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ABSTRACT 

It is well-established that psychological stress reduces natural killer (NK) cell immune 

function. This reduction is mediated by stress-induced release of glucocorticoids (GC), which 

can suppress immune function. Associated with suppression of a particular immune function are 

GC induced histone-epigenetic marks. Histone-epigenetic marks are responsible for the 

organization and compartmentalization of genomes into transcriptionally active euchromatin 

domains that are localized to the interior of the nucleus. Transcriptionally silent heterochromatic 

domains are enriched with methylated epigenetic marks and are localized to the nuclear 

periphery. The purpose of this investigation was to assess the influence of GC on H3K27me3 

chromatin organization by measurement of that repressive epigenetic mark. As well as the 

relationship of H3K27me3 chromatin organization to NK cell effector function, i.e. interferon 

(IFN) gamma production, was determined. IFN gamma was selected because it is the prototypic 

cytokine produced by NK cells and is known to modulate both innate and adaptive immunity. 

GC treatment of human peripheral blood mononuclear cells significantly reduced IFN gamma 

production. GC treatment produced a distinct NK cell H3K27me3 chromatin organization 

phenotype. This phenotype was localization of the histone post-translational epigenetic mark, 

H3K27me3, to the nuclear periphery and was directly related to the reduced production of IFN 

gamma by NK cells. This nuclear phenotype was determined by direct visual inspection and by 

use of an automated, high through-put technology, the Amnis ImageStream. This technology 

combines the per-cell information content provided by standard microscopy with the statistical 

significance afforded by large sample sizes common to standard flow cytometry. Most 



 
 

xi 
 

importantly, this technology provided for direct assessment of the localization of H3K27me3 

within individual nuclei. These results demonstrate GC to reduce NK cell function at least in part 

through altered H3K27me3 nuclear organization and suggests that H3K27me3 chromatin 

organization may be a predictive measure of GC induced immune dysregulation in NK cells.  
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CHAPTER ONE 

INTRODUCTION 

Literature Review 

The Stress Response. 

Psychological stress results in the activation of the hypothalamic pituitary adrenal (HPA) 

axis as well as the sympathetic nervous system (SNS) (Firdaus S. Dhabhar & McEwen, 1997; F. 

S. Dhabhar, Miller, McEwen, & Spencer, 1995; F. S. Dhabhar, Miller, Stein, McEwen, & 

Spencer, 1994).  Upon activation of the HPA axis corticotropin releasing hormone (CRH) is 

released from the hypothalamus (Bernardini et al., 1994); CRH then activates the release of 

adrenocorticotropic hormone (ATCH) from the anterior pituitary (Whitnall, 1993) which then 

regulates the release of glucocorticoids (i.e. cortisol) from the adrenal cortex. Psychological 

stressors also activate the SNS that culminates in the release of catecholamines (epinephrine and 

norepinephrine) into the circulation.  Epinephrine is released from the adrenal medulla, while 

norepinephrine (NE) is released from sympathetic nerves that directly innervate host tissues 

including secondary lymphoid tissues (Madden, Felten, Felten, & Bellinger, 1995).  There is a 

bi-directional, positive feedback loop between the HPA axis and the SNS (Elenkov, Wilder, 

Chrousos, & Vizi, 2000).  In mouse models, centrally administered CRH activated the SNS to 

produce catecholamines (Irwin, Hauger, & Brown, 1992). Further, NE release from sympathetic 

neurons (Ma & Morilak, 2005) that directly innervate the hypothalamus  or electrical neuronal 

stimulation (Hosoi, Okuma, & Nomura, 2000) also facilitated activation of the HPA axis.  

Therefore, activation of one pathway leads to the activation of the other. 
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The Stress Response’s Effect on the Immune System.  

 Studies in humans and in animals demonstrate that the immune system is influenced by 

psychological stress (Glaser & Kiecolt-Glaser, 2005; Kusnecov & Rabin, 1994; Segerstrom & 

Miller, 2004). Psychological stress is also associated with an increased risk for disease, which 

suggests a linkage among stress, the risk for disease, and the immune system (Glaser & Kiecolt-

Glaser, 2005; Segerstrom & Miller, 2004). Cytokine production by the immune system, 

including IFN gamma, is particularly sensitive to stress dysregulation (Connor, Brewer, Kelly, & 

Harkin, 2005; Curtin, Boyle, Mills, & Connor, 2009; Curtin, Mills, & Connor, 2009; Goujon et 

al., 1995; Meltzer et al., 2004), such dysregulation is a likely contributor to stress-related disease 

susceptibility. HPA axis activation resulting in increased circulating levels of glucocorticoids 

(GC) (Connor, Kelly, & Leonard, 1997; Laugero & Moberg, 2000; Shanks, Griffiths, Zalcman, 

Zacharko, & Anisman, 1990; Sheridan et al., 1991) are known to dysregulate immune function. 

Similarly, SNS activation culminating in the release of NE has also been demonstrated to 

dysregulate immune function.  (Madden, Sanders, & Felten, 1995; Rosenne et al., 2014; 

Takamoto et al., 1991; Whalen & Bankhurst, 1990). 

NK Cell Function and the Immune System. 

 NK cells belong to the family of group 1 innate lymphocytes (ILC1), their frequency 

approximates 10% in peripheral blood, and are functionally characterized by their cytotoxicity 

and their ability to produce cytokines (Vivier, Tomasello, Baratin, Walzer, & Ugolini, 2008). 

Mature NK cells are poised to secrete cytokines and chemokines that shape the innate and 

adaptive immune responses (Vivier et al., 2011). However, the best-characterized cytokine 

produced by NK cells is IFN gamma (Cooper et al., 2001), which is quickly released within 

minutes to hours after NK cell stimulation (Stetson et al., 2003). NK cell produced IFN gamma 

http://topics.sciencedirect.com/topics/page/Cytokines
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has many effects on the immune response, including induction of MHC class II molecules on 

antigen-presenting cells, activation of myeloid cells and induction of T helper 1 (TH1) cells 

(Morvan & Lanier, 2016).  Macrophage activation by NK cell-derived IFN gamma has been 

shown to be essential for resistance to primary tumorigenesis (O'Sullivan et al., 2012) as well as 

activate killing of obligate intracellular pathogens (Filipe-Santos et al., 2006). In patients and 

animal models, impaired NK cells or NK cell deficiency have been associated not only with 

recurring virus infections, but also with an increased incidence of various types of cancer 

(Orange, 2013). Additionally, human studies of complete NK cell deficiency resulted in the 

occurrence of fatal infections during childhood (Orange, 2006). NK cells are able to recognize 

and then spontaneously kill ‘stressed’ cells, such as infected or tumor cells, without prior 

sensitization. 

As opposed to other immune cells that require a considerable length of time to acquire 

cytolytic activity, NK cells are ‘ready for effector function’, which provides a powerful tool for 

host protection. Numerous studies have demonstrated decreased NK cell function in cancer 

patients (Nakajima, Mizushima, Nakamura, & Kanai, 1986; Pross & Lotzová, 1993; Schantz, 

Shillitoe, Brown, & Campbell, 1986) or their families(Hersey, Edwards, Honeyman, & 

McCarthy, 1979; Strayer, Carter, & Brodsky, 1986), including a long-term epidemiological study 

reporting that subjects with low NK cell activity had a higher risk of developing various types of 

cancer (Imai, Matsuyama, Miyake, Suga, & Nakachi, 2000). NK cell deficiencies, characterized 

by the absence of NK cells or NK cell function (Spinner et al., 2014) lead to higher rates of 

malignancy. As such, IFN gamma production by NK cells is central to the optimal function of 

the immune system including innate and adaptive immunity. Measurement of its production in 
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NK cells is particularly important because the response to stimulus is essentially immediate and 

does not require longer term activation as would be required with T lymphocytes. 

NK Cells and Stress Hormones. 

 NK cells have been demonstrated to be susceptible to the effects of both NE and GC 

treatment. All lymphoid cells express beta-2 adrenergic receptors (B2-AR) with the exception of 

CD4 T helper 2 cells (Sanders et al., 1997). NK cells, CD8 T cells, and CD4 helper 1 T cells 

respond to NE through expression of the B2-AR receptor on their cell surface. (Maisel, Harris, 

Rearden, & Michel, 1990). NK cells have the highest expression of B2-AR of any of the immune 

cell subsets and have been shown to be incredibly responsive to NE treatment (Khan, Sansoni, 

Silverman, Engleman, & Melmon, 1986). NE has been demonstrated to decrease NK cell IFN 

gamma production and NKCA (Rosenne et al., 2014; Takamoto et al., 1991; Whalen & 

Bankhurst, 1990) through a B2-AR dependent pathway (described below). While the 

glucocorticoid receptor (GR), that responds to GC, is ubiquitously expressed in all cell types and 

has been demonstrated to reduce NKCA and IFN gamma production by NK cells through both 

genomic and non-genomic mechanisms (described below). Therefore, NK cells are extremely 

responsive to stress hormones resulting from activation of both the HPA axis and the SNS, and 

serve as a model system to understand how stress hormones modulate immune function.   

NE and B2-AR. 

 NE transduce their signal through the stimulation of B2-AR. B2-AR activation then 

directly activates G-coupled proteins that stimulate adenylate cyclase (AC). Stimulated AC then 

induces the production of the second messenger cyclic adenosine-5’ monophosphate (cAMP) 

within the cell (Kitakaze et al., 1991). Increased cAMP levels are known to inhibit NF-kB, AP-1, 

and NF-AT activation, which are transcription factors required for the production of 
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inflammatory cytokines like IFN gamma (Haraguchi, Good, & Day, 1995; Haraguchi, Good, 

James-Yarish, Cianciolo, & Day, 1995a, 1995b; Panina-Bordignon et al., 1997; Parry & 

Mackman, 1997) and modulate cytotoxicity of NK cells (Krzewski, Gil-Krzewska, Nguyen, 

Peruzzi, & Coligan, 2013; Zhou, Zhang, Lichtenheld, & Meadows, 2002). 

