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Abstract 

Andrew Matheson Branin 

LASER SCANNING AGGREGATES FOR REAL-TIME PROPERTY 

IDENTIFICATION 

2014/15 

Beena Sukumaran, Ph.D.  

Master of Science in Civil Engineering 

 

The strength of concrete and asphalt is provided by the aggregate stone within it, 

and as such maintaining a high standard for these materials is crucial in ensuring that 

these materials meet their projected design lives. One key factor to consider for an 

aggregate’s long-term strength is its mineralogy, which can affect the strength and long-

term performance of these materials. Conventional chemical testing techniques and 

petrographic examination methods presently exist which can be used to identify and/or 

quantify problematic minerals, however these tests are typically costly, time consuming, 

and/or require significant sample preparation and a controlled lab environment. 

 The purpose of this study is to develop a portable, reliable system to determine 

traits of aggregate stone in the field and compare the results to New Jersey state standards 

as a means of quality control. This research presently focuses on quantifying the chemical 

composition and mineralogy of aggregates, with focus on minerals such as mica and 

limestone which can cause rapid degradation of aggregate stone in asphalt and concrete. 

Chemical composition testing is performed via Laser-Induced Breakdown Spectroscopy 

(LIBS), which involves firing a laser pulse at a sample and predicting its composition 

based on the spectrum of light emitted by the resulting plasma. Predictive models are 

generated via Partial Least Squares Regression Analysis.  
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Chapter 1  

Introduction 

1.1 Problem Statement 

Asphalt and concrete derive their strength from the aggregate stone within them. 

The mineralogy of aggregate stone is an important consideration; the presence of various 

types of minerals in the stone can have detrimental effects on the integrity and long term 

performance of the materials overall. Minerals such as mica in fine aggregate can make 

the material susceptible to weathering and weaken the binder, limestone can cause 

aggregates in asphalt surface course to polish smooth over time when exposed to water 

and wheel loads, reactive silica can cause damaging expansion of aggregate stone, and so 

forth. Various techniques are presently employed to test the composition of aggregate 

stone samples; however these methods have a number of shortcomings. Techniques such 

as titration and precipitate analyses require the use of potentially caustic chemicals, while 

techniques such as X-ray fluorescence and Electron Microprobe Analysis require 

significant testing periods and cumbersome equipment. Physical examinations of 

aggregates, such as petrographic examinations, are similarly time consuming. Most 

conventional techniques require significant sample preparation and a highly controlled 

lab environment, and so are generally unsuitable for testing in the field. 

This research is intended to develop a system to determine aggregate traits such as 

aggregate mineralogy, in the field using laser scanning techniques. These tests can be 

conducted rapidly, in-situ, and with little to no sample preparation. Future phases of this 
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research will involve using various imaging techniques to determine aggregate 

morphology in the field. 

1.2 Hypothesis 

1. Laser-Induced Breakdown Spectroscopy (LIBS) can be used to rapidly and 

accurately analyze the composition of aggregate stone samples. 

2. Partial Least Squares Regression Analysis (PLSR) can be used to develop 

accurate, quantitative models for predicting aggregate chemical composition, and 

these predictions can be used to determine aggregate traits such as mineralogy. 

3. Other aggregate properties, such as predictions of outcomes of standard tests can 

be added to existing models with relative ease. 

4. Such a system can be implemented for field use in a cost-, time-, and labor-

effective way. 

1.3 Significance of Research 

The New Jersey Department of Transportation (NJDOT) and potentially other 

similar entities will benefit from the results of this study. While conventional testing 

techniques are reasonably reliable, they tend to require significant sample preparation, 

and utilize fixed equipment and/or miscellaneous, non-reusable supplies. The 

development of a reliable, portable system for analyzing aggregate chemical and 

morphological traits will provide an alternative to conventional testing techniques, and 

will allow testing to be conducted more easily in the field. By improving the speed and 

versatility of such testing, state standards for aggregate quality can be more easily 

enforced, with reduced impact on construction timelines. As standards will be easier to 
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maintain, New Jersey roadways will be less likely to experience premature failure due to 

aggregate deterioration; helping to reduce unnecessary expenditures and to improve 

driver safety. The results and associated techniques used in this research can also easily 

be applied by other entities for similar applications, thus benefitting other regions. 

1.4 Study Objectives 

This study will focus on the development of an alternative means of in-situ 

quality control for aggregate stone through the use of laser analysis; namely through a 

technique called Laser-Induced Breakdown Spectroscopy. The primary objectives of this 

study are as follows: 

- Laser-Induced Breakdown Spectroscopy is utilized to obtain characteristic data 

sets from a variety of aggregate stone samples, which are used to develop 

predictive models for aggregate chemical composition through a linear analysis 

technique known as Partial Least Squares Regression Analysis. 

- The accuracy of each model’s predictions is determined by comparing them to the 

results of X-ray Fluorescence testing on similar aggregate samples, and the 

optimal model calibration strategy is selected. 

- Detrimental minerals will be identified and quantified based on the predicted 

chemical compositions (this will be completed in a future phase of this research).  

- Models are adjusted to be effective when utilizing a portable LIBS system and/or 

commercially available systems, if necessary, so as to make the finished product 

more versatile and compatible with varying system hardware (this step will be 

completed once a field setup has been completed). 
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- User-friendly software is developed and a standardized, streamlined testing and 

analysis procedure is developed. 

1.5 Research Approach 

This section will provide an overview of the research process used to achieve the 

above goals. This research included a thorough review of past work and literature and 

selection of a testing and analysis method, followed by collection of data via LIBS, the 

development of predictive models, and analysis of model performance. 

1.5.1 Literature review. Background information into various detrimental 

minerals of concern to the NJDOT were reviewed during the literature review stage, 

along with conventional methods for measuring chemical and mineralogical traits of 

aggregate stone. The Laser-Induced Breakdown Spectroscopy technique and applications 

were also researched, with particular emphasis on previous applications involving the 

identification and quantification of aggregate stone traits. Various methods for 

developing predictive models using LIBS data were then considered. As Partial Least 

Squares Regression Analysis was eventually selected, this technique was reviewed in 

greater detail. The overall goals of the literature review were to: 

1. Understand the negative effects of detrimental minerals and the present need for a 

portable system to detect and quantify them. 

2. Understand the concept of Laser-Induced Breakdown Spectroscopy as a testing 

methodology and examine the range of possible applications for this technique. 

3. Evaluate the effectiveness of using LIBS for geological applications. 
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4. Consider various data analysis methods for developing predictive models from 

data collected via LIBS, and evaluate the effectiveness of each. 

1.5.2 Data acquisition. Unique data sets; namely light spectra, corresponding to 

each type of aggregate stone in this study were collected via Laser-Induced Breakdown 

Spectroscopy. Each of these output spectra represents the sum of the emissions of all 

elemental components of the stone sample. The composition of each type of stone was be 

determined via X-Ray Fluorescence Spectrometry (XRF) to provide a set of known data 

for model calibration. 

1.5.3 Model development. 

1.5.3.1 Model generation. The information obtained through the literature review 

and the data collected via LIBS and XRF analyses made it possible to generate a 

predictive model. Various models were developed via PLSR and using varying data pre-

processing methods, including but not limited to: center clipping, spectral normalization, 

spectral amplitude adjustments, baseline subtraction and noise cancellation, and so forth.  

1.5.3.2 Model validation. The accuracy and reliability of predictive models were 

determined by comparing the predicted chemical composition obtained via the developed 

models to the corresponding results of XRF testing. The overall deviation from the 

accepted ‘true’ values obtained via XRF analyses was determined, and the optimal pre-

processing strategy was selected based on which method produced the least deviatory 

model while maintaining reasonable reproducibility. 
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1.5.4 Results analysis. Once the optimal calibration strategy and predictive 

model had been selected, LIBS tests were performed on aggregate samples which were 

not used in the model calibration. XRF testing was then performed on these same 

samples, and the results compared to the composition predicted by each model. A useable 

range of samples was determined, and additional samples may be obtained to further 

calibrate the model in the event that the present model is not sufficiently versatile for its 

intended use. 

1.6 Thesis Structure 

The collected information and results described above are detailed in the next 

several chapters. Chapter 2 of this thesis consists of a comprehensive literature review 

and background pertaining to this research. The purpose of this chapter is to provide 

sufficient background knowledge for one to understand the research herein. The chapter 

begins with a review of several detrimental minerals which may be found in aggregate 

stone, and the negative effects each has on the stone or aggregate-binder mixture. Next, 

the chapter will include a brief overview of several conventional methods for quantifying 

aggregate stone traits, including their strengths and shortcomings. The chapter will then 

review the concept of Laser-Induced Breakdown Spectroscopy, and why this method 

shows promise as a means of aggregate quality control. Finally, this chapter will provide 

an overview of various data analysis methods for generating a predictive model based on 

the results of LIBS testing. 

 Next, Chapter 3 will outline the experimental setups and methods employed to 

collect data and to produce predictive models and compare predictions to accepted 
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values. Chapter 4 discusses the results of each set of model calibration and testing, the 

optimization of the predictive model calibration strategy, and discusses the feasibility of 

using such a model and technique as a means of quality control. Chapter 5 will discuss all 

conclusions which can be drawn from this research, and makes recommendations for 

further development and/or improvement of such methods and models. 
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Chapter 2  

Literature Review 

2.1 Aggregate Mineralogy 

While a number of factors affect the performance of asphalt and concrete 

pavements, a major component of the material’s integrity and durability is the quality of 

aggregate stone used in it. The aggregate stone provides the strength of the material and 

the bulk of the friction present on a road surface. As such, maintaining a high quality 

standard for this component is of high priority. Aggregate performance is linked to such 

factors as particle size and shape; collectively the morphology, and factors such as overall 

strength and durability, which are partially related to the mineralogical composition of 

the stone. This research focuses on maintaining high standards of aggregate mineralogy 

via rapid in-situ chemical analyses, while a future phase of the project will focus on 

performing in-situ analyses of aggregate morphology. The following section reviews 

several mineralogical features which should be considered. As this research was done on 

behalf of the New Jersey Department of Transportation (NJDOT), the following sections 

are primarily concerned with controls set in place by NJDOT, however many of the 

principles used in this research can be easily applied to similar applications. 

2.2 Detrimental Minerals in Aggregate Stone  

The New Jersey Department of Transportation imposes limits pertaining to the 

mineralogical qualities of aggregate stone to be used in asphalt and concrete applications. 

While this is primarily intended for roadway quality control, the presence of most of 

these qualities can be detrimental in any aggregate-binder mixture. Some studies suggest 
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that aggregate mineralogical deficiencies may actually have a larger effect on cement 

concrete mixes than asphalt mixes [1]. The mineralogical qualities monitored by the New 

Jersey Department of Transportation are listed below. 

2.2.1 Limestone/carbonate rock and acid soluble material. Carbonate rocks 

(aka calcareous rocks); or stone containing more than trace amounts of calcium 

carbonate, such as calcite or dolomite which form in limestones [1], are not to be used in 

surface course for Hot Mix Asphalt (HMA) roadways, except in shoulder areas, parking 

areas, or driveways, in the state of New Jersey [2]. The LA abrasion test for softer 

carbonate rocks such as some limestones can result in 60% or more passing the #12 sieve 

following a test; demonstrating the rock’s innate weakness to friction and abrasion. While 

these rocks often perform well in field applications despite this, this tendency can cause a 

large amount of dust to form in the aggregate blend during aggregate processing, which 

can become a secondary detriment to HMA performance by increasing the dust to binder 

ratio (see Section 2.2.3 for a more detailed description of this effect and its implications) 

[1].  

Because of this weakness to abrasion, these carbonate rocks tend to polish and 

become smooth over time when subjected to weathering and wheel loads, causing a loss 

of skid resistance on the roadway’s surface and potential loss of inter-aggregate friction; 

presenting a safety hazard and weakness in the roadway. While a variety of testing 

methods, such as the acid insoluble residue test (ASTM D3042), polishing tests (ASTM 

D3319 or E660 and E303), or petrographic examinations (ASTM C295), are used to 

identify these rocks and quantify or predict the likelihood of polishing in such rocks, it is 

a significant consideration to most highways agencies [1]. Diringer’s 1990 study found 
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that substantial variability in polishing resistance can be found in limestone and carbonate 

aggregates [3]. For this reason, a conservative roadway design should not include 

limestone or carbonate rock in the wearing surface, and it is therefore important to be 

able to identify carbonate rocks, which can be estimated based on a stone’s calcium 

content.  

While no required standard is explicitly stated in the NJDOT requirements, in 

most applications, one should make an effort to minimize the amount of Acid Soluble 

Material (ASM) in fine aggregate, particularly in surface course for roadways. Acid 

Soluble Material, such as limestone, is the material in an aggregate sample which is 

dissolved when placed in a hot hydrochloric acid solution, while Acid Insoluble Residue 

(AIR), such as grains of quartz and mica, are not dissolved. Fine aggregates low in ASM 

are less subject to weathering effects and experience less damage due to exposure to 

acidic rain. Materials high in ASM are conversely more likely to wear due to weathering 

and polish smooth [4]. Aggregates with high ASM are typically carbonate rocks, which 

should not be used in surface course regardless, as previously noted.  

2.2.2 Mica. Mica is a brittle, sheet-like mineral containing weak shear planes. 

The mica content of an aggregate blend in New Jersey is limited to no more than 2% 

weight in fine aggregate, as determined by standard NJDOT testing method A-2 [2]. 

While a mechanically weak mineral, mica particles are commonly found as fines released 

as rock such as granite is crushed, and the shear planes themselves are therefore not the 

major source of deterioration, though the brittleness of the material causes a larger 

representation in the fine fraction [5]. Rather, the specific surface area of these fine 

particles and the presence of intra-crystalline cavities in the particles cause the mineral to 
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be highly absorptive, which can increase a road’s susceptibility to frost weathering in 

both bound and unbound layers. This effect in turn causes the roadways to deteriorate 

more rapidly [6]. Previous research has determined that the detrimental effects of mica in 

the fine fraction become most evident around 2.5% by weight, or 30-35% by volume, 

beyond which it will have significant detrimental effects on various aggregate blend 

properties, and on the tensile strength of the pavement, partly due to the increase in the 

dust to asphalt ratio. Fine mica particles were also found to prefer to orient themselves 

around course aggregates, likely due to the typical method of compaction, which further 

promotes issues pertaining to the mineral’s adsorptive properties [5]. For these reasons, it 

is important for a system to be able to detect mica in coarse or fine aggregate and fines, 

and ideally determine when measures should be taken to remove such material from an 

aggregate stockpile. 

2.2.3 Clay content/deleterious materials. Clay and clay lumps are limited to 

no more than 5% by weight, as determined via AASHTO method T88 [2], although this 

is above average. Clay materials and other fines form a coating on the surface of 

aggregate stones which prevent binder material from properly adhering to it, resulting in 

spalling, raveling, stripping, and general weakness in a roadway. Excess clay can also 

reduce the drainage characteristics of unbound base or sub-base layers due to its 

absorptive and expansive behavior [7]. Additionally, clay lumps surviving HMA material 

processing may cause pitting and surface deterioration to rapidly form over the roadway’s 

lifetime, as clay lumps near the surface break down as they are exposed to rolling and 

wheel loadings [1]. Excessive clay in a mixture can also increase the dust-to-binder ratio 

of an HMA mixture, resulting in an unintentionally stiff asphalt pavement. While a 
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certain dust-to-binder ratio (typically 0.6 to 1.6 by weight depending on the case) is 

desirable to stiffen the binder so as to improve permanent deformation resistance, the 

presence of larger quantities of clay or other deleterious, absorptive materials result in 

excessive loss of pavement ductility, causing it to be more prone to cracking, particularly 

at low temperatures [8]. For these reasons, it is important to consider the amount of 

deleterious material in an aggregate blend. While LIBS; the testing method used herein, 

is not exceptionally well suited to quantifying the amount of deleterious material in an 

aggregate blend, it can be used to detect such materials as a surface contaminant on 

aggregate samples. A future phase of this project will partially consider an alternate 

means of quantifying the amount of fines in an aggregate blend. 

