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CHAPTER ONE 

AN INTRODUCTION TO ORGANIC SEMICONDUCTOR SURFACES: THEIR 

PREVALENCE, STRUCTURE, AND REACTIVITY 

Organic light emitting diodes (OLEDs),1–5 organic photovoltaics (OPVs),6–10 and organic 

field-effect transistors (OFETs)11–15 are integral to modern electronic devices. The rise of these 

next generation devices can be credited, in part, to superior function and processing of the 

materials which comprise the device. Notable examples include solution processable organic 

semiconductor materials, which allowed for the utilization of cost-effective deposition methods 

including ink jet16,17 or roll-to-roll printing.18,19 The application of organic materials into 

electronics has also enabled bendable and wearable devices that are robust.20–22 Generally, these 

low-cost, lightweight and flexible materials hold promise in supplanting existing more expensive 

conventional silicon-based electronics. In fact, the current market value for printed flexible 

organic electronics is $29.3 billion (USD) and is forecasted to grow to $73.4 billion by 2027.23  

The materials utilized in organic electronic devices vary dramatically in structure and 

properties as dictated by the device function. All are highly conjugated small molecules or 

polymers (Figure 1, left). The extent of conjugation in the organic materials plays an important 

role in modulating the energies of the frontier orbitals. Organic materials with higher conjugation 

have lower energy LUMOs and higher energy HOMOs (e.g. the band gap of pentacene is ~1 eV 

lower than tetracene.)24 Chemical functional groups bonded to organic materials modulate the 

energies of the frontier orbitals, and ultimately dictate the characteristic transport type. The 
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majority of organic molecules are electron rich p-type materials and have high energy LUMOs, 

and this makes hole transport through the HOMO more favorable. n-Type materials are electron 

deficient and often have π-accepting (cyano or carbonyl) or electron withdrawing (halogen) 

functional groups, which presents a lower LUMO that is easier to reduce. Of these, pentacene 

and tetracene will be utilized for the experiments herein as they are prototypical p-type materials 

for OFETs and OPVs. 

 

Figure 1. Left: Prototypical organic semiconductor molecules. Right: Two possible device 
architectures for OFETs. Arrows show the direction of charge carrier movement through the 
organic semiconductor channel.  
 

Challenges arise with the incorporation of organic semiconductor molecules into devices 

and, if not addressed, they have the potential to undermine performance. In a typical device, such 

as an OFET, multiple layers of metal and organic films are deposited successively to form 

layered architectures (Figure 1, right). Each layer performs a specific function which contributes 

to device performance e.g. channels relay charge carriers from source to drain electrodes when in 

an “on” state. Of particular interest are the interfaces between them as they play a major role. 

When charge carriers are injected into the channel from the source/drain electrodes, they cross an 

organic-metal interface. As this occurs, the interface presents energetic barriers (to be discussed 
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shortly) that are either too high and limit injection, or low enough that energy loss is avoided. 

The interface is also where the strength of adhesion between the organic and metal layers is 

defined. Here, chemical functional groups on each surface determine the type of interactions 

(bonding or weaker noncovalent interactions), and an improperly designed interface results in 

delamination, or the peeling apart of the layers.25–27 Not obvious from the illustrations is the fact 

that the quality of these interfaces is highly dependent on the ordering of the layers in the OFET, 

even if the same materials are used. In a bottom-contact bottom-gate arrangement, there are less 

processing challenges as the deposition of the organic semiconductor is the final processing step. 

Here, the underlying metal is robust, and simple surface modifications are possible. In contrast, 

for a top-contact bottom-gate arrangement, metal electrodes are patterned on top of the 

vulnerable organic semiconductor and often metal penetration or partial decomposition of the 

organic semiconductor28–31 is an issue. 

Interfaces between layers in a device are important, as this is where performance-

impeding processes, such as charge injection barriers, arise if the surfaces are improperly 

engineered. In order for charge carriers to pass from between the metal electrodes and organic 

semiconductor, they must surmount an (Schottky) energy barrier. For a hole, (the dominant 

carrier in pentacene) this is the energy difference between the metal’s Fermi level and the 

organic semiconductor’s HOMO. Power is wasted when additional voltage must be supplied to 

surmount these barriers however, clever engineering of interfaces can eliminate this issue. For 

example, one way to manage the barrier is through inserting a monolayer, containing a sizeable 

dipole, on the metal.32,33 The orientation of this dipole relative to the metal surface causes the 

metal’s Fermi level to vary, and when oriented away from the surface, the Fermi level has been 

shown to decrease. 
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What the prior examples have in common is the improvement of the metal component of 

the electrode-organic semiconductor interface; interface modification useful for bottom-contact 

arrangements. In contrast, methods to improve the organic interface, which would be attractive 

in top-contact arrangements, remain largely unaddressed. Currently, only crude methods, such as 

photooxidation34,35 and electron irradiation,36 are used to chemically functionalize the surface, 

and they have poor reproducibility and depth control. The mechanism for these involves the 

production of highly reactive radicals which quickly react with the surface and into the 

subsurface. Another, milder, method is the polymerization of alkyl silanes off of oxygen defects 

on the organic surface.37 Though this method tolerates a variety of chemical functional groups on 

the silanes, there are several inadequacies including reproducibility and poor coverage. 

Disappointingly, none of the methods take advantage of the inherent cycloaddition chemistry 

that π-bonds on organic semiconductor molecules are prone to. In contrast, the Diels-Alder 

reaction is an ideal candidate because each surface molecule possesses the chemistry necessary 

for reaction and there is a higher level of control.   

On an organic semiconductor surface, the Diels-Alder reaction (Figure 2) occurs between 

π-electron rich dienes (organic semiconductor) and π-electron deficient dienophiles (adsorbates). 

Here, four π-electrons on the organic semiconductor and two π-electrons on the adsorbate 

concertedly rearrange to form two carbon-carbon bonds. For the reaction to occur, the adsorbate 

must position itself within 2.2 Å away from the organic semiconductor (transition state 

geometry).38 A wide range of adsorbates, differing sterically and electronically, can be reacted 

with the surface. This is advantageous for the processing of organic semiconductors because 

having an arsenal of chemical functional groups to decorate the surface can significantly impact 

surface properties, including wettability. Indeed, a recent report, using contact angle 
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experiments, demonstrated a sizeable increase in the hydrophilicity of a tetracene thin film 

surface following exposure to maleic anhydride and N-hydroxymaleimide vapor (Contact angles 

of: tetracene (80°), tetracene reacted with maleic anhydride (66°), and tetracene reacted with N-

hydroxymaleimide (60°).39 While some initial success has been shown using Diels-Alder 

chemistry to functionalize organic semiconductor surfaces, including altering properties, the 

reaction of organic surfaces is very new and especially challenging.  

 
Figure 2. Top left: Diels-Alder reaction mechanism between tetracene (diene; black) and 
adsorbate (dienophile; green). Top right: Examples of adsorbates. Bottom: Tetracene/pentacene 
film surfaces undergo the Diels-Alder reaction with vapor phase N-methylmaleimide. Taken 
from reference 37 and reformatted. 

 

Challenges Presented by Surfaces 

Broadly, surfaces have been an outstanding challenge in the scientific community for 

centuries, and even today. Professor Wolfgang Pauli, a renowned physicist, noted the complexity 

of the surface when he described it as being “invented by the devil.”40 Surfaces were referred to 

in this manner because of the massive disparities between surface and bulk atoms on a structural, 

energetic, and reactive basis. Structurally, bulk atoms are enveloped from all sides by stabilizing 
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metallic or covalent bonds, whereas surface atoms are not (Figure 3). The absence of overlaying 

bonding partners results in surface atoms having higher energy and more degrees of freedom. 

There is also the challenge of measuring low coverage implicit within surfaces. A single 

molecule thick monolayer would be equal to ~1014 molecules/cm2.41 Assessing surface reactivity 

is also challenging because contaminants can readily occur at amounts far exceeding ~1014/cm2.  

In fact, contamination is so pervasive that ultrahigh vacuum and sputtered surface conditions are 

often required for analysis. These classical challenges in surface science also exist for organic 

surfaces, and in some cases, are exaggerated.  

Organic surfaces are structurally different than their inorganic counterparts, conferring a 

new set of challenges associated with these surfaces. Namely, weak intermolecular interactions, 

anisotropic reactivity, and elaborative transition states play a sizeable role in reactivity. The 

weak van der Waals interactions between molecules in organic surfaces makes the surface 

susceptible to distortion and increased spacing; more so than with inorganic surfaces. As a result, 

it is feasible for adsorbed molecules on organic surfaces to diffuse into the subsurface and react 

with interior molecules. Next, there is a high degree of directional dependence associated with 

reactions on organic surfaces because, typically, only one site on a surface molecule is reactive. 

Therefore, the reaction rate is highly dependent on the orientation of surface molecules within 

the lattice (Figure 3). Reactions of organic surfaces are also challenging because of distinct 

transition state geometries. Since, adsorbates must position themselves at a particular distance 

and angle from the reactive surface molecule, this requires that adsorbates move and sample 

various geometries on the surface to chemisorb.  
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Figure 3. Differences between the surface and bulk are illustrated for inorganic (left; cubic 
lattice) and organic (right; pentacene) substrates. The red arrows highlight the importance of 
adsorbate approach to the two surfaces.  
 

Fortunately, there is precedence for the reactivity of organic crystals in the form of solid 

phase reactions, and this may lend in predicting surface reactivity. In the 1970’s, Paul and Curtin 

demonstrated p-chlorobenzoic anhydride crystals (and chemical derivatives) reacted when 

exposed to ammonia gas.42,43 Despite only having crude methods for analysis, they were able to 

demonstrate the reaction occurred along axes, and through channels, of the crystal where reactive 

carbonyl functional groups were exposed. As chemisorption proceeded, ammonia propagated 

into the bulk of the crystal. Later, in the 1990’s, Kaupp et al. performed solid-gas and 

dimerization experiments for the waste-free conversion of solids and reported the crystals 

reconstructed after exposure to reaction conditions. The formation of product molecules in the 

host lattice produced strain, and facilitated crystal transformation. Their examination also 

included (for the first time) surface characterization tools: atomic force microscopy (AFM) and 

near-field scanning optical microscopy (NSOM). While this work is influential in deducing bulk 

reactions of organic crystals, the reactivity of the surface remained unclear.  
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Scope of Research on Organic Surfaces 

In an effort to improve interfaces in organic electronics, a sound understanding of the 

guiding principles of reactivity of organic semiconductors is required. This dissertation seeks to 

address this by demonstrating guiding principles of reactivity as revealed during the exposure of 

acenes to Diels-Alder conditions. This is studied via the reaction of pentacene and tetracene 

which were chosen based on their prevalent use in organic electronics,44 and precedence 

demonstrating their reactivity to cycloaddition chemistry.39,45,46  

In chapter 2, the influence of the weak lattice on surface reactivity was examined, 

particularly with consideration of possible access to the subsurface. Because the organic surface 

is held together by relatively weak intermolecular interactions, modest temperatures may greatly 

affect the spacing between surface molecules. And as the work by Paul, Curtin, and Kaupp 

showed, temperature is likely to play an important role dictating adsorbates access to the 

subsurface. Next, the evaluation of classical reaction models were examined to assess the 

accuracy of the models in predicting surface reactions. To achieve this, two different reaction 

models, solid-state and solution, were evaluated against the Diels-Alder surface reaction. By 

systematically reacting pentacene and tetracene films with a host of adsorbates, and contrasting 

results to solution phase reactivity, results indicated reactivity of the organic surface was 

dependent on an amalgam of solution and solid-state factors.  

