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ABSTRACT  

A series of four- and five-coordinate Ni(II) complexes CztBu(PyriPr)2NiX (13 and 1THF3THF), 

where X = Cl , Br, and I, were synthesized and fully characterized by NMR and UV-Vis 

spectroscopy, X-ray crystallography, cyclic voltammetry, and density functional theory 

calculations. The solid-state structures of 13 reveal rare examples of seesaw Ni(II) complexes. In 

solution 13 bind reversibly to a THF molecule to form five-coordinate adducts. The electronic 

transitions in the visible region (630-680 nm), attributed to LMCT bands, for 13 exhibit a 

bathochromic shift. The thermochromic tendency of the five-coordinate complexes implies the 

loss of THF coordination at elevated temperatures. Finally, the electronic properties of all Ni(II) 

complexes were studied by time-dependent density functional theory calculations to characterize 

the nature of the excited states. 

Introduction 

Nickel complexes with NNN pincer-type ligands have been gaining increased interest in recent 

years, particularly in the fields of catalytic bond activation1-8 and polymerization.9-10 One of the 

unique features of pincer ligands is the meridional orientation that they enforce, which results in a 

dominantly square planar configuration for these four-coordinate Ni(II) complexes.1-20 

Tuning ancillary ligands in metal complexes can govern their geometric preferences. For four-

coordinate Ni(II) centers, tetrahedral or square planar geometries are most common and well 

understood.21 For example, sterically, Ni(II) complexes with bulkier ligands tend to form 

tetrahedral (S = 1) structures whereas the square planar (S = 0) arrangement is preferred with less 

sterically demanding ligands; electronically, when coordinating to weak field ligands, the 

tetrahedral geometry is favored while a square planar geometry is often observed in Ni(II) 
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complexes bearing strong field ligands.22 Indeed, the molecular geometry and electronic 

configuration of metal complexes are interdependent, and they dictate the chemical reactivity of 

the metal complexes. In general, square planar complexes tend to be more kinetically inert than 

tetrahedral ones due to the greater ligand field stabilization energy in the square planar arrangement 

caused by the substantial electronic stabilization of the four, doubly-occupied, orbitals relative to 

the empty, antibonding dx2-y2 orbital. In this line, we became interested in the design, synthesis, 

and characterization of unusual Ni(II) complexes where the supporting ligands are used to force 

the metal center to adopt a high-energy and more reactive geometry. This may allow for the 

development of new types of reactivity of nickel complexes.  

The seesaw Ni(II) coordination geometry in the Ni-SIa state of the [NiFe]-hydrogenase active 

site is proposed to be a key feature for efficient H2 binding and activation.23 However, despite the 

discovery of such important structures, the synthetic routes to modulate the geometry at a nickel 

metal center remains challenging. Ideally, introduction of steric obstruction on the meridional 

plane of NNN pincer-based Ni(II) complexes could impel the fourth ligand to reside on the axial 

rather than an equatorial position. However, without considering the rigidity, simply increasing 

the bulkiness of flanking substituents does not necessarily yield a non-square planar geometry 

around the metal center.2, 24-28 Consequently, complexes that possess a seesaw arrangement at the 

Ni(II) center are still underdeveloped with only one type of supporting ligand, tripyrrinato, 

reported in the literature.29 Nonetheless, low yields and a limited number of precursors have 

restricted the development of tripyrrin derivatives in nickel chemistry.29-31 In this work, we report 

the synthesis, structure, and characterization of a new family of CztBu(PyriPr)2NiX complexes 

whose Ni(II) center adopts the seesaw geometry, together with their pentacoordinate THF adducts, 

CztBu(PyriPr)2NiX(THF) (X = Cl, Br, I) (Scheme 1). 
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Scheme 1. Four- and five-coordinate Ni(II) complexes. 

Experimental Section 

Materials and Methods. All manipulations were performed under a nitrogen atmosphere using 

standard Schlenk techniques or in an M. Braun UNIlab Pro glovebox. Glassware was dried at 150 

°C overnight. Diethyl ether, n-pentane, tetrahydrofuran, and toluene were purified using a Pure 

Process Technology solvent purification system. Before use, an aliquot of each solvent was tested 

with a drop of sodium benzophenone ketyl in THF solution. All reagents were purchased from 

commercial vendors and used as received. 1,8-Dibromo-3,6-di-tert-butyl-9H-carbazole 

(HCztBuBr2) and 3-iso-propylpyrazole were prepared according to literature procedures.32-33 

HCztBu(PyriPr)2
 was prepared according to a modified literature procedure.34 1H NMR data were 

recorded on Varian Inova 300 or 500 MHz spectrometer at 22 °C. Resonances in the 1H NMR 

spectra are referenced either to residual C6D5H at  = 7.16 ppm or C4D7HO at  = 3.58 ppm. 

