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CHAPTER I 

INTRODUCTION 

Previous viewpoints on the hierarchy of pacemaker activity, claimed that sites 

within the atrioventricular (AV) node acquired the primary role after the sinoatrial 

(SA) node was suppressed (257,536,537). This perspective continued until the late l 970's, 

when investigations by two separate laboratories found contradicting evidence. Sealy 

and associates (464,466,467) and Randall and associates (149,178,267,268,420-422,444) 

demonstrated that after SA node excision in the canine model, the permanent subsidiary 

pacemaker that emerged was located still within the right atrium. Jones and coworkers 

(267,268) systematically mapped the site of these pacemakers and found them to lie at 

the junction of the inferior vena cava (IVC) and the posterior wall of the right atrium. 

It was observed that atrial subsidiary pacemakers (ASPs) exhibited significantly slower 

rates and a greater overdrive suppression than the SA node (420), and were under 

autonomic regulation (149,332,420). An in vitro model of the canine ASPs was 

developed, and reinforced the above results using extracellular and intracellular 

techniques (443,444). Furthermore, Rozanski and Li psi us (442) demonstrated that fibers 

within this preparation can generate triggered activity. The results of these studies 

suggested a revision in the hierarchy of supraventricular pacemakers, as well as 

demonstrated the possibility that ASPs may be a focus for atrial dysrhythmias. 

Intracellular recordings of ASP action potentials displayed prominent diastolic 

depolarization, a significantly lower maximum diastolic potential and peak upstroke 

velocity when compared to surrounding atrial muscle (442). However, an analysis of the 
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cellular electrophysiological mechanisms responsible for this subsidiary pacemaker 

automaticity have yet to be performed. Preliminary experiments revealed that the same 

region of the cat right atrium beat spontaneously. In addition, this tissue was thinner, 

more prominent, and more stable for intracellular electrode experiments than that 

found in the dog. As a result, the cat right atrial model was chosen to study the ASP 

mechanisms. This dissertation proposes to develop an in vitro model of the cat ASPs. 

Modifications of ionic composition of Tyrode's solution and/or applications of 

specifically-acting pharmacological agents will allow the study of possible mechanisms 

of subsidiary pacemaker automaticity. The isolated in vitro preparation provides a 

method to selectively study these pacemakers in a controlled extracellular environment. 

The Eustachian ridge (ER) of the dog, located at the junction of the IVC and 

right atrium, was ultrastructurally described by James and associates to be comprised 

of 6 cellular types, one of which was labelled as P-cells for their similarity to P-cells 

found in the SA node (473). Sherf and James (473) postulated that cells within the 

internodal pathways (including the ER) may exhibit automaticity, however no 

recordings were attempted. The ultrastructure of the cat ER has not been described. 

Therefore in a combined anatomical and physiological study, a structure-function 

relationship will be completed for the ER in comparison to cat SA node. Although there 

have been several morphological studies of SA node in different animals, at the onset 

of this study, there had yet to be published any ultrastructural description of the cat 

SA node. By the conclusion of this investigation however, to the best of our knowledge, 

one anatomical study of the cat SA node was published (397). Therefore, this work will 

also provide some of the first structure-function information on cat SA node. 

In several experiments the ER was quiescent after isolation yet could initiate 

activity by slight alterations in ionic concentrations or by specific pharmacologic 

agents. The mechanisms of this pacemaker initiation also will be investigated. 
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Therefore the purpose of this investigation is to: 1) develop an in vitro model to 

study right atrial subsidiary pacemaker function, 2) analyze the electrophysiological 

mechanisms responsible for atrial subsidiary pacemaker automaticity, 3) describe the 

ultrastructural characteristics of atrial subsidiary pacemaker fibers, and 4) determine 

fundamental mechanisms of subsidiary pacemaker initiation. 



