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RESEARCH ARTICLE

Human Bacterial Artificial Chromosome
(BAC) Transgenesis Fully Rescues
Noradrenergic Function in Dopamine
β-Hydroxylase Knockout Mice
Joseph F. Cubells1,2, Jason P. Schroeder1, Elizabeth S. Barrie3, Daniel F. Manvich1,
Wolfgang Sadee3, Tiina Berg1, Kristina Mercer1,4, Taylor A. Stowe1, L. Cameron Liles1,
Katherine E. Squires1, Andrew Mezher1, Patrick Curtin1, Dannie L. Perdomo4,
Patricia Szot5,6, David Weinshenker1*

1 Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, United States of
America, 2 Emory Autism Center, Department of Psychiatry and Behavioral Sciences, Emory University
School of Medicine, Atlanta, Georgia, United States of America, 3 Center for Pharmacogenomics, College of
Medicine, The Ohio State University, Columbus, Ohio, United States of America, 4 Graduate Program in
Genetics and Molecular Biology, Emory University, Atlanta, Georgia, United States of America, 5 MIRECC,
VA Puget Sound Health Care System, Seattle, Washington, United States of America, 6 Department of
Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington, United States of
America

* dweinshenker@genetics.emory.edu

Abstract
Dopamine β-hydroxylase (DBH) converts dopamine (DA) to norepinephrine (NE) in norad-

renergic/adrenergic cells. DBH deficiency prevents NE production and causes sympathetic

failure, hypotension and ptosis in humans and mice; DBH knockout (Dbh -/-) mice reveal

other NE deficiency phenotypes including embryonic lethality, delayed growth, and behav-

ioral defects. Furthermore, a single nucleotide polymorphism (SNP) in the human DBH
gene promoter (-970C>T; rs1611115) is associated with variation in serum DBH activity

and with several neurological- and neuropsychiatric-related disorders, although its impact

on DBH expression is controversial. Phenotypes associated with DBH deficiency are typi-

cally treated with L-3,4-dihydroxyphenylserine (DOPS), which can be converted to NE by

aromatic acid decarboxylase (AADC) in the absence of DBH. In this study, we generated

transgenic mice carrying a human bacterial artificial chromosome (BAC) encompassing the

DBH coding locus as well as ~45 kb of upstream and ~107 kb of downstream sequence to

address two issues. First, we characterized the neuroanatomical, neurochemical, physio-

logical, and behavioral transgenic rescue of DBH deficiency by crossing the BAC onto a

Dbh -/- background. Second, we compared human DBHmRNA abundance between trans-

genic lines carrying either a “C” or a “T” at position -970. The BAC transgene drove human

DBHmRNA expression in a pattern indistinguishable from the endogenous gene, restored

normal catecholamine levels to the peripheral organs and brain of Dbh -/-mice, and fully

rescued embryonic lethality, delayed growth, ptosis, reduced exploratory activity, and sei-

zure susceptibility. In some cases, transgenic rescue was superior to DOPS. However,
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allelic variation at the rs1611115 SNP had no impact on mRNA levels in any tissue. These

results indicate that the human BAC contains all of the genetic information required for tis-

sue-specific, functional expression of DBH and can rescue all measured Dbh deficiency

phenotypes, but did not reveal an impact of the rs11115 variant on DBH expression in mice.

Introduction
Successful gene therapy, in which introduction of an external DNA construct replaces an
absent or malfunctioning gene, will depend in large part on ensuring specific targeting of gene
expression to appropriate cell types. The rare human syndrome of dopamine β-hydroxylase
(DBH) deficiency results in severe orthostatic hypotension, ptosis, and high levels of circulating
dopamine (DA), which reflect the inability of noradrenergic cells to synthesize norepinephrine
(NE), resulting in absence of sympathetic noradrenergic tone [1, 2]. Human DBH deficiency
results from rare deleterious mutations in the DBH gene, which lead to absent or inadequate
expression of DBH protein [3].

