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Abstract 
Deeper exploration of uncharacterized Gcn5-related N-acetyltransferases has the potential 
to expand our knowledge of the types of molecules that can be acylated by this important 
superfamily of enzymes and may offer new opportunities for biotechnological applications. 
While determining native or biologically relevant in vivo functions of uncharacterized 
proteins is ideal, their alternative or promiscuous in vitro capabilities provide insight into 
key active site interactions. Additionally, this knowledge can be exploited to selectively 
modify complex molecules and reduce byproducts when synthetic routes become 
challenging. During our exploration of uncharacterized Gcn5-related N-acetyltransferases 
from Pseudomonas aeruginosa, we identified such an example.  We found that the PA3944 
enzyme acetylates both polymyxin B and colistin on a single diaminobutyric acid residue 
closest to the macrocyclic ring of the antimicrobial peptide and determined the PA3944 
crystal structure. This finding is important for several reasons: 1) to our knowledge this is 
the first report of enzymatic acylation of polymyxins and thus reveals a new type of 
substrate that this enzyme family can use, 2) the enzymatic acetylation offers a controlled 
method for antibiotic modification compared to classical promiscuous chemical methods, 
and 3) the site of acetylation would reduce the overall positive charge of the molecule, 
which is important for reducing nephrotoxic effects and may be a salvage strategy for this 
important class of antibiotics. While the physiological substrate for this enzyme remains 
unknown, our structural and functional characterization of PA3944 offers insight into its 
unique non-canonical substrate specificity. 
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Introduction 
 
Gcn5-related N-acetyltransferases (GNATs) are a fascinating family of enzymes that 
acylate a variety of substrates ranging from small molecules to macromolecules. Members 
of this family are well known for their roles in aminoglycoside antibiotic resistance, histone 
modification, protein acetylation, xenobiotic metabolism, and other cellular processes 
[reviewed in1,2]. They accomplish this by acylating a primary amine of an acceptor 
molecule with a donor molecule like acetyl-coenzyme A (AcCoA). While N-acylation is 
most common, O-3,4 and S-acylation5 can also occur. The structures and functions of 
GNATs from all domains of life have been extensively studied; however, a significantly 
large number of them remain uncharacterized. On average, most organisms have 
approximately 20 GNATs encoded within their genomes; however, this number varies by 
organism and can be much lower or much greater.2 For instance, Campylobacter jejuni has 
4 genes that encode GNATs, while Streptomyces coelicolor has 72.2 Thus, not all GNATs 
are conserved across organisms, which implies that the presence of certain GNATs may be 
tailored to the individual needs of the organism.  
 
To gain a deeper understanding of the diversity of GNAT functions within a single 
bacterium, we have selected Pseudomonas aeruginosa PAO1 as a model system to further 
study GNATs of unknown function. The rationale for this selection is the following. First, 
this bacterium is found in a variety of environments, including in water,6 in soil near the 
roots of plants,7 on medical devices such as catheters,8 and in the lungs of cystic fibrosis 
patients.9 It is a highly antibiotic-resistant bacterium that causes severe nosocomial 
infections, especially in immunocompromised individuals.10 Thus, knowledge gained 
about GNATs from this organism has important implications in agriculture and human 
disease as it is one of the ESKAPE11 pathogens. Second, it is genetically tractable, i.e. it 
can be manipulated to explore the effects of deleting or overexpressing a gene in the 
organism in the laboratory, and an entire curated database (Pseudomonas Genome DB; 
http://www.pseudomonas.com/12) is maintained to house information related to its study. 
Finally, P. aeruginosa contains 36 GNATs in its genome (Supplemental Table 1) and the 
majority of them have been annotated as hypothetical proteins or as proteins of unknown 
function. Nine of them have been structurally characterized (Supplemental Table 1), but 
the depth of functional information is even less. 
 
Due to the diversity of functions of GNATs already identified to date, we expect that 
exploring uncharacterized GNAT proteins will expand the repertoire of substrates utilized 
by members of this family of proteins. Additional benefits to studying GNATs of unknown 
function include improving their functional annotation across diverse genomes and 
identifying new targeted reactions that can be utilized for enzyme-mediated chemical 
synthesis or biotechnological applications. In an effort to expand our knowledge of the 
functional space of GNATs, we previously designed a broad-substrate screening assay to 
identify potential lead compounds to further explore the substrate specificity and catalytic 
activity of uncharacterized GNATs.13 While this screen has its limitations, it does provide 
a starting point for further GNAT functional characterization.  
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Here, we focused on the structural and kinetic characterization of the PA3944 enzyme. We 
previously screened this enzyme against our panel of potential substrates and found it could 
acetylate polymyxin B and E (colistin) antimicrobial peptide antibiotics as well as the 
dipeptide aspartame13. Since the enzymatic activity toward polymyxins is novel, we 
concentrated our structural and functional characterization of PA3944 on its ability to 
acetylate polymyxins. These antibiotics have five potential sites for N-acetylation; 
therefore, we sought to further explore whether the enzyme was specific for one site or if 
it was promiscuous in its acetylation activity. While we do not believe the native function 
of this enzyme is to modify polymyxin antibiotics, we do think we can uncover clues about 
PA3944 substrate specificity by studying how this enzyme modifies these compounds. 
Since this is the first description of a polymyxin antibiotic modifying enzyme, we also 
determined its crystal structure. Collectively, our study provides structural and functional 
information about this enzyme, which will be useful for: 1) identifying other potential 
polymyxin-modifying GNAT enzymes and 2) engineering GNATs to selectively modify 
these antibiotics to salvage them in the clinic or be used for other biotechnological 
applications. 
 
Methods  
 
Clone 
The PA3944 gene (UniProtKB Q9HX72) from Pseudomonas aeruginosa was subcloned 
into the p11 vector as described previously.14 It contains an ampicillin resistance cassette 
and gene expression is under control of the T7 promoter. Protein produced with this system 
contains an N-terminal methionine residue followed by a three amino acid spacer (GSS), a 
hexahistidine tag, another four amino acid spacer (SSGR), a tobacco etch virus (TEV) 
protease cleavage site (ENLYFQ/G), and a histidine spacer residue (i.e. 
MGSSHHHHHHSSGRENLYFQGH) prior to the first methionine of the PA3944 protein 
sequence. 
 
Protein expression and purification for kinetics and mass spectrometry assays 
Cell growth and protein expression—The clone containing the PA3944 gene was 
transformed into E. coli BL21(DE3) competent cells and was stored as a glycerol stock at 
-80°C until ready to use. A 5 ml starter culture of lysogeny broth (LB) media with 100 
g/ml ampicillin was then inoculated and grown overnight at 37°C with shaking at 200 
rpm on a benchtop shaker. The next day, 2.5 ml of starter culture was added to 250 ml of 
Terrific Broth (TB) with 100 g/ml ampicillin in a 2 L glass Erlenmeyer flask and shaken 
at 200 rpm at 37°C until the OD600nm reached 0.6-0.8. Cells were placed on ice until cool 
and then 0.5 mM isopropyl β-D-1-thiogalactopyranoside (IPTG) was added to induce 
protein expression at RT with shaking at 150 rpm overnight.  Cells were harvested by 
centrifugation at 2200 x g for 30 min at 4°C, and the pellet was resuspended in 37.5 ml of 
cold lysis buffer (10 mM Tris-HCl pH 8.3, 500 mM NaCl, 5 mM imidazole, 5% glycerol, 
and 5 mM beta-mercaptoethanol (BME)), sonicated on ice for 5 min, and then stored at -
80°C until ready to purify.  
 