GC: GR Signaling. 

Cortisol, the most abundant glucocorticoid in humans, is produced by the adrenal gland 

and is transported through the blood bound to corticosteroid-binding globulin (CBG) and 

albumin (Torpy & Ho, 2007).  Cortisol is a lipophilic ligand that passively  diffuses through the 

cell membrane into the cytoplasm, where it binds to and activates its cognate receptor GR 

(Nicolaides, Galata, Kino, Chrousos, & Charmandari, 2010). In the un-activated state, GR exists 

predominantly within the cytoplasm and is bound to a multimeric molecular chaperone complex, 

which includes heat shock proteins (HSPs) 90, 70, and 50, and immunophilins.  HSP90 regulates 

ligand binding, retains GR in the cytoplasm, and masks GR’s two nuclear localization sequences.   

Upon binding GC, GR undergoes conformational changes that releases it from chaperone 

proteins and activating GR to modulate NK cell function through genomic and non-genomic 

mechanisms (Beck et al., 2009). 

GC effects at the non-genomic level are by GC: GR interactions at the cell membrane or 

within the cytoplasm. GC: GR non-genomic actions are rapid, typically within minutes and are in 

contrast to the genomic, which require hours or days for effect (Ayroldi et al., 2012; Groeneweg, 

Karst, de Kloet, & Joëls, 2011). The non-genomic effects of GC do not require de novo protein 

synthesis (Oakley & Cidlowski, 2013), and result from GC:GR direct interactions with 

membrane proteins (e.g., G-protein-coupled receptors, ion channels, and T cell receptors), 

(Löwenberg, Verhaar, van den Brink, & Hommes, 2007; Stahn & Buttgereit, 2008; Stahn, 
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Löwenberg, Hommes, & Buttgereit, 2007) or occur within the cytosol by direct interaction with 

kinases (e.g. extracellular signal-regulated kinases, c-Jun NH2-terminal kinases, and the p38 

isoforms) thus impacting signal transduction pathways (Ayroldi et al., 2012).  At the non-

genomic level, GC:GR can destabilize mRNA, interfere with transcription factor access to the 

nucleus (Almawi & Melemedjian, 2002; Barnes, 2010; Flammer & Rogatsky, 2011; Reily, 

Pantoja, Hu, Chinenov, & Rogatsky, 2006), alter the physicochemical properties of plasma and 

mitochondrial membranes (Falkenstein, Tillmann, Christ, Feuring, & Wehling, 2000; Löwenberg 

et al., 2007), and modify the composition (Van Laethem et al., 2003), or the formation 

(Yamagata et al., 2012) of lipid rafts. 

At the genomic level, GC:GR do not bind to DNA in a stable manner, but shuttle between 

the nucleoplasm and GC-responsive elements (GRE) located in the promoter or enhancer regions 

of GC-responsive genes (Bush, Krukowski, Eddy, Janusek, & Mathews, 2012; McNally, Müller, 

Walker, Wolford, & Hager, 2000; Voss et al., 2011). Within the nucleus target gene transcription 

is either enhanced or repressed by several GR dependent mechanisms based on the context of the 

GR genomic interaction. These mechanisms include direct binding of GR to specific cis-acting 

GRE DNA sequences. GR binding to GRE typically leads to enhanced gene transcription of GC 

induced target genes. Less often, GRE occupancy can repress gene transcription (Uhlenhaut et 

al., 2013) GR can also repress genes by tethering itself to other transcription factors repressing 

their capacity to induce gene transcription (De Bosscher, Vanden Berghe, & Haegeman, 2000; 

De Bosscher, Vanden Berghe, Vermeulen, et al., 2000). GR also binds to inverted palindromic 

sequences known as negative GREs (nGREs) (So, Chaivorapol, Bolton, Li, & Yamamoto, 2007) 

which also inhibit transcription of target genes.  GR recruitment to nGREs promotes the 

assembly of corepressor complexes and the recruitment of histone deacetylases, which direct 
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glucocorticoid-dependent repression of specific genes by compaction of chromatin through 

deacetylation of lysines on histone H3 or H4 (Surjit et al., 2011). In direct contrast, GR 

homodimers can also interact with GRE and stimulate potent gene expression though 

transactivation (Abraham et al., 2006; Bhattacharyya, Zhao, Kay, & Muglia, 2011; D'Adamio et 

al., 1997; Zhao et al., 2006). GR recruitment of co-activators like CREB-binding protein (CBP), 

P300/CBP-associated factor (pCAF), or steroid receptor coactivators (SRCs), confer local 

histone acetyltransferase activity, resulting in the local acetylation of lysines on H3 or H4, de-

condensing chromatin and increasing access for relevant transcription factors, resulting in 

marked gene transcription (Barnes, 2006; X. Li, Wong, Tsai, Tsai, & O'Malley, 2003). 

Epigenetics and Chromatin Organization. 

 Epigenetics refers to a heritable change in a phenotype that does not involve changes in 

the DNA sequence, including histone post-translational modifications. The deposition of histone 

post-translational modifications can result in heritable changes in gene expression or in stable, 

long-term alterations of the transcriptional potential of the cell, which may not be heritable.  

DNA is wrapped around an octomeric protein complex, consisting of two of each of the histone 

proteins (H2A, H2B, H3, and H4).  The combination of 146 bps of DNA and histone proteins 

composes the nucleosome which is the basic unit of chromatin. Histone acetylation and histone 

methylation are the most-characterized epigenetic marks. Acetylation and methylation of 

histones are responsible for the compartmentalization of the genomes into distinct domains, 

transcriptionally active euchromatin, and transcriptionally silent heterochromatin (Martin & 

Zhang, 2005; Misteli, 2007). Acetyl groups are added to lysine residues, neutralizing their 

positive charge, disrupting the interaction with DNA’s negative charge, and loosening the 

compaction of chromatin.  Relaxing the chromatin structure increases its accessibility to 
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transcription factors and, subsequently, gene expression.  Removal of acetyl groups results in 

condensation of chromatin, repressing gene expression (Cosgrove & Wolberger, 2005).  

Condensed heterochromatin is enriched in tri-methylation of H3K9 and H3K27, and silencing of 

euchromatin by histone deacetylases involves the recruitment of specific lysine histone 

methyltransferases (Kouzarides, 2007). Unlike histone acetylation, histone methylation does not 

affect the negative charge of DNA, but represses transcription through the recruitment of co-

repressors such as retinoblastoma protein pRb, KAP1, or polycomb repressive complex 1 and 2 

(PRC1, PRC2)(Margueron & Reinberg, 2011; Nielsen et al., 2001; Simon & Kingston, 2009).   

 In addition to regulating gene transcription, epigenetic marks have also been shown to 

localize chromatin to discrete areas within cell nuclei. Euchromatin enriched for acetylated 

epigenetic marks tend to localize in the interior of the nucleus, while heterochromatic chromatin 

enriched with histone methylation marks tend to localize toward the nuclear periphery (Andrulis, 

Neiman, Zappulla, & Sternglanz, 1998; Williams et al., 2006; Zink, Fischer, & Nickerson, 2004). 

The nuclear localization of histone methylation marks in three-dimensional preserved nuclei 

identified peripheral localization of methylated marks in colon carcinoma and breast carcinoma 

cell lines (Cremer et al., 2004). Taken together, these observations indicate that histone 

epigenetic marks influences chromatin organization by affecting contacts between different 

histones and between histones and DNA. 

GC: GR and Chromatin Organization. 

At the global-genomic level GR interacts with thousands of sites across the genome, 

influencing the expression of hundreds of genes (Reddy et al., 2009; So et al., 2007; Wang et al., 

2004). These GR binding sites potentiate clusters of transcription factor binding across the entire 

genome with interactions between distal sites that dramatically alter their regulatory activities 
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(Vockley et al., 2016). At this scale, the effect of GC are coordinated transcriptionally through 

alterations in chromatin organization. Alterations in chromatin organization determine which 

genes are repressed and which genes are transcribed. By genome-scale chromosome 

conformation capture, chromatin has been demonstrated to be organized into large compartments 

that are “open” and highly transcribed or “closed” and less transcriptionally active (Lieberman-

Aiden et al., 2009). Compartments are comprised of topologically-associated chromosomal 

domains (TADs, containing DNA segments ranging in length from hundreds of kilobases to 

many megabases (Dixon et al., 2012; Gibcus & Dekker, 2013). These DNA domains are 

organized into transcriptionally active chromatin domains enriched for active epigenetic marks 

(e.g. H3K9Ac), or repressed chromatin domains enriched for repressive epigenetic marks (e.g. 

H3K27me3) at gene regulatory regions (Guelen et al., 2008; Lieberman-Aiden et al., 2009; 

Osborne et al., 2004). Transcription factors like GR form epigenetically marked chromatin loops 

that contain multiple genes that permit interactions among gene promoter and enhancer regions. 

These loops regulate transcription locally (John et al., 2011; Voss et al., 2011; Whirledge, Xu, & 

Cidlowski, 2013), But GR can also act globally via chromatin loops, targeting active genes to 

transcription factories and repressed genes to heterochromatin (Biddie, 2011; H. B. Li, Ohno, 

Gui, & Pirrotta, 2013). We have previously demonstrated histone epigenetic-post-translational 

marks to be present on immune-response genes affected by GC and also by psychological stress. 

GR was associated with these epigenetically marked genes and GC were shown to influence 

transcription by local control of gene accessibility (Eddy, Krukowski, Janusek, & Mathews, 

2014; Krukowski et al., 2011; Mathews et al., 2011; Merkenschlager & Odom, 2013). Epigenetic 

marks of these types influence both chromatin organization and immune effector function 

(Kuznetsova et al., 2015; Olnes et al., 2016). 
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 Aims and Hypotheses 

It is well-established that psychological stress reduces NK cell immune function. This 

reduction is mediated by stress-induced release of GC, which can suppress immune function. 

