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Abstract 

Pb (lead) appears in the environment as a consequence of both natural and anthropogenic 

processes. Mining, smelting, coal burning, lead acid batteries, and cement manufacturing 

substantially release Pb into aquatic environments. The goal of this study was to determine the 

influence of salinity and organism age on chronic toxicity of Pb to Atherinops affinis (topsmelt) 

in support of development of a species sensitivity distribution (SSD). Species sensitivity 

distributions assist in ecological risk assessments and establishing quality criteria for 

contaminants. Three chronic exposure studies were conducted for 28 days in a water flow-

through testing system. Survival, standard length, dry weight, and tissue Pb concentration were 

measured and lethal concentrations (LC), effective concentrations (EC), and bioconcentration 

factor (BCF) were calculated. In general, increasing salinity and organism age decreased Pb 

toxicity. The 28-day LC50 values for larval fish at 14 and 28 parts per thousand (ppt) salinity 

were 15.1 and 79.8 µg/L dissolved Pb, respectively, whereas the 28-d LC50 for juvenile fish was 

167.6 µg/L dissolved Pb at 28 ppt salinity. Using standard length, the EC10 values for larval fish 

were 16.6 and 82.3 µg/L dissolved Pb at low and high salinity, respectively. The dry weight 

EC25 for low and high salinity were 15.6 and 46.9 µg/L dissolved Pb, respectively. The BCF 

was higher with the lower salinity study (2.00) in comparison to the higher salinity study (0.73). 

This is likely due to competition between salt ions and Pb at biotic ligand binding sites as well as 

lowered Pb speciation rates.
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CHAPTER ONE 

INTRODUCTION 

Metal pollution has been an environmental issue for many decades. The introduction of 

heavy metals to marine ecosystems is concentrated near densely populated coastal areas and 

industrialized regions. Lead (Pb) has become a metal of concern due to its popular application in 

a variety of industries. Some metals, such as Na, Ca, and K, are essential to biological function; 

whereas, Pb is considered a nonessential metal and therefore not required for any known 

physiologic process.  

  Pb occurs in the environment as a consequence of both naturogenic and anthropogenic 

processes. Activities such as mining, smelting, coal burning, manufacturing continue to 

contribute substantial amounts of Pb to aquatic environments [1]. According to the International 

Lead Association, the world production of lead has increased from 4.602 million tons in 1970 to 

11.134 million tons in 2016 [2]. The top three countries for Pb production in 2012 were China, 

Australia, and the United States, which contribute 52, 11.5, and 6.9 percent of total lead 

production, respectively [3]. The principal use of lead worldwide, accounting for 85.1% of Pb 

use, is the production of Pb acid batteries. Pb acid batteries are a critical component of storage 

technologies for renewable energy sources such as solar cell and wind turbines as well as a 

portion of automotive vehicles [3]. Pb production is increasing and with it risks for 

environmental contamination are increasing as well. Naturogenic aquatic Pb exposure occurs 
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when the metal is leached from sediment and soil into aquatic environments; whereas, 

anthropogenic Pb enters surface waters principally through atmospheric deposition and industrial 

effluent discharge [4]. Pb and other heavy metals are amongst the most persistent contaminants 

because they cannot be broken down into smaller particulates, therefore, Pb contaminants are 

useful markers of environmental change.  

  According to the United States Environmental Protection Agency, the national 

recommended water quality criteria for marine environments is 210 µg/L for acute Pb exposure 

and 8.1 µg/L for chronic Pb exposure [6]. Background concentrations of marine Pb in 

northeastern Pacific surface waters range between 17 and 49 picomolar (pM) or 0.0035 and 0.01 

µg/L [5]. The amount of Pb dissolved within a water column is directly related to the likelihood 

of a toxic event.  

The approximate order of increasing toxicity of heavy metals to fish is Co, Al, Cr, Pb, Ni, 

Zn, Cu, Cd, and Hg [7]. Marine Pb research is limited partly due to the toxicant’s relatively low 

toxicity and low solubility in marine waters [14] [15]. The abundance of dissolved ionic salts in 

marine environments causes Pb to precipitate out of solution and greatly reduces the 

bioavailability of Pb. However, the toxicity of any given metal varies for many biotic and abiotic 

reasons.   

Metals exist in marine environments as a variety of species and may be present in 

different oxidation states. Speciation determines free ion activity, but interactions at the biotic 

ligand must also be evaluated when determining bioavailability [8]. Although Pb has been 

isolated in different oxidation states (II, III, IV); oxidation state II is the most prevalent in marine 

environments [9]. The free metal Pb (Pb2+) ion is thought to be the primary metal species that 
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causes toxicity in aquatic organism’s due to its ability to substitute for bivalent essential metals 

like Ca2+ [10]. Lead availability and water chemistry are paramount when understanding toxicity.  

When Pb is introduced into an aquatic environment it takes on many different chemical 

species. The total analytical concentration of a given metal in water is the sum concentration of 

free Pb ions, Pb complexes, and Pb-suspended solid species. For example, the total molar 

concentration of lead, ΣPb, in water may equal: 

 

 ΣPb = mPb2+ + mPbOH+ + mPbCO3 + mPbHCO3
+ + mPbNO2 + mPb (suspended solids) 

[10] 

The concentration of Pb2+ in most marine waters is less than the sum of the 

concentrations of other Pb-complexes. [11]. Water quality parameters such as pH, alkalinity, 

dissolved organic carbon (DOC), and salinity affect Pb speciation and therefore bioavailability. 

Specifically, an increase in value in any of the aforementioned parameters may decrease the 

bioavailability of ionic metals and decrease toxicity.  

Increased pH decreases ionic Pb, making Pb less bioavailable and therefore less toxic. 

Between pH 7 and 9, lead in seawater is mainly speciated with CO3
2- and to a lesser extent with 

Cl-. At values near 7, PbCO3 and PbCl+ are present in nearly equal amounts and there is an 

increased amount of PbCl2. However, as pH increases, PbCO3
+ becomes the predominant species 

[12]. Increased alkalinity, as well as an increase in pH, will result in the formation of Pb 

carbonate species (e.g., PbCO3, PbCO3, PbHCO3
+). These compounds are known to be less 

bioavailable, and therefore less toxic than the free metal Pb (Pb2+) ion. Pb will also complex with 
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DOC and form non-bioavailable forms (e.g., Pb-DOC) [13]. Therefore, elevated concentrations 

of DOC will also decrease Pb bioavailability and toxicity. 

