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Abstract  

 

Chirabite-AR was employed to differentiate enantiomers of the axially chiral cyclotriveratrylene 

(CTV)-derived macrocyclic lactam with baseline separation of most of the proton NMR 

resonances enabling enantiomeric purity determination of this supramolecular scaffold. 

Attachment of menthyloxy acetic acid as a chiral auxiliary to the CTV-Beckmann derived lactam 

afforded diastereomers that were enriched to a ratio of 87:13, as confirmed by both 1H NMR and 

single-crystal X-ray diffraction. Basic hydrolysis of the enriched diastereomeric mixture 

proceeded with rapid bowl inversion to yield racemic CTV-lactam as confirmed by Chirabite-AR 

mailto:*dbecke3@luc.edu
https://www.luc.edu/chemistry/facultystaff/beckerdaniel.shtml


NMR analysis. Density functional theory (DFT) calculations (M06 2X /6-31G*) were performed 

on the crown and saddle conformers of the CTV-lactam. 

 

 

Introduction 

Chiral cyclophanes have applications in enantiodiscrimination processes including catalysis, 

recognition and sensing, determination of enantiomeric excess, and signaling chiral information 

of guests,[1, 2] as with chiral molecular tweezers that exhibit selective binding and chiral 

recognition of specific guests.[3] Cyclotriveratrylene (CTV, 1)[4] is a natural product and was first 

isolated from the bark of Zanthoxylum conspersipunctatum found in New Guinea.[5] CTV and its 

[1.1.1]cyclophane congeners in their rigid crown conformation are unique bowl-shaped 

molecules that have applications in sensors, self-organized materials, liquid crystals, and 

metallosupramolecular chemistry.[6] CTV and its cryptophane derivatives are of great interest in 

molecular recognition.[7] They are members of a larger family of inherently axially chiral 

concave molecules that have applications in chiral recognition and asymmetric synthesis.[2] A 

chiral CTV derivative bearing Kemp’s triacid was shown to induce triple helix formation of 

collagen peptides.[8] A dynamic thermodynamic resolution strategy was recently reported of 

racemic CTV units by addition of remote stereogenic centers.[9] Helically chiral CTV units have 

been employed to construct enantiopure molecular cages,[10] along with a host of elegant CTV-

derived coordination cages.[11] Some of the fascinating supramolecular structures of self-

assembled cages derived from CTV-type scaffolds have recently been reviewed,[12] such as a 

racemic C3-symmetric bipyridyl-bearing CTV ligand with zinc shown to self-assemble into 

triply interlocked chiral catenanes within an overall chiral crystal.[13] CTV-based host 



compounds bearing three binaphthol moieties have been reported as chiral sensors with 

recognition of sugar derivatives.[14] 

 

The crown form of cyclotriveratrylene can undergo umbrella inversion that inverts chiral 

derivatives into their enantiomeric counterpart, as Collet demonstrated by observing the slow 

racemization of structurally chiral cyclotriveratrylene derivatives.[15] Resolution and NMR 

studies have been performed on the crown and saddle conformers of a CTV derivative toward 

chiral liquid crystals.[16]  

 

While most work with CTV has focused on peripheral functionalization, we have focused on 

apical functionalization, enabling attachment of CTV “bowl-out” receptors on surfaces,[17] 

including desymmetrized C1-symmetric derivatives that are also of interest.[18] The parent 9-

membered cyclophane 1 (Figure 1) is under ambient conditions locked into the bowl-shaped 

crown conformer. Elegant high temperature melt and quench experiments by Zimmerman first 

enabled isolation of the saddle conformer of CTV.[19] In contrast, the corresponding CTV 

monoketone 2 exists exclusively as the saddle conformer,[4] and resolves upon crystallization in a 

chiral conformation, as a racemic mixture of enantiomerically pure chiral crystals.[20] We 

discovered that the corresponding oxime 3 exists as a slowly equilibrating mixture of crown and 

saddle conformers that are separable,[21] and reported the kinetics and thermodynamics of their 

interconversion.[20] Furthermore, oxime 3 undergoes facile Beckman rearrangement to afford the 

macrocyclic lactam 4[22] which is axially chiral and thus potentially resolvable into its 

atropisomers.  