2.2.4 Expansive quartz. Poorly crystalized, porous, and less dense species of 

quartz, such as volcanic glass, cristobalite, or opal, are more permeable than other, more 

dense varieties of silica to alkaline hydroxide solutions that form in Portland Cement 

Concrete (PCC), and are therefore more susceptible to experiencing alkali-silica 

reactions. The solubility of amorphous silica increases rapidly in highly basic 

environments, causing such reactions, which produce expansive silica gels on and in the 

aggregates in which expansive minerals are found, which will in turn induce stresses in 

concrete media, leading to cracking of binder and aggregate fracturing, and causing 

deterioration of the materials over time [9]. While less of a concern in asphalt mixtures 

given its less rigid binder, this factor should still be considered. Unfortunately, while 

structurally distinct, amorphous silica is chemically identical to better crystalized species, 

and so one would intuitively not expect it to produce distinct spectral patterns during 

LIBS testing. This stated, the varying structure may allow amorphous silica to ablate 
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more or less readily than crystalline silica during LIBS testing, and may result in varying 

intensities of light emission corresponding to siliceous compounds, or these materials 

may actually produce distinct spectral patterns due to chemical matrix effects (see 

Section 2.5.1.7). While this hypothesis is not explored in this research, previous work 

using LIBS by the Texas Department of Transportation suggests that it is possible to use 

LIBS models to effectively quantify amorphous silicates in aggregate stone (see Section 

2.4.7.3) [10]. 

2.3 Chemical Analyses of Geological Materials 

Before a method can be developed for determining the chemical composition of, 

and eventually the presence and quantity of detrimental minerals in aggregates, one must 

first consider the methods currently employed to chemically analyze stone samples. Once 

a reliable technique for quantifying the chemical composition of a stone has been 

selected, one can interpret the results so as to determine or predict the presence and 

quantity of target minerals. 

2.3.1 Traditional chemical analysis methods. A number of methods presently 

exist for quantifying the chemical composition of stone samples. The most commonly 

used methods include, but are not limited to, wet chemical analyses, Inductively Coupled 

Plasma Mass Spectrometry (ICP-MS), X-Ray Fluorescence Spectrometry (XRF), and 

Electron Microprobe Analysis (EMPA) [11]. 

2.3.1.1 Wet chemical analyses. Wet chemical analyses involve dissolving a 

powdered sample in an acid solution, and include gravimetric, volumetric, and 

colorimetric analyses. In gravimetric analyses, a sample’s composition is determined by 
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inducing a chemical reaction in the solution and measuring the mass of a precipitate 

produced. Volumetric analyses involve using titration to determine the amount of a 

chemical component based on the amount of another chemical which must be added for 

the solution to react to completion. Colorimetric analyses involve making inferences 

about a sample’s composition based on changes in solution color following a chemical 

reaction [11]. Each of these methods requires significant sample preparation, testing time, 

and non-reusable reactants, and are inconvenient for field use. 

2.3.1.2 Inductively coupled plasma mass spectrometry (ICP-MS). Inductively-

coupled plasma-mass spectrometry involves injecting an aerosolized sample into Argon 

plasma to break the dissolved sample into separate ions, which are then extracted into a 

mass spectrometer in a vacuum, which separates the particles according to their mass to 

charge ratio. The results are determined relative to standard solutions with known 

concentrations. Alternatively, a small portion of the sample material may be ablated via 

laser before injecting it into the Argon plasma [12]. Regardless, this type of analysis 

involves significant testing time and sample preparation, and requires equipment which 

cannot be easily used in the field. 

2.3.1.3 X-ray fluorescence spectrometry (XRF). X-ray fluorescence spectrometry 

(XRF) is often used in the analysis of stone samples, but typically involves testing on a 

compressed or vitrified, powdered sample in solid form [11]. This analysis is performed 

by focusing an incident X-ray beam at a sample to induce dissociation of inner shell 

electrons. As outer shell electrons drop to the inner shell, X-rays of characteristic 

wavelengths are emitted and collected by a variety of sensors [13]. The intensities of a 

given emission wavelength can be correlated to concentrations; however a large number 
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of separate standards are required to determine and account for all of the interfering 

effects [11]. While generally not suitable for field use due to required sample preparation, 

testing time, and cumbersome equipment, this type of analysis generally produces 

accurate, reproducible results, and as such was used during the course of this research to 

determine ground truth chemical compositions of aggregate stone samples for use in 

calibrating predictive models. These analyses were almost exclusively conducted by the 

NJDOT, which uses this method as their primary chemical analysis technique for 

aggregate stone. An overview of the XRF testing procedure is provided in Chapter 3. 

2.3.1.4 Electron microprobe analysis (EMPA). Electron Microprobe Analysis 

operates on the same principle as X-ray fluorescence, but uses a focused electron beam 

rather than X-rays to induce electron dissociation, considers emitted electrons as well as 

X-rays, and requires different sample preparation. Electron Microprobe analysis is 

generally used for very small points on samples, rather than a broad sample area [14]. 

While this method also tends to produce accurate results, it may be less useful for 

samples with non-uniform composition, requires significant sample preparation, testing 

time, and bulky equipment, and is therefore not suitable for field use. 

2.3.2 Laser-Induced Breakdown Spectroscopy (LIBS). An alternative testing 

method to those discussed above is Laser-Induced Breakdown Spectroscopy (LIBS); 

which uses pulses of focused light to induce fluorescence in the visible light range of 

wavelengths which can then be used to determine a sample’s composition. This research 

utilized this technique to develop a versatile, portable system capable of measuring the 

chemical composition of aggregate stone rapidly in the field, thereby overcoming the 

common limitations of conventional testing methods. While this technology does not 
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intend to replace traditional testing methods outright, it is intended to be utilized to obtain 

reasonably accurate estimates of aggregate properties as a means of in-situ quality 

control. However, developing a predictive model for such a system required reliable, 

accepted data from a variety of samples. Such ‘known’ data on stone composition was 

provided by the New Jersey Department of Transportation (NJDOT), and was obtained 

via XRF analysis of several types of stone obtained from a variety of quarries and sources 

in New Jersey and surrounding areas.  

Laser-Induced Breakdown Spectroscopy (LIBS) was used to conduct all 

experiments performed during the course of this research. LIBS is a laser analysis 

technique wherein a high energy laser is fired at a sample; in this case a sample of 

aggregate stone. This focused light strikes the sample, ablating some of the material, 

rapidly heating some of the matter and exciting the particles, breaking the compounds 

into individual atoms. These atoms are rapidly ionized by the energy in the laser pulse; 

forming a small plume of plasma wherein all elements and ion species emit photons of 

characteristic wavelengths, which can be collected and used to infer the sample’s 

composition [15]. Studies have shown that LIBS can be used to obtain rapid, complete 

results, and portable LIBS systems are now commercially available [16]. However, while 

these commercially available systems are capable of qualitatively identifying elements, 

and in some cases performing rough quantitative analyses on simple samples, 

application-specific models must be developed for more accurate quantitative analyses, 

or for predicting sample traits other than chemical composition [17]. 
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2.3.2.1 Laser emission. Any test using LIBS begins when a pulse laser is fired. 

Upon being activated, an ultraviolet flash lamp, excites the particles in the gain medium, 

which in this case is a Nd+ doped Yttrium Aluminum Garnet rod (a Nd:YAG crystal). 

Stimulated emission then occurs in the gain medium, wherein a photon spontaneously 

emitted as an excited particle returns to a lower energy state can stimulate other excited 

particles to emit identical photons in the same direction as similar light passes through the 

gain medium. Light emitted reflects between a mirror and a second partially reflecting 

mirror to continue stimulated emission while allowing a portion of light to be emitted as a 

beam of light [18]. Some lasers, such as the one used throughout testing, utilize a Q-

Switch; or Quality Switch. A laser’s Q-Switch blocks light emitted by the gain medium 

for a set period of time after some trigger, such as when the flash lamp emits a burst of 

ultraviolet light, preventing light from reaching the partial mirror. This allows energy to 

build up in the gain medium to a maximum amount until the gain medium is said to be 

saturated, and energy begins to dissipate due to spontaneous emission of photons. 

Stimulated emission does not occur to the degree observed in a non-Q-Switched laser 

because this phenomenon is partially dependent on light re-entering the gain medium. 

With correct timing, allowing light to pass as the gain medium is saturated allows for a 

more intense, shorter laser pulse, however this device may also be used with a longer 

delay to allow energy to dissipate prior to laser emission; reducing the laser pulse energy, 

as is done throughout this research [19]. A simple diagram of a Q-Switched laser is 

shown in Figure 2.1 below.  
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Figure 2.1. Laser Schematic [20] 

 

2.3.2.2 Sample ablation and light collection. The light emitted by the laser is 

then directed onto a sample. The focused light energy ablates some of the matter, 

vaporizing and exciting the then dissociated elements. Over the course of several 

microseconds, this energy dissipates, and electrons recombine with positive ions and 

return to lower energy states. As electrons return to lower energy states, photons in the 

visible range of wavelengths characteristic to the atom or ion species are emitted. This 

emitted light can be sampled and separated via an optical spectrometer into a set of 

intensities of light emitted at various wavelengths within an observed range, to form a 

resultant light spectrum. Such a light spectrum is composed of the sum of the light 

emitted from a sample; representing all components in the sample, assuming that the 

range of wavelengths observed is sufficiently broad. Light is sampled a set period of time 

after the Q-Switch allows the laser to emit light. If this spectrometer delay is not 

sufficient, light emitted by the laser itself may be represented in the collected light 

spectrum, and a large proportion of the collected light will be from ion species, while if 

the delay is excessive, the plasma plume may have cooled such that very little light can 

be collected. It is therefore important to determine an appropriate spectrometer delay time 

for the application in question [15]. As the spectrometer used throughout this research 

was not sensitive to the emitted 1064 nm wavelength, light from the laser pulse was not a 
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concern. Light emitted by an ablated sample decreases rapidly over time, as shown in 

Figure 2.2 below, and as such accurate timing is very important for obtaining accurate 

results. 

 

 

Figure 2.2. Energy Graph [15] 

 

 The resulting light spectrum can be considered to be analogous to a ‘fingerprint’ 

for the sample in question; providing a set of peaks and light intensities unique to the 

sample. The relative quantities of each element can be determined based on the intensities 

of light at each wavelength, as well as the distribution of neutral atoms and ion species, as 

determined by various parameters unique to each element, such as the ease of which an 

element will ionize and the rate at which it will re-accept electrons once ionized [21]. As 

modeling and predictions throughout this research were based on pattern recognition 
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techniques and known samples, the distribution of ions and neutral particles was not 

considered. 

2.4 Previous Applications of LIBS 

Laser-Induced Breakdown Spectroscopy has been successfully applied in a 

variety of fields. A series of previous applications of LIBS are briefly described in the 

following sections. Note that LIBS is a very versatile technique and this list should not be 

considered to be exhaustive. 

2.4.1 Analysis of metals. LIBS is often used to analyze metal alloys, such as 

steel alloys. Various studies have shown that trace elements can be accurately quantified 

using LIBS, but some have shown that using a double or even triple laser pulse 

configurations (see Section 2.5.2.1) may be useful in identifying and quantifying more 

trace components. Studies have also shown that the Limit of Detection of trace elements 

can be improved by applying inter-elemental corrections to account for chemical matrix 

effects caused by the original chemical structure (see Section 2.5.1.7). Some studies 

achieved a limit of detection of a few parts per million, or even less [22]. 

2.4.2 Environmental applications. LIBS has been employed as a means to 

analyze soil and water contamination, and to observe contamination seepage patterns. 

Due to the varied testing mediums, chemical matrix effects (see Section 2.5.1.7) 

presented a source of interference in making accurate measurements of contaminants, 

however by using various internal standards and alternate calibration techniques, model 

accuracy was improved, but in some cases this improvement was not sufficient for 

accurate detection and quantification of some trace compounds [22].  
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2.4.3 Archeological applications. LIBS has previously been used as a 

minimally destructive means to quantify contamination of recovered artifacts, and to 

identify pigments and binding agents for art restoration purposes. While studies used 

LIBS to measure the depths of encrustations without damaging underlying layers or to 

identify unknown chemicals, such principles can easily be applied to other applications 

[22].  

2.4.4 Medical and pharmaceutical applications. LIBS has previously been 

used as a means of quality control for liquid and tablet medications, a means of analyzing 

concentrations of minerals in bone samples, and one study used LIBS to differentiate 

between benign and malignant tumors [22].  

2.4.5 Analysis of aerosols. LIBS can be used to analyze any state of matter 

including aerosols, and so has been previously used in to analyze and classify aerosolized 

samples [22].  

2.4.6 Military and forensic applications. LIBS analyses can be conducted at a 

distance, and so this technique has been used in the remote detection of explosive 

substances [23]. LIBS has also been used to detect Barium and Lead residue; which are 

by-products of firearm discharge, for purposes of identifying suspects in crimes [22].  

2.4.7 Applications of LIBS for analysis of geologic samples. LIBS has also 

been used as an effective tool for analyzing traits of aggregate stone in the past, namely 

by a variety of State Departments of Transportation. The sections below describe some 

past applications of LIBS for classifying aggregate stones and for quantifying various 

aggregate traits. 
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2.4.7.1 New York State Department of Transportation research. New York State 

DOT Materials Method 28 limits the use of carbonate rock to be used in asphalt and 

concrete. More specifically, it requires any aggregate blend to contain at least 20% Acid 

Insoluble Residue (AIR). Two models were developed; one which accurately predicted 

the amount of AIR in a particular sample, while the other predicted the amount of AIR in 

an aggregate blend, based on the results of tests on a variety of samples from a given 

stockpile. Both models were produced via Partial Least Squares Regression (PLSR); 

using samples with known AIR obtained via typical testing procedures to develop 

predictive models which accurately predicted the amount of AIR in homogenous 

aggregate samples and aggregate blends based solely on the light emitted during LIBS 

testing. Figure 2.3 below shows the relative accuracy of values predicted through these 

analyses compared to known values. Note that the New York Department of 

Transportation used relatively large data sets to calibrate and test their predictive models 

[10].  

 

 

Figure 2.3. NYDOT Predictive Model Results for AIR in Aggregate Blends [10] 



23 

 

2.4.7.2 Kansas Department of Transportation research. The Kansas Department 

of Transportation (KSDOT) used LIBS to develop and test two predictive models; one to 

predict the likelihood of D-Cracking failures in aggregate stone, while the other was used 

to determine the source bed or quarry of a tested aggregate sample. D-Cracking is a 

fracturing and breakdown of aggregate stone, believed to be caused by freeze-thaw 

conditions. The KTMR-21 and KTMR-22 testing procedures are used in Kansas to 

analyze the likelihood of such failures in an aggregate blend. A model was generated to 

predict whether a given aggregate would pass or fail this standard test [10].  

PLSR was used to generate this model based on a series of samples tested via the 

conventional procedures, assigning a 1 to a passing stone and a 0 to a failing one, and 

then determining a Value of Apparent Distinction based on the predicted values; between 

0 and 1 and generally about 0.5. The high accuracy of this model suggests that D-

Cracking is strongly linked to the stone’s chemical and/or mineral composition. The 

second model was developed using Principle Component Analysis (PCA) to develop a 

branching tree algorithm by which the source bed of a particular aggregate could be 

determined with a high degree of accuracy [10]. 

2.4.7.3 Texas Department of Transportation research. The Texas Department of 

Transportation (TXDOT) limits the amount of Alkali Silica Reactive Aggregates to be 

used in various applications. These aggregates, caused by a mineral known as chert; a 

type of amorphous silica, may react with Portland cement binder, forming expansive 

silica gels, which exert stress in the concrete and cause cracking, as described in Section 

2.2.4. Three predictive models were developed; one to quantify the amount of chert in an 
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aggregate sample, one to predict the result of state testing procedures, and one to 

differentiate between different varieties of chert [10].  