CHAPTER II 

LITERATURE REVIEW 

A. THE ORIGIN OF THE HEARTBEAT AND ITS HIERARCHY 

1. Sinus Node. 

In an electrophysiologic investigation of impulse generation of the heart, one must 

begin by locating the site of the impulse generator. Methods of applying direct stimuli 

to specific locales were first achieved by Erlanger and Blackman (147) in 1907. By 

regional clamping, cutting, torsion or crushing, the only site found to consistently 

exhibit rate modification was the junctional region between the great veins and the 

right atrium. Only a few months prior, Keith and Flack (286) found morphologic 

evidence from several mammalian species including humans that a small region of cells 

at the junction of the superior vena cava (SVC) and the right atrium were similar in 

structure to fibers found by Tawara (504) and Aschoff (IO) in the atrioventricular (AV) 

node. Specifically, Keith and Flack (286) found cells resembling embryonic fibers, 

which had less fibrillar content giving them a pale appearance in contrast to atrial 

muscle cells. In addition, the fibers were not aligned in a parallel manner as typical 

atrial or ventricular muscle. 

It wasn't until 1910 that the first electrical manipulations were used to firmly 

reinforce this site of primary pacemaker activity. Lewis et al. (320) placed a small trout 

hook on the tip of several electrodes that were attached to specific areas of either the 

left or right atrium. Small induction shocks were delivered to the heart via these 

electrodes while the resulting electrical complex was continuously monitored. Lewis 

4 
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believed an artificial electrical impulse activating only at the precise spot of the 

pacemaker could generate an electrical waveform that was similar to that produced 

spontaneously. His findings consistently demonstrated that only shocks delivered to the 

right atrial inlet of the SVC could generate closely similar, if not identical, waveforms. 

Importantly, this was also the first direct evidence of the intimate association between 

electrial and mechanical events. Although Lewis associated his evidence with the work 

of Keith and Flack, he had not yet obtained any direct histologic evidence that these 

sites were within the SA node. 

Later in the same year, Lewis (319), and Wybauw (586) separately developed a 

second galvanometric method of localizing the pacemaker. Each mapped the surface 

of the right atrium for the site of primary (or earliest) electrical negativity. Both 

obtained the same result; that the site of the primary pacemaker was at the junction of 

right atrium and the SVC. Lewis (319), had one important addition in their paper. 

Lewis's coworkers were from Keith's laboratory and had histologically examined the 

tissues that demonstrated the primary negativity. Invariably, the site lay directly over 

the sinoatrial (SA) node with a propensity of being toward the cephalic end. 

In the next several years, experiments were focused on pacemakers outside the SA 

node (subsidiary pacemakers). Jaeger (250) selectively cauterized the entire region of 

the SA node and found that the heart continued beating with only a slight change in 

rate. Erlanger and Blackman (147) had similar results 3 years earlier, but their ablation 

techniques were attempts to find the primary not the subsidiary pacemakers. 

2. Subsidiary Pacemakers. 

a. In Vivo - General History 

Similar to Jaeger, Brandenburg and Hoffman (56) and Zahn (595), either 

Physically clamped or burned the SA node. Again, the heart continued to beat, although 
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this new site of activity originated within the atria (by ECG recordings), it was not 

pinpointed by the method of primary negativity. In 1914, Meek and Eyster (357) 

identified the SA node by initial electric negativity and then observed the effects of 

directly and reversibly inhibiting the pacemakers at this site. They stitched several 

recording electrodes on the surface of the heart to obtain a general region of where the 

pacemaker would shift. Vagal stimulation by tetanizing currents, ice pencils, ethyl 

chloride spray, or selective KC! injection changed the site of dominant pacemaker 

activity to a lower region within the specialized tissue. Weak vagal stimulation or 

application of local cold was found to shift the pacemaker to a more caudal region 

within the SA node. However, either stronger vagal stimuli or more diffuse cooling of 

the SA node by ethyl chloride spray caused the pacemaker to relocate, usually in the AV 

node. Interestingly, the method used for locating the site of subsidiary pacemaker 

activity was by a comparison of electrical records from 4 stationary electrodes; three 

vertically arranged within the SA node and the fourth electrode placed by the AV node. 

Two important considerations must be introduced at this point, both of which 

were seemingly ignored and subsequently caused over a half century to pass before the 

correct hierarchy of pacemakers was established. First, the site of the subsidiary 

pacemaker found by Meek and Eyster was never systematically mapped (357). The 

pacemaker was considered to be residing in the AV node when the fixed electrode in 

AV region registered its electrical activity prior to the electrodes within the SA node. 

The area of tissue that could cause this electrical event certainly may have been within 

the AV node, yet it would also include a relatively large area of adjacent tissue. 