 



Current interest in synthetic macrocyclic receptors includes applications in chiral analysis and 

separation,[23] as well as in supramolecular chirality in self-assembled systems.[24] Ema has 

developed chiral selectors with multiple H-bonding sites in macrocyclic cavities[25-27] including 

the commercially available Chirabite-AR. While the macrocycle of CTV-lactam 4 contains a 

larger 10-membered ring, amide resonance[28] reduces flexibility through restricting rotation 

around the carbonyl C-N bond. We were interested if Chirabite-AR, which is designed for 

determining the enantiomeric purity of small molecules that can ideally be contained within its 

macrocycle, might be usable to determine the enantiomeric purity of larger supramolecular 

axially chiral scaffolds such as CTV-derived lactam 4. Furthermore, we addressed the possibility 

that lactam 4 might be resolvable via attachment of a chiral auxiliary through N-functionalization 

of lactam 4, given its ability[29] to undergo acylation in high yield to imide derivative 5. 
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Figure 1. Synthesis via Beckmann rearrangement of the 10-membered CTV-derived lactam 4 

enantiomers and conversion to N-acyl imide derivatives 5 and 6, and the structure of Chirabite-

AR 



 

 

 

Results and Discussion 

 

Toward the possible resolution of CTV-lactam 4, we first required a method to assess 

enantiomeric purity. Attempts to observe the separate enantiomers of racemic lactam 4 using 

chiral HPLC methods were unsuccessful, so we turned to chiral shift reagents. The racemic 

macrocyclic lactam 4 was treated with increasing amounts of the macrocyclic chiral shift reagent 

Chirabite-AR in CDCl3 solution and examined by 1H NMR spectroscopy, demonstrating that the 

individual enantiomers could be baseline separated by NMR for optical purity determination. 

The ratio of Chirabite-AR to lactam 4 was examined by varying the amount of Chirabite-AR 

from 0.01 equivalents to 0.3 equivalents. Some separation of enantiomeric resonances in the 

proton NMR was already evident with only 0.01 equivalents of Chirabite-AR, and 0.05 

equivalents were optimal to provide baseline separation of the proton resonances in the aromatic 

regions of the two enantiomers, while only 0.025 equivalents were required for baseline 

separation of some methoxy resonances. Additional quantities of Chirabite-AR were 

counterproductive, leading to large chemical shift displacements and compromising the ability to 

assign peaks. We surmise that Chirabite-AR is interacting most strongly with the lactam 

carbonyl oxygen, which bears a Mulliken charge of -0.489 au, the greatest point electron density 

on the molecule, and should be a strong H-bond acceptor for the H-bond donor moieties of 

Chirabite-AR. 



There are several regions of the 1H NMR spectra that provide peaks to track and integrate 

the CTV-lactam enantiomers in the presence of Chirabite-AR. Within the aromatic region (6.5-

7.3 ppm) shown in Figure 2, there were six clearly resolved Ar-H peaks that were split into 

twelve separate resonances when 0.125 equivalents of Chirabite-AR were added. When 0.30 

equivalents of Chirabite-AR were utilized, the enantiomeric lactam NH resonances in this region 

can also be differentiated. Furthermore, the aromatic Ar-H peak at 6.7 ppm was clearly resolved 

giving near-baseline separation using a very low Chirabite-AR loading (0.05 eq). In the methoxy 

region from 3.7 to 4.05 ppm, shown in Figure 3, signals of nearly all methoxy moieties from 

both enantiomeric lactams were split into separate peaks, especially when using 0.175-0.20 

equivalents of Chirabite-AR. Importantly, the NMR resonances for Chirabite-AR itself did not 

overlap with any of the peaks for the CTV-lactam as most of the Chirabite-AR resonances 

appear beyond 7.27 ppm, a region which contains no peaks relating to CTV-lactam 4. 

