
Rowan University Rowan University 

Rowan Digital Works Rowan Digital Works 

Faculty Scholarship for the College of Science & 
Mathematics College of Science & Mathematics 

9-19-2016 

Representing uncertainty on model analysis plots Representing uncertainty on model analysis plots 

Trevor I. Smith 
Rowan University, smithtr@rowan.edu 

Follow this and additional works at: https://rdw.rowan.edu/csm_facpub 

 Part of the Physics Commons 

Let us know how access to this document benefits you - 
share your thoughts on our feedback form. 

Recommended Citation Recommended Citation 
Smith, Trevor I., "Representing uncertainty on model analysis plots" (2016). Faculty Scholarship for the 
College of Science & Mathematics. 34. 
https://rdw.rowan.edu/csm_facpub/34 

This Article is brought to you for free and open access by the College of Science & Mathematics at Rowan Digital 
Works. It has been accepted for inclusion in Faculty Scholarship for the College of Science & Mathematics by an 
authorized administrator of Rowan Digital Works. For more information, please contact rdw@rowan.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Rowan University

https://core.ac.uk/display/214452121?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://rdw.rowan.edu/
https://rdw.rowan.edu/csm_facpub
https://rdw.rowan.edu/csm_facpub
https://rdw.rowan.edu/csm
https://rdw.rowan.edu/csm_facpub?utm_source=rdw.rowan.edu%2Fcsm_facpub%2F34&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/193?utm_source=rdw.rowan.edu%2Fcsm_facpub%2F34&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.lib.rowan.edu/rdw-feedback?ref=https://rdw.rowan.edu/csm_facpub/34
https://www.lib.rowan.edu/rdw-feedback?ref=https://rdw.rowan.edu/csm_facpub/34
https://rdw.rowan.edu/csm_facpub/34?utm_source=rdw.rowan.edu%2Fcsm_facpub%2F34&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:rdw@rowan.edu


Representing uncertainty on model analysis plots

Trevor I. Smith*

Department of Physics and Astronomy and Department of STEAM Education, Rowan University,
Glassboro, New Jersey 08028, USA

(Received 7 April 2016; published 19 September 2016)

Model analysis provides a mechanism for representing student learning as measured by standard
multiple-choice surveys. The model plot contains information regarding both how likely students in a
particular class are to choose the correct answer and how likely they are to choose an answer consistent with
a well-documented conceptual model. Unfortunately, Bao’s original presentation of the model plot did not
include a way to represent uncertainty in these measurements. I present details of a method to add error bars
to model plots by expanding the work of Sommer and Lindell. I also provide a template for generating
model plots with error bars.

DOI: 10.1103/PhysRevPhysEducRes.12.023102

I. INTRODUCTION

Model analysis is a powerful tool for representing
student learning in terms of both increases in the use of
correct models and decreases in the use of incorrect models.
Bao and Redish introduced model analysis as a comple-
ment to typical representations of learning gains that focus
on student correctness [1]. The model plot simultaneously
shows how much a class’s use of the correct model
increases and how much their use of a well-defined
incorrect model decreases (or vice versa). Student use of
these models are often measured by a mutiple-choice
survey, such as the Force Concept Inventory (FCI) [2] or
the Force and Motion Conceptual Evaluation (FMCE) [3].
Smith, Wittmann, and Carter have used model analysis in
conjunction with statistical analyses of students’ normal-
ized gains to compare the effects of various instructional
strategies on student learning at several colleges and
universities [4]. Rakkapao, Pengpan, Srikeaw, and
Prasitpong also report on the benefits of using model
analysis to represent the rich variety of data that come
from comparing instructional methods, including cases in
which student use of both the correct and common incorrect
model increase [5].
Smith, Wittmann, and Carter introduced a method for

adding error bars to a model plot as a representation for
experimental uncertainty [4]. In this paper I refine this
process and provide additional details about the methods
and assumptions for generating errors bars. I also provide
templates for generating model plots that include error bars
using either MATHEMATICA or the R software environment.

II. DENSITY MATRICES AND THE MODEL PLOT

The main goal of model analysis is to use response
frequencies to determine the probabilities of students in a
particular class using each well-defined model. One step is
to create a density matrix to represent a class’s knowledge
state at a given time [1]. The class density matrix D is the
sum of students’ individual density matrices, each of which
is determined by the measured frequencies of each student
using each of the models.
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where pj;i is the probability that the ith student uses the jth
model to answer a particular question. Typically model 1 is
the correct Newtonian model (e.g., net force is proportional

FIG. 1. Various regions of a model plot with two well-
documented mental models. Figure recreated from Ref. [1]
and originally published in Ref. [4], where σ2μ is the μth
eigenvalue of the class density matrix, and vk;μ is the kth
component of the μth eigenvector.