Lead salts are poorly soluble in marine environments [14] [15]. The abundance of 

dissolved ionic salts can cause Pb to precipitate out of solution and reduces the bioavailability of 

Pb. Anions, such as chloride and sulfate, are in greater abundance in high saline environments 

and thus more likely to bond with cationic Pb. The presence of marine salts also reduces the 

bioavailability of Pb due to the increased cationic competition for binding sites at biotic ligands.  

A biotic ligand is the site of toxic action during metal exposure. The biotic ligand in fish 

is typically the gill, where metals induce ion regulatory impairments [8]. Increased salinity 

within an environment will result in fewer interactions between Pb and biotic ligands at the gills 

due to a greater cation presence. This competition makes Pb less bioavailable to aquatic 

organisms and, therefore, decreases toxicity.  

 Pb toxicity is believed to incorporate both osmoregulatory and ionoregulatory stress as 

mechanisms of toxicity to A. affinis [14]. Ionic mechanism of action for Pb mainly arises due to 

its ability to substitute other bivalent and monovalent cations, such as Ca2+, Mg2+, Fe2+, and 

Na+.[16]. Once substituted, Pb stresses fundamental biological processes of the body. Lead may 

bind to and interact with many of the same enzymes as these metals but, due to its differing 

chemistry, does not properly function as a cofactor, thus interfering with the enzyme's ability to 

catalyze its normal reaction [17]. Lead inhibits two major enzymes of the heme biosynthetic 

pathway: delta-aminolevulinic acid dehydratase and ferrochelatase [17]. These interactions occur 

at molecular levels and are a result of the ability of Pb to mimic and displace cations during 

physiologic processes such as Ca2+ adenosine triphosphate (ATP) pumps [17].  
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It is likely that Pb blocks calcium discharge from cells by substituting for calcium in Ca2+ 

ATPase [17]. Ca2+ ATPase is a form of p-type ATPase that transfers calcium after a muscle has 

contracted. The result is a decreased calcium plasma concentration and eventual hypocalcemia. 

The ionic mechanism contributes principally to neurological deficits as Pb encounters the blood-

brain barrier (BBB) [16]. The increased Pb within the BBB causes observable manifestations of 

lead toxicity, which in fish includes lordoscoliosis, a combined backward and lateral curvature of 

the spine, and muscle spasms [18]. Pb may inhibit the release of neurotransmitters by blocking 

the entry of calcium into nerve terminals and by competing with calcium for uptake by calcium 

channels [17]. 

 Earlier life stages of fish tend to be more sensitive to Pb than fish of later developmental 

stages [18]. The increased sensitivity to metals for younger fish is attributed to a variety of 

reasons. A greater uptake of toxicant from the environment may occur in earlier life stages due to 

a less effective homeostatic mechanism to deal with the toxicants. Younger fish contain less 

developed organs, e.g., liver and kidney, each of which have an important role in detoxification 

and elimination of toxicants.  

 Studies show that larval A. affinis are amenable to toxicity testing at estuarine salinities 

from 5 ppt to 33 ppt [19]. Although A. affinis tolerate lower salinities they prefer marine 

conditions. A. affinis are abundant in California, Washington, and Oregon within coastlines and 

estuaries. A. affinis reproductive events usually occur in dry summer months at spawn sites such 

as harbors and estuaries [20]. During a spawn migration, A. affinis encounter a warm thermocline 

in the shallow estuary environment and the fish eggs respond to this warmer thermal gradient 

and hatch [20]. A affinis is currently a non-standard organism for toxicology testing; therefore, 
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research is still pending on its behavior and physiology. It is important to consider the effect of 

salinity on toxicity of species whose choice of habitat is dependent on life cycle and spawn 

events. 

Studies on Pb toxicity in the aquatic environment have been conducted; however, most 

studies focused on freshwater environments using standard organisms [20]. Marine Pb exposure 

research limitations are a result of its relatively low toxicity and low solubility in marine waters 

[14]. I was unable to generate acute Pb toxicity values because of the low toxicity and solubility 

of Pb. Other dissolved marine metals have been found to be more soluble and therefore more 

toxic to A. affinis. Acute A. affinis LC50 values for Cu and Ag are reported as 212µg/L and 

259µg/L, respectively [21] [22].  

 Metal studies have been conducted using acute testing procedures; however, chronic 

testing procedures are more indicative of Pb contaminated marine environments. Pb, like other 

metal contaminants, cannot be broken down and remains in the environment for extended 

periods of time. Therefore, chronic tests are more appropriate to evaluate environmental risk of 

Pb in marine ecosystems. Pb chronic toxicity data for multiple species are needed for 

development of chronic species sensitivity distribution (SSD)-an important step for risk 

assessment and setting environmental quality criteria for contaminants. 

This study’s objective is to quantify the chronic effects of Pb exposure on A. affinis; 

specifically, the influence of salinity and organism age on Pb toxicity on A. affinis. A. affinis is 

not a standard species for toxicology testing; however, using the organism for toxicity testing is 

becoming more common especially in the Pacific coastal environment of California [21] [20]. A. 

affinis is particularly appropriate for use in toxicity testing because of its relative sensitivity to a 
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variety of toxicants and amenability to laboratory culture [19]. The fish is also of high ecological 

importance as a primary and secondary consumer within the coastal food web [20]. A. affinis 

embryonic development, rearing, and physiology are similar to that other atherinids used widely 

in toxicity testing [21]. The similarities among these attributes make protocol adaptation from 

one species to another feasible.  
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CHAPTER TWO 

MATERIALS AND METHODS 

Experimental design 

Multiple 28-day flow through system toxicity tests were conducted in synthetic salt water 

to evaluate the chronic toxicity of Pb to A. affinis. The first objective was to determine the 

influence of salinity on Pb toxicity to less than 3-d old A. affinis fry. Two 28-d chronic exposure 

experiments were conducted at two salinities- 14 ppt, representative of an estuarine environment, 

and 28 ppt, representative of a coastal marine environment. The purpose of this objective was to 

establish both sublethal and lethal toxicity values for A. affinis at two salinity levels to explore 

the influence of salinity on Pb toxicity.  