 



Figure 2. The aromatic region of the proton NMR spectra (400 MHz, CDCl3) of CTV-lactam 4 

with increasing quantities of Chirabite-AR (0.01 to 0.30 equivalents). 

 

Figure 3. The methoxy-containing region of the proton NMR spectra (400 MHz, CDCl3) of 

CTV-lactam 4 with increasing quantities of Chirabite-AR (0.01 to 0.30 equivalents). 

Toward the possible resolution of CTV-lactam 4, several different chiral auxiliaries were 

explored for reaction with the lactam N-H of 4, including (1S)-(-)-camphanic chloride, (S)-(+)-α-

methoxy-a-trifluoromethylphenylacetyl chloride, diacetyl-L-tartaric anhydride, (S)-(+)-alpha-

methoxy-alpha-trifluoromethylphenylacetate, and ketopinic acid chloride, several of which did 

not provide N-acylated adducts under a number of conditions explored. However, reaction of (-)-

menthyloxyacetic acid chloride was successful in providing diastereomeric imide adducts in 

good yield when using an excess of (-)-menthyloxyacetic acid chloride in pyridine at reflux, 



providing an 86% yield of the desired imide 6 as an approximately 87:13 mixture of 

diastereomers based on 1H NMR integration. After aqueous workup and filtration through a bed 

of alumina, crystallization from hexane/DCM afforded a mixture of diastereomers in an 87:13 

ratio (Figure 4). Attempts to separate the diastereomers and to improve the diastereomeric purity 

by further recrystallization and/or achiral column chromatography techniques were unsuccessful. 

Recrystallization from DCM/hexane provided X-ray quality crystals but did not alter the 

diastereomeric ratio from 87:13, which was the same ratio obtained from ethyl acetate/heptane. 

Interconversion and equilibration of the diastereomers is not possible, since umbrella inversion 

of the bowl-shaped macrocycle would require the menthyloxyacetyl substituent to pass through 

the center of the bowl, which is not possible. The crystal structure obtained through X-ray 

crystallography of crystals from DCM/hexane (Figure 5) showed that the two diastereomers co-

crystallize as a solid solution in a ratio of 83.2 ± 0.3% to 16.8 ± 0.3% based on electron density, 

with very similar ratios of diastereomers in the solid state and in solution. The absolute 

configuration of the two bowl moieties is inverted and the two sections are related by a non-

crystallographic pseudo-mirror plane. As expected, the menthyloxyacetate units have identical 

absolute configurations, 1R,2S,5R, but are slightly shifted against each other (Fig. S1, S2). The 

structures obtained for both diasteromers are consistent with the molecular structures and 

absolute configurations expected. 
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Figure 4. Structures of menthyloxyimide 6a (major diastereomer) and 6b (minor diastereomer) 

   

Figure 5. Two views of the X-ray crystal structure of major diastereomer 6a (H atoms omitted). 

Ortep plots and figures showing disorder of 6a and 6b are given in the SI (Fig. S1 – S3).  

The type of disorder observed for 6 is not unprecedented. A similar behavior had been 

previously observed for the acetyl-substituted counterpart of 6, N-acyl imide derivative 5.[29] The 

latter had been crystallized as a racemic mixture, with molecules located on and bisected by a 

crystallographic mirror plane, thus inducing whole molecule disorder not too dissimilar from that 



observed for 6. The geometry and conformation of the CTV-imide section in 5 and 6 closely 

resemble each other. Both molecules have the bowl shaped appearance typical for CTV and its 

derivatives,[4, 6] and the CTV-imide sections are virtually superimposable (Figs S4), with only 

slight deviations for the outer substituents, mostly torsion angles of the methoxy groups. In 

menthyloxy-substituted lactam 6, all methoxy groups are in plane with the benzene rings to which 

they are substituted, as is usual for sterically unencumbered polymethoxy benzene derivatives.[30] 