 The first model was achieved a very high degree of accuracy in predicting the 

quantity of chert present in a sample, as shown in Figure 2.4 below, and was developed 

via PLSR on a series of samples with known quantities of chert, as determined by 

standard testing procedures. The second model was developed using a similar technique 

to the Kansas DOT’s pass/fail model; using a 1/0 as a pass/fail representation, and 

determining a Value of Apparent Distinction from the predictions between 0 and 1, to 

accurately predict whether an unknown sample would pass or fail the standard test. The 

final model used PCA to differentiate between different types of chert which may be 

present in a sample [10].  

 

 

Figure 2.4. Texas DOT Predictive Model Results for Chert  

   in Aggregate Stone [10] 
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2.4.8 Other noteworthy applications of LIBS. LIBS has shown to also be 

useful for concrete quality control. LIBS has been used as an alternative means of 

determining the depth profile of chloride and sulfur contamination in concrete, so as to 

mitigate unnecessary destruction of material during concrete remediation [24]. LIBS has 

further been used to produce models for determining the concentration of calcium, 

silicon, potassium, magnesium, aluminum, sodium, titanium, manganese, and strontium 

in cement powder to aid in quality control [25]. LIBS has been shown to show promise 

for screening recycled concrete by monitoring waste streams for both chemical and bulky 

contaminants [26]. While these sub-fields are certainly worth exploring further, this study 

will focus only on quality control of aggregate stone. 

2.5 Development of LIBS Testing 

Laser-Induced Breakdown Spectroscopy has developed over the past several 

decades, and has relatively recently emerged as a versatile testing method for a variety of 

applications. Throughout its development, a number of studies have been conducted to 

examine sources of interference and various methods of improving results, some of 

which will be briefly discussed in the sections below. 

2.5.1 Sources of interference and error. As LIBS has developed over time, 

patterns have been observed and interfering effects and phenomena have become better 

observed and understood. This section will briefly discuss various common sources of 

error and interference encountered during LIBS testing, as well as methods used to 

account for and mitigate the effects of these errors on results. 
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2.5.1.1 Plasma opacity. Following a laser pulse, a small plume of plasma is 

produced which emits light that can be sampled and used to determine the original 

material’s composition. However, this plasma plume is not completely transparent, and 

may partially shield light emitted by material closer to the center of the plasma plume, 

particularly immediately following ablation; when the plasma is most dense. The plasma 

plume may also shield the sample from some of the initial laser pulse energy. Depending 

on the material tested, these effects can result in skewed results. The impact of this 

phenomenon can be mitigated through the use of short laser pulses (typically nano- or 

femto-seconds in lengths), and through use of accurate predictive models or standards 

[15]. Due to hardware limitations, the pulse duration was not varied in this research. 

2.5.1.2 Atmospheric plasma. Unless LIBS testing is conducted in a vacuum, the 

laser pulse will cause plasma to form in the atmosphere immediately adjacent to where 

the laser strikes the sample. Over the course of a laser pulse’s duration, the resulting 

plasma plume can grow toward the laser pulse due to the aforementioned effects of the 

plasma plume’s inherent opacity, producing additional atmospheric plasma. The light 

given off by atmospheric elements will be represented in the resulting light spectrum, and 

will result in erroneously high peaks corresponding to said elements, such as nitrogen and 

oxygen if conducted in air. While testing in a vacuum is an option, it is typically more 

time effective to simply apply the same methods as to account for plasma opacity; 

utilizing an accurate model calibrated from data collected under similar conditions, and 

using a short laser pulse [15]. As in-situ testing will be most conveniently conducted 

without adjusting the atmospheric conditions in the sample chamber, models in this study 

were developed based on results from tests conducted in air. 
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2.5.1.3 Incomplete vaporization. Plasma opacity, combined with the tendency for 

certain materials to ablate more readily than others may cause some material to be left 

behind as a residue after a laser pulse. This will cause inconsistency between subsequent 

pulses on a single sample location. Completely vaporized particles will also produce 

higher light intensities than would otherwise be observed [15]. As in-situ applications 

may not be able to test on powdered samples, sufficient sampling sizes will be used with 

short laser pulses to mitigate the impact of incomplete vaporization on the results.  

2.5.1.4 Baseline light. While background light will be represented in a resulting 

light spectrum, this can be eliminated by simply testing in a dark chamber. While some 

baseline may continue to exist due to signal noise in the testing system, this can be 

subtracted from the output spectra through various methods. Additional light collected 

due to plasma forming in the atmosphere can similarly be removed from the spectra, if 

necessary for the given application [15]. In the case of the tests conducted throughout this 

study, baseline light was eventually determined to be insignificant, however early tests 

used center clipping in an attempt to remove baseline while mitigating signal noise. 

2.5.1.5 Stark widening. Local electric fields produced by the ionization of atoms 

in the plasma plume can result in increased variation in the wavelength of light emitted 

by a particular element as its electrons fall to lower energy states. In the resulting light 

spectrum, this causes the light emitted from a certain species to be a wider Gaussian 

distribution with respect to wavelength than would otherwise be observed. In such cases, 

the tails of these distributions are more likely to overlap and result in apparent elevated 

baseline within a range of wavelengths, which was encountered during the course of this 

research. The total light emitted by a certain species can be determined by integrating the 
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resulting light spectrum between the limiting wavelengths for said species. Alternatively, 

one can simply sample light relatively late in the plasma glow, thereby mitigating the 

presence of ions which produce the previously mentioned electric fields [15]. The latter 

option was used throughout this research for sake of simplicity. 

2.5.1.6 Accelerated ionization. The presence of free electrons can cause 

interactions in some particles which will increase their likelihood of ionization, which 

can skew the distribution of various species for a given element or all elements present 

[15]. By sampling light late in the plasma glow, one can assume that most light at that 

time is emitted by neutral particles, and the distribution of ions and neutral particles 

becomes largely irrelevant. 

2.5.1.7 Chemical matrix effects. Some elements ionize more readily than others, 

producing more free electrons to recombine with other elements, resulting in higher 

concentrations of neutral particles in other elements, which may interfere with results in 

studies where the distribution of ions and neutral particles is significant. As previously, 

collecting light from cooler plasma should mitigate such effects. Some studies suggest 

that the original molecular composition and arrangement can partially affect the 

wavelengths of the light produced by a given element, and while research on this 

phenomenon is still ongoing, the need for application-specific standards or models when 

using LIBS for quantitative analyses is often attributed to this [15]. While the distribution 

of ions and neutral particles was not considered during this research, distortion of emitted 

wavelengths due to the original material structure may explain some of the model 

performance behaviors observed throughout this research. Using properly calibrated 

models should mitigate the effects of this phenomenon on predictions. 
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2.5.1.8 Surface conditions. The roughness and pitting of a sample, such as an 

aggregate, will affect the amount of material that is ablated by a laser pulse, which may 

skew results. A sufficiently large sample size should mitigate this effect. Dust or other 

surface contaminants may also be present on a sample, and the composition of said 

contaminants will be represented in the resulting light spectrum. If it is determined that 

this significantly affects the quality of the results, an appropriate testing procedure may 

include firing multiple pulses at a single point on each sample tested before collecting 

emitted light to ensure that the majority of surface contaminants are ablated away before 

collecting data [10]. 

2.5.2 Potential improvements of LIBS technique. Several studies over the 

course of the technique’s development have found that modifications to the base concept 

of LIBS have yielded more accurate or more complete results. Some example techniques 

are discussed in the sections below. 

2.5.2.1 Multiple laser pulse configuration. A modification to the base LIBS 

method has been proposed by several studies, in which an initial laser pulse is used to 

heat a sample before analysis is performed based on the emission produced by a second 

pulse so as to ensure more complete and uniform vaporization of material. The initial 

pulse helps the system to achieve thermal equilibrium prior to taking an optical 

measurement, which allows for more uniform distribution of energy in the resulting 

plasma [27]. For simplicity, many studies simply assume that the system has reached 

local thermal equilibrium during LIBS testing, however some studied investigate the 

accuracy of these assumptions, and more accurate results have been obtained in cases 

where this assumption was not made or could not be made. Overall, using some variant 
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of a double pulse configurations has shown to improve results overall [22]. Due to 

hardware limitations, this study only considers systems with a single pulse configuration. 

As this study did not consider the physics of expanding or cooling plasma systems, local 

thermal equilibrium, or lack thereof, was not considered. 

2.5.2.2 Microwave assisted LIBS. While using a two-laser setup initially appears 

to be an attractive option, the addition of a second laser incurs significant additional costs 

and complicates the system as a whole. Research has been conducted into extending the 

useable plasma life through the use of radiations such as microwaves, and has found 

microwave stimulation to be an attractive alternative to a multi-laser system for LIBS 

analyses [28] and [29]. A variant of this method, using radiofrequency (RF) heating; 

which allows for the injection of energy deeper into dense plasma at earlier times in the 

plasma glow, potentially allowing for better control of plasma temperature, was explored 

during the course of this research to extend the life of the plasma glow and improve 

signal collection. These tests were inconclusive, so the conventional approach continued 

to be employed. 

2.6 NJDOT Mineralogical Analyses 

The NJDOT does not directly use chemical analysis results for aggregate quality 

control, however one of the goals of this research is to interpret predicted chemical 

composition so as to draw conclusions about the stone’s mineralogy. Presently, the 

NJDOT uses qualitative lithographic examinations and, if necessary, closer inspections 

such as microscope point counts and petrographic examinations in the event field 

inspectors are suspicious that an aggregate stockpile does not meet quality control 
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standards. Microscope point counts are performed in the event excessive free mica is 

present in the mixture, while petrographic examinations and individual sample 

inspections can be used to determine the amount of weathered, or otherwise undesirable 

stone present in a sample. The combination of chemical data and morphological 

information as determined in a later phase of this research should help to reduce the need 

for such time consuming procedures. This thesis however, only considers the use of LIBS 

for determining the chemical composition of aggregate stone, which will later be 

interpreted for mineralogical information. 

2.7 Data Processing and Analyses 

The spectrum of light emitted by ablated material during LIBS testing is a pattern 

or signal unique to the sample in question, forming a sort of ‘spectral fingerprint.’ These 

unique patterns can be used to develop predictive models, wherein quantities of elements 

and compounds, or direct traits and other qualitative or quantitative information are 

inferred based on the spectrum features observed to represent said traits in other samples, 

as has been done in several previous applications, such as in the work conducted by the 

New York, Kansas, and Texas Departments of Transportation, as discussed in Section 

2.4.7 above. A number of methods have been shown to be useful in producing such 

models, several of which will be considered in the section below. Each method is used to 

predict traits by recognizing patterns in signals corresponding to various known traits.   

2.7.1 Artificial Neural Networks (ANN). Artificial Neural Networks present a 

versatile system for pattern recognition. The first, and simplest ANN was developed in 

1958 by psychologist Frank Rosenblatt, and the technique has been further developed and 
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refined since [30]. These systems utilize a series of nodes, or neurons, to determine the 

correlation between a given input and a reference line, before assigning weights to 

various sections of the network to more easily identify and make predictions based on an 

input [31]. While entirely feasible for applications similar to those presently considered, 

other, simpler methods of pattern recognition are more commonly used, and this method 

was not selected for this research. 

2.7.2 Principle Component Analyses (PCA) and Soft Independent Modeling  

of Class Analogies (SIMCA). Principle Component Analysis; invented in 1901 by Karl 

Pearson and independently developed and named by Harold Hotelling in the early 1930s 

[32] and [33], is a pattern recognition technique which can be used to reduce data 

projections using linear algebraic techniques, so as to visually determine whether samples 

can be differentiated based on various sample data features. The Kansas and Texas 

Departments of Transportation effectively used this method to differentiate between 

different samples based on spectral data features collected from each sample [10]. 

 Soft Independent Modeling of Class Analogies, or SIMCA, is an additional 

technique applied after PCA which allows samples to be classified into multiple 

categories simultaneously, and develop confidence regions for each classification [34]. 

As this research does not intend to develop models for classification purposes, these 

techniques will not be explored in detail, however these methods may be used in the 

event that the scope of the research is expanded in the future. 
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2.7.3 Partial Least Squares Regression analysis (PLSR). Partial Least 

Squares Regression Analysis is another linear analysis technique which can be used to 

produce various data projections, however this type of model can be used to produce 

quantitative predictions of multiple sample traits simultaneously. PLSR was developed 

by Swedish statistician Herman Wold, and the method was developed through 

collaboration with his son, Svante [35]. Predictions are made from PLS models in a 

manner similar to in Multiple Linear Regression, however in the case of PLS, predictive 

model coefficients are determined by maximizing the covariance between collected 

independent variables; in this case light intensities at various wavelengths, and known 

dependent variables; in this case the known mineral concentrations of samples used to 

calibrate the model. This method was used by the previously discussed Departments of 

Transportation to produce very accurate predictive models [10].  

PLSR may refer to one of two separate algorithms; PLS1 or PLS2. PLS1 

calibrates a predictive model which is designed to predict a single value or factor, while 

PLS2 is used to develop models which predict multiple factors concurrently. Research by 

Tucker et. al. determined that the two algorithms produce similar results; as separate 

models or a single more versatile one, except in cases where there is a high degree of 

inter-correlation between various dependent variables, in which case PLS2 tended to 

perform marginally better for applications such as the one considered herein [36]. This 

technique was selected for this research given its versatility, relative simplicity and speed 

in making predictions from an established model, previous successes using this method 

for similar research, and the ability to improve or expand on existing models with only 

superficial changes to the calibration procedure. A pre-made PLSR algorithm was used 
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throughout this research, and an explanation of each step and a simplified example are 

provided in Appendix A to demonstrate how predictive models are developed and used. 
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Chapter 3  

Equipment and Experimental Procedure 

3.1 Testing Setups and Procedures 

For this research study, Laser-Induced Breakdown Spectroscopy was used to 

obtain unique spectra of light emitted by a variety of stone samples so as to develop and 

test predictive models for aggregate stone chemical composition, and eventually 

mineralogy. This chapter will review the development of the various testing setups 

utilized throughout the research, as well as the various model calibration and testing 

techniques utilized to develop, refine, and test the predictive models. 

3.1.1 Preliminary lab setup. The first LIBS testing setup was only used for 

preliminary tests and primarily qualitative analyses which were used to evaluate the 

effectiveness of the testing method. The laser used was a Quantel Brilliant B laser, with a 

Nd+ doped Yttrium Aluminum Garnet crystal gain medium (Nd:YAG), capable of firing 

at a rate of 10 Hz, and set to emit a wavelength of 1,064 nm over a 4.96 ns pulse duration. 

This initial setup had a variety of shortcomings, such as an inability to easily test on non-

flat samples, and as these preliminary tests were of little consequence to the overall 

result, it will not be discussed in detail. 

3.1.2 Secondary lab setup. Following the earliest, largely qualitative tests, a 

second experimental setup was constructed which was more conducive to testing on 

irregularly shaped samples, such as aggregates. This secondary setup is shown in Figures 

3.1 and 3.2 below. The same Quantel Brilliant B laser as in the preliminary setup was 

used for this new station, however all other components were replaced. Rather than 
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impeding directly on a sample after firing, the emitted light was relayed and focused, 

impinging on the sample at nearly vertical beam orientation. A horizontal sample stage 

with adjustable height was used. A sample tray was fixed in place on the sample stage, 

and the location of the center of the tray was placed such that it was horizontally in line 

with the focal point of the laser and plasma light collection paths. A simple instrument 

was constructed and installed to identify the vertical location of the focal point so that the 

sample stage could be appropriately adjusted for samples of varying sizes and shapes. 

This instrument was also set to rotate into place over the horizontal location of the focus 

as an additional measure to ensure that the sample was placed correctly. All sample 

testing took place in a newly constructed testing chamber, which was darkened (with the 

exception of a laser light entry hole) to prevent external light contamination in the 

collected light spectra. 

 

 

Figure 3.1. Secondary Experimental Setup 
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Figure 3.2. Secondary Setup Sample Chamber 

 

 This setup utilized an Applied Spectra, 6-channel Aurora LIBS spectrometer. 