Associated with suppression of a particular immune function are GC induced histone-epigenetic 

marks. Histone-epigenetic marks are responsible for the organization and compartmentalization 

of genomes into transcriptionally active euchromatin domains and that are localized to the 

interior of the nucleus. Transcriptionally silent heterochromatic regions are enriched with 

methylated epigenetic marks and are localized to the nuclear periphery. The Purpose of this 

investigation was to assess the influence of GC on H3K27me3 Chromatin Organization by 

measurement of that epigenetic mark. As well, the relationship of H3K27me3 Chromatin 

Organization to NK cell effector function, i.e. IFN gamma production, was determined. The 

Central Hypothesis is:   H3K27me3 Chromatin Organization (CO) directly relates to NK cell 

immune function. In this investigation, CO will be assessed by measurement of the density and 

nuclear localization of histone post-translational epigenetic mark H3K27me3.  Immune function 

will be assessed by measurement of NKCA as well as by the production of the immune effector 

molecule, IFN gamma. For Aim 1, the effects of stress hormone treatment on human peripheral 

blood mononuclear cells (PBMC) immune function will be assessed. Aim 2 will assess the effect 

of Dex on H3K27me3 CO. Aim 3 will assess relationships among H3K27me3 CO and the 

production of IFN gamma as a prime indicator of NK cell immune function. Should a 

relationship exist between H3K27me3 CO and NK cell immune function, then it is possible that 

CO may serve as an effective means for identification of GC induced immune dysregulation in 

NK cells.   
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Significance 

It is the significant purpose of this project to evaluate H3K27me3 CO as an index 

associated with GC induced immune dysregulation, in that, GC related alteration of H3K27me3 

CO may directly relate to the capacity of NK cells to carry out necessary immune function (IFN 

gamma production). Detection of GC induced alteration of H3K27me3 CO may provide a means 

by which to identify individuals with GC induced NK cell dysregulation. In this proposal we will 

couple an understanding of the effects of GC on the immune system with efficient and 

innovative high through-put technology, the Amnis ImageStream. It is a multispectral imaging 

flow cytometer, combining microscopic imaging with flow cytometry. It combines the per-cell 

information content provided by standard microscopy with the statistical significance afforded 

by large sample sizes common to standard flow cytometry. With this system, fluorescence 

intensity measurements are acquired as with a conventional flow cytometer; however, the 

system’s imaging advantage is to locate and quantify the distribution of signals within a cell. 

This proposal could only be accomplished with this instrument and associated software and is an 

innovative aspect of this proposal. 
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CHAPTER TWO 

METHODS AND MATERIALS 

Cell Lines and Media 

The human erythroleukemic-like cell line, K562, was obtained from the American Type 

Culture Collection, Rockville, MD.  K562 cells were maintained in suspension in RPMI 1640 

(Gibco Laboratories, Grand Island, NY) supplemented with 10% FBS (Gibco Laboratories, 

Grand Island, NY), 100 units/ml penicillin, 100ug/ml streptomycin (Whittaker M. A. 

Bioproducts, Walkersville, MD), 0.1 Mm non-essential amino acids and 2 Mm L-glutamine 

(Gibco Laboratories, Grand Island, NY). For in vitro human peripheral blood mononuclear cell 

(PBMC) experiments, cells were maintained in complete RPMI media identical to that used for 

K562 cells. 

Subject Recruitment 

Healthy volunteers participated in this study and were excluded if they had an immune-

based disease, were substance abusers, had a history of acute infection, or were taking 

corticosteroids. This study was approved by the Loyola University Medical Center Institutional 

Review Board for the Study of Human Subjects. All procedures were carried out with the 

understanding and written consent of the participants. 

In vitro Cellular Treatment of Human PBMC 

Whole blood was collected in sterile heparinized tubes and processed immediately. 

Heparinized peripheral blood was overlaid onto Ficoll/Hypaque and 
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centrifuged at 400 x g for 25 min. PBMC at the interface were extracted and washed twice in 

phosphate buffered saline (PBS) (Gibco, Grand Island, NY) prior to any treatment or phenotypic 

analysis. PBMC were then cultured at a concentration of 1x106 cells/ml in RPMI in the presence 

or absence of 10-6M dexamethasone (Dex) (Sigma Aldrich, St. Louis, MO) or 10-6M 

norepinephrine (NE) (Sigma Aldrich, St. Louis, MO) for 24 hr in 24 well plates. After treatment, 

cells were pooled, washed with RPMI and 1x106 cells were used for each analysis. Cell number 

and viability were determined by exclusion of 0.1% Trypan blue after isolation and after 

treatment. Viability was maintained between 90 and 95% in all experiments. 

Natural Killer Cell Activity (NKCA) 

K562 tumor cells were radioactively labeled with 100 uCi of [51Cr] (New England 

Nuclear, Boston, MA). Radiolabeled K562 cells were washed and then incubated for 4 hr with 

PBMC.  Following incubation, the supernatants were removed using a Skatron harvesting press 

(Skatron Inc., Sterling, VA) and the associated radioactivity was determined.  Effector to target 

ratios for NKCA were 50, 30, 20, 10, and 5:1. 

 Results were expressed as % cytotoxicity and calculated by the formula:  

  

  % Cytotoxicity =     (experimental DPM*) - (minimum DPM)     x   100.   

        (maximum DPM) - ( minimum DPM)           

      

All experimental means were calculated from triplicate values.   

 *DPM=disintegrations per minute.  
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Measurement of IFN gamma by ELISA 

1x106 human PBMC were treated with Dex, NE, or left untreated. At the time of treatment, cells 

were activated with PMA/PHA (PMA @ 20ng/well; PHA @ 0.05%/well) and incubated for 48 

hr at 37°C. Cell supernatants were then collected for analysis via ELISA (R&D Systems, 

Minneapolis, MN) according to the manufacturer’s instructions. 

Intracellular Staining of Human PBMC 

After 24 hr, 1x106 Dex treated or untreated PBMC were aliquoted into fluorescent 

activated cell sorting (FACS) tubes. The cells were washed twice with phosphate buffered saline 

(PBS) (Gibco, Grand Island, NY), then activated with lymphocyte activation cocktail (LAC) 

(BD Pharmingen, San Jose, CA) for 4 hr at 37°C. LAC contains PMA, ionomycin and brefeldin 

A. After activation, surface antibodies were added for 30 min on ice and agitated every 15 min to 

identify PBMC sub-populations. Surface stain antibodies included anti-CD3 (APCCy7 

conjugated) (BD Biosciences San Jose, CA) and anti-CD56 (BV421 conjugated), (BD 

Biosciences, San Jose, CA). PBMC were then washed twice in 0.1% bovine serum albumin 

(BSA) (Sigma Aldrich, St. Louis, MO) in PBS. PBMC were then fixed and permeabilized with 

Cytofix/Cytoperm solution (BD Pharmingen, San Jose, CA) for 20 min at 4°C. Then washed 

twice with Perm/Wash Buffer (BD Pharmingen, San Jose, CA). PBMC were then stained with 

antibodies specific for intracellular molecules of interest for 1 hr at 4°C. Intracellular antibodies 

included anti- IFN gamma (PE conjugated) (BD Biosciences, San Jose, CA) and anti- 

H3K27me3 (APC conjugated) (Cell Signaling, Beverly, MA). PBMC were then washed twice 

with Perm/Wash buffer.  After wash the FACS tubes were then briefly vortexed and PBMC were 

transferred into 1.5 ml Eppendorf tubes. The tubes were then centrifuged, excess liquid was 

removed by pipet, and cells were resuspended in 50µl of 0.1% BSA in PBS to be analyzed with 



15 
 

 
 

the Amnis ImageStream (EMD Millipore, Billerica, MA) equipped with Inspire software. 10,000 

events were collected and analyzed with ImageStream IDEAS software (EMD Millipore, 

Billerica, MA). 

IDEAS Software Analysis of H3K27me3 in PBMC 

The Inspire software simultaneously collects six images from each cell that passes 

through the instrument. These images include 5 fluorescence images and one bright field image 

stored as raw image files (.rif). Single fluorochrome files were collected and then used to 

generate compensation matrices and compensated image files (.cif). From the compensated 

image files, data analysis files (.daf) were created and analyzed for H3K27me3 localization. All 

acquired cells were plotted as histograms of the gradient root mean square of the bright field 

image, which measured the sharpness of the bright field image. Focused cells were then analyzed 

by a scatter plot of the aspect ratio (roundness of the cells) and area (size of the cells) to insure 

only individual lymphocyte analysis. CD56+ CD3- cells were identified as NK cells. NK cells 

from both the Dex treated and untreated cell populations were visually analyzed for H3K27me3 

localization.     

Automation of H3K27me3 Localization with IDEAS Software 

An automated technique was developed within the IDEAS software that allowed for 

analysis of H3K27me3 localization in every NK cell that passed through the flow cell. The 

automated technique provided a high throughput analysis of H3K27me3 localization within the 

nuclei of NK cells. The automated technique was created by merging the compensated image 

files (.cif) of the untreated and Dex treated NK cells into one data analysis file (.daf). Data 

analysis was performed with the Feature Finder program within the IDEAS software package. 