Towards improving the organic surfaces in top-contact devices, this dissertation discusses 

the influence defects have on inducing reactivity of otherwise unreactive surfaces. Because it has 

been demonstrated on tetracene crystals that the (001) surface was unreactive to Diels-Alder 

chemistry, analogous pentacene (001) films with controlled defect density were prepared. Defect 

density on a nominally pentacene (001) thin film was manipulated using average grain size as a 
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means to vary the number of associated defects (vacancies and dislocations). Using thermally 

induced pentacene film growth, two disparate average grain sizes were obtained. Exposure of 

these films to vapor-surface Diels-Alder conditions resulted in reaction of the nominally (001) 

surface, and importantly, chemisorption correlated strongly with defect density. Further, the 

ability of adsorbates to propagate into the bulk crystal from defect sites was studied using 

tetracene crystals with only one or two surface defects. Analysis with scanning electron 

microscopy (SEM) revealed, indeed, the reaction initiated at a tetracene dislocation, and 

propagated several microns from the higher terrace.  

The work presented in this dissertation was well-received through various scientific 

communities. At the Materials Research Society Spring Meeting, materials scientists and 

engineers were eager to learn that the Diels-Alder reaction showed promising results in 

improving the organic surface component of the metal/organic interface in organic electronics. 

Meanwhile, the surface science community at the AVS Prairie Chapter valued hearing about the 

reactivity of organic semiconductor surfaces. The work from chapter 2 was published in 

Langmuir47 and Chapter 3 is in preparation for publication. In time, I anticipate the Diels-Alder 

reaction of organic semiconductor surfaces will prove valuable to improve interfaces in organic 

electronics.  

In the future, for the Diels-Alder surface reaction to realize application in the commercial 

processing of organic electronics, I foresee two checkpoints that need addressing. The first is the 

application of this chemistry to a broader class of organic semiconductors, such as soluble 

organic semiconductors and polymers. A broad class of organic semiconductor surfaces will 

validate the near ubiquitous application of the Diels-Alder reaction. Next, it would be useful to 

demonstrate the versatility of the processes to apply Diels-Alder chemistry to surfaces. More 
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specifically, developing a method to selectively pattern reacted areas would allow for more 

sophisticated organic electronic designs.   
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CHAPTER TWO 

THE ROLE OF THERMAL ACTIVATION AND MOLECULAR STRUCTURE ON THE 

REACTION OF MOLECULAR SURFACES 

Introduction 

The surface chemistry of molecular substrates has recently garnered much 

attention,39,48,49 driven by the need to optimize interfaces in organic optoelectronic devices.14,50–54  

Several rudimentary methods of chemical functionalization have been demonstrated, such as 

UV-ozone treatment,34,35 where a layer of oxidized molecules are generated at an organic surface 

and eventually randomly propagated into the subsurface; and homolytic bond reorganization 

induced by electron irradiation.36   However, the ideal embodiment of surface functionalization 

would be flexible, well-defined, and contain chemistry specific to these new substrates.  This 

was first hinted at by Calhoun et al. who showed that it is possible to polymerize alkyl silanes off 

of oxygen defects on rubrene, in a manner reminiscent of silicon oxide/silane chemistry.37  

Though more versatile, defect directed reactions have poor repeatability, as defect coverage is 

poorly defined, and they leave a majority of surface molecules untouched.  The obvious next step 

was to take advantage of the inherent surface reactivity of each of the molecules on the organic 

surface.  In doing so, adsorbate molecules could be appended one per surface molecule and 

generate robust and well-defined surface structures. 
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Recently, a surface modification approach which fulfills these requirements has been 

demonstrated.  We have published work on the reaction of acene surfaces (linearly fused 

benzene rings), whereby traditional solution chemistry has been used as a template for surface-

based reactions.39,45,46 The acene substrates were particularly appealing as they contain electron 

rich π-systems, and are primed for classical Diels-Alder cycloaddition chemistry.55  In the 

solution phase, this chemistry has been applied to anthracene prolifically (thousands of 

publications available in the literature), providing ample guidance for this approach.  Additional 

advantages include modest reaction conditions, no side-products, and the compatibility with 

various functional groups.  We have demonstrated that a host of molecular adsorbates can be 

reacted at the interface of these organic substrates using Diels-Alder cycloaddition chemistry 

(Figure 4).39  Acene thin films that are exposed to volatile dienophiles react, one per surface 

molecule, forming the same species as is produced via traditional solution chemistry.46  This 

application of classical synthetic chemistry to organic surfaces appears a powerful addition to the 

needs of materials scientist and has the potential to usher in a new chapter in surface chemistry. 

 

Figure 4. General mechanism for the Diels-Alder reaction between gas phase N-
methylmaleimide and a pentacene thin film. Curved arrows indicate the direction of electron 
movement during covalent bond formation.  
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 The challenge here is that the field of organic surface chemistry is in its infancy, and as 

such, there is little precedence for modeling surface reaction behavior.  It is inadequate to 

directly compare the reactions on organic thin films to the reactions on traditional inorganic 

surfaces.  Acene molecules within the lattice interact exclusively through weaker noncovalent 

molecular interactions (van der Waals, π-interactions) and the intermolecular spacing is quite 

large (Figure 5).  In comparison, inorganic counterparts have strong metallic or covalent bonds 

between atoms, and spacing between atoms is below van der Waals distances.56  These 

differences bring two new features to the surface reactions on organic thin films.   First, the non-

covalent makeup of the lattice means significant voids exists within the solid, and channels are 

common.  These channels present a pathway for larger adsorbates (>3 Å) to diffuse into the 

solid, one that does not exist in inorganic substrates.  For example, crystalline thiohydantoins and 

carboxylic acid derivatives have been completely consumed during their reaction with gaseous 

alkyl amines, facilitated by small channels within the lattice. 42,57,58  This subsurface accessibility 

contrasts with traditional inorganic surfaces, where subsurface reactivity is confined to 

mono/di/tri-atomic adsorbates.59,60  Second, the weak interactions mean the lattice is susceptible 

to significant deformation at or near room temperature, resulting in another mechanism for the 

organic vapors to diffuse into the solid.  For example, vinyl bromide readily diffuses into 

calixarene crystals at -5 ºC despite the structure lacking channels.61  Both features suggest that 

the occurrence of subsurface and bulk reaction might be common in organic solids, and should 

be examined when developing surface functionalization methodologies.  
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Figure 5. Differences in lattice spacing for inorganic and organic substrates are illustrated. Figure 
scales are consistent to allow comparison. (a) Au(111) with a thiol monolayer on top adopts a 
(√3×√3)R30º structure.  Red spheres (sulfur) are drawn in a hollow site position for visual 
simplicity since the chemical bonding motif is dramatically more complex.62 (b) Unit cell of 
tetracene.63  
 
 Because of the potential for adsorbates to readily diffuse into the subsurface, we have 

reexamined the reaction of vapor dosed dienophiles onto acene thin films.  Herein, we 

demonstrate that the subsurface and bulk of acene thin films are accessible to a Diels-Alder 

reaction if the reaction is thermally activated.  In the case of extensive reaction, topological 

changes occur; these are assessed and correlated to the chemical changes in the film.  This 

methodology is then extended to various adsorbates/acene combinations, and the trends in 

kinetics allow us to assess whether diffusivity outweighs the influence of chemical activation 

barriers, in terms of determining reactivity.   

Experimental Section 

Materials 

 All metals used for evaporation were of 99.9% or greater purity.  Sublimed grade 

pentacene and tetracene were commercially obtained and used without further purification. 
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Adsorbate source material used in the reaction of acene films (N-methylmaleimide, maleic 

anhydride, maleimide, N-methylsuccinimide, and tetrafluorobenzoquinone) were also 

commercially obtained and are of 97% or greater purity.  ACS grade chloroform was used for 

solution phase kinetic studies. 

Preparation of Acene Thin Films 

 Microscope slides (11 × 25 × 1 mm) were piranha cleaned (3:1 H2SO4: H2O2), rinsed 

twice with 18 MΩ deionized water and sonicated for 20 min. The substrates were rinsed with 

copious amounts of 200 proof ethanol before drying under a stream of nitrogen.  Substrates were 

placed in a Kurt J. Lesker NANO38 thermal evaporator for metal deposition.  At a base pressure 

of 5.0 × 10-7 Torr, a chromium adhesion layer (5 nm) was deposited, followed by 50 nm of 

silver, and 50 nm of gold (all at 1 Å/s).  Immediately following metal evaporation, the organic 

semiconductor was deposited using a home built sublimation chamber with a source to sample 

distance of 16–17.5 cm.  60 nm of acene were sublimed onto the metal-coated substrates at a 

base pressure of <5.5 × 10-6 Torr at a rate of 1 Å/s.  Film thickness was monitored using an 

Inficon SQM-160 quartz crystal microbalance. 

Solid-State Diels-Alder Reactions 

Acene thin-film substrates were placed into a 100 mL Schlenk tube sealed with a hollow 

end stopper along with approximately 8 mg of solid adsorbate in a small vial.  The air within the 

Schlenk tube was evacuated and replaced with nitrogen three times, and the sealed vessel was 

then heated in a furnace at the temperatures described in the text.  After the reaction (18-24 h), 

the vapor phase dienophiles were condensed away from the substrate by cooling one end of the 

flask with dry ice.  Any physisorbed material was removed by first exposing the sample to < 10-2 

Torr (roughing pump) for 15 min before subjecting it to pressures < 10-5 (turbomolecular pump) 
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for 1 h.   

Infrared Analysis of Thin Films 

Composition of thin films were assessed both before and after reaction via PM-IRRAS 

using a Bruker Optics Tensor 37 FTIR equipped with a PMA 50 accessory and MCT detector.  

Reaction progress was assessed by comparing newly generated infrared vibrations to those 

within a spectrum of a standard solution synthesized adduct.39  Additional information was 

gleaned from the consumption of substrate peaks.  Thin films were analyzed at resolution of 8 

cm-1.  

AFM Analysis of Thin Films 

Surface morphologies of the pristine and reacted films were analyzed using atomic force 

microscopy (AFM) (MFP 3D microscope, Asylum Research) in tapping (non-contact) mode 

using a diamond-like-carbon coated AFM tip (Tap190DLC, Budget Sensors).  The root-mean-

square (rms) roughness of the film was calculated by the AFM software.  In order to measure the 

film thickness, a small area of the film was removed by nanoshaving using the same tip under 

contact mode (force set point 0.5 V).  The tip spring constant is ~40 N/m (with an estimated 

force of ~ 2 μN/V), meaning ~1 μN was applied to remove the organic film.  At the end of the 

shaving, the gold surface was exposed at the bottom of the well.  The force applied during the 

nanoshaving was confirmed to have no scratching effect on a bare gold surface. Then the AFM 

was switched back to tapping mode to image a larger area at the same location. The film 

thickness was calculated as the average depth of the well using the statistical tool of the AFM 

software. 

UV-vis Kinetics Measurements (Solution Reference Experiment) 

Rate constants for the reactions of pentacene with adsorbates N-methylmaleimide, maleic 
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anhydride, maleimide, and tetrafluorobenzoquinone (pseudo-first order) were obtained for the 

solution Diels-Alder reactions by monitoring pentacene consumption as a function of time via 

UV-vis (Shimadzu UV-2550), in a manner described previously.45  Briefly, the pentacene (2.6 × 

10-4 mM) was reacted under pseudo-first order conditions with a large excess of dienophile (4.4 

× 10-2 mM, the adsorbate in analogous thin-film experiments).  The reactions occurred at room 

temperature (20-25 °C) in degassed chloroform.  The pentacene consumption was monitored via 

absorbance at the lowest energy excitation at 576 nm.  In all experiments, the background 

absorption from the large excess of dienophile is subtracted out from spectra.  In the case of 

tetrafluorobenzoquinone this was especially significant.   