In N-acetyl lactam 5, on the other hand, one of the methoxy substituents is twisted out of plane, to 

avoid an otherwise unfavorable close contact with the methyl group of a neighboring molecule in 

the crystal. The menthyloxyacetate chain in 6 has an all-trans extended conformation, and the 

menthyl group is aligned with its long axis roughly perpendicular to the plane of the N-acyl imide 

segment. The positions of the menthyl units in major 6a and minor 6b diastereomers are quite 

similar, with a slight shift induced by the different positions of the connecting oxygen atom in 6a 

and 6b. Intermolecular interactions and packing in N-acetyl lactam 5 and in menthyloxyacetyl 

lactam 6 are similar (Fig S1, S2). Packing interactions are dominated by intra- and intermolecular 

CH⋅⋅⋅O interactions, augmented by a small number of CH⋅⋅⋅π contacts, involving the aromatic C-

H groups, the bridging methylene CH2 units, the methoxy CH3 groups, and, for 6, the C-H, CH2 

and CH3 moieties of the menthyl substituents. The positions of the menthyl groups in 6a and 6b 

are close enough to each other to not seriously affect packing interactions between neighboring 

molecules, and no additional disorder induced by the unequal disorder onto neighboring molecules 

is resolved. Molecules in N-acetyl lactam 5 as well as in N-menthyloxyacetyl lactam 6 can both 

be described to be arranged in stacked-cup arrays, with the acetyl or menthyl group of one 

molecule located in the cavity of the bowl of another, leading to columnar assemblies. The larger 



size of the menthyl substituent in 6 extends the distance between the bowl segments within 

columns, from ca. 8.5 Å in 5 to 13.4 Å in 6.  

Toward the possible isolation of an enriched enantiomer of 4, cleaving the chiral 

menthyloxyacetyl auxiliary of the 87:13 mix of diastereomers of 6a/b was performed using 

aqueous LiOH in THF. Attempts to determine the rate of racemization (from ~87:13 to 50:50) of 

isolated lactam by optical rotation showed a rotation of 0° at the first time point reading, 

indicating rapid complete racemization within less than 15 minutes. This was confirmed by 

NMR methods using again Chirabite-AR as a chiral resolution aid. Hydrolysis of the chiral 

auxiliary was carried out on enriched CTV-menthyloxyacetic imide in aqueous THF using 

lithium hydroxide (3.5 eq) at < 5 °C for 15 minutes, then the reaction mixture was sampled, 

rapidly concentrated, redissolved in CDCl3 containing Chirabite-AR (0.30 equiv), and analyzed 

by 1H NMR. Examination of peaks of interest to monitor enantiomeric purity (Figure 6), 

specifically at 6.63/6.69 ppm and 6.51/6.53 ppm as indicated by the black circles correspond to 

the singlets in the racemic CTV lactam without Chirabite-AR as denoted in (A), and indicated a 

1:1 ratio of enantiomers, thus complete racemization. The chemical shifts of the separated 

enantiomers in (A) are noted to correspond closely to the shifts observed for lactam 4 with 0.175 

eq Chirabite-AR (C), rather than with 0.30 eq Chirabite-AR (D), presumably due to the excess 

hydroxide present in the reaction mixture that is competing with Chirabite and its interaction 

with lactam 4. These results indicate that once the chiral auxiliary is cleaved, the bowl inversion 

is quite rapid furnishing lactam 4 as a racemate, with a barrier to interconversion of less than 21-

25 kcal/mol, which was the barrier to interconversion determined for the crown and saddle 

conformers of CTV-oxime 3.[20]



 

Figure 6. 1H NMR spectra for (A) in purple, lactam 4 without Chirabite; (B) in green, the lactam 

4 derived from basic cleavage of enriched 6a/b with 0.30 eq Chirabite with excess hydroxide 

showing a 1:1 ratio of singlets indicating racemic lactam 4; (C) lactam 4 in the presence of 0.175 

eq Chirabite; and (D) in blue, racemic lactam 4 with 0.30 eq Chirabite. 