The Feature Finder program provided multiple image-based parameters that included: size, 
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location, shape, and texture (local intensity variations in the image) that enabled discrimination 

between cells based on their appearance. Additionally, the Feature Finder program calculated a 

statistic (termed Rd) that quantified the degree of discrimination of Peripheral H3K27me3 

localization and Non-peripheral H3K27me3 localization in the NK cell population. Briefly, the 

merged data analysis file was initially analyzed to identify cells in focus. All NK cells were 

H3K27me3+. Then, two truth populations of cells were identified based on morphology. In this 

investigation, the truth populations were NK cells that had Peripheral H3K27me3 localization 

and NK cells that did not have Peripheral H3K27me3 localization (Non- peripheral H3K27me3 

localization). 25 representative cells were tagged for each truth population. The truth populations 

in this study were based on localization of H3K27me3 regardless of H3K27me3 intensity to 

insure that feature selection was based on the localization of H3K27me3 within NK cell nuclei. 

Confirmation that H3K27me3 Modulation and H3K27me3 Bright Detail Intensity (BDI) 

Differentiate Peripheral and Non-peripheral H3K27me3 Localization in NK Cell Nuclei 

The Feature Finder identified H3K27me3 Modulation as well as H3K27me3 Bright 

Detail Intensity (BDI) as two features that discriminated Peripheral and Non-peripheral 

localization of H3K27me3. Modulation measured the intensity range of an image, normalized 

between 0 and 1. A numerically large Modulation value close to 1 identified a nucleus with areas 

of bright fluorescence intensity and also areas of weak to no intensity of H3K27me3. Modulation 

of H3K27me3 served as a quantitative value that represented the contour of H3K27me3 staining 

in individual nuclei. Modulation was calculated as: Modulation = Max Pixel – Min Pixel / Max 

Pixel + Min Pixel. Bright Detail Intensity quantified the local fluorescence density at a radius of 

3 pixels (BDI). The BDI feature scanned the nucleus for bright spots, areas of increased density 

of H3K27me3 staining, within a 3 pixel radius, then eliminated any background staining and 
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reported the mean intensity of the bright spots within the nucleus. A numerically large BDI 

identified H3K27me3 with high density over a 3 pixel radius. These two features provided 

detailed information regarding H3K27me3 localization and density within NK cell nuclei.  

H3K27me3 Modulation and H3K27me3 BDI were plotted for Dex treated and untreated 

NK cells. H3K27me3 Modulation Intervals (groups of individual NK cells with similar 

Modulation of H3K27me3) were analyzed in 10% increments of the maximum H3K27me3 

Modulation present within the NK cell population. Confirmation that H3K27me3 Modulation 

and H3K27me3 BDI discriminated between Peripheral H3K27me3 localization and Non-

peripheral H3K27me3 was accomplished by in-depth visual inspection (>2000 NK cells 

analyzed) of H3K27me3 localization from untreated and Dex treated NK cells in each 

H3K27me3 Modulation Interval derived from six independent samples. Representative images 

of H3K27me3 localization from each H3K27me3 Modulation Interval (taken at the Modulation 

midpoint of each interval) were visually assessed within H3K27me3 Modulation Intervals. Fifty 

cells from each H3K27me3 Modulation Interval in both untreated and Dex treated NK cells from 

six independent samples were assessed. If less than 50 NK cells were detected in the H3K27me3 

Modulation Interval, all were counted. The percentage of NK cells within each Modulation 

Interval that had H3K27me3 localization similar to the representative image was recorded.   

IDEAS Analysis of H3K27me3 Modulation Interval IFN gamma Production in NK Cells 

H3K27me3 Modulation Interval IFN gamma production (measured as H3K27me3 

Modulation Interval IFN gamma) in NK cells was calculated by the following equation:  

H3K27me3 Modulation Interval mean IFN gamma x % of NK cells for each H3K27me3 

Modulation Interval. This resulted in H3K27me3 Modulation Interval IFN gamma values that 
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represented the level of IFN gamma within of the NK cells within each H3K27me3 Modulation 

Interval and served as an index of immune function for those NK cells. 

Calculation of H3K27me3 Modulation Interval Chromatin Organization (CO) 

H3K27me3 Modulation Interval CO was calculated with the following equation:  mean 

H3K27me3 Modulation x mean H3K27me3 BDI x % of NK cells for each H3K27me3 

Modulation Interval. Given that the H3K27me3 Modulation is normalized between 0 and 1, 

while the H3K27me3 BDI score can range from 1- 100,000, other mathematical manipulation of 

the scores would have resulted in H3K27me3 BDI dominating the analysis. Multiplication of the 

values equalized the weight given to both H3K27me3 Modulation and H3K27me3 BDI. 

Multiplication of H3K27me3 Modulation and H3K27me3 BDI with the percentage of NK cells 

within each H3K27me3 Modulation Interval resulted in a H3K27me3 Modulation Interval CO 

value that was representative of the amount of NK cells detected in each H3K27me3 Modulation 

Interval. H3K27me3 Modulation Interval CO was compared between Dex treated and untreated 

NK cells for each H3K27me3 Modulation Interval and served as an index to the effects of Dex 

on H3K27me3 CO throughout the entire NK cell population.  

Calculation of H3K27me3 Global CO and Global IFN gamma Production 

           For each H3K27me3 Modulation Interval an H3K27me3 Modulation Interval CO value 

was calculated as: H3K27me3 Modulation Interval CO = mean H3K27me3 Modulation x mean 

H3K27me3 BDI value x % NK cells in the H3K27me3 Modulation Interval.  Global H3K27me3 

CO for the entire cell population was calculated as a summation of the 10 H3K27me3 

Modulation Interval CO values.  

           H3K27me3 Modulation Interval IFN gamma was calculated as:  H3K27me3 Modulation 

Interval IFN gamma MFI = mean IFN gamma MFI x % NK cells in the H3K27me3 Modulation 
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Interval. Global IFN gamma MFI for the entire population was calculated as the summation of 

the 10 H3K27me3 Modulation Interval IFN gamma values.   

           Single value Global H3K27me3 CO and single value Global IFN gamma MFI provided 

quantified values that permitted the direct assessment of the effects of Dex treatment on 

Chromatin Organization and IFN gamma production in NK cells.  Such values provide an 

assessment measure by which to compare separate populations of NK cells for the effects of Dex 

on both H3K27me3 Chromatin Organization and immune function.  

Statistical Analyses 

All statistical analyses were performed with the Statistical Package for the Social Sciences 

(SPSS) software. Statistical analysis of all H3K27me3 Modulation Interval comparisons were 

compared by Student’s t-test. NKCA was analyzed by group repeated measure ANOVA with 

Tukey HSD post hoc tests to determine differences between Dex treated and untreated PBMC. 

IFN gamma production by ELISA was analyzed by ANOVA with Tukey HSD post hoc tests to 

determine significant differences between Dex treated, NE treated, and untreated PBMC. All 

other analyses were compared by either Student’s t-test, or Paired student’s t-test as designated. 

Relationships were analyzed by Pearson r in SPSS. For all statistical tests p < 0.05 was set for 

significance. 
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  CHAPTER THREE 

RESULTS 

Effects of Dexamethasone (Dex) and Norepinephrine (NE) on PBMC Natural Killer Cell 

Activity (NKCA) 

Both Dex and NE are reported to influence natural killer cell function. The two best 

characterized functional activities of human NK cells are NKCA and IFN gamma production. 

The effect of Dex and of NE on PBMC NKCA for tumor targets was assessed in Figure 1. 

PBMC were either untreated, or treated with Dex or NE (10-6M) for 24 hr. (Varying Dex and NE 

concentrations (10-5-10-7M) were evaluated, with maximum effect observed at 10-6M for Dex 

with no effect for NE at 24 hr for any tested concentration. (Data are not shown.) A one-way 

group repeated measures ANOVA of the % Cytotoxicity of the effector to target ratios identified 

a significant effect of treatment on NKCA at the p < 0.05 level for the three conditions [F (1, 2) 

= 6.971, p = 0.011]. Post hoc Tukey HSD tests indicated significant differences in the means of 

Dex treated and untreated PBMC at the 50:1 and 30:1 effector to target ratios. NE had no 

demonstrable effect on the NKCA of PBMC. These data demonstrated that Dex but not NE 

reduced PBMC NKCA. 
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Figure 1. Effect of Dexamethasone (Dex) and Norepinephrine (NE) on NKCA of PBMC.  

 
NKCA expressed as percent cytotoxicity for effector to target ratios of 50:1, 30:1, 20:1, and 
10:1. Untreated PBMC are depicted in the black boxes, NE treated PBMC are depicted in the 
gray boxes, and Dex treated PBMC are depicted in the open boxes. Data represents the mean 
cytotoxicity of six individuals +/- SEM. Data were analyzed by one-way repeated measure 
ANOVA to determine differences among groups over all 4 effector to target ratios. Post hoc 
Tukey HSD analyses were then used to determine differences between Dex, NE, or untreated 
PBMC within each effector to target ratio. * = p < 0.05, *** = p< 0.005 comparison of Dex or 
NK treated and untreated PBMC.  

Effects of Dex and NE on IFN gamma Production by PBMC and CD3-CD56+ NK Cells 

The effect of Dex and of NE on NK cell IFN gamma production was assessed in two 

ways, ELISA measured PBMC production, or measurement of cytoplasmic mean fluorescence 

intensity levels (MFI) in NK cells. PBMC were either untreated or treated with Dex or NE (10-

6M) and activated for 48 hr. (As above, varying Dex and NE concentrations (10-5-10-7M) were 

evaluated, with maximum effect observed at 10-6M for Dex and no effect for NE at any tested 

concentration. Data are not shown.)  There was a significant effect of treatment on IFN gamma 

production at the p < 0.05 level for the three conditions [F (2, 18) = 5.039, p = 0.018]. Post hoc 
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Tukey HSD tests indicated significant reduction in IFN gamma production in Dex treated PBMC 

when compared to untreated PBMC. While no effect was observed for NE. See Table 1. Further, 

Dex treated CD3- CD56+ NK cells (NK) had significantly reduced cytoplasmic IFN gamma mean 

MFI when compared to untreated cells. Taken together, these data and those in Figure 1 

demonstrate Dex to decrease PBMC NKCA and IFN gamma production. NE had no such effect. 

