances from one set of classes

and a following dataset contains instances from a completely different set of classes

without any information on previous classes. Decision templates could conceivably be

used to solve this problem by allowing the first sub-ensemble to learn what it does not

know and dynamically adjust its weights accordingly.

6.3.3 Incorporation of Prior Knowledge

The current version of the BEAST algorithm is designed to maximize the performance of

each individual class. While this is a logical goal, there are many cases where
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information about the problem would warrant the desire to weight one class's

performance over another's. Furthermore, this could be extended to use information

about the cost of different decisions. This prior information could easily be included in

the preliminary confidence transfer function or in calculating the class specific weights.

The theme of the algorithm is to extract as much information as possible from the

environment and use it to dynamically and intelligently fuse both classifiers and sub-

ensembles.
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APPENDIX A

EXPERIMENT WITH BEAST

An experiment on a synthetic dataset will be shown to illustrate how the methods

introduced in BEAST works. In particular, the steps taken by BEAST-ED to create and

calculate the preliminary confidence are analyzed and discussed. The database used for

this experiment is contained in a 2-D feature space with four classes with distribution

information given in Table A. 1 and shown in Figure A. 1.

Table A.1 - Gaussian distribution information for BEAST experiment.
Class 1 Class 2 Class 3 Class 4

Pi 1 1 -1 -1

2i -1 1 -1 1
Variance 0.35 0.35 0.35 0.35

Figure A.l - Example of the four PDF's corresponding to the classes described in Table A.1.
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The instance distribution for this experiment was designed to create a difficult

incremental learning problem with severely unbalanced data, shown in Table A.2. Each

of the four training datasets contains a large number of instances from a particular class

and few instances from other classes.

Table A.2 - Instance distribution for BEAST experiment.

Class 1 Class 2 Class 3 Class 4

100 10

10 100 10

10 10 100 10

10 10 10 100

Test Data 200 200 200 200

Each training dataset, '+1-4, was used to create ten MLP classifiers, each with identical

network architecture, 0.05 error goal and 25 hidden layer nodes. The primary purpose of

this experiment is to illustrate how BEAST uses the novel methods introduced in this

work to incrementally learn under hostile conditions. This illustration is done by

displaying the preliminary confidence over the entire feature space, for each sub-

ensemble, for each step in BEAST-ED. Recall that the first step in BEAST-ED is to

calculate the preliminary confidence, Pk,c, for each sub-ensemble, k, and each class, c,

Equation (A.1).

ck,

where

eTk+Tk

Zk,c= w,, for c = 1,...,Cand k = 1,...,K (A.2)
t=eTk
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The following figures show Pk, calculated over the entire feature space in Ak, i.e. A2

shows P,, . The preliminary confidence of the entire ensemble is also calculated

(Equation A.3) and shown in A5.

K

= P,, for c = 1,...,C (A.3)
k=1

Next Pk,c is calculated by applying the preliminary confidence transfer function,

Equation A.4.

C = /(,)=( )Nc/min(N), for c = 1,...,C and k = 1,...,K (A.4)

Figures A.2-A.5 show Pk,c, calculated over the entire feature space, in Bk. The adjusted

preliminary confidence of entire ensemble is also calculated (Equation A.5) and shown in

B5.

K

Pc =Pk,c, forc=1,...,C (A.5)
k=1

Finally Pk,c is calculated by adjusting the sub-ensemble preliminary confidence on each

class according its relative experience on that class, (Equation A.6).

cPk =Pkc- Kc for c = ,...,C and k = ,..., K (A.6)

Cj=1 NkC

Figures A.2-A.5 show Pk,c, calculated over the entire feature space, in Ck. The final

confidence of the ensemble is then calculated according to Equation A.7 and shown in

C5. Note that the final hypothesis of the algorithm is the class with the highest

confidence.

- K-

Pc=ZPk,c, forc=1,...,C (A.7)
k=1
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Figures A.2-A.5 also show the actual training data, >k, used for training each sub

ensemble, in Dk. Last, D5 shows the posterior probability of the Bayes classifier, which

can be used to compare with the preliminary confidence plots.

