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ABSTRACT

George D. Lecakes, Jr.
INTEGRATION OF MULTIPLE DATA TYPES IN 3-D IMMERSIVE VIRTUAL
REALITY (VR) ENVIRONMENTS
2008/09
Dr. Shreekanth Mandayam

Master of Science in Engineering (Specialization in Electrical Engineering)
Intelligent sensors have begun to play a key part in the monitoring and maintenance of
complex infrastructures. Sensors have the capability not only to provide raw data, but
also provide “information” by indicating the reliability of the measurements. The effect
of this added information is a voluminous increase in the total data that is gathered. If an
operator is required to perceive the state of a complex system, novel methods must be
developed for sifting through enormous data sets. Virtual reality (VR) platforms are
proposed as ideal candidates for performing this task — a virtual world will allow the user
to experience a complex system that is gathering a multitude of sensor data and are
referred as “Integrated Awareness” models.

This thesis presents techniques for visualizing such multiple data sets, specifically
— graphical, measurement and health data inside a 3-D VR environment. The focus of this
thesis is to develop pathways to generate the required 3-D models without sacrificing
visual fidelity. The tasks include creating the visual representation, integrating multi-

sensor measurements, creating user-specific visualizations and a performance evaluation

of the completed virtual environment.
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CHAPTER 1 : INTRODUCTION

The task of creating data visualizations is not a simple endeavor. Whenever the human
eye views a scene a myriad of mental tasks deconstruct the image into simple
components. Size, shape, color, texture orientation and other properties are analyzed and
divided into understandable concepts. Associations are made, important areas are noted
and many items are filtered out. The human mind has developed the ability to analyze
and sift through enormous visual information through hundreds of thousands of years of
evolution. Scientific visualization aims to utilize these finely tuned assets of the human
mind in identifying patterns and interpreting results. With so many parameters that the
mind can process the task of creating intuitive visualizations that enhance understanding
can be difficult.

Virtual reality is a tool utilized for viewing spatial information. Through the use
of immersive displays such as large projectors or head-mounted screens the user is
transported into a synthetic world. Virtual reality environments provide the user with the
ability to transform two-dimensional screens that lack depth information into three-
dimensional windows into the environment. Through stereoscopic rendering techniques
the human eye is fooled into believing that elements exist outside of the two-dimensional
screen. Couple this with head-tracking software, which adjusts the view based on the
angle the user is to the screen and the user is made to believe they are seeing reality.

In the realm of virtual reality visualization, three core data types have been
identified: graphical, measurement and health [1]. Each of these data types must be
presented in a visual manner to the user. Based on the source of the data, there are many

different ways in which the visualization can be achieved. Various means can be used to
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convey temperature, pressure and other measurement information. Scalar and vector data
require visualization fields to display the changes in magnitude and direction for flow
information. For images, the data can be captured and the properties of an object
extracted to create 3-D models.

With the various types of data and many methods of visualizing information, the
need to develop a series of algorithms and procedures for creating virtual worlds quickly

and consistently is a necessity.

1.1 Applications

Scientific visualization is a powerful tool that can be utilized in many fields. Typically, it
is utilized to visualize information in a spatial domain. Several disciplines have used
scientific visualization to create insightful imagery to help describe underlying principles
that may be lost in compact mafhematical forms.

The visualization of fields and flow has important application in many areas.
Visualization of flowing fluids has evolved from simple sketches to complex computer
simulations [2].

The medical profession has also utilized visualization to create three-dimensional
images that describe many biological functions. 3-D models of the human body have
been created from various forms of scanning equipment to create pictures of the human
body in action. There are numerous other areas in the medical industry which have
utilized scientific visualization to create educational and explorative 3-D models.

In the realm of engineering, analysis plays a crucial role in developing models to
simulate interactions between objects.  Coupling finite-element analysis with

visualization provides the ability to watch changes in the geometry of an object over time
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whether it be stress, temperature, pressure or other variable. The automotive industry
utilizes this technique to create simulations of car crashes and the extent of damages [3].
New developments have been made in the area of fluid flow thanks to the analysis and
visualization of whales and porpoises, with the visualization providing the ‘why’ to how
certain shapes outperform others in nature [4].

Through visualizations, abstract information can be conveyed through properties
of color, size or shape. Even complex interactions of variables resulting in the health or
state of a system can be visualized to provide a simple measure of how a system is
performing.

Finally, visualization is very important in understanding the structure of an object.
The geometric shape of an object can play a crucial role in the properties it possesses.
Even simple and small object such as sand can have vastly different mechanical
properties based on the shape and size of the particle. Through visualization, it is
possible to compare specimens and gain insight into the reasons why various sands
require different considerations when building upon them. Virtual reality also provides
an excellent tool for inspection of the geometric elements of an object, such as a building
to gain a personal understanding of its shape, size and characteristics. Complex objects
such as rocket test stands can be viewed from any angle in a virtual environment to gain
an introspective understanding of the structural layout and be used as a tool to educate an

individual on the layout of a structure.



1.2 Motivation

The goal of visualization is to garner insight from a pool of data through images.
Therefore it is important to have algorithms in place that can create these visualizations
regardless of the dataset presented.

Data visualization can be broken down into three categories, graphical,
measurement and health information. It is important to provide graphical information
(3-D models representing objects) so that a frame of reference can be established of the
environment. Viewing data without knowing where or what it pertains to can inhibit
understanding. Measurement data pertains to the data gathered from sensors. Functional
data is created through manipulation of measurement data or through simulations. These
data types require several 3-D visualization algorithms to visualize properly.

The importance behind visualizing 3-D particles of sand builds on the work of P.
Giordano, J. Corriveau and D. Barrot [5] [6] [7]. Describing the 3-D shape of particle
aggregate mixtures is important when analyzing particle size and shape. These and many
other properties can affect the inter-particle interactions of soil mechanics which can
contribute to differences in the shear strength characteristics, particle interaction, granular
friction and impact to the environment.

Currently a system is utilized to create a highly detailed and low-error 3-D
representation of a particle with an X-ray tomography system. However, this system is
not only expensive to purchase but requires extensive computational power and can take
up to five hours to scan and several additional hours to reconstruct the model.

There is a definite need for an inexpensive system that could create a model in

shorter period of time. Past work has created an algorithm utilizing optical tomography



to create a particle of rough approximation to the X-ray tomography system. However,
the algorithm was limited in the resolution of the reconstruction and took nearly the same
amount of time as the X-ray system. A fast visualization system is needed to increase
resolution and decrease overall algorithm processing time.

This updated algorithm can provide 3-D models of sand particles that can be
brought into a virtual world. Through user interaction, it can be possible to visually
understand the differences in size, angularity and shape from different mixtures. These
models could later be utilized inside of a discrete element modeling simulation to
determine micro mechanics of granular media.

When creating virtual environments, it is important to be able to quickly create a
world. It is dually important that the techniques discovered are relayed to future
generations so that the nuances of creating a virtual world are not re-invented or lost.
Clear and concise visualization algorithms are required so that the observer can spend
their time looking for important trends and not waiting for a demonstration to be

developed.

1.3 Objectives

The primary goal of this thesis is to investigate and improve upon existing techniques for
developing virtual reality environment visualizations and integrating them with various
datasets. The specific objectives are outlined as:
1. A survey of current techniques for:
a) The design, development and implementation of immersive, navigable and

interactive VR environments for advanced scientific visualization.



b) The design, development and implementation of 3-D modeling algorithms

in a VR environment.
2. Specific contributions in the area of designing, developing and implementing 3-D
models inside of a VR environment, specifically for:

a) Integrated awareness models of graphical, measurement and health data

b) 3-D reconstruction models of tomography data

¢) Applications and validations of methods in a sufficient number of example
VR environments

3. Recommendations for future research directions

This thesis will contribute pathways and algorithms for creating data
visualizations in a virtual world. Data types will be broken down and coupled with
appropriate visualizations. Several virtual reality environments will be created to display
these visualizations. In addition, an improved ART algorithm will be presented which
utilizes simple image manipulation techniques to create higher resolution models quickly.
These contributions will provide the framework for creating most virtual reality

visualization environment.

1.4 Scope

The survey of current technologies focused on how visualizations and VR have been
utilized in creating immersive worlds is located in the background section of this thesis.
The 3-D modeling algorithms researched are covered in the background section. Various

algorithms for one to three dimensions are covered in addition to scalar and vector data

types.



Development of these algorithms in the Vizard environment is covered through

several visualization of temperature data through one and two-dimensional surfaces.
Vector visualizations were created that utilize synthetic data to demonstrate the algorithm
functioning.
The integrated awareness models are covered in the creation of a virtual environment for
NASA Stennis Space Center of a Methane Thruster Test-bed Platform (MTTP) rocket
engine test stand. Reconstruction models of 3-D tomographic data are addressed in the
creation of an improved method for implementing the Algebraic Reconstruction
Technique (ART) and through the use of several algorithms for creating data
visualizations.

The recommendations for future work are covered in the conclusion section of

this thesis, detailing areas of improvement and further advancement.