Targeted disruption ofDbh in mice produces a precise model of DBH deficiency [4]. The
observations thatDbh -/-mice are born in substantially smaller proportions than predicted by
Mendelian expectations, and that surviving pups exhibit almost 100%mortality within the first
week of life [4], highlight the essential roles of DBH and NE in development and survival. Prenatal
and perinatal administration of L-3,4-dihydroxyphenylserine (DOPS), a hydroxylated precursor
that is converted to NE by the enzyme aromatic acid decarboxylase (AADC), restores NE synthe-
sis and rescues survival ofDbh -/- animals. The pre-natal mortality associated with theDbh-/-
phenotype arises from cardiovascular instability, which for unclear reasons stabilizes shortly after
birth, thus allowing withdrawal of DOPS support. Once DOPS-treated Dbh -/-mice are born,
they survive without pharmacological intervention, thereby allowing study of this interesting
mutant in adulthood in the absence of NE.Dbh -/-mice have been a useful tool in a variety of
investigations of the role of NE in behavior, including neurologically and psychiatrically relevant
phenotypes such as arousal [5–7], seizure susceptibility [8], anxiety- and depression-like behav-
iors [9, 10], learning andmemory [11, 12] and a variety of responses to drugs of abuse [13–18].

DBH activity can be measured in human serum, where the wide variation in enzyme activity
observed in the population reflects variations in levels of DBH protein derived from sympa-
thetic noradrenergic neurons and neurosecretory cells of the adrenal medulla [19]. Serum
DBH level is a genetic trait largely refractory to environmental influences [19–21]. Genotype at
-970C>T (rs1611115), a single nucleotide polymorphism (SNP) residing 970 bp upstream of
the transcriptional start site of the DBH gene, accounts for 30–50% of the variance in serum
DBH levels [22]. The C allele associates with substantially higher serum DBH activity than the
T allele, an observation that has been repeatedly replicated in human samples of diverse ances-
try [22–25]. However, because this SNP lies in the vast presumptive promoter region that con-
tains many other variants, demonstrating a cause-and-effect relationship has been difficult. A
genome-wide association study (GWAS) of serum DBH levels recently demonstrated that -970
C>T associates with variation in serum DBHmore strongly than any other marker tested
across the genome [26]. The foregoing observations prompted the hypothesis that -970C>T
associates with variation in serum DBH activity because it alters expression of the DBH gene,
which should be detectable at the mRNA level. Chen and colleagues [27] tested the function of
-970C>T in transient transfection assays of reporter plasmids containing each allele in the
context of approximately 3 kb of DBH upstream sequence. Their results supported the hypoth-
esis that -970C>T alters gene expression, but interestingly, yielded data suggesting the T allele
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associates with higher reporter expression than the C allele, a result that is opposite to that
expected from association studies of human serum DBH.

Barrie and colleagues [28] examined DBH mRNA expression in human tissues, providing
evidence that -970C>T associates with variation in DBH mRNA expression in liver (where
DBH is presumed to be present by virtue of hepatic sympathetic innervation), with the T allele
associating with lower DBHmRNA expression. However, there was no evidence for an associa-
tion of -970C>T with variation in DBHmRNA expression in the brain or adrenals. Thus,
available evidence suggests that the influence of -970C>T on expression of DBHmay be spe-
cific to sympathetic neurons. Interestingly, the association of variation at -970C>T with DBH
expression at the mRNA level in transient transfection assays [25] is in the opposite direction
expected from its association with serum DBH activity and in human liver [28]. The reason for
this set of observations remains unknown, although it is likely that the transient transfection
constructs lacked all of the pertinent regulatory sequences present in vivo.

The present study examined the in vivo function of -970C>T within the context of extensive
human genomic sequence naturally surrounding the variant. We used bacterial artificial chro-
mosome (BAC) constructs differing in sequence only at -970C>T to restore expression of
DBH in Dbh -/-mice, to test three hypotheses. First, that introduction of BAC constructs con-
taining the full human DBH gene and extensive surrounding sequence would rescue DBH
expression in Dbh -/-mice, resulting in correction of abnormal phenotypes associated with
absence of DBH and NE. Second, that the constructs would drive anatomically appropriate
expression of DBH. Third, that BAC constructs containing the C allele at DBH position -970
would drive greater expression of DBH within noradrenergic neurons than those containing
the T allele. Our results confirm the first two hypotheses, but not the third.