Figure Layout:

Row A shows the initial preliminary confidence for each sub-ensemble, row B shows the

preliminary confidence after being updated by the transfer function, row C shows the

preliminary confidence after being adjusted according to each sub-ensemble's relative

experience, row D shows the data used to train each sub-ensemble. Columns 1-4

correspond to '1i-3'4 and the associated sub-ensemble's, column 5 shows the combined

preliminary confidence for the entire ensemble along with the posterior probability of the

Bayes classifier.
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Discussion ofFigure A.2:

Note the preliminary confidence shown in Al is heavily biased towards the green class

since there were a large number of samples from the green class available in training, D1.

B1 shows the preliminary confidence after it has been adjusted with the transfer function.

The bias seen in Al is suppressed and the sub-ensemble is able to properly learn both

classes despite unbalanced training data. C1 shows no difference from B1 because only

one sub-ensemble existed, likewise, column 5 is the same as column 1.

Discussion ofFigure A.3:

There is a large drop in confidence on class green in C1, compared to C1 in Figure A.2.

This is because of the normalization step which adjusts the confidence of each sub-

ensemble according to their relative experience. In this case the second sub-ensemble has

been trained with ten times the number of instances from class green as the first sub-

ensemble. The preliminary confidence of the second sub-ensemble is heavily biased

towards class green, A2; however, once the transfer function is applied, which

compensates for unbalanced data, the bias towards class green is suppressed, B2. Finally

the confidence on class red is reduced, C2, since the first sub-ensemble has been trained

with more instanced from class red. The combined ensemble's preliminary confidence is

shown in column 5.

Discussion ofFigure A.4:

A large confidence drop on class blue can be seen between C2 in Figure A.3 and Figure

A.4. This drop is due to the algorithm adjusting the weight of each sub-ensemble

according to their relative experience on each class. A5 shows the preliminary decision

of the ensemble, at this step there are no instances that would be classified as magenta.
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After compensating for the unbalanced data the ensemble is able to classify some

instances from class magenta, B5. Finally, the last step is taken to normalize the

preliminary confidence, C5. This final confidence shows a strong resemblance to the

posterior probability of the Bayes classifier, D5, which is quite an achievement

considering the data used to train the ensemble D1 -D3.

Discussion ofFigure A.5:

The preliminary confidence of each sub-ensemble, Al -A4, is biased and clearly needs to

be adjusted to compensate for the unbalanced training data. After applying the transfer

function, the preliminary confidence, of each sub-ensemble, is able to better represent the

true underlying distribution, B1 -B4. C1 -C4 clearly shows the effects of normalizing the

preliminary confidence according to each sub-ensembles experience with particular

classes. The final confidence, C5, is remarkably close to that of the Bayes classifier, D5.

After training on all datasets, '31->4, the ensemble is able to efficiently learn all four

classes, even under the harsh nature of this incremental learning problem.
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APPENDIX B

RESULTS USING VALIDATION DATA

Chapter 5 presented results on three synthetic databases and two experimental databases.

For all simulations the number of classifiers generated by each ensemble was determined

before training. However, in many applications the number of classifiers needed to learn

from a dataset varies between trials and between algorithms. For example, on scenarios

which suffer from the outvoting problem, the number of classifiers needed by Learn++ to

outvote existing classifiers is entirely dependent on the weights of the classifiers; thus

each algorithm will be allowed to create as many classifiers as necessary on each training

data, 'k, and automatically determine the optimal number of classifiers to retain based on

its performance on validation, Vk. Leam++, Leam++.NC, and Leam++.UD retain the

number of classifiers which yield in the maximum ensemble performance on Vk. BEAST

works in a similar way; however, it calculates the maximum performance of sub-

ensemble k on Vk.

Synthetic Experiment 1 - Incremental Learning

The database used in this experiment is described in detail in Section 5.2.1. Table B.1

shows the instance distribution of this experiment, which is identical to Table 5.2 with the

addition of validation data, Vi- V3 .
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Table B.1 - Instance distribution for experiment 1, with validation data.
Class 1 Class 2 Class 3 Class 4

_ _ 100 100 0 0

+)2 50 50 150 0

_ _3 50 50 50 200

Vi 50 50 0 0
V2  25 25 75 0
V3  25 25 25 100

Test Data 200 200 200 200

Each algorithm was allowed to generate a generous number of classifiers on each dataset

and then determined the number of classifiers to retain, Tk, according to the performance

on the validation data. The results of this test are shown in Table B.2, the format of this

table is the same as Table 5.3 except there is an additional column to the left displaying

the average number of classifiers retained from each training session along with a column

to the right showing the maximum performance out of the 40 independent trials.