Light emitted by plasma plumes was collected and re-imaged by two off-axis hyperbolic 

reflectors onto a fiber optic bundle, which then splits into 6 individual fiber optics; each 

feeding into one of the spectrometer’s channels. This new spectrometer would be used for 

further testing. Some testing included the use of a beam splitter. During such tests, a 

higher intensity laser pulse energy was used, and a half-wave plate beam splitter at a 54O 

angle split approximately 95% of the laser energy off and directed it to a light sink while 

the remaining light proceeded to the sample. This was used in an attempt to reduce 

variation in collected light intensity caused by variation in emitted laser pulse intensity 

caused by the means by which energy emission was controlled, however it was later 

determined that the beam splitter tended to split off the more focused component of the 

emitted laser light, resulting in less focused light striking the sample, and this addition 
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was eventually abandoned. Various system timing combinations were used throughout 

testing, and the optimal set of timing delays was determined. While earlier tests collected 

spectral data as the emission resulting from individual laser shots, the procedure was 

eventually modified such that the data collected was the accumulated light emission 

resulting from 100 laser shots so as to minimize the effect of intermittent low-emission 

tests on the output data. This procedure change was found to be effective and continued 

to be used. 

 In each test, the following standard procedure was observed: First, the laser’s 

control unit was activated, and the coolant fluid was allowed to heat to the appropriate 

temperature. The laser was unable to fire until an optimal temperature was reached, due 

to a built-in interlock in the laser system. Before activating the flashlamp, all connections 

were checked and communication between the spectrometer and the corresponding 

computer software was established. The laser’s flashlamp-Q-switch delay and the Q-

switch-spectrometer delay were then set to appropriate timing. When the sample chamber 

was closed to minimize external light contamination, any windows were shielded with a 

dark, non-reflective screen, and all individuals present put on protective eyewear 

designed to block most of the 1,064 nm wavelength light scattered during the course of a 

test. When all safety precautions had been enforced, the laser’s flashlamp was activated, 

and after waiting the required 8 seconds for the laser energy to stabilize, the laser was 

fired, and the resulting plasma light emission was sampled. This was repeated an 

appropriate number of times for the test in question. 

As mentioned in Section 2.5.2.2, a radiofrequency system was briefly used in an 

attempt to prolong the useful plasma life through a mechanism similar to previous 
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microwave enhancement systems. The research team designed and constructed an 

ancillary module to the original LIBS system, capable of generating high-power RF (727 

MHz) at the sample volume location.  The module consisted of a voltage-controlled 

oscillator, variable attenuators, a pre-amp, a high-power (50 W) amplifier, and a custom-

built, impedance-matched magnetic field resonator.  The research team intended to 

systematically vary the applied RF power, duration, and point of application in an attempt 

to enhance LIBS signal collection, however collected results were eventually found to be 

excessively variable and the system was eventually rejected on the ground that the 

equipment addition would have been cumbersome and produced negligible, if any 

improvement in the effectiveness of the overall testing system. As these tests were 

conducted only briefly and were of negligible consequence, they will not be discussed in 

detail. 

3.1.3 Field setup. At the time of writing, a third setup intended for field use is 

being constructed. This setup utilizes a more compact Quantel Ultra laser capable of 

firing at 20 Hz, but will otherwise be similar to the previous experimental setup in most 

ways. The laser beam path will be simplified; using fewer optics, and the sample stage 

will be replaced with one which can be repositioned to the system focal point 

automatically. This setup will be used for both lab and field testing, and to ensure that 

developed predictive models will be compatible with the field system. 

3.1.4 X-Ray Fluorescence testing. All ‘known’ chemical composition data was 

collected via XRF testing. While the results used to generate predictive models were 

obtained by the New Jersey Department of Transportation, some testing was performed 

by the research team to confirm the accuracy and reproducibility of the provided results. 
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The testing unit used by the Rowan University research team was a Rigaku ZSX Primus 

II X-Ray Fluorescence Spectrometer, and the research team tested solid samples while 

the NJDOT tested on powdered samples, which were expected to be more reliable 

because the powdered samples were more homogeneous. Regardless, for each test 

conducted by the research team, each solid aggregate sample was first rinsed with water 

and dried completely so that surface dust would not damage the testing apparatus and the 

presence of water would not skew results. Each clean, dry sample was placed in the 

center of a standard sample container, which was securely sealed and arranged such that a 

surface of the aggregate would be approximately flush with the test opening. As a safety 

precaution, the sealed sample stage was placed beneath a simple measuring fixture to 

ensure that the stage sections were screwed together correctly. The sample container was 

then placed in the XRF spectrometer and the chamber was closed. A dedicated computer 

was used to inform the system of the size of the sample opening and its location in the 

chamber. A simplified, built-in testing procedure was used for completeness of results. 

The system was run, and the XRF unit automatically moved the sample container to the 

appropriate testing location, the chamber depressurized to near-vacuum, and the test was 

conducted automatically. Results were reported as percent composition by mass. Note 

that lighter elements (such as lighter than fluorine) may have been misrepresented due to 

interfering effects innate to the technique, and therefore were not considered. Chemical 

composition results were most conveniently reported assuming all elements to be bound 

in oxides, independent of the accuracy of this assumption. 
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3.2 Development of a LIBS Analysis Procedure 

Once a complete set of data had been collected, the next step was to calibrate a 

predictive model based on the collected spectral data and known chemical compositions, 

as determined via XRF analysis. While a variety of pre-processing methods were used, 

all models were calibrated via PLSR.  

A number of pre-processing steps were performed on the raw light spectra data 

prior to calibrating and testing models. This section will describe each method used 

throughout this research. 

 Removal of baseline light: It was determined during this research that baseline or 

background light was insignificant in the collected data overall given the dark 

sample chamber, however this was not immediately apparent, and earlier tests 

attempted to remove baseline light. This was done manually in the case of the 

preliminary setup by simply subtracting an apparent baseline threshold from each 

light intensity value in the resultant data. Additional manual attempts to remove 

remaining baseline caused by signal noise were attempted throughout much of 

this research (see below), however it was determined that this does not 

significantly improve the accuracy of models and this practice ceased following a 

change to collecting data as the sum of the emissions of 100 laser shots. 

 Discarding test results with exceptionally poor fluorescence: Due to innate 

randomness caused by variability of sample composition from location to 

location, variability in actual laser emission compared to nominal emission, etc., 

there is a possibility that no appreciable quantity of plasma light, or such a small 
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amount is collected by the spectrometer that the majority of the typical spectral 

peaks cannot be discerned. In earlier tests which collected spectral data resulting 

from individual laser shots as opposed to the sum of many subsequent laser 

pulses, these low emission shots would have significantly skewed the attempts to 

calibrate predictive models and so were manually removed from the data sets as 

they were observed during testing. By considering the sum of the emissions 

produced following many laser pulses, occasional low-emission tests trend to 

having negligible effects on the overall results due to individual normalization of 

spectra; and as such it is unnecessary to manually remove erroneous data which 

clearly does not represent the sample in question. 

 Reduction of spectral amplitudes: In later tests which collected data as the sum of 

the emissions caused by 100 laser pulses, each resulting total spectrum amplitude 

was reduced by a factor of 100 to convert each to the average emission caused by 

100 laser shots. While not necessary in cases where spectra were normalized to 

total light emission, this practice was continued for sake of consistency so as to 

more easily compare the performance of various models and in cases where this 

normalization technique was not used. 

 Removing variation along baseline or negative values caused by signal noise: A 

method called center clipping, wherein all light intensity data below a certain 

threshold was assumed to be noise and was set to 0, was used to remove variation 

caused by noise along the spectral baselines. While it was suspected that this 

caused loss of useful data, neglecting this step was initially found to have adverse 

effects on model accuracy. However, following the procedure change to the 
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accumulated data method, baseline variation began to largely cancel to 

approximately 0 when one summed the emissions caused by many laser shots, 

and as such this method was rendered largely unnecessary. This pre-processing 

step is currently employed with a threshold of 0 light intensity to remove 

remaining negative values from the results, but is otherwise no longer used. 

 Normalizing spectra to total light emission: To account for random variation in 

the overall intensity of light emitted by a plasma plume and collected by the 

spectrometer during a test, each light intensity value in a given collected light 

spectrum is divided by the total light emission for the spectrum. While the total 

light emission was initially based on a point to point approximation of the area 

enclosed by the light spectrum, this was later changed to a straightforward 

normalization of all light intensity values collected, such that the sum of all 

normalized light intensity values in the given spectrum is unity. This was found to 

benefit the accuracy of the predictive models more than alternative methods and it 

was therefore continued except where specifically noted. 
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Chapter 4  

Results and Model Analysis 

4.1 Preliminary Setup Results 

The preliminary testing setup was primarily used to conduct qualitative analyses 

and to calibrate a very simplified model for the sake of evaluating LIBS as a testing 

method and PLSR as a means to calibrate predictive models.  

4.1.1 Qualitative identification of elements. The earliest LIBS tests were 

conducted on samples of pure metals; namely aluminum and copper, which were used to 

confirm the viability of qualitatively identifying elements present based on the light 

emitted by the plasma glow. The National Institute of Standards and Technology (NIST) 

Atomic Spectra database was used to identify typical locations of peaks for each element, 

and these wavelengths were compared to observed spectral peaks. In each case, observed 

emitted wavelengths corresponded to those identified in the database, confirming that 

LIBS could be used to qualitatively identify elements in samples. LIBS tests were then 

conducted on samples of limestone and mica; two of the minerals considered in this 

study, to obtain characteristic spectra for each, so that they could later be used to identify 

the presence of these minerals in unknown samples. 

4.1.2 Evaluation of PLSR for developing quantitative predictive models. 

Following the above initial qualitative tests, PLSR was evaluated as a means of 

developing quantitative predictive models using spectral data collected via LIBS and 

known composition values. As a simplified case, LIBS tests were conducted on a series 

of pennies minted in various years with known elemental compositions; namely several 
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known blends of zinc and copper. Coins minted in 1953, 1980, and 2006 were tested, and 

the resulting predictive model was accurate for a randomly selected 1953 coin sample, 

demonstrating that the PLSR method is viable for generating predictive models, however 

this simplified case considered only two elements and tested a sample which was 

identical to a sample used in calibration, and more complex samples were not expected to 

produce as accurate models without additional analysis or pre-processing.  

4.2 Secondary Setup Results 

Following the testing of the simplified model described above, the setup was 

reconstructed into the secondary lab testing setup, which was used to conduct the 

majority of this research. The following sections will review the work conducted using 

this setup. All tests conducted using this secondary setup were on samples of aggregate 

stone provided by the New Jersey Department of Transportation. Samples’ chemical 

composition were obtained via XRF analysis conducted by NJDOT as well. The known 

compositions provided are outlined in Appendix B. 

4.2.1 Early models. The earliest predictive model for aggregate stone chemical 

composition was calibrated using data collected from just three types of stone. These 

stones were a Carbonate Dolomite from Carpentersville, NJ (referred to herein as 

Carbonate Dolomite), a Gneiss sample from Glen Mills, PA (Glen Mills Gneiss), and an 

Argillite sample from Plumstead Twp., PA (Plumstead Argillite 1). A fourth sample of 

Jurassic Diabase (a trap rock) from Haverstraw, NY (referred to as Diabase), was also 

initially provided, but did not have a known composition at the time and was used as a 

pure testing set sample. This model was developed using data collected from individual 
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laser shots, and low-emission shots were manually removed from the data sets, as 

discussed in Section 3.2. This step would not be necessary following the procedure 

change such that each collected spectrum would be the sum of the collected emissions 

from 100 laser shots; which thereby made the model more feasible for use. Despite 

varying numbers of low-emission shots between different stone types, these removed 

shots were not replaced for the earliest models, and as such, the amount out input data 

was not always consistent between different stone types. This error would be corrected in 

later models. Center clipping was used in an attempt to remove baseline and signal noise 

from the raw data sets at this phase, and spectra were normalized to an approximation of 

the area beneath the given spectrum as a metric of total light emission. Models were 

calibrated using 27 PLS components, which was determined to account for the majority 

of the variation in the known chemical compositions, but would later be found to over-

calibrate the model. This model was tested using data from each of the four originally 

provided samples. To observe the effects of each case, testing inputs included both data 

which had been previously used to calibrate the model and data which had not. As in all 

other cases, testing data was adjusted in the same manner as calibration data. 

The results of these tests showed a common trend in that any data matching data 

used to calibrate the model produced very accurate results, while any data from outside 

the calibration set produced much less accurate results. To observe the effect of adding an 

additional sample to the calibration set, a new model was developed which included the 

Diabase sample. All calibration methods and parameters were otherwise consistent with 

the first model. While the addition of the Diabase stone to the calibration set improved 

predictions for that type of stone, error in predictions continued to be significant. At this 
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phase, it was believed that these errors were caused by using an inappropriate number of 

PLS components, or due to lack of variability being represented in the calibration set. 

4.2.2 Parameter variation. Following these initial, preliminary models, a 

simplified method of examining relative model performance was used. This method used 

L1 Error; which is the sum of the absolute values of each deviation from accepted values, 

as a metric of overall error in predictions. In an attempt to mitigate error caused by 

variability in the energy emitted by the laser, a new data set was collected using the half-

wave plate beam splitter discussed in Chapter 3, and future analyses would use this newly 

collected data. The hypothesis that the error could be attributed to using an inappropriate 

number of PLS components to calibrate the model was examined first. Models were 

calibrated using varying numbers of PLS components, and each was tested using 10 

independent spectra from inside and outside the calibration set to observe the 

performance of each. Each sample was considered independently to observe variability of 

the predictions.  

 The expected trends were observed when testing using samples within the 

calibration set; using fewer PLS components results in higher variability in the accuracy 

of predictions, while using more resulted in significantly less variability and a general 

improvement in overall accuracy. This however contrasted the results obtained for the 

data outside the calibration set. The testing data not used in the calibration sets did not 

follow the expected trend beyond approximately 10 to 13 PLS components. The use of 

further PLS components did not improve predictions, and in some cases error increased 

as more PLS components were used. This partially showed that the number of PLS 



48 

 

components used previously was excessive, but also shows that the majority of the error 

in the models was not caused by the number of PLS components used to calibrate it. 

 Following the above tests, two additional samples were provided; a second 

carbonate rock from Andreas, PA (Lehigh Carbonate; named after the source company), 

and an additional trap rock sample from Oldwick, NJ (Oldwick Trap Rock 1). The 

addition of these samples slightly improved the model accuracy, and models moving 

forward included these samples. The next set of models used 90% of collected data for 

calibration, and the remaining 10% for testing. 

 It was then considered that the error in the models may have been caused by using 

an inappropriate center clipping threshold. The minimum threshold considered was 200 

arbitrary light intensity units because there was very little if any data below this point. A 

threshold above 370 was found to remove an excessive amount of data, and the PLSR 

algorithm was unable to regress a model given the amount of zeroes in the overall data 

set. The results of these tests suggested that a threshold of 330 light intensity units would 

be optimal overall. 

4.2.3 Other data adjustment methods. Following the previous model tests, it 

was observed that several of the test spectra included very significant, broad light 

intensity ranges as opposed to the more distinct peaks otherwise observed. As 

normalization of spectra was achieved through an approximation of the area beneath the 

spectrum, these broad areas significantly affected this approximation, potentially skewing 

the normalized data used to calibrate the models. These areas generally occurred between 

about 545 nm and 560 nm wavelengths, typically peaking around 551 nm. While a 
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variety of methods were attempted to remove or otherwise account for this area, none 

were particularly effective, and the presence of this broadened area was later mitigated by 

adjusting system timing during future LIBS tests. It was eventually concluded that this 

uplifted spectrum area was caused by several broadened peaks with overlapping tails; 

caused by an inappropriate LIBS system timing. 

Additional models were tested which involved another step in the calibration 

process. Prior to calibrating a model, data from shots corresponding to a particular stone 

sample were averaged, and these averaged data sets were used to generate predictive 

models. This was the first attempt at using averaged data sets. Models were developed 

after applying this averaging before and after the data sets were normalized to total light 

emission, however neither of these measures significantly improved model accuracy and 

was omitted from model calibration until much later attempts. Each of these models 

maintained the established 330 center clipping threshold. 