The effect of Dex on PBMC was likely due to NK cells in that NKCA in short term assay is 

mediated by such lymphocytes. IFN gamma can be produced by multiple lymphocyte 

populations, but reductions in IFN gamma MFI for lymphocytes demonstrates the effect on NK 

cells. Since no apparent effect on NK cell function was observed for NE, no further analysis was 

considered.  

Table 1.  Effect of Dex and NE treatment on IFN gamma production by PBMC and by NK 
cells  

 Untreated NE-6M        Dex-6M     

 

IFN gamma (ng/ml) 

 
4.631 +/-  

1.368 
 

 
3.198+/-  

1.797 
 

 
0.128 +/- 

.087* 
 

IFN gamma (MFI) 3,498+/-1236 ND 2,303+/-814* 

PBMC IFN gamma production, as ng/ml was measured by ELISA. Data represent the mean IFN 
gamma production by PBMC from six individuals +/- SEM. Data were analyzed by one-way 
ANOVA with Tukey HSD post hoc analysis, * = p <0.05, comparison of Dex treated and 
untreated PBMC. No difference observed between untreated and NE treated PBMC. NK cell 
(CD3-CD56+) IFN gamma production was measured by mean fluorescence intensity (MFI) by 
Amnis ImageStream. Data represents the mean IFN gamma MFI from six individuals +/- SEM. 
Data were analyzed by Paired Student’s t-test. * = p < 0.05 Dex treated NK cells compared to 
untreated NK cells. ND = not determined. 
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Effect of Dex on H3K27me3 Levels in NK Cells 

Previous NK cell investigations have demonstrated Dex to modify histone post-

translational epigenetic marks. Those modified epigenetic marks were shown to be directly 

associated with NK cell functions including NKCA and IFN gamma production [55-57]. One 

well characterized epigenetic mark is H3K27me3, which is associated with repressed gene 

expression and with the heterochromatic regions of the nucleus [61, 62]. Therefore, PBMC were 

either treated or not with Dex for 24 hr and H3K27me3 MFI was assessed in the NK cells. Dex 

treatment significantly increased the intensity of NK cell H3K27me3 immunofluorescence (as 

judged by MFI) when compared to untreated cells (p < 0.005). See Table 2. Such analysis 

provided evidence that Dex increased the detectable levels of the epigenetic mark, but did not 

provide specific information regarding the location of the increased immunofluorescent intensity 

within individual cells. To analyze the cellular location of the epigenetic mark, high through-put 

technology was employed, the Amnis ImageStream. With this instrument, fluorescence intensity 

measurements can be acquired as with a conventional flow cytometer; however, the system’s 

imaging advantage is to locate and quantify the distribution of fluorescence intensity within a 

cell.  

Table 2. Nuclear H3K27me3 mean fluorescence intensity (MFI) within dexamethasone 
(Dex) treated and untreated NK cells 

 Untreated Dex-6M p 
    

H3K27me3 Intensity 86,210+/- 30,480   100,000+/- 46,111      p < 0.005 

Data represent the mean H3K27me3 MFI of NK cells from six individuals +/- SEM. Data were 
analyzed by Student’s t-test. 
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Localization of H3K27me3 within Dex Treated NK Cells 

When analyzed by the Amnis ImageStream, a population of lymphocytes within the Dex 

treated NK cells exhibited a distinct epigenetic pattern or phenotype. The cellular phenotype was 

H3K27me3 intense localization to the nuclear periphery, depicted in Figure 2A and termed 

Peripheral H3K27me3 localization. A cell that did not exhibit the phenotype is in Figure 2B in 

which H3K27me3 immunofluorescence appears to be diffusely distributed throughout the 

nucleus and termed Non-peripheral H3K27me3 localization. DAPI staining of the cells 

confirmed localization of the epigenetic mark to the nucleus. NK cells that exhibited Peripheral 

H3K27me3 localization were significantly more abundant in Dex treated NK cell populations 

than in untreated NK cell populations. See Table 3.  
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Figure 2. Nuclear localization of H3K27me3 in Dex treated and untreated NK cells.  

                                                                                             DAPI/ 

                                          H3K27ME3                      DAPI                          H3K27ME3  

          

Representative images of Peripheral and Non-peripheral H3K27me3 localization in NK cells. A. 
Peripheral localization of H3K27me3, the left panel depicts the immunofluorescent H3K27me3 
localization in NK cell nuclei. Note the localization of H3K27me3 at the nuclear periphery, 
detected by yellow immunofluorescence.  The center panel depicts the DAPI nuclear 
counterstain of the same NK cell depicted in the left panel. The right panel depicts the merged 
image illustrating H3K27me3 detection within the nucleus of NK cells. B. Non-peripheral 
H3K27me3 localization, the left panel depicts the immunofluorescent H3K27me3 localization in 
NK cell nuclei. Note H3K27me3 is not localized at the nuclear periphery, detected by yellow 
immunofluorescence. The center panel depicts the DAPI nuclear counterstain of the same NK 
cell depicted in the left panel. The right panel depicts the merged image illustrating H3K27me3 
detection within the nucleus of NK cells. 
 
Table 3. Localization of H3K27me3 within Dex treated and untreated NK cells.  

Phenotype % Dex Treated % Untreated p 

Non- Peripheral  
H3K27me3 

 

 40 +/- 2 64 +/- 2 <0.005 

 
Peripheral 

H3K27me3  

  

60 +/-2 

 

36 +/- 2 

 

<0.005 

Visual inspection of 100 randomly selected NK cells for Peripheral and Non- Peripheral 
H3K27me3 localization in Dex treated and untreated cells. Data represent mean values of NK 
cells from six individuals +/- SEM. Data were analyzed by Student’s t-test. 

  

PERIPHERAL 
H3K27ME3 

 

 NON-
PERIPHERAL 

H3K27ME3 

 

 

B. 

   A. 
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Localization and Density Quantification of NK Cell Nuclear H3K27me3 

H3K27me3 localization and density was automated and quantified within a given cellular 

population by use of the Amnis ImageStream, Feature Finder program within the IDEAS 

software. The Feature Finder program does so by quantification of H3K27me3 Modulation as 

well as H3K27me3 Bright Detail Intensity (BDI). A numerically large Modulation value 

identifies a nucleus with areas of bright fluorescence intensity and areas of weak intensity. 

Values are normalized to a number between 0 and 1. Modulation serves as a quantitative value 

representing the contour of H3K27me3 staining within individual nuclei. Bright Detail Intensity 

quantifies the local fluorescence density at a radius of 3 pixels (BDI). A numerically large BDI 

value identifies a nucleus wherein the fluorescent signal is highly condensed locally. The 

relationship of these two Features, H3K27me3 Modulation and H3K27me3 BDI was assessed 

for an individual NK cell population (derived from a single individual) and those cells either Dex 

treated or not for 24 hr. See Figure 3.  Each individual NK cell is represented by a single plotted 

point, with the population as a whole separated into H3K27me3 Modulation Intervals that 

represent 10% increments of the maximum H3K27me3 Modulation value of the NK cell 

population. 
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Figure 3. Relationship of H3K27me3 Modulation to H3K27me3 Bright Detail Intensity 
(BDI) within NK cells. 

 

Relationship between H3K27me3 Modulation to H3K27me3 BDI in untreated NK cells. B.  
Relationship between H3K27me3 Modulation and H3K27me3 BDI in Dex treated NK cells. 
Definitions of H3K27me3 Modulation and H3K27me3 BDI are detailed in the Methods and 
Materials Section.  H3K27me3 Modulation is plotted on the x-axis. While H3K27me3 BDI is 
plotted on the y-axis. Each dot represents an individual NK cell. H3K27me3 Modulation 
Intervals represent 10% increments of the maximum H3K27me3 Modulation value for an 
individual NK cell population derived from a single individual.  NT = untreated. 

Mean H3K27me3 Modulation and mean H3K27me3 BDI were determined for each 

H3K27me3 Modulation Interval. When NK cell populations were derived from six separate 

individuals and Dex treated or not, H3K27me3 Modulation and H3K27me3 BDI of for each 

H3K27me3 Modulation Interval did not differ statistically between the untreated and Dex treated 

NK cells. See Figure 4.  
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Figure 4. H3K27me3 Modulation and H3K27me3 BDI of Dex treated and untreated NK 
cells for each H3K27me3 Modulation Interval.   

 

A. 

        

B. 

 

The mean H3K27me3 Modulation of NK cells within each H3K27me3 Modulation Interval. 
Data represents the mean of six individuals +/-SEM.  Dex treated NK cells are depicted in the 
open squares and untreated NK cells are depicted in the closed squares. B. The mean H3K27me3 
BDI of NK cells within each H3K27me3 Modulation Interval. Data represents the mean of six 
individuals +/- SEM. Dex treated NK cells are depicted in the open squares while untreated NK 
cells are depicted in the closed squares. Data were analyzed by Student’s t-test for each 
H3K27me3 Modulation Interval. None were significant. 
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Data from Figure 3 and Figure 4 do indicate that as H3K27me3 Modulation increased 

there was a concomitant increase in H3K27me3 BDI.  A significant positive relationship 

between H3K27me3 Modulation and H3K27me3 BDI in both Dex treated NK cells (r = 0.669, p 

< 0.005) and untreated NK cells (r = 0.666, p < 0.005) was observed. This relationship was 

observed in NK cells from a single individual, but is representative of relationships seen in NK 

cells from six individuals. See Table 4.These data demonstrated that with increased H3K27me3 

Modulation there was a concomitant increase in H3K27me3 BDI.  

Table 4. Relationship between H3K27me3 Modulation and H3K27me3 BDI in untreated 
and Dex treated NK cell populations from six individuals. 