Solution magnetic susceptibilities were determined using the Evans method.35 UV-Visible spectra 

were recorded on an Agilent Cary 8454 UV-Vis spectrophotometer equipped with a Unisoku 

Scientific Instruments Cryostat USP-203B for various temperature experiments. Elemental 

analysis was conducted by Midwest Microlab, LLC (Indianapolis, IN). 

General synthesis of CztBu(PyriPr)2NiX. To a stirred solution of HCztBu(PyriPr)2
 (500 mg, 1.38 

mmol) in THF (3 mL) at ambient temperature under N2 atmosphere was added a solution of lithium 
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diisopropylamide (LDA) (155 mg, 1.45 mmol) in THF (2 mL) for 2 h. Solid NiX2 (1.45 mmol) (X 

= Cl, Br, I; NiBr2(THF)2 was used for the nickel bromide salt) was added, and the resulting slurry 

was stirred for 18 h at ambient temperature.36 Volatiles were removed under reduced pressure, and 

the residue was extracted with toluene and filtered through Celite. The filtrate was dried in vacuo 

to yield a dark green solid (complex 13). The corresponding THF adduct complexes were 

obtained by dissolving 13 in THF.  

CztBu(PyriPr)2NiCl (1). Yield: 64%. Crystals suitable for X-ray diffraction were grown from a 

concentrated solution in toluene at ambient temperature. 1H NMR (500 MHz, C6D6, ): 47.0, 44.1, 

42.4, 32.0 (br), 17.8, 11.3, 7.87, 3.64. µeff (C6D6): 2.9  0.2 µB. UVvis (toluene at 40 C) max 

([mM-1cm-1]): 305(15730), 319(15470), 373(6350), 395(6370), 630(2010)600. Anal. Calcd for 

C32H40ClN5Ni: C, 65.27; H, 6.85; N, 11.89. Found: C, 64.94; H, 6.97; N, 11.59. 

CztBu(PyriPr)2NiBr (2). Yield: 88%. Crystals suitable for X-ray diffraction were grown from a 

concentrated solution in toluene at ambient temperature. 1H NMR (500 MHz, C6D6, ): 46.8, 42.8, 

27.0 (br), 18.6, 9.13, 8.49, 3.61. µeff (C6D6): 3.0  0.3 µB. UVvis (toluene at 40 C) max ([mM-

1cm-1]): 320(17010), 396(7840), 651(2590). Anal. Calcd for C32H40Br2N5Ni0.5(C7H8): C, 62.76; 

H, 6.53; N, 10.31. Found: C, 62.90; H, 6.64; N, 10.08. 

CztBu(PyriPr)2NiI (3). Yield: 91%. Crystals suitable for X-ray diffraction were grown from a 

concentrated solution in toluene at ambient temperature. 1H NMR (500 MHz, C6D6, ): 46.1, 42.4, 

40.9, 18.8, 16.0 (br), (br), 5.37 (br), 3.37. µeff (C6D6): 2.9  0.3 µB. UVvis (toluene at 40 C) 

max ([mM-1cm-1]): 321(15410), 399(7200), 680(2410). Anal. Calcd for 

C32H40I2N5Ni0.5(C7H8): C, 58.70; H, 6.11; N, 9.64. Found: C, 58.71; H, 6.16; N, 9.64. 

CztBu(PyriPr)2NiCl(THF) (1THF). Crystals suitable for X-ray diffraction were grown by slow 

diffusion of n-pentane into a THF solution at ambient temperature. 1H NMR (500 MHz, THF-d8, 
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): 56.3, 52.3, 37.6, 15.8 (br), 15.1, 7.20, 2.67. µeff (THF-d8): 3.0  0.2 µB. UVvis (THF at 40 C) 

max ([mM-1cm-1]): 319(14730), 403(6780), 418(sh)(6400), 629(900). UVvis (THF at 80 C) 

max ([mM-1cm-1]): 305(11370), 325(20590), 348(10420), 403(9440), 424(11680). Anal. Calcd 

for C36H48ClN5NiO: C, 65.42; H, 7.32; N, 10.60. Found: C, 65.15; H, 7.33; N, 10.61. 