1.5 Organization

This thesis is organized as follows. Chapter 1 provides introductory information
concerning the difficulties of creating virtual worlds and visually representing data, as
well as the possible benefits. Possible applications, the motivations, objectives, scope
and organization are presented. Chapter 2 provides adequate background information
starting with the basics of visualization to 3-D modeling and finally a detailed account of
data visualization. Chapter 3 outlines the approach taken to address integrating data and
models into a virtual world. Chapter 4 is an account of the results of creating the virtual
world, following the premises outlined in Chapter 3. Chapter 5 is a summary of

accomplishments, future recommendations along with the conclusions of this thesis.



1.6 Expected Contributions

This thesis will provide a detailed summary of current technologies for virtual reality,
visualization, and data visualization algorithms. It will also provide an introduction to
computer graphics and necessary introductory knowledge for creating a virtual
environment. Several virtual reality simulations will be covered that visualize one, two
and three-dimensional data of both scalar and vector quantities. Additional algorithms
are shown for visualizing small data sets such as those from sensors in the NASA Stennis
Space Center Methane Thruster Test Bed Platform (MTTP) trailer system. A quicker and
higher resolution algorithm will be created to reconstruct objects from optical images.
This algorithm will provide new particle models for comparison in a virtual world against
the X-ray models. Finally, the flow charts in the approach section will provide the

necessary protocols required for creating various virtual environments.



CHAPTER 2 : BACKGROUND

The following section contains pertinent information for understanding many topics
concerning visualization, virtual reality and how data is managed in a virtual world. The
information here will provide a detailed account of what visualization is, and the many
types available, how virtual reality works; the kinds available; and commonly used
software platforms. Three basic types of data will be defined and methods for visualizing

the information discussed.

2.1 Visualization

Visualization is defined as forming a mental model or mental image of something [8].
Information visualization utilizes the mind’s cognitive facilities to entice discovery in
datasets. The data utilized in visualization need not be the same kind. Quantitative data
such as temperature or pressure readings, ordinal ranking data, categorical data and
relationship data can all be viewed through various means in the same visualization.
Information visualization is concerned with creating a representation of data to make a
solution transparent [9]. Information visualization is typically concerned with the
visualization of abstract concepts such as relations and scores. Scientific visualization is
concerned with the visualization of physical objects, such as 3-D scans for medical
purposes or the display of volumetric temperature gradients. Scientific visualizations
create displays which aid in the understanding of complex scientific principles and
concepts created from gathered data or computer simulations [10]. Many times, scientific
visualization is concerned with data over the spatial domain in two or three dimensions.

Visualization provides many positive features for the viewer by condensing enormous



amounts of data into comprehensible images. These images can reveal details about the
data, how it was collected and possible errors or data artifacts that do not blend in with

the rest of the picture [11].

2.2 Virtual Reality

A virtualization is something not real, but generated usually from a computer. Virtual
reality is the attempt to replace the operator’s surroundings with a computer generated
version. VR provides the psychological experience of being surrounded by a false
environment through hardware, software, tracking and visual displays [12]. A broader
definition is also used, which defines VR as any experience in which the user is
effectively immersed in a responsive virtual world [13]. In recent years, the notion of
what makes for an immersive environment has changed and does not directly require
sensory inputs to fool the opefator. It is possible for the user to be so mentally and
emotionally involved that they begin to forget it is a synthetic environment as in the case
of recent online virtual worlds [14]. In this situation, the hardware does not matter and
any input into the virtual world will suffice. This type of immersion is very rare and is
not utilized to engage an operator since it deals completely with the user’s frame of mind,
something not easily manipulated.

Virtual reality, in the case of a projection based system, must allow the operator to
be immersed, possess the ability for navigation and be able to partially or fully interact
with the environment [15]. By adhering to these three tenets, a feeling of presence is
created for the operator in the virtual world. Presence is when the operator believes they

are in an accurate and believable depiction of reality [16].
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One method of increasing immersion is by capitalizing on the fact that human
beings perceive a portion of depth information through stereoscopic vision. By utilizing
stereoscopic vision in virtual worlds, the user is able to sense the depth of objects and

become further immersed.

2.3 Stereoscopic Depth

Human beings possess two eyes that are roughly 6.4 cm apart from one another [8]. This
difference in location means that the human brain receives two slightly different images.
The difference between these two images allows the brain to determine relative distances
between pairs of objects. Figure 1 illustrates the differences between two images

perceived from slightly different angles.

Figure 1: A Stereoscopic view of a scene with two images from two different perspectives overlapped.

The human brain reconciles the differences between the two images by perceiving

depth. That is, the human brain merges the images by perceiving that some objects are

11



closer or further away. However, the human brain is limited to images of a particular
separation disparity. When the disparity of the images is too great, a condition known as
diplopia or double vision occurs. The area in which two images can be successfully
fused by the mind is known as Panum’s fusional area. Panum’s fusional area can be seen
in Figure 2 where two eyes perceive a scene from slightly different angles. The area of
successful fusion is shaded green with everywhere else a region where double vision

occurs.

‘a’and ‘c’

Figure 2: Panum's fusional area.

From Figure 2, two forms of disparity can be defined. Angular disparity, which is
the difference between the angular separations of a pair of points from the two eyes, can
be determined from the expression:

angular disparity = a —f (2.1)

Screen disparity results from the distance between parts of an image on the screen, or:

12



screen disparity = (¢ —d) — (a—b) (2.2)
Even when double vision does occur, the human mind can still judge depth, however it is
far less accurate. To increase immersion in a virtual environment, it is important to try
and utilize Panum’s fusional area to create the effect of depth. In a VR environment it is
simple to achieve diplopia by moving too close to the screen. At a certain distance the

user will be unable to unite the disparate images.

2.4 Types of Virtual Reality

Most immersive virtual reality systems utilize four pieces of technology to create a
synthetic environment. The first is the visual and haptic display device which blocks the
real world and replaces it with a computer generated version. A graphics rendering
system is required to create the 3-D scenes with a refresh rate of at least thirty frames per
second (fps), although 60 fps is preferablé. The third item is a tracking system that
indicates the location of the head or arms of the operator. The tracking system can relay
positional information into the virtual world to aid navigation and interaction. Finally, a
database of realistic models is needed to create the geometry of the virtual world [13].
Most VR displays utilize stereoscopic views to create the feeling of depth. There
are two main types of VR stereoscopic displays: head mounted units and shuttering units.
Head mounted displays have until recently been large devices placed over the
head which block the view of the operator and replace it with images on two embedded
view screens. In the past decade, recent technological advantages have reduced the size

of head mounted displays but they are still seen as awkward.
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Figure 3: Shutter glasses for projector based VR units. [17]

Another display option is utilizing projector based systems with shutter glasses as
shown in Figure 3. Shutter systems utilize a pair of goggles that quickly alternate
between opaque and clear. The projector switches views from two different points about
eye distance apart inside the virtual world. The shutter glasses are synchronized with the
view change and only expose one eye to one particular view. This provides two separate
images for each eye on a single projector screen.

There are several different types of projector setups available. Semi-immersive

displays utilize a single projector as in Figure 4.
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Figure 4: Mechdyne single projector system. [17]

Multiple projectors can be utilized to create a completely immersive experience.
These are referred to as CAVE systems and are usually composed of at least three
projectors. The operator stands inside the space, surrounded by projector screens and is

immersed in the visualization as shown in Figure 5.

Figure 5: A fully immersive multiple projection system. [17]



2.5 Disadvantages of Virtual Reality

Some users of virtual reality turn off the stereoscopic display due to double-image
problems which arise from the perfectly crisp renderings that a machine produces [11].
In the real world objects not in focus are blurred. This blurring allows the mind to
assemble two disparate images together easily. In virtual reality systems the ability to
locate the focal object is not present so the entire image is sharp and completely in focus
and no depth of field is simulated. This makes the double image in VR display very
noticeable and distracting. Figure 6 shows a crisp computer generated scene with two
overlaid images as well as an image of a real life object seen from two angles. The depth
of field in the real image causes blurring and helps to separate foreground and

background as well as merge background information together.
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Figure 6: A crisp computer generated scene and a real life image with focal blurring.

Another problem occurs when a semi-immersive display is utilized. Frame
cancellation is a term coined to represent the 3-D disparity apparent when an object
closer to the user is cut off by the edge of the frame [18]. This causes the illusion of
simulated depth information to collapse. The only way to solve this issue is by never

seeing the edge of the display, such as in a fully immersive display like the CAVE.



Figure 7: Frame cancellation results when an image that should be in front of the video screen is
cropped, making it appear behind the frame collapsing the depth effect VR simulates.

A third issue with VR has to do with the resolution of stereoscopic vision, which
utilizes disparities between two images to simulate depth. However, this disparity does
not extend to infinity, making for a noticeable depth of only 30 meters. The best range
for depth is between 1 and 10 meters from any subject. Anything further back in the
virtual world loses depth and becomes flat, making scenes of enormous size benefit less
from a VR display.

Another issue concerns the navigation methods of a VR scene when utilizing
visualizations to understand complex data. Typical virtual reality systems require the
operator to utilize walking or flying navigation techniques. Minimizing cognitive effort
and shorting navigation time enhances the pattern recognition process of a human being
[11]. An easily usable, fast and effective user interface is required when attempting to
discern simple patterns, which is not something VR software contains. VR programs
such as vGeo and Vizard utilize flying navigation to move around the world, which can
take long periods of time, making for overall pattern recognition difficult. Custom
pattern finding interfaces would have to be created for use in these types of virtual

environments.