 Untreated NK 
cells 
r= 

p= Dex 
 NK cells 

r= 

p= 

Sample 1 0.652 0.0005 0.714 0.0005 
Sample 2 0.587 0.0005 0.648 0.0005 
Sample 3 0.666 0.0005 0.669 0.0005 
Sample 4 0.611 0.0005 0.655 0.0005 
Sample 5 0.690 0.0005 0.693 0.0005 
Sample 6 0.671 0.005 0.799 0.0005 

*Note p<0.05 was considered significant. 

In Table 5 representative images for each H3K27me3 Modulation Interval are depicted. 

(The representative images were taken from the H3K27me3 Modulation midpoint of each 

Modulation Interval.) It is apparent that for Modulation Intervals 8-10 a majority of NK cells had 

Peripheral H3K27me3 localization in both Dex treated and untreated NK cells from six 

independent samples. These data indicated that with increased H3K27me3 Modulation and 

H3K27me3 BDI there is an increase in Peripheral nuclear localization of H3K27me3 for both 

Dex treated and untreated NK cells. The percentage of NK cells with similar H3K27me3 nuclear 

localization within the H3K27me3 Modulation Intervals did not differ between Dex treated and 

untreated cells from six individual samples (p> 0.05).   
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Table 5. Percentage of Dex and untreated NK cells within H3K27me3 Modulation Intervals 
with representative localization of H3K27me3. 

Representative images of H3K27me3 localization in NK cell nuclei. Visual inspection of 50 
cells/ H3K27me3 Modulation Interval to determine Peripheral or Non-peripheral H3K27me3 
localization within each H3K27me3 Modulation Interval. Analysis was not performed in 
H3K27me3 Modulation Interval 1 due to the absence of cells. Data represents the mean 
percentage of cells with H3K27me3 localization similar to the representative image of the 
H3K27me3 Modulation Interval for the NK cells of six individuals +/- SEM.  

However, calculation of the percentage of NK cells in each H3K27me3 Modulation 

Interval demonstrated a significant increase in H3K27me3 Modulation Intervals 8, 9, and 10 for 

NK cells treated with Dex when compared to untreated cells. There was also a significant 

reduction in the percentage of NK cells in H3K27me3 Modulation Intervals 6 and 7 for NK cells 

treated with Dex when compared to untreated cells. See Figure 5. Taken together these data 

demonstrate Dex to increase the percentage of cells in H3K27me3 Modulation Intervals 8-10, 

and decrease the percentage of cells in H3K27me3 Modulation Intervals 6 and 7. Further, 

increased H3K27me3 Modulation and increased H3K27me3 BDI directly related to nuclear 

Peripheral localization of H3K27me3.   
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Figure 5. NK cell percentage within each H3K27me3 Modulation Interval. 

 

Percentage of NK cells present in each H3K27me3 Modulation Interval was determined for NK 
cells derived from six individuals. Untreated NK cells are depicted by the closed boxes. Dex 
treated NK cells are depicted by the open boxes. Data are means of six individuals +/- SEM. The 
data were analyzed by Student’s t-test for each H3K27me3 Modulation Interval. * p < 0.05, ** p 
<0.01.  

Relationships of H3K27me3 Modulation and H3K27me3 BDI to Cytoplasmic IFN gamma 

Levels in NK Cells 

In Dex treated NK cells there was a significant relationship between H3K27me3 

Modulation and cytoplasmic IFN gamma MFI (r = -0.344, p < 0.005). No significant relationship 

was observed for H3K27me3 Modulation and cytoplasmic IFN gamma in untreated NK cells (r 

= -0.030, p = 0.783). These relationships were for the individual’s NK cell population presented 

in Figure 3, and representative of relationships observed in six separate individuals. See Table 6.  

These data demonstrate a negative relationship between H3K27me3 Modulation and IFN gamma 

levels in Dex treated NK cells.  There was also a significant relationship between H3K27me3 

BDI and cytoplasmic IFN gamma within the Dex treated NK cell population (r = -0.236, p < 

0.005). No significant relationship was observed within the untreated NK cell population (r = -

0.190, p = 0 .09). These relationships were representative of six separate individuals. See Table 
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7. These data demonstrate that increased H3K27me3 Modulation and increased H3K27me3 BDI 

relate to decreased IFN gamma production in Dex treated NK cells. 

Table 6. Relationships between H3K27me3 Modulation and IFN gamma MFI in untreated 
and Dex treated NK cell populations from six individuals. 

 Untreated   
NK cells 

r= 

p= Dex 
 NK cells 

r= 

p= 

Sample 1 -0.213 0.10 -0.340 0.0005 
Sample 2 -0.024 0.819 -0.159 0.05 
Sample 3 0.030 0.783 -0.344 0.0005 
Sample 4 -0.103 0.112 -0.243 0.0005 
Sample 5 0.093 0.433 -0.556 0.0005 
Sample 6 0.052 0.520 -0.671 0.0005 

*Note p<0.05 was considered significant. 

Table 7.  Relationship between H3K27me3 BDI and IFN gamma MFI in untreated and Dex 
treated NK cell populations from six individuals. 

 Untreated  
NK cells 

r= 

p= Dex 
 NK cells 

r= 

p= 

Sample 1 -0.197 0.16 -0.241 0.0005 
Sample 2 -0.161 0.118 -0.148 0.05 
Sample 3 -0.190 0.09 -0.236 0.0005 
Sample 4 -0.179 0.163 -0.167 0.005 
Sample 5 0.084 0.362 -0.567 0.0005 
Sample 6 0.022 0.787 -0.684 0.0005 

*Note p<0.05 was considered significant. 

Quantification of H3K27me3 Modulation Interval IFN gamma Production in NK Cells 

IFN gamma production values were calculated for each H3K27me3 Modulation Interval 

as: mean IFN gamma MFI x % NK cells detected in each H3K27me3 Modulation Interval. This 

resulted in H3K27me3 Modulation Interval IFN gamma values that were representative of the 

NK cells detected within each H3K27me3 Modulation Interval. H3K27me3 Modulation Interval 

IFN gamma values were then compared in Dex treated and untreated H3K27me3 Modulation 

Intervals. See Figure 6. Dex treatment significantly decreased the H3K27me3 Modulation 
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Interval IFN gamma in intervals 7, 8, and 9 when compared to untreated NK cells.  There were 

no significant differences detected in H3K27me3 Modulation Intervals 1-6, or 10.   

Figure 6. NK cell H3K27me3 Modulation Interval IFN gamma Production 

 

H3K27me3 Modulation Interval IFN gamma production for untreated NK cells is depicted in the 
closed boxes and for Dex treated NK cells, open boxes. H3K27me3 Modulation Interval IFN 
gamma was calculated as follows: H3K27me3 Modulation Interval mean IFN gamma MFI x % 
NK cells for each H3K27me3 Modulation Interval. Data are the mean of six individuals +/- 
SEM. The data were analyzed by Student’s t-test for each H3K27me3 Modulation Interval. *p < 
0.05. 
 

H3K27me3 Modulation Interval Chromatin Organization (CO) of Dex Treated and 

Untreated NK Cells 

H3K27me3 Modulation and H3K27me3 BDI provide rapid, and high throughput 

quantification of the localization and density of H3K27me3 within the nucleus of individual NK 

cells.  When combined with the percentage of NK cells within a particular H3K27me3 

Modulation Interval, the mean H3K27me3 Modulation Interval Chromatin Organization (CO) 

value of the NK cells within each H3K27me3 Modulation Interval was calculated: mean 

H3K27me3 Modulation x mean H3K27me3 BDI x % NK cells in each H3K27me3 Modulation 
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Interval. A comparison of H3K27me3 Modulation Interval CO for Dex treated and untreated NK 

cells is shown in Figure 7. For H3K27me3 Modulation Intervals 8-10, (H3K27me3 Modulation 

Intervals with Peripheral H3K27me3 localization) Dex treated cells had a significant increase in 

H3K27me3 Modulation Interval CO when compared to untreated NK cells.  These data 

demonstrate Dex to increase H3K27me3 CO and the increase is due to an increase in the 

percentage of NK cells that contained Peripheral H3K27me3 localization.  

Figure 7. H3K27me3 Modulation Interval Chromatin Organization (CO) of Dex treated 
and untreated NK cells.  

 

              

 

 

 

 

 

 

H3K27me3 Modulation Interval CO for untreated NK cells is depicted in the closed boxes and 
Dex treated NK cells, open boxes. H3K27me3 Modulation Interval CO for each H3K27me3 
Modulation Interval was calculated as: mean H3K27me3 Modulation x mean H3K27me3 BDI x 
Percentage of NK cells within each H3K27me3 Modulation Interval. Data are the mean of six 
individuals +/- SEM. The data were analyzed by Student’s t-test for each H3K27me3 Modulation 
Interval. * = p <0.05. 

For six separate NK cell populations (derived from 6 separate individuals), relationships among 

H3K27me3 Modulation Interval CO and H3K27me3 Modulation Interval cytoplasmic IFN 

gamma were evaluated. See Figure 8. A significant negative relationship (r = -0.557, p = 0.004) 

was found between Modulation Interval H3K27me3 CO and Modulation Interval IFN gamma 

MFI in Dex treated NK cells while no association was observed for untreated  NK cells (r = -
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0.097, p = 0.638). Data for H3K27me3 Modulation Intervals 6-10 were analyzed in that no 

difference in H3K27me3 Modulation Interval IFN gamma 1-5 was noted.  Further, H3K27me3 

Modulation Intervals 6-10 contained the majority of NK cells within each subject. In Dex treated 

NK cells, Modulation Intervals 6-10 contained 95% +/- 1.7% of the entire NK cell population. 

While in untreated NK cells, H3K27me3 Modulation Intervals 6-10 contained 89.5% +/- 1.7% of 

the entire NK cell population. 