The second objective of the study was to determine the influence of A. affinis age on Pb 

toxicity. Two 28-d chronic exposure experiments were conducted using two life stages: less than 

3-d old and 2.5-month old. The 3-d old A. affinis fish are within the fry stage of their life cycle 

and the 2.5-month old A. affinis are within the juvenile stage. The 3-d old fish are classified as 

fry because they are no longer attached to a larval yolk sac and must procure their own food, 

whereas the 2.5-month fish are classified as juvenile because they haven’t developed sexual 

characteristics. The purpose of this objective is to establish sublethal and lethal toxicity values 

for two life stages of A. affinis.   
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Chronic exposure concentrations (Table 1) were chosen based on a preliminary acute 

study with A. affinis. Experiments for the first objective with low and high salinity and fish fry 

had five treatments and a control. The experiment with high salinity and juvenile fish was limited 

to two treatments and a control.  

 

 

 

Table 1. Nominal Control (CTL) and Treatment (T1-T5) Pb concentrations in µg/L for A. affinis 

chronic exposure tests.   

Treatment 14 ppt ≤ 3-days old  28 ppt ≤ 3-days old  28 ppt- 2.5-month old  

CTL 0 0 0 

T1 25 50 160  

T2 50 100 320 

T3 100 200 N/A 

T4 150 400 N/A 

T5 200 600 N/A 
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Toxicity testing 

All experiments were performed using 2004 ASTM (American Society for Testing and 

Materials) Standard Guide for Conducting Early Life-Stage Toxicity Tests [23].  Test water was 

prepared using 16-18 MΩ MilliQ water (Barnstead E-pure) and an addition of Crystal Sea 

Laboratory Bioassay Formula (Marine Enterprises, Baltimore, Maryland, USA) to achieve a test 

dependent salinity. All test chambers were washed with nitric acid, and then rinsed with 16 – 18 

MΩ MilliQ water to avoid any interference from contamination. The test with 2.5-month old 

juvenile fish had 2 metal concentrations; all other tests had five metal concentrations. Four 

replicates per concentration and control with 10 fish per replicate were used. 

Fish were purchased from Aquatic Biosystems (Fort Collins, Colorado, USA) and 

priority shipped to the Loyola Ecotoxicology Laboratory. Upon arrival, the shipment’s water 

quality parameters were recorded and the fish were fed live brine shrimp and inspected for 

health. Fish that exhibited abnormal behavior or anatomy were euthanized while the remaining 

observationally healthy fish were acclimated to laboratory conditions over a period of 24h. All 

tests were conducted at 18 ± 1o C with a photoperiod of 16h light and 8h dark to replicate 

common environmental conditions for A. affinis. Once acclimated, chronic Pb toxicity 

experiments were conducted in a flow-through, self-renewing, exposure system [24]. Consistent 

treatment water renewal was achieved with a flow-through system set at pre-determined time 

intervals.  

Test solutions were prepared at least 24 hours before organism exposure to allow ample 

time for solution to equilibrate. Test solution treatments were prepared by aliquoting a test 

dependent quantity of Pb stock solution to Crystal Sea Bioassay formula synthetic salt water. 

Synthetic salt water was prepared by dissolving an equivalent amount of Crystal Sea salt in 16-
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18 MΩ MilliQ water and continuously aerated for at least 24 h before use. Pb stock solution 

(10,000 µg/L) was prepared by dissolving a desired amount of Pb(NO3)2 in 18MΩ water and 

acidified with HNO3 to a pH approximately of 4 to maximize Pb desorption. Prior to use, 

concentration of Pb stock solution was verified by a NeXion 300S Inductively Coupled Plasma 

Mass Spectrometer (IC-PMS) (Perkin Elmer, Oak Brook, IL, USA).  

Water quality parameters such as dissolved oxygen (DO), pH, temperature, and 

conductivity were measured one hour after preparing test solutions and once a day during all 

subsequent test days. DO and temperature were measured using a YSI 550A dissolved oxygen 

meter (YSI Inc., Yellow Springs, Ohio, USA). An Accumet AP 110 pH meter (YSI Inc., Yellow 

Springs, Ohio, USA) was used to measure pH. Salinity was measured using a YSI 30 

conductivity meter (YSI Inc., Yellow Springs, Ohio, USA). Alkalinity was calculated via sample 

titration with 0.02N H2SO4 and measured on Day 0 (D0), D7, D14, D21, and D28. Average DO, 

pH, and temperature were 7.60 ± 0.76 mg/L, 7.96 ±0.05, and 18.2 ± 0.13o C, respectively. 

Average salinity was 14.09 ± 0.141, 27.98 ± 0.576, and 27.96 ± 0.303 ppt for the low salinity 

fry, high salinity fry, and high salinity juvenile studies, respectively. Average alkalinity was 

58.18 ± 5.02, 105.04 ± 8.08, and 114.47 ± 3.98 mg CaCo3 for the low salinity fry, high salinity 

fry, and high salinity juvenile studies, respectively.  

Two ages of test organisms, less than 3-d old fry and 2.5-month old juvenile, were used. 

Fry A. affinis were younger than 1-d old by the time they arrived. The fish were then acclimated 

to laboratory conditions for at least 24-h but no longer than 2 days prior to tests. Juvenile A. 

affinis were 1-month-old upon arrival and subsequently acclimated to laboratory conditions for 

1.5 months. During acclimation, fish were fed daily with freshly hatched brine shrimp (Brine 
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Shrimp Direct, Ogden, UT, USA). Test organisms were fed at least two hours prior to test 

initiation and every day of testing (D1-D28) with freshly hatched brine shrimp. Fish were then 

randomly distributed into test chambers one or two at a time. Fish were only used for testing if 

they appeared healthy. 

 All tests were conducted using a flow through testing system (Image 1). Large aerated 

treatment water basins were placed above the test chamber and a series of peristaltic pumps 

(Cole Palmer, Vernon Hills, IL, USA) aliquoted 83.4 mL to each discrete replicate every 30 

minutes (Image 2). A hole was bored into each replicate to fit a modified silicone stopper. Once 

the water level within a replicate exceeded 2 L, treatment water would flow through the modified 

silicone stopper and out of the test chamber. This ensured fresh treatment water remained within 

replicates. The flow- through system replaced the total volume of each discrete replicate, 2 L, 

once every 12-h. The peristaltic pumps (Aqua Logic Inc., San Diego, CA, USA) were scheduled 

to turn on every 30 minutes. The water bed was kept at 18ºC using a water chiller (Pentair 

Aquatic Eco-Systems, Inc., Apopka, FL, USA).  
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Image 1. Chronic toxicity flow-through testing system. 