Protein purification and tag cleavage—The lysed cells were thawed and centrifuged at 
25,000 x g for 45 min in a Sorvall SS-34 rotor at 4°C. The crude extract (supernatant) was 
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loaded onto a 1 ml HisTrap FF nickel-affinity column (GE Healthcare) that had been 
equilibrated with buffer A (10 mM Tris-HCl pH 8.3, 500 mM NaCl, and 5 mM BME) on 
an ÄKTA Start FPLC (GE Healthcare). Afterwards, the column was washed with 5 CVs 
of 5% buffer B (10 mM Tris-HCl pH 8.3, 500 mM NaCl, 5 mM BME, and 500 mM 
imidazole), and protein was eluted with 100% buffer B over 5 CVs. To remove imidazole, 
we performed a buffer exchange of the eluted protein into buffer A using a PD-10 gravity 
flow column (GE-Healthcare). Finally, we concentrated the protein using a 10K MWCO 
Sartorius VivaSpin concentrator. To remove the polyhistidine tag, 5 mg of protein was 
incubated with TEV protease (previously purified in our laboratory using the same protocol 
but stored in 10 mM Tris-HCl pH 8.3, 500 mM NaCl, 5 mM BME, 2 mM EDTA, 5 mM 
DTT, and 50% glycerol) in a 20:1 ratio at 4°C overnight in cleavage buffer (50 mM Tris 
pH 8.3, 1 mM DTT, 300 mM NaCl, 5% glycerol) in a 15 ml 10K MWCO Slide-a-Lyzer 
Mini-dialysis device (Thermo Fisher Scientific). Cleavage buffer was exchanged once after 
2 hrs of dialysis. (We chose incubation for cleavage at 4°C because at higher temperatures 
all of the protein precipitated). The next morning, the dialysate was centrifuged at 12,000 
x g for 10 min at 4°C and the supernatant was then loaded onto the affinity column 
previously equilibrated with buffer A. The cleaved protein was eluted with a gradient of 0-
30% buffer B exchanged into buffer without BME (10 mM Tris-HCl pH 8.3 and 500 mM 
NaCl) because the BME interferes with the colorimetric enzyme kinetic assay. Protein was 
stored in aliquots at -80°C. Under these storage conditions, protein was stable for at least 
1 year and no change in enzymatic activity was observed.  
 
Protein crystallization and size-exclusion chromatography 
Detailed methods for protein crystallization and size-exclusion chromatography can be 
found in Supplemental Information.  
 
Data collection and structure determination 
Diffraction data were collected at 100 K at the LS-CAT 21 ID-G (wavelength 0.97856 A, 
12670 eV; PDB ID 6edd) and SBC-CAT 19-ID (0.97926 A, 12661 eV; PDB ID 6edv) 
beamlines at the Advanced Photon Source at Argonne National Laboratory. Data were 
processed with HKL-200015 and structure solution and model building were performed 
with HKL-300016 coupled with MOLREP,17

 BUCCANEER,18 and Fitmunk.19 Models 
were further refined with REFMAC520

 and rebuilt with COOT.21 The quality of the models 
were assessed with Molprobity22 and wwPDB Validation Service.23 Molecular replacement 
was using PDB ID: 3fbu (UniProt ID: Q81Q99) as the search model. All structures have 
been deposited into the Protein Data Bank (PDB) with the following accession codes: 6edv 
and 6edd (Table 1) and diffraction images have been deposited into the Integrated 
Resource for Reproducibility in Macromolecular Crystallography24 
(proteindiffraction.org) with the following identifiers, respectively: 
doi.org/10.18430/m36edd and doi.org/10.18430/m36edv. 
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Table 1. Data collection and refinement statistics for PA3944 structures.  

PDB ID 
Diffraction images DOI 

6edd 
 

6edv 
 

Data collection 

Beamline LS-CAT 21 ID-G SBC-CAT 19 ID 

Resolution (Å) 
1.55   

(1.55-1.58) 
1.35  

(1.35-1.37) 

Space group P1 P212121 

Wavelength (Å) 0.97856 0.97926 

a, b, c (Å) 36.45, 44.17, 60.12 36.44, 44.03, 111.64 

α, β, γ (o) 81.88, 73.32, 89.94 90, 90, 90 

Completeness (%) 96.2 (93.5) 100.0 (99.7) 

Observed reflections 121370 558894 

Unique reflections 49684 40378 

<I> / <σ I> 21.3 (1.9) 46.4 (2.2) 

CC1/2  last shell 0.77 0.68 

Redundancy 2.4 (2.1) 13.8 (4.6) 

Rmerge 0.053 (0.397) 0.122 (0.778) 

Wilson B factor (Å2) 15.7 13.9 

Refinement 

Rwork / Rfree 0.166 / 0.194 0.133 / 0.162 

Bond lengths rmsd (Å) 0.008 0.013 

Bond angles rmsd (Å) 1.4 1.6 

Mean B value (Å2) 20 19 

Number of protein atoms 3125 1513 
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Number of water atoms 476 155 

Number of ligands / ions atoms 130 57 

Clashscore 2.5 0.98 

Clashscore percentile (100) 99 99 

Rotamer outliers (%) 0.00 0.00 

Ramachandran outliers (%) 0.00 0.00 

Residues with bad bonds / 
angles (%) 

0.00 / 0.05 0.00 / 0.00 

MolProbity score 1.03 0.79 

 
*Values in parentheses refer to the highest resolution shell. 
 
 
Enzyme kinetics assays for colorimetric method and mass spectrometry  
Steady-state enzyme kinetic assays—All kinetic assays were performed in triplicate using 
the previously described discontinuous colorimetric method13 with minor modifications. 
Briefly, all reactions were performed in 50 mM Tris-HCl pH 8.0 except for pH studies 
where the buffer was 50 mM Bis-Tris-propane at pH 6.5, 7.0, 8.0, 9.0, or 9.5 in a total 
volume of 50 l for 10 min at 37°C and were initiated with 10 l of enzyme. Reactions 
were terminated using 50 l of 100 mM Tris-HCl pH 8.0 and 6 M guanidine HCl to 
denature the protein and then 200 l of Ellman’s reagent in buffer (0.2 mM 5,5’-
dithiobis(2-nitrobenzoic acid) (DTNB), 100 mM Tris-HCl pH 8.0, and 1 mM EDTA) was 
added to each sample and incubated at RT prior to measuring the absorbance at 415nm 
with a fixed wavelength filter on a BioTek ELx808 microplate reader. Each molecule of 
CoA produced during the reaction reacts with one molecule of (DTNB), which forms a 2-
nitro-5-thiobenzoate (TNB2-) anion under basic conditions that absorbs at 415 nm. CoA 
standards (2.5 and 5 nmol) were used to determine the response factor for TNB2- at 415 
nm, which was used to convert TNB2- absorbance to the number of nmols of CoA product 
produced during the enzymatic reaction. One unit of enzymatic activity is defined as 1 
mol of TNB2- produced per min. Kinetic parameters were determined by fitting data to 
the Michaelis-Menten equation using Origin 2017 software. Details of the concentrations 
of donor (AcCoA) and acceptor substrates used for each assay are described below. 
 