Additional VR disadvantages include a learning curve for beginners. Many initial
operators suffer from user disorientation and difficulties in navigation and movement
control [19]. These problems can be overcome with time and experience inside a VR
environment. However, some individuals seem more apt for navigating a VR

environment than others.

2.6 Applications of Virtual Reality

Even with the previously mentioned disadvantages of VR, it has benefited several areas.
VR has been used in the world of finite element analysis to create immersive simulations
of the deformation of a car body during collision [3]. VR has been utilized to simulate a
wind tunnel and the resultant fluid dynamics through visualizing streamlines, iso-
surfaces, cutting planes, arrows and numerical values [10]. VR helped to create links
between data separated by orders of magnitude from one another in geological research
studies. By including the geological site and inserting data pertaining to particular
locations all the way from the macroscopic to microscopic, VR linked the information in
a convenient visualization [20]. Medical procedures have also benefited from the use of
VR visualizations of tissues and organs. Surgeons typically utilize flat, gray scale slice
planes of a patient and have to mentally construct a 3-D model of the internal structure.
VR has been utilized to aid in the planning stage of surgeries to provide a fully immersive
and 3-D representation of the internal structure of a patient [21]. Finally, VR has been
utilized as a psychological tool to help individuals deal with their personal fears. In one
instance users with public speaking issues were put in front of a virtual audience to
slowly build up confidence for speaking in the real world as well as learn more about the
phobia [22].
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There have been few broad and encompassing studies on the effectiveness of VR
-and those that have been performed are inconclusive [23]. However, a point of
agreement arises when virtual reality is being utilized as a searching tool, and has been
found to benefit the ability of the operator in building a reference frame of the
environment quickly. This means that a user can quickly assess their surroundings and
minimize redundant searching [24]. VR can also provide a positive learning example
when moving from Immersive 3-D displays back to 2D monitors.
Virtual reality has become very important in diverse professions and disciplines.
Even with disadvantages, the ability to immerse a user into a simulation, whether it is for
training or visualization purposes has marketable benefits. Creating the sense of depth is
the job of the stereoscopic devices utilized by the operator. To create the actual scene

geometry a 3-D rendering language must be available.

2.7 The 3-D Rendering Software

Virtual reality utilizing a stereoscopic view is simply a three dimensional scene viewed
from two distinct points that are spaced apart by about the breadth of a human’s eyes.
The actual rendering of the scene does not require any special virtual reality specific
software allowing the use of standard three dimensional graphical interface languages
and techniques to create the rendered images. By creating a camera which can alternate
between two positions and render out two distinct images the requirements of the
hardware are met. There are two dominant methods for communicating with graphics
hardware to produce three dimensional scenes. These methods are the open standard of

OpenGL and the platform dependent Microsoft Direct 3-D.

20



2.8 OpenGL and Direct 3-D

OpenGL is an API or Application Programmers Interface which contains a library of over
one-hundred function calls that communicate to the graphics hardware to create graphics
primitives, attributes, geometric transformations and other 3-D scene functions [25].
OpenGL supports all major platforms and can be utilized across a wide range of
hardware. It was designed with the intent of being viable for all uses from computer
aided drafting (CAD) to modeling to games [26]. This means that basic input and output
functions such as keyboard and mouse responses as well as setting up a graphical window
are not included in the standard OpenGL library. There are auxiliary libraries such as
GLU and GLUT which provide additional functionality for performing these tasks.

OpenGL is a state machine, meaning that it operates in much the same way as a
series of switches. Should a particular setting be turned on or off or set to a particular
value, all future functions will utilize that setting unless it is changed. An example would
be when creating points; all points would be created as the same color unless otherwise
specified before each new vertex. After a state is set, everything executed afterwards will
follow that set state unless it is changed.

OpenGL utilizes a series of callback functions that are set up by the user to
initialize particular scene parameters. Examples would be the functions glDisplayFunc()
and glReshapeFunc(). These functions control what is displayed in the scene and what
happens during a window resizing, respectively. These functions are passed user-
specified functions to control what occurs whenever the scene must be rendered or when

the window requires resizing.

21



A second commonly used API is Direct3-D, which is a part of the Direct X APL It will
only run on a Windows operating system, however widespread use of this platform has
caused it to thrive. Direct3-D follows OpenGL in many ways, but there is one core
difference between the two systems. Direct3-D was designed to be a direct interface to
hardware, meaning whatever the hardware provides Direct3-D would provide as well.
OpenGL is a rendering platform which may have hardware acceleration but is not
dependent upon it, which follows the open standard that OpenGL utilizes. Over the past
two decades, these two platforms have become the standard for the creation of 3-D
applications.

Regardless of the API utilized to create the 3-D scene, there are several
requirements when making a 3-D rendering platform. Geometry is required through the
creation of vertices, edges and faces. A viewing frustum is required to act as a camera
into the world and dictate the area to be rendered. Lighting is needed in order for faces in
the scene to be visible. While there are several other requirements for a 3-D rendering

package, these first few are of primary important for virtual reality visualization.

2.9 Virtual Reality Platforms

There are several available programs that assist in the creation and management of a
virtual environment. Two are utilized extensively at Rowan University and are the
prominent Virtual Reality platforms, VRCO vGeo and WorldViz Vizard. Each program

has its advantages and disadvantages in accessing and displaying data.

22



2.9.1 VGeo™

As an older VR platform created by VRCO, the Virtual Global Explorer and Observatory
(vGeo™) was designed to fill a role for oceanographers who were displeased with current
tools available to explore, merge, and display time-dependent, three-dimensional,
multivariate data sets [27]. Its primary strength is its ability to render raw data into
graphical objects that can be static, moving, slices, or surfaces.

VGeo™ utilizes the Virtual Reality Modeling Language (VRML) when importing
graphical models into the world that are not expressed by raw data. Figure 8 is a standard
vGeo™ demonstration entitled Storm World. In these images, a VRML model of a
shoreline is superimposed with wind vector data in the form of arrow plots, the humidity
of the shoreline with a color map and finally a 3-D iso-surface generated from the

humidity data.

Avmospheric Conditions During the Storm of the Century

Data from Argonne National Lab
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Mmospheric Conditions During the Storm of the Century

Data from A

Atmospheric Conditions During the Storm of the Century

Data from Argonne National Lab

a

Figure 8: A vGeo™ simulation utilizing a 3-D model of a shore line and overlapped data of wind
vectors and the humidity.

VGeo™ was designed for data visualization, and incorporates all the tools
necessary to create different visuals, whether the data is scalar, volume or vector
information. What vGeo™ does not excel at is in the ability to create the virtual world
and add custom functionality. Many vGeo™ models have to converted and require
several steps to correctly format the data outside of the creation of the model. In
addition, many vGeo™ scenes are limited in the depth of functionality available to the

coder.

2.9.2 Vizard™

The second virtual reality toolkit discussed here is the WorldViz Vizard™ platform.

Vizard™ does not have any data visualization algorithms built in like vGeo™, however it
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offers the user direct interface with VR hardware, the types of accessible 3-D content and
the ability to create non-native functionality. By utilizing the Python scripting language,
the programmer can access low level OpenGL functions without having to directly apply
OpenGL programming through a low level language such as C++. The Vizard™ library
offers built in functionality for importing many kinds of models, arrays, networking
protocols and more. Figure 9 is the Vizard™ API with a python script being created in
the center and scene assets such as models and textures displayed on the left. Vizard™
comes complete with a detailed development environment that utilizes context sensitive
cues to allow the program to anticipate the function calls the programmer intents to
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Figure 9: The WorldViz Vizard™ Interface.

The largest disadvantage to Vizard™ is that there are no preprogrammed data
visualizations. To make up for the lack of visualizations, Vizard™ provides you with all
the programming tools to be able to create vGeo™ visualizations or completely novel

visualizations.
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2.10 Virtual Reality Data Types

Regardless of the platform used to create the virtual reality environment, all the data
describing the world can be categorized in three ways: graphical, measurement and
functional data [1].

Graphical objects are usually thought of as representations of real-world objects such as
buildings, furniture or landmasses. Figure 10 is an example of a graphical data set made

from thousands of data points which describe the buildings geometry.

Figure 10: A graphical dataset to create a virtual Rowan Hall.

Graphical models are usually obtained through the task of modeling. Through the
use of reference images and dimensioned drawings, models can be created in 3-D
modeling software packages such as Autodesk Maya or 3-D Studio Max. In the past,

Virtual Reality Modeling Language (VRML) was a popular format to contain the
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geometry of graphical objects. In recent years the addition of several other formats such
as the Wavefront .obj, open scene graph .OSG and 3-D studio max .3-Ds file formats
have become far more prevalent when storing model information.

Measurement data, the second data type is composed of sensor readings.
Examples would include temperature, pressure, strain and the state of a wvalve.
Measurement data is the raw information taken directly from a sensor with minimal
processing. Table 1 is an example of measurement data inside of a spreadsheet. Each
row progresses through time while each column describes a different sensor type, being

either temperature, pressure of strain in this example.