Second, in an experiment after KC! injection the pacemaker although close to the 

electrodes, did not seem to reside either in the SA node or the AV node (357). The 

nearest identifiable structure in the heart near the entrance of the IVC was the 

coronary sinus, thus the name, coronary sinus rhythm. Therefore, by not systematically 
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mapping the new site of initial negativity after SA node suppression, the AV node 

became the second most important pacemaker in the heart. The region near the 

coronary sinus had a rhythm named after it for subsidiary pacemaker sites not found 

within the AV node, but near the junction of the IVC. 

Eyster and Meek (150) continued there investigations of subsidiary pacemakers 

in the dog heart by either clamping or crushing the SA node. The pacemaker exhibiting 

dominance in these acute experiments was found to be either within the AV node or lie 

in a region surrounding the coronary sinus. The pacemakers were again grossly located 

using immobile surface electrodes. Although this coronary sinus rhythm occurred in 10 

of 55 experiments, its average rate was faster than the rates observed of pacemakers 

within the AV node. Three years earlier, Eyster and Meek (356) demonstrated that 

isolating the SA node with surgical cuts produced AV nodal rhythm in five of eight 

experiments. However, if the SA node was inhibited by crushing instead of cuts, 

coronary sinus rhythm appeared in five of five experiments. Although it remained 

unclear which pacemakers were to predominate in the chronic condition, conclusions 

drawn from the above experiments added momentum to the belief that the AV node 

contained the second most dominant pacemakers. 

In 1922, Eyster and Meek (151) performed the first experiments to study the 

effects of SA node excision on the development of a chronic subsidiary pacemaker. 

Following, SA node excision, the site of primary negativity was systematically mapped 

by moving a pair of surface electrodes across the atria. These sites were determined at 

a time ranging from 48 hours to 97 days. Seven of ten dogs demonstrated initial AV 

nodal rhythms (by ECG), while three others had a shortened P-R interval and were 

therefore considered to have a rhythm "with its origin in the region of the coronary 

sinus." Five of the dogs with initial AV nodal rhythm displayed a transition to a 

coronary sinus rhythm. This transition occurred at varying times from 30 minutes up 
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to 9 days. Both dogs that did not experience a transition died spontaneously on the 5th 

day. The authors observed a considerable difference in the animals' health before and 

after the transitions. During AV nodal rhythm the animals were lethargic, easily 

becoming cyanotic and dyspneic with the slightest exertion. With the onset of "coronary 

sinus rhythm," significant improvements were readily seen. In the last seven 

experiments, the excised SA node was fixed and verified histologically as was the 

surrounding tissue at the time of death. Five of these were determined to have had 

complete excision, while two had residual, less than one tenth of the original nodal 

tissue ( 151 ). 

An interesting relation became apparent on the automaticity of the three 

different pacemaker regions. The control SA rate averaged 115/min, the "coronary 

sinus rhythm" averaged 86/min, while the average AV nodal rhythm was 60/min. Meck 

and Eyster ( 151,357) concluded that the automaticity of the specialized tissues along the 

great veins gradually diminished in the caudal direction. In three dogs the influence 

of exercise on heart rate was also compared. The heart rate increased from a control 

(prior to SA node excision) of 140 to an average 220 in the SA node, the coronary sinus 

rates increased from JOO to 142, and the rate increase of rhythms originating in the AV 

node was essentially insignificant. Therefore, the amount of sympathetic regulation 

also seemed to diminish from above downward. Furthermore, they found that the 

coronary sinus was under more vagal control compared to the AV node. Atropine 

caused greater acceleration in coronary sinus rhythms than AV nodal rhythms. These 

experiments were reviewed in more detail since many similar experiments were 

included in later studies of atrial subsidiary function (267,268,420,421,444,464,466). 