The PA3944 enzyme was screened against a panel of the following compounds in Tris-
HCl pH 8.0 buffer to determine its substrate specificity and promiscuity: L-glutamate, L-
aspartate, taurine, carnosine, beta-alanine, aspartame, glycine, L-alanine, L-2,3-
diaminopropionic acid (DAP), colistin, polymyxin B, L-2,4-diaminobutyric acid (Dab), L-
ornithine, and L-lysine. Each reaction was performed in the presence of 0.5 mM AcCoA, 
5 mM compound and 0.91 M enzyme. Substrate saturation curves were produced using 
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0.64 M of tagged or cleaved PA3944 enzyme. The tagged enzyme was used for substrate 
screening assays and pH studies, while the cleaved protein was used for substrate saturation 
curves where kinetic parameters were determined in Table 2. For polymyxin B, colistin, 
and Dab substrate saturation curves AcCoA concentration was held constant at 0.5 mM 
while acceptor substrate was varied from 0-10 mM for polymyxin B and colistin, and 0-20 
mM for Dab. For AcCoA substrate saturation curves, polymyxin B or colistin was held 
constant at 5 mM while AcCoA was varied from 0-2 mM.  
 
 
Table 2. Comparison of kinetic parameters for tagged and cleaved PA3944 enzyme.         

 
 aThe concentration of AcCoA was held constant at 0.5 mM while the acceptor substrate(s) 
were varied. 
bAt DAB concentrations higher than 10 mM substrate inhibition was observed; therefore, 
kinetic parameters were calculated based on data collected from 0-10 mM DAB.  
cThe concentration of polymyxin B or colistin was held constant at 5 mM while the 
concentration of AcCoA was varied. 
 
 
 
Enzymatic assays for mass spectrometric analysis—Enzymatic assays were performed for 
1 hr at 37°C in triplicate in a 100 l reaction volume in the presence of 50 mM Tris-HCl 
pH 8.0, 1 mM AcCoA, 1 mM of either polymyxin B or colistin, and 0.64 M of tagged 
PA3944 enzyme. Control reactions were performed in absence of enzyme. Reactions were 
terminated by adding 50% methanol to the reaction mixture and then frozen and stored at 
-80°C. Reaction products were analyzed by mass spectrometry as described below.   
 
Mass spectrometry  
Reaction mixtures were extracted by solid phase extraction prior to mass spectrometry 
analysis.  They were then combined with 450 l of trimethylamine acetate pH 8.0, loaded 
onto a Waters Corp HLB Oasis solid phase extraction cartridge (6 ml, 200 mg) and washed 
with 5 ml of 100 mM triethyl acetate pH 8.0 and 5 ml of distilled water.  The peptides were 

PA3944
Enzyme 

Substrate 
KM 

(mM) 
kcat 
(s-1) 

kcat/KM 
(M-1s-1) 

Tagged 

Polymyxin B (constant [AcCoA])a 2.57 ± 0.23 0.653 2.54 x 102 
Colistin (constant [AcCoA])a 2.28 ± 0.17 0.672 2.95 x 102 
DAB (constant [AcCoA])a,b 8.60 ± 1.59 0.264 30.7 x 101 
AcCoA (constant [Polymyxin B])c 0.118 ± 0.028 0.602 5.10 x 103 
AcCoA (constant [Colistin])c 0.105 ± 0.017 0.471 4.49 x 103 

Cleaved 

Polymyxin B (constant [AcCoA])a 4.00 ± 0.32 0.923 3.65 x 102 
Colistin (constant [AcCoA])a 2.50 ± 0.13 0.894 3.58 x 102 
DAB (constant [AcCoA])a,b 10.0 ± 1.2 0.391 3.91 x 101 
AcCoA (constant [Polymyxin B])c 0.137 ± 0.020 0.610 4.45 x 103 
AcCoA (constant [Colistin])c 0.118 ± 0.021 0.456 3.86 x 103 
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eluted with 5 ml of a 70:30 acetonitrile:water solution and evaporated to near dryness in a 
Speedvac evaporator.  The residue was dissolved in a 75% methanol:water solution for 
direct infusion into the mass spectrometer. Molecular weight and product ion mass spectra 
were acquired with a ThermoFinnigan Advantage (San Jose, CA) LCQ ion trap mass 
spectrometer using electrospray ionization (ESI) in the positive ion mode.  The tandem 
mass spectra energy parameter was set to 50-60% of its maximum value for fragmentation 
of all the singly-protonated peptides in this study. Mass spectra of all the peptide ions were 
acquired by direct infusion of the 3:1 methanol:water mixture. The capillary temperature 
was 200C and the spray voltage was 4.5 kV. Molecular weight and product ion spectra 
were acquired from each reaction mixture and are shown in Supplemental Information.    
 
Results and Discussion 
 
PA3944 genomic context and protein properties 
The PA3944 gene from P. aeruginosa PAO1 lies within a five-gene operon (PA3941-
PA3945) that encodes four hypothetical proteins and one predicted acyl-CoA thioesterase 
II (tesB). Two of these hypothetical proteins (PA3944 and PA3945) are predicted to have 
a GNAT domain, but their function is unknown and to our knowledge they have not been 
previously studied. The organization of this operon is conserved in P. aeruginosa strains 
PAO1 (an opportunistic pathogen and widely studied laboratory strain), DK2 (isolated 
from Danish Cystic Fibrosis patients), M18 (found in the sweet melon rhizosphere and 
produces anti-fungal compounds), and LESB58 (a hypervirulent Cystic Fibrosis isolate 
from Liverpool). The PA3944 gene encodes a 21.9 kDa protein with a pI of 5.32 and is 
found in both pathogenic and nonpathogenic strains of Pseudomonas in 289 genera.25  
 
3D crystal structure of PA3944 
We previously screened the PA3944 protein against a panel of potential substrates and 
found the enzyme exhibited the highest activity toward aspartame, polymyxin B and 
colistin (polymyxin E).13 The rationale for including these compounds in the screening 
assay was that they were relatively inexpensive peptides with several potential sites for N-
acylation. Due to the unusual substrate specificity of PA3944 exhibited toward polymyxin 
B and colistin, we sought to determine its crystal structure to learn more about how these 
antibiotics become acetylated. To begin, we screened this protein for crystals in the 
presence and absence of AcCoA/CoA and a variety of substrates identified from our 
previous broad-substrate screening assay.13 Two structures of PA3944 with CoA were 
determined in different space groups: P212121 with a monomer in the asymmetric unit, 
(PDB: 6edv) and P1 with two monomers in the asymmetric unit (PDB: 6edd) (Table 1).  
 
The PA3944 protein structure consists of five α-helices that surround an antiparallel β-
sheet formed by six β-strands (Figure 1), which is a typical signature of GNATs26. The 
canonical V-like splay is formed between β-strands B and C, and the topology of the 
PA3944 structure is similar to that of the PA4794 GNAT we studied previously.27 CoA 
was modeled into the electron density found between helices α3, α4 and β-strands D, F and 
stabilized by interactions with the following residues: Trp105, Leu107, Gly113, Arg114, 
Gly115, Arg118, Thr141, Asn145, Ser148 and Arg154. This CoA binding pocket is also 
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conserved across the P. aeruginosa PA3270, PA4794 and PA2578 GNATs (Supplemental 
Table 1). 
 
 
 
Figure 1. Crystal structures of PA3944 in complex with CoA. (A) Monomer assigned to 
orthorombic space group (PDB ID: 6edv). α helices (red) are labeled from α1 to α5, β 
strands (yellow) from A to F and loops are shown in green. CoA is shown as spheres. (B) 
The N-terminus (spheres) of one monomer (PDB ID: 6edd, chain B, yellow) is bound to 
the active site of the other monomer (PDB ID: 6edd, chain B, blue). CoA is shown as 
green sticks. The N- and C-termini are labeled as N and C in both panels. 
 