CztBu(PyriPr)2NiBr(THF) (2THF). Crystals suitable for X-ray diffraction were grown by slow 

diffusion of n-pentane into a THF solution at ambient temperature.37 1H NMR (500 MHz, THF-

d8, ): 55.0, 52.6, 38.7, 14.9, 12.7 (br), 7.23, 2.59. µeff (THF-d8): 3.0  0.2 µB. UVvis (THF at 40 

C) max ([mM-1cm-1]): 303(18000), 327(17360), 351(11530), 371(sh)(7240), 404(7930), 

427(10470), 653(310). UVvis (THF at 80 C) max ([mM-1cm-1]): 304(20040), 327(19290), 

351(12810), 371(8040), 404(8820), 427(11640). Anal. Calcd for C36H48BrN5NiO: C, 61.30; H, 

6.86; N, 9.93. Found: C, 61.21; H, 6.74; N, 10.01.  

CztBu(PyriPr)2NiI(THF) (3THF). Crystals suitable for X-ray diffraction were grown by slow 

diffusion of n-pentane into a THF solution at ambient temperature. 1H NMR (500 MHz, THF-d8, 

): 51.3, 51.0, 39.4, 14.4, 7.16, 2.44. µeff (THF-d8): 2.8  0.3 µB. UVvis (THF at 40 C) max 

([mM-1cm-1]): 303(17570), 320(11950), 352(9690), 369(sh)(8700), 399(6030), 426(sh)(4970), 

685(730). UVvis (THF at 80 C) max ([mM-1cm-1]): 303(15590), 326(14190), 353(10760), 

371(7770), 405(7370), 427(8940). Anal. Calcd for C36H48IN5NiO: C, 57.47; H, 6.43; N, 9.31. 

Found: C, 57.12; H, 6.34; N, 9.20. 

Electrochemistry. Cyclic voltammetry was conducted via a CH-Instruments electrochemical 

analyzer (model 620E), employing a 3 mm glassy carbon working electrode, a silver wire 

pseudoreference electrode, and a platinum coiled wire counterelectrode. All measurements were 

performed using either THF or dichloromethane solutions, containing 1 mM analyte and 0.1 M 
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N(Bu)4PF6 as the supporting electrolyte. The potentials were referenced to a ferrocene/ferrocenium 

redox couple. 

Crystallography. Data for 2 were collected using a Bruker ApexII CCD diffractometer. Data for 

1, 3, 1THF, and [2THF][CztBu(PyriPr)2NiBr2][Li(THF)4] were measured using a Bruker Quest 

CMOS diffractometer. Both instruments featured sealed tube X-ray sources with graphite 

monochromated Mo-K radiation ( = 0.71073 Å). A Bruker Quest CMOS diffractometer 

equipped with a IS microsource with a laterally graded multilayer (Goebel) mirror for 

monochromatization (Cu-K radiation,  = 1.54178 Å) was used for compound 3THF. A single 

crystal of each compound was mounted on a Mitegen micromesh mount using a trace of mineral 

oil and cooled in situ to 100 or 150 K for data collection. Frames were collected, reflections were 

indexed and processed, and the files scaled and corrected for absorption using Apex2 or Apex3.38 

For all structures, the intensity data were corrected for absorption using multi-scan techniques 

(SADABS or TWINABS).39 The space groups were assigned and the structures were solved by 

direct methods using XPREP within the SHELXTL suite of programs and refined by full matrix 

least squares against F2 with all reflections using Shelxl2014, 2016 or 2018 using the graphical 

interface Shelxle.40-42 If not specified otherwise, H atoms attached to carbon and nitrogen atoms 

and hydroxyl hydrogens were positioned geometrically and constrained to ride on their parent 

atoms, with carbon hydrogen bond distances of 0.95 Å for alkene and aromatic CH, and 0.99 and 

0.98 Å for aliphatic CH2 and CH3 moieties, respectively. Methyl H atoms were allowed to rotate 

but not to tip to best fit the experimental electron density. Uiso(H) values were set to a multiple of 

Ueq(C) with 1.5 for CH3 and 1.2 for CH2 and CH units, respectively. Additional experimental 

details for all structures are given in the SI. Structures, in CIF format, have been deposited with 

the Cambridge Crystallographic Data Centre, CCDC 1834881-1834886. These data can be 



 8 

obtained free of charge from The Cambridge Crystallographic Data Centre via 

www.ccdc.cam.ac.uk/data_request/cif.  