Materials and Methods

Animals
Dbh -/-mice on a mixed C57BL6/J and 129SvEv background were descendants of those pro-
duced by Thomas et al. [4] and maintained on a standard 12 hour light/dark cycle with food
and water available ad libitum except during behavioral testing. All procedures were conducted
in strict accordance with the NIH Guide for the Care and Use of Laboratory Animals and
approved by the Emory University Institutional Animal Care and Use Committee.

Bacterial artificial chromosome cloning
The human DBH gene, on chromosome 9q34.2, has 12 exons and is ~23 kb in length from
transcriptional start to transcriptional end. We chose the commercially available RP11-746P3
BAC (~ 175 kb) because it is likely to contain sufficient sequence both upstream (~ 45 kb) and
downstream (~ 107 kb) from DBH to include all necessary elements required for correct
expression. We obtained the BAC clone from BACPAC Resources, Children’s Hospital Oak-
land (Oakland, CA), isolated and purified the BAC using the Qiagen Large-Construct kit, and
sequenced all exons and intron-exon boundaries for DBH to ensure it retained the full-length
gene. We also sequenced the upstream sequence containing position –970 and determined that
the original BAC contained a “T” at position –970. We successfully inserted a unique AsiI
restriction enzyme site into the BAC vector backbone for later linearization. We then created a
second, “C” form of the BAC, by converting the “T” to a “C” at position –970 of the DBH gene,
using the protocol described by Yang and Shara [29]. Briefly, the BAC was stably transfected
into a strain of bacteria carrying recombinatory genes under the control of a temperature-sen-
sitive promoter. We then transformed the cells with our custom-designed oligonucleotide car-
rying the “C” allele and adjusted the temperature to allow recombination to occur. PCR served
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to screen for positive clones. Sequencing confirmed that the “C” and “T” BAC transgene con-
structs were complete and ready for pronuclear injection.

Preparation of BAC transgenic mice
BACs were purified with the Qiagen Large-Construct kit, linearized with AsiI, and isolated on
a pulse-field gel. The BAC DNA was then used to generate BAC transgenic mice on a FVB
background in the Emory University Mouse Transgenic and Gene Targeting Core Facility
(http://www.cores.emory.edu/tmc/index.html) using standard transgenic methods. PCR on
tail-snip DNA using human-specific primers corresponding to multiple sites on the transgene
confirmed that the human insert within the BAC had fully integrated, and that all exons of
human DBH were intact. We used 4 transgenic founders (two with the “C” allele and two with
the “T” allele) to establish 4 independent transgenic lines for further characterization. We then
crossed each of these lines onto a Dbh -/- background, which will be referred to as Dbh -/- BT
lines. We chose one of the “T” lines for extensive behavioral, physiological, and neurochemical
analysis. The other “T” line and the 2 other “C” lines were used exclusively to determine the
consequences of the -970C>T (rs1611115) polymorphism on mRNA expression.

Survival of Dbh -/- BTmice
Dbh -/- BTmales were crossed to Dbh +/- females. Offspring were genotyped at weaning (21
days), and the fraction of mice of each genotype was compared to the expected Mendelian
ratio. For comparison between the efficacy of genetic and pharmacological rescue of the Dbh
-/- lethal phenotype, we also crossed Dbh -/- without the BAC transgene with Dbh +/- females,
as described [30]. Briefly, pregnant Dbh +/- females were given the adrenergic receptor agonists
isoproterenol and phenylephrine (20 μg/ml each) + vitamin C (2 mg/ml) from E9.5-E14.5, and
DOPS (2 mg/ml + vitamin C 2 mg/ml) from E14.5-birth in their drinking water.

Ptosis
Ptosis was determined in adult (3–6 months) mice at a fixed distance and measuring the maxi-
mum separation between the eyelids, as described [30].

Novelty-induced locomotor activity
Mice were placed in locomotion recording chambers (transparent Plexiglas cages placed into a
rack with 7 infrared photobeams spaced 5 cm apart; San Diego Instruments Inc., La Jolla, CA),
and ambulations (consecutive beam breaks) were recorded for 30 min.

Flurothyl-induced seizures
Mice were placed in an air-tight Plexiglas chamber, and the volatile convulsant Bis(2,2,2-tri-
fluoroethyl) ether (flurothyl; Sigma Aldrich, St. Louis, MO) was dripped (20 μl/min) onto filter
paper from which it vaporized. Latency to generalized (tonic-clonic) seizure was measured, as
described [8].