Figure 8. Relationship of H3K27me3 Modulation Interval Chromatin Organization (CO) to 
H3K27me3 Modulation Interval IFN gamma production in Dex treated and untreated NK 
cells. 

 

 

Relationship of H3K27me3 Modulation Interval Chromatin Organization (CO) to H3K27me3 
Modulation Interval IFN gamma production in Dex treated and untreated NK cells. 
Untreated NK cells are depicted in the open circles and Dex treated NK cells are depicted in the 
closed circles.  The relationship between H3K27me3 Modulation Interval CO and H3K27me3 
Modulation Interval IFN gamma production for untreated cells is depicted by the hashed line (r= 
.097, p= 0.638). The relationship between H3K27me3 Modulation Interval CO and H3K27me3 
Modulation Interval IFN gamma production of Dex treated NK cells is depicted by the solid line 
(r= -0.557, p= 0.004). Data for H3K27me3 Modulation Intervals 6-10 for six individuals, 
comprise the Figure. 
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H3K27me3 Global Chromatin Organization (CO) of Dex Treated and Untreated NK Cells 
with regard to NK cell IFN gamma Production 

In order to make a direct comparison of NK cell populations, a H3K27me3 Global 

Chromatin Organization value was derived and is the summation of the 10 H3K27me3 

Modulation Interval CO values. In this manner, a single value was assigned to an entire NK cell 

population and that value was then evaluated in the context of NK cell function (e.g. IFN gamma 

levels for the entire CD56+ NK cell population). See Table 4A.  Dex treated NK cells had a 

significantly larger H3K27me3 Global CO value, which coincided with a significantly reduced 

Global IFN gamma value for the entire population of cells. Likewise, when H3K27me3 Global 

CO and Global IFN gamma were compared for the summation of data from H3K27me3 

Modulation Intervals 6-10. See Table 4B. The results from the summations of H3K27me3 

Modulation Intervals 1-10 were recapitulated.  These data demonstrated that H3K27me3 

Chromatin Organization was coincident with decreased NK cell function.  
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Table 8. H3K27me3 Global Chromatin Organization (CO) Value and Cytoplasmic IFN 
gamma levels for individual populations of NK cells.    

A.                                                                            B.                                                                        

 Untreated Dex-6M     p= 

         

H3K27me3  

Global CO  

(H3K27me3 
Modulation 
Interval 6-10)                   

5,055+/-
636 

9,696+
/-1360 

 

0.005 

Cytoplasmic  

IFN gamma 

(H3K27me3 
Modulation 
Interval 6-10) 

3,008+/-
550 

2,046+
/-488 

0.001 

 
A. H3K27me3 Global CO value for the entire cell population was calculated as the summation of 
the 10 H3K27me3 Modulation Interval H3K27me3 CO values. As well a Global IFN gamma 
value for the entire cell population was calculated as the summation of the 10 H3K27me3 
Modulation Interval IFN gamma values.  B.  H3K27me3 Global CO was calculated as the 
summation of H3K27me3 Modulation Intervals 6-10. Global IFN gamma value was calculated 
as the summation of H3K27me3 Modulation Interval IFN gamma values from H3K27me3 
Modulation Intervals 6-10. NK cells were derived from 6 individuals +/- SEM. Dex and 
untreated NK cells were compared by Paired t-test.      

 

  

 Untreated Dex-6M    p= 

          

H3K27me3  

Global CO  

(H3K27me3 
Modulation 
Interval 1-10) 

5,071+/- 

504 

 

9,383 
+/-  

1121 

 

0.006 

Cytoplasmic  

IFN gamma 

(H3K27me3 
Modulation 
Interval 1-10) 

3,382+/- 

571 

 

2,240 
+/- 

446 

 

0.007 
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CHAPTER FOUR 

DISCUSSION 

  In this investigation dexamethasone (Dex) was shown to alter the H3K27me3 Global 

Chromatin Organization (CO) of NK cells. This alteration was evidenced by an increase in the 

intensity (as judged by mean fluorescent intensity, MFI) of the histone epigenetic, post-

translational mark, H3K27me3. Increased H3K27me3 intensity was related to Peripheral 

H3K27me3 localization in individual NK cells. Peripheral localization was first determined by 

visual inspection and then by automated analysis of H3K27me3 Modulation and H3K27me3 

BDI within individual NK cells. With increased H3K27me3 Modulation and increased 

H3K27me3 BDI there was intensified Peripheral H3K27me3 localization. With Dex treatment, 

the percentage of NK cells with Peripheral H3K27me3 localization was markedly increased, 

especially in H3K27me3 Modulation Intervals 8-10.  This Peripheral H3K27me3 localization is 

consistent with heterochromatic DNA in which effected genes are repressed (Amendola & van 

Steensel, 2014; Grewal & Moazed, 2003). 

Peripheral H3K27me3 localization was noted in untreated NK cells and this was not 

unexpected in that silenced genes are expected to have a heterochromatic localization (Andrulis, 

Neiman, Zappulla, & Sternglanz, 1998). Environmental factors including but not limited to diet 

(Sadhu et al., 2013), age (Bracken et al., 2007; Kawakami, Nakamura, Ishigami, Goto, & 

Takahashi, 2009), smoking (Sundar, Nevid, Friedman, & Rahman, 2014; Yang et al., 2008), 

previous psychological stressors (Eddy, Krukowski, Janusek, & Mathews, 2014; Krukowski et 

al., 2011), and alcoholic intake (Kim & Shukla, 2006) are known to effect epigenetic marks and 



39 
 

 
 

can contribute to the Peripheral H3K27me3 localization observed in untreated NK cell 

populations. However, it is clear is that Dex significantly increased the percentage of NK cells 

with increased Peripheral H3K27me3 localization and H3K27me3 BDI, suggesting that 

glucocorticoids drive the localization and density of H3K27me3 toward the nuclear periphery. 

Taken together, these data indicate that glucocorticoid treatment increases H3K27me3 intensity. 

The increase in the repressive epigenetic mark H3K27me3 increases the localization of 

H3K27me3-marked DNA toward the nuclear periphery in NK cells that is consistent with 

repressed, heterochromatic DNA. It was previously known that epigenetic marks 

compartmentalize chromatin into actively transcribed euchromatic and repressed 

heterochromatic domains (Martin & Zhang, 2005; Misteli, 2007), however to the authors’ 

knowledge, this is the first time that GC induced global alterations of nuclear H3K27me3 

localization has been visualized. 

Increased Peripheral localization of H3K27me3 was directly related to reduced production 

of intracellular IFN gamma. A negative relationship was observed between H3K27me3 

Modulation Interval CO and IFN gamma in H3K27me3 Modulation Intervals 6-10 in Dex treated 

NK cells that was not observed in untreated NK cells.  H3K27me3 Modulation Intervals 6-10 were 

chosen to analyze the relationship between H3K27me3 Modulation Interval CO and IFN gamma 

because there were no observed differences in IFN gamma production for H3K27me3 Modulation 

Intervals 1-5 between Dex treated and untreated NK cells. Further, the majority of NK cells were 

detected in H3K27me3 Modulation Intervals 6-10.  The calculation of H3K27me3 Global CO and 

Global IFN gamma values, in which Dex treated NK cells had significantly higher H3K27me3 

Global CO and a concomitant decrease in NK cell IFN gamma production. These data indicate 

that Dex treatment alters H3K27me3 CO within NK cells by increasing the Peripheral localization 
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and density of H3K27me3-marked chromatin and the alteration of H3K27me CO is directly related 

to reduced IFN gamma production. Hence, the Peripheral localization and density of H3K27me3 

(H3K27me3 CO) within NK cells may be an indicator of GC induced NK cell dysregulation.  The 

finding that H3K27me3 CO is directly related to effector function is further substantiated by a 

recent study in hepatocellular carcinoma, in which increased H3K27me3 localization to the nuclear 

periphery is correlated to an aggressive tumor subgroup of HCC (Hayashi, et al., 2014). The results 

described in this manuscript are the first to describe a correlation between glucocorticoid induced 

alteration of H3K27me3 Global Chromatin Organization and reduced NK cell IFN gamma 

production.    

This investigation was accomplished by coupling an evaluation of the effects of Dex on 

NK cells with an efficient and innovative high through-put technology, the Amnis ImageStream. 

It achieves high through-put capacity as a multispectral imaging flow cytometer, combining 

microscopic imaging with flow cytometry. It can image up to 100 cells/sec, with simultaneous 

acquisition of 6 images per cell, including bright field and fluorescent intensities. It combines the 

per-cell information content provided by standard microscopy with the statistical significance 

afforded by large sample sizes common to standard flow cytometry. Localization of H3K27me3 

signal intensity was measured with the Amnis ImageStream IDEAS software Modulation 

feature, which quantifies signal intensity distribution within the nucleus, normalized as a number 

between 0 and 1. H3K27me3 Modulation served as a quantitative value representing the contour 

of H3K27me3 staining in individual nuclei. Increased H3K27me3 Modulation was correlated 

with increased Peripheral localization of H3K27me3. H3K27me3 BDI identified increased 

density of H3K27me3 in individual nuclei. With increased H3K27me3 BDI there was an 

increase in density of H3K27me3 at the nuclear periphery. Hence, H3K27me3 Modulation and 
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H3K27me3 BDI were utilized to develop a H3K27me3 Chromatin Organization value to 

ascertain the degree of Peripheral localization of H3K27me3 and density of H3K27me3 within 

NK cell nuclei that could then be easily compared to immune function (i.e. IFN gamma). 

Chromatin organization both reflects and impacts transcriptional regulation and is 

responsive to physiological stimuli (Misteli, 2007; Schneider & Grosschedl, 2007). Chromatin 

organization at the nuclear periphery, affects gene transcription, as well as inter- and intra-

chromosomal gene clustering (Misteli, 2007; Schneider & Grosschedl, 2007) and is an important 

site for both active and repressed gene transcription (Akhtar & Gasser, 2007; Egecioglu & 

Brickner, 2011).  