Computational details. Molecular structures were geometry optimized using density functional 

theory (DFT) at the B3LYP/6-311G(d)/SDD level of theory,43-47 where Ni and the halide were 

represented with SDD and all other elements with 6-311G(d), as implemented in Gaussian 09.48 

Optimized structures were confirmed to be minima by analyzing harmonic frequencies.49 The 

wavefunction for each triplet state was confirmed to be stable.50-51 Single point energy refinements 

at these optimized structures were evaluated at the B3LYP/def2TZVP and OPBE/def2TZVP levels 

of theory (GTZ  GDZ – EDZ + ETZ). The effects of solvation were not included during geometry 

optimization but were included when simulating the UV-Vis spectra using the SMD implicit 

solvation model for toluene or THF.52 Time-dependent DFT (TD-DFT) was employed to simulate 

these spectra at the B3LYP/def2TZVP level of theory (see Figure S9 for the poor performance of 

a long-range corrected functional).53-55 50 excited states were simulated for each molecule and the 

resulting oscillators were each fit with a Gaussian with a half-width at half-maximum of 0.15 eV 

using GaussView to represent the absorption spectra.56 Optimized geometries were visualized with 

CYLview.57 

Results and Discussion 

Syntheses. The synthesis of the ligand was adapted from one reported for a similar compound, 

HCzMe(PyriPr)2.
58 Reaction yields and purity were improved by increasing the amount of base and 

pyrazole used.34 Most importantly, no column chromatography is required for purification. A 

general synthetic route towards the Ni(II) complexes is shown in Scheme 1. Dark green 

CztBu(PyriPr)2NiX (X = Cl, Br, and I) complexes 13 were prepared by the addition of NiX2 to in 

http://www.ccdc.cam.ac.uk/data_request/cif
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situ prepared CztBu(PyriPr)2Li (Scheme 2). The complexes were isolated in high yields and were 

fully characterized by NMR and UV-Vis spectroscopy, elemental analysis, and single-crystal X-

ray crystallography. 13 did not show any significant sign of decomposition upon standing in 

benzene on the benchtop for several days. In C6D6 solution of complexes 13, one set of 

paramagnetic shifts was observed, indicating Cs symmetry with the mirror plane passing through 

the carbazole nitrogen, the Ni center, and the halide. The paramagnetic 1H NMR spectra suggest a 

non-square planar coordination geometry around the Ni(II) center. Magnetic data for 13 are 

consistent with a high-spin nickel system. Values obtained using the method of Evans are μeff = 

2.9(2), 3.0(3), and 2.9(3) μΒ, respectively. Note that remaining half equiv of toluene cannot be 

removed by high vacuum overnight according to the results of elemental analysis for 13. 

 

Scheme 2. Synthetic route of four-coordinate Ni(II) complexes. 

Crystal structures of 13. Dark green crystals of 13 were obtained from a concentrated solution 

in toluene at ambient temperature. The ORTEP diagrams of 13 are given in Figure 1 and selected 

bond lengths and angles are summarized in Table 1 and Table S1. Each Ni(II) atom is coordinated 

by one carbazolide-nitrogen (Ncz) and two pyrazole-nitrogen atoms (Npyr) of CztBu(PyriPr)2
 in a 

meridional arrangement, and one halide atom. Such a distorted tetrahedral geometry is better 

described as an unusual seesaw geometry (4 = 0.52, 0.53, and 0.57, respectively),59 , 60 having a 

Cs symmetry. The average Ni−N bond lengths decrease from 2.002 (1) to 1.990 (2) to 1.981 (3) 
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Å, respectively. When comparing both types of nickel−nitrogen distances in 13, it becomes 

evident that the carbazolide (Ni1–Ncz) exhibits a significantly shorter bond length (ca. 0.2 Å) with 

respect to the corresponding pyrazole moieties (Ni1–Npyr). This suggests that the negative charge 

is localized on the carbazole, as opposed to other types of nickel complexes bearing monoanionic 

NNN pincer ligands where all NiN distances are comparable because of charge delocalization 

throughout the entire molecule (Scheme 3).1-3, 5, 24, 26-27, 29, 61  

 

Figure 1. X-ray crystal structures of 1 (left), 2 (middle), and 3 (right). Thermal ellipsoids shown 

at 50% probability, hydrogen atoms and solvate molecules (toluene, pentane) omitted for clarity. 

Color key: turquoise = Ni, blue = N, gray = C, green = Cl, brown = Br, violet = I. 

Table 1. Selected Bond Distances (Å) and Angles () for 1, 2, and 3.a 

 1 (X = Cl) 2 (X = Br) 3 (X = I) 

Ni1–N3 1.879(2) 1.874(2) 1.871(1) 

Ni1–N5 2.071(2) 2.055(2) 2.044(1) 

Ni1–N1 2.056(2) 2.041(2) 2.029(1) 

Ni1–X1 2.2423(7) 2.3807(5) 2.5658(4) 

N3–Ni1–N5 91.1(1) 91.5(1) 89.98(5) 

1      2         3 
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N1–Ni1–N3 90.6(1) 90.9(1) 91.01(5) 

N1–Ni1–N5 157.43(9) 158.16(9) 154.12(5) 

N3–Ni1–X1 129.44(7) 127.42(7) 124.25(4) 

a Numbers in parentheses are standard uncertainties in the last significant figures. Atoms are 

labeled as indicated in Figure 1. 