Results and Discussion 

 The only forces between organic molecules within molecular substrates are 

noncovalent interactions.  As a consequence, molecular solids have low lattice energies, on the 

order of 30 kcal/mol for the molecules herein,64–67 making the surface susceptible to distortion.  

In addition, the intermolecular spacing in the organic thin film is relatively large comparing to 

the size of the adsorbates.  Thus, we hypothesize that sub-surface reactions may become 

significant in these organic thin films.  While this structure-driven subsurface reaction behavior 

was not originally recognized in our initial studies (at 50 ºC),39 this work examines different 

temperature regimes in order to demonstrate a subsurface reaction.  To test this hypothesis, ~60 

nm-thick uniform pentacene thin films were exposed to and reacted with vapor phase N-

methylmaleimide at elevated temperatures. The reaction kinetics and the change of the thin-film 

morphology is measured to study how dosed molecules can react beyond the surface into the 

subsurface.  N-methylmaleimide was chosen as an adsorbate because of previously demonstrated 

surface reactivity and because the van der Waals dimensions of the molecule (7.5 Å at its largest 
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point)68 are representative of most potential adsorbates for this reaction.  Experiments began with 

an initial temperature range of 30 - 75 ºC, a range where lattice deformation might become 

significant.  

 The thin films, before and after reactions, were characterized with polarization 

modulation infrared reflection absorption spectroscopy (PM-IRRAS) to provide a quantitative 

measure of both the remaining subsurface pentacene and the extent of surface reaction.  

Specifically, pristine pentacene is observed via intense out-of-plane vibrations near 910 and 730 

cm-1, both of which occur in regions with no interfering bands from the reacted species.45,69  As 

adsorbate molecules chemisorb to the pentacene thin film, the intensity of these infrared bands 

diminishes, which is presumed (and later confirmed) to come primarily from reaction, not 

volatilization/sublimation.  Chemisorption is also observed via the growth of vibrations at 1776, 

1700, 1280 and 1260 cm-1.39  

 From the N-methylmaleimide reaction with pentacene thin films at 30, 50, and 75 ºC 

for 24 h, it is evident that a small change in temperature plays an outsized role, as the three 

substrates now have a dramatically different composition (Figure 6).  Using the 910 cm-1 

vibration to measure the amount of retained pentacene, it is clear that at 30 ºC (blue) little change 

has occurred within the pentacene; when compared to the unreacted substrate (black line), 

virtually no change in the intensity of the vibration is observed.  This is in contrast to the ~29% 

decrease at 50 ºC, and in strong contrast to the complete consumption of pentacene at 75 ºC.  

Thus, with minimal temperature increase, the pentacene thin film is consumed entirely.  

Complimentary data, acquired by monitoring adduct formation, provides a more detailed picture.  

At 30 ºC, adduct formation is confirmed via a growth in the four aforementioned standard 

product peaks (1776, 1700, 1280 and 1260 cm-1).  Consistent with the small decrease in 
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pentacene absorption, the amount of product generated is small.  In fact, if an unmodulated 

IRRAS experiment is performed (Figure S1), the 1700 cm-1 stretch appears to be of an intensity 

appropriate for a monolayer worth of material.70  Throughout the rest of the temperature range, 

there appears to be equipoise consumption of substrate and production of product as apparent in 

Figure 3.   

 

Figure 6. PM-IRRAS spectra of the multi-temperature (30, 50, 75 °C), 24 h reaction between 
pentacene and N-methylmaleimide.  The color scheme is as follows: black (pristine pentacene), 
blue (30 °C), green (50 °C), and red (75 °C).  Adduct vibrational modes have been offset for 
visual clarity.  
 
 Besides adduct formation, there are two other possible reasons for the diminished 

infrared pentacene bands: volatilization and thin-film annealing.71  To quantify these effects, a 

pristine pentacene film from the same batch was heated at 75 °C for 24 h in the absence of N-

methylmaleimide.  All infrared peaks pertinent to pentacene decreased in intensity by an average 

of 13%, suggesting volatilization of a small fraction of the material (Figure 7 and S2).  This 
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experiment also allows us to conclude that annealing of the thin film appears unlikely; if 

annealing caused the vibration at 910 cm-1 to decrease, the infrared bands at 1445 and 1162 cm-1 

would have increased as molecules reorient relative to the surface normal.39,69   

 To further quantify pentacene volatilization, AFM was used to measure the thickness of 

the film. Because organic thin films are softer than inorganic substrates, an AFM tip in contact-

mode can displace material and scratch through the pentacene down to the underlying gold 

support substrate, while the same force is not enough to scratch the bare gold surface. 

Subsequent line scans across the scratched area provide information regarding film thickness.72  

Scratched pentacene films that had been heated to 75 °C were found to have 9 nm less material 

than a sample maintained at 25 °C (61 nm).  This 15% decrease is nearly identical to our IR 

analysis.  The results also indicate that thin-film volatilization is non-negligible at 75 °C, but 

chemisorption is the dominant mechanism responsible for complete consumption of pentacene 

signal at 910 cm-1. 

 

Figure 7. (left) PM-IRRAS and (right) AFM measurements of a pentacene substrate heated to 75 
°C for 24 h allow for quantification of substrate volatilization.  Both the absorption difference 
(13% average) and thickness change (9 nm, 15% difference) measure similar amounts of 
pentacene loss.  
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 When considering the fact that the pentacene substrate reacted with N-

methylmaleimide at 75 °C has been completely converted to adduct, it seems obvious to ask 

whether this surface maintains a filmlike arrangement because the reactants and the products 

have significantly different shape, packing, and crystal structures. When the substrates are 

examined by AFM, the answer is unambiguously no.  AFM reveals the presence of irregular and 

dendritic structures on the surface (Figure 8, far left) with heights several hundreds of 

nanometers in size.  It is natural to question how these features arise, and when surface integrity 

is lost.  Thus, lower temperature samples were reexamined to observe the progression of the 

surface topology. The surface features, whether a form of increased roughness or localized 

reacted material, appear in all samples, but their form changes, and they appear less as the 

reaction temperature decreases.  Features are still significant at 50 ºC and appear more as simple 

protrusions; by 30 ºC, coverage is sparse and heights are modest (Figure 8, middle two images).  

Samples at additional temperatures (25, 35, 40, 65 ºC) provide clarification of how the surface 

topology evolves.  The rms of the substrates starts near that of pristine pentacene for a 25 ºC 

reaction, then exponentially increases at temperatures up to 35 °C, whereby the increase slows, 

and levels after a reaction temperature of about 40 ºC (Figure 8 right and Figure S3).  After 

remaining constant from 40-65 ºC, the rms increases dramatically upon a small temperature 

increase to 75 ºC as the surface completely reorganizes.  As rms data in Figure 8 shows, the 

surface morphology develops in three distinct regions, the largest of which (40-65 ºC) has 

significant surface protrusions with little variance in size and coverage over a span of 25 °C. The 

protrusion size mirrors RMS data (Figure S4). 
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Figure 8. Left: AFM images of 75, 50, and 30 °C pentacene thin films reacted for 24 h with N-
methylmaleimide. Right: Plot of average rms roughness values of reacted substrates helps 
quantitatively differentiate the three distinct regimes (near-pristine, protrusion covered, and 
complete film reorganization). Error bars of the standard deviation are included (see Table S1 for 
rms values). RMS data includes protrusions; data for the region between protrusions are found in 
Figure S5.  
 
 We have further investigated the 50 ºC sample to confirm that the surface protrusions at 

this temperature were on top of the contiguous pentacene layer rather than islands of pentacene 

separated by bare gold. Similar to the scratching experiments above, the 50 ºC sample was 

scratched with the AFM tip to identify the presence of an underlying organic layer, and to 

determine its thickness.  The data demonstrate the underlying pentacene surface is still a 

continuous film after the reaction at this temperature (Figure S4), as a 40 nm thick film still 

exists in between the protrusions.  The decrease of the thickness also suggests that surface 

migration of product is the likelier mechanism behind protrusion formation; that is, the surface 

layer of pentacene reacts with N-methylmaleimide, and the products segregate into the clusters 

on top of the pentacene layer.  

 Taken together, the temperature data suggest three distinct regimes for the reaction of 

pentacene thin films: up to 30 ºC, the reaction is on the order of a monolayer with little change to 

the thin film; from 40 to 65 ºC, the reaction progress extends further into the surface, and 

significant protrusions are now seen, but the unreacted pentacene maintains its original film 



23 

 
 

structure; by 75 ºC film structure has been destroyed.  There are two other features of the data 

that are worth highlighting.  First, the size of the N-methylmaleimide (7.5 Å) adsorbates are quite 

large, and the accessibility to the subsurface material (regardless of mechanism) is noteworthy.  

Second, the presence of the three distinct surface reaction regimes is remarkable for the fact that 

a pristine surface is completely restructured over a 50 °C temperature range.  The extent of 

change these acene thin films undergo demonstrates the susceptibility of organic substrates to 

thermal influence, and is potentially due to weak forces between molecules; hence, attention is 

next focused on how much intermolecular forces influence reactivity and if they have any 

predictive use.  

 At first glance, the strength of the intermolecular forces among the thin-film molecules 

should determine the thin-film’s subsurface reactivity.  The pentacene lattice does not have an 

channel to allow for adsorbate penetration, and thus dynamic reorganization of this lattice61  is 

the only way that adsorbates can diffuse within the solid.  Lattice energy would track with the 

ability of the surface to reorganize, making it likely that substrates with weaker interaction (e.g. 

tetracene) display higher rates of subsurface reaction.  This model does, however, make the over 

assumption that the reaction is in a regime where diffusion to the subsurface limits reactivity.  

Alternatively, the slowest step could be the ability of the adsorbate to reach a sterically 

appropriate transition state structure and by chemical activation barriers to bond formation.  

Here, the reaction may display trends in rates similar to classical solution chemistry.   This would 

be especially fortuitous since there have been minimal computational studies on reactions of 

organic surfaces, but extensive studies in the solution phase.73  Phrased another way, does the 

acene film’s reactivity resemble molecular behavior or are they dictated by solid state properties. 

 On the basis of the above results of reacted pentacene thin films, it is difficult to assess 
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if lattice energy or chemical activation barriers are a primary driving factor for reactivity.  In 

order to examine the degree each factor influences reaction behavior, we compared reactivity of 

organic substrates that have different lattice energies. Two different acenes (tetracene and 

pentacene) are chosen for this experiment because they have significantly different lattice 

energies of -32.0 kcal/mol66 and -39.5 kcal/mol,67 but have similar structure and a similar 

packing motif.  Pentacene and tetracene thin films were reacted under the same Diels-Alder 

conditions described above (18 h reaction with gas phase N-methylmaleimide at 50 °C) for these 

experiments.  Within the reacted substrates, the carbonyl stretch was used as a primary measure 

of reaction because of its large intensity and consistency in structure. In the diffusion-limited 

regime, both films should react significantly slower the solution reaction rate while at the same 

time the substrate with lower lattice energy is impacted less than the higher energy one.   

 Counter to expectations, the reaction of tetracene demonstrates that chemical activation 

barriers are the more significant contributor to subsurface reactivity in thin films.  It is generally 

accepted that the chemical activation barrier is lower for pentacene because its electron rich 

central ring makes for more favorable diene-dienophile interactions.74  In the solution phase, 

UV-vis kinetic experiments revealed N-methylmaleimide reacts 7 times faster with pentacene 

compared to tetracene.45  Similarly, thin film of pentacene reacts faster than tetracene.  Here the 

rate for pentacene is 1.7 times faster, as measured by the product’s carbonyl stretch (Figure 9).  