 

Image 2. Experimental flow-through system depicting the flow of treatment water 

(arrows) from basins to respective replicates. Peristaltic pumps aliquot 83.4 mL to       

each discrete replicate every 30 minutes which equates to 2 L every 12 hours.  
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Dissolved oxygen, pH, temperature, and salinity were measured every day of the test 

within ± 1 hour of the initial time of exposure on D0. After recording daily measurements, 

mortality was recorded for every replicate of each treatment. Any dead fish were collected and 

removed daily. After 28 days of testing, surviving individuals were euthanized with methane 

tricaine sulfonate (MS-222), rinsed with deionized water, and subsequently stored in 8% 

formalin solution for later analysis of standard length, dry weight, and Pb tissue concentrations. 

Standard length refers to the length of a fish measured from the tip of the snout to the last 

vertebrae [23]. 

 Dry weight was calculated with desiccated fish to determine fish tissue mass while 

excluding fish fluid mass. Fish were washed with deionized water to remove any excess salt 

water or formalin. Replicate-specific aluminum pans were rinsed with deionized water and 

placed in a convection oven set to 60° C for 4 hours to remove any excess moisture. Fish wet 

weight was then recorded with in previously weighed replicate-specific pans. After wet weight 

was recorded, the fish were desiccated in a replicate-specific aluminum pan in a convection oven 

set to 60° C for 24-hours to remove any fish fluid mass. Once complete, replicate dry weights 

were recorded and test organisms were subsequently digested with HNO3 based on the US EPA 

Method 3050B for tissue Pb analysis [10] and finally analyzed by ICP-MS. 

Water samples were collected for total and dissolved metals, anions, cations, and 

dissolved organic carbon (DOC) analyses. Samples for DOC analysis were collected into 30 mL 

amber glass bottles. All other samples were collected into acid washed 15 mL polypropylene 

tubes. Dissolved metal, anion, cation and DOC samples were filtered using a 0.45µm 

Whatman™ filter (GE Healthcare Life Sciences, Piscataway, NJ, USA). Total and dissolved 
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metal samples were acidified with HNO3 to about pH 2. All samples were stored at 4°C in a 

refrigerator prior to analysis. Analysis of metals and cations was performed by ICP-MS. 

Concentration of anions was analyzed with an Ion Chromatograph (Metro Ω, Northbrook, IL, 

USA). A TOC analyzer was used to measure concentration of DOC in the test water (Shimadzu 

Inc, Addison, IL, USA) 

 

Data Analysis 

 After physiochemical analysis, data were used to calculate bioaccumulation factor (BCF). 

Survival data were used to determine lethal concentrations (LCs) and effect concentration (ECs) 

were determined with standard length and weight data. NOEC (No observed effect 

concentration) and LOEC (Lowest observed effect concentration) were calculated with both 

survival and growth data. All calculations were performed using measured dissolved Pb 

concentrations and survival data with CETIS (Tidepool Scientific Software, McKinleyville, 

California, USA), a statistical package designed for analysis of results from environmental 

toxicity tests.  

 Pb speciation calculations were performed with all stability constants taken as 

concentration constants as opposed to activity constants. This avoids the need to specify an 

activity model for seawater [25]. The specific constants, logK values, for each exposure solution 

were calculated and the corresponding logK values were interpolated from NIST National 

Institute of Standards and Technology (NIST) tabulated stability constants over the range 0.0 to 

1.0 mol/L ionic strength [26]. The ionic strength of the 28 ppt exposures were assumed to be 
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0.61 mol/L, and 0.31 mol/L for the 14 ppt exposures based on 32 ppt seawater having an ionic 

strength of 0.7 mol/L. 

With interpolated certified logK values it is also necessary to have total concentrations 

for each complexing agent. These anion concentrations were determined by measurement and 

used directly in modelling. The simultaneous equilibrium was presented in table notation and 

solved using a MATLAB program developed by Dr. Scott Smith at Wilfrid Laurier University. 

The MATLAB program was written based on the solution method of Carrayrou et al [27].
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CHAPTER THREE 

RESULTS 

 Dissolved Pb concentrations for each experiment are provided (Table 2). Water quality 

parameters such as salinity, dissolved oxygen, temperature, pH, dissolved organic carbon, 

measured cations, and measured anions are shown for the low salinity fry test (Table 3), high 

salinity fry test (Table 4), and high salinity juvenile test (Table 5).  

The average concentration ± 1 standard deviation salinity for the low salinity fry, high 

salinity fry, and low salinity juvenile tests were 14.1 ± 0.14 ppt, 28.0 ± 0.58 ppt, 28.0 ± 0.30 ppt, 

respectively. Salinity values were close to the target values of 14 ppt and 28 ppt. A higher 

incidence of anions and cations was found in high salinity studies due to an increased 

dissociation and ionization of the marine salts. The effect of marine salt abundance is also seen 

in alkalinity measurements of treatment waters. Average alkalinity was 58.18 ± 5.02 mg CaCO3, 

105.04 ± 8.08 mg CaCO3, and 114.47 ± 3.98 mg CaCO3 for the low salinity fry, high salinity fry, 

and high salinity juvenile studies, respectively. Lower saline waters are expected to have a lower 

alkalinity due to the lowered concentration of the key chemical species (i.e., HCO3
−, CO3

2−, and 

B(OH)4
−) that contribute to alkalinity proportionally with increasing salinity [28].  

Other variables such as dissolved oxygen, dissolved organic carbon, temperature, and pH 

remained relatively constant among studies. Dissolved oxygen never fell below the point at 

which fish may be harmed by a lack of oxygen, 5.0 mg/L [29]. Dissolved organic carbon, DOC, 
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remained consistent among tests. Mean temperature (± 1 standard deviation) for the low salinity 

fry, high salinity fry, and low salinity juvenile tests were 18.2°C (0.29), 18.1°C (0.20), and 

18.4°C (0.38), respectively; all of which were near the target temperature of 18.0°C.  Mean (± 1 

standard deviation) pH values were found to be nearly consistent across the low salinity fry, high 

salinity fry, and low salinity juvenile tests at 7.96 (0.17), 7.92 (0.07), and 8.02 (0.09), 

respectively.  