*smithtr@rowan.edu

Published by the American Physical Society under the terms of
the Creative Commons Attribution 3.0 License. Further distri-
bution of this work must maintain attribution to the author(s) and
the published article’s title, journal citation, and DOI.

PHYSICAL REVIEW PHYSICS EDUCATION RESEARCH 12, 023102 (2016)

2469-9896=16=12(2)=023102(5) 023102-1 Published by the American Physical Society

http://dx.doi.org/10.1103/PhysRevPhysEducRes.12.023102
http://dx.doi.org/10.1103/PhysRevPhysEducRes.12.023102
http://dx.doi.org/10.1103/PhysRevPhysEducRes.12.023102
http://dx.doi.org/10.1103/PhysRevPhysEducRes.12.023102
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


to acceleration), models 2 through (n − 1) are associated
with well-documented incorrect models (e.g., net force is
proportional to velocity), and model n is the catch all for
any “other incorrect” responses.
The eigenvalues and eigenvectors of D are used to

characterize the class’s knowledge state [1]. The primary
eigenvalue and the components of its associated eigen-
vector are used to create a single point on a model plot
representing a class’s probability of using each model at a
given time. Figure 1 shows a sample model plot for a
physical situation with two well-defined models [1,4].

III. UNCERTAINTY AND THE NEED
FOR ERROR BARS

One shortcoming of model analysis and the model plot is
that statistical uncertainty is not represented in the results.
Is data point “B” in Fig. 1 really in the mixed region, or
could it be in the model 2 region? It is impossible to have
confidence in the interpretation of a class’s “state” without
error bars on the model plot.

A. Uncertainty in eigenvalues

Sommer and Lindell recognized the omission of mea-
sures of statistical power and proposed a method for
determining the uncertainty in the eigenvalues of the class
density matrix [6]. Their method considers that the mea-
sured probability that a student uses a particular model has
an associated uncertainty ϵj;i that may be positive or
negative (−1 ≤ ϵj;i ≤ 1). The real probability may be as
high (or low) as pj;i þ ϵj;i. This results in a single-student
error matrix, ei,

ei ¼

0
BBBBB@
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where

ekl;i ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpk;i þ ϵk;iÞðpl;i þ ϵl;iÞ

q
− ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pk;ipl;i
p

: ð3Þ

Unfortunately, the uncertainty of a single student choos-
ing a particular model is typically not knowable from data
sets of pre- and post-test surveys. Therefore, Sommer and
Lindell assume that the error matrix for the class will have
the same form as that of Eq. (2):

E ¼

0
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Ekl ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDkk þ ϵkÞðDll þ ϵlÞ

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DkkDll

p
; ð5Þ

where Dkk is one of the diagonal elements of the class
density matrix.
Given that the error in the measured probability could be

positive or negative, each term in E could also be either
positive or negative. This information is used to generate a
set of specific error matrices. Because the (n × n) density
matrix is symmetric, the general error matrix is also
symmetric, yielding 2nðnþ1Þ=2 specific matrices with differ-
ent combinations of positive and negative terms. By adding
each of these specific error matrices to the class density
matrix D and computing the eigenvalues of each of the
resulting adjusted density matrices, one can determine the
upper and lower bounds for each of the eigenvalues [6].
One may now be confident that the actual eigenvalue falls
within the range ½σ2μ;min; σ

2
μ;max�.

While this is a step in the right direction, it falls short of
providing a mechanism for representing statistical uncer-
tainty within the model plot (the points on which depend
on both eigenvalues and the associated eigenvectors).
Moreover, this method requires an initial assumption of
the values of the uncertainties, ϵi, that are used to create the
general error matrix.