Catecholamine measurement by HPLC
Levels of NE and DA were quantified using high-performance liquid chromatography coupled
with electrochemical detection using procedures similar to those described previously [31].
Briefly, mice were euthanized by CO2 asphyxiation, and brain, adrenal, and heart were isolated
and frozen on dry ice. Frozen tissue samples were initially prepared by adding 200 μl of ice-
cold 0.1 N perchloric acid containing 0.04% sodium metabisulfite and then centrifuged at 13.2
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x 1000 r.p.m. for 10 min at 4°C. A 50 μl aliquot of each sample was placed into a microcentri-
fuge tube and loaded into a refrigerated autosampler (G1329A, Agilent Technologies, Santa
Clara, CA), which injected 15 μl of each sample onto an Ultrasphere ODS 250 x 4.6 mm col-
umn, 5 μm (Beckman Coulter, Fullerton, CA) at a constant flow rate of 1.0 ml/min using a
mobile phase consisting of 0.1 mM ethylenediaminetetraacetic acid, 0.8 mM sodium octyl sul-
fate, 0.7% phosphoric acid, and 5% acetonitrile (pH 2.6). Separated analytes were detected and
quantified using a Coulochem III detector (ESA Inc., Chelmsford, MA), a high sensitivity ana-
lytical cell (channel 1, -150 mV; channel 2, +300 mV; model 5011A, ESA Inc.), and a guard cell
(+400 mV; model 5020, ESA Inc.). A set of standards containing experimenter-prepared con-
centrations of NE and DA (50–1000 nM) were analyzed in duplicate along with experimental
samples. ChemStation chromatography software (Agilent Technologies) generated chromato-
grams for each sample analyzed and calculated area under the curve for each peak. Standards
were used to generate a standard plot (area under the curve X analyte concentration) from
which the estimated concentration in experimental samples was extrapolated.

In situ hybridization
To assess anatomic specificity of DBH expression, we employed in situ hybridization. C57Bl6/J
wild-type (WT) (Jackson Laboratories, Bar Harbor, ME) and Dbh -/- BTmice were euthanized
by CO2 asphyxiation, and brains were removed and frozen on dry ice. Sixteen-micrometer cor-
onal sections containing the substantia nigra/ventral tegmental area (SN/VTA) and locus coe-
ruleus (LC) were cut on a cryostat and mounted onto Fisher Superfrost slides (Fisher Scientific,
Houston, TX). Slides were stored at -80°C until assayed. Tissue preparation and labeling of the
mouse TH and human DBH oligonucleotides was performed as described previously [32]. The
mouse TH oligonucleotide probe was a 48 base probe complementary to nucleotides 1351–
1398 of the TH mRNA [33]. The human DBH oligonucleotide is composed of two different
51-base oligonucleotides (regions 478–529 and 1339–1390) of the human DBH sequence [34].
Each oligonucleotide was 3’-end-labeled with [33P]dATP (New England Nuclear, Boston, MA)
using terminal deoxyribonucleotidyl transferase (Invitrogen, Piscataway, NJ) and then purified
with Illustra MicroSpin G-25 Columns (GE Healthcare, Piscataway, NJ). The mouse TH
hybridization buffer contained 0.35 X 106 cpm/50 μl, and the human DBH hybridization buffer
contained 1.32 X 106 cpm/50 μλ. Slides were washed as described in detail in previously pub-
lished work for the oligonucleotide probes [32, 35] and apposed to film (Eastman Kodak,
Rochester, NY) at room temperature for 18 hours for mouse TH and 4 days for human DBH.

Reverse-transcription PCR
Mice were euthanized by CO2 asphyxiation, and brain (LCmicrodissected), adrenal, heart, liver,
and lung were isolated and frozen on dry ice. Tissue was homogenized in TRIzol, and RNAwas
extracted as previously described including column purification and DNase treatment to remove
residual gDNA [36]. Due to the small amount of tissue available for the adrenal samples, 1 μg of
glycogen was added to aid in RNA recovery. We measured the RNA integrity via Bioanalyzer (Agi-
lent Technologies) for a subset of samples for each tissue type and genotype group. Concentrations
were measured using the RNA or DNA quantitation reagent on the Qubit Fluorometer (Life Tech-
nologies) and diluted to equal concentrations. cDNA was synthesized via reverse transcription with
SuperScript III (Invitrogen), oligo-dT, and gene-specific primers for human DBH and SARDH.