Cumulative mortality graphs were generated for the high salinity fry experiment (Figure 

1), low salinity fry experiment (Figure 2), and high salinity juvenile experiment (Figure 3). Per 

ASTM guidelines, chronic toxicology studies must not exceed 15% mortality in control 

treatments [23]. A study that exceeds this 15% threshold may have flaws in experimental design, 

test conditions, or unhealthy test organisms. This threshold was not exceeded in any of the 

control treatments for this study. Mortality was 100% in Treatment 4 (T4) (259 ± 23.7 µg/L Pb) 

and T5 (435 ± 48.1 µg/L Pb) in the 28 ppt salinity fry study and in T3 (51 ± 3.1 µg/L Pb), T4 (80 

± 7.4 µg/L Pb), and T5 (117 ± 18.7 µg/L Pb) in the 14 ppt salinity fry experiment (Table 2). 

Mortality dose response curves were generated for fry in high (Figure 4) and low (Figure 5) 

salinity tests.  

 

Influence of salinity on Pb toxicity  

 Mortality was higher in the lower salinity A. affinis test than in the higher salinity test. As 

a result, all LC values were higher for the high salinity test than the low salinity test (Figure 6). 

The LC50 value, the lethal concentration that results in fifty percent mortality, for the 28 ppt 
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salinity study was 79.84 µg/L Pb; whereas, the LC50 value for the 14 ppt study was 15.14 µg/L 

Pb. The mortality NOEC, the no observed effect concentration, and LOEC, the lowest observed 

effect concentration, for the 28 ppt study were 46 µg/L Pb and 90 µg/L Pb, respectively.  

The chosen alpha-level (α) for all significance tests was α = 0.05. A Welch’s two sample 

t-test confirms 46 µg/L Pb as the NOEC via comparison of control mortality to that of 46 µg/L 

Pb treatment mortality (t = 0.73, df = 5.6, p = 0.5). This confirms the NOEC because mortality of 

Treatment 1 (46 µg/L Pb) is not significantly different to the control mortality. A Welch’s 

independent sample t-test confirms 90 µg/L Pb as the LOEC via comparison of control mortality 

to that of the 90 µg/L Pb mortality (t = 9.2, df = 4.8, p = <0.01). This confirms Treatment 2 (90 

µg/L Pb) as the LOEC because it represents the lowest treatment which showed statistically 

significant mortality in comparison to the control mortality for the 28 ppt A. affinis fry 

experiment.   

The mortality NOEC and LOEC for the 14 ppt were <14 µg/L Pb and 14 µg/L Pb, 

respectively. A Welch’s two sample t-test confirms the LOEC at 14 µg/L treatment (t = 4.4, df = 

4.6, p = <0.01); whereas, the NOEC treatment is not applicable because the lowest treatment was 

the LOEC. This result indicates an increase in Pb induced mortality to A. affinis when Pb 

exposure occurs in a lower, 14 ppt, salinity environment in comparison to a higher, 28 ppt, 

salinity environment.  

A table of growth data, length and dry weight, was generated for comparative purposes 

(Table 6). Results indicate a greater proportional decrease in control versus Pb treatment induced 
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weight loss to A. affinis when Pb exposure occurred in a lower, 14 ppt, salinity environment in 

comparison to a higher, 28 ppt, salinity environment. 

The influence of salinity on sublethal effects of Pb on A. affinis fry length was 

determined (Figure 7). EC10 values, the effect concentration that results in a ten percent 

reduction in length compared to the control mean, for the 28 ppt salinity study were 82.30 µg/L 

Pb; whereas, the EC10 for the 14 ppt study was 16.36 µg/L Pb. The length NOEC and LOEC for 

the 28 ppt study are 46 µg/L Pb and 90 µg/L Pb, respectively. A Welch’s two sample t-test 

confirms 46 µg/L Pb as the NOEC (t = 0.74, df = 95, p = 0.46) via comparison of control fry 

length to that of 46 µg/L Pb treatment fry length; the result is non-significant p-value >0.05. A 

Welch’s two sample t-test confirms 90 µg/L Pb treatment is the length LOEC for the 28 ppt (t = 

3.7, df = 29, p = 0.001) via comparison of control mortality to that of 46 µg/L treatment 

mortality; the result is a significant p-value <0.05.  

The length NOEC and LOEC for the 14 ppt test were <14 µg/L Pb and 14 µg/L Pb, 

respectively. A Welch’s two sample t-test confirms 14 µg/L Pb as the LOEC via comparison of 

control length to that of 14 µg/L Pb treatment length (t = 2.9, df = 38, and p = 0.007); whereas, 

the NOEC treatment is not applicable because the lowest treatment was the LOEC. The LOEC 

calculation result is significant with a p-value <0.05.  This result indicated greater proportional 

reduction between control and treatment groups of A. affinis length when Pb exposure occurs in a 

lower, 14 ppt, salinity environment in comparison to a higher, 28 ppt, salinity environment. 

The influence of salinity on sublethal effects of Pb on A. affinis fry dry weight were 

calculated (Figure 8). The EC25 dry weight value for the 28 ppt study was 6.85 µg/L Pb; 
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whereas, the EC25 dry weight value for the 14 ppt experiment was 15.62 µg/L Pb. The dry 

weight NOEC and LOEC for the 28 ppt study are <46µg/L Pb and 46 µg/L Pb, respectively. A 

Welch’s two sample t-test confirms the LOEC at 46 µg/L Pb treatment (t = 5.0, df = 96, p = 

0.001). The LOEC calculation result is a significant p-value <0.05; whereas, the NOEC 

treatment is not applicable because the lowest treatment was the LOEC.  

The dry weight NOEC and LOEC for the 14 ppt test were <14 µg/L Pb and 14 µg/L Pb, 

respectively. A Welch’s two sample t-test confirms the LOEC at 14 µg/L Pb treatment (t = 7.6, 

df = 51, p = 0.001). The LOEC calculation result is significant with a p-value <0.05; whereas, 

the NOEC treatment is not applicable because the lowest treatment was the LOEC. This result 

indicated a greater proportional reduction between control and treatment groups of A. affinis dry 

weight when Pb exposure occurs in a lower, 14 ppt, salinity environment in comparison to a 

higher, 28 ppt, salinity environment.   