B. Creating error bars on the model plot

To create error bars on the model plot one must translate
the uncertainty associated with the eigenvalue of the
density matrix to an uncertainty in each dimension of
the model plot. As shown in Fig. 1, the horizontal
coordinate (x) corresponds with the probability of choosing
model 2 and is defined as the product of the primary
eigenvalue σ2μ with the square of the second component of
the associated eigenvector v22;μ. Similarly, the vertical
coordinate (y) is associated with model 1 and the first
component of the eigenvector:

x ¼ σ2μv22;μ; ð6Þ

y ¼ σ2μv21;μ: ð7Þ

The uncertainty in each of these coordinates is determined
by the uncertainty in the primary eigenvalue and the
components of its associated eigenvector, but this relation-
ship is not necessarily straightforward.
Smith, Wittmann, and Carter assumed that the fractional

uncertainty in the primary eigenvalue will be the same as
the fractional uncertainty of each coordinate [4],

Δμ

σ2μ
¼ Δx

x
¼ Δy

y
; ð8Þ

where Δμ is defined by the upper and lower bounds:
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Δμ ¼
ðσ2μ;max − σ2μÞ þ ðσ2μ − σ2μ;minÞ

2
: ð9Þ

The actual coordinates will fall within the ranges x� Δx
and y� Δy. However, this assumption causes the error bars
to be proportional to the value of the coordinate, which may
not accurately reflect the uncertainty in the class’s model
state, e.g., Δx ¼ xðΔμ=σ2μÞ.
A less restrictive method is to determine the coordinates

ðxk; ykÞ for each of the adjusted density matrices by
calculating the eigenvalues and eigenvectors of each.
The uncertainty represented by the error bars would then
be ½xmin; xmax� and ½ymin; ymax�. I provide an example in
Sec. IV that shows the results of each assumption.

C. Choosing an initial estimate of uncertainty

Sommer and Lindell propose using a single uncertainty
for simplicity (ϵ ¼ maxfϵ1; ϵ2;…; ϵng), but provide no
straightforward method for determining an initial estimate
[6]. There are several options for choosing an initial
estimate of the uncertainty based on the pre- and post-test
data. The choices I present are based on the standard error
of a particular data set.
One of the simplest choices is to assume that the

uncertainty will be the same for all models and will be
the same for both pre- and post-test data. To accomplish
this I use the pooled standard error in terms of the standard
deviations of both the pre- and post-test data sets:

ϵ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�ðNpre − 1Þs2pre þ ðNpost − 1Þs2post

Npre þ Npost − 2

��
1

Npre
þ 1

Npost

�s
;

ð10Þ

where N is the number of students and s is the standard
deviation of the number of correct answers for each data
set [7].
For cases in which one uncertainty may not fit the data

one may choose to calculate the standard error for the
pretest and post-test separately:

ϵpre ¼
spreffiffiffiffiffiffiffiffiffi
Npre

p ; ð11Þ

ϵpost ¼
spostffiffiffiffiffiffiffiffiffiffi
Npost

p : ð12Þ

Additionally, one may choose not to accept the
assumption proposed by Sommer and Lindell that the
uncertainty is the same for all models. Equations (10)–
(12) may all be applied to the data sets of students using
each of the models. In the following section I provide
examples for a single value of uncertainty for all models
pre- and postinstruction (the most restrictive assumption)

and different uncertainties for all models (the least restric-
tive assumption).

IV. EXAMPLE OF GENERATING ERROR BARS

I present an example to illustrate the process of creating
error bars on the model plot and to examine the implica-
tions of each of the assumptions for choosing an initial error
estimate. For brevity I only present pretest and post-test
data for a single class in one year, answering questions
within a single question cluster [8]. In this question cluster
there are two well-defined models (correct and common
incorrect) and one “other” model. The pre- and post-test
class density matrices are

Dpre ¼

0
B@

0.222 0.162 0.123

0.162 0.500 0.270

0.123 0.270 0.278

1
CA; ð13Þ

Dpost ¼

0
B@

0.559 0.089 0.140

0.089 0.218 0.090

0.140 0.090 0.224

1
CA: ð14Þ

These density matrices have eigenvalues and associated
eigenvectors that yield coordinates on the model plot:

σ2pre ¼ 0.758; vpre ¼

0
B@

0.355

0.773

0.525

1
CA; ð15Þ

xpre ¼ 0.453; ypre ¼ 0.095; ð16Þ

σ2post ¼ 0.641; vpost ¼

0
B@

0.896

0.265

0.357

1
CA; ð17Þ

xpost ¼ 0.045; ypost ¼ 0.514: ð18Þ

As seen in Fig. 2(a) this class starts in the model 2 region
and moves to the model 1 region. In the following
sections I examine the implications of each assumption:
equal fractional uncertainties vs coordinate-specific uncer-
tainties, and equal initial error estimates vs model-specific
errors.