 

 
 
 
We performed a structural similarity search of PA3944 against the PDB using VAST28 and 
found the highest structural similarity toward two uncharacterized proteins from Bordetella 
pertussis (PDB ID: 3juw, 24.2% sequence identity) and Bacillus halodurans (PDB ID: 
2qml, 10.8 % sequence identity). The structure in the PDB that exhibited the highest 
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sequence identity is an uncharacterized acetyltransferase from Agrobacterium tumefaciens 
(PDB ID: 2fsr, 32.2% sequence identity). We then used DALI29 to compare the PA3944 
structure to all other known P. aeruginosa GNATs (Figure 2) and found the highest 
structural similarity between PA3944 and the uncharacterized PA3270 protein (PDB ID: 
1yre, 22.9% sequence identity). To determine whether we could predict the possible 
function of PA3944 from sequence or structure, we broadened our search to include 
GNATs that had been previously characterized from other organisms as described in 
Supplemental Methods. Our comparison of the amino acid sequences of the acceptor 
substrate binding sites of these proteins did not show any sequence similarity to PA3944; 
therefore, we were unable to predict a possible native function for this enzyme based on 
previously characterized GNATs.  Moreover, we observed that the topology of the GNAT 
structures were highly variable and the most similar proteins adopted different 
conformations of some of their secondary structures (Figure 2). Thus, it was not feasible 
to infer function from structure for the PA3944 enzyme.  
 
 
Figure 2. Structural comparison of PA3944 with other GNATs from Pseudomonas 
aeruginosa and other organisms with known functions. The structure of PA3944 is 
shown in red and black on the left of the structure being compared. The putative acceptor 
substrate binding region of PA3944 is shown in red and the CoA ligand is shown as black 
spheres. The corresponding PDB ID is shown and gene names that correspond to the 
PDB IDs are as follows: 1xeb (PA0115), 2fe7 (PA0478), 3owc (PA2578), 2cnm (RimI 
from Salmonella typhimurium), 1yre (PA3270), 2j8r (PA4866), 4l8a (PA4794), 4r87 
(SpeG from Vibrio cholerae), 2eui (PA4026), 2vi7 (PA1377), 4ubr (PA4534), and 4r9m 
(SpeG from Escherichia coli). 
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The only difference between our two PA3944 structures (P212121 PDB ID: 6edv, and P1 
PDB ID: 6edd) was the presence of a portion of the N-terminus in the active site of the 
adjacent monomer of the 6edd structure (Figure 1). Here, the histidine residue that remains 
after tag cleavage and the first four residues of the protein (HMNAN) are observed in the 
electron density and the δ-2 nitrogen of Asn2 from one chain forms a H-bond with the 
backbone oxygen of Ser46 on a mobile loop of the second chain. In this conformation, the	
-carbon atom of Met1 of the N-terminus bound in the active site of the opposite monomer 
is 5.4 Å from the sulfhydryl group of CoA. Residues Met41-Leu48 on the loop between 
helices α1 and α2 interact with the N-terminus and block the entrance to the active site. 
The N-terminus of the 6edd structure was not modeled due to lack of electron density for 
the first eight residues.  
 
Since the PA3944 protein appeared to adopt two different oligomeric states (monomer and 
apparent dimer) in the different crystals, we performed size-exclusion chromatography to 
determine its oligomeric state in solution. We found the protein eluted as a monomer 
regardless of pH (see Methods for more details; Supplementary Figure 1). This result is 
consistent with PISA predictions30 which did not show any significant interactions between 
monomers of the P1 (6edd) structure except those connected with binding a small portion 
of the N-terminus. Therefore, we conclude that the PA3944 protein is a monomer in 
solution and the observed binding of the N-terminus in the P1 (6edd) structure is a result 
of crystal packing but may indicate that the protein is capable of binding a peptide or 
peptide-like molecule. This is further supported by the fact that the closest sequence and 
structural homologs with known function acetylate proteins (ribosomal protein alanine 
acetyltransferase from Salmonella typhimurium, Uniprot ID Q8ZJW4_SALTY), or cyclic 
peptides (FsC-acetyl coenzyme A N(2)-transacetylase from Neosartorya fumigate, Uniprot 
ID SIDG_ASPFU) (Figure 3). 
 
 
Figure 3. Pairwise sequence comparison between PA3944 and closest GNAT family 
proteins with known functions. Sequences are colored according to pairwise similarity 
from red (highly similar regions) to white (intermediately similar) to blue (highly 
dissimilar). Similarity was calculated as BLOSUM62 scores averaged over three 
residues. The CoA binding site in PA3944 is colored in orange, while its acceptor 
substrate binding site is in orange. The sequences are labeled with Uniprot IDs. 
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PA3944 acetylates polymyxin B and colistin on a single diaminobutyric acid residue 
Polymyxins are polycationic macrocyclic antimicrobial peptides that have been isolated 
from strains of the bacterium Bacillus polymyxa, and they disrupt the structure of the 
bacterial cell membrane by interacting with its phospholipids. The most prevalent 
polymyxins include polymyxin B (B1 and B2) and colistin (polymyxin E1 and E2). These 
two families of polymyxins differ in their D-amino acid composition and in the fatty acids 
that are attached to the N-terminus of the peptide. Both families contain identical L-amino 
acid residues; however, polymyxin B also contains a D-phenylalanine residue whereas 
colistin has a D-leucine residue in its place. The fatty acid composition varies for each type 
of polymyxin, where polymyxin B1 and colistin E1 have a 6-methyloctanoyl group, 
whereas polymyxin B2 and colistin E2 bear a 6-methylheptanoyl residue [reviewed in31]. 
 
Since polymyxins have five potential sites for N-acetylation on diaminobutryic acid (Dab) 
residues within their structures (Figure 4), it was unclear whether the PA3944 enzyme 
acetylated a single Dab or multiple Dabs on each antibiotic. Our initial hypothesis was that 
the enzyme might acetylate Dab5 since it is located near the D-Phe/D-Leu of polymyxin 
B/colistin and most closely resembles the structure of aspartame, but we could not rule out 
the possibility that other Dabs might be modified. To determine the site(s) of acetylation 
on polymyxin B and colistin, we performed the enzymatic acetylation reaction and 
analyzed the products of the reaction using MS/MS. Product ion analyses of colistin and 
polymyxin B indicate that predominant acetylation product of PA3944 is a singly 
acetylated species and occurs only once on residue 3—the primary amine of the Dab 
residue proximal to the macrocycle in both antibiotics.  
  
 
Figure 4. Structures of polymyxins and substrate saturation curves for PA3944. The 
structures of polymyxin B and colistin are shown in panels A and B, respectively. The 
regioselective acetylation by PA3944 occurs on the Dab residue highlighted in red and 
circled. AcCoA substrate saturation curves are shown in panel C at constant 
concentration of polymyxin B (red circles) and colistin (black squares). The tagged 
PA3944 protein is represented as filled circles or squares and the cleaved protein is 
represented by open circles or squares. Polymyxin B and colistin substrate saturation 
curves are shown in panel D at constant concentration of AcCoA. Coloring for 
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polymyxin B, colistin, tagged, and cleaved protein is the same as panel C. Error bars 
represent the standard deviation of triplicate reactions. See Methods for more details 
regarding assay conditions. 
 