During this period, the research team attempted to use the RF enhancement 

system described in Chapter 3 to prolong the measureable plasma glow, however the 

results were found to be excessively variable and this addition was not ultimately used. 

The preliminary testing results obtained during these attempts were not used to calibrate 

or test models. 

4.2.4 New data sets. At this point in time, it was considered possible that the 

data set itself was the source of the error in the models. To test this hypothesis, an entire 

new set of data was collected for future models. The averaged data set testing was 

repeated on this new data, and returning to the original center clipping threshold of 200, 
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however as before, results were inconsistent and in most cases did not outperform the 

original calibration technique or data set, however the new data collected continued to be 

used moving forward.  

These results led the research team to the conclusion that this error was caused by 

excessive variation in spectrum data. Future models utilized data collected using the 

modified procedure; such that the output spectrum would be the sum of the emissions 

resulting from 100 shots, and used results collected from testing on multiple locations per 

sample, which would reduce the effects of test to test variation on the overall results, as 

discussed in Chapter 3. Visually abnormal resultant spectra continued to be manually 

removed immediately following this adjustment, but only until it became apparent that 

this was no longer necessary. Once new data had been collected using this new 

procedure, new models were developed. These models continued to use a center clipping 

threshold of 200 light intensity units. 

4.2.5 Additional model refinement. A new normalization technique was 

attempted which normalized spectral amplitude to the maximum light intensity for that 

spectrum; however this was rejected almost immediately, as predictions were found to be 

unreasonable. The area normalization method continued to be used. Models were then 

generated using data obtained by averaging the spectra collected for various locations on 

a particular sample, however the un-averaged models were found to perform marginally 

better; likely due to the larger calibration set size, and the previous method of center 

clipping and area normalization continued to be used. It was also found that models 

performed slightly better without removing visually abnormal data, such as collected 

from low-emission tests, and manual data filtering was no longer employed.  
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The next model tests examined the performance of models which used varying 

sized calibration sets, first calibrating models using 50 PLS components (with the 

exception of the 30 data point test, which used 25 because 50 would be above the 

maximum), then using the maximum number of PLS components, and finally using a 

number of PLS components equal to 20% of the total sample size. This was done to 

determine what size calibration set was optimal, or how large it should be for this purpose 

before addition of more data began to yield significantly depreciating returns in model 

accuracy. Only data from outside of the calibration set was used for testing moving 

forward because testing using calibration data consistently yielded high accuracy 

regardless of the actual reliability of the model. As expected, model accuracy generally 

improved as more calibration data was used in each of the three cases, however the 

behavior was semi-random due to high variability in predictions, which the research team 

attempted to account for in the future by using larger testing sets. 

At this time, it was considered that model inaccuracy was caused primarily by 

inaccuracy in accepted values used to calibrate the model. To ensure that the provided 

XRF data, and thereby the accepted values, were reproducible, additional XRF tests were 

performed by both the Rowan research team and NJDOT staff. The Rowan research team 

tested on solid samples while the NJDOT staff tested on powdered samples. Given this 

difference in procedure, it was expected that the Rowan research team’s results would be 

less consistent, as these tests examined various points on an inherently inhomogeneous 

sample, whereas the NJDOT staff’s powdered samples were expected to produce more 

consistent results given the fact that the samples effectively blended the solid samples 

into a more homogeneous mass. As previously, XRF results were reported assuming all 
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elements to be bound in oxides, regardless of the accuracy of this assumption. While the 

independently performed XRF tests produced somewhat comparable results, the NJDOT 

results were significantly more reproducible, and future models continued to use the 

provided NJDOT results. Future models would also be calibrated using larger calibration 

sets in an attempt to provide more reliable models. Note that XRF results for the Oldwick 

Trap Rock 1 sample were found to be very variable for the NJDOT results and were 

suspected to be inaccurate. As the accuracy of these results could not be verified at the 

time, this sample was not used to calibrate future models. 

4.2.6 Finalizing system timing and procedure. Following these tests, an 

inspection of the testing equipment found a previously unconsidered problem in that dust 

from the aggregate samples which had been ejected during testing had begun to collect on 

the system’s optics, potentially reducing the amount of energy reaching the samples, 

which may have affected testing results. The optics were cleaned, realigned, and a new 

series of tests were conducted. These tests no longer used the half-wave plate beam 

splitter; as the loss of beam focus caused by this method had become apparent by this 

time. These tests used a flashlamp-Q-Switch delay time of 400 µs, with a total 

spectrometer delay of 6.3 µs; including the 1.3 µs timing offset. This was done to 

mitigate the widened peaks previously described, and to better mimic the conditions 

which would be present with a portable system used for field testing. Testing was 

conducted on a total of 14 types of stone, but samples without reliable known 

compositions were only used for testing purposes. The 8 new samples provided since the 

previous tests included two additional Argillite samples from Plumstead Twp., PA 

(Plumstead Argillite 2 and 3), each with slightly differing chemical composition, a 
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sample of quartzite from Paupack Twp., PA (Atkinson Quartzite after the providing 

company; Atkinson Materials), a carbonate rock sample from Woodsboro, MD 

(Woodsboro Carbonate), a Gneiss sample from Hamburg, NJ (EI Gneiss after the 

providing Eastern Concrete Materials, aka Eastern Industries), another Gneiss sample 

from Bechtelsville, PA (Bechtelsville Gneiss), and two additional Oldwick Trap Rock 

samples (Oldwick Trap Rock 2 and 3). For the calibration samples, 5 locations were 

tested for each of 10 samples, resulting in 50 resulting spectra per stone type. For a 

testing set, an additional 2 samples were tested (10 data points total) for each type of 

stone. This testing set size would later be expanded to 5 samples for purposes of 

determining an optimal testing sample size. Additionally, the sample tray was cleaned 

with a damp cloth before changing the type of stone being tested as an additional measure 

to ensure dust and fines from previous samples would not contaminate the surface of 

subsequent samples. 

 Once a complete new data set had been collected, a series of models were 

developed and tested using this expanded calibration set and a series of pre-processing 

techniques; some which had been attempted previously, others of which were new. These 

models no longer used L1 error as a metric of overall model performance, as this did not 

provide sufficient information as to which compounds were being predicted inaccurately. 

During calibration, each model began using the sum of the light intensity values as a 

simplified metric of total light emission, which did not affect results because the 

wavelength interval between adjacent light measurements was constant across the light 

spectrum. Each of these models also used a better optimized number of PLS components 

to calibrate them, as determined via the algorithm’s built-in cross-validation function. In 
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most cases, using more PLS components yielded consistently depreciating returns in the 

amount of variation in the set of known values which was explained by the model, and so 

in general a number of PLS components was used past which adding more would explain 

less than another 1% of the variation. While the actual amount of this variation which 

was explained varies depending on the pre-processing technique used, the number of PLS 

components used was typically about 5 to 10. 

4.2.7 Model optimization. The system timing using a 400 µs flashlamp-Q-

switch delay and a 6.3 µs spectrometer delay yielded very consistent results with little, if 

any peak widening or distortion. Due to inhomogeneity and the possibility of sample 

contamination caused by some individual stones of another type being included in a 

particular provided sampling, occasional spectra were distinct among other tests from the 

same stone type; however these results were comparatively rare. As more reliable test 

results were finally obtained, efforts shifted toward producing a more optimized 

predictive model. Additional past research was reviewed in an attempt to determine how 

best to optimize the model. While PLSR as a pattern recognition technique appeared to 

be sound, some data pre-processing techniques had not been attempted, and additional 

pre-processing variations were considered. 

4.2.7.1 Base model. Before any alternative pre-processing options were explored, 

a Base Model was developed for sake of comparison. In the Base Model, the 100 shot 

total spectra were reduced in amplitude by a factor of 100, negative values caused by 

signal noise were removed through applying center clipping with a 0 threshold, and 

spectra were normalized to a metric of total light emission; namely the sum of the light 

intensity values for each. In each of the Figures below, the X-axis displays the XRF 
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results; or the ‘known’ percentage of a given compound, while the Y-axis shows the 

average of 25 predictions for each of the 10 stone types with known composition. Only 

the 5 most significant compounds are reported for sake of simplicity. Each prediction is 

compared to a ‘Perfect’ line indicating the data point placement in the event the average 

prediction perfectly matched the XRF data. Unless otherwise noted, each method below 

includes the previously stated pre-processing steps before applying others. The results of 

the Base Model are shown in Figures 4.1 through 4.5. 

 

 

Figure 4.1. SiO2 Base Model Predictions 
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Figure 4.2. Al2O3 Base Model Predictions 

 

 

Figure 4.3. Fe2O3 Base Model Predictions 
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Figure 4.4. CaO Base Model Predictions 

 

 

Figure 4.5. MgO Base Model Predictions 
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 While some predictions using the Base Model produced large errors, the majority 

of predictions can be considered to be at least reasonable. However, to be accepted as a 

reliable predictive model, the predictions must be accurate for all samples, and the 

alternative pre-processing methods described below were used in attempts to improve on 

this base case. Note that the Magnesium predictions for the original Carbonate Dolomite 

sample were expected to be outliers in each case because the proportion of magnesium in 

this sample was much larger than any other sample used to calibrate the models. 

4.2.7.2 Y-scaling. While researching additional methods of optimizing PLS 

models, the research team found a publication by Tucker et. al. (2010), which used 

various methods for optimizing a PLS model for predicting the chemical composition of 

various types of igneous rocks. While the scope of the research varies from that herein, 

its relevance could not be overlooked, and some of the pre-processing techniques 

attempted in Tucker et. al.’s work were emulated for this research. One method explored 

in Tucker et. al.’s work is scaling the Y-variables, which forces the PLSR algorithm to 

consider the concentrations of all compounds equally rather than prioritizing compounds 

with high variability in the calibration set. This is done in three ways. One method was to 

divide the value of each concentration by the maximum for that compound in the 

calibration set, thereby reducing each Y matrix value to between the ratio of the smallest 

to the largest value, to 1 for each compound being considered. The second method 

involves first subtracting the minimum value for each case before dividing all remainders 

by the range for that compound, thereby reducing each to a value between 0 and 1. 

Tucker et. al.’s work explored a third method; in which values were scaled relative to the 

standard deviation of each Y variable, however, this method required the distribution of 
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each variable to be approximately Gaussian, which could not be assumed for the 

available samples, and this third method was not considered in this research. Regardless 

of which method is used, the reverse adjustments must be applied to predicted values to 

convert them to actual predictions [36]. The average composition predictions for each 

case are shown below in Figures 4.6 through 4.10. The ratio:1 Y-Scaling produced very 

inaccurate and typically unreasonable predictions, however the 0:1 Y-Scaling method, 

while moderately variable, generally produced results comparable to the Base Model 

overall. Note that the ratio:1 model results were dissimilar to future attempts at using this 

method, and these poor results may have been the result of an error in data processing. 

 

 

Figure 4.6. SiO2 Y-Scaling Model Predictions 
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Figure 4.7. Al2O3 Y-Scaling Model Predictions 

 

 

Figure 4.8. Fe2O3 Y-Scaling Model Predictions 
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Figure 4.9. CaO Y-Scaling Model Predictions 

 

 

Figure 4.10. MgO Y-Scaling Model Predictions 
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4.2.7.3 Averaged calibration set. The next method considered averaging the 

calibration data corresponding to a particular type of stone before calibrating a model; 

similar to previous attempts. All data for a given type of stone was reduced to a single 

effective data set prior to any other pre-processing steps being applied. This model was 

then tested using both individual testing spectra (‘Averaged’ points), and test spectra 

averaged as with the calibration set, which results in a single prediction rather than 

several somewhat variable independent predictions (‘Averaged Both’ points). The results 

are shown in Figures 4.11 through 4.15 below.  This model was generally less accurate 

than the Base Model, with the exception of the silica prediction, and variability in 

predictions was somewhat greater, as was expected given the reduction in calibration 

data. Using the averaged testing sets as well generally produced marginally more 

accurate results. 

 

 

Figure 4.11. SiO2 Averaged Model Predictions 
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Figure 4.12. Al2O3 Averaged Model Predictions 

 

 

Figure 4.13. Fe2O3 Averaged Model Predictions 
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Figure 4.14. CaO Averaged Model Predictions 

 

 

Figure 4.15. MgO Averaged Model Predictions 
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4.2.7.4 Amplitude scaling. The next method involved an alternative means of 

normalization, in which the amplitudes of spectra were scaled relative to the average 

amplitude for that type of stone. This attempts to adjust the amplitude of spectra for each 

stone type independently to mitigate the effects of variability in emissions between 

testing locations, while preserving the information present in amplitude differences 

between different types of stone. Model testing was performed using unadjusted testing 

spectra (‘Amp Scale’ points), and testing spectra which had been independently scaled as 

in the calibration set (‘Amp Scale Both’ points). Spectra were not normalized to total 

light emission in this case. The results of this method are shown in Figures 4.16 through 

4.20 below. While the independently scaled testing data was less variable than the 

unadjusted sets, both produced highly variable predictions and both methods were 

inaccurate, and so this method was rejected. 

 

 

Figure 4.16. SiO2 Amplitude Scaling Model Predictions 
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Figure 4.17. Al2O3 Amplitude Scaling Model Predictions 

 

 

Figure 4.18. Fe2O3 Amplitude Scaling Model Predictions 
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Figure 4.19. CaO Amplitude Scaling Model Predictions 

 

 

Figure 4.20. MgO Amplitude Scaling Model Predictions 
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4.2.7.5 Spectral derivatives. The next method involved using an approximation of 

the derivative of each spectrum for calibration and testing instead of the spectrum itself, 

so as to use slope trends rather than light intensity values to predict composition, as 

inspired by Tucker et. al.’s work [36]. A point to point slope for each subsequent light 

intensity value for each spectrum was determined and used as an alternate X data set with 

one less variable than the original. Negative values were not removed, nor were the 

spectra normalized to the total light emission in this case. The results of this method are 

shown in Figures 4.21 through 4.25 below. In nearly all cases, the predictions using this 

method were less accurate and more variable than the Base Model, and this method was 

rejected. 

 

 

Figure 4.21. SiO2 Derivative Model Predictions 
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Figure 4.22. Al2O3 Derivative Model Predictions 

 

 

Figure 4.23. Fe2O3 Derivative Model Predictions 
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Figure 4.24. CaO Derivative Model Predictions 

 

 

Figure 4.25. MgO Derivative Model Predictions 
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4.2.7.6 Split training set. The final method explored was also partially inspired by 

the work by Tucker et al. This technique involved reducing the range of values present in 

the calibration set by calibrating two or more separate models as opposed to a broad base 

one. Tucker et al. suggested that by applying a broad base model to obtain a ‘first guess’ 

of a stone’s composition, and then applying an appropriate, more specialized model for a 

more precise prediction, individual models can become more accurate because they 

consider a more narrow range of possibilities [36]. In this case, samples were divided into 

carbonate and non-carbonate rocks for the sake of providing an intuitive classification of 

samples. The models were otherwise calibrated similar to the Base Model. Figures 4.26 

through 4.30 show the results for the model corresponding to the stone’s classification; 

carbonate or non-carbonate. 

 

 

Figure 4.26. SiO2 Split Training Model Predictions 
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Figure 4.27. Al2O3 Split Training Model Predictions 

 

 

Figure 4.28. Fe2O3 Split Training Model Predictions 
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Figure 4.29. CaO Split Training Model Predictions 

 

 

Figure 4.30. MgO Split Training Model Predictions 
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 While imperfect, this method showed promise; typically yielding more accurate 

and more consistent results, likely due in part to reducing variability caused by chemical 

matrix effects within each model. The remaining error, particularly in the carbonate stone 

model, was likely caused primarily by a lack of calibration data. Calibrating each model 

using data collected from additional stone types would be expected to improve their 

accuracy. Regardless, the performance of these split models is generally an improvement 

over the Base Model, and further models were calibrated building on this method. 

4.2.8 Combined method models. To observe the full effects of dividing the 

training data set, a series of models were developed and tested which used the split 

training method in combination with the other techniques. In each case, two separate 

models were developed using the previous pre-processing techniques, and testing data 

was applied to the corresponding model for its classification. 