 

 

Scheme 3. Monoanionic NNN pincer ligands with delocalized  system. 

The Ni1−Cl1 distance in 1 is 2.2423(7) Å, which is 0.138 and 0.185 Å, respectively, shorter than 

the corresponding Ni1−Br1 and Ni1−I1 distances, and is similar to the differences observed in the 

TpPhNiX series (X = Cl, Br, I),62 and consistent with the differences in covalent radii for chlorine 

and bromine (0.12 Å), and for bromine and iodine (0.17 Å).63 Interestingly, a search of the CSD 

(November, 2017 update) revealed that the nickel halide distances in 13 are slightly longer (~0.1 

Å) that those of other structurally characterized NNN pincer and tripodal Ni(II) complexes. We 

attribute this to the steric obstruction of the two iPr groups. The steric repulsion between the halide 

and iPr groups can also be observed in the N3–Ni1–X1 angles, () (Figure 2), which decrease with 

increasing radius of the halide atoms. 
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Figure 2.  Illustration of N3–Ni1–X1 () due to the steic hindrance of iPr groups and halides. 

Color key: turquoise = Ni, blue = N3, black = iPr groups, violet = X1 (X = halide). 

Five-coordinate Ni(II) complexes. Upon dissolving the complexes in THF, a color change was 

observed, suggesting the coordination of solvent molecule(s) to the Ni center. The significantly 

different paramagnetic shifts observed in THF-d8, compared to spectra obtained in non-

coordinating solvents, imply that the formation of five- or six-coordinate high-spin Ni(II) 

complexes is possible. However, octahedral Ni(II) is unlikely because of the presence of two bulky 

iPr groups located trans to the carbazole nitrogen. Reversible solvation is evident from the 

observation that the dark green four-coordinate complexes turns yellow-green in THF. When 

dried, the solid remains yellow-green with no sign of loss of THF even upon prolonged evacuation 

as verified by the results of elemental analysis. However, the yellow-green solid instantaneously 

turns dark green when dissolving in an excess of a non-coordinating solvent, such as toluene. 

Interestingly, upon cooling of the solutions, toluene solutions remain dark green, while an apparent 

color change from yellow-green to dark brown is noticed for THF solutions.  

Crystal structures of five-coordinate Ni(II) complexes. Crystals of the five-coordinate Ni(II) 

complexes were obtained from concentrated THF solutions. The molecular structures of 1THF, 

2THF, and 3THF are shown in Figures S1, S2 and 3, and the crystallographic data are 

summarized in Table 2 and Table S2. Each Ni(II) center is coordinated by three nitrogens, one 

halide, and one oxygen atom in a distorted square pyramidal fashion (5 = 0.34, 0.30, and 0.12, 

 N3 

X1 

Ni1 
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respectively).64 The additional ligation results in several observations that are different from 13. 

First, the average Ni−N bond lengths of the THF-bonded complexes are almost identical (ca. 2.00 

Å), whereas an elongation of ca. 0.2 Å was found for the Ni−X distances. Second, N3–Ni1–X1 

angles decrease by ca. 20. These results may be attributed to a diminished out-of-plane movement 

(0.439 (3) and 0.081 (3THF) Å) of the Ni(II) ion in the five-coordinate complexes, where the 

basal plane is defined by the three coordinated nitrogen atoms N1, N3 and N5. 

 

Figure 3. X-ray crystal structure of 3THF. Thermal ellipsoids shown at 50% probability, 

hydrogen atoms and disorder (of isopropyl groups and the THF molecule) are omitted for clarity. 

Color key: turquoise = Ni, blue = N, gray = C, red = O, violet = I. 

Table 2. Selected Bond Distances (Å) and Angles () for 1THF, 2THF, and 3THF.a 

 1THF (X = Cl)b 2THF (X = Br) 3THF (X = I) 

Ni1–N3 1.90(1) 1.906(4) 1.907(6) 

Ni1–N5 2.04(1) 2.044(3) 2.12(2) 



 14 

Ni1–N1 2.05(1) 2.045(8) 1.96(2) 

Ni1–X1 2.319(5) 2.4355(7) 2.718(1) 

Ni1–O1 2.23(3) 2.26(2) 2.22(3) 

    

N3–Ni1–N5 91.8(7) 90.8(1) 91.7(9) 

N1–Ni1–N3 92.0(5) 91.5(1) 94.6 (9) 

N3–Ni1–O1 94.3(5) 95.0(4) 91.6(9) 

N1–Ni1–N5 175.3(5) 171.5(1) 172(1) 

N3–Ni1–X1 109.9(4) 111.4(1) 103.7(2) 

X1–Ni1–O1 155.8(4) 153.6(4) 164.3(8) 

 a Numbers in parentheses are standard uncertainties in the last significant figures. Atoms are 

labeled as indicated in Figure 3, S1, and S2. b Values taken in average of the asymmetric unit.  