Table B.2 - Generalization performance from Experiment 1, with validation data

Tk ± CI Class 1 Class 2 Class 3 Class 4 Gen. ± CI Max

31 6±0.9 96.0% 96.3% - - 49.2%±0.8% 62.1%

§ "2 10±1.6 95.0% 94.8% 94.4% - 71.1%±0.7% 72.4%

3 36±2.5 93.5% 93.5% 83.6% 52.3% 80.7%±1.7% 86.6%

Si 5±0.9 95.1% 96.2% - - 48.3%±0.8% 64.0%

S2 4±1.0 91.5% 92.7% 97.8% - 70.5%±0.3% 72.6%

| 3 6±1.4 84.1% 85.5% 69.1% 91.3% 82.5%±0.5% 85.3%

-j 4±0.5 95.9% 96.3% - - 48.0%±0.2% 49.1%

S32 4±0.8 92.0% 92.6% 97.8% - 70.6%±0.3% 72.0%

S3 6±1.3 83.5% 85.0% 71.5% 91.9% 83.0%±0.4% 86.6%

H 5±0.8 95.3% 96.4% - - 47.9%±0.2% 49.4%

_ 72 5±0.9 93.5% 95.2% 95% - 70.9%±0.3% 72.8%

m  '3 511.3 87.7% 89.2% 80% 80.4% 84.3%±0.4% 87.1%

Table B.2 shows a similar performance between all four algorithms; however, there is a

large difference between the numbers of classifiers retained by Leam++. Recall that this
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experiment was designed to test each algorithm's ability to incrementally learn new

classes; '2 introduced a new class that was separable from the others, where 'Z3

introduced a new class that overlapped with previously learned classes. Learn++, on

average, needed to generate 10 classifiers on c'2 to outvote the 6 classifiers trained on

%>. However, Learn++ retained 36 classifiers, trained on +3, and still was not

completely able to learn class 4. This observation is due to the nature of the outvoting

problem.

Classifier voting weights are based on the performance on their own training data,

thus the performance of classifiers on more separable problems tends to be higher;

alternatively, classifiers trained on inseparable problem will be assigned lower voting

weights. For example, classifiers generated on easier problems, such as those found in

'>i and >2, will have much higher weights than classifiers generated on a more difficult

problem, as seen in+ 3. As a consequence of this weighting scheme, a large number of

classifiers need to be generated on '3 in order to outvote the previously trained

classifiers.

Synthetic Experiment 2 - Unbalanced Data

The database used in this experiment is described in detail in Section 5.2.2. Again the

instance distribution is identical to the original problem except for the validation data

shown in Table B.3.
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Table B.3 - Instance distribution for experiment 2, with validation data.
Class 1 Class 2 Class 3 Class 4

100 10 10 10

'Z2 100 100 10 10
%3 100 10 100 10

_ _4 100 10 10 100

Vi 50 5 5 5
V2  50 50 5 5
V3  50 5 50 5
V4  50 5 5 50

Test Data 200 200 200 200

The results of this simulation using validation data are shown in Table B.4. All

performance figures are very close to those presented in Table 5.6. The number of

classifiers retained by each algorithm is similar to one another with the exception of

Learn++ which retains several more classifiers on each dataset. 'BEAST significantly

outperforms the other three algorithms using the fewest number of classifiers.