Quantitative real-time PCR (qRT-PCR)
mRNA expression was measured by qRT-PCR with a 7500 Fast Real-Time PCR System (Life
Technologies) with the following primers: DBH_F: 50GACGCCTGGAGTGACCAGAA,
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DBH_R_RNA: 50CAGTGACCGGAACGGCTC. Reactions were prepared in duplicate in 10 ul
volumes with Fast SYBR Green Master Mix (Applied Biosystems). After PCR, amplification
plots were inspected, threshold values were set to 0.2 using the 7500 Software v2.0.5 (Applied
Biosystems) and threshold cycle numbers (Ct) were obtained. We also designed multiple 150–
190 bp product primer sets along the BAC to test for the presence of copy number variation.
The mean Ct for the four sets was used to normalize the RNA expression values for each
mouse. The primers were BAC2F: 50GCCTGCCCTCTGCCAAC, BAC2R: 50CCTGGGTGGG
ACTTGGAAC, BAC9F: 50TGTCCACTTGCAGCACAGC, BAC9R: 50AGGAGCTTGGAAAA
CCGGA, BAC31F: 50TCACACCATGCTGCCACC, BAC31R: 50CGACTTTGCTCTTGCCT
GC, BAC37F: 50GCTGTTTACCCCACGCCA and BAC37R: 50GGAATGATGCTGGGTGG
TG. For these experiments, DNA template was extracted from brain via overnight digestion,
ethanol precipitation, and phenol chloroform extraction [37].

Results

The human RP11-746P3 BAC contains regulatory elements sufficient to
drive anatomically accurate human DBHmRNA expression in the
mouse
DBHmRNA is normally expressed exclusively in noradrenergic/adrenergic cells, while tyrosine
hydroxylase (TH) mRNA is expressed in all catecholaminergic neurons. Fig 1 shows in situ
hybridization micrographs from wild-type C57Bl6/J and Dbh -/- BTmice. As expected, mouse
TH is expressed in both midbrain DA neurons and LC neurons of Dbh -/- BT mice. By con-
trast, human DBHmRNA is restricted to LC neurons in the brain and the adrenal medulla of
Dbh -/- BTmice, and completely absent from wild-type animals.

BAC transgenesis restores normal catecholamine levels to Dbh -/-mice
DBH is required for the conversion of DA to NE in noradrenergic and adrenergic cells. To
determine whether BAC-driven expression of human DBHmRNA resulted in DBH function,
NE and DA levels were measured in brain and peripheral organs of DBH-competent control
(Dbh +/-mice), DBH-deficient (Dbh -/-), and transgenic (Dbh -/- BT) mice. As described
before by us and others [17, 36, 39], Dbh -/-mice lack NE and have elevated DA levels in all tis-
sues examined, while the presence of the BAC transgene increased NE and decreased DA close
to control levels (Fig 2, Fig 3). One-way ANOVA showed a significant effect of mouse genotype
(referring here to Dbh genotype with or without BAC transgenesis) for brain (NE: F2,21 =
13.20, p<0.001; DA: F2,19 = 9.95, p<0.001), adrenal (NE: F2,21 = 22.38, p<0.0001; DA: F2,19 =
7.57, p<0.01), and heart (NE: F2,19 = 13.20, p<0.001; DA: F2,13 = 11.04, p<0.01). Tukey’s post-
hoc tests revealed that NE was significantly reduced and DA was significantly elevated in Dbh
-/-mice compared to Dbh +/- controls, while Dbh -/- BTmice had catecholamine content that
was significantly different than Dbh -/-mice and comparable to controls.