4.2.8.1 Split Y-scaling model. The results of using Y-Scaling in combination with 

a split training set are shown in Figures 4.31 through 4.35. Each produced similar results, 

suggesting that the previous failures of the ratio:1 scaling may have been caused by the 

variability of the samples, or through an error during analysis. Regardless, this method 

produces accurate, reproducible results, and the Y-Scaling from 0:1 with split training 

was selected for final use. 
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Figure 4.31. SiO2 Split Training, Y-Scaling Model Predictions 

 

 

Figure 4.32. Al2O3 Split Training, Y-Scaling Model Predictions 
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Figure 4.33. Fe2O3 Split Training, Y-Scaling Model Predictions 

 

 

Figure 4.34. CaO Split Training, Y-Scaling Model Predictions 
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Figure 4.35. MgO Split Training, Y-Scaling Model Predictions 
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Figure 4.36. SiO2 Split Training, Averaged Model Predictions 

 

 

Figure 4.37. Al2O3 Split Training, Averaged Model Predictions 
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Figure 4.38. Fe2O3 Split Training, Averaged Model Predictions 

 

 

Figure 4.39. CaO Split Training, Averaged Model Predictions 
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Figure 4.40. MgO Split Training, Averaged Model Predictions 
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Figure 4.41. SiO2 Split Training, Amplitude Scaling Model Predictions 

 

 

Figure 4.42. Al2O3 Split Training, Amplitude Scaling Model Predictions 
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Figure 4.43. Fe2O3 Split Training, Amplitude Scaling Model Predictions 

 

 

Figure 4.44. CaO Split Training, Amplitude Scaling Model Predictions 
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Figure 4.45. MgO Split Training, Amplitude Scaling Model Predictions 
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Figure 4.46. SiO2 Split Training, Derivative Model Predictions 

 

 

Figure 4.47. Al2O3 Split Training, Derivative Model Predictions 

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70 80

P
re

d
ic

te
d

 V
al

u
e

s

Known Values

0

5

10

15

20

25

0 5 10 15 20 25

P
re

d
ic

te
d

 V
al

u
e

s

Known Values



85 

 

 

Figure 4.48. Fe2O3 Split Training, Derivative Model Predictions 

 

 

Figure 4.49. CaO Split Training, Derivative Model Predictions 
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Figure 4.50. MgO Split Training, Derivative Model Predictions 
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 While the first alternate model performed reasonably well in terms of accuracy, 

this strategy would have caused 5 PLS components to be used for the carbonate rock 

model while 26 would be used for the non-carbonate rock model, which is likely 

excessive. As this alternate model did not perform significantly better than the previous 

strategy, future models would continue to select the number of PLS components based on 

the first component which would explain less than 1% additional variation.  

 The second alternate model strategy was rejected almost immediately because the 

amount of variation explained by each PLS component using this strategy had an unusual 

distribution; which if the normal method was applied would cause 0 PLS components to 

be selected which is not an acceptable number. While a number may have been selected 

manually, the distribution of explained variation was more uniform than previous models, 

as opposed to the normal depreciating trend, and an unreasonable number would be 

required for the model to explain more than a small fraction of the overall variation in the 

data set. 

 Models calibrated via the third strategy performed very similarly to the original 

case, with the exception of the Glen Mills Gneiss sample, which experienced significant 

changes in accuracy and distribution of predictions. At this time, the original method 

wherein Y-Scaling is applied to the overall data set and not for each individual model 

was determined to be marginally superior, however this conclusion will be confirmed 

using models calibrated with a larger number of samples. 
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4.3 Determining Optimal Testing Set Size 

Once an optimal model calibration strategy had been selected, efforts moved on to 

selecting an appropriate testing set size for finding accurate predictions. At this time, 

predictions were developed from the results of LIBS tests at 5 points each on 5 samples 

for a given type of stone, for a total of 25 separate predictions, which were then averaged 

together. To determine a reasonable sample size for accurate predictions, the average 

predictions for each type of stone were determined using a number of test spectra ranging 

from 1 to 25. Averages were determined using both a simple list of predictions moving 

from top to bottom, and using the average of 1 to 5 points across all 5 samples. A sample 

size was then selected such that the addition of more testing data would have little 

relative effect on the average. With few exceptions, prediction averages stabilized by 

about 10 to 15 predictions, which was selected as a minimum recommended sample size, 

however a larger sample size may be used, if desired, or if one encounters a particularly 

inhomogeneous sample. The two averaging strategies also revealed that the number of 

samples tested was generally of greater overall importance to prediction accuracy than 

the number of locations tested per sample, as was expected. However, given the 

variability of predictions from some types of stone; likely less homogeneous stones, it is 

recommended that at least 2 to 3 locations per sample be tested. 

4.4 Development of a User-Friendly Program 

Once an optimal model calibration strategy and a testing sample size had been 

selected, the research team began working on developing a user-friendly program for 

calibrating and testing models; allowing for future development, and for making more 
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rapid predictions from existing models. An overview of the program concept, and 

operation of the Graphical User Interface (GUI) is described below. As the program run 

time can require several seconds to several minutes depending on the computer 

capabilities, the size of data sets, and the format under which data sets were saved, the 

user will be provided with progress messages at each step so that it is clear that the 

program is running correctly. The program will be set to one of two modes; calibration or 

testing; each of which is intended to require as few user inputs as possible. All 

programming and the development of the GUI was completed in MatLAB. 

4.4.1 Calibration mode. While in Calibration Mode, the model input field will 

by faded out, as it does not apply to this mode. The user will use a browser to select a file 

containing the input X and corresponding Y data, which will have been arranged 

previously into a standard format by a separate program. The user will then have the 

option to specify the number of PLS components for each of the broad base, carbonate, 

and non-carbonate models, or allow the program to select an appropriate number 

automatically according to a standard procedure outlined below. The user then simply 

presses the ‘Run’ button on the GUI. 

4.4.1.1 Calibration – automatic component selection. If the user wishes the 

program to select a number of PLS components automatically, the program will apply all 

of the finalized pre-processing steps; removal of negative values, normalization of 

spectra, and Y-Scaling, to the raw data sets. It will then attempt to calibrate the model 

with 25 PLS components, including the optional cross-validation function. It will then 

search the second row of the ‘PCTVAR’ output matrix until it finds a PLS component 

which explains less than 1% additional variation in the known values, and will store a 



90 

 

number equaling one less than this count. It will then recalibrate the model using that 

number of PLS components. The program will then divide the data sets into samples 

known to contain more or less than 15% CaO; which was selected as a reasonable value 

given past results as a simple division between carbonate and non-carbonate rocks. Note 

that this value may be changed, if necessary. The program then repeats the calibration for 

each of the two specialized models, and the user is prompted to save the 3 models as a 

singular file which can then be easily selected for testing purposes. 

4.4.1.2 Calibration – manual component selection. If the user chooses to 

manually specify a number of PLS components, the program will run normally, but use 

the input numbers of PLS components instead of selecting one automatically whenever a 

number of PLS components is required, and the program will store the ‘PCTVAR’ matrix 

produced for each model. Once all three models are calibrated, the program will display 

all three of the ‘PCTVAR’ matrices along with the total amount of variation in known 

values explained, and the user will be prompted to either rerun the program using 

different numbers of PLS components, or simply save the produced models. 

4.4.2 Testing mode. While in Testing Mode, the options to use automatic or 

manual PLS component selection are faded out, as they are not necessary for this mode. 

The user is provided with browsers to select a file or folder containing unknown sample 

input LIBS data, and a file containing the previously calibrated models. The user then 

simply needs to press the ‘Run’ button on the GUI to obtain a predicted chemical 

composition for the unknown sample.  
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 When run, the program will automatically compile the input sample data, and 

apply all pre-processing steps, as previously, to adjust the raw data to a useable form. The 

program will then perform the normal matrix operations required to produce an output 

(see Appendix A), and apply the reverse of the Y-Scaling adjustments, as per the 

maximum and minimum composition values stored in the model file. The program will 

then identify whether the sample is a carbonate or non-carbonate rock based on this initial 

prediction, and then utilize the appropriate model to make a more accurate prediction 

through the same method. Next, the program will determine an average and standard 

deviation for each compound from the predicted values. These values are then displayed 

for the user and the user is prompted to input a confidence percentile, which will cause 

the program to calculate a corresponding appropriate confidence interval for each 

predicted value. When it has done so and displayed these intervals, or if the user does not 

require a confidence interval, the user will be prompted to save the predictions. 
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Chapter 5  

Conclusions 

5.1 Summary of Findings 

Throughout this study, Laser-Induced Breakdown Spectroscopy was used to 

obtain characteristic light spectra corresponding to various types of aggregate stones 

collected from various quarries and sources in New Jersey and surrounding states. X-Ray 

Fluorescence tests were performed by the New Jersey Department of Transportation to 

obtain the chemical compositions of each stone, assuming all elements to be bound in 

oxides, and Partial Least Squares Regression analysis was used to develop predictive 

models using these known values corresponding to each collected spectrum of light.  

 Throughout this research, a variety of tests were conducted and system timing and 

laser energy emission were optimized. The final, and most reliable timing was 

determined to use a flashlamp-Q-switch delay of 400 µs and a spectrometer delay of 6.3 

µs for the Quantel, Brilliant B laser used for lab testing. Alternative testing setups were 

considered, including using a higher energy laser pulse in conjunction with a beam 

splitter, and/or using radiofrequency (RF) heating to extend the useful life of the plasma 

glow resulting from a laser pulse striking a sample. It was determined that the beam 

splitter arrangement resulted in a less focused laser beam striking the sample, leading to 

less consistent results, and the RF enhancement system was not determined to produce 

significant improvement in test results, and would be too cumbersome to be implemented 

in the field. For these reasons neither of these alternatives was selected for continued use. 

It was determined that by collecting test data as the sum of the light emitted following 
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many laser pulses, variability in test data due to randomness in the system became less 

significant, and this strategy continued to be used. 

 Various combinations of data pre-processing techniques were used in attempts to 

identify the strategy which would produce the most accurate and reliable predictive 

model. While applying center clipping or other baseline subtraction techniques was not 

found to significantly improve model accuracy, it continued to be used to remove 

negative light intensity values caused by signal noise. The selected optimal data pre-

processing strategy was found to be the following: 

- Center Clipping with a threshold of 0 was applied to remove negative values 

caused by signal noise from the data.  

- Each collected spectrum was intensity-normalized such that the sum of all light 

intensity values was 1. 

- Known chemical composition values were scaled to values between 0 and 1 so 

that the calibration algorithm would consider each compound with equal priority. 

The reverse adjustments were then applied to values predicted by the model. 

The adjusted spectra were then used to develop predictive models using PLSR. 

The models were calibrated using a number of PLS components such that less than 1% of 

the total variation in the known values would be explained by adding another. After 

considering a combination of data pre-processing and model calibration strategies, it was 

determined that the most accurate and reliable results would be obtained by first using a 

broad-base model developed through this technique to determine whether a sample is a 

carbonate or non-carbonate rock, before applying a model calibrated using only samples 
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within that sub-set, but otherwise calibrated the same way; using the same spectra data 

pre-processing as above. This split model training strategy results in two independent 

models which consider a more narrow range of possibilities, allowing each to be more 

specialized and accurate overall, and reducing the influence of chemical matrix effects 

within each. This combined split training and Y-Scaling method was found to produce 

very similar values when compared to X-Ray Fluorescence results. 

5.2 Recommendations and Feasibility 

This research shows that using LIBS as a means of in-situ analysis of aggregate 

chemical composition is feasible, and it should be feasible to interpret these results for 

quality control of aggregate mineralogy. While this alternative testing method is not 

intended to replace traditional testing methods, it can be used for rapid analyses in the 

field to obtain reasonably accurate and consistent results without significantly disrupting 

construction timelines. Such a system may be transported without the need for 

specialized equipment beyond a hatchback truck or similar vehicle, and field testing will 

begin in the near future while the research team finalizes the logistics of the system’s 

transport and maintenance. Based on these findings, the research team recommends that 

such a system be implemented for initially small-scale use so as to monitor for remaining 

issues with the system, and increase use if no major issues are encountered.  

 Given the results of the model development throughout this research, it became 

evident that using a variety of stone types to calibrate the predictive models generally 

improved accuracy overall. It is however entirely possible that an aggregate stone 

encountered will be significantly different than samples used to calibrate the model, and 
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this model will not be expected to perform well with such samples. Given this and past 

experience, the research team recommends improving and updating the model over time 

as new samples with known compositions become available. To better facilitate 

continued development, the research team has developed a simple, user-friendly program 

so that new data could be added to the data sets used to calibrate the model, and revised 

models can be rapidly developed with minimal user inputs. This program also facilitates 

testing unknown sample data rapidly, with minimal user inputs so as to improve the 

speed at which accurate predictions can be obtained.  

5.3 Future Work 

- Continue refining predictive models as new samples become available. 

- Develop a standard method of interpreting chemical composition predictions in 

terms of aggregate mineralogy. 

- Complete field testing setup, confirm validity of existing models for use with data 

collected by this new system, and conduct field tests. 

- Finalize system transport methods. 

- Determine required particle morphological characteristics. 

- Consider various imaging techniques for bulk analysis of aggregate stone samples 

in the field. 

- Select the most appropriate method and develop models (if necessary) to 

determine morphological traits using this method.  

- Consider the feasibility of using this method in the field as a means of in-situ 

quality control.  
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- Develop a user manual and train NJDOT staff in the use of mineralogical and 

morphological quality control systems and models. 
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Appendix A 

PLSR Algorithm and Simple Example 

plsregress function as per MATLAB 2014 (Copyright 2007-2010 The MathWorks, Inc.) 