Any lattice effects appear limited to the smaller difference between rates in the solid state.  The 

result suggest that chemical activation barriers should be strongly considered, and the next 

question is whether this is general to other adsorbate combinations, or specific to these pairings. 
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Figure 9. The carbonyl vibration for the reaction between pentacene and tetracene thin films with 
N-methylmaleimide at 50 °C for 18 h. Color scheme: pristine pentacene (black), reacted 
pentacene (red), pristine tetracene (green), reacted tetracene (blue).  Within the table, solid state 
and solution phase reactivity are compared for tetracene and pentacene substrates.   
 
 To probe the importance of chemical activation barriers on reactivity, further thin-film 

experiments were performed.  Here, pentacene was dosed with a series of adsorbates 

(tetrafluorobenzoquinone, N-methylmaleimide, maleimide, and maleic anhydride) known to have 

similar steric demands and comparable vapor pressures,75 but different reaction rates in solution 

(Figure 10, S5). This approach eliminates the variability between substrates and thus provides 

more precise rate data.  Reaction progress in the solid state (50 °C, 18 h) was determined by 

monitoring consumption of the pentacene film at 910 cm-1. Any similarity between the trends in 

reaction rate between solid state and solution would further support the premise that chemical 

activation barriers can, to a first approximation, predict thin-film reactivity.  
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Figure 10.  Comparison of thin film (left) and solution phase (right) pentacene kinetic trends. 
The PM-IRRAS spectra of multiple thin films were normalized and averaged (see Figure S6 and 
accompanying supporting information for details and complete spectra). The color scheme is as 
follows: unreacted pentacene (black), tetrafluorobenzoquinone reaction (green), N-
methylmaleimide reaction (red), maleic anhydride reaction (purple), maleimide reaction (blue).   
 
 By ignoring the maleic anhydride data for a moment, the rest of the data are consistent 

with the prior conclusion that reaction energy barriers are highly correlated to the thin-film 

reactivity. The reactivity trend of the remaining three adsorbates in solution is N-

methylmaleimide > maleimide ~ tetrafluorobenzoquinone while the reactivity trend for the 

pentacene thin films is N-methylmaleimide > maleimide > tetrafluorobenzoquinone (Figure 10).  

Thus both phases have an identical activity series for the adsorbates.  Within this broader 

conclusion, there is also reoccurring evidence that the solid structure plays a role measurable 

role.  Similar to the previous experiment, reactivity differences are dampened in the solid state.  

For example, N-methylmaleimide reacts 2.6 times faster than tetrafluorobenzoquinone on 

pentacene thin films and 6.7 times in solution. This difference in ratio indicates that the size and 

shape of the reactant, and the interaction between the thin film and the reactant contribute to the 

subsurface reactivity. 

 There appears to be one exception to this trend: maleic anhydride (although this 

molecule is also the least reliable among the four with the largest standard deviation). We 
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speculate that the larger variation (and potentially its difference in activity) is because the 

reaction temperature is close to maleic anhydride's melting temperature (52.8 °C)76 but far from 

the others (all exceeding 94 °C).  Thus, small variations in temperature have outsized impacts on 

the phase of maleic anhydride.  Nevertheless, the results show maleic anhydride has moderate 

reactivity in solution while it is was the most active in the thin film.   

 It is also worth highlighting the relationship between maleimide and N-

methylmaleimide.  In solution, N-methylmaleimide reacts faster than the unsubstituted 

maleimide with pentacene.  This also occurs in the thin films (Figure 10), which noteworthy as 

the N-methylmaleimide contains an additional methyl group which contributes steric hindrance 

to the reaction.  While this does not impact solvated molecules appreciably, it was surprising that 

there were minimal effects at the surface.  The consistent trend in reactivities between solution 

and thin films lends further support to the hypothesis that adsorbate diffusion in the thin film 

plays a more limited role in the reaction kinetics.  This is a bit of a surprise as packing and steric 

effects were quite pronounced on the surface Diels-Alder reactions of tetracene single crystals.46  

With the wide range of substituents that can be appended to the adsorbates, this represents an 

interesting avenue to pursue. 

Conclusions 

 The reactivity of molecular substrates was evaluated by performing the Diels-Alder 

reaction on acene thin films. Structural features of this class of materials such as intermolecular 

spacing and weak noncovalent molecular interactions were instrumental in the ability of gaseous 

adsorbate molecules to react at both surface and into the subsurface of the substrates. PM-IRRAS 

revealed elevated reaction temperatures exaggerate this effect; complete reaction of the 

pentacene substrate (with N-methylmaleimide) occurred at a temperature only 45 °C higher than 
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monolayer coverage.  Reaction into the subsurface also caused considerable morphology changes 

on the surface, as shown by AFM. Reactions of pentacene and tetracene films revealed lattice 

energy did not limit reactivity appreciably. Rather, the systems behaved as they do in the 

solution phase with chemical activation barriers appearing to be the primary determinant of 

reactivity, though some exceptions (maleic anhydride) shows empirical precedence from solution 

is not always a perfect predictor for describing reactivity of molecular substrates. The results 

ultimately demonstrate molecular substrates react like an amalgam of solid-state and solution 

factors.  
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CHAPTER THREE 

THE INFLUENCE OF DEFECTS ON THE REACTIVITY OF ORGANIC SURFACES 

Introduction 

Before organic films are adopted into optoelectronic devices, interfacial flaws like poor 

adhesion and charge injection barriers must first be addressed.32,39,47,77–79 Of the available 

methods to improve the organic surface, the Diels-Alder reaction is an elegant solution because 

the π-electron rich molecules are primed for chemistry with electron deficient adsorbates. This 

reaction has been demonstrated with the prototypical semiconductor pentacene,39,47 however, 

molecular orientation within the film limits the range and applicability of the reaction. Here, the 

ideal orientation for pentacene is a facedown configuration on the substrate where the reactive 

-system is exposed to approaching adsorbates (Figure 11, left).  The most common (and less 

ideal) configuration is where molecules orient ~68° from the surface in the thin-film phase.69 In 

this orientation, the predominant crystal face exposed is the (001) face and, at the surface, only 

unreactive C-H bonds are presented to the adsorbates (Figure 11, right).  In fact, when this is 

transposed to the unblemished surfaces of single crystals, the (001) facets have been 

demonstrated to be inert to Diels-Alder reaction conditions.46 This bodes poorly for thin-film 

phase pentacene as the (001) surface forms the majority of the interface with deposited metals in 

top-contact organic thin-film transistors (OTFTs). 
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Figure 11. Highly orientation dependent access to reactive portions of pentacene thin films 
(dashed circles). (Left) Pentacene molecules on bare gold adopt a facedown configuration and 
adsorbates can freely approach the most reactive central ring for chemisorption. (Right) 
Pentacene on self-assembled monolayers (SAMs) adopts an upright configuration inhibiting 
adsorbate approach to any reactive π-system. 
 

Fortunately, an unreactive crystal surface does not negate the possibility of reaction on 

thin films because structural defects (grain boundaries, dislocations, surface vacancies, step 

edges, and stacking faults) can have a profound influence on reactivity. Defects introduce a break 

in the crystallographic lattice, whether large in the case of grain boundaries, or atomic in the case 

of surface vacancies. When harnessed, defects can then trigger a broad collection of reactions.  

For example, the dissociative chemisorption of small molecules (H2O, CO, CO2, SO2, CH3OH, 

CH2CH2) is facilitated via surface defects, specifically oxygen surface vacancies on metal 

oxides.80,81 Though the mechanism would be dramatically different for organic surfaces (i.e. 

pentacene), the general prominence of defect-induced chemistry prompted us to examine if the 

surface chemistry of organic films may also be influenced by defects and, if so, allow us to react 

a pentacene (001) surface. 

As the defect density is very high in pentacene thin films,82 if properly harnessed, defects 
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have the potential to facilitate Diels-Alder functionalization. Defects produce structural 

discontinuities in the crystal lattice and these render the nearby molecules more reactive by 

expanding the surrounding void.83,84 The formed voids in the film serve as potential loci for the 

adsorbate molecules to position themselves in the correct transition state geometry for reaction, 

and can also accelerate adsorbate diffusion into the film61 to reach an unreacted portion of the 

molecular surface. These effects are likely amplified by the nature of the organic reaction: 

formation and buildup of product at the reacting surface induces strain and causes the formation 

of further defects which accelerates reaction propagation throughout the film or crystal. Strain 

induced propagation through organic crystals has some precedence in the form of self-

rearrangement of oxime picryl ethers.83 All told, the defect-mediated approach seems especially 

amenable to the reactivity of an organic film.   

Herein, we examine the reaction of pentacene thin films with vapor phase adsorbates via 

Diels-Alder chemistry to study the defects associated with grain boundaries and their ability to 

initiate reactivity. Utilizing the substrate’s temperature during pentacene film formation to alter 

average crystal grain size, we observe reactivity that is highly correlated.  These results are then 

extended onto single crystal systems that are grown with one to two domain boundaries, where 

defect-induced reaction propagation can be observed. This defect-mediated mechanism 

demonstrates the viability of surface functionalization on heretofore unreactive surface 

orientations, and thus the viability of Diels-Alder chemistry towards improving OTFTs. 

Experimental Section 

Materials 

All evaporation metals are of 99.9% or greater purity. Sublimed grade pentacene and 

tetracene, N-methylmaleimide, 1-dodecanethiol, and 200 proof ethanol (ACS grade) were 
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commercially obtained and used without further purification.  

Preparation of Gold Substrates 

Rectangular cut Si(111) wafers were first cleaned in piranha solution (3:1, H2SO4: H2O2) 

for 30 min. The wafers were rinsed with copious amounts of 18 MΩ•cm water, sonicated for 20 

min, and dried under a stream of nitrogen. Wafers were then mounted in a thermal evaporator 

(Kurt J. Lesker NANO38).  A 5 nm chromium adhesion layer was deposited, followed by 50 nm 

of silver and 50 nm of gold at a base pressure of <1×10-6 Torr and a deposition rate of 1 Å/s. 

Self-Assembly of 1-Dodecanethiol onto Gold Substrates 

Self-assembled monolayer (SAM) decorated gold substrates were prepared by 

submerging the freshly prepared gold substrates in a nitrogen purged 200 proof ethanolic 

solution of ~1 mM 1-dodecanethiol for 24 h at room temperature. After the self-assembly, the 

substrates were rinsed with copious amounts of ethanol, sonicated, rinsed an additional time with 

ethanol, and dried under a stream of nitrogen. SAM thicknesses were assessed through 

ellipsometry measurements after the self-assembly (Gaertner Scientific LSE Stokes Ellipsometer 

with 632.8 nm laser).  The surface thickness was modeled as a single absorbing layer atop an 

infinitely thick substrate (fixed ns) and the index of refraction was set to 1.45.  Following 

thickness measurements, the SAM substrates were carefully cut in half to generate a witness 

portion for microscopy, and a consumable portion for reaction.  Both parts were rinsed with 

ethanol, sonicated, rinsed again, and then dried under a stream of nitrogen.  

Pentacene Thin Film Deposition 

40 nm pentacene thin films were deposited using a home-built sublimation chamber, with 

a source to substrate distance of 16–17.5 cm, at a rate of 0.05 Å/s. Pentacene was sublimed from 

a resistively heated cartridge onto SAM decorated gold substrates at a base pressure of 2×10-6 
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Torr. During sublimation, the substrate temperature was controlled with a home-built resistive 

heating element which allowed a temperature differential to be maintained between two samples 

(Figure S9). Thicknesses of the films were monitored using a quartz crystal microbalance 

(INFICON SQM-160).   

Measurement of Grain Structure 

Witness samples were analyzed via atomic force microscopy (AFM; MFP 3D 

microscope, Asylum Research, Santa Barbara, CA, USA). AFM measurements were performed 

in tapping (noncontact) mode using a diamond-like-carbon coated AFM tip (Tap190DLC, 

Budget Sensors, Sofia, Bulgaria). The average grain size and total projected grain boundary 

length in each image was determined using AFM software (Gwyddion 2.5), whereby grains were 

marked by segmentation followed by measurements using 100 iterations of line-cut method.  