 

Electrochemistry. The electrochemistry of all six Ni(II) complexes was examined using cyclic 

voltammetry. Cyclic voltammograms of 13 do not provide any informative results. Five-

coordinate Ni(II) complexes with bound THF, on the other hand, exhibit voltammograms that 

show a one quasi-reversible diffusion-controlled process (shown in Figure S3 for 3THF in THF), 

which we attributed to a NiII/I event. The quasi-reversibility could be due to the slow rate of THF 

dissociation in the reduced state. There is a slight anodic shift from –1.53 V (1THF) to –1.42 V 

(2THF), and further to –1.33 V (3THF) (Figure S4) with a linear correlation of the potential with 

the Lewis basicity of the halides, as expressed by the ligand constant parameter PL.65 1THF is the 

most difficult to reduce due to both greater Lewis basicity and better p(X)-d(Ni) orbital overlap of 

the chloride anion. In addition, the reduction potential of 3THF is significantly more positive than 

that of 1THF and 2THF, as implied by the more significant bending (N3–Ni1–X1) in 3THF 

which mitigates the orbital overlap.  
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Electronic spectra. Qualitatively similar electronic absorption spectra were recorded for all 

complexes, and these spectra are consistent with the trend described in the spectrochemical series, 

with general ligand field-transition energy decreasing in the halide series when moving down the 

group (Figure 4 and Figure S5). For example, the absorption wavelength of the lowest energy 

bands are in the visible region, and are red-shifted from 1 (630 nm) to 2 (651 nm) to 3 (680 nm). 

These bands are characteristic of high-spin distorted tetrahedral nickel(II) complexes and are thus 

assigned to electronic transitions which are either d−d (3T1  3T2) or LMCT in character.  

   

Figure 4. Electronic absorption spectra of (a) 0.09 mM of 1(), 2(), and 3() in toluene at 40 C; 

and (b) 0.09 mM of 1THF (), 2THF (), and 3THF () in THF at 80 C. 

The color change behavior prompted us to conduct solvent- and temperature-dependent studies. 

At 40 °C, the four-coordinate complexes exhibit stronger transition bands than those of the five-

coordinate counterparts. Upon cooling to −80 °C, the change in relative intensities of these bands 

is insignificant in toluene solutions, whereas drastically different spectra are observed in THF 

(Figure S6). Figure 5 shows temperature-dependent electronic absorption spectra of 2THF from 

40 to −80 °C. The UV-Vis spectral change is accompanied by one set of isosbestic points, and is 
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reversible during repeated heating and cooling cycles. The small transition bands (~600 to 700 

nm) observed in THF solutions are probably related to the presence of a four-coordinate complex. 

As the temperature is increased, the concentration of the four-coordinate complex increases 

relative to that of five-coordinate species. 

 

Figure 5. Temperature-dependent electronic absorption spectra of 0.09 mM of 2THF. 40 °C (), 

0 °C (), −40 °C (), −80 °C (). 

DFT Calculations. 1–3 and the mono THF adducts were optimized at the B3LYP/SDD/6-

311G(d) level of theory as a triplet, where Ni and the halide were represented with the SDD basis 

set and all other atoms with 6-311G(d). One small chemical simplification of the ligand was 

introduced; the tBu groups on the backbone were substituted by hydrogens. The metal-ligand bond 

lengths and angles agree well with the crystallographic values (Tables S4 and S5), suggesting that 

the model is adequate. Calculated d-orbital splitting diagrams for 1 and 1THF are shown in Figure 
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6. Two singly occupied molecular orbitals (SOMOs), dx2-y2 and dz2, are energetically well-

separated from three low-lying doubly-occupied d orbitals. As is shown in Figure 7, the HOMO 

(in both the  and  subspaces) is best described as a ligand  orbital for both the four- and five-

coordinate species with only a small contribution from Ni (see Figure S8 for similar plots of 2 and 

3). The ligand-centered HOMO is commonly observed in donor ligands with more extended  

conjugation.66 

 

 

       

Figure 6. Quantitative d-orbital splitting diagrams based on the  orbital energies with isosurface 

plots (iso = 0.05 au) for 1 (left) and 1THF (right). 
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Figure 7. Isosurface plots (iso = 0.05 au) of the HOMO for 1 (left) and 1THF (right). 