 

function [Xloadings,Yloadings,Xscores,Yscores, ... 
                    beta,pctVar,mse,stats] = plsregress(X,Y,ncomp,varargin) 
%PLSREGRESS Partial least squares regression. 
%   [XLOADINGS,YLOADINGS] = PLSREGRESS(X,Y,NCOMP) computes a partial least 
%   squares regression of Y on X, using NCOMP PLS components or latent 
%   factors, and returns the predictor and response loadings.  X is an N-by-P 
%   matrix of predictor variables, with rows corresponding to observations, 
%   columns to variables.  Y is an N-by-M response matrix.  XLOADINGS is a 
%   P-by-NCOMP matrix of predictor loadings, where each row of XLOADINGS 
%   contains coefficients that define a linear combination of PLS components 
%   that approximate the original predictor variables.  YLOADINGS is an 
%   M-by-NCOMP matrix of response loadings, where each row of YLOADINGS 
%   contains coefficients that define a linear combination of PLS components 
%   that approximate the original response variables. 
% 
%   [XLOADINGS,YLOADINGS,XSCORES] = PLSREGRESS(X,Y,NCOMP) returns the 
%   predictor scores, i.e., the PLS components that are linear combinations of 
%   the variables in X.  XSCORES is an N-by-NCOMP orthonormal matrix with rows 
%   corresponding to observations, columns to components. 
% 
%   [XLOADINGS,YLOADINGS,XSCORES,YSCORES] = PLSREGRESS(X,Y,NCOMP) 
%   returns the response scores, i.e., the linear combinations of the 
%   responses with which the PLS components XSCORES have maximum covariance. 
%   YSCORES is an N-by-NCOMP matrix with rows corresponding to observations, 
%   columns to components.  YSCORES is neither orthogonal nor normalized. 
% 
%   PLSREGRESS uses the SIMPLS algorithm, and first centers X and Y by 
%   subtracting off column means to get centered variables X0 and Y0. 
%   However, it does not rescale the columns.  To perform partial least 
%   squares regression with standardized variables, use ZSCORE to normalize X 
%   and Y. 
% 
%   If NCOMP is omitted, its default value is MIN(SIZE(X,1)-1, SIZE(X,2)). 
% 
%   The relationships between the scores, loadings, and centered variables X0 
%   and Y0 are 
% 
%      XLOADINGS = (XSCORES\X0)' = X0'*XSCORES, 
%      YLOADINGS = (XSCORES\Y0)' = Y0'*XSCORES, 
% 
%   i.e., XLOADINGS and YLOADINGS are the coefficients from regressing X0 and 
%   Y0 on XSCORES, and XSCORES*XLOADINGS' and XSCORES*YLOADINGS' are the PLS 
%   approximations to X0 and Y0.  PLSREGRESS initially computes YSCORES as 
% 
%      YSCORES = Y0*YLOADINGS = Y0*Y0'*XSCORES, 
% 
%   however, by convention, PLSREGRESS then orthogonalizes each column of 
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%   YSCORES with respect to preceding columns of XSCORES, so that 
%   XSCORES'*YSCORES is lower triangular. 
% 
%   [XL,YL,XS,YS,BETA] = PLSREGRESS(X,Y,NCOMP,...) returns the PLS regression 
%   coefficients BETA.  BETA is a (P+1)-by-M matrix, containing intercept 
%   terms in the first row, i.e., Y = [ONES(N,1) X]*BETA + Yresiduals, and 
%   Y0 = X0*BETA(2:END,:) + Yresiduals. 
% 
%   [XL,YL,XS,YS,BETA,PCTVAR] = PLSREGRESS(X,Y,NCOMP) returns a 2-by-NCOMP 
%   matrix PCTVAR containing the percentage of variance explained by the 
%   model.  The first row of PCTVAR contains the percentage of variance 
%   explained in X by each PLS component and the second row contains the 
%   percentage of variance explained in Y. 
% 
%   [XL,YL,XS,YS,BETA,PCTVAR,MSE] = PLSREGRESS(X,Y,NCOMP) returns a 
%   2-by-(NCOMP+1) matrix MSE containing estimated mean squared errors for 
%   PLS models with 0:NCOMP components.  The first row of MSE contains mean 
%   squared errors for the predictor variables in X and the second row 
%   contains mean squared errors for the response variable(s) in Y. 
% 
%   [XL,YL,XS,YS,BETA,PCTVAR,MSE] = PLSREGRESS(...,'PARAM1',val1,...) allows 
%   you to specify optional parameter name/value pairs to control the 
%   calculation of MSE.  Parameters are: 
% 
%      'CV'      The method used to compute MSE.  When 'CV' is a positive 
%                integer K, PLSREGRESS uses K-fold cross-validation.  Set 
%                'CV' to a cross-validation partition, created using 
%                CVPARTITION, to use other forms of cross-validation.  When 
%                'CV' is 'resubstitution', PLSREGRESS uses X and Y both to 
%                fit the model and to estimate the mean squared errors, 
%                without cross-validation.  The default is 'resubstitution'. 
% 
%      'MCReps'  A positive integer indicating the number of Monte-Carlo 
%                repetitions for cross-validation.  The default value is 1. 
%                'MCReps' must be 1 if 'CV' is 'resubstitution'. 
%       
%      'Options' A structure that specifies options that govern how PLSREGRESS 
%                performs cross-validation computations. This argument can be 
%                created by a call to STATSET. PLSREGRESS uses the following  
%                fields of the structure: 
%                    'UseParallel' 
%                    'UseSubstreams' 
%                    'Streams' 
%                For information on these fields see PARALLELSTATS. 
%                NOTE: If supplied, 'Streams' must be of length one. 
% 
%    
%   [XL,YL,XS,YS,BETA,PCTVAR,MSE,STATS] = PLSREGRESS(X,Y,NCOMP,...) returns a 
%   structure that contains the following fields: 
%       W            P-by-NCOMP matrix of PLS weights, i.e., XSCORES = X0*W 
%       T2           The T^2 statistic for each point in XSCORES 
%       Xresiduals   The predictor residuals, i.e. X0 - XSCORES*XLOADINGS' 
%       Yresiduals   The response residuals, i.e. Y0 - XSCORES*YLOADINGS' 
% 
%   Example: Fit a 10 component PLS regression and plot the cross-validation 
%   estimate of MSE of prediction for models with up to 10 components.  Plot 
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%   the observed vs. the fitted response for the 10-component model. 
% 
%      load spectra 
%      [xl,yl,xs,ys,beta,pctvar,mse] = plsregress(NIR,octane,10,'CV',10); 
%      plot(0:10,mse(2,:),'-o'); 
%      octaneFitted = [ones(size(NIR,1),1) NIR]*beta; 
%      plot(octane,octaneFitted,'o'); 
% 
%   See also PCA, BIPLOT, CANONCORR, FACTORAN, CVPARTITION, STATSET, 
%            PARALLELSTATS, RANDSTREAM. 
  
% References: 
%    [1] de Jong, S. (1993) "SIMPLS: an alternative approach to partial least squares 
%        regression", Chemometrics and Intelligent Laboratory Systems, 18:251-263. 
%    [2] Rosipal, R. and N. Kramer (2006) "Overview and Recent Advances in Partial 
%        Least Squares", in Subspace, Latent Structure and Feature Selection: 
%        Statistical and Optimization Perspectives Workshop (SLSFS 2005), 
%        Revised Selected Papers (Lecture Notes in Computer Science 3940), C. 
%        Saunders et al. (Eds.) pp. 34-51, Springer. 
  
%   Copyright 2007-2010 The MathWorks, Inc. 
  

  
if nargin < 2 
    error(message('stats:plsregress:TooFewInputs')); 
end 
  
[n,dx] = size(X); 
ny = size(Y,1); 
if ny ~= n 
    error(message('stats:plsregress:SizeMismatch')); 
end 
  
% Return at most maxncomp PLS components 
maxncomp = min(n-1,dx); 
if nargin < 3 
    ncomp = maxncomp; 
elseif ~isscalar(ncomp) || ~isnumeric(ncomp) || (ncomp~=round(ncomp)) || (ncomp<=0) 
    error(message('stats:plsregress:BadNcomp')); 
elseif ncomp > maxncomp 
    error(message('stats:plsregress:MaxComponents', maxncomp)); 
end 
  
names = {'cv'                  'mcreps'            'options'}; 
dflts = {'resubstitution'        1                      []   }; 
[cvp,mcreps,ParOptions] = internal.stats.parseArgs(names, dflts, varargin{:}); 
  
if isnumeric(cvp) && isscalar(cvp) && (cvp==round(cvp)) && (0<cvp) && (cvp<=n) 
    % ok, cvp is a kfold value. It will be passed as such to crossval. 
elseif isequal(cvp,'resubstitution') 
    % ok 
elseif isa(cvp,'cvpartition') 
    if strcmp(cvp.Type,'resubstitution') 
        cvp = 'resubstitution'; 
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    else 
        % ok 
    end 
else 
    error(message('stats:plsregress:InvalidCV')); 
end 
  
if ~(isnumeric(mcreps) && isscalar(mcreps) && (mcreps==round(mcreps)) && (0<mcreps)) 
    error(message('stats:plsregress:InvalidMCReps')); 
elseif mcreps > 1 && isequal(cvp,'resubstitution') 
    error(message('stats:plsregress:InvalidResubMCReps')); 
end 
  
% Center both predictors and response, and do PLS 
meanX = mean(X,1); 
meanY = mean(Y,1); 
X0 = bsxfun(@minus, X, meanX); 
Y0 = bsxfun(@minus, Y, meanY); 
  
if nargout <= 2 
    [Xloadings,Yloadings] = simpls(X0,Y0,ncomp); 
     
elseif nargout <= 4 
    [Xloadings,Yloadings,Xscores,Yscores] = simpls(X0,Y0,ncomp); 
     
else 
    % Compute the regression coefs, including intercept(s) 
    [Xloadings,Yloadings,Xscores,Yscores,Weights] = simpls(X0,Y0,ncomp); 
    beta = Weights*Yloadings'; 
    beta = [meanY - meanX*beta; beta]; 
     
    % Compute the percent of variance explained for X and Y 
    if nargout > 5 
        pctVar = [sum(abs(Xloadings).^2,1) ./ sum(sum(abs(X0).^2,1)); 
                  sum(abs(Yloadings).^2,1) ./ sum(sum(abs(Y0).^2,1))]; 
    end 
     
    if nargout > 6 
        if isequal(cvp,'resubstitution') 
            % Compute MSE for models with 0:ncomp PLS components, by 
            % resubstitution.  CROSSVAL can handle this, but don't waste time 
            % fitting the whole model again. 
            mse = zeros(2,ncomp+1,class(pctVar)); 
            mse(1,1) = sum(sum(abs(X0).^2, 2)); 
            mse(2,1) = sum(sum(abs(Y0).^2, 2)); 
            for i = 1:ncomp 
                X0reconstructed = Xscores(:,1:i) * Xloadings(:,1:i)'; 
                Y0reconstructed = Xscores(:,1:i) * Yloadings(:,1:i)'; 
                mse(1,i+1) = sum(sum(abs(X0 - X0reconstructed).^2, 2)); 
                mse(2,i+1) = sum(sum(abs(Y0 - Y0reconstructed).^2, 2)); 
            end 
            mse = mse / n; 
            % We now have the reconstructed values for the full model to use in 
            % the residual calculation below 
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        else 
            % Compute MSE for models with 0:ncomp PLS components, by cross-validation 
            mse = plscv(X,Y,ncomp,cvp,mcreps,ParOptions); 
            if nargout > 7 
                % Need these for the residual calculation below 
                X0reconstructed = Xscores*Xloadings'; 
                Y0reconstructed = Xscores*Yloadings'; 
            end 
        end 
    end 
     
    if nargout > 7 
        % Save the PLS weights and compute the T^2 values. 
        stats.W = Weights; 
        stats.T2 = sum( bsxfun(@rdivide, abs(Xscores).^2, var(Xscores,[],1)) , 2); 
         
        % Compute X and Y residuals 
        stats.Xresiduals = X0 - X0reconstructed; 
        stats.Yresiduals = Y0 - Y0reconstructed; 
    end 
end 
  

  
%------------------------------------------------------------------------------  
%SIMPLS Basic SIMPLS.  Performs no error checking. 
function [Xloadings,Yloadings,Xscores,Yscores,Weights] = simpls(X0,Y0,ncomp) 
  
[n,dx] = size(X0); 
dy = size(Y0,2); 
  
% Preallocate outputs 
outClass = superiorfloat(X0,Y0); 
Xloadings = zeros(dx,ncomp,outClass); 
Yloadings = zeros(dy,ncomp,outClass); 
if nargout > 2 
    Xscores = zeros(n,ncomp,outClass); 
    Yscores = zeros(n,ncomp,outClass); 
    if nargout > 4 
        Weights = zeros(dx,ncomp,outClass); 
    end 
end 
  
% An orthonormal basis for the span of the X loadings, to make the successive 
% deflation X0'*Y0 simple - each new basis vector can be removed from Cov 
% separately. 
V = zeros(dx,ncomp); 
  
Cov = X0'*Y0; 
for i = 1:ncomp 
    % Find unit length ti=X0*ri and ui=Y0*ci whose covariance, ri'*X0'*Y0*ci, is 
    % jointly maximized, subject to ti'*tj=0 for j=1:(i-1). 
    [ri,si,ci] = svd(Cov,'econ'); ri = ri(:,1); ci = ci(:,1); si = si(1); 
    ti = X0*ri; 
    normti = norm(ti); ti = ti ./ normti; % ti'*ti == 1 



106 

 

    Xloadings(:,i) = X0'*ti; 
     
    qi = si*ci/normti; % = Y0'*ti 
    Yloadings(:,i) = qi; 
     
    if nargout > 2 
        Xscores(:,i) = ti; 
        Yscores(:,i) = Y0*qi; % = Y0*(Y0'*ti), and proportional to Y0*ci 
        if nargout > 4 
            Weights(:,i) = ri ./ normti; % rescaled to make ri'*X0'*X0*ri == ti'*ti == 1 
        end 
    end 
  
    % Update the orthonormal basis with modified Gram Schmidt (more stable), 
    % repeated twice (ditto). 
    vi = Xloadings(:,i); 
    for repeat = 1:2 
        for j = 1:i-1 
            vj = V(:,j); 
            vi = vi - (vj'*vi)*vj; 
        end 
    end 
    vi = vi ./ norm(vi); 
    V(:,i) = vi; 
  
    % Deflate Cov, i.e. project onto the ortho-complement of the X loadings. 
    % First remove projections along the current basis vector, then remove any 
    % component along previous basis vectors that's crept in as noise from 
    % previous deflations. 
    Cov = Cov - vi*(vi'*Cov); 
    Vi = V(:,1:i); 
    Cov = Cov - Vi*(Vi'*Cov); 
end 
  
if nargout > 2 
    % By convention, orthogonalize the Y scores w.r.t. the preceding Xscores, 
    % i.e. XSCORES'*YSCORES will be lower triangular.  This gives, in effect, only 
    % the "new" contribution to the Y scores for each PLS component.  It is also 
    % consistent with the PLS-1/PLS-2 algorithms, where the Y scores are computed 
    % as linear combinations of a successively-deflated Y0.  Use modified 
    % Gram-Schmidt, repeated twice. 
    for i = 1:ncomp 
        ui = Yscores(:,i); 
        for repeat = 1:2 
            for j = 1:i-1 
                tj = Xscores(:,j); 
                ui = ui - (tj'*ui)*tj; 
            end 
        end 
        Yscores(:,i) = ui; 
    end 
end 
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%------------------------------------------------------------------------------ 
%PLSCV Efficient cross-validation for X and Y mean squared error in PLS. 
function mse = plscv(X,Y,ncomp,cvp,mcreps,ParOptions) 
  
[n,dx] = size(X); 
  
% Return error for as many components as asked for; some columns may be NaN 
% if ncomp is too large for CV. 
mse = NaN(2,ncomp+1); 
  
% The CV training sets are smaller than the full data; may not be able to fit as 
% many PLS components.  Do the best we can. 
if isa(cvp,'cvpartition') 
    cvpType = 'partition'; 
    maxncomp = min(min(cvp.TrainSize)-1,dx); 
    nTest = sum(cvp.TestSize); 
else 
    cvpType = 'Kfold'; 
%    maxncomp = min(min( floor((n*(cvp-1)/cvp)-1), dx)); 
    maxncomp = min( floor((n*(cvp-1)/cvp)-1), dx); 
    nTest = n; 
end 
if ncomp > maxncomp 
    warning(message('stats:plsregress:MaxComponentsCV', maxncomp)); 
    ncomp = maxncomp; 
end 
  
% Cross-validate sum of squared errors for models with 1:ncomp components, 
% simultaneously.  Sum the SSEs over CV sets, and compute the mean squared 
% error 
CVfun = @(Xtr,Ytr,Xtst,Ytst) sseCV(Xtr,Ytr,Xtst,Ytst,ncomp); 
sumsqerr = crossval(CVfun,X,Y,cvpType,cvp,'mcreps',mcreps,'options',ParOptions); 
mse(:,1:ncomp+1) = reshape(sum(sumsqerr,1)/(nTest*mcreps), [2,ncomp+1]); 
  

  
%------------------------------------------------------------------------------ 
%SSECV Sum of squared errors for cross-validation 
function sumsqerr = sseCV(Xtrain,Ytrain,Xtest,Ytest,ncomp) 
  
XmeanTrain = mean(Xtrain); 
YmeanTrain = mean(Ytrain); 
X0train = bsxfun(@minus, Xtrain, XmeanTrain); 
Y0train = bsxfun(@minus, Ytrain, YmeanTrain); 
  
% Get and center the test data 
X0test = bsxfun(@minus, Xtest, XmeanTrain); 
Y0test = bsxfun(@minus, Ytest, YmeanTrain); 
  
% Fit the full model, models with 1:(ncomp-1) components are nested within 
[Xloadings,Yloadings,~,~,Weights] = simpls(X0train,Y0train,ncomp); 
XscoresTest = X0test * Weights; 
  
% Return error for as many components as the asked for. 
outClass = superiorfloat(Xtrain,Ytrain); 
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sumsqerr = zeros(2,ncomp+1,outClass); % this will get reshaped to a row by CROSSVAL 
  
% Sum of squared errors for the null model 
sumsqerr(1,1) = sum(sum(abs(X0test).^2, 2)); 
sumsqerr(2,1) = sum(sum(abs(Y0test).^2, 2)); 
  
% Compute sum of squared errors for models with 1:ncomp components 
for i = 1:ncomp 
    X0reconstructed = XscoresTest(:,1:i) * Xloadings(:,1:i)'; 
    sumsqerr(1,i+1) = sum(sum(abs(X0test - X0reconstructed).^2, 2)); 
  
    Y0reconstructed = XscoresTest(:,1:i) * Yloadings(:,1:i)'; 
    sumsqerr(2,i+1) = sum(sum(abs(Y0test - Y0reconstructed).^2, 2)); 
end 
 

 

Simpls algorithm example: 

For sake of demonstration a simple example is provided. The input matrices X and Y are 

shown below. The matrices are composed of 9 rows and 2 columns each. The X and Y 

matrix must have the same number of rows, indicating a matching number of independent 

data sets in X and number of dependent sets in Y. The number of columns does not need 

to be identical; each column in X corresponds to a particular measured quantity, while 

each column in Y corresponds to a particular dependent trait or value. 