Growth of Tetracene Crystals 

Tetracene crystals were grown onto gold coated Si(111) substrates using a home-built 

physical vapor transport tube furnace that was 95 cm in length and had a temperature gradient of 

approximately ~2 °C/cm in the growth zone (Figure S10).85  100 mg of tetracene source material 

were heated to 225 °C under a flow of ultra-high purity argon (40 mL/min).  The crystals were 

collected from the region of the furnace at 205 °C after 48 h.  The gold substrate with crystals 

was imaged before reaction with a Hitachi SU-3500 scanning electron microscope (SEM) at 5 

kV.   

Diels-Alder Reaction of Acene Surfaces 

The acene samples and a small vial of approximately 8 mg of N-methylmaleimide were 

placed at opposite ends of a Schlenk tube under nitrogen.  The samples were heated to 50 °C 

(pentacene films) or 80 °C (tetracene crystals) for 18 h.  The reaction was quenched by insulating 
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the substrate end of the Schlenk tube while cooling the opposite end with dry ice to condense 

residual N-methylmaleimide vapors. As an additional measure to remove physisorbed N-

methylmaleimide, acene samples were further subjected to high vacuum conditions (<5.5×10-6 

Torr) for at least 1 h. The extent of reaction on the thin films was evaluated by PM-IRRAS 

(Bruker Optics Tensor 37 with a PMA50 accessory and a liquid nitrogen cooled MCT detector).  

Spectra were taken at a resolution of 2 cm-1.  The extent of reaction on the surface was 

determined by the intensity of absorptions associated with adduct formation (1700 and 1280 cm-

1).39 Reactions on crystal surfaces were qualitatively evaluated via comparison of SEM images 

before and after reaction.  

Results and Discussion 

Defects are intrinsic to pentacene film growth and a tally of them is critical to forming an 

effective hypothesis concerning their role in reactivity. Typical pentacene thin films have on the 

order of 1011 dislocations/cm2,82 significantly more single vacancies,86 and assuming an average 

grain size of about 500 nm, roughly 108 grain boundaries per cm2. All are expected to impact 

reactivity, as each provides a means for adsorbates to reach the recessed acene core (Figure 1, 

right). While dislocations and vacancies are numerically attractive, they are challenging to 

control and thus they were not used to benchmark against reactivity. Though grain boundaries 

occur far less, their relative importance is outsized as this type of defect is large in size and also 

influences derivative defect (dislocation and vacancy) formation.82,86–88 Indeed, grain boundaries 

are not reflective of merely being two domains meeting, but rather, the height change from edge 

to center implies additional step edges (roughly 30 for the films below). There is also a high 

degree of compressive stress at grain boundaries, and this interferes with ideal crystal geometry 

growth: dislocation formation is amplified under strain.87 Due to both the ease with which they 



35 

 
 

can be controlled, and their interrelationship with other defects, grain boundaries (and average 

grain size) are used to study how surface defects can impart reactivity to the thin-film phase of 

pentacene.  

The average size of pentacene grains can be controlled via two methods: substrate control 

and thermal control.  In the first method, self-assembled monolayers (SAMs) coat the underlying 

substrate and the SAM chain can control the nucleation density of the pentacene thin film.  

Longer SAMs have been hypothesized to generate significantly more nucleation sites for 

crystalline domains, resulting in smaller grains.89 Several classes of SAMs have displayed this 

relationship between SAM chain length and pentacene grain size, including thiols,90 silanes,91,92 

phosphonic acids,93–95 and carboxylic acids.96 In the second method, an elevated substrate 

temperature effectively lowers the activation energy for surface diffusion,97,98 thereby allowing 

pentacene molecules to diffuse more rapidly on the surface and minimizing nucleation of new 

crystals.99 This in turn facilitates the formation of larger crystalline grain sizes. Recent 

studies100,101 have demonstrated a range of grain sizes of pentacene can be produced by 

controlling the temperature of the substrate during film formation.  

Although there are several reports outlining the success of using SAMs as a means to 

control pentacene grain size, in our hands we found results to be highly varied. In contrast, 

thermally activated grain growth proved to be simple and robust. Grain size differentials were 

pronounced between the two different temperature samples, with nearly 425% larger average 

grain size when going from a substrate temperature of 30 to 60 ºC.  The large difference in 

average grain size between the two temperature samples will greatly simplify the comparison 

between reactivity and defect density. Of additional merit, the batch to batch variability was low.  

At the temperatures evaluated, the average grain size varied by less than 100 nm (25%) between 



36 

 
 

two sequential samples (Figure S11).  

The aforementioned films were produced by depositing pentacene on 1-dodecanethiol 

coated gold substrates, a SAM being critical to generating thin-film phase pentacene. The quality 

of the SAM was evaluated via surface order and thickness. The νCHa and νCHs peak positions in 

the IR spectra indicate the ordering of the alkane chain within the monolayer. These two peaks 

appear at 2920 and 2852 cm-1 for 1-dodecanethiol, respectively matching literature values within 

2 cm-1 (Figure S12).102 For ellipsometry, the thickness of the 1-dodecanethiol SAMs was 19 Å, 

which is consistent with previous reported thicknesses (18 Å).62,103 Following pentacene 

deposition on the SAM, the orientation of pentacene was determined using the relative infrared 

peak intensities at 1445, 1164, 910, and 731 cm-1; sets of vibrations that are orthogonal to one 

another.  When pentacene within the film is oriented perpendicular to the gold surface (e.g. in a 

(001) film), the vibrations at 1445 and 1164 cm-1 are amplified while the normally dominant 

peaks at 910 and 731 are diminished69 due to the surface selection rules.104 IR spectra for the 

films are reported in Figure 12, and their IR absorptions confirm a nominally (001) film, i.e. the 

long axis of the pentacene is ~22º from the surface normal (Figure 11, right). 
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Figure 12. PM-IRRAS spectra of pentacene on bare gold (red; peaks are clipped for 910 and 731 
cm-1, but reach a maximum of 2.6 and 1.7 A.U.) and on 1-dodecanethiol (blue). Arrows at 1445, 
1164, 910, and 731 cm-1 indicate the direction of the peak intensity change in going from 
pentacene on bare gold to a nominally (001) film.  
 

AFM images (Figure 13) of the pentacene films reveal two very different grain sizes for 

the  room temperature sample (400 ± 200 nm) and the one at elevated temperatures (1700 ± 800 

nm for 60 °C), consistent with previously mentioned reports.100,101 Further analysis of the AFM 

data (Figure 13c and d) indicates that the overall structure of each domain is similar, with rough 

terraces seen in both samples, and small vacancies (equivalent to ~2 nm thickness, or about two 

molecules of thickness) seen across the terraces. Because the average exposed area of the side 

surface is the length of the total grain boundary length times the film thickness, the total grain 

boundary length can be used to represent the average defect area of the films with the same 

thickness. For the samples in Figure 13, this is 226 µm vs 68 µm or a 3.3-fold difference.   Since 
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the defect density on the room temperature substrate is so markedly higher, if defects do play a 

critical role in reactivity, these two samples should have dramatically different reactivity; it also 

remains to be seen if the defects in either sample are sufficient to render this surface reactive on 

the timescale of this experiment. 

 

Figure 13. Grain structure of 40 to 50 nm thick pentacene thin films sublimed onto 1-
dodecanethiol decorated gold substrates at a) room temperature and b) 60 °C. The AFM images 
(5×5 µm) were taken in non-contact mode. Line scans across the c) room temperature substrate 
and d) 60 °C substrate. 
 

The reaction of pentacene films was accomplished by heating the substrate in the 

presence of vapor phase N-methylmaleimide for 18 h at 50 °C.  IR analysis of these films reveals 

the growth of new infrared peaks at 1700 cm-1 and 1280 cm-1. These peaks suggest that an 

effective Diels-Alder reaction has taken place on the pentacene film (Figure 14). It is remarkable 

that the pentacene (001) surface is reactive, and this will be discussed in further detail later. But 
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the greater point is that the reactivity of each film is highly correlated to the projected grain 

boundary length which demonstrates that the defects are the likely source of this reactivity. 

Specifically, the room temperature sample (boundary length = 226 µm) has reacted significantly 

faster than the 60 ºC sample (boundary length = 68 µm).  While the data correlation appears 

semiquantitative, with a 3.3-fold increase in boundary length generating a 3 to 4-fold increase in 

reactivity, we caution against over quantifying the relationship as some samples had lower 

reactivity differences (Figure S13). However, when one considers the lack of reactivity in single 

crystal samples,46 a direct relationship is evident.  Another aspect of this data is that peak 

intensities are near or above what would be expected for reacting a monolayer’s worth of 

material with the pentacene film. This suggests that the reaction is not confined to the grain 

boundaries, rather, the boundaries act as a site from which reaction can propagate across the 

surface and into the subsurface. 



40 

 
 

 

Figure 14. PM-IRRAS spectra comparing reactivity of pentacene films with N-methylmaleimide 
for 18 h at 50 °C. The color scheme is as follows: unreacted pentacene (black), reaction of 
pentacene films prepared at 60 °C (red), and reaction of pentacene films prepared at room 
temperature (blue).  
 

We wish to reemphasize the significance of being able to react the imperfect (001) 

pentacene surface. Previously, the exposure of tetracene crystals to Diels-Alder reaction 

conditions revealed the main face, (001), was unreactive.46 In our work, with milder conditions, 

pentacene films with intrinsically high defect density resulted in significant reaction at the 

surface. More importantly, results showing monolayer or greater coverage implies that the 

reaction may be propagating across the surface.  This relationship compelled us to examine if 

propagation from a small amount of defects could render the (001) surface of a crystal reactive.  

To explore this phenomenon more fully, and for direct evidence of this propagation, reaction on 
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a surface that is predominantly defect-free is required.   

Tetracene crystals were grown from the vapor phase in a manner similar to Laudise. They 

are, on average, larger than 50 µm in size and have well-defined crystal faces. Scanning electron 

microscopy (SEM) was used to survey the crystals, and then locate crystals with only one or two 

significant defects on the surface.  In Figure 15a, we isolated a single crystal with only one major 

defect on the surface: a line originating from the bottom of the hexagonal crystal and continuing 

through roughly a quarter of the crystal (indicated by arrows). If the propagation of adsorbates is 

indeed occurring, one should be able to observe its dispersal from this feature.  This experiment 

is made simpler by the fact that reaction with N-methylmaleimide has been reported to induce 

small asperities on the surface,47 and hence reaction progress can be imaged directly via SEM.  

 

Figure 15. SEM images of tetracene crystals a) before reaction and b) after reaction with N-
methylmaleimide. The white arrows indicate the dislocation defect on the surface. c) Magnified 
region displaying reaction propagation.  
 
 The crystals were exposed to N-methylmaleimide vapor at 80 °C for 18 h. The 

temperature was chosen based on prior evidence that the largest face of the tetracene crystals was 

inert at 80 °C.  The exposed crystals were re-examined with SEM to locate asperities indicative 

of reaction.  Indeed, the images (Figure 15b and c) show adduct formation in the vicinity of the 

dislocation step, and importantly, the reaction appears to have propagated outward from the 
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dislocation site. Analysis on additional tetracene crystals with dislocation defects demonstrate 

that this reaction propagation is representative (Figure S14). The reaction can be tracked as far as 

3 µm from the nucleation site, with the product amount diminishing as a function of distance 

from the defect. Thus reactivity is not confined to the immediate vicinity of the defect.  

Additionally, the reaction’s progression appears unidirectional (only to the right) from the defect. 