In 1927, Borman and McMillan (47) criticized Eyster and Meek's method of SA 

node destruction. They believed that the surgical excision was too rapid or traumatic 

an event to observe where the resulting subsidiary pacemaker originates. They repeated 
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the experiments using a more gradual destruction of the SA node, specifically by the 

implantation of radon seeds. The progressive destruction of the SA node over 30 days, 

was considered to parallel a more realistic progression of a disease state. Borman and 

Meek (48) found no permanent AV nodal rhythms with this new technique. In three of 

seven dogs automaticity was still generated from the SA node. In the other four 

animals, the initial negativity was found to be near the region of the coronary sinus 

(again the site was not systematically mapped). Therefore, it was concluded that no 

matter how acute or chronic the disease state, the pacemaker that permanently gained 

control was near the coronary sinus. Although the authors histologically examined the 

SA node region, there was no examination of the resultant subsidiary pacemaker 

regions. 

Noteworthy is the fact that the coronary sinus region is near the AV node, and 

investigators have further confused the issue by considering the entire coronary sinus 

region to be an upper portion of the AV node. In actuality, Tawara (504), Aschoff ( 11 ), 

Koch (295) and Kung (305) found that in the region of the coronary sinus, nodal looking 

cells were in continuity with the posterior region of the AV node. Koch (295) and Kung 

(305) also added that this zone was infiltrated with a multitude of nerve fibers and 

ganglion cells. Later (252), this span of tissue was clarified as a portion of the posterior 

internodal pathway before it adjoins to the posterior aspect of the AV node. 

In 1946, the confusion concerning this zone broadened with the statement by 

Sherf and Harris' (459) that "coronary sinus rhythm" was a rhythm which had its origin 

in the upper part of the AV node. Specifying electrocardiographic criteria for coronary 

sinus rhythm, they found an incidence of this rhythm to be about 13 per 10,000 in the 

general human population, eighty percent of which had evidence of heart disease. 

Experimentally they showed that a warming electrode which was directly applied to 

these pacemakers in the dog could reproduce the same electrocardiographic waveform 
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(inverted P waves in leads II and III). 

Analysis of their method (459) included the placement of a thermal electrode on 

the "wall of the inferior vena cava" at the junction of the right atrium and pressing it 

to the area around the orifice of the coronary sinus. They did not appear to be aware 

that warming through the IVC was likely to stimulate the posterior internodal pathway 

preferentially. No direct histologic verification of a systematically mapped region 

generating subsidiary automaticity was made until 1985 (442). 

A series of papers produced from James' lab used selective perfusion of 

parasympathomimetic agents through the sinus node artery to suppress SA node 

automaticity (257,259,536,537). Their conclusions from these experiments repeatedly 

emphasized that the AV node was the dominant subsidiary pacemaker site 

(257,259,536,537). "There appear to be only two major centres of automaticity in the 

normal canine heart, in and near the sinus node and in and near the AV junction (537)." 

James and coworkers (257), had never observed any stable rhythm other than AV 

junctional rhythm in any of their acute experiments. The obvious question arises as to 

why were the stable rhythms they recorded (257,259,536,537) different in location from 

previous investigators. It would seem that their method of SA node suppression may 

have unmasked a different subsidiary pacemaker. 

Although the results of these investigations were certainly reliable for the 

subsidiary pacemakers they studied (257,259,536,537), the conclusions they reached do 

not appear to be justified. Their method of suppressing the SA node was not as selective 

as they believed. The evidence is based on four separate results that differed from 

previous works. First, the ECG recordings from the previous investigators 

( 47,48,150, 151,357 ,457-459) all recorded shifts in pacemaker dominance to a more caudal 

site. This was identified by either mapping the primary negativity or the finding of a 

normal to decreased P-R interval. Urthaler et al. (536) never demonstrated P waves; 
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They stated "all atrial complexes are within the ventricular complex." By ECG, they had 

unmasked a different subsidiary pacemaker. 

Second, postmortem angiograms illustrating their perfusion technique (258,259), 

showed contrast material not only reaching the SA node, but also along the entire cristae 

terminalis extending down to the IVC by several branches. Apparently, they were 

suppressing a far larger area of specialized tissue throughout the region between the 

great veins than just the SA node at the SVC junction. More evidence of the 

distribution of the SA node artery will be presented later. 