  The influence of salinity on Pb tissue accumulation to A. affinis was determined. For the 

high salinity experiment, A. affinis tissue from Pb concentrations 46, 171, and 259 µg/L 

contained 34, 67, and 84 µg/L Pb, respectively. For the low salinity experiment, A. affinis tissue 

from Pb concentrations 14 µg/L and 27 µg/L contained 28 and 37 µg/L, respectively.   

The effect of salinity on tissue Pb concentration was examined by means of comparison 

of the two experiments BCF (bioconcentration factor) values (Figure 9). Bioconcentration Factor 

was calculated by dividing µg Pb in tissue by the water treatment Pb concentration. The 

bioconcentration factor (BCF) is used to calculate the distribution of contaminants between water 

and biota as: 
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��� =   � ����	 ÷ � �	��
 

              

 

where C Biota is the total metal concentration in biota and C Water is the total metal 

concentration in water [34]. 

 It is important to calculate the BCF because A. affinis play a major ecological role in 

aquatic food webs as a link to higher trophic levels [30]. Treatment one (14 µg/L) BCF results 

were higher (2.00) in the low salinity test in comparison to the high salinity test (0.73). This 

result indicates a greater proportional Pb uptake within the body tissue of test organisms when 

exposed to Pb in a lower (14 ppt) salinity environment compared to that in a higher (28 ppt) 

salinity environment.  

 

Influence of organism age on Pb toxicity  

  A chronic, 28-d, 28 ppt salinity Pb exposure experiment was performed with juvenile A. 

affinis. The effect of organism age on toxicity was determined by comparing results from the 

previously conducted experiment on A. affinis fry to those of the A. affinis juvenile experiment 

(Figure 10). Juvenile A. affinis had reduced Pb mortality compared to ≤ 3-d-old fry when 

exposed to Pb. The LC25 and LC50 values for the juvenile fish were 129.5 µg/L Pb and 167.6 

µg/L Pb, respectively, whereas the LC25 and LC50 values for the fry fish were 57.96 µg/L Pb 

and 79.84 µg/L Pb, respectively. These results indicate an increase in Pb induced mortality to A. 

affinis fry in comparison to juveniles.  
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Influence of water chemistry on Pb speciation  

Figures 11 and 12 present measured and MATLAB modelled results of the relationship 

of total µg/L of Pb and dissolved µg/L Pb for 28 ppt and 14 ppt salinity exposure solutions, 

respectively. Figure 13 compares maximum free Pb2+ ion saturation points of the two salinities of 

interest, 14 ppt and 28 ppt, and how each affect the free Pb+2 ion species presence. Total Pb 

concentration would include Pb2+ as well as any other Pb species. The 14 ppt salinity becomes 

saturated with Pb2+ ions at a comparatively lower total Pb concentration value than that of the 28 

ppt salinity. The result of a lower proportional Pb2+ to total Pb saturation point means a 

proportionally greater amount of toxic Pb2+ per total Pb µg/L within 14 ppt saline environments 

in comparison to that of 28 ppt saline environments.  
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Table 2. Pb concentration (µg/L) across Control (CTL) and Treatments (T1-T5) for 14 ppt A. 

affinis fry, 28 ppt A. affinis fry, 28 ppt A. affinis juvenile experiments. 

Treatment   14 ppt fry  28 ppt fry  28 ppt juvenile  

Control    0 0 0 

T1  25* (14 ± 1.2)** 50 (46 ± 10) 100 (100 ± 21.4) 

T2  50 (27 ± 2.1) 100 (90 ± 20) 200 (190 ± 30.0) 

T3  100 (51 ± 3.1) 200 (171 ± 22.7) N/A 

T4  150 (80 ± 7.4) 400 (259 ± 23.7) N/A 

T5  200 (117 ± 18.7) 600 (435 ± 48.1) N/A 

         

*Pb nominal treatment concentrations (µg/L). 

**Pb measured dissolved Pb concentrations (µg/L) ± one standard deviation. 
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Figure 1. Cumulative mortality of A. affinis fry exposed to Pb at 28 ppt salinity. The horizontal 

line at 15% indicates the maximum percent mortality allowed in control groups per ASTM 

guidelines.  
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Figure 2. Cumulative mortality of A. affinis fry exposed to Pb at 14 ppt salinity. The horizontal 

line at 15% indicates the maximum percent mortality allowed in control groups per ASTM 

guidelines. 
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Figure 3. Cumulative mortality of A. affinis juveniles exposed to Pb at 28 ppt salinity. The 

horizontal line at 15% indicates the maximum percent mortality allowed in control groups per 

ASTM guidelines. 
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Figure 4. Pb dose response curve for A. affinis fry in high salinity (28 ppt). Error bars represent ± 

one standard deviation. 
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Figure 5. Pb dose response curve for A. affinis fry in low salinity (14 ppt). Error bars represent ± 

one standard deviation. 

 

 

 

 

 

 

 

 

 

 

0

10

20

30

40

50

60

70

80

90

100

110

120

10 100 1000

P
er

ce
n

t 
m

o
rt

a
li

ty
 

Dissolved Pb µg/L



   33 

 

 
Figure 6. Pb toxicity lethal effect (LC) concentrations for A. affinis fry at 28 ppt and A. affinis fry 

at 14 ppt salinity experiments. Error bars represent 95% confidence intervals.  
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Figure 7. Sublethal effect concentrations (EC) of Pb on A. affinis fry length at 14 ppt and 28 ppt 

salinities. Error bars represent 95% confidence intervals. 
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Figure 8. The influence of salinity on the effect of Pb on A. affinis dry weight at 14 ppt and 28 

ppt salinities. Effect Concentrations (EC) concentrations for dry weight endpoint. Error bars 

represent 95% upper confidence intervals.  
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Table 6. Effect of Pb concentration on A. affinis growth at different salinities and life stages 

across Control (CTL) and Treatments (T1-T3).    