This is noteworthy as it suggests the adsorbate propagation initiates through the higher terrace 

within the dislocation. These results suggest that the defects not only play a role in the initiation 

of the reaction, but are also are important in the propagation of reaction.  

Conclusions 

In conclusion, the influence of defects on the reactivity of organic films was evaluated by 

performing the Diels-Alder reaction on what is nominally a pentacene (001) surface.  By 

controlling defect density between samples via a temperature differential, reaction rates were 

correlated to higher defect density. In the context of previously reported inertness of a tetracene 

(001) surface, this reactivity indicates that defects are critical to reaction of this molecular 

orientation. This understanding was transitioned from a collection of defects to a direct 

observation of a single defect’s influence on reactivity by studying reaction propagation from a 

dislocation in a single crystal.  Results confirm the reaction is not confined to the immediate 

vicinity of the defect, but can propagate for microns across the crystal surface.  Together, these 

results demonstrate the ability to react thin-film phase pentacene, and even the (001) surface of 

minimally flawed single crystals.  These results represent a significant step towards improving 

the organic interface in top-contact OTFTs.   
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Figure S1. IRRAS spectrum of a pentacene reaction with N-methylmaleimide at 25 °C for 24 h. 
The color scheme is as follows: pristine pentacene (black), 25 °C reacted pentacene (red). The 
absorbance is appropriate for a monolayer regime of material.70  
 

 

Figure S2. PM-IRRAS spectra of a 75 °C heated pentacene substrate after 24 h. The color 
scheme is as follows: pristine pentacene (black), 75 °C heated pentacene (red).  
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Figure S3. AFM images of pentacene substrates reacted with N-methylmaleimide for 24 h. The 
reaction temperatures are as follows: top left (25 °C), top right (35 °C), bottom left (40°C), 
bottom right (65 °C).  
 

 

Figure S4. AFM measurements of average diameter of surface protrusions over a 400 µm2 area 
on pentacene substrates reacted with N-methylmaleimide for 24 h from 25 to 75 ° C. Features 
accounted for here are under the restraint of a protrusion height threshold of 3 times the RMS of 
the area between the protrusions (see Figure S5). 
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Table S1. The rms roughness was measured of 20 × 20 µm AFM images using bootstrap analysis 
for the reaction of N-methylmaleimide with pentacene thin films (24 h, multiple temperatures). 
The average of these values at each temperature comprise the rms roughness plot in Figure 8.     
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Figure S5. AFM measurements of rms roughness in-between surface protrusions for pentacene 
substrates reacted with N-methylmaleimide for 24 h from 25 to 75 ° C.  
 
 

 

Figure S6. AFM image of a pentacene substrate reacted with N-methylmaleimide at 50 °C for 24 
h. A line scan across a scratched square area of the sample shows a continuous thin film exists 
under the surface protrusions. 
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Figure S7. The UV-vis spectra (in chloroform) of the reaction between pentacene and adsorbate 
molecules (N-methylmaleimide, a; maleic anhydride, b; maleimide, c; tetrafluorobenzoquinone, 
d) at 23 °C are shown.  All spectra are after subtraction of the absorbance of the 
adsorbate/dienophiles. The rates, k (M-1s-1), are displayed for each reaction in the upper portion 
of the UV-vis spectra. 
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Figure S8. The reaction between pentacene thin films and adsorbates (N-methylmaleimide, red; 
maleic anhydride, purple; tetrafluorobenzoquinone, green; maleimide, blue) were monitored with 
PM-IRRAS. Reactions with N-methylmaleimide, maleic anhydride, and tetrafluorobenzoquinone 
were repeated 4 times. To account for the A.U. variability at 910 cm-1 for the multiple thin-films 
used, all spectra here were normalized and rescaled and are shown above. Also included is the 
average of the normalized spectra (dashed curve) with error bars showing the standard deviation 
(N-methylmaleimide, 0.2; maleic anhydride, 0.8; tetrafluorobenzoquinone, 0.1).   
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Figure S9. Left: Image of the controlled temperature stage. (1) Copper support with a resistively 
heated element adhered to the backside of the support. (2) Glass support. (3) CF flange with 4 
BNC feedthroughs. Right: Calibration curve for the heated (red) and non-heated (blue) supports. 
Temperature was measured with a type K thermocouple at 4.5×10-6 Torr after the temperature 
stabilized for 30 minutes.   
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Figure S10. Temperature profile at positions across the physical vapor transport tube furnace 
with an inset image highlighting source and growth zones.  
 
 

 

Figure S11. AFM images of additional samples of pentacene films formed at a) room 
temperature and b) 60 °C have average grain sizes of 300 ± 200 and 1700 ± 800 nm and total 
grain boundary lengths of 281 and 56 µm, respectively. 
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Figure S12. PM-IRRAS spectra of pentacene on 1-dodecanethiol self-assembled monolayer for 
samples utilized in Figure 2 (red and blue).  
 

 

Figure S13. PM-IRRAS spectra for additional samples of pentacene reacted with N-
methylmaleimide for 18 h at 50 °C. The color scheme is as follows: unreacted pentacene (black), 
reaction of pentacene films prepared at 60 °C (red), and reaction of pentacene films prepared at 
room temperature (blue). 
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Figure S14. SEM images of additional tetracene crystals a,d) before reaction and b,e) after 
reaction with N-methylmaleimide. The white arrows indicate the dislocation defect on the 
surface. c,f) Magnified region displaying reaction propagation. 



 

55 
 

REFERENCE LIST 

(1)  Mertens, R. The OLED Handbook : A Guide to OLED Technology, Industry & Market; 
OLED-Info, 2013. 

 
(2)  Gather, M. C.; Köhnen, A.; Meerholz, K. White Organic Light-Emitting Diodes. 

Advanced Materials 2011, 23 (2), 233–248. 
 
(3)  Tao, Y.; Yang, C.; Qin, J. Organic Host Materials for Phosphorescent Organic Light-

Emitting Diodes. Chem. Soc. Rev. 2011, 40 (5), 2943–2970. 
 
(4)  Kulkarni, A. P.; Tonzola, C. J.; Babel, A.; Jenekhe, S. A. Electron Transport Materials for 

Organic Light-Emitting Diodes. Chemistry of Materials 2004, 16 (23), 4556–4573. 
 
(5)  Chen, C.-T. Evolution of Red Organic Light-Emitting Diodes: Materials and Devices. 

Chemistry of Materials 2004, 16 (23), 4389–4400. 
 
(6)  Hedley, G. J.; Ruseckas, A.; Samuel, I. D. W. Light Harvesting for Organic Photovoltaics. 

Chemical Reviews 2017, 117 (2), 796–837. 
 
(7)  Sun, S.-S.; Sariciftci, N. S. Organic Photovoltaics: Mechanisms, Materials, and Devices; 

Optical Science and Engineering; CRC Press, 2017. 
 
(8)  Leo, K. Organic Photovoltaics. Nature Reviews Materials 2016, 1, 16056. 
 
(9)  Mazzio, K. A.; Luscombe, C. K. The Future of Organic Photovoltaics. Chem. Soc. Rev. 

2015, 44 (1), 78–90. 
 
(10)  Wallace, C. H. C. Organic Solar Cells: Materials and Device Physics; Green Energy and 

Technology; Springer-Verlag London, 2013. 
 
(11)  Wang, C.; Dong, H.; Hu, W.; Liu, Y.; Zhu, D. Semiconducting π-Conjugated Systems in 

Field-Effect Transistors: A Material Odyssey of Organic Electronics. Chemical Reviews 
2012, 112 (4), 2208–2267. 

 
(12)  Braga, D.; Horowitz, G. High-Performance Organic Field-Effect Transistors. Advanced 

Materials 2009, 21 (14–15), 1473–1486. 
 
(13)  Logothetidis, S. Flexible Organic Electronic Devices: Materials, Process and Applications. 



56 

 

 Materials Science and Engineering: B 2008, 152 (1), 96–104. 
 
(14)  Muccini, M. A Bright Future for Organic Field-Effect Transistors. Nat Mater 2006, 5 (8), 

605–613. 
 
(15)  Sirringhaus, H. Device Physics of Solution-Processed Organic Field-Effect Transistors. 

Advanced Materials 2005, 17 (20), 2411–2425. 
 
(16)  Lim, J. A.; Lee, W. H.; Lee, H. S.; Lee, J. H.; Park, Y. D.; Cho, K. Self-Organization of 

Ink-Jet-Printed Triisopropylsilylethynyl Pentacene via Evaporation-Induced Flows in a 
Drying Droplet. Advanced Functional Materials 2008, 18 (2), 229–234. 

 
(17)  Aernouts, T.; Aleksandrov, T.; Girotto, C.; Genoe, J.; Poortmans, J. Polymer Based 

Organic Solar Cells Using Ink-Jet Printed Active Layers. Applied Physics Letters 2008, 92 
(3), 033306. 

 
(18)  Søndergaard, R. R.; Hösel, M.; Krebs, F. C. Roll-to-Roll Fabrication of Large Area 

Functional Organic Materials. Journal of Polymer Science Part B: Polymer Physics 2013, 
51 (1), 16–34. 

 
(19)  Krebs, F. C. All Solution Roll-to-Roll Processed Polymer Solar Cells Free from Indium-

Tin-Oxide and Vacuum Coating Steps. Organic Electronics 2009, 10 (5), 761–768. 
 
(20)  Kim, S.; Kwon, H.-J.; Lee, S.; Shim, H.; Chun, Y.; Choi, W.; Kwack, J.; Han, D.; Song, 

M.; Kim, S.; et al. Low‐Power Flexible Organic Light‐Emitting Diode Display Device. 
Advanced Materials 23 (31), 3511–3516. 

 
(21)  Sekitani, T.; Zschieschang, U.; Klauk, H.; Someya, T. Flexible Organic Transistors and 

Circuits with Extreme Bending Stability. Nat Mater 2010, 9 (12), 1015–1022. 
 
(22)  Sekitani, T.; Nakajima, H.; Maeda, H.; Fukushima, T.; Aida, T.; Hata, K.; Someya, T. 

Stretchable Active-Matrix Organic Light-Emitting Diode Display Using Printable Elastic 
Conductors. Nature Materials 2009, 8, 494. 

 
(23)  Das, R.; Ghaffarzadeh, K.; Chansin, G.; He, X. Printed, Organic & Flexible Electronics 

Forecasts, Players & Opportunities 2017-2027; IDTechEx, 2017. 
 
(24)  Hummer, K.; Ambrosch-Draxl, C. Electronic Properties of Oligoacenes from First 

Principles. Phys. Rev. B 2005, 72 (20), 205205. 
 
(25)  Covarel, G.; Bensaid, B.; Boddaert, X.; Giljean, S.; Benaben, P.; Louis, P. 

Characterization of Organic Ultra-Thin Film Adhesion on Flexible Substrate Using 
Scratch Test Technique. Surface and Coatings Technology 2012, 211, 138–142. 

 



57 

 

(26)  Tong, T.; Babatope, B.; Admassie, S.; Meng, J.; Akwogu, O.; Akande, W.; Soboyejo, W. 
O. Adhesion in Organic Electronic Structures. Journal of Applied Physics 2009, 106 (8), 
083708. 

 
(27)  Stewart, K. R.; Whitesides, G. M.; Godfried, H. P.; Silvera, I. F. Improved Adhesion of 

Thin Conformal Organic Films to Metal Surfaces. Review of Scientific Instruments 1986, 
57 (7), 1381–1383. 

 
(28)  Georgakopoulos, S.; Pérez-Rodríguez, A.; Campos, A.; Temiño, I.; Galindo, S.; Barrena, 

E.; Ocal, C.; Mas-Torrent, M. Spray-Coated Contacts from an Organic Charge Transfer 
Complex Solution for Organic Field-Effect Transistors. Organic Electronics 2017, 48, 
365–370. 