BAC transgenesis rescues embryonic lethality, growth delay, ptosis,
novelty-induced locomotor activity, and seizure susceptibility associated
with DBH deficiency
We next determined whether the restoration of normal catecholamine levels by BAC transgenic
expression of human DBH rescues physiological and behavioral phenotypes associated with
DBH deficiency. Approximately 95% of Dbh -/-mice die during embryogenesis or during the
first few days of life unless adrenergic receptor agonists and DOPS are added to the drinking
water of the pregnant dam [4]. Table 1 shows the numbers of viable offspring born toDbh -/- BT
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males crossed with Dbh +/- dams and untreated with DOPS. The proportion ofDbh -/- offspring
lacking the transgene was far belowMendelian expectations (χ2, 3 d.f. = 36.7, p<0.0001),
whereas the BAC construct fully rescued viability inDbh -/- BT offspring, with the proportions
of the three viable genotypes not differing from one-third for each genotype (χ2, 2 d.f. = 2.21,

Fig 1. A human BAC transgene drives specific Dbh expression to the locus coeruleus and adrenal gland. Shown are representative
examples of human dopamine β-hydroxylase (DBH) and mouse tyrosine hydroxylase (TH) mRNA expression in adrenal gland and brain
sections from C57Bl6/J wild-type and BAC transgenic mice containing the noradrenergic locus coeruleus (LC, corresponding to Figure 75 in
the Mouse Brain Atlas) and the dopaminergic substantia nigra pars compacta/ventral tegmental area (SN/VTA, corresponding to Figure 55 in
the Mouse Brain Atlas[38]).

doi:10.1371/journal.pone.0154864.g001
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p = 0.331). By contrast, crosses between Dbh -/-male and Dbh +/- females that received adrener-
gic agonists + DOPS during pregnancy resulted in 71Dbh +/- and 43Dbh -/- viable progeny
(38%), as compared to 32 Dbh +/- BT and 38Dbh -/- BT viable offspring (54%; expected

Fig 2. A human BAC transgene restores normal central and peripheral NE levels to Dbh -/-mice. Dbh
+/-, Dbh -/-, and Dbh -/- BT littermates were assessed for tissue NE levels in the (A) brain, (B) heart, and (C)
adrenal by HPLC. Shown is mean ± SEM ng of NE per mg tissue. N = 7–9 per genotype.

doi:10.1371/journal.pone.0154864.g002
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proportions 50% for each set of genotypes; p = 0.03, Fisher’s Exact Test) in the crosses ofDbh -/-
BTmales and untreatedDbh +/- females.

Fig 3. A human BAC transgene restores normal central and peripheral DA levels toDbh -/-mice. Dbh
+/-, Dbh -/-, and Dbh -/- BT littermates were assessed for tissue DA levels in the (A) brain, (B) heart, and (C)
adrenal by HPLC. Shown is mean ± SEM ng of DA per mg tissue. N = 4–9 per genotype.

doi:10.1371/journal.pone.0154864.g003

Human DBH BACRescue of Dbh -/-Mouse Phenotype

PLOS ONE | DOI:10.1371/journal.pone.0154864 May 5, 2016 9 / 17



Fig 4 shows comparisons of weaning weight (4A), the degree of ptosis (4B), novelty-induced
locomotion (4C) and latency to seizure after exposure to flurothyl (4D) in Dbh -/- BTmice,
Dbh -/-mice born to DOPS-treated dams from which DOPS was withheld after birth, or NE-
competent Dbh +/- littermates (which prior studies have shown do not differ from wild-type,
Dbh +/+mice; [4, 8, 40]). One-way ANOVAs showed significant effects of genotype for

Table 1. Viable offspring born to aDbh +/- female byDBH -/-BTmale cross*.

Offspring genotype Observed Count Observed proportion Expected Proportion+

DBH +/- 45 0.385 0.25

DBH +/-BT 32 0.274 0.25

DBH -/- 2 0.017 0.25

DBH -/-BT 38 0.325 0.25

*χ2, 3 d.f. = 36.7, p <0.0001.