Table B.4 - Generalization performance on Experiment 2, with validation data

Tk ± CI Class 1 Class 2 Class 3 Class 4 Gen. ± CI Max

+ 1 8±0.7 98.7% 66.2% 68.3% 80.1% 78.3%±1.8% 86.6%

+ +2 6±0.9 98.0% 85.4% 64.7% 71.4% 79.9%+±1.5% 88.8%

M 33 7±1.4 98.1% 79.0% 82.1% 68.0% 81.8%±1.0% 87.4%
4 5±1.7 98.6% 72.7% 76.0% 86.5% 83.4%±0.8% 88.5%

Q S 6+±0.7 98.7% 63.5% 64.6% 83.1% 77.5%±1.8% 89.6%

+ 32 6±1.0 96.3% 92.9% 51.0% 49.2% 72.3%±2.5% 85.4%

| 3 7±1.2 97.0% 70.2% 90.0% 41.2% 74.6%±1.7% 84.6%

S34 7±1.5 98.8% 45.2% 66.9% 93.6% 76.1%+l.7% 86.1%

-7" 66±0.8 98.4% 69.1% 66.0% 83.4% 79.2%±1.6% 89.4%

+ Z2 5±1.0 94.2% 95.2% 61.0% 53.0% 75.9%±2.2% 89.0%

S733 6±1.5 91.6% 88.0% 95.6% 33.7% 77.2%±1.4% 86.8%

S34 6±1.7 94.1% 42.0% 69.9% 97.6% 75.9%±2.2% 87.6%

H 6±0.7 96.3% 76.3% 78.5% 84.6% 83.9%+1.3% 90.3%

: Z21 6+1.0 96.0% 89.5% 77.8% 82.2% 86.4%±0.7% 89.9%

SZ3 5±1.4 94.7% 88.9% 89.4% 78.7% 87.9%±0.5% 90.9%

41 5±1.6 94.8% 85.1% 86.5% 90.1% 89.1 %±0.5% 92.3%
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Synthetic Experiment 3 - Spiral Database

The database used in this experiment is described in detail in Section 5.2.3. Table B.5

shows the validation data distribution along with the original data distribution.

Table B.5 - Instance distribution for swirl experiment, with validation data.
Class 1 Class 2 Class 3 Class 4

_ _ 200 0 200 0

_32 0 200 0 200

50 150 0 150
74 0 150 50 150

VI 100 0 100 0
V2  0 100 0 100
V3  25 75 0 75
V4  0 75 25 75

Test Data 200 200 200 200

Table B.6 - Generalization performance on Experiment 2, with validation data

Tk ± CI Class 1 Class 2 Class 3 Class 4 Gen. ± CI Max

+ b1i 6±0.9 98.3% - 98.2% - 49.1%±0.1% 49.9%

+ 32 7±1.7 48.5% 69.5% 46.4% 70.1% 58.6%±1.3% 64.9%

S0 3 7±1.4 84.1% 97.9% 6.5% 96.9% 71.3%±0.4% 74.4%

,4 7±2.0 50.1% 98.4% 55.3% 98.3% 75.6%±2.0% 89.1%

Q0 u 6±0.7 98.4% - 98.1% - 49.1%±0.1% 49.9%

+ z 2 12±1.2 0.2% 57.1% 65.7% 58.3% 45.3%±0.8% 50.7%

S 33 14±1.3 3 7.2% 62.5% 67.9% 58.4% 56.5%±1.5% 65.4%

S34 6±1.6 34.9% 98.5% 76.0% 98.7% 77.0%±1.2% 84.6%

16), 6+0.7 98.1% - 98.4% - 49.1%±0.1% 49.8%

+ Z2 11±1.5 0.5% 98.1% 1.2% 97.7% 49.4%+0.3% 54.3%

1 '3 12±1.9 77.8% 99.1% 2.1% 97.7% 69.2%±0.5% 72.4%

t 4) 13±2.3 37.0% 98.0% 70.6% 98.8% 76.1 %2.7% 91.3%

-) 6±0.8 98.2% - 98.2% - 49.1%±0.2% 49.9%

' Z2 7±1.4 92.8% 55.5% 52.8% 25.1% 56.5%±1.3% 64.6%

S 3 6+1.8 91.5% 91.7% 66.0% 54.4% 75.9%+1.0% 80.8%

34 6+2.2 90.8% 92.8% 89.5% 93.3% 91.6%±0.4% 94.1%

The results from this simulation are shown in Table B.6. There is a large drop in

performance for Leam++.NC and Learn++.UD compared to the results presented in
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Table 5.9. This is because the validation data is subset of the training data and does not

necessarily reflect the true distribution. In this experiment V2 only contains instances

from classes 2 and 4; thus, each algorithm will retain the number of classifiers which

cause the ensemble to perform best on classes 2 and 4. A good performance on the

validation data does not necessarily translate to a good performance on the test data. The

BEAST algorithm is designed to work best when each sub-ensemble beast represents the

data it is trained on. Therefore, the algorithm will not suffer when the distribution of the

validation data does not represent the true underlying distribution of the environment.

Volatile Organic Compounds Recognition Database

The VOC database is described in detail in Section 5.3.1, the instance distribution for this

experiment is shown in Table B.7, and the results shown in Table B.8.