 
 
Mass spectrometry analysis of the enzymatic reaction containing polymyxin B yielded a 
singly acetylated polymyxin B1 (M+H)+ ion at m/z 1246.3 that was selected for product 
ion analysis. Smaller abundances of singly-acetylated polymyxin ions containing sodium 
were observed at m/z 1267.8 and m/z 1289.7 as well. The acetylated polymyxin B2 formed 
ions in much smaller abundances (Supplemental Figure S2). No unmodified polymyxin 
B1 or B2 were observed in this mass spectrum.  The product ion spectrum of the singly 
acetylated polymyxin B1 (m/z 1246.3; Supplemental Figure S3) shows an ion at m/z  
904.8 formed by cleavage of the side chain resulting in the loss of a neutral fragment 
containing the (unmodified) primary amine group that is farthest away from the cyclic 
peptide ring. The product ion observed at m/z 762.4 is the cyclic peptide fragment formed 
by loss of the side chain (analogous to the m/z 728.3 in the product ion spectrum of the 
singly-acetylated colistin on Dab3 in Supplemental Scheme S1). Full scan MS analysis 
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of the control reaction mixture containing polymyxin without PA3944 enzyme showed no 
acetylated products.   
 
Analysis of the enzymatic reaction containing colistin showed the singly acetylated colistin 
E2 (M+H)+ ion at m/z 1197.8 and the singly acetylated (M+Na)+ E1 and E2 ions at m/z 
1233.9 and m/z 1219.9, respectively (Supplemental Figure S4). A protonated molecular 
ion from unmodified colistin E2 was observed at m/z 1155.8. Full scan MS analysis of the 
control reaction mixture containing colistin without PA3944 enzyme showed no acetylated 
products. The m/z 1197.8 ion, corresponding to a singly acetylated colistin E2, was 
subjected to product ion analysis to determine the site of colistin acetylation 
(Supplemental Figure S5). The cleavage of the colistin side chain produces an acylium 
ion at m/z 997.4 (containing the acetyl group) formed by the loss of a fragment containing 
the unmodified primary amine, closest to chain terminus, analogous to the m/z 904.8 
observed in the product ion analysis of polymyxin. The formation of a product ion at m/z 
728.3 corresponds to the unacetylated cyclic peptide fragment and demonstrates that the 
acetyl modification is on the primary amine closest to the cyclic peptide (Dab3) 
(Supplemental Scheme S2).   
 
These results strongly suggest that the enzymatic reaction of PA3944 toward both 
polymyxin B and colistin is specific for Dab3, the Dab residue proximal to the cyclic 
peptide (Figure 4), as we did not observe multiple acetylation events on either of these 
peptides under our described assay conditions. The colistin E2 isoform was the 
predominant parent species as well as the predominant acetylated species observed in the 
MS assays, while the relative abundance of polymyxins B1 and B2 were similar. Since 
both E1/B1 and E2/B2 isoforms of the antibiotics were found to be acetylated, the 
differences in fatty acid and D-amino acid composition does not appear to majorly affect 
enzymatic acetylation of these substrates. Thus, the selectivity with respect to the location 
of acetylation on both polymyxins was consistent. This enzymatic specificity is in contrast 
to the nonselective chemical methods of acetylating polymyxin antibiotics, such as acetyl 
chloride or acetic anhydride, which are very reactive and nonselective. 
 
PA3944 exhibits similar catalytic efficiencies toward both polymyxin acceptor substrates 
We kinetically characterized the PA3944 enzyme toward polymyxin B and colistin using 
acetyl coenzyme A (AcCoA) as the acyl donor. Since polymyxin B and colistin structures 
are quite similar (Figure 4), we expected the PA3944 enzyme would exhibit comparable 
kinetic parameters toward both acceptor substrates. We found no major difference in the 
catalytic efficiency of the enzyme toward polymyxin B or colistin when comparing tagged 
or cleaved enzyme kinetic parameters (Table 2 and Figure 4). This indicates the 
differences in fatty acid at the N-terminus and D-amino acid within the peptide sequence 
of polymyxin B and colistin do not significantly alter PA3944 activity. Additionally, no 
significant difference in catalytic efficiency was seen when AcCoA was varied and 
concentrations of polymyxins were held constant regardless of whether the affinity tag was 
present or removed. Thus, the presence of the affinity tag does not significantly alter 
PA3944 enzymatic activity. 
 
PA3944 is not an efficient diaminobutyric acid acetyltransferase  
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Since PA3944 acetylated Dab3 on polymyxins, we wondered whether it would acetylate 
free Dab amino acids more efficiently than those within the antibiotics. Dab 
acetyltransferases, which are GNATs and part of the ectoine biosynthetic pathway, have 
been studied from the halophilic bacteria Methylomicrobium alcaliphilum, Methylophaga 
thalassica, Methylophaga alcalica, and Halomonas elongata.32-34 We found the apparent 
affinity of PA3944 for Dab was 1-2 orders of magnitude lower (8.6 or 10 mM; tagged vs 
cleaved, Table 2) than that reported for M. alcaliphilum, M. thalassica, and M. alcalica 
(0.460, 0.365, and 0.375 mM, respectively33,34), and its catalytic efficiency was one order 
of magnitude lower toward Dab compared to polymyxin B and colistin (Table 2). 
Therefore, we concluded that under our described reaction conditions the PA3944 enzyme 
is an inefficient Dab acetyltransferase and likely has an alternative native function. 
 
PA3944 expanded substrate screening assays  
To further explore substrate specificity of the PA3944 enzyme, we performed an expanded 
screening assay with compounds denoted in Figure 5. Similar to our previous results, the 
enzyme exhibited the highest activity toward aspartame, polymyxin B and colistin, but it 
is not obvious why polymyxins and aspartame would be acetylated to a similar extent since 
their structures are quite different. The previous substrate screen13 did not include a 
complete series of compounds to evaluate which structural components of these molecules 
are important for PA3944 recognition. Therefore, we selected compounds that were 
commercially available to determine structural elements necessary for acetylation of 
aspartame and polymyxins (Figure 5). First, we focused on molecules that represented 
structural components of aspartame. We found L-glutamate, L-aspartate, glycine, and 
alanine are very poor substrates for the PA3944 enzyme. Limited activity was observed for 
substrates bearing an aminoethyl group (taurine, carnosine, and diaminobutyric acid); 
however, beta-alanine, which also contains an aminoethyl group, was a poor substrate. This 
indicates that there are structural elements in aspartame that are more favorable for 
acetylation than the simpler amine containing substrates we assayed (Figure 5). We are 
currently in the process of synthesizing aspartame analogs to learn more about the 
structural elements of aspartame that are recognized by PA3944. 
 
 
Figure 5. Substrate screening of PA3944. Average activity of PA3944 from triplicate 
reactions toward each substrate is shown and more details of assay conditions are found in 
Methods. Structures of each substrate are overlaid onto the bar graph with the site of 
acetylation highlighted in red. Only partial structures of polymyxin B and colistin are 
shown. Full structures of these compounds can be found in Figure 4. Error bars represent 
the standard deviation of triplicate reactions. 
 
 



 18

 
 
 
 
Next, we turned our attention to PA3944 activity toward polymyxin B and colistin. Both 
polymyxins contain diaminobutyric acid residues; therefore, we investigated the 
importance of chain length between the alpha carbon and primary amine by comparing 
activity toward free amino acids glycine, L-alanine, 2,3-diaminopropionic acid (Dap), 2,4-
diaminobutyric acid (Dab), L-ornithine, and L-lysine (Figure 5). We found the optimal 
distance between the alpha carbon and the primary amine was the presence of two 
methylenes, like that of Dab. Therefore, we performed substrate saturation curves for Dab 
and found that the catalytic efficiency was one order of magnitude lower for the single free 
Dab residue than when it is incorporated into the cyclic peptide of polymyxin B or colistin 
(Table 2). This indicates that differences in charges of substrates or additional interactions 
between the enzyme and polymyxin substrates enhance activity and are important for 
substrate specificity.  
 