+Mendelian expectation assuming no impact of genotype on survival.

doi:10.1371/journal.pone.0154864.t001

Fig 4. A human BAC transgene rescuesDbh -/- developmental, physiological, and behavioral phenotypes. Dbh +/-, Dbh -/-, and Dbh
-/- BT littermates were assessed for (A) weaning weight, (B) ptosis, (C) novelty-induced locomotor activity, and (D) seizure susceptibility.
Shown is mean ± SEM (A) weight in grams, (B) mm eye opening, (C) ambulations in 30 min, and (D) latency to flurothyl-induced generalized
seizure. N = 6–8 per genotype. *p<0.05, **p<0.01, ****p<0.0001.

doi:10.1371/journal.pone.0154864.g004
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weaning weight (F2,25 = 14.68, p<0.0001), ptosis (F2,21 = 11.07, p<0.001), novelty-induced
locomotion (F2,17 = 11.13, p<0.001), and seizure susceptibility (F2,19 = 6.80, p<0.01). Tukey’s
posthoc tests revealed that Dbh -/-mice weighed less and had reduced eye opening, exploratory
activity, and latency to generalized seizure, and BAC transgenesis fully rescued each of the Dbh
-/- phenotypes.

The -970C>T (rs1611115) human polymorphism does not affect BAC
transgenic human DBH expression in the mouse
To determine the specific impact of the -970C>T (rs1611115) human polymorphism on
human DBH gene expression, we compared mRNA expression in 4 independent Dbh -/- BT
mouse lines differing only at that single base (2 “C” lines, 2 “T” lines). After controlling for
transgene copy number, no significant genotype differences in human DBHmRNA abundance
were detected for the LC, adrenal, heart, liver, or lung (Fig 5).

Discussion
DBH catalyzes conversion of DA to NE within noradrenergic and adrenergic vesicles in the
central and peripheral nervous systems and in the adrenal medulla. Absence of DBH leads to a
syndrome characterized by inadequate sympathetic tone, leading to severe orthostatic hypoten-
sion, ptosis and other manifestations of sympathetic failure. Central nervous system manifesta-
tions are more subtle in humans, as there are no dramatic psychiatric or neurological
manifestations reported in patients with DBH deficiency. However, these patients are chroni-
cally medicated with NE-promoting drugs such as DOPS to control the cardiovascular pheno-
types, which may also prevent the manifestation of behavioral changes. Although small studies
have suggested a variety of links between differences in DBH genotype and/or plasma levels
and other human disorders, (reviewed in [41]) more recent genome-wide association studies
have not provided evidence for replicable associations of DBH genotype to human neurological
or psychiatric disorders (e.g., [42], [43], [44]).

Dbh knockout mice have been used to assess brain disorders potentially associated with
DBH deficiency. Mice in which targeted disruption of the Dbh gene results in absence of DBH
and NE display a cardiovascular syndrome highly similar to the human DBH deficiency syn-
drome [9, 30, 45]. Moreover, several phenotypes with relevance to neurological and neuropsy-
chiatric disorders, including increased seizure susceptibility [8], age-related motor impairment
[46], learning and memory deficits [11, 12], decreased arousal/exploration [5, 11], altered anti-
depressant drug responses [10], and changes in cocaine-induced behaviors [18] occur in Dbh
-/-mice. The current study demonstrates that introduction of the human DBH gene by BAC
transgenesis restores the deficits in noradrenergic function resulting from absence of Dbh
expression, as manifested in organismic, behavioral and neurochemical phenotypes.

The BAC construct drove anatomically specific expression within noradrenergic neurons
and the adrenal medulla, demonstrating that the human sequence context surrounding DBH
was capable of directing the murine transcriptional machinery in a cell-specific manner. That
observation was not guaranteed for two reasons. First, while conventional transgenes using
small fragments of the human DBH promoter are able to drive gene expression in noradrener-
gic and adrenergic cells, these constructs also result in widespread ectopic expression in non-
catecholaminergic neurons and organs [47–49]. Second, the degree of sequence identity
between non-coding regions of DBH and Dbh are relatively modest. For example, comparison
of the proximal 2000 bp immediately 5’ to the translational start site (ATG) of human DBH
(GRC 38/hg 38) and mouse Dbh (GRCm38/mm10) using ALIGN [50] (http://atlas.igh.cnrs.fr/
bin/align-guess.org) reveals only 52.8% sequence identity.
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Fig 5. The -970 C-T polymorphism does not affectDbhmRNA abundance.Dbh -/- BTmice carrying either the C allele (2 independent
lines, pooled) or the T allele (2 independent lines, pooled) at position -970 were assessed for mRNA abundance in the (A) brain, (B)
adrenal, (C) heart, (D) liver, and (E) lung by qRT-PCR. Shown are individual and mean ± SEM threshold cycle numbers (ΔCt) normalized
to copy number. N = 6–11 per allele.