Table 1: An example of measurement data catalogued in a spreadsheet.
TIME TFL185GH PELL3GO PELIMGO PELI9SGIY PELLTIGN PEL1SAGN PELIA3GO SGT 5GB 56L SGR
s8¢ *F PSIG  PSIG  PSIG  PSIG  PSIE  PSIG  L8S LBS LBS LBS
Timestam GM 1empd GOX prosi GOX pre«3 GM press GM pre-ar GM prossu GOX prassStrain Strain Srain Stedin

(1328 S3.05% 166 1266 05 19687 302 2847 2311 2355 LM6 25553
SHL2E 59.136 18 044l .53 19536 302 4176 2318 135% 2344 35571
13384 5907 3341 4086 053 21041 302 7802 231 2355 1346 25569
-13.1%2 59121 5.7 5.602 0.5% 213 342 745 2314 1,356 2346 25564
<1312 59.184 1462 1342 0.5% 20,401 3.02 36 2312 2356 2346 25565
43056 59467 2804 0534 053 2417 307 F45L 233 2384 2345 75563
13,008 59.266 338 258 053 212 342 315 2313 3% 2346 25563
1296  58.11% 4951 1.458 0.53 21868 a2 3024 2312 R3S 2346 25570
12938 59.144 153 0.306 265 21,529 302 4829 237 2356 2349 35577
-12.596  59.1%% 3092 308 1537 21078 262 2515 238 LIS 2343 25547
-12.864  59.144 5509 1515 053 197993 3.02 537 2311 2363 2342 25555
138 59084 5835 2800 053 22369 302 2084 2319 2355 2245 15.568
12768 5904 R0 2685 0.53 22131 502 2832 232 2383 234 25551
-12.736  59.193 2536  L28S 0.5% 31567 302 672 2312 2361 2337 2556
12672 5937 384 4508 053 22383 207 2679 232 1355 2395 15569
S1284 59002 38%% 1899 053 23598 5.02 1Y 2312 235 2346 25563
1608 59159 4377 3.51 0.53 20928 302 3715 32 2355 2348 15573
42576 5917 3686 0.882 0,53 20664 202 3677 2312 2335 2346 35.565
12,812 56902  A%26 51861 053 27n 307 B786 2312 2354 2347 25566
<1248 59.186 361 1342 0.53 18709 302 4445 2315 2.3 235 25572

Functional data is any information obtained from any analysis [1]. Functional
information is typically derived from mathematical models and computer generated
simulations. Functional data can also include the results of analysis on data. An example
would be with gas pipeline inspection where measurement data was recorded from sensor

readings of gas line pipes. This information was transformed through the use of an
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artificial neural network into a functional data set. This functional data defined the
predicted geometry of the pipe as either welds, cracks, or the general geometry of the
pipeline. In the case of simulated data, the underlying information is not always required,
only an advisement on what to do. As in the case of the health of a system, simulated
faults or user messages can be simply displayed to indicate warnings or areas of interest.
These three data types are not entirely distinct from one another and crossovers
between the formats are routine. One case would be in obtaining 3-D density information
from a CT-scanner. This initial information would be regard as measurement data.
Through several transformations and by setting a threshold for the values in the data, the
density information can be made into a 3-D graphical model. This model would be
composed of the threshold levels of density values from the gridded array of
measurement information. Measurement data has been transformed to make a functional

data which is then represented as a 3-D model of graphical data.

2.11 Creating Graphical Assets

Regardless of the type of scene being constructed and the data involved, there will always
be the need to create graphical assets. Modeling is the process for creating a 3-D
representation of an object in a computer. To model an object, the modeler must specify
the characteristics of the object through the shape, spatial layout, and connectivity of the

basic components [28].

2.11.1Polygonal Modeling

A polygon is mathematically defined as a plane specified by a set of three or more

coordinate positions, called vertices. These vertices are connected in sequence by
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straight-line segments, called edges and make up the sides of a polygon [25]. Polygons
are normally defined in computer graphics as either triangles or quadrangles. Polygons
with more than four sides can be used but are usually converted to the triangles. This is
due to a situation where some of the vertices that make up the polygon are not co-planar,
meaning they do not all lie on a plane. Figure 11 shows the difference between a planar

and non-planar polygon.

Figure 11: An example of a quadrangle that is planar, non-planar, and the required triangulation to

resolve crease and lighting issues.

When a non-planar polygon exists, the rendering software responsible for
calculating the surface will not be able to determine how to properly crease and light the
surface. This results in a condition known as surface ambiguity. For the simple case in

Figure 11, the problem can simply be resolved by breaking the object into two planar
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portions. However, there is an option of how to divide the object, across the top or down
the center. The problem is magnifies as the number of vertices increase as in Figure 12.
This is why most surfaces are modeled with triangles or quadrangles. With triangles
there is no possibility of the object being non-planar, since three points will always define
a plane. Quadrangles are sometimes utilized in polygonal modeling for special cases, and
are especially important in subdivisional surface modeling, which will be elaborated on

later.

Figure 12: A 14 sided polygon with planar vertices, non-planar vertices and the resultant polygon

after subdividing into triangular components.

Polygonal modeling works by stringing triangles together to create more complex

objects. Basic primitives such as spheres, cylinders and boxes can easily be created with
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triangles. From these shapes more advanced objects can be created through the use of
polygonal tools which interact with the base primitive object to add, delete and extend the
number of vertices, edges and polygons. Figure 13 shows two triangles that are then
utilized to create a cube. This cube is then modified to create the more complex

geometry of a building.

Figure 13: An example of how triangles can be used to create complex structures.

2.11.2NURBS

NURBS stands for Nonuniform rational B-splines. NURBS are mathematically
expressed surfaces made from control points that manipulate the shape of the resultant

surface. These control points are sometimes referred to as knots. Nonuniform means that
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these knots can be situated across an unequal spacing, allowing for further freedom when
creating a surface. In total, a NURBS surface is composed of a series of control points, a
set degree polynomial, weight factors, and a knot vector. With these components
different B-splines can be blended together to create a three-dimensional surface. Figure
14 shows two B-spines and the resultant interpolated surface of the NURBS object.
While splines are supported in many 3-D packages, many rendering tools such as
Autodesk Maya and 3-D Studio Max are unable to directly render the NURBS surface.
This limitation means that NURBS objects must be converted into a polygonal

approximation before rendering.

Figure 14: B-splines and the resultant NURBS surface.

NURBS surfaces provide the user with a mathematically expressed surface that
can be subdivided indefinitely to make a curve of infinite resolution. Polygons are
discreet units and are only able to approximate a curve through an increased number of
polygons. Figure 15 is a NURBS cylinder compared with a polygonal model. While the

NURBS surface will retain the curve at any scale, the polygon quickly appears nickled
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upon close inspection of the surface. This ability of NURBS surfaces to create smooth

and infinitely detailed surfaces has made it popular when creating organic surfaces.

Figure 15: A comparison of a polygonal cylinder on the left and a NURBS cylinder on the right.

There is a primary drawback to using NURBS surfaces [28]. NURBS require a
rectangular grid of control points and therefore can only represent a limited pool of
surface topologies. To overcome these issues, subdivisional surfaces were created that

combine the best of Polygonal and NURBS modeling.

2.11.3Subdivisional Surface

Subdivisional surfaces provide an advantage over both polygons and NURBS in that they
allow for random surface slices like Polygons, while maintaining the smooth curvature of
NURBS [29]. Subdivisional surfaces are created by utilizing a base mesh of polygons.
This mesh is then divided into regions of finer and finer detail. By modifying the base
mesh, the successively smoothed divisions refine the geometry to provide a smooth and
complex object. Figure 16 is an example of a base polygonal mesh using subdivisional
surfaces to create a far more refined and smooth object than polygons alone could create

[30].
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Figure 16: A polygonal object utilizing subdivisional surfaces to create a smoother and more organic

shape.

Subdivisional surfaces remove some problems associated with NURBS modeling.
During NURBS modeling problems can occur when trying to merge particular curves
together at seams. NURBS curves require four sides at all times, while subdivisional
surfaces are free to have any number of sides that a polygon can have, although they

prefer four-sided geometry. In addition, since subdivisional surfaces are based on a
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simple polygonal mesh, the modeler is able to retain a simple polygonal workflow and
add smoothing later when detail is needed.

These three methods reflect the most popular and commonly utilized methods of
modeling graphical data for use inside of a 3-D environment. The model itself is just a 3-
D approximation of an object. Additional parameters must be added to each model in

order to create an accurate representation through materials and textures.

2.11.4Materials

When modeling an object such as a two-by-four composed of wood, the general shape
can be roughly described as a rectangle. However, this does not describe the texture of
wood. To include this attribute a material must be applied that controls how the face
reacts to light. Depending on the desired effect, various types of materials can be applied
to describe the appearance whén light strikes the surface. Plastics, woods and metals all
react differently with light, which requires various types of materials. Figure 17 shows
the same sphere with different applied materials. Note the difference in the specular

highlight between the three which makes each material distinct.
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Figure 17: When interacting with light, materials provide a method for conveying the makeup of an

object.