 

Assessment of the relative energies of the crown and saddle conformers of lactam 4 were 

assessed through calculations on model structures 7a-c lacking the six methoxy groups (Figure 

7), since a saddle conformer must be an intermediate in inversion and racemization of the chiral 

crown conformer.[4] Density functional theory (DFT) calculations (M06 2X /6-31G*) on lactams 

7a-c were performed using Spartan ’16 (Wavefunction, Inc., Irvine, CA). It was found that the 

saddle conformer 7b is 7.1 kcal/mol higher in energy than the crown conformer 7a, and the side-

saddle 7c is 8.6 kcal/mol higher in energy than the crown 7a, consistent with the observation of 

only the crown conformer in the crystal structure of 5. We reported earlier for the 9-membered 

ring CTV oxime 3 that the saddle conformer is 3.15 to 5.23 kcal/mol (13.2 to 21.9 kJ/mol) higher 

in energy than the more stable crown conformer.[20] Thus the saddle conformers for the model 

lactam 7 that were examined are higher in energy than for the smaller macrocycle CTV oxime 3, 



yet the transition state to the saddle conformer must be easily surmountable at room temperature 

to enable racemization of CTV lactam 4. 

 

Figure 7: DFT energy minimized structures for lactam 7 crown and saddle conformers as a 

model for CTV-lactam 4 

In summary, we have demonstrated that Chirabite-AR can be used to differentiate the 

enantiomers of inherently axially chiral supramolecular scaffolds such as CTV-derived lactam 4, 

and have succeeded in attaching (-)-menthyloxy acetic acid as a chiral auxiliary to lactam 4 and 

enriching the diastereomeric ratio through crystallization, as confirmed by NMR spectroscopy 

and X-ray crystallography. Hydrolytic cleavage of the chiral auxiliary, however, returned 

racemic lactam 4, based on optical rotation and NMR analysis in the presence of Chirabite-AR. 

 

Experimental Section 

DFT Calculations 

Calculations at the density functional level of theory were performed using Spartan ‘016 by 

Wavefunction, employing the M06 2X functional and the 6-31G* basis set according to a 

previously-described protocol.[31]   



 

10,15-Dihydro-2,3,7,8,12,13-hexamethoxy-5H tribenzo[a,d,g]cyclononen-5-one (CTV-

Monoketone) 2 

The procedure was improved from the previously-reported synthesis.[21] A 5-liter glass reactor 

(3-necked), equipped with an overhead mechanical stirrer, J-Kem thermocouple, heating mantle, 

reflux condenser, and nitrogen inlet was charged in the following order with CTV 1 (76.22 g, 

0.17 moles, 18 eq), ethyl acetate (2 L), activated manganese dioxide (264.7 g, 3.05 moles), 

ground potassium permanganate (241.1 g, 1.53 moles, 9 eq) and lastly ethyl acetate (0.29 L) as a 

rinse. The reaction was stirred at room temperature to ensure that there was no exotherm 

reaction. The mixture was then heated to reflux and stirred overnight. After 18 hours, TLC and 

HPLC analysis indicated that the reaction was complete. The reaction solution was colorless 

once solids settled indicating that all KMnO4 had reacted. The reaction mixture was cooled to 

50°C, filtered over a pad of Celite (70.6 g), and the Celite Cake was rinsed with ethyl acetate (3 x 

500 mL) and DCM (2 x 500 mL). The filtrate was concentrated under reduced pressure at 40-

50°C to give crude CTV-monoketone (61.91 g) as a pale yellow solid. The crude monoketone 

(51.00 g) was placed into a 250-mL glass reactor (2-necked), equipped with a large magnetic stir 

bar, J-Kem thermocouple, heating mantle, and reflux condenser. To the reactor was added 

acetonitrile (150 mL, HPLC grade). The mixture was heated to 70 °C and the slurry was stirred 

(250-300 rpm) at 70 °C for 18 hours. The slurry mixture was allowed to gradually cool to room 

temperature over 4 hours, then continued to stir at room temperature for approximately 3 hours. 