Polymyxin acetylation is enzymatic and optimal activity occurs at pH 8 
GNATs use a general acid/base catalytic mechanism to acetylate their acceptor substrates. 
This occurs when the enzyme deprotonates a primary amine of an acceptor substrate using 
either an acidic active site residue or water molecule, and then a residue like tyrosine is 
used to reprotonate CoA after acetyltransfer. As the pH of the buffer used for enzymatic 
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assays increases, there is a higher likelihood that the acceptor substrate is already 
deprotonated and would cloud whether or not the observed reaction is indeed enzymatic. 
Therefore, to ensure that the polymyxin acetylation reaction we observed was enzymatic, 
we performed a series of kinetic assays in different buffers and at different pHs. First, we 
measured the kinetic activity of PA3944 toward polymyxin B in the presence of Tris-HCl 
pH 8.0 or Bis-Tris-propane pH 8.0 buffer and compared the kinetic parameters (Figure 
6A). We found the catalytic efficiency of the enzyme in Tris-HCl pH 8.0 and Bis-Tris-
propane pH 8.0 was 2.47x102 M-1s-1 and 7.33 x 102 M-1s-1, respectively, indicating the 
catalytic efficiency of the enzyme in Bis-Tris-propane buffer is nearly 3-fold higher than 
in Tris-HCl. Next, we performed substrate saturation curves toward polymyxin B in Bis-
Tris-propane buffer at different pHs (Figure 6B). The activity of the enzyme varied with 
pH and did not continue to increase linearly at higher pH, which would be expected if non-
enzymatic acetylation were occurring. We found the enzymatic activity toward polymyxin 
B at different pHs exhibited a gaussian curve (Figure 6C) with a pH optimum at 8.0. This 
type of curve matches what would be expected for a general acid/base catalytic mechanism 
where two residues are likely participating in the reaction. Additional plots of log Vmax as 
a function of pH, log Km as a function of pH, and log kcat/Km as a function of pH are 
presented in Supplemental Figure S6. Note that substrate saturation curves at pH 6.5 and 
7.0 (Figure 6B) did not reach saturation, so the apparent Vmax and Km values used to 
produce the curves in Supplemental Figure S6 may affect data interpretation. Overall, our 
results provide evidence that the polymyxin acetylation reaction is indeed enzymatic. 
Studies to identify these critical residues for enzymatic activity are currently underway in 
our laboratory.  
 
Figure 6. PA3944 activity toward polymyxin B in different buffers and pHs. A) 
Comparison of polymyxin B substrate saturation curves at constant concentration of 
AcCoA (0.5mM) in Tris-HCl and Bis-Tris propane buffers at pH 8.0. Data were fit using 
non-linear regression as described in materials and methods. B) Polymyxin B substrate 
saturation curves as a function of pH in Bis-Tris propane buffers from pH 6.5-9.5. Data 
were fit using non-linear regression as described in materials and methods. C) PA3944 
activity toward 2 mM polymyxin B and 0.5 mM AcCoA in Bis-Tris propane buffers at 
pH 6.5, 7.0, 8.0, 9.0, and 9.5. Data were fit to a gaussian curve. See materials and 
methods for further details. 
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Polymyxins are heterogeneous and may affect reproducibility 
Since commercial polymyxins are heterogeneous mixtures of fermentation products 
isolated from bacteria and they can adhere to polystyrene, it is important to note that 
different preparations of solutions of these molecules may vary in composition from batch 
to batch [reviewed in35]. While this potentially presents challenges for interpreting and 
reproducing kinetic parameters from different laboratories, in our hands two different 
PA3944 enzyme preparations and polymyxin B preparations were used to collect the 
enzyme kinetic assay data in Figures 4-6. We observed differences in kcat and Km from the 
two preparations; however, the catalytic efficiencies of the enzymes were nearly identical. 
Thus, catalytic efficiencies may be the more useful parameter for comparing PA3944 
enzymatic activity in the future from lab to lab. 
 
The non-native function of PA3944 could be exploited for biotechnology applications 
Due to the rise in antibiotic resistance toward most antibiotics, polymyxins are being used 
as a last resort to treat multi-drug resistant or extreme drug resistant bacterial infections 
[see reviews31,36]. While we have shown that PA3944 can acetylate polymyxin antibiotics 
in vitro, we do not think this is its physiological function. The rationale for our conclusion 
is primarily based on the fact that the apparent affinity of PA3944 for both polymyxins is 
in the millimolar range (Table 2) and reported breakpoints for polymyxin B or colistin for 
P. aeruginosa resistance to these antibiotics is in the micromolar range (greater than or 
equal to 4 g/mL (~3 M) for colistin and 8 g/mL (~6 M) for polymyxin B35). While it 
is unlikely that the native function of PA3944 is to modify polymyxins, its ability to singly 
acetylate Dab3 on the fatty acyl tail of these important antibiotics could be exploited. For 
instance, in vitro chemical mechanisms of acylation of polymyxins are promiscuous, and 
having a controlled acylation method for modifying these antibiotics enables specific 
chemical transformations of these important molecules. Additionally, future directed 
evolution of the PA3944 enzyme may allow for selective acylation of other sites of these 
types of antibiotics, which could significantly improve synthetic strategies of these 
molecules. Furthermore, if the PA3944 enzyme is able to recognize other antimicrobial 
peptides in a similar manner, it could also be used to selectively modify structurally similar 
octapeptin antimicrobial peptides. While the native function of PA3944 remains unknown 
and warrants further investigation, the regioselectivity of this enzyme may be exploited for 
future biotechnological applications (e.g. designing reporters) and/or drug development.  
 
Supporting Information 
Supplemental Methods for protein expression and purification for crystallization, protein 
crystallization, size-exclusion chromatography, and sequence and structural comparison of 
homologs. Supplemental Results including mass spectrometry of acetylated polymyxin B 
and colistin. Supplemental Table S1, Figures S1-S6, and Schemes SC1, SC2. 
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SUPPLEMENTAL METHODS 

Materials 

Acetyl coenzyme A (AcCoA; #A2181) and coenzyme A (CoA; #C3019) trilithium salts, and 
polymyxin B (#P4932) and colistin (#C4461) sulfate salts were purchased from Sigma-Aldrich. 
All other reagents for biochemical assays were purchased at the highest quality available.  