Each chromosome within the nucleus occupies a defined nuclear territory with spatial 

domains dependent upon distinct structural and functional states. These are; euchromatin, which 

is loosely packed and contains transcriptionally active loci, and heterochromatin, which is highly 

compact and transcriptionally silent (Misteli, 2007). At the nuclear periphery euchromatin tends 

to localize to the nuclear pore complex (NPC) while heterochromatin tends to localize to the 

lamina (Belmont, Zhai, & Thilenius, 1993; Schermelleh et al., 2008). Actively transcribed genes 

are tethered to the NPC (Arib & Akhtar, 2011; Blobel, 1985; Krull et al., 2010), which facilitates 

mRNA export (Brickner et al., 2012; Schmid et al., 2006). In close proximity to the NPC and 

associated with the nuclear lamina is heterochromatin (Green, Jiang, Joyner, & Weis, 2012; Van 

de Vosse et al., 2013), in which gene transcription is repressed (Light, Brickner, Brand, & 

Brickner, 2010).Hence, the nuclear periphery is a platform in which the more abundant 

heterochromatin is interrupted by the euchromatin associated with the NPC (Casolari et al., 

2004; Green et al., 2012; Ikegami & Lieb, 2013; Light et al., 2010; Pascual-Garcia & Capelson, 

2014; Taddei et al., 2006; Van de Vosse et al., 2013).  
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    DNA regions marked by H3K27me3 are nucleosome compacted and when associated 

with the nuclear periphery are heterochromatic. These regions contain inaccessible regulatory 

elements, reduced transcription factor binding and are readily detected as a highly ordered 

structure within the three dimensional architecture of the nucleus (Amendola & van Steensel, 

2014; Grewal & Moazed, 2003).  Regions of DNA containing H3K27me3 form large 

compartments of topologically associated domains (TADs) containing tracts of DNA silenced by 

the polycomb-repressive complexes (PRC) (Dixon et al., 2012; Rao et al., 2014). These TADs 

dictate transcription of the genes contained within the TAD. Tri-methylation of lysine 27 on the 

exposed N-terminal tail of histone H3 (H3K27me3) is catalyzed by the methyl transferase 

Enhancer of Zeste Homolog 2 (Ezh2), which is a subunit of PRC2  (Margueron & Reinberg, 

2011). Histone tri-methylation of H3K27 at the targeted nucleosome enhances the activity of 

PRC2 and with increased PRC2 methyl transferase activity, H3K27me3 marks propagate along 

the chromosome (Margueron et al., 2009). PRC2 and H3K27me3 recruit protein complexes that 

compact chromatin and epigenetically silence genes within that region of DNA (Margueron & 

Reinberg, 2011; Simon & Kingston, 2009; Spivakov & Fisher, 2007). These protein complexes 

include histone deacetylase 1 (HDAC1) (Tie, Furuyama, Prasad-Sinha, Jane, & Harte, 2001; van 

der Vlag & Otte, 1999) that reduces DNA accessibility by histone deacetylation (Haberland, 

Montgomery, & Olson, 2009) and is known to interact with PRC2 through EZH2 (van der Vlag 

& Otte, 1999). 

    We have previously demonstrated GC: GR to associate with HDAC1 and to repress IFN 

gamma production by NK cells (Bush, Krukowski, Eddy, Janusek, & Mathews, 2012; 

Krukowski et al., 2011). Reduction of IFN gamma production by Dex is associated with reduced 

histone acetylation at the IFNG promoter and with a quantitative reduction in IFNG mRNA 
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production (Krukowski et al., 2011). In this investigation we extend those observations by 

analysis of Dex effect on the repressive epigenetic mark, H3K27me3. We found Dex to not only 

increase detectable H3K27me3 within nuclei but also to increase localization of the epigenetic 

mark to the heterochromatic nuclear periphery. Such localization correlated with reduced IFN 

gamma production. Upon stimulation, mature NK cells are poised to produce IFN gamma within 

minutes to hours after stimulation (Stetson et al., 2003). Hence, the euchromatic localization of 

IFNG is likely at the NPC, for rapid mRNA nuclear export and active transcription. With 

increased glucocorticoids (e.g. during stress), GC: GR recruitment of PRC2 with tri-methylation 

of H3K27 and deacetylation by HDAC1, likely condense the chromatin domain containing 

IFNG, associating it with the nuclear lamina. GR binds to >10,000 sites within the human 

genome and glucocorticoids regulate the expression of hundreds of genes interacting over tens of 

kilobases (Olnes et al., 2016; Vockley et al., 2016). These long range interactions regulate 

multiple genes within TADS (Kuznetsova et al., 2015). Hence, the Dex induced extensive 

detection of H3K27me3 at the nuclear periphery likely reflects the heterochromatic localization 

of chromatin domains containing these repressed genes as well as IFNG (Galon et al., 2002; 

Wang et al., 2016). 

   The focus of this investigation was measurement of immune cell function by cytoplasmic 

assessment of IFN gamma production by individual NK cells. As described previously, NK cells 

are large, granular lymphocytes that are poised for rapid effector function (Stetson et al., 2003). 

NK cells belong to the family of group 1 innate lymphocytes (ILC1), their frequency 

approximates 10% in peripheral blood, and are functionally characterized by their cytotoxicity 

and their ability to produce cytokines (Vivier, Tomasello, Baratin, Walzer, & Ugolini, 2008)  

that shape the innate and adaptive immune responses (Vivier et al., 2011). However, the best-
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characterized cytokine produced by NK cells is IFN gamma (Cooper et al., 2001), which is 

quickly released within minutes to hours after NK cell stimulation (Stetson et al., 2003). NK cell 

produced IFN gamma has many effects on the immune response, including induction of MHC 

class II molecules on antigen-presenting cells, activation of myeloid cells and induction of T 

helper 1 (TH1) cells (Morvan & Lanier, 2016). Macrophage activation by NK cell-derived IFN 

gamma has been shown to be essential for resistance to primary tumorigenesis As such, IFN 

gamma production by NK cells is central to the optimal function of the immune system. 

Measurement of its production in NK cells is particularly important because the response to 

stimulus is essentially immediate and does not require longer term activation as would be 

required with T lymphocytes.  

    The relationship of psychological stress and the HPA axis is well established (Gotlieb et 

al., 2015).  It is known that Dex, at therapeutic concentrations, is anti-inflammatory and as an 

immunosuppressive agents is used for the treatment of numerous autoimmune and inflammatory 

diseases (Boumpas, Chrousos, Wilder, Cupps, & Balow, 1993). Endogenous glucocorticoids also 

play a physiologic role in feedback inhibition of immune/inflammatory responses (Karin, 1998; 

Wilckens & De Rijk, 1997). Further, exogenous Dex at physiological concentrations has 

repeatedly been shown to markedly suppress human and animal NK immune function (Cox, 

Holbrook, & Friedman, 1983; Gatti, Cavallo, Sartori, Marinone, & Angeli, 1986; Krukowski et 

al., 2011; Shakhar et al., 2007; Witek-Janusek et al., 2008; Witek-Janusek, Gabram, & Mathews, 

2007). Further, GC are known to suppress production of the cytokine, interferon (IFN) gamma, 

via glucocorticoid receptor (GR) activation (Ding, Yang, & Xu, 1989; Vieira, Kaliński, 

Wierenga, Kapsenberg, & de Jong, 1998; Visser et al., 1998) as well as reducing NKCA (Eddy 

et al., 2014; Krukowski et al., 2011) through GR interaction with immune effector loci. We have 

http://topics.sciencedirect.com/topics/page/Glucocorticoid_receptor
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also demonstrated that the effects of GC on NKCA and IFN gamma in NK cells in vitro is 

partially mediated by an epigenetic mechanism (Eddy et al., 2014; Krukowski et al., 2011). 

Based on the data presented herein it appears that in addition to these effects, Peripheral 

localization of the repressive epigenetic mark H3K27me3 is also influenced by Dex and that 

such localization is related to suppression of cytokine production.  

In contrast, the effect of norepinephrine (NE) on immune function is controversial and 

NE has been shown to increase (Glac et al., 2006; Hellstrand, Hermodsson, & Strannegård, 

1985; Tarr et al., 2012), decrease (Rosenne et al., 2014; Takamoto et al., 1991; Whalen & 

Bankhurst, 1990), or have no effect (Gotlieb et al., 2015) on NK cell immune function. This 

investigation sought to determine if NE suppressed NK cell function. NE treatment did not 

suppress NK cell lysis of tumor cells (NKCA), or suppress production of IFN gamma.  With no 

effects seen in either NKCA or IFN gamma production for the 24 hr time period no epigenetic 

analyses were completed.   

There are limitations to this investigation and chief among these is the ex vivo treatment 

of human PBMCs with Dex. It is unknown if the effects so observed in vitro would be achieved 

in subjects undergoing a psychologically stressful event. Further, we have explored a single 

histone epigenetic mark and a single immune effector molecule. However, H3K27me3 is a well 

characterized post-translational histone mark associated with repressed gene expression and with 

localization to heterochromatin. Likewise, we have explored only IFN gamma. However, IFN 

gamma is a hallmark cytokine produced by NK cells and is central to the innate and adaptive 

immune response. As such, it is likely that results obtained with this epigenetic mark and this 

cytokine are generalizable to overall immune function and to the effects of Dex on the chromatin 

organization of NK cells.  
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In conclusion, Dex was demonstrated to alter H3K27me3 CO and this alteration directly 

related to the capacity of NK cells to carry out immune function. Alterations in chromatin 

organization, as a downstream and more proximal indicator of immune function, may be an 

effective means by which to identify those at risk for GC induced immune dysregulation.  
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