A. Assuming equal fractional uncertainty
and equal error estimates

As a starting point I assume that the fractional uncer-
tainties for both coordinates are the same as that of the
primary eigenvalue and that a single estimate of uncertainty
will suffice for all models for both the pre- and post-test
data [9]. The statistics for each data set are contained in
Table I. The pooled standard error for the correct responses
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is ϵ ¼ 0.0470, which is higher than either of the individual
standard errors for pre- or postdata. This provides general
error matrices of

Epre ¼

0
B@

�0.0470 �0.0504 �0.0472

�0.0504 �0.0470 �0.0488

�0.0472 �0.0488 �0.0470

1
CA; ð19Þ

Epost ¼

0
B@

�0.0470 �0.0517 �0.0514

�0.0517 �0.0470 �0.0470

�0.0514 �0.0470 �0.0470

1
CA; ð20Þ

where the “�” indicate that each cell could be positive or
negative.
Using every combination of positive and negative cells

yields 64 adjusted density matrices. For the pretest the
eigenvalues span the range [0.629, 0.892], and on the post-
test they span the range [0.540, 0.762]. This gives general
uncertainties of Δμ;pre ¼ 0.131 and Δμ;post ¼ 0.111.
Assuming equal fractional uncertainties provides an uncer-
tainty for each coordinate:

Δx;pre ¼ 0.0786; Δy;pre ¼ 0.0166; ð21Þ

Δx;post ¼ 0.0078; Δy;post ¼ 0.0893: ð22Þ

As can be seen in Fig. 2(b) the point in the model 2 region
has a much larger uncertainty in the horizontal coordinate
and vice versa. This is a direct result of the assumption of
equal fractional uncertainties for which the uncertainty in a
coordinate is proportional to the value of that coordinate.

B. Assuming coordinate-specific uncertainty
and model-specific error estimates

I now present the results of rejecting both the assumption
of equal fractional uncertainties and the assumption of
equal initial error estimates. Using the standard error for
each model in each data set (see Table I) provides new
general error matrices:

Epre ¼

0
B@

�0.0253 �0.0276 �0.0231

�0.0276 �0.0263 �0.0233

�0.0231 �0.0233 �0.0202

1
CA; ð23Þ

Epost ¼

0
B@

�0.0422 �0.0399 �0.0368

�0.0399 �0.0337 �0.0318

�0.0368 �0.0318 �0.0299

1
CA: ð24Þ

One may use these to calculate x and y coordinates for each
of the 2nðnþ1Þ=2 adjusted density matrices.

xpre ∈ ½0.399; 0.502�; ð25Þ

ypre ∈ ½0.060; 0.139�; ð26Þ

xpost ∈ ½0.012; 0.104�; ð27Þ

ypost ∈ ½0.437; 0.585�: ð28Þ

As shown in Fig. 2(c) this gives a much different
representation of the uncertainty in the coordinates on
the model plot. This provides a more accurate representa-
tion of the span of the model space each point could occupy
given that these uncertainties do not depend directly on the
values of the coordinates themselves. These error bars also

FIG. 2. Model plots for the example data: (a) no error bars, (b) assuming equal fractional uncertainties for both coordinates and equal
initial error estimates for all models (pooled standard error), and (c) assuming coordinate-specific uncertainties and model-specific initial
error estimates (standard error of the distribution for each model).
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show that the uncertainty in the post-test data is greater than
in the pretest data (see Table I).

V. SUMMARY

The assumptions involved in calculating error bars can
have a dramatic effect on the interpretations reflected in the
model plot. The sample data above show that using the
standard error of the data yields error bars with a non-
negligible extent on the model plot. This is most visible in
Fig. 2(c) where the model-specific error estimates and
coordinate-specific uncertainties provide macroscopic error
bars in both coordinates for both points. These results
support the notion that it is imperative to represent the
uncertainty in the coordinates on the model plot in some
fashion. The class model state is not precisely known as
would be implied otherwise.
In an effort to facilitate the use of this method I have

included several template files in the Supplemental
Material that may be used to generate density matrices

and model plots with error bars [10]. The EXCEL file
(MA_FMCE_template.xlsx) generates class density
matrices from student responses to the FMCE [11]. This
file may be modified in order to create density matrices for
any other multiple choice data with well-defined models.
The text files include the commands for importing
data from EXCEL, performing the necessary matrix calcu-
lations, and generating model plots with error bars using
the open-source R software environment [12]. The file
MA_3Model_templateR.txt assumes a question
cluster with three models (two well-defined models and
one “other” incorrect, as is the case with the above
example), and the file MA_4Model_templateR.txt
assumes a question cluster with four models [13]. I
have also included MATHEMATICA template files
(MA_3Model_template.nb and MA_4Model_
template.nb) that perform the same functions as the
R files but are not as flexible. All files include instructions
for creating model plots with error bars starting from a class
set of multiple-choice survey data.
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