One interesting finding in our system vs. the carbazole-based pincer reported by Hecht and 

Limberg is the short Ni–N(carbazole) bond length of 1.87-1.91 Å vs. their observed bond length 

of 2.032(5) Å.67 A fundamental difference between these structures is that their bis homoleptic 

complex has trans carbazole Ns, potentially giving rise to a strong trans influence that elongates 

this Ni–N bond length. Our complexes do not have a ligand perfectly trans to the carbazole N in 

either 1–3 or their THF adducts. To test this hypothesis, calculations were run (in addition to 1) 

on: (i) an analogue of 1 with iPr substituted by Me (1Me) and (ii) an analogue of 1 with iPr 

substituted by H (1H), and (iii) an analogue of 1 where the pyrazole arms were substituted by the 

triazole arms of their Ni complex (1tri).67 Each was treated as a triplet in keeping with the 

experimental spin state of 1. Similar to our modeling of 1, the tBu groups were omitted from the 

carbazole backbone of each complex (see Figure 8). First, 1tri is predicted by DFT to have a 

significantly shorter Ni–N(carbazole) bond length of 1.94 Å. This supports our hypothesis that the 

lengthened Ni–N(carbazole) bond length is due to the trans influence from the other carbazole 

nitrogen. Second, as the steric bulk of position 3 on the pyrazole arm increases from H to Me to 

iPr in 1H, 1Me, and 1, respectively, the N(carbazole)–Ni–Cl angle becomes more acute (163o, 135o, 

and 133o). As the halide is forced out of the plane the trans influence of this halide is reduced, and 

subsequently the Ni–N(carbazole) bond length decreases with values of 1.928, 1.920, and 1.920 Å 

for 1H, 1Me, and 1, respectively. While we focus on analogues of 1 for this analysis due to the 
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system size, we anticipate these findings to be general for other halides and regardless of whether 

THF is coordinated. 

 
 

 

Figure 8. Optimized structures of 1 (left), 1Me (middle), and 1H (right) with Ni–N(carbazole) bond 

length and N(carbazole)–Ni–Cl bond angles labeled. 

Because the N(carbazole)–Ni–X bond angle increases as the steric profile of the pyrazole 

substituent decreases in 1 vs. 1Me vs 1H, the low-spin, singlet Ni(II) complex may become 

competitive energetically with the high-spin, triplet state. To decouple steric from electronic 

effects we re-optimized each of these species and 2/3 as closed-shell singlets, as well as 

hypothetical hydride (4) and cyanide (5) complexes that replace the weak-field chloride ligand 

with a -donor and -acid, respectively. The steric profile of these two alternative ligands helps 

test for steric effects in these complexes. Table 3 summarizes the structural and energetic 

differences between these spin states. Focusing first on the structure of the triplets,  is close to 

the ideal value for a see-saw complex for each triplet except 1H. Inspection of the 1H triplet 

structure shows a short ClH distance of 2.72 Å that suggests intramolecular hydrogen bonding. 

53, 68-70 Combined with the fact that hydride has a structure that is closer to see-saw than 1 (0.47 

vs. 0.45), these observations strongly suggest that the triplet geometry is controlled by the 

electronic structure at the Ni center except when the ligand has special interactions with the 

pyrazole substituent. The closed-shell singlets all have smaller  values than their corresponding 
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triplets, consistent with a trend toward more square-planar structures. The largest variation is seen 

for hydride whose singlet has a value of 0.15. These values suggest that even sterically small 

ligands like cyanide (5) are effectively blocked by the pyrazole isopropyl groups, or that chloride 

is blocked by the much smaller methyl substituent (1Me); only singlet hydride approaches a  value 

that is comparable to related low-spin Ni(II) pincer complexes ( = 0.09-0.13). Even though these 

singlets are more square planar, only hydride clearly favors a singlet state according to our 

predicted free energy differences. DFT is well-documented to be sensitive to spin-state splitting 

energies, so we evaluated triple-zeta energy refinements with OPBE in addition to B3LYP.69 These 

free energy differences suggest that 1H and 5 may also favor the singlet state. 

 
 

τδ ΔG (kcal/mol) 

Species S = 0 S = 1 B3LYP OPBE 

1 0.36 0.45 10.74 4.86 

1Me 0.36 0.44 9.20 3.33 

1H 0.19 0.22 0.90 -6.16 

2 0.39 0.47 12.03 6.23 

3 0.40 0.49 13.23 7.56 

4 0.15 0.47 -5.98 -13.56 

5 0.34 0.46 4.61 -2.69 

 

Table 3. Comparison of the τδ values for the singlet and triplet states, as well as the spin state 

energy difference (ΔG = GS=0 - GS=1), for 1-5. 