Protein expression and purification for crystallization 

The ampicillin resistant plasmid containing the PA3944 gene was transformed into 
chloramphenicol resistant E. coli BL21(DE3) CodonPlus-RIL cells (Agilent). A starter culture of 
LB with 100 µg/ml ampicillin and 34 µg/ml chloramphenicol was inoculated and grown overnight 
at 37°C at 200 rpm. The following morning 10 ml of starter culture was used to inoculate 1 L of 
LB. Cells were grown until the OD600nm reached 0.8 and then cooled to 16°C. Protein expression 
was induced with 1 mM IPTG and expressed overnight at 16°C with shaking. The next day, the 
cells were harvested by centrifugation (25 min at 4000 x g at 4°C in a Beckman Coulter Avanti J-
26 XP centrifuge) and the supernatant was discarded. The pellet was resuspended in lysis buffer 
(50 mM Tris-HCl pH 7.8, 2 mM imidazole, 150 mM sodium chloride) and homogenized in a glass 
homogenizer. One tablet of protease inhibitor (cOmplete Mini, EDTA-free Protease Inhibitor 
Cocktail Tablets, Roche) and a pinch of lysozyme (Sigma product # L-6876) and 2 µl of Benzonase 
Nuclease (Sigma product # E1014) were then added to the cell suspension, sonicated on ice, and 
centrifuged (45 min at 142,400 x g, and 4°C in a Beckman Coulter Optima L-80 XP 
ultracentrifuge). The supernatant was loaded onto a gravity flow Ni-NTA column (Qiagen) 
previously equilibrated with lysis buffer and the flow-through was collected and reapplied on the 
column three times to extend the length of interaction time between the protein and resin. The resin 
was then washed with wash buffer (50 mM Tris-HCl pH 7.8, 10 mM imidazole, 600 mM sodium 
chloride) and protein was eluted with elution buffer (50 mM Tris-HCl pH 7.8, 250 mM imidazole, 
200 mM sodium chloride). To remove the polyhistidine tag, the eluted protein was combined with 
tobacco etch virus (TEV) protease in a 15:1 ratio and dialyzed in a 10 kD MWCO Slide-A-Lyzer 
dialysis cassette (Thermo Fisher Scientific) against 1 L of dialysis buffer (50 mM Tris-HCl pH 
7.8, 150 mM sodium chloride, 14 mM BME) overnight at 4°C. The dialyzed protein was loaded 
onto the nickel-affinity column that had been equilibrated with dialysis buffer. The flow-through 
was collected, concentrated with an Amicon Ultra Centrifugal Filter with a 10K MWCO, and 
loaded onto a HiLoad 16/60 Superdex 200 gel filtration column using an AKTA FPLC (GE 
Healthcare) in 100 mM Tris-HCl pH 7.5 and 150 mM NaCl buffer. Polyhistidine tag cleavage was 
confirmed by SDS-PAGE.  

Protein crystallization 

The PA3944 protein was crystallized using hanging drop vapor diffusion at 16°C in 3-Well Midi 
Crystallization plates (Swissci) that were set using a Mosquito crystallization robot (TTP Labtech). 
Crystals used for data collection and structure determination were from two different preparations 
of protein but in the same crystallization condition (MCSG1 screen, well C11: 100 mM Tris-HCl 
pH 7.0, 200 mM calcium acetate monohydrate, 20%w/v PEG 3000): 1) cleaved PA3944 protein 
at 14 mg/ml co-crystallized in the presence of 5 mM puromycin and CoA with a ratio of protein 
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to mother liquor of 1:1; ethylene glycol was used as a cryoprotectant. 2) cleaved PA3944 protein 
at 10 mg/ml co-crystallized in the presence of 5 mM colistin and CoA with a ratio of protein to 
mother liquor of 3:2; no cryoprotectant was added when harvesting crystals for data collection. 
Crystals were harvested using Hampton CryoLoops and dried for 10-15 minutes over 1 M sodium 
chloride (a slow dehydration technique) and then frozen in liquid nitrogen.  

Size-exclusion chromatography 

The oligomeric state of the PA3944 protein was determined using size exclusion chromatography 
with a HiLoad 16/60 Superdex 75 gel filtration column (GE Healthcare). A calibration curve was 
prepared from retention times and molecular weights of albumin (66.5 kDa), ovalbumin (44.3 
kDa), chymotrypsin (25 kDa) or ribonuclease A (13.7 kDa) in 100 mM Tris-HCl pH 7.0 buffer. 
To determine whether pH affected the oligomeric state of the PA3944 protein, separate 
measurements were determined in the following buffers that contained 150 mM NaCl: 100 mM 
potassium phosphate pH 6.0; 100 mM Tris-HCl at pH 7.0 or 8.0; and 100 mM CHES at pH 9.0. 
We also assessed whether the presence of AcCoA affected the oligomeric state of PA3944 by 
analyzing the retention times of the PA3944 protein in the presence of a 2-fold excess of AcCoA: 
protein. 15 nmol of protein was injected onto the column at a flow rate of 1.5 ml/min for each 
measurement. 

Sequence and structural comparison of homologs 

To identify PA3944 homologs, we queried the SwissProt database using the PA3944 sequence and 
single iteration BLAST (E-value cutoff of 10). From these results, we selected sequences of 
proteins with 3D structures and experimentally verified functions or preliminary substrates. These 
included two polyamine acetyltransferases (Uniprot IDs ATDA_VIBCH and ATDA_ECOLI) and 
a fusarinine C siderophore acetyltransferase (Uniprot ID: SIDG_ASPFU)1-3. Two sequences of 
protein acetyltransferase RimI from E. coli and S.typhimurium (Uniprot IDs Q8ZJW4)SALTY, 
RIMI_ECO57, respectively) and three sequences of GNAT acetyltransferases from P. aeruginosa 
(Uniprot IDs: Q9HUU7, and Q9HV14) that have been found to acetylate L-methionine 
sulfoximine and L-methionine sulfone4, and a C-terminal lysine residue of a peptide5, respectively, 
as well as  UniProt ID: Q9I0Q8, which was included in our broad substrate screening6 but does 
not have a known function. The sequence alignment (Figure 3) was performed using the program 
PROMALS3D7,8. A structural alignment of all GNATs from P. aeruginosa with crystal structures 
was performed using secondary-structure-matching (SSM) with the program SUPERPOSE from 
the CCP4 suite9. The acceptor substrate binding site in all structures was visually identified. 

 

SUPPLEMENTAL RESULTS 

Mass spectrometry of acetylated colistin and polymyxin B 

Molecular weight and product ion spectra were acquired from each reaction mixture. 
Product ion analyses of colistin and polymyxin indicate that the primary site of enzymatic 
acetylation occurs (just once) on the primary amine on the side chain closest to the cyclic peptide 
at the end of the chain. Molecular weight analysis of reaction mixtures containing AcCoA and 
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polymyxin in presence and absence of enzyme are shown in Figure S2. These spectra strongly 
suggest polymyxin acetylation only occurs in the presence of the PA3944 enzyme. In Figure S2A, 
(M+H)+ and (M+Na)+ ions formed from polymyxin B1 are observed at m/z 1204 and m/z 1226 
and those for polymyxin B2 are observed at m/z 1190 and m/z 1211, respectively. No acetylated 
polymyxin ions are observed in the spectrum of the control reaction in absence of enzyme. Figure 
S2B shows monoacetylated polymyxin B1 at m/z 1246 (M+H)+, m/z 1268 (M+Na)+, and m/z 1290 
(M-H+2Na)+, respectively.  No multiply acetylated polymyxin molecules are observed. 

Product ion spectra of the (M+H)+ ion at m/z 1246 formed from the monoacetylated 
polymyxin is shown in Figure S3.  An ion observed at m/z 904.8 is formed by cleavage on the side 
chain resulting in the loss of a neutral fragment containing the (unmodified) primary amine that is 
farthest away from the cyclic peptide ring.  The m/z 904.8 fragment ion contains the acetyl group.  
The product ion observed at m/z 762.4 is the cyclic peptide fragment formed by loss of the side 
chain analogous to the m/z 728.3 in the product ion spectrum of the singly-acetylated polymyxin 
B in Figure S3 (see also Scheme S1). If polymyxin B was acetylated on the primary amine closest 
to the end of the fatty acyl chain (Dab1) we would expect to see an ion at m/z 863. This ion is not 
observed, so we conclude that the primary amine closest to the peptide ring in polymyxin is the 
main site of acetylation. 