 
(29)  Pfattner, R.; Rovira, C.; Mas-Torrent, M. Organic Metal Engineering for Enhanced Field-

Effect Transistor Performance. Phys. Chem. Chem. Phys. 2015, 17 (40), 26545–26552. 
 
(30)  Cho, J. H.; Kim, D. H.; Jang, Y.; Lee, W. H.; Ihm, K.; Han, J.-H.; Chung, S.; Cho, K. 

Effects of Metal Penetration into Organic Semiconductors on the Electrical Properties of 
Organic Thin Film Transistors. Applied Physics Letters 2006, 89 (13), 132101. 

 
(31)  Watkins, N. J.; Yan, L.; Gao, Y. Electronic Structure Symmetry of Interfaces between 

Pentacene and Metals. Applied Physics Letters 2002, 80 (23), 4384–4386. 
 
(32)  Hamadani, B. H.; Corley, D. A.; Ciszek, J. W.; Tour, J. M.; Natelson, D. Controlling 

Charge Injection in Organic Field-Effect Transistors Using Self-Assembled Monolayers. 
Nano Letters 2006, 6 (6), 1303–1306. 

 
(33)  Campbell, I. H.; Kress, J. D.; Martin, R. L.; Smith, D. L.; Barashkov, N. N.; Ferraris, J. P. 

Controlling Charge Injection in Organic Electronic Devices Using Self-Assembled 
Monolayers. Applied Physics Letters 1997, 71 (24), 3528–3530. 

 
(34)  Yang, H.; Yang, L.; Ling, M.-M.; Lastella, S.; Gandhi, D. D.; Ramanath, G.; Bao, Z.; Ryu, 

C. Y. Aging Susceptibility of Terrace-Like Pentacene Films. The Journal of Physical 
Chemistry C 2008, 112 (42), 16161–16165. 

 
(35)  Vollmer, A.; Jurchescu, O. D.; Arfaoui, I.; Salzmann, I.; Palstra, T. T. M.; Rudolf, P.; 

Niemax, J.; Pflaum, J.; Rabe, J. P.; Koch, N. The Effect of Oxygen Exposure on Pentacene 
Electronic Structure. The European Physical Journal E 2005, 17 (3), 339–343. 

 
(36)  Yoo, S. H.; Kum, J. M.; Cho, S. O. Tuning the Electronic Band Structure of PCBM by 

Electron Irradiation. Nanoscale Research Letters 2011, 6 (1), 1–7. 
 
(37)  Calhoun, M. F.; Sanchez, J.; Olaya, D.; Gershenson, M. E.; Podzorov, V. Electronic 

Functionalization of the Surface of Organic Semiconductors with Self-Assembled 



58 

 

Monolayers. Nat Mater 2008, 7 (1), 84–89. 
 
(38)  Storer, J. W.; Raimondi, L.; Houk, K. N. Theoretical Secondary Kinetic Isotope Effects 

and the Interpretation of Transition State Geometries. 2. The Diels-Alder Reaction 
Transition State Geometry. Journal of the American Chemical Society 1994, 116 (21), 
9675–9683. 

 
(39)  Piranej, S.; Turner, D. A.; Dalke, S. M.; Park, H.; Qualizza, B. A.; Vicente, J.; Chen, J.; 

Ciszek, J. W. Tunable Interfaces on Tetracene and Pentacene Thin-Films via Monolayers. 
CrystEngComm 2016, 18 (32), 6062–6068. 

 
(40)  Brantley, S. L.; White, A. F.; Hodson, M. E. Surface Area of Primary Silicate Minerals. In 

Growth, Dissolution and Pattern Formation in Geosystems; Jamtveit, B., Meakin, P., 
Eds.; Springer Netherlands: Dordrecht, 1999; pp 291–326. 

 
(41)  Shaheen, A.; Sturm, J. M.; Ricciardi, R.; Huskens, J.; Lee, C. J.; Bijkerk, F. 

Characterization of Self-Assembled Monolayers on a Ruthenium Surface. Langmuir 2017, 
33 (25), 6419–6426. 

 
(42)  Paul, I. C.; Curtin, D. Y. Reactions of Organic Crystals with Gases. Science 1975, 187, 

19–26. 
 
(43)  Paul, I. C.; Curtin, D. Y. Thermally Induced Organic Reactions in the Solid State. 

Accounts of Chemical Research 1973, 6 (7), 217–225. 
 
(44)  Hamers, R. J. Flexible Electonics Futures. Nature 2001, 412, 489–490. 
 
(45)  Qualizza, B. A.; Ciszek, J. W. Experimental Survey of the Kinetics of Acene Diels–Alder 

Reactions. Journal of Physical Organic Chemistry 2015, 28 (10), 629–634. 
 
(46)  Qualizza, B. A.; Prasad, S.; Chiarelli, M. P.; Ciszek, J. W. Functionalization of Organic 

Semiconductor Crystals via the Diels-Alder Reaction. Chem. Commun. 2013, 49 (40), 
4495–4497. 

 
(47)  Deye, G. J.; Vicente, J. R.; Dalke, S. M.; Piranej, S.; Chen, J.; Ciszek, J. W. The Role of 

Thermal Activation and Molecular Structure on the Reaction of Molecular Surfaces. 
Langmuir 2017, 33 (33), 8140–8146. 

 
(48)  Boudinet, D.; Benwadih, M.; Altazin, S.; Verilhac, J.-M.; De Vito, E.; Serbutoviez, C.; 

Horowitz, G.; Facchetti, A. Influence of Substrate Surface Chemistry on the Performance 
of Top-Gate Organic Thin-Film Transistors. Journal of the American Chemical Society 
2011, 133 (26), 9968–9971. 

 
(49)  Guo, X.; Facchetti, A.; Marks, T. J. Imide- and Amide-Functionalized Polymer 



59 

 

Semiconductors. Chemical Reviews 2014, 114 (18), 8943–9021. 
 
(50)  Hill, I. G.; Milliron, D.; Schwartz, J.; Kahn, A. Organic Semiconductor Interfaces: 

Electronic Structure and Transport Properties. Applied Surface Science 2000, 166 (1–4), 
354–362. 

 
(51)  Forrest, S. R. The Path to Ubiquitous and Low-Cost Organic Electronic Appliances on 

Plastic. Nature 2004, 428 (6986), 911–918. 
 
(52)  Briseno, A. L.; Mannsfeld, S. C. B.; Ling, M. M.; Liu, S.; Tseng, R. J.; Reese, C.; Roberts, 

M. E.; Yang, Y.; Wudl, F.; Bao, Z. Patterning Organic Single-Crystal Transistor Arrays. 
Nature 2006, 444 (7121), 913–917. 

 
(53)  Klauk, H.; Zschieschang, U.; Pflaum, J.; Halik, M. Ultralow-Power Organic 

Complementary Circuits. Nature 2007, 445 (7129), 745–748. 
 
(54)  Tait, S. L.; Lim, H.; Theertham, A.; Seidel, P. First Layer Compression and Transition to 

Standing Second Layer of Terephthalic Acid on Cu(100). Phys. Chem. Chem. Phys. 2012, 
14 (22), 8217–8223. 

 
(55)  Fleming, I. Pericyclic Reactions; Oxford University Press: New York, 1999. 
 
(56)  Israelachvili, J. Intermolecular and Surface Forces, second.; Academic Press: London, 

1991. 
 
(57)  Kaupp, G.; Schmeyers, J. Gas/Solid Reactions of Aliphatic Amines with Thiohydantoins: 

Atomic Force Microscopy and New Mechanisms. Angewandte Chemie International 
Edition in English 1993, 32 (11), 1587–1589. 

 
(58)  Kaupp, G.; Schmeyers, J.; Boy, J. Quantitative Solid-State Reactions of Amines with 

Carbonyl Compounds and Isothiocyanates. Tetrahedron 2000, 56 (36), 6899–6911. 
 
(59)  Setvín, M.; Aschauer, U.; Scheiber, P.; Li, Y.-F.; Hou, W.; Schmid, M.; Selloni, A.; 

Diebold, U. Reaction of O2 with Subsurface Oxygen Vacancies on TiO2 Anatase (101). 
Science 2013, 341 (6149), 988–991. 

 
(60)  Wälchli, N.; Kampshoff, E.; Menck, A.; Kern, K. Silicide Growth at Metal Surfaces: 

Competition between Subsurface Diffusion and Chemical Reaction. Surface Science 1997, 
382 (1), L705–L712. 

 
(61)  Atwood, J. L.; Barbour, L. J.; Jerga, A.; Schottel, B. L. Guest Transport in a Nonporous 

Organic Solid via Dynamic van Der Waals Cooperativity. Science 2002, 298 (5595), 
1000–1002. 

 



60 

 

(62)  Pensa, E.; Cortés, E.; Corthey, G.; Carro, P.; Vericat, C.; Fonticelli, M. H.; Benítez, G.; 
Rubert, A. A.; Salvarezza, R. C. The Chemistry of the Sulfur–Gold Interface: In Search of 
a Unified Model. Accounts of Chemical Research 2012, 45 (8), 1183–1192. 

 
(63)  Campbell, R. B.; Robertson, J. M.; Trotter, J. The Crystal Structure of Hexacene, and a 

Revision of the Crystallographic Data for Tetracene. Acta Crystallographica 1962, 15 (3), 
289–290. 

 
(64)  Gharagheizi, F.; Sattari, M.; Tirandazi, B. Prediction of Crystal Lattice Energy Using 

Enthalpy of Sublimation: A Group Contribution-Based Model. Industrial & Engineering 
Chemistry Research 2011, 50 (4), 2482–2486. 

 
(65)  Hoyer, H.; Peperle, W. Dampfdruckmessungen an Organischen Substanzen Und Ihre 

Sublimationswärmen. Berichte der Bunsengesellschaft für physikalische Chemie 1958, 62, 
61–66. 

 
(66)  Nass, K.; Lenoir, D.; Kettrup, A. Calculation of the Thermodynamic Properties of 

Polycyclic Aromatic Hydrocarbons by an Incremental Procedure. Angewandte Chemie 
International Edition in English 1995, 34 (16), 1735–1736. 

 
(67)  Nobuko, W.; Hiroo, I. Heats of Sublimation of Polycyclic Aromatic Hydrocarbons and 

Their Molecular Packings. Bulletin of the Chemical Society of Japan 1967, 40 (10), 2267–
2271. 

 
(68)  Marsh, R. E.; Ubell, E.; Wilcox, H. E. The Crystal Structure of Maleic Anhydride. Acta 

Crystallographica 1962, 15 (1), 35–41. 
 
(69)  Hu, W. S.; Tao, Y. T.; Hsu, Y. J.; Wei, D. H.; Wu, Y. S. Molecular Orientation of 

Evaporated Pentacene Films on Gold: Alignment Effect of Self-Assembled Monolayer. 
Langmuir 2005, 21 (6), 2260–2266. 

 
(70)  Morita, T.; Kimura, S.; Kobayashi, S.; Imanishi, Y. Photocurrent Generation under a 

Large Dipole Moment Formed by Self-Assembled Monolayers of Helical Peptides Having 
an N-Ethylcarbazolyl Group. Journal of the American Chemical Society 2000, 122 (12), 
2850–2859. 

 
(71)  Ye, R.; Baba, M.; Suzuki, K.; Ohishi, Y.; Mori, K. Effect of Thermal Annealing on 

Morphology of Pentacene Thin Films. Japanese Journal of Applied Physics 2003, 42 
(7R), 4473. 

 
(72)  English, C. R.; Bishop, L. M.; Chen, J.; Hamers, R. J. Formation of Self-Assembled 

Monolayers of π-Conjugated Molecules on TiO2 Surfaces by Thermal Grafting of Aryl 
and Benzyl Halides. Langmuir 2012, 28 (17), 6866–6876. 