The slurry was filtered over a fitted funnel (medium porosity), the wetcake was washed with 

acetonitrile (60 mL), dried by suction, and further dried in vacuo at 60 °C overnight to give 

purified CTV monoketone 2 (32.54 g white solid, 65% yield). The mother liquor was partially 



concentrated to remove about 75% of the solvent to provide a slurry. The slurry was filtered and 

the wetcake was washed with ethyl acetate/heptane (50/50, 10 mL) and dried to give a second 

crop (15.8 g, 31% yield, white solids) of purified CTV-monoketone 2. The 1H NMR data are in 

accordance with those reported in the literature.[20] 

 

10,15-Dihydro-2,3,7,8,12,13-hexamethoxy-5H-tribenzo[a,d,g]cyclononen-5-oxime (CTV 

Oxime) 3, as a mixture of saddle and crown conformers 

In a modification of the reported[21] procedure, to a 500-mL glass reactor (3-necked), equipped 

with a magnetic stir bar, reflux condenser, J-Kem thermocouple, and nitrogen inlet, was added 

CTV-monoketone (19.00 g), hydroxylamine hydrochloride (42.64 g), and pyridine (190 mL). 

The mixture was heated to reflux (110 °C) under a nitrogen atmosphere. After 16.5 hours, the 

reaction was deemed complete by TLC analysis (EtOAc/DCM, 20/80) and the reaction was 

allowed to cool. Concentration gave a crude residue to which was added USP purified water (250 

mL) and the mixture was triturated at room temperature for 30 minutes. The slurry was filtered, 

and the wetcake was washed with USP purified water (2 x 50 mL), dried by suction, and further 

dried in vacuo at 50 °C overnight to provide a pure mixture of saddle and crown CTV-oximes as 

a white solid (17.63 g, 90%). Spectral data matched the reported literature.[21] 

 

2,3,8,9,13,14-Hexamethoxy-11,16-dihydrotribenzo[b,e,h]azecin-6(5H)-one (CTV-lactam) 4 

The previously-reported procedure[22] was modified to avoid thionyl chloride, and with good 

yield from a mixture of crown and saddle conformers. To a 1-liter 3-necked flask equipped with 

an overhead mechanical stirrer, nitrogen inlet, and J-Kem thermocouple was added CTV-oxime 

2 (10.00 g, 20.85 mmol) and acetonitrile (200 mL). The mixture was stirred at ambient 



temperature for 20 minutes, then carbonyldiimidazole (7.18 g, 44.28 mmol) was added. 

Additional acetonitrile (20 mL) was used to rinse contents off the reactor flask walls. After 1 h at 

rt, TLC analysis (EtOAc/DCM, 80/20) revealed that the oxime starting material was completely 

consumed and a new spot appeared (oxime O-acyl imidazole intermediate, Rf = 0.10). The 

reaction mixture was cooled to < 5 °C and de-ionized water (50 mL) was added followed by 

drop-wise addition of trifluoroacetic acid (TFA, 50 mL) over 20 minutes using a dropping 

funnel. After 20 h at room temperature, TLC analysis (EtOAc/DCM, 80/20) showed complete 

conversion of the acyl imidazole intermediate to CTV-lactam (Rf = 0.18). To the reaction 

mixture was added drop-wise de-ionized water (600 mL) over 30 minutes to provide an opaque 

pink slurry which was allowed to stir for 20 hours and then filtered. The wetcake was washed 

with water (50 mL), suction dried, and further dried in vacuo at 50 °C to provide CTV-lactam 4 

(8.13 g, 81.3%). HPLC purity (220 nm): 95.2%. Spectra were identical to reported literature.[22] 

 