Molecular weight analysis of reaction mixtures containing AcCoA and colistin in the 
presence and absence of enzyme are shown in Figure S4. Spectra of the control reaction show 
(M+H)+ and (M+Na)+ of unacetylated colistin E2 (m/z 1156 and  m/z 1178) and colistin E1 
molecules (m/z 1170 and m/z 1192), respectively (Figure S4A). Ions formed from monoacetylated 
colistin E2 are observed in Figure S4B at m/z 1198 (M+H)+ and m/z 1220 (M+Na)+. A smaller 
abundance of the (M+Na)+ formed from monoacetylated colistin E1 is observed at m/z 1234. These 
spectra strongly suggest the acetylation of colistin only occurs in the presence of the PA3944 
enzyme. No m/z values consistent with the (M+H)+ and (M+Na)+ ions formed from multiply 
acetylated colistin are observed. We do not know the identities of the additional ions observed at 
m/z 1313, 1327, and 1449 but each appear to become acetylated in the presence of the enzyme due 
to the observation of ions at m/z 1356, 1370, and 1491. Since colistin sulfate is supplied as a 
mixture of molecules, we cannot conclusively state the identity of these ions; however, it is clear 
that the apparently acetylated molecules are only observed in the presence of the PA3944 enzyme. 

The protonated molecule ion at m/z 1198 was subjected to product ion analysis (Figure S5) 
to locate the position of acetyl modification on the colistin molecule (Scheme S2). The product 
ion spectra suggest that the primary position of acetylation is on the primary amine on the side 
chain closest to the peptide ring.  The observation of an acylium ion formed by the cleavage of 
colistin produces an ion at m/z 997.4 (containing the acetyl group) that is formed by the loss of a 
fragment containing the unmodified primary amine farthest away from the cyclic peptide ring. The 
formation of a product ion at m/z 728.3, corresponding to the unacetylated cyclic peptide fragment, 
strongly suggests that acetylation occurs on the primary amine closest to the cyclic peptide 
(Scheme S2).  Modification of the amine closest to the end of the peptide chain would have yielded 
an acylium ion at m/z 955 formed by the loss of a fragment containing the acetyl group and this 
ion is not observed in any significant abundance. Therefore, we conclude the primary amine closest 
to the peptide ring is the principal site of modification. 
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SUPPLEMENTAL TABLES, FIGURES, and SCHEMES 

Table S1. Summary of Pseudomonas aeruginosa GNAT genes, proteins, and structures.   

Pseudomonas gene UniProt ID PDB IDs of crystal structures 
PA0115 Q9I717  1xeb 
PA0249 Q9I6P0  
PA0478 Q9I640  2fe7 
PA0483 Q9I635  
PA0711 Q9I5L7  
PA1062 Q9I4R2  
PA1377 Q9I3W7  2vi7 
PA1428 Q9I3R6   
PA1472 Q9I3P0   
PA1749 Q9I2Y8   
PA1885 Q9I2L2   
PA1928 Q9I2H6   
PA1943 Q9I2G1   
PA2271 Q9I1K2   
PA2578 Q9I0Q8  3owc 
PA2631 Q9I0K7  
PA3127 Q9HZ97  
PA3248 Q9HYZ2  
PA3270 Q9HYX1 1yre 
PA3368 Q9HYN3   
PA3460 Q9HYE6  
PA3944 Q9HX72  
PA3945 Q9HX71  
PA4026 Q9HX01 2eui 
PA4114 Q9HWR6  
PA4166 Q9HWL5  
PA4166 Q9HWL5  
PA4534 Q9HVP3 4ubr, 5ib0 
PA4678 Q9HVB7  

PA4794 Q9HV14 

3kkw, 4kot, 4oae, 4l8a, 4oad, 4kub, 4klw, 4kow, 4klv, 
4kua, 4kov, 4l89, 4kos, 4kor, 4kou, 4koy, 3pgp, 4m3s, 
4kox  

PA4863 Q9HUV0   
PA4866 Q9HUU7 1yvo, 2j8m, 2j8n, 2j8r, 2bl1 
PA5204 P22567   
PA5432 Q9HTD4  
PA5433 Q9HTD3  
PA5475 Q9HT95   

 

* Based on predictions from InterPro, each protein listed is either annotated as a GNAT or contains a 
GNAT domain.  
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Figure S1. Size exclusion chromatograms of PA3944 protein with different buffers in the absence 
(apoenzyme) and presence of AcCoA (haloenzyme) (A), calculated molecular weights (B), and 
calibration curve (C). See Methods for more specific details.  

A 

 

B 

Apoenzyme 
pH 6 7 8 9 

Volume [ml] 68.5 68.1 67.9 68.5 
Calculated mass 

[kDa] 
24.2 24.7 25.0 24.2 

Holoenzyme 
pH 6 7 8 9 

Volume [ml] 68.6 68.4 67.9 69.0 
Calculated mass 

[kDa] 
24.0 24.3 25.0 23.5 
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C 
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Figure S2. Full scan ESI mass spectrum of a reaction mixture containing polymyxin B and AcCoA in A) 
absence of PA3944 enzyme and B) presence of PA3944 enzyme. The electrospray mass spectra of the 
polymyxin peptide mixture (Figure S2A) show protonated (M+H)+ and cationized (M+Na)+ molecule 
ions generated from form B1 at m/z 1203.9 and at m/z 1225.8, respectively. Smaller abundances of the 
protonated molecule ion formed from the B2 form are observed at m/z 1189.7.  No acetylated products 
are observed without the enzyme present in the reaction mixture.  When the enzyme is present in the 
reaction mixture (Figure S2B) only ions generated from the acetylated polymyxin are observed.  
Protonated molecule ions from the B2 and B1 forms modified by single acetyl groups are observed at m/z 
1231.3 and m/z 1245.3.  Ions containing one (M+Na)+ and two sodium ions (M+2Na)+ are formed from 
the B1 containing one acetyl group are observed at m/z 1267.8 and m/z 1289.7.  No unmodified 
polymyxin or polymyxin molecules modified by multiple acetyl groups are observed in the Figure 2B 
spectra. See Methods for more specific details about sample preparation (positive ion mode). 
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Figure S3. Product ion mass spectra of the protonated molecule ion of A) unmodified polymyxin B that 
was observed at m/z 1204 and B) polymyxin containing one acetyl group that was observed at m/z 1246 
(positive ion mode), showing loss of water as the primary fragmentation in both cases. 

 

B 

(M+H‐H2O)+ 

(M+H‐H2O)+ 
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Figure S4. Full scan ESI mass spectra of a reaction mixture containing colistin A and B and AcCoA A) 
in the absence of PA3944 enzyme and B) in the presence of PA3944 enzyme. See Methods for more 
specific details about sample preparation (positive ion mode). 
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Figure S5. Product ion mass spectra of the protonated molecule ion of A) unmodified colistin that had 
been observed at m/z 1156 and B) of the colistin ion containing one acetyl group (positive ion mode) that 
had been observed at m/z 1198. Loss of water was observed as the primary fragmentation in both cases.

 

 

(M+H‐H2O)+ 

(M+H‐H2O)+ 
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Figure S6. PA3944 pH profiles with polymyxin B as acceptor substrate. A) log kcat/Km (M-1s-1) as a 
function of pH, B) log Km (mM) as a function of pH, and C) log Vmax (mol/min/mg) as a function of pH. 
Kinetic parameters used for the plots were calculated from non-linear regression fittings of the substrate 
saturation curves in Figure 6B to the Hill equation as described in materials and methods.  
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Scheme S1. Product ion formation indicative of the position of acetyl group attachment in the enzyme 
catalyzed acetylation of polymyxin B. 
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Scheme S2. Product ion formation process indicative of the position of acetyl group attachment in the 
enzyme catalyzed colistin acetylation. 
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