Organism Life 

Stage Salinity (ppt) 

Treatment 

µg/L Length (mm) Weight (mg) 

Fry  14 CTL 14.8 ± 1.4  4.639 ± 0.77 

    T1 (14 ± 1.2)* 13.7 ± 1.5 3.436 ± 0.56 

    T2 (27 ± 2.1) 12.1 ± 0.8 2.225 ± 0.66 

  28 CTL 12.2 ± 1.3 1.79 ± 0.19 

    T1 (46 ± 10) 11.9 ± 1.5 1.60 ± 0.23 

    T2 (90 ± 20) 10.8 ± 1.3 1.17 ± 0.00 

    T3 (171 ± 22.7) 9.7 ± 0.5 0.80 ± 0.00 

Juvenile  28 CTL 38.2 ± 4.0 617.0 ± 4.06 

   T1 (100 ± 21.4) 34.1 ± 5.9 532.6 ± 160 

    T2 (190 ± 30.4) 35.6 ± 2.5 727.5 ± 88.8 

* Parentheses include measured dissolved Pb in µg/L ± one standard deviation.  
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Figure 9. Effect of Pb concentration and salinity on Pb bioaccumulation of A. affinis fry 

represented by BCF (bioconcentration factor) values. Error bars represent ± one standard 

deviation.  
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Figure 10. Pb induced mortality of fry and juvenile life stages of A. affinis at 28 ppt salinity LC 

concentrations. Error bars represent 95% confidence interval.  
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Figure 11: Measured (symbols) and modelled (dashed line) results for 28 ppt salinity exposure 

solution and the non-linear relationship between total Pb and dissolved Pb. Solid line represents 

point of reference for depicted non-linear relationship. Error bars are shown as ± one standard 

deviation around the measured results. 
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Figure 12: Measured (symbols) and modelled (dashed line) results for 14 ppt exposure solution. 

Solid line represents point of reference for depicted relationship. Calculations performed using 

measured anion concentrations and error bars are shown as one standard deviation about the 

measured results. 
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Figure 13. Pb saturation curves in 14 ppt (black) and 28 ppt (blue) salinity. Both experiment and 

modeled total Pb plateaus occur due to Pb saturation causing hydrocerrusite (Pb3(CO3)2(OH)2) to 

precipitate.  
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Discussion 

Influence of salinity on Pb toxicity 

The 14 ppt salinity experiment is representative of an estuary environment, whereas the 

28 ppt salinity experiment is representative of a coastal marine environment. A. affinis Pb 

sensitivity increased in 14 ppt salinity waters in comparison to 28 ppt salinity waters. From a 

purely chemical perspective, an estuary represents a zone where seawater of high ionic strength 

is diluted by river water, resulting in a linear salinity gradient [31]. Results from my study 

indicate Pb is more toxic to A. affinis in estuarine than in marine environments. Explanations for 

the increased toxicity at lowered salinity include a combination of decreased competition of Pb 

and salt water cations at biotic ligand sites, A. affinis osmoregulatory stress due to lowered 

salinity coupled with Pb exposure results in a dual stressor effect [19], and increased Pb 

bioavailability in the lower salinity environment due to a reduction of Pb anionic complexation.  

One component of the lower salinity/increased Pb toxicity effect is due to changes in 

ratios of major cations to Pb and the subsequent impact on organism uptake sites of cotransport 

and competition [31]. Pb causes ionoregulatory and osmoregulatory disruption to A. affinis [33]. 

Ionic mechanism of action for Pb mainly arises due to its ability to substitute other bivalent 

cations, e.g., Ca2+, Mg2+, Fe2+ and monovalent cations, such as Na+ [16]. Lower salinity will 

decrease the total dissolved Pb to cation ratio within the water column. A decrease in total 

cations causes a decrease in competition at the biotic ligand; this allows Pb to substitute 

monovalent and divalent cations more readily  [31] [1]. Once substituted, Pb stresses 

fundamental biological processes of fish physiology. These interactions occur at the cellular and 
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molecular levels and are a result of the ability of Pb to mimic or displace cations during specific 

physiologic processes [33]. 

  Increased toxicity at a lower salinity could partly be due to a dual stressor effect- a 

contaminant presence combined with osmoregulatory stress. Salinity has been found to affect the 

physiology of marine organisms and the mechanisms they adopt to maintain an osmotic balance 

and thus their responses to metal exposure [1] [18]. A. affinis have been shown to be amenable to 

hyposaline water, e.g. 5 ppt, and hypersaline water, e.g. 60 ppt, in natural conditions within their 

respective habitats [19]. A. affinis is a  euryhaline osmoregulator, tolerant of a wide range of 

salinities, and varies its behavior to satisfy their preferred isosmotic point [34].  

This wide range of tolerable salinities presents an osmoregulatory-specific component of 

toxicity common in euryhaline fish. These mechanisms of dynamic control of osmoregulatory 

strategy include the ability to passively perceive changes in environmental salinity that disrupt 

body water and salt homeostasis by osmosensation. Once detected, a cascade of signaling 

networks then encode information about the direction and magnitude of salinity change, and 

epithelial transport and permeability effectors respond accordingly [35].  

Salinity has a profound effect on A. affinis osmoregulatory and ionoregulatory 

physiology. In standard seawater, A. affinis lose water to their concentrated external environment 

and experience a net gain of ions. Consequently, marine fish drink ocean water to compensate 

for this water loss. While water is ingested, the increased ionic gradient across the 

gastrointestinal tract facilitates the absorption of water and simultaneously fish gills excrete 
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dissolved ionic salts gained [1] [36]. Euryhaline osmoregulation in dilute environments, where 

there is diffusive ion loss and osmotic water gain across the large surface area of the gill 

epithelium, causes A. affinis to produce large volumes of dilute urine in a kidney specialized for 

electrolyte absorption and gains via food and active ion uptake [36].  

The isosmotic point of the organism and, in general, the relative cationic gradient 

between the internal fluids and the external environment can affect the osmoregulatory strategy 

of the organism and consequently its sensitivity to metals [31]. Reviewing eight studies on the 

influence of salinity to acute Cu toxicity, Grossel et al. found that none of the studies showed a 

linear increase in tolerance with increasing salinity, as competitive interactions among cations 

may have suggested [36]. The displayed sensitivities were not fully explained on the basis of Cu 

speciation. Therefore, a physiological stress combined with contaminant presence was 

hypothesized as the cause of observed increases in toxicity.  

 Although A. affinis tolerate lower salinities, the species is apparently physiologically 

better adapted to more marine conditions [19] [20]. In general, A. affinis spend most of their life 

in marine salinity. A. affinis spawn in harbors and estuaries in the summer months then migrate 

offshore in the fall. Studies have shown that one stress alone, e.g., salinity, may have no obvious 

effect on A. affinis, but in combination with another stress, e.g., chemical, it enhances the toxicity 

of the chemical. [21]. 