Wood that has not been sanded and polished is not shiny, so the material on the
red sphere would be a good candidate to apply to the model. A material will adequately
describe how light interacts with the surface but does not capture the patterns evident in

wood. To visualize that information an image must be applied to the surface.

2.11.5Textures

When image data is applied to a geometric model, the result is called a texture and the
process referred to as mapping [31]. Textures help to describe small details that would be
very difficult to convey through geometry. Wood grain would be difficult to model and
require billions of polygons to capture the microscopic features that describe the surface.

An image of wood placed over the faces of an object would allow for a vastly less
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complex model and still realistically represent a piece of wood. Figure 18 shows a

simple wood image and the result when applied to a 3-D model.

Figure 18: Texturing is the process of sampling an image over the faces of an object to provide visual

information without additional geometry.

Texturing works by assigning the vertices of a face to a two-dimensional
coordinate space. While the geometry exists in a three-dimensional space, each face is
still composed of a series of planes that are two-dimensional. Mapping the two-
dimensional texture to these two-dimensional faces allows for a texture to be wrapped

over the geometry of a model.
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The texture coordinate space is called the UVW coordinate space. U, V and W
are not acronyms and are simply placeholder variables like X and Y. U and V are not the
same as X and Y and do not have to have a vertical /horizontal correspondence with the
model. Most modeling and texturing applications provide a normalized 0 to 1 texture
square where the faces of an object can be positioned. By moving the UV vertices of the
object around this space, different portions of the texture can be assigned to various faces.
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Figure 19: A texture layout utility that allows for UV coordinate manipulation over a normalized 0 to

1 texture space.
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Figure 19 is the UV layout window inside of Autodesk 3-D Studio Max.
Different faces of a 3-D object they can be translated, rotated or scaled in the UV layout
editor to display a portion of a particular texture. In this case, several faces from a sphere
are being separated and moved to a specific area of a wood texture. This is the typical

flow to generate custom graphical assets from modeling to materials and finally textures.

2.12 Creating Graphical Assets from Data

When data needs to be represented as a graphical model usually an automated process is
utilized. The datasets that need to be transformed are usually composed of spatial
information. The simplest 3-D data set would be composed of scalar information for
each element. The following methods can be utilized when dealing with a scalar volume

data.

2.12.1Scalar Volume Data - Contour/Color map/Height-field Plots

A contour plot is a useful way of visualizing data when looking at cross-sectional planes
of 3-D data along a particular axis. Contour plots are the result of identifying a threshold
value and creating a boundary between two areas on a two dimensional plane [32]. This
is done with a 2D plane composed of polygons with each element corresponding to a
vertex. Figure 20 is composed of a series of polygons laid out on a grid where each of

the vertices corresponds to an element in the array.
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Figure 20: A dataset with a threshold of x<=2 and x>=6 with the resultant contour and color map.

An algorithm would check each point against its neighbors and determine if a
division is necessary. It is possible to linearly interpolate between two points and create a
division in the polygon at a midpoint. These contours would be assigned different colors
to indicate the divisions. The right image in Figure 20 is a contour plot with color
indicating the areas with different values based upon the chosen threshold. With the
inclusion of color to the surface it is regarded as a color map plot.

Rather than use color, it is possible to assign the actual value to a translation of
the plane’s vertices in the 3 dimension. The data will have to be scaled in order to
minimize large differences between values. Also, if this is a slice plane with additional

planes above and below, a maximum height displacement will have to be assigned to
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keep the different slices from intersecting. Figure 21 is an example of a height-field plot.
The color can be included on the height-field plot but could result in visualization
difficulties when lighting and shadows are added to the surface. These operations will
result in modifications to the colors and as a result the viewers perception of what is

plotted could be changed.

Figure 21: A height-field visualization with and without color.

Slice planes can be effective visualizations but are limited since you can only look
at a single plane at a time. A user would have to observe a continuous 3-D volumetric
array as a series of discontinuous planes. There are other visualizations that allow the

user to view all the information as a large 3-D object.
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2.12.2Scalar Volume Data - Voxels

Voxels are the three-dimensional equivalents of two-dimensional pixels. They can be
thought of as volume pixels, hence the name: voxels. Voxels are utilized to represent a
three-dimensional space as a three-dimensional object construct of individual blocks.
Figure 22 is a 3-D dataset represented as a series of voxels. Voxels are utilized in many
3-D applications, such as medical and industrial tomography to view volume information.
Voxels themselves are ‘not visualized due to the large number of elements and the
enormous amount of processing power required. While pixel resolutions composed of
thousands or even millions of rows and columns are commonplace, the increase in
dimensionality with voxels causes storing and rendering difficulties. An image of size
1024x1024 would be composed of 1024% or 1,048,576 elements. However, a voxel of
the same resolution would require 1024%0r 1,073,741,824 individual elements. Allowing
each voxel to take the form of a cube, with six sides and a minimum of two polygons per
face would result in a scene composed of 12,884,901,888 polygons. Besides the large
number of polygons on the scene, there are inherent occlusion problems with voxels. If a
voxel is made completely opaque, it would not be possible to see through the surface to
the inner density as seen in the upper left corner of Figure 23. One option would be to
increase the transparency (or lower the opacity) based on a user’s preference. By also
including color after the entire object has been rendered translucent, areas of varying
value would be easily noticed as in Figure 23. It is possible that this could lead to
misconceptions due to overlapping colors which would distort or hide the interior values.
Slice planes are another option when viewing voxels to cull away surface data and see

into the interior as shown in lower portion of Figure 23. When viewing voxel
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information, an iso-surface is usually created, which is a 3-D shell formed by setting a

threshold value that excludes particular elements.

Figure 22: A field of voxels with translucency to view inner details.
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Figure 23: Voxels colored but opaque, colored and transparent, and utilizing slice planes.

2.12.3Scalar Volume Data — I[so-surfaces

An iso-surface is developed from data when a user sets a threshold value, which acts as a
mechanism to split the elements and create a polygonal shell similar to what was
performed in creating contour maps. Continuing this division between data points will
create a line boundary, which in three dimensions can be extended to a planar division.
Figure 24 is an example of an array of values with a boundary being determined based on

a threshold value.
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Figure 24: Using a threshold on an array to create a geometric boundary.

The plane itself does not have to be planar and can develop into a closed or open
surface depending on the boundary conditions of the object. An open surface would
result when the data does not fall into a higher and lower threshold when the algorithm is
run. Figure 25 shows an open iso-surface and a closed surface. There are different
algorithms for the creation of an iso-surface, with the most popular being the marching

cubes algorithm.
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Figure 25: An open iso-surface and a closed iso-surface.

The marching cubes algorithm works by organizing the data array into a series of
cubes. The values of each array in the matrix would be the intersection of a particular set
of four lines (or one vertex), with each intersection being one of the eight points that
creates the cube geometry. Just like before, a threshold value will be set and checked at
each point in the cube to see if it is above or below the value. Since there are eight points
in a cube, and two possible states (in or out) there would be 2% or 256 possible
combinations for the boundary of a single cube. However, many of these combinations
are symmetrical about an axis or rotation, which leaves 15 possible cases as shown in

Figure 26.
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Figure 26: The 15 possible combinations in the marching cube algorithm.

A possible complication arises in this algorithm when the adjacent cubes and their
configuration are not regarded. Open models can result in missing faces unless alternate
boundaries are assigned to the cube. Figure 27 is a situation where the standard cube
configurations would result in open areas in the final model. By using an alternate
method of creating an intersection, which still fulfills the role of dividing the boundary it

is possible to avoid this problem.
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Figure 27: An example of when the cubes algorithm fails to close geometry, leading to an open
surface.

While there are other methods for creating surfaces, this is by far the most popular
method available.
All of the methods discussed so far only deal with scalar volume information.

Different visualizations must be implemented when dealing with vector data.

2.12.4Vector Volume Data

A vector is a quantity specified by a magnitude and a direction. Magnitude is nothing
more than a value representing the length or scale of some quantity. The second
component, direction, dictates the angular position of the quantity. An example of a

vector dataset would be wind data, providing the direction it is traveling and the strength
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of the gust. Vector data is often utilized when analyzing the flow of fluids such as air,

water or oil. The following are several methods used to visualize vector data.

2.12.5Vector Volume Data - Arrow Plots

An arrow plot places an arrow at each element in a gridded array. The magnitude of the
vector is represented by the length of the arrow while the head of the arrow represents
direction. A similar plot called the ‘hedgehog’ removes the arrow head to simplify the
visualization and uses a transparency gradient over the arrow to depict the direction of the
line.

The magnitude quantities of the plot may require scaling due to arrow intersection
problems. With a 3-D gridded dataset, occlusion problems and difficulty discerning
individual arrows may occur with dealing with simple lines. 3-D models could be utilized
as arrows, allowing for shading and lighting to break the confusion brought on by pixel
arrows. Figure 28 is an example of models utilized to display direction and magnitude

rather than 2d pixel representations.
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Figure 28: Arrow plot utilizing polygonal models to denote direction and magnitude.