 

Example X 

195 45 

185 30 

156 90 

181 45 

164 30 

158 0 

185 15 

186 105 

187 45 
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Example Y 

95 44 

73 43 

63 36 

80 45 

70 40 

55 38 

89 44 

78 45 

91 43 

 

 

Prior to running the simpls algorithm, the variance must be determined for each 

feature or trait. This is done by simply determining the average of the values in each 

separate column for both X and Y and subtracting this value from each number in the 

corresponding column. In the example, the averages of the values in the first and second 

column of X are 177.44 and 45.00, respectively, while the averages of the values in the 

first and second columns of Y are 77.11 and 42.00, respectively. The new matrices are 

referred to as X0 and Y0. X0 and Y0 for the above example are as below. 

 

Example X0 

17.56 0 

7.56 -15.00 

-21.44 45.00 

3.56 0 

-13.44 -15.00 

-19.44 -45.00 

7.56 -30.00 

8.56 60.00 

9.56 0 
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Example Y0 

17.89 2.00 

-4.11 1.00 

-14.11 -6.00 

2.89 3.00 

-7.11 -2.00 

-22.11 -4.00 

11.89 2.00 

0.89 3.00 

13.89 1.00 

 

 

The major purpose of this procedure is to decompose the X and Y matrices into 

the products of two matrices each; the scores and loadings matrices, plus an error matrix 

each. 

The X loadings matrix will have a number of rows equal to the number of 

columns in X (in this case 2) and a number of columns equal to the number of PLS 

components used. This number may be selected based on results of previous models (as 

long as it is a positive integer) or may use the default maximum number of components 

allowable, which is the lesser of the number of columns in X or one less than the number 

of rows in X. For this example, the maximum number of PLS components will be used (2 

for this case), although generally one should attempt to use the least PLS components 

possible which will still explain sufficient variation in known data. The Y loadings matrix 

will have a number of rows equal to the number of columns in Y (2) and a number of 

columns equal to the number of PLS components to be used (2). 

The X and Y scores matrices will have a number of rows equal to the number of 

rows in X and Y (9), and a number of columns equal to the number of PLS components 

to be used (2). 
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As this procedure is typically done via a computer program or function, it is 

generally advisable to pre-allocate the size and memory for these matrices in advance. 

An orthonormal basis matrix, V, with a number of rows equal to the number of 

columns in X and a number of columns equal to the number of PLS components to be 

used throughout this procedure, will be used and space should be pre-allocated. In this 

case it will be a 2x2 matrix. 

A starting Covariance matrix is then determined as the product of the transpose of 

the X0 matrix and the Y0 matrix. The covariance matrix for the example is shown below. 

Each orthonormal basis vector used in the procedure below will be removed from the 

covariance matrix separately. 

 

Example Initial Covariance Matrix 

1351.6 337.0 

225.0 45.0 

 

 

The following steps are a cyclic process which must be repeated a number of 

times equal to the number of PLS components to be used. In this case, it is only necessary 

to go through this process twice. 

The following steps will be used to determine two unit vectors, t and u, whose 

covariance is maximized, while the product of the transpose of the t vector and the vector 

formed by any previous column in the X scores matrix is 0. 
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For each cycle, a Single Value Decomposition is applied to the current covariance 

matrix, decomposing it into three matrices, r, c, and s. The values for each of these 

matrices for the example and the first cycle are given below.  

 

Example r matrix – Cycle 1 

-0.987 

-0.162 

 

 

Example s matrix – Cycle 1 

1411.7 

 

 

Example c matrix – Cycle 1 

-0.971 

-0.241 

 

 

A new matrix, t (which is this cycle’s contribution to the X scores matrix), is 

defined as the product of the X0 matrix and the r matrix from the Single Value 

Decomposition of the Covariance matrix. The values in this matrix are then normalized to 

form a unit vector; each value in the vector is divided by the Euclidian distance of the 

original vector, which is effectively the total length of the vector within n-dimensional 

space. The normalized t vector is shown below. The column of the X loadings matrix 

corresponding to the cycle number is defined by the product of the transpose of the X0 

matrix and the normalized t vector, as shown below. In this first cycle, the second column 

has not yet been defined, and values of 0 are entered as placeholders. 
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Example normalized t vector – Cycle 1 

-0.397 

-0.115 

0.318 

-0.080 

0.360 

0.607 

-0.059 

-0.417 

-0.216 

 

 

Example X loadings – Cycle 1 

-37.65 0 

-39.93 0 

 

 

The corresponding column in the Y loadings matrix is defined by a vector, q, 

which is defined as the product of the s and c matrices, which is then normalized to the 

length of the original t vector, as shown below. 

 

Example Y loadings – Cycle 1 

-31.39 0 

-7.79 0 

 

 

The corresponding column in the X scores matrix is defined by the normalized t 

vector, and the corresponding column of the Y scores is defined as the product of the Y0 

matrix and q vector. The corresponding column in the Weights matrix, which will be 

used later to determine a predictive model, is defined by dividing the r matrix by the 
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length of the original t vector to normalize it. Each of these matrices for the first cycle is 

as shown below. 

 

Example X scores – Cycle 1 

-0.397 0 

-0.115 0 

0.318 0 

-0.080 0 

0.360 0 

0.607 0 

-0.059 0 

-0.417 0 

-0.216 0 

 

 

Example Y scores – Cycle 1 

-577.27 0 

121.30 0 

489.80 0 

-114.07 0 

238.86 0 

725.42 0 

-388.88 0 

-51.27 0 

-443.89 0 

 

 

Example Weights – Cycle 1 

-0.0226 0 

-0.0037 0 
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The orthonormal basis is then revised in response to the previous additions to the 

above matrices using a modified Gram-Schmidt procedure. A vector, v, is defined 

containing the entries which were just added to the X loadings matrix, as shown below. 

 

Example Initial v – Cycle 1 

-37.65 

-39.93 

 

 

The following is then repeated twice: 

For a number of times equal to one less than the number of the cycle (for the first 

cycle, this step is not performed), a new vector is defined as the number of the column of 

the orthonormal basis (V) matrix corresponding to the sub-loop and repetition of this 

step. The above initial v vector is then revised by subtracting the product of the transpose 

of the orthonormal basis vector, the v vector, and the orthonormal basis vector again. 

This is repeated for the appropriate number of cycles, and this full sub-cycle procedure is 

repeated a second time for stability.  

After the above procedure has been repeated twice, the v vector is then 

normalized to its Euclidian distance, and this new vector then defines the column of the 

orthonormal basis matrix, V, corresponding to the cycle number. As the above procedure 

is not performed for the first cycle, the original v vector above for this example is simply 

normalized and input as the first column of the orthonormal basis matrix, as shown 

below. 
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Example Normalized v – Cycle 1 

-0.686 

-0.728 

 

 

Orthonormal Basis, V – Cycle 1 

-0.686 0 

-0.728 0 

 

 

Finally, for each cycle, the Covariance matrix is deflated by projecting onto the 

ortho-complement of the X loadings. Projections from the current cycle are removed first, 

followed by components along previous basis vectors to reduce effects of noise left 

behind from previous deflations. To do this, the v vector is multiplied by the product of 

the transpose of the v vector and the current Covariance matrix, and this resulting matrix 

is subtracted from the current Covariance matrix. Then, a matrix composed of the first n 

columns of the orthonormal basis matrix, V, (where n is the number of the cycle) is 

multiplied by the product of the transpose of this same matrix and the updated 

Covariance matrix, and this resulting matrix is subtracted from the updated Covariance 

matrix. The first and second updated Covariance matrices for the first cycle, and the 

modified orthonormal basis matrix used in calculation are shown below. Note that the 

effects of noise from previous deflations are negligible, for the first several cycles. 

 

Covariance Matrix – Updated Once – Cycle 1 

603.18 155.94 

-568.72 -147.03 
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Modified Orthonormal Basis – Cycle 1 

-0.686 

-0.728 

 

 

Covariance Matrix – Updated Twice – Cycle 1 

603.18 155.94 

-568.72 -147.03 

 

 

The next cycle is then started. As it is only necessary to proceed through this 

cycle twice for the given example, each of the steps for the second cycle is shown below. 

A Single Value Decomposition is performed on the updated Covariance matrix to 

yield the r, s, and c matrices below. 

 

Example r matrix – Cycle 2 

-0.728 

0.686 

 

 

Example s matrix – Cycle 2 

856.3 

 

 

Example c matrix – Cycle 2 

-0.968 

-0.250 
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The resulting normalized t vector, and the new X and Y loadings matrices are 

shown below. 

 

Example normalized t vector – Cycle 2 

-0.184 

-0.228 

0.670 

-0.037 

-0.0073 

-0.241 

-0.376 

0.504 

-0.100 

 

 

Example X loadings – Cycle 2 

-37.65 -14.16 

-39.93 86.05 

 

 

Example Y loadings – Cycle 2 

-31.39 -11.96 

-7.79 -3.09 
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The resulting new X and Y scores and Weights matrices are shown below: 

 

Example X scores – Cycle 2 

-0.397 -0.184 

-0.115 -0.228 

0.318 0.670 

-0.080 -0.037 

0.360 -0.0073 

0.607 -0.241 

-0.059 -0.376 

-0.417 0.504 

-0.216 -0.100 

 

 

Example Y scores – Cycle 2 

-577.27 -220.06 

121.30 46.06 

489.80 187.26 

-114.07 -43.81 

238.86 91.20 

725.42 276.73 

-388.88 -148.33 

-51.27 -19.90 

-443.89 -169.15 

 

 

Example Weights – Cycle 2 

-0.0226 -0.0105 

-0.0037 0.0099 
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The initial v vector for this cycle is shown below. 

 

Example Initial v – Cycle 2 

-14.16 

86.05 

 

 

In the second cycle, the sub-cycle will only be performed once, but as always the 

other sub-cycle procedure will be performed twice. The orthonormal basis vector will be 

the same for each case because the sub-cycle is only performed once for the second cycle. 

The v vector after the first and second revisions is shown below. 

 

Example v After First Repetition – Cycle 2 

-50.45 

47.57 

 

 

Example v After Second Repetition – Cycle 2 

-50.45 

47.57 

 

 

 

 

 

 

 



121 

 

The normalized v vector for this cycle is shown below: 

 

Example Normalized v – Cycle 2 

-0.728 

0.686 

 

 

This results in the final orthonormal basis matrix: 

 

Orthonormal Basis, V – Cycle 2 

-0.686 -0.728 

-0.728 0.686 

 

 

The Covariance matrix is then deflated for the second cycle. The updated 

Covariance matrix and the orthonormal basis matrix used in the calculation are shown 

below. Note the small values in the once updated covariance matrix, which is noise left 

from the previous deflation. 

 

Covariance Matrix – Updated Once – Cycle 2 

0 0 

-0.114e-12 -0.028e-12 
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Modified Orthonormal Basis – Cycle 2 

-0.686 -0.728 

-0.728 0.686 

 

 

Covariance Matrix – Updated Twice – Cycle 2 

0 0 

0 0 

 

 

Finally, the X and Y scores matrices are adjusted such that the Y scores are 

orthagonalized to the previous X scores, so that the Y scores indicate only the new 

contribution for each corresponding PLS component. This is performed via another 

modified Gram-Schmidt procedure. 

For a number of cycles equal to the number of number of PLS components being 

used, a vector, u, is defined by the values in the column of the Y scores matrix 

corresponding to the PLS component being considered; which is also the cycle number.  

The following procedure is then repeated twice for each cycle: 

For a number of sub-cycles equal to one less than the number of the cycle (for the 

first cycle this step is skipped), a matrix equal to the product of the transpose of the 

vector formed by the nth column of the X scores matrix (where n is the number of the 

sub-cycle), the u vector, and the vector from X scores for this sub-cycle, is subtracted 

from the u vector.  
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The Y scores matrix is then updated such that the column corresponding to the 

current cycle is changes to the revised u matrix. The above procedure is demonstrated 

below: 

In the first cycle, the u matrix is not changed, so the first column of the Y scores 

matrix will remain unchanged, as shown below. 

 

Initial u vector – Cycle 1 

-577.27 

121.30 

489.80 

-114.07 

238.86 

725.42 

-388.88 

-51.27 

-443.89 

 

 

Modified Y scores – Cycle 1 

-577.27 -220.06 

121.30 46.06 

489.80 187.26 

-114.07 -43.81 

238.86 91.20 

725.42 276.73 

-388.88 -148.33 

-51.27 -19.90 

-443.89 -169.15 
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In the second cycle however, the u vector and consequently the Y scores matrix is 

adjusted. The initial u vector is below: 

 

Initial u vector – Cycle 2 

-220.06 

46.06 

187.26 

-43.81 

91.20 

276.73 

-148.33 

-19.90 

-169.15 

 

 

The vector from the X scores matrix will be the same throughout for the second cycle, 

and is shown below: 

 

X scores vector – Cycle 2 

-0.397 

-0.115 

0.318 

-0.080 

0.360 

0.607 

-0.059 

-0.417 

-0.216 
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The u vector after the first and second repetitions is shown below: 

 

Once Modified u vector – Cycle 2 

-61.48 

92.02 

60.44 

-11.69 

-52.54 

34.19 

-124.67 

146.57 

-82.83 

 

 

Twice Modified u vector – Cycle 2 

-61.48 

92.02 

60.44 

-11.69 

-52.54 

34.19 

-124.67 

146.57 

-82.83 
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The modified Y scores matrix is as shown: 

 

Modified Y scores – Cycle 2 

-577.27 -61.48 

121.30 92.02 

489.80 60.44 

-114.07 -11.69 

238.86 -52.54 

725.42 34.19 

-388.88 -124.67 

-51.27 146.57 

-443.89 -82.83 

 

 

This procedure yields the final X and Y scores, final X and Y loadings, and 

Weights matrices. Predictions can be made by multiplying a new X data set by the beta 

matrix.  

The beta matrix is determined by the following procedure: 

An initial beta matrix is defined as the product of the Weights matrix and the 

transpose of the Y loadings matrix, as shown below: 

 

Beta Matrix 

0.8355 0.2085 

-0.0015 -0.0016 

 

 

The beta matrix is then modified to add a row at the top of the matrix describing 

the intercepts. The intercepts row is calculated by subtracting the product of the vector 
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formed by the X column averages and the original beta matrix from the vector formed 

from the Y column averages. The resulting modified beta matrix is as shown: 

 

Final Beta Matrix with Intercepts 

-71.07 5.09 

0.8355 0.2085 

-0.0015 -0.0016 

 

 

Note that to make a prediction using this format for beta, it is necessary to modify 

an input X vector by adding an additional column on the left side containing a 1 to 

account for intercepts. For input X values of 160 and 120, the predicted Y values are 

62.43 and 38.24. The MatLAB algorithm also includes optional sections which will 

automatically conduct a cross-validation analysis, if desired.  
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Appendix B 

Known Sample Chemical Composition 

Below is a summary of XRF results provided by the NJDOT. Note that this list only 

includes samples used for model calibration. Additional samples and chemical 

composition results have recently been received and will be incorporated into future 

models. 
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