 

To aid in the interpretation of the electronic spectra, TD-DFT simulations were performed. UV-

Vis spectra were simulated with B3LYP/def2TZVP with implicit solvation (Figure 9). When 

comparing the calculated spectra of the four-coordinate complexes (Figure 9a) to the experimental 
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results in Figure 4a, DFT predicts the transitions within ~20 nm of the observed experimental max 

values (Table S3), including an experimentally observed shoulder at ~340 nm with predicted 

counterparts at 329, 330, and 331 nm for 13, respectively. The exception are the two bands at 

373 and 395 nm for 1 that are not seen for the other two halides; DFT predicts a single peak at 378 

nm. The experimental trend for the wavelength of this lowest energy peak having to be 1 < 2 < 3 

is reproduced, whereas the higher energy peaks are effectively at the same position. To better 

understand why this lowest energy transition is sensitive to the halide but the higher energy ones 

are not, the nature of these transitions and donor and acceptor orbitals for each transition were 

analyzed and are shown in the Supporting Information (Table S6-S8). The lowest energy transition 

is best described as an LMCT band with the ligand -orbital having significant character on the 

carbazolide nitrogen (N3) donating into the singly occupied dz2-orbital on the Ni that has some 

antibonding character due to the non-planarity of the halide in these species. The higher energy 

and more intense transitions are various   * transitions in the ligand backbone, consistent with 

the relatively unchanged absorption energies as a function of the halide. 

 

Figure 9. Simulated UV-Vis spectra for 1 (–), 2 (–), and 3 (–) in left panel and 1THF (–), 2THF 

(–), and 1THF (–) in right panel. Individual oscillators were fit with Gaussians with a hwhm of 

0.15 eV. 
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Next, the spectra of the five-coordinate species (Figure 9b) were investigated and compared to 

the experimental spectra (Figure 4b). Based on the interpretation of the four-coordinate species, 

the observed transitions should all be ligand   * transitions since they are relatively insensitive 

to the halide. An analysis of the donor and acceptor orbitals for these excited states (Table S9-S11) 

confirms this. Moreover, we can understand the absence of the low-energy transition; the dz2-

orbital is shifted higher in energy due to the increased antibonding character when THF donates 

into this orbital, and this transition mixes with the higher energy/intensity ligand transitions. The 

simulated data have a discrepancy in the total number of   * transitions, although this may be 

an artifact of our fitting Gaussian distributions to each transition that obscures lower intensity 

bands. Analysis of the individual major peaks shows five for 1THF, five for 2THF, and six for 

3THF. Note that 2THF is missing the experimental peak at 371 nm. On the basis of these 

simulated spectra, we can directly attribute the color change with THF binding to loss of the intense 

LMCT band with dz2 as the acceptor orbital. The extremely weak absorption at ~640 nm seen in 

each of the simulated spectra corresponds to a different, less allowed LMCT band corresponding 

to donation into the half-filled dx2-y2 orbital. Interestingly, the experimental spectra of all THF 

adduct complexes show an increase of the lower energy band with increasing temperature. 

Therefore, it could also be a result of the equilibrium between four- and five-coordinate species 

since the loss of THF is entropically favored at higher temperature. However, variable temperature 

NMR spectra of 2THF (Figure S7) exhibit one set of resonances, implying that either only 2THF 

existed in the solution at these temperatures or the equilibrium is too rapid between 4- and 5-

coordinate complexes to be observed on the NMR time scale. 

Conclusions 
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We have prepared and characterized a series of Ni(II) complexes supported by a monoanionic 

NNN pincer ligand, CztBu(PyriPr)2
. 1–3 were found to have S = 1 configurations, which 

calculations suggest is due to the geometric constraints of the pincer ligand. The combined 

experimental and theoretical exploration of the electronic and geometric structure of these and 

related hypothetical complexes highlight an important feature of this new ligand (and related ones): 

unlike PNP and bis-iminopyridine ligands whose substituents point away from the fourth 

coordination site of the metal,13, 71-72 the R groups of pyrazole directly conflict with a possible 

square planar geometry at Ni(II). This leads to a strong preference for the triplet state except when: 

(i) strong field ligands are used (CN– is predicted to barely favor low-spin) or (ii) a ligand with no 

steric effect (H–) is bound to Ni. Practically, this suggests that when substrates of catalytic interest 

are bound to the metal a high-spin configuration should be expected. Experimental and theoretical 

studies of the electronic transitions for these complexes show the transitions are dominated by both 

  * and LMCT bands. Further reactivity studies on the rare examples of steric hindrance-

enforced seesaw complexes 13 are ongoing, and results will be published in due course. 
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SYNOPSIS  

A rigid NNN pincer ligand enforces a series of rare seesaw Ni(II) complexes. Upon dissolving the 

four-coordinate complexes in THF, the thermochromic five-coordinate THF adduct compounds 

were obtained.  
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