2.13 Summarizing Graphical, Measurement and Functional Data

By combining graphical, measurement and functional data with the visualizations
discussed here it is possible to create a powerful suite of tools. Figure 29 is an example of
graphical, measurement and functional data all incorporated into a virtual environment.
Here, a gas transmission pipe line is shown with all three datasets overlaid. The
underlying 3-D model of the pipeline is a graphical data component created with
modeling software. The measurement data was transformed into a graphical model and
wrapped around the pipeline making the spiky iso-surface surrounding the pipeline.
Finally, the functional information is shown in the center of the pipeline with the small
colored cylinder which indicated how an artificial neural network predicted the geometry

of the pipeline.
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Figure 29: Graphical, measurement, and functional data overlaid in a 3-D world. [1]

2.14 Novel Visualization Applications

The visualizations already discussed are the ‘textbook’ cases and have been implemented
in many situations. There are many needed visualizations that fall outside of the
previously mentioned formats. Time varying datasets composed of millions of voxels are
difficult to visualize in real time. Overlaying different datasets is another challenge. It is
also not always important to create visualizations but utilize these techniques in novel
ways. The medical community has implemented visualizations for viewing internal
structures, planning surgeries, and training doctors how to suture a wound. Visualization
systems are being used in virtual environments to track the navigation of avatars (the
user’s digital persona in a virtual environment) to optimize paths and note areas of high
activity. There are many new avenues of visualization that are constantly being explored

and here are a few of those examples.
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Visualizing physical and chemical processes and the various changes undergone
as time passes is integral in exploring and gaining an intuitive idea of how they work
[33]. With recent developments it is now possible to capture simulations that result in
hundreds of millions if not billions of voxels over thousands of time increments with
hundreds of different variables. The first challenge when dealing with data of such a
large magnitude is in viewing it. Encoding the data is one possibility through either
separating the information into spatial and temporal domains or by utilizing complex tree
structures to store the information in memory. Other performance boosts would include
utilizing hardware-accelerated systems to keep up with the enormous volume of
information. This type of rendering is limited by the amount of memory on the hardware;
requiring very expensive graphics cards with gigabytes of memory space. Even with the
best hardware, many simulations are just too enormous and require distributed rendering
processes. This is performed by storing the simulation data on a central computer and
having the different rendering jobs sent to client computers. The rendering is then
returned and stitched together to create the final image. However, such setups are not
adept at handling simulations with billions of components in real time.

Even when it is technically possible to view the data there is still difficulty in
making a visualization that describes the information. In the area of fluid mechanics,
visualization difficulties occur when attempting to look at 3-D data as it changes over
time. As with any 3-D display, objects occlude one another making it difficult to see
things at a distance in a cluttered scene. The previously mentioned geometric
visualizations of streamlines, flow tubes, path lines, and such can effectively visualize

local flow features, but lack a continuous global view. A new method utilizes a sparse
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representation by injecting seed particles and removing them in areas of clutter [34].
Seeding refers to the act of selecting a point where a streamline or other visualization will
originate from. Adding additional seeds will allow for continual population of areas that
lose seeds due to the natural flow of a fluid. The removal of excess seeds helps to rid
cluttering in regions where all the flow paths meet.

Overlaying visualizations can run into many problems beyond simple occlusion.
If two visualizations utilize similar colors and lines, they can be difficult to visually
separate. Also, visual artifacts can appear when using certain kinds of line visualizations,
creating optical illusions. There are several techniques available to contend with this
problem. When utilizing the same visualization for two vector fields, by changing the
color, line width and opacity or embossing one field it becomes easier to distinguish
between the datasets [35]. Figure 30 shows a series of flow lines with various changes to
the color, transparency and size to help distinguish between the datasets. Another
method is to utilize different visualization techniques for each vector field; however the
problem of the best visualization for the data comes into play. It is also interesting to
note that at the intersection points of the two streamlines, visual artifacts can be noticed
as the mind tries to create lines that link different sections. These artifacts can be trouble
when a person is trying to discern patterns. They can be mistaken for actual properties of

the data and not simply illusions created by the visualization method.
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Figure 30: Overlaid streamlines of the same size and color can confuse the viewer. By changing the

color, transparency and size of the streamlines a distinction can be made.

As mentioned, the medical community has greatly benefited from visualizations.
Recent developments have helped budding doctors learn basic invasive procedures
without practicing on humans. Real-time finite element methods have been utilized to
create surgery simulations for suturing wounds on patients [36]. Coupled with a virtual
reality environment, the operator performs suturing on a virtual representation of a hand
that reacts to the user’s gestures through deformation, surface contact, adjustable

boundaries and multiple contact points. Another area of medical scientific visualization
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is creating a simulation of near-infrared light (NIR) passing through tissue. NIR is highly
permeable in human tissue, making it a popular tool for noninvasive imaging. Utilizing
3-D volume visualizations of tissue and running simulations of the effect of NIR light
passing through the different areas that would be difficult on real-world subjects is a new
application of the technology [37]. This method allows for the capturing and studying of
NIR effects that otherwise are lost in real-world testing due to diffraction. By simulating
the expected results, we can create a perfect expectation for NIR imaging without the
noise associated with collecting a real world dataset.

The use of visualization in transportation has moved away from typical
applications of traffic studies for roadways. Virtual environments now are just as
important and have their traffic data evaluated to notice areas of interest or disinterest.
Design choices for a virtual environment can be made based on this information. Areas
of low interest can be removed or remodeled to entice user traffic. Bottlenecks can be
restructured to allow for easier navigation in a virtual world and cut down on
performance issues when dealing with a large number of virtual avatars in a small
location. The traffic data can be overlaid onto floor plans, utilizing flow lines or color to
indicate travel paths and areas of interest [19]. Figure 31 is an example of navigation
visualization. The top image shows the actual paths that different users may take through
the room. The image below it uses color to indicate the most popular or congested areas

of the virtual world.
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Figure 31: An example of an avatar path visualization and areas of congestion.

Similar visualization programs have been utilized to look at the advantages of
monitor based navigation or real-space virtual reality walking areas. Through these
visualizations it was shown that real walking situations were far move immersive than
stationary and monitor navigation systems [38].

Visualizations are important tools to gain insight as well as discover patterns in
information sets. Through the use of immersive virtual reality displays, a user can

interactively navigate a data set as if it existed in reality. There are many options for
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creating and configuring a virtual reality setup, including head mounted devices and
projector screens. And while VR does have a few disadvantages in certain applications,
it can be extremely beneficial for many disciplines from medical to simulation.

In summation, a VR world utilizes a 3-D application to create the images and
there are many available software packages that can quickly create an immersive world.
The different data sets inside of these worlds can be broken down into graphical,
measurement and function. Graphical data is normally created by a modeler in a 3-D
modeling application such as 3-D Studio Max or Maya. Materials and textures can be
applied to the model to create a more realistic object. Measurement data can utilize a
series of visualization algorithms to create contours plots, voxels, iso-surfaces and more.
Functional information is composed of analysis data and can indicate important events as
well as system predictions. With all this data coupled together, it is possible to create a

world which facilitates user interaction and discovery.
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CHAPTER 3 : APPROACH

This thesis attempts to cover visualizations for virtual reality applications and approach
this topic in three phases. The first section will describe typical visualizations for data
including scalar and vector across one, two or three dimensions. The second portion will
describe the three kinds of data typically encountered when creating a virtual world:
graphical, measurement and functional data. Methods of displaying the three types of
data inside of a virtual world will be developed. Finally, the creation of three-
dimensional visualizations from 2D image data will be covered. Flow charts covering

each project as well as complex areas will be provided in each section.

3.1 Data visualizations for Vizard™

In order to visualize data, algorithms must be developed to take in and transform
information into a graphical form that the user can understand. Many programs offer
built in functionality for creating visualizations such as Mathworks Matlab™ and
Mechdyne’s vGeo™. However, many other programs do not natively support the ability
to quickly create visualizations. Attempting to network or bridge two programs together
to create real time dynamic visualizations can lead to poor performance and bottlenecks.
For that reason, it is important to develop algorithms that create simple data
visualizations for the WorldViz Vizard™ platform, which is the currently preferred
virtual reality rendering platform at Rowan University.

Data can come in a variety of forms and nearly endless accompaniments of
visualizations are possible. For this thesis, the fundamental visualizations will be created

for several data types including scalar and vector data in one, two and three dimensions.
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3.1.1 Scalar Data Visualizations

Scalar information only contains a magnitude and retains no directionality. Examples of
scalar data can be temperature, the force of wind, or the health/state of a system. When
utilizing spatial data over an area, many data points are pooled together to show a trend
or variation.
To visualize any surface regardless of dimensionality in a 3-D graphics package, there are
rules for creating geometry that must be adhered to. Worldviz Vizard™, as well as other
applications, utilizes OpenGL functions to create geometry, which have built in methods
for handling object creation.

For scalar one-dimensional data, the information must be assembled into an array
in memory. This array will be iterated over and the information mapped to a
corresponding spatial location in the 3-D world. In OpenGL, a line can be created by
specifying a series of points and utilizing the type GL_LINE_STRIP. Inside of Vizard™,
these low-level hardware functions are wrapped within Python to allow for easier
programming.