Table B.7 - Instance distribution for the VOC database, with validation data
Class-4 ET OC TL TCE XL

___ 0 25 0 25 25

0_2 0 5 25 5 5

33 25 5 5 5 5
Vi 0 15 0 15 15
V2  0 3 15 3 3
V3  15 3 3 3 3

Test 6 6 6 8 11

While the performances of all algorithms are similar, BEAST still shows a statistically

significant increase, in finial performance, over the other three algorithms.
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Table B.8 - Generalization performance on VOC database, with validation data
Tk ± CI Eth. Oct. Tol. TCE Xyl. Gen. + CI Max

+ >i 5±0.4 - 94.7% - 92.5% 78.4% 58.1%+0.9% 70.0%

S32 5±0.7 - 83.5% 95.8% 93.4% 68.6% 69.4%±0.9% 80.5%

33 9±1.1 82.2% 82.8% 93.7% 92.0% 64.5% 81.1%+1.3% 92.7%

Z Z 5±0.4 - 93.7% - 91.0% 76.7% 57.0%±0.9% 64.9%

S 2 4±0.5 - 69.1% 98.6% 89.9% 67.2% 66.3%±1.3% 80.5%

9 3 5±0.8 95.6% 75.1% 91.8% 92.1% 57.2% 79.6%±l.0% 90.2%

~ ~ 5±0.4 - 92.3% - 90.8% 76.4% 56.6%±0.9% 64.9%

S702 4±0.7 - 82.6% 98.2% 91.6% 70.5% 69.8%±1.2% 81.1%

SZ33 6±1.0 96.3% 78.6% 95.4% 91.4% 59.1% 81.3%±1.0% 92.7%

-Z 5±0.4 - 93.2% - 90.9% 75.1% 56.4%±0.9% 64.9%

S~2 4±0.5 - 90.6% 92.6% 91.5% 71.2% 70.4%±0.9% 81.1%
m 3 5±0.7 81.3% 90.5% 92.3% 92.1% 66.8% 83.8%±1.0% 95.1%

Optical Character Recognition Database

The VOC database is described in detail in Section 5.3.2. The instance distribution for

this problem is shown in Table B.9.

Table B.9 - Instance distribution for the OCR database, with validation data.
Class - 0 1 2 3 4 5 6 7 8 9

200 200 200 0 0 200 200 0 0 200

100 100 100 250 250 100 100 0 0 100
0 0 50 150 150 50 50 400 400 0

V, 50 50 50 0 0 50 50 0 0 50

V2  20 20 20 50 50 20 20 0 0 20
V3  0 0 10 30 30 10 10 80 80 0

Test 55 57 55 57 56 55 55 56 55 56

Table B.10 shows the results on the OCR database using validation data to determine the

ensemble size. Leam++, Leam++.NC, and Leam++.UD perform worse compared to the

results presented in Table 5.13.
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Table B.10 - Generalization performance on OCR database, with validation data
Tk_ CI 1 2 3 4 5 6 7 8 9 0 Gen. ± CI Max

>i~ 7±0.4 99 98 99 - - 98 99 - - 97 58.8%±0.1% 59.6%

2 9± 0.5 99 98 99 80 83 97 99 - - 97 75.2%±0.9% 79.2%

3 10±0.5 98 96 99 96 97 97 99 45 39 94 86.1%±1.0% 95.7%

'21 7±0.4 99 98 98 - - 97 99 - - 97 58.7%±0.1% 59.2%

+ + 2 8±0.6 99 97 98 96 96 96 99 - - 95 77.8%±0.2% 79.0%

3 10+0.6 33 17 86 96 97 87 92 25 98 85 71.6%±0.6% 79.4%

TZ> 7±0.4 99 97 99 - - 97 99 - - 97 58.7%±0.1% 59.4%

S702 6+0.7 99 97 97 98 98 96 98 - - 93 77.8%+0.2% 79.4%

3  7± 0.9 81 49 91 97 97 92 96 99 98 69 86.7%+0.8% 93.4%

S70.4 99 98 99 - - 98 99 - - 97 58.7%±0.1% 59.6%

S 7±0.6 99 98 99 93 94 97 99 - - 97 77.6%+0.2% 79.4%

m 3 7±0.7 97 86 98 95 94 97 99 94 85 89 93.4%±0.5% 96.9%
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