5-[1,2,3,4-Tetrahydro-1-[[[(1R,2S,5R)-5-methyl-2-(1-

methylethyl)cyclohexyl]oxy]acetyl]-]acetyl-11,16-dihydro-2,3,8,9,13,14-hexamethoxy-

tribenz[b,e,h]azecin-6(5H)-one (menthyloxyacetyl CTV-derived lactam) 6  

To a solution of CTV lactam 4 (175 mg, 0.36 mmol) in pyridine (1.8 mL) was added (-)-

menthyloxyacetic acid chloride (913 mg, 3.92 mmol) at room temperature and the solution was 

heated to reflux for 2 h. The mixture was then concentrated under reduced pressure, and the 

resulting residue was diluted in dichloromethane and poured onto ice. The layers were separated, 

and the aqueous layer was extracted two additional times with dichloromethane. The combined 

organic layers were washed successively with 1N hydrochloric acid (2x), saturated aqueous 

sodium bicarbonate, distilled water, brine, dried over sodium sulfate and concentrated to afford 



the crude product as a solid (999 mg). The mixture was passed through neutral alumina (17 g) 

eluting with ethyl acetate/dichloromethane (20/80) to remove excess menthyloxyacetic acid, 

followed by elution of the cyclotriveratrylene lactam starting material that was recovered (40 mg, 

25% recovered). The remaining material (477 mg) eluted from the alumina was 

chromatographed on silica gel (24 g) eluting with a gradient from pure dichloromethane to ethyl 

acetate/dichloromethane (50/50) to afford the desired imide 6 (167 mg, 69%) as a pale yellow 

solid. The product was crystallized using DCM and hexane yielding an 87:13 mixture of 

diastereomers: mp 200-203 °C; [α]D = -218° (c = 2.4 g/100 mL); IR 2998.6, 2953.5, 2927.6, 

2868.3, 1723.0, 1696.3, 1608.0 , 1517.9, 1463.1 cm-1. 1H NMR (400 MHz, CDCl3): δ 6.87 (bs, 

2H), 6.71 (bs, 0.12H), 6.69 (bs, 0.11H), 6.68 (bs, 0.11H), 6.67 (bs, 0.13H), 6.60 (bs, 0.22H), 

6.59-6.52 (complex, 3.2H), 6.47 (bs, 0.13H), 6.46 (bs, 0.13H), 6.39 (bs, 0.45H), 6.38 (bs, 

0.55H), 5.07 (bs, 0.19H), 5.03 (bs, 0.26H), 4.98-4.84 (m, 0.87H), 4.80 (bs, 0.27H), 4.76 (0.20H), 

4.47 (bs, 0.03H), 4.42 (bs, 0.04H), 4.37 (bs, 0.04H), 4.32 (bs, 0.31H), 4.29 (bs, 0.28H), 4.26 (bs, 

0.24H), 4.23 (0.26H), 4.16 (bs, 0.04H), 4.13-4.11 (complex, 0.27H), 4.10-4.05 (complex, 

0.45H), 4.04-4.02 (complex, 0.52H), 4.01-3.97 (complex, 0.43H), 3.95-3.91 (complex, 6.2H), 

3.90 (bd, 1H), 3.87 (bd, 1H), 3.83 (bs, 1H), 3.81 (bs, 0.43H), 3.80-3.78 (complex, 1.2H), 3.74 

(bd, 3.2H), 3.73 (bs, 3.2H), 3.71-3.60 (complex, 6.4H), 3.62-3.58 (complex, 1H), 3.55 (bd, 1H), 

3.49 (bs, 0.30H), 3.45 (bd, 0.54H), 3.42 (bs, 0.28H), 3.33-3.27 (td, 1.1H), 3.20-3.07 (complex, 

0.32H), 2.41-2.24 (complex, 1.35H), 2.25-2.19 (complex, 1.23H), 2.12-2.00 (complex, 0.55H), 

1.68-1.58 (complex, 5.4H), 1.46-1.18 (complex, 8H), 1.08-0.71 (complex, 22.2H). 13C-NMR (75 