The aforementioned studies conclude that the physiology of the organism was a factor of 

toxicity and thus supports the observation that euryhaline species are more tolerant to metal 
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exposure at organism- specific salinities due to minimization of osmotic stress [12] [36]. I 

conclude that a factor of increased toxicity of A. affinis Pb exposure at lower salinity may be due 

to a dual stressor effect; Pb contaminant exposure combined with osmoregulatory stress of 

euryhaline A. affinis. 

Several previously cited studies examined Cu toxicity and not Pb toxicity; however, Pb 

and Cu share a similar mechanism of toxicity and marine chemistry [31] [25] [36]. Both Cu and 

Pb cause ionoregulatory and osmoregulatory disruption at the biotic ligand, exhibit inverse 

relationships among toxicity and salinity, and speciate heavily to carbonate and chloride 

complexes in salt water [35]. Both metals are most bioavailable in the ionic Cu2+ and Pb2+ state. 

Water quality parameters such as pH, alkalinity, salinity and dissolved organic carbon (DOC) 

affect Pb and Cu bioavailability; therefore, an increase in the aforementioned water quality 

parameters generally decreases bioavailability of Cu and Pb [10]. 

Pb bioavailability increases in estuarine environments due to decreased speciation of Pb. 

Speciation of Pb is limited in estuary environments because less anionic solutes are present to 

react with Pb to form non-bioavailable Pb species. High salinity, i.e., 28 ppt, has a more 

protective effect against Pb toxicity than low salinity, i.e., 14 ppt, partly because it reduces the 

availability of the metal as a consequence of increased inorganic metal speciation.  

In general, Pb2+ is more toxic than all other inorganic complexes of Pb [30]. Any factor, 

such as increased salinity, which increases complexation and decreases Pb2+ is likely to reduce 

Pb toxicity [19]. Salinity is frequently implicated as the strongest variable when one considers 
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bioaccumulation of Pb in fish [35] [39]. Bioaccumulation of Pb by marine organisms can be 

affected by its chemical forms [40]. In cases where Pb supply is limited, an increase in salinity 

may reduce the bioaccumulation because of Pb-chloro complex speciation [19]. Bourg et al. 

calculated Pb speciation as a function of salinity. Their calculations indicated that the prevalence 

of different forms and complexes of Pb2+ in standard seawater was: PbCl+> PbSO4> PbCl2> 

PbCl3-> PbCO3> PbOH+>Pb2+ [39].  

For full strength seawater, Angel et al. present Visual Minteq model results and 

determine a solubility limit for seawater as 60 µg Pb/L with the precipitating phase being 

hydrocerussite- (Pb3(CO3)2(OH)2 [25]. Nevertheless, the predicted solubility was significantly 

lower than the experimentally determined solubility limits measured in both natural and artificial 

seawater. Experimentally, Angel et al. determined solubility of 2000 µg Pb/L in natural seawater 

and 780 µg/L in artificial seawater [25]. Angel et al. attribute the differences between the 

measured natural and artificial seawater to organic complexation. This was attributed to the 

effects of natural organic matter, specifically weak Pb binding sites.  

Solubility can be estimated from modelling and experimentally by comparing measured 

total lead, dissolved lead, and measured anion concentrations. The simultaneous equilibrium was 

presented in table notation and solved with a MATLAB program developed by Dr. Scott Smith 

at Wilfrid Laurier University. The MATLAB program was written based on the solution method 

of Carrayrou et al. (2002) [27]. The precipitated amounts match very closely between measured 

and modeled (Figure 11 and 12).  
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Ionic Pb2+ increased with increasing total Pb to approximately 105 µg/L for the low 

salinity (14 ppt) study until a saturation point occurred, whereas ionic Pb2+ increased with 

increasing total Pb to approximately 160 µg/L for the high salinity (28 ppt) study until a 

saturation point occurred (Figure 13). Water column saturation is limited because hydrocerrusite 

(Pb3(CO3)2(OH)2) begins to precipitate from treatment solutions. Because pH and carbonate do 

not change, the free lead stays constant until carbonate starts to run out.  

Lower carbonate concentrations (or levels) in the lower salinity experiment shows higher 

[Pb2+] is reached before precipitation. This occurs because solids buffer the free ion because the 

Ksp values must be satisfied. Because pH and carbonate do not change, the free lead remains  

until carbonate begins to run out. Lower carbonate in the lower salinity sample indicates that a 

higher Pb2+ concentration is reached before precipitation. Pb2+, as with most ionic metals, is the 

most toxic species; therefore, a higher Pb+2 concentration in the lower salinity sample would be 

more bioavailable and more toxic to organisms [10]. The Ksp expression is K=[OH][CO3][Pb] 

and therefore [Pb]=(K/([OH][CO3]). Because pH is constant we can write [Pb]=K'/[CO3]. This 

means a higher [CO3] results in a lower [Pb] because K' does not change.  

Influence of organism age on Pb toxicity 

This study found that A. affinis fry was more sensitive to chronic Pb exposure than 

juvenile A. affinis for the mortality, LC, endpoint. These conclusions are consistent with other 

studies. Mar and Bergman exposed brown trout, Salmo trutta, and rainbow trout, Oncorhynchus 

mykiss, fry and juveniles to a metals mixture (Zn, Cu, Pb, Cd) and found fry were more sensitive 
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than juveniles [41]. All fish life stages are sensitive to the toxic effects of Pb; however, embryos 

have been found to be more sensitive to Pb than later juvenile stages [42]. Pb reduces embryonic 

resistance with subsequent exposures. Earlier life stages of fish tend to be more sensitive to Pb 

than fish of later developmental stages [38].
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CHAPTER FOUR 

CONCLUSIONS AND SUGGESTIONS 

Chronic metal exposures are more resource intensive; however, they are more indicative 

of metal contamination events. From this research, we have characterized the chronic toxicity of 

Pb to A. affinis and also the influence of salinity and organism age on Pb toxicity. Results of this 

study indicate that Pb toxicity is inversely related to both salinity and organism age. Implications 

of these results include an improved understanding of increased sensitivities that may occur at 

both estuary and other low salinity habitats that may guide protective policies for estuarine areas.  

 Results of this study will be used to develop a Pb chronic marine species sensitivity 

distribution and assist in developing guidelines for low saline environments. Results could be 

used to supplement the current marine Biotic Ligand Model, an important tool for ecological risk 

assessment. Additional metal studies need to be conducted, especially chronic exposures, to 

better understand and protect our water and wildlife resources.  
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