The algorithm requires iterating over each point in the array and creating a vertex.
The distance between each array element can be specified, and mapped to the x location.
Since this is a two dimensional line, the z dimension can be ignored or set to a
predetermined value. The scalar value will be mapped to the height or y value of the line
for each element. Figure 32 shows the corresponding mapping of array elements to line

points.
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Figure 32: Mapping 1-D array information to a spatial location.

This information can be conveyed as a static plot or a dynamic plot. In a dynamic
plot, the spatial elements are continually updated to coincide with a changing array.
Typically, an array is given an additional dimension where the changing data is stored.
Once the data has been mapped spatially, additional iterations are performed over the
second dimension in the matrix. Figure 33 shows how the second dimension of a matrix

can be utilized to store the next time increment of data.

Time Step 0| 2 -2 0
Time Step 1 0 3 -1 0)

TimeStep 2| O 4 0 0

Figure 33: A one dimensional matrix holding future data (time) in the second Y dimension.
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Besides mapping the scalar values to height, they can also be mapped through
color. This requires setting up a color gradient and normalizing any magnitudes to a
value between 0 and 1. These values can be directly plugged into the RGB color of a
point in the graph. However, maximum and minimum values must be determined to
create the normalized gradient values. In the case of blue and red, the intermediate

values will be varying shades of purple as seen in Figure 34.

Figure 34: A possible color gradient between red and blue to show changes in magnitude.

Two dimensional data utilizes a similar approach when creating visualizations but
the creation of a surface is more complex. As discussed in the background, a polygonal
object is typically constructed out of triangles. These triangles have a ‘winding” which
dictates the direction it is facing. Triangles can be clock-wise or counter-clockwise.
Triangle must be created in the same fashion in order for advanced features such as back-
face culling to improve performance to work correctly. Back-face culling refers to the
act of not rendering both sides of an object, reducing the number of objects that must be
rendered and enhancing performance.

To construct the surface, a series of triangles must be produced utilizing the
OpenGL TRIANGLE_STRIP type. This function specifies the vertices in a top to bottom
order and removes redundant vertices by linking each triangle to the last in a chain.
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Figure 35 shows how the vertices in a triangle strip are assembled as well as how many
triangle strips must be utilized to create a plane. Each of these strips will have

redundant/overlapping vertices on the bottom and top after the first as seen in Figure 36.
Figure 35: The creation of a triangle strip and the resultant triangles.
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Figure 36: Overlapping vertices when utilizing triangle strips to create a planar surface.
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With this redundant area, any algorithm that iterates over the data must make sure
to properly duplicate the information of the bottom row of the first strip to the top row of
the second. Another difficulty in developing this algorithm is that the vertex numbering
is not in the same fashion as array numbering. With the triangle strips, each number
progresses vertically and then horizontally, while an array format continues horizontally
and then vertically. When creating an iteration sequence, this has to be addressed.

Figure 37 pictorially shows the differences between the sequences.
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Figure 37: Iteration differences between triangle strips and arrays.
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To overcome this problem the triangle strips have to be thought of as vertical
pairs of data. Every even instance of a triangle vertex will be on top while every odd on
the bottom when starting at a zero index system. If Vizard utilized a one index system,
the top values would all be odd and the bottom even. Figure 38 outlines what is done to

each of the pairs of vertices and how to assign the array data.

For every even vertex
For the first triangle strip

If we are not finished with the row
-Set the current vertex’s height to the array
magnitude at the current row and column.
-Set the next vertex (the one beneath it) to the array
magnitude at the next row and current column.
-Increment column count

If we are finished with the row
-Reset the column count
-Increment the row count
-Set the current vertex’s height to the array
magnitude at the current row and column.
-Set the next vertex (the one beneath it) to the array
magnitude at the next row and current column.

For all other triangle strips

If we are not finished with the row
-Set the current vertex’s height to the array
magnitude at the previious row and current column.
-Set the next vertex (the one beneath it) to the array
magnitude at the current row and current column.
-Increment column count

If we are finished with the row
-Reset the column count
-Increment the row count
-Set the current vertex’s height to the array
magnitude at the previous row and current column.
-Set the next vertex (the one beneath it) to the array
magnitude at the current row and current column.

Figure 38: Algorithm for assigning data from an array to a triangle strip.
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Two common methods are available to tackle three dimensional data. The first
utilizes voxels to create a 3-D visualization. Voxels, as covered in the background are
volume pixels which tie a value to volume region. The algorithm for creating these
visualizations requires iterating over every element in a three dimensional matrix and
creating a cube for that location. The cubes can utilize a threshold value to remove
instances outside of a range, so that inner details can be seen. Colors and transparencies
can be applied to the cubes to overcome occlusions problems when viewing three
dimensional data.

One problem with the above algorithm is that it will produce the three
dimensional model, however it will not be properly shaded. Each vertex that is created
must include a vertex normal. This object makes it possible for the 3-D rendering
software to properly light the surface. Without this information, the entire object will be
one flat color, and any surface detail will be lost.

Vector normals can be calculated through the use of the cross product. Each
polygon is constructed from three points. These three points can be utilized to construct
two vectors. A face normal can then be calculated through the cross product of the two
vectors. This creates a vector that is perpendicular to the surface of the polygon,
indicating the direction it faces when calculating surface lighting. Figure 39 shows how
two vectors can be constructed from the three polygon points and the resultant face

normals. This however, is not enough information for Vizard to light the surface.
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Face Normal Vector
(B-A) x (C-A)

Figure 39: Face normal calculation requires utilizing the cross product of the vertices.

Each vertex can also contain a normal, which is the unit vector resulting from the
summation of all nearby face vectors. Calculation of the vertex normal can be difficult
because depending on whether a vertex is a corner, edge, or center element a different set
of face normals must be summed. Figure 40 summarizes the different face normals that

each of the vertices require in creating the final vertex normal.
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Vertex normals are the
sum of nearby face normals

VO V2 V4

VO=T0

V1i=TO+T1+T4
V2=TO+T1+4+T2
V3=T1+T2+T4+T5+T6+T7
V4=T2+T4

V5=T4+T7+T8
V6=TO+T1+T5

V7=T5+T6
V8=T1+T2+T4+T5+T6+T7
VoO=T6+T7+T8
VI0=T4+T7 +T8

V11=T8

V7 V9 V11

Figure 40: Vertex normals are calculated by summing nearby face normals.

3.1.2 Isosurface and Voxel Visualizations

I[sosurfaces are three-dimensional objects that are created to represent a change or
gradient in a data set. The most popular algorithm for creating iso-surfaces is the
marching cubes algorithm, which was covered in the background section.

WorldViz Vizard™ currently lacks the ability to create iso-surfaces. To create an
iso-surface, a data set needs to be loaded and assigned to an array structure. Each array
element pertains to a vertex in the yet-to-be-constructed 3-D surface.

To create the iso-surface, the array must be iterated over every square set of

vertices for 2-D data and every cube set of vertices for 3-D data as shown in Figure 41.
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Figure 41: Each set of four vertices must be iterated over in a 2-D marching cubes algorithm while
every cube of eight vertices must be iterated over in the 3-D version.

A cutoff value must be set while iterating over these array elements to determine
how to surface should be constructed. For the 2-D case, a threshold is set and the
elements in the square analyzed. If all of the values are above or below the threshold the
algorithm does not produce a 3-D surface at that location. This is because if that area is
completely above or below the threshold, then it is inside the iso-surface or outside of it.
An iso-surface only marks the boundary of a set threshold and does not visualize
elements elsewhere.

For a square with only two states for each vertex (in or out) there are 2% or 16

possible combinations. These combinations can be seen in Figure 42.
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Figure 42: The 16 cases in the 2-D version of the marching cubes algorithm.

For the 3-D version there are eight vertices to consider for a total of 2% possible
combinations. As covered in the background, these cases can be simplified to 15 base
cases. These 15 base cases must use rotations and inversions to create the total 256
possible combinations.

As the squares or cubes are being iterated over the algorithm determines the
particular type of geometry needed based on a lookup table of elements. The correct
model is then placed at that location in 2-D or 3-D space.

The difficulty in this algorithm is creating a fast and efficient system and creating

an effective lookup table that encompasses all of the possible cases.
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Voxels are volumetric pixels which take up a discrete segment of 3-D space. Voxels are
composed of scalar values indicating the magnitude of some attribute at a particular
location in space.

Voxels are not typically visualized due to slow performance. Usually iso-surfaces
or other visualizations are utilized to view the voxel information. However, for small sets
of voxels it can be an effective visualization tools and provide a different method for
viewing data.

Since voxels are three-dimensional objects and have a discrete value for each
quantized location in 3-D space, the amount of data to process and visualize is very large.
A small voxel volume of 100x100x100 elements constitutes a million values that need to
be processed. In addition to that, cubes are normally used to view a voxel region and
each cube is created by 8 vertices which translate into 8 million total vertices to calculate
per frame. This technique is currently very limited in terms of maximum resolution. For
this reason, voxel visualizations can only utilize a small array with no more than 75°
elements on currently available hardware with the current implementation of OpenGL.

Creating the voxel visualization is similar to the marching cubes algorithm, except
each cube is located around each array element as see in Figure 43. This is unlike the

marching cubes algorithm which places each array element at each vertex of the cube.
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Figure 43: Voxel visualizations have the geometry constructed around the array elements, rather
than have the array elements coincide with the vertices.