MHz, CDCl3): δ 16.1, 16.2, 16.3, 20.9, 21.0, 21.1, 21.9, 22.1, 22.3, 23.2, 23.3, 25.4, 25.5, 25.6, 

29.6, 31.5, 33.8, 33.9, 34.2, 34.4, 34.5, 35.7, 35.8, 40.0, 40.2, 48.2, 48.3, 55.5, 55.6, 55.7, 55.8, 

55.9, 56.0, 56.1, 56.2, 70.9, 71.2, 76.6, 77.0, 77.2, 77.4, 80.1, 80.5, 80.6, 109.2, 109.4, 111.2, 



111.3, 111.5, 111.6, 111.7, 111.9, 112.1, 112.2, 112.5, 113.6, 114.2, 114.3, 115.4, 127.5, 128.1, 

128.8, 129.9, 130.0, 130.5, 130.8, 131.0, 131.1, 131.3, 146.8, 147.4, 147.7, 147.8, 148.3, 148.8, 

149.6, 173.4, 174.4. MS: Cald for C39H50NO9 [M+H]+: m/z 676.3, found 676.3. 

 

Hydrolysis of CTV Lactam menthyloxy imide 6 and the use of Optical Rotation to 

determine resolution of CTV-Lactam 4 

To the 87:13 mixture of menthyloxy CTV lactam diastereomers 6 in 3:1 THF/water (0.75 mL) at 

0 °C was added lithium hydroxide (3 mg, 0.91 mmol) and the reaction was stirred for 15 

minutes. The mixture was extracted three times with dichloromethane. The combined organic 

layers were washed once each with distilled water and brine, filtered over sodium sulfate, and 

concentrated to afford a solid (24 mg), which was filtered through alumina eluting with 2/8 ethyl 

acetate/dichloromethane to isolate the cleaved CTV lactam 4 (17 mg): [α]20
D  = 0° (c=3.4, DCM). 

 

Hydrolysis of menthyloxy CTV lactam diastereomers 6 and the use of Chirabite-AR to 

determine enantiomeric purity of CTV-Lactam 4 

The 87:13 mixture of menthyloxy CTV lactam diastereomers 6 (13.2 mg, 0.019 mmol) was 

dissolved in THF (0.75 mL) and then cooled to 0-5 °C using an ice-water bath. A solution of 

0.24 M lithium hydroxide monohydrate (0.27 mL, 0.068 mmol, 3.5 eq) was added. The mixture 

was stirred at 0-5 °C for 15 minutes, then the reaction mixture was transferred to a 20 mL 

scintillation vial and concentrated under high vacuum for 5 minutes. The residue was dissolved 

in CDCl3 (0.75 mL) followed by the addition of 0.10 M Chirabite-AR solution in CDCl3 (60 µL, 

0.006 mmol, 0.3 eq) and this mixture was placed in an NMR tube and an NMR was obtained 



within 2 min. 1H NMR analysis revealed that the mixture was racemic based on 1:1 integration 

of the two peaks at 6.51 and 6.53 ppm and by the 1:1 peak height.  

 

Chirabite-AR Study with Racemic CTV-Lactam 4 

To a solution of the racemic CTV-lactam 4 (20 mg, 0.042 mmol) in CDCl3 (1.0 mL) in a 400 

MHz tube was added a solution of 0.10 M Chirabite-AR in CDCl3 prepared by mixing Chirabite-

AR (38 mg, 0.05 mmol) in CDCl3 (0.5 mL). The equivalents of Chirabite-AR that were 

evaluated were 0.01, 0.025, 0.050, 0.075, 0.10, 0.125, 0.150, 0.175, 0.20, and 0.30 eq. After 

addition of the specified amount of Chirabite-AR solution into the NMR sample containing 

racemic CTV-lactam, the sample was placed into the NMR spectrometer, analyzed, and then the 

next charge of Chirabite-AR solution was added followed by NMR analysis in sequential order. 
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