 



61 

 

(73)  Kiselev, V. D.; Konovalov, A. I. Internal and External Factors Influencing the Diels–Alder 
Reaction. Journal of Physical Organic Chemistry 2009, 22 (5), 466–483. 

 
(74)  Schleyer, P. von R.; Manoharan, M.; Jiao, H.; Stahl, F. The Acenes: Is There a 

Relationship between Aromatic Stabilization and Reactivity? Organic Letters 2001, 3 
(23), 3643–3646. 

 
(75)  Filler, M. A.; Bent, S. F. The Surface as Molecular Reagent: Organic Chemistry at the 

Semiconductor Interface. Progress in Surface Science 2003, 73 (1–3), 1–56. 
 
(76)  Lide, D. R. CRC Handbook of Chemistry and Physics, 83rd Edition, 83rd ed.; CRC Press, 

2002. 
 
(77)  Ma, H.; Yip, H.-L.; Huang, F.; Jen, A. K.-Y. Interface Engineering for Organic 

Electronics. Advanced Functional Materials 2010, 20 (9), 1371–1388. 
 
(78)  Dennes, T. J.; Schwartz, J. A Nanoscale Metal Alkoxide/Oxide Adhesion Layer Enables 

Spatially Controlled Metallization of Polymer Surfaces. ACS Appl. Mater. Interfaces 
2009, 1 (10), 2119–2122. 

 
(79)  Braun, S.; Salaneck, W. R.; Fahlman, M. Energy-Level Alignment at Organic/Metal and 

Organic/Organic Interfaces. Advanced Materials 2009, 21 (14–15), 1450–1472. 
 
(80)  Bikondoa, O.; Pang, C. L.; Ithnin, R.; Muryn, C. A.; Onishi, H.; Thornton, G. Direct 

Visualization of Defect-Mediated Dissociation of Water on TiO2(110). Nature Materials 
2006, 5, 189. 

 
(81)  Henrich, V. E.; Cox, P. A. The Surface Science of Metal Oxides; Cambridge University 

Press: University Press, Cambridge, 1994. 
 
(82)  Nickel, B.; Barabash, R.; Ruiz, R.; Koch, N.; Kahn, A.; Feldman, L. C.; Haglund, R. F.; 

Scoles, G. Dislocation Arrangements in Pentacene Thin Films. Phys. Rev. B 2004, 70 (12), 
125401. 

 
(83)  McCullough, J. D.; Curtin, D. Y.; Paul, I. C. Beckmann-Chapman Rearrangement in the 

Solid State of Oxime Picryl Ethers. Journal of the American Chemical Society 1972, 94 
(3), 874–882. 

 
(84)  Cohen, M. D.; Ludmer, Z.; Thomas, J. M.; Williams, J. O. The Role of Structural 

Imperfections in the Photodimerization of 9-Cyanoanthracene. Proc R Soc Lond A Math 
Phys Sci 1971, 324 (1559), 459. 

 
(85)  Laudise, R. A.; Kloc, C.; Simpkins, P. G.; Siegrist, T. Physical Vapor Growth of Organic 

Semiconductors. Journal of Crystal Growth 1998, 187 (3), 449–454. 



62 

 

(86)  Seo, S.; Grabow, L. C.; Mavrikakis, M.; Hamers, R. J.; Thompson, N. J.; Evans, P. G. 
Molecular-Scale Structural Distortion near Vacancies in Pentacene. Applied Physics 
Letters 2008, 92 (15), 153313. 

 
(87)  Verlaak, S.; Rolin, C.; Heremans, P. Microscopic Description of Elementary Growth 

Processes and Classification of Structural Defects in Pentacene Thin Films. The Journal of 
Physical Chemistry B 2007, 111 (1), 139–150. 

 
(88)  Seo, S.; Evans, P. G. Molecular Structure of Extended Defects in Monolayer-Scale 

Pentacene Thin Films. Journal of Applied Physics 2009, 106 (10), 103521. 
 
(89)  Lee, H. S.; Kim, D. H.; Cho, J. H.; Hwang, M.; Jang, Y.; Cho, K. Effect of the Phase 

States of Self-Assembled Monolayers on Pentacene Growth and Thin-Film Transistor 
Characteristics. Journal of the American Chemical Society 2008, 130 (32), 10556–10564. 

 
(90)  Bock, C.; Pham, D. V.; Kunze, U.; Käfer, D.; Witte, G.; Wöll, C. Improved Morphology 

and Charge Carrier Injection in Pentacene Field-Effect Transistors with Thiol-Treated 
Electrodes. Journal of Applied Physics 2006, 100 (11), 114517. 

 
(91)  Kim, D. H.; Lee, H. S.; Yang, H.; Yang, L.; Cho, K. Tunable Crystal Nanostructures of 

Pentacene Thin Films on Gate Dielectrics Possessing Surface-Order Control. Advanced 
Functional Materials 2008, 18 (9), 1363–1370. 

 
(92)  Celle, C.; Suspène, C.; Ternisien, M.; Lenfant, S.; Guérin, D.; Smaali, K.; Lmimouni, K.; 

Simonato, J. P.; Vuillaume, D. Interface Dipole: Effects on Threshold Voltage and 
Mobility for Both Amorphous and Poly-Crystalline Organic Field Effect Transistors. 
Organic Electronics 2014, 15 (3), 729–737. 

 
(93)  Hill, I. G.; Weinert, C. M.; Kreplak, L.; van Zyl, B. P. Influence of Self-Assembled 

Monolayer Chain Length on Modified Gate Dielectric Pentacene Thin-Film Transistors. 
Applied Physics A 2009, 95 (1), 81–87. 

 
(94)  Fukuda, K.; Hamamoto, T.; Yokota, T.; Sekitani, T.; Zschieschang, U.; Klauk, H.; 

Someya, T. Effects of the Alkyl Chain Length in Phosphonic Acid Self-Assembled 
Monolayer Gate Dielectrics on the Performance and Stability of Low-Voltage Organic 
Thin-Film Transistors. Applied Physics Letters 2009, 95 (20), 203301. 

 
(95)  Acton, B. O.; Ting, G. G.; Shamberger, P. J.; Ohuchi, F. S.; Ma, H.; Jen, A. K.-Y. 

Dielectric Surface-Controlled Low-Voltage Organic Transistors via n-Alkyl Phosphonic 
Acid Self-Assembled Monolayers on High-k Metal Oxide. ACS Applied Materials & 
Interfaces 2010, 2 (2), 511–520. 

 
(96)  Lang, P.; Mottaghi, D.; Lacaze, P.-C. On the Relationship between the Structure of Self-

Assembled Carboxylic Acid Monolayers on Alumina and the Organization and Electrical 



63 

 

Properties of a Pentacene Thin Film. Applied Surface Science 2016, 365 (Supplement C), 
364–375. 

 
(97)  Pratontep, S.; Brinkmann, M.; Nüesch, F.; Zuppiroli, L. Nucleation and Growth of 

Ultrathin Pentacene Films on Silicon Dioxide: Effect of Deposition Rate and Substrate 
Temperature. Synthetic Metals 2004, 146 (3), 387–391. 

 
(98)  Venables, J. A.; Spiller, G. D. T.; Hanbucken, M. Nucleation and Growth of Thin Films. 

Reports on Progress in Physics 1984, 47 (4), 399. 
 
(99)  Stadlober, B.; Haas, U.; Maresch, H.; Haase, A. Growth Model of Pentacene on Inorganic 

and Organic Dielectrics Based on Scaling and Rate-Equation Theory. Phys. Rev. B 2006, 
74 (16), 165302. 

 
(100)  Kalihari, V.; Tadmor, E. B.; Haugstad, G.; Frisbie, C. D. Grain Orientation Mapping of 

Polycrystalline Organic Semiconductor Films by Transverse Shear Microscopy. Advanced 
Materials 2008, 20 (21), 4033–4039. 

 
(101)  Minakata, T.; Imai, H.; Ozaki, M.; Saco, K. Structural Studies on Highly Ordered and 

Highly Conductive Thin Films of Pentacene. Journal of Applied Physics 1992, 72 (11), 
5220–5225. 

 
(102)  Porter, M. D.; Bright, T. B.; Allara, D. L.; Chidsey, C. E. D. Spontaneously Organized 

Molecular Assemblies. 4. Structural Characterization of n-Alkyl Thiol Monolayers on 
Gold by Optical Ellipsometry, Infrared Spectroscopy, and Electrochemistry. Journal of the 
American Chemical Society 1987, 109 (12), 3559–3568. 

 
(103)  Laibinis, P. E.; Whitesides, G. M.; Allara, D. L.; Tao, Y. T.; Parikh, A. N.; Nuzzo, R. G. 

Comparison of the Structures and Wetting Properties of Self-Assembled Monolayers of n-
Alkanethiols on the Coinage Metal Surfaces, Copper, Silver, and Gold. Journal of the 
American Chemical Society 1991, 113 (19), 7152–7167. 

 
(104)  Griffiths, P. R.; de Haseth, J. A. Fourier Transform Infrared Spectrometry, 2nd ed.; John 

Wiley & Sons, 2007. 



 

64 
 

VITA 

 Gregory J. Deye is from Palos Park, Illinois. In 2013, he earned a Bachelor of Science in 

chemistry with a minor in physics from Marquette University. From 2013 to 2014, Gregory took 

graduate level chemistry courses and performed research at the Illinois Institute of Technology. 

As his interests in surface chemistry and organic electronics  developed, Gregory relocated to 

Loyola University Chicago to pursue a Ph.D. in chemistry under the direction of Professor Jacob 

W. Ciszek. Since then, Gregory has worked on several projects concerning surface reactions on 

organic semiconductors. Of note, Gregory published a paper in the high impact journal, 

Langmuir, and another paper is forthcoming concerning content in chapter 3. During his tenure 

at Loyola University Chicago, Gregory also presented at numerous conferences including the 

Materials Research Society Spring Meeting and AVS Prairie Chapter. Following graduation, 

Gregory will pursue an industry-based surface chemistry career in Phoenix, AZ. 


	Principles of Surface Chemistry Central To the Reactivity of Organic Semiconductor Materials
	Recommended Citation

	Preparation of Acene Thin Films
	Microscope slides (11 × 25 × 1 mm) were piranha cleaned (3:1 H2SO4: H2O2), rinsed twice with 18 MΩ deionized water and sonicated for 20 min. The substrates were rinsed with copious amounts of 200 proof ethanol before drying under a stream of nitrogen...
	Solid-State Diels-Alder Reactions
	Acene thin-film substrates were placed into a 100 mL Schlenk tube sealed with a hollow end stopper along with approximately 8 mg of solid adsorbate in a small vial.  The air within the Schlenk tube was evacuated and replaced with nitrogen three times,...
	Infrared Analysis of Thin Films
	Composition of thin films were assessed both before and after reaction via PM-IRRAS using a Bruker Optics Tensor 37 FTIR equipped with a PMA 50 accessory and MCT detector.  Reaction progress was assessed by comparing newly generated infrared vibration...
	AFM Analysis of Thin Films
	Surface morphologies of the pristine and reacted films were analyzed using atomic force microscopy (AFM) (MFP 3D microscope, Asylum Research) in tapping (non-contact) mode using a diamond-like-carbon coated AFM tip (Tap190DLC, Budget Sensors).  The ro...
	UV-vis Kinetics Measurements (Solution Reference Experiment)
	Rate constants for the reactions of pentacene with adsorbates N-methylmaleimide, maleic anhydride, maleimide, and tetrafluorobenzoquinone (pseudo-first order) were obtained for the solution Diels-Alder reactions by monitoring pentacene consumption as ...
	Results and Discussion
	Conclusions