doi:10.1371/journal.pone.0154864.g005
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In contrast to conventional Dbh -/-mice, which lack NE completely and have elevated DA
levels due to DA production in noradrenergic/adrenergic cells, Dbh -/- BTmice had NE and
DA levels comparable to controls. In general, transgenic rescue of catecholamine abundance
was superior to that achieved via DOPS administration. A thorough characterization of DOPS-
induced neurochemical changes in Dbh -/-mice was reported by Thomas and colleagues [30].
They showed that a single injection of DOPS (1 mg/g, s.c.) is sufficient to transiently restore
NE to wild-type levels in most peripheral organs. However, NE rescue was only partial in most
areas of brain and completely deficient in adrenal. Repeated DOPS treatment (1 mg/g, s.c.
every 12 hours, 7 injections total) provides extra benefit in some brain regions (e.g. frontal cor-
tex) but not others (e.g. midbrain, cerebellum). Moreover, because DOPS bypasses the require-
ment for DBH by relying on a different enzyme for NE synthesis (aromatic amino acid
decarboxylase; AADC) rather than correcting its deficiency, pharmacological rescue does not
attenuate the excessive production of DA in noradrenergic/adrenergic cells. By contrast, the
BAC transgene almost completely reversed both the NE deficiency and DA surplus in all tis-
sues examined, including the adrenal gland. Another important difference is that because
AADC is expressed in dopaminergic and serotonergic neurons as well as noradrenergic/adren-
ergic cells, NE production and release following DOPS administration lacks anatomical speci-
ficity. The BAC transgene drives DBH expression, and thus NE production and release, in a
pattern indistinguishable from the endogenous condition.

Most aspects of physiology and behavior in Dbh -/-mice were rescued comparably by either
DOPS or transgenesis; for example, both approaches normalized ptosis and seizure susceptibil-
ity [8, 30], while the impact of DOPS on novelty-induced locomotor activity and postnatal
growth in Dbh -/-mice has not been examined. These results suggest that partial DBH or NE
deficiency does not have a demonstrative impact on these phenotypes, an idea supported by
the lack of any deficit observed in Dbh +/-mice that have half the normal copies of Dbh but
close to normal catecholamine levels. The one exception was pup survival, where the transgene
was far superior. Notably, in that case DOPS was administered at a low dose via drinking water
to pregnant dams, a paradigm that restores NE levels to only ~10% of normal [4].

Contrary to our original hypothesis, DBH expression in mice carrying the “T” allele at posi-
tion -970 did not differ appreciably from that in “C”mice. This observation is in line with the
report of Barrie and colleagues [28] that expression of mRNA encoding DBH differed only in
the liver of humans, but not in the brain, strongly suggesting that -970C>T only impacts
human expression of the DBH gene within sympathetic noradrenergic neurons [28], and is
consistent with the finding that the majority of the serum enzyme arises from the sympathetic
nervous system [19]. However, even liver DBH expression did not significantly differ between
carriers of the “T” and “C” alleles in Dbh -/- BTmice. These results suggest that the transcrip-
tional machinery sensitive to the -970C>T region of the human promoter is not present in
mouse noradrenergic sympathetic neurons, or if it is present, the transcriptional machinery in
mouse does not respond to the sequence surrounding rs1611115 in the same way the human
machinery does. Consistent with that idea is that the sequence immediately surrounding
rs1611115 (AGTCTACTTG[C/T]GGGAGAGGAC) reveals only modest similarity to the cor-
responding sequence in mouse (GTTCTCATCATGAGACAGACA, where underlined bases
are identical to human sequence and bold shows the base corresponding to rs1611115). Alter-
natively, despite all of the human association evidence to the contrary [22, 25, 26, 28], it is pos-
sible that -970C>T is not the functional polymorphism accounting for the substantial
difference in serum DBH levels associated with genotype at this SNP, or that it requires cooper-
ation with distal enhancer sites not present in the transgene. Despite our failure to detect a
gene expression difference, this is, to our knowledge, the first use of BAC transgenesis in mice
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to elucidate the potential function of a neuronal non-coding human SNP, an approach that
should prove useful for other variants identified in association studies.
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