Each array element is iterated over and a cube is placed in the location. To
distinguish between different values the cube is transformed through an attribute. Color
and transparency are two parameters that can be set based on the values inside of the
array. Low values can correspond to a particular color and transparency range while high
values can correspond to another. Figure 44 is an example of how voxel visualizations
would utilize color and transparency for different values to convey the magnitude at each
location. Higher values receive a color of red and are more opaque. Intermediate values
are a purple hue with some transparency and low values have a blue color and high

transparency.
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Figure 44: A voxel representation utilizing both color and transparency to show the value at an array
element. Larger values are opaque and red while smaller values are transparent and blue.

3.1.3 Hedgehog plot

As covered in the background, hedgehog plots are useful when visualizing vector
quantities such as the flow of a fluid. To create the hedgehog plot, the OpenGL LINES
type is utilized when constructing the individual vertices. Every two points entered will
define a distinct line. Similar to the iteration method for the triangle strip, the array
information is best mapped to the vertex when iterated over every second point. The first
point is located at the spatial origin of the data point while the end is mapped to the
vector quantity describing the flow. To create the required points, iteration needs to be
performed over every vertex. The first point for each line will be equal to the iterator’s
current location in the array. The second point will have the x, y and z components equal

to the vector quantities at that array index for the x, y and z data set. Figure 45 shows
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how the array index and the array value are utilized when creating hedgehog

visualizations.
Array Index
[0][0] Array Index
| (o1}
Array Value
[0][0]
Array Value
[0][1]
Array Index Array Value
[1][0] [1][0] Array Index
[(1101]
Array Value

[111]

Figure 45: Hedgehog plot algorithm, utilizing the array index as the first point and the array value as
the second.

When creating a hedgehog visualization that changes over time the algorithm can
be modified for efficiency. Rather than iterate over every vertex, only the odd vertices
need to be changed. The first vertex in each line will be an even numbered vertex and
does not need to be moved from its spatial position. Only the end of the line needs to
move as the vectors change.

Two additional options are available when visualizing hedgehog plots. Rather
than normalize the data, the original values can be used to show the magnitude through
the lengths of the lines. Color can be utilized to show differences in magnitude between
lines.
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For the data visualization approaches covered, Figure 46 shows how to decide
which visualization to utilize depending on the received data. Most forms of data used
for scientific visualization can be broken into vector and scalar information. Depending
on the dimensionality of the data, several different visualizations can be utilized. Due to
the large amount of data in a 3 dimensional scene no vector visualization has been
created. While the 1-d and 2-D hedgehog and cone plot visualizations can be utilized in
three dimensions, occlusion problems as well as difficulty in sorting the data make this
impractical.

For scalar data, line graphs and surface plots are possible. With three dimensional
data of small datasets, voxel representations can be utilized. However, due to the high
number of elements in a three dimensional scalar array, very large dataset can cause poor
system performance. Isosurfaces can also be utilized; however these require creation

outside the Vizard™ program in order to view them in real time.
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Figure 46: Visualization implementation flow chart.

3.2 Integrated Awareness Graphical, Measurement and Health Data

Previous work has categorized three forms of data when creating a virtual reality
environment as well as the general pathway structure to create a virtual world [39]. Here,
the development of the visualizations for a virtual environment will be covered. Each of
the three data types will be elaborated upon through several virtual reality

demonstrations.

75




3.2.1 NASA Rocket Engine Test Stands

The first demonstration contains a series of several virtual worlds developed to visualize
rocket engine test stands for Stennis Space Center in Mississippi. These worlds were
created with the direct intent of viewing Integrated Systems Health Management (ISHM)
systems. ISHM consists of processes managing erroneous conditions that systems may
encounter during their operational life by either designing out failures early on, or
defending and mitigating any possible failures [40]. Each of the three forms of data must
be integrated into a virtual environment to visualize the ISHM rocket engine test stand.

For these virtual world; graphical, measurement and functional data had to be
visualized and incorporated. This project had several stages of development in
visualizing these data types. The first stage was developing a virtual representation of the
E-1 rocket engine test stand. The E-1 test stand is one of several test stands constructed
to develop propulsion systems using high-pressure gases and cryogenic fluids. A Pro
Engineer™ formatted file was provided with 3-D model information about the structure.

For the second stage of the project, a different test stand was targeted for
visualization. The Methane Thruster Test bed Platform (MTTP) trailer’s drafted
structural information and excel spreadsheets of test firing data were provided. This was
the first time a complete package of data was provided for visualization.

In creating these virtual worlds, each kind of data had to have visualizations
created to emphasize their meaning. In the MTTP trailer, several kinds of data needed

visualizing. Each type of data is listed below in Table 2 along with a description.

76



Table 2: The data types provided for the NASA MTTP trailer.
Data Type Data Description

Valve State Binary number indicating the physical state

of the valve being open or closed.

Valve Command Binary number indicating the desired state

of the valve being open or closed.

Feedback Percentage value of feedback in the signal.
Pressure A measurement in PSIG of the pressure.
Current A measurement in amps of the current

flowing through the igniter.
Temperature A measurement in degrees Fahrenheit of

the temperature.

Strain A reading in Ibs of the strain of the rocket

nozzle.

For this virtual world, the data was not part of a larger array of elements, meaning
that hedgehog, voxel, and other visualizations previously covered are not relevant. Each
type of data corresponds to one sensor reading at a set location, with a low overall sensor
density across the entire structure. This means novel visualization that can reflect
information at a singular point have to be created. Figure 47 shows the generalized

layout for creating a VR world that utilizes graphical, measurement and functional data.
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Figure 47: Integration of graphical, measurement and functional data in a virtual world. [39]

Figure 48 is a flowchart depicting the pathway needed to create the MTTP 2
virtual environment. This pathway could be utilized in any situation when graphical,
measurement and functional data need to be visualized. The flowchart is broken into
three main branches, culminating with the virtual environment. Graphical data is
depicted in green, functional in orange and measurement in blue. Data is represented by
the parallelograms and processes by the rectangles. The final branch incorporates user

input into the virtual world to provide navigation.
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Figure 48: MTTP flowchart for data visualization.

The MTTP 3 demonstration utilizes the same flow for creating and assigning data
as in Figure 47. However, due to several additional features and expanded class

structures, the demonstration has become more complex. Figure 49 shows an overall



breakdown of the demonstration’s structure. Classes are shown with the wavy-box,
arrays are the parallelograms, callback events are the diamonds and cylinders are external

data files.
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CSV File
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Figure 49: MTTP 4 flow chart of class and functional dependence.
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The MTTP 3 demonstration utilizes object selection to allow the user to select
individual components. When an object is chosen, a list displaying available information
such as the name and visualization available will be shown. The user can make further
selections pertaining to that object.

In order to facilitate object selection, each of the instances for pressure,
temperature, etc will require an array to house them. These arrays will then make up a
larger array which will contain all selectable objects in the scene.

Through the use of callback events, which are specialized functions that are called
when a particular event occurs, the previously mentioned arrays will be cycled through to
find the object the user has interacted with. Then, based upon their selection the
appropriate functions will be called for that particular instance and its visualizations will
be changed.

In order to allow for global changes to the scene so that a user does not have to
interact with two dozen objects a global class was added. This class is a list of buttons
which will expand to show the possible choices the user can choose for each class type.
Through the use of the callbacks, when a user makes a selection the appropriate array will
be cycled through and all visualizations enabled.

The final major addition to this version of the MTTP trailer is the ability to
manipulate time. To access the CSV file information for the many test runs a drop down
list will be implemented created. The user would be able to select a list item and the data
would load across all objects. To control time across the entire demonstration, a time

controls class will be required which contains both the data as well as the current time
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step and time controls. All the sensor classes will listen to this class to get the current
time step as well as data element so they are in synch.

Of the many processes which take place during the running of the MTTP 3
demonstration, two are complex enough to warrant additional flowcharts. Figure 50
breaks down the task of identifying objects that the user can interact with. This flowchart
begins with the mouse-move event. This event is called every time that a movement is
registered on the mouse.

There are two modes that can be enabled based upon the user’s desire to navigate
or select objects. If the user is currently in navigation mode by pressing and holding the
left ‘ALT’ key on the keyboard this functions exits with nothing happening when the
mouse is moved. If the user is in selection mode, first the function checks to see if this is
the first time this loop has been performed. If this is the first time, some initialization is
performed. Since this function is called with each movement of the mouse, it will be
called many times before the user settles on the object to select, rendering this
initialization phase unnoticeable.

If this is not the first time through the event loop, the function iterates through the
entire array holding all selectable objects in the scene. If the function comes across a
selectable object that equals the object the mouse is currently over then a series of
procedures are performed. First, the object that was selected has its emissivity reduced to
a normal level. Emissivity is a function which allows the amount of light transmitted by
an object to be increased or set to a particular color. In this case, the emissivity is
doubled and set to a red color to show the user they are interacting with a selectable

object.
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Figure 50: MTTP 3 for highlighting selectable objects.

The variable holding the old object will be updated with the newly moused-over
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