Third, Urthaler et al. (536), found that after SA node suppression, the subsidiary 

pacemaker that emerged had a rate 66% of the control SA node rate. This percent 

decline in rate is notably larger than all previous rates measured from coronary sinus 

rhythms ( 47,48,150, 151 ). If one aberrant result is excluded (n=7), the acute coronary 

sinus rhythms had a mean rate of 79.5 % of the SA node rate (150). Furthermore 

coronary sinus rhythms in the chronic experiments had rates > 75% of the control SA 

node rates (47,48,151). Eyster and Meek's observation of the gradual decline in 

a utoma ticity from the ana to mi cal position, above downward ( 151) suggested that James' 

lab had indeed suppressed the pacemakers in the en tire region between the vena ca va 

and were studying an anatomically different pacemaker based solely on its inherent 

rate. 

Fourth, all experiments performed by James and coworkers were acute 

experiments (257,259,536,537). No chronic investigations were performed to see if this 

AV junctional pacemaker was permanent, let alone stable over a long period of time. 

Therefore by ECG, angiograms, rate, and all being acute experiments, they were likely 

studying a subsidiary pacemaker region, but not necessarily the second most important 

or dominant one. 



b. Confirmation and Importance of 

Low Right Atrial Subsidiary Pacemakers 

12 

Sealy et al. (465), correlated the development of atrial dysrhythmias in patients 

after repairs of atrial secundum defects. They suggested that formation of the 

dysrhythmias may have been secondary to disruption of the internodal tracts. Although 

the presence of preferential conducting pathways (internodal tracts) to the AV node 

remains controversial, experimental support for this suggestion was obtained in the 

canine model (230). In control experiments, paced stimulations at the SA node showed 

almost a three-fold increase in conduction velocity in the internodal tracts compared 

to right atrial muscle (230). Furthermore, sequential division of the tracts resulted in 

a 30-50% prolongation in the P-R interval. Seventy percent of the animals exhibited an 

AV nodal rhythm when the stimulator was off. The remaining 30% were described to 

generate rhythms emanating from the region near the coronary sinus (230). This led to 

the suggestion that during atrial surgery, one should attempt to avoid low transection 

of the posterior internodal pathway and thereby preserve this region of pacemaker 

tissue (465). The more superior approach might therefore prevent the seriously 

symptomatic AV nodal rhythm. 

Sealy continued investigation of atrial subsidiary pacemakers by the method of 

surgical exclusion of the SA node (464). This was an incision made completely 

transmural and circumferentially around the SA node. As the incision was made, the 

two cut ends were resutured in place, thus electrically isolating an island of SA node 

cardiac tissue. Immediately after SA node exclusion in 17 dogs, 4 maintained an atrial 

rhythm and 13 developed an AV nodal rhythm. The animals with AV nodal rhythm 

developed arrhythmias which appeared to be a competition between ectopic atrial and 

AV nodal foci. Twelve of the thirteen dogs stabilized into regular atrial rhythms 

within 3 to 15 days. Post-operative atrial rhythms beat an average of 17 beats/min 
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slower than the pre-operative SA node rhythm (83% of the original rate). ECG 

recordings demonstrated slight changes in P wave amplitude and configuration, but 

frequently normal P-R intervals. Systematic mapping of primary negativity was 

performed in five dogs 8 to 10 months post-operatively. The electrically isolated SA 

node region was discharging approximately 10 beats faster than the atrial rhythm. The 

atrial subsidiary site of earliest activation was adjacent to the coronary sinus. 

Interestingly the ECGs did not correlate with some previously established criteria 

for coronary sinus rhythm. Hurst and Logue (233) had claimed that the P-R interval 

must be greater than 0.12s and there must be retrograde activation of the atria. Scherf 

et al. (458) stated there should be normal P-R intervals, however the P waves must be 

inverted in leads II, aVR, and a VF. Sealy's results (464) corresponded more closely to 

results of Moore et al. (364), in which there were normal P-R intervals and P wave 

polarity. Although mapping the site of earliest activation revealed low atrial subsidiary 

pacemakers, establishing this rhythm by ECG recordings does not appear to be 

meaningful. 

Sealy and Seaber (467) performed another series of experiments on the size of 

exclusion of the SA node and the effects on the cardiac rhythm. In the first group of 

dogs, they made an incision that excluded specifically the SA node region of the heart. 

In a second group of dogs, the incision excluded almost the entire right atrium, leaving 

in continuity the atrial septum, coronary sinus, left atrium, and the inferior vena caval 

ostium. The first group showed stable low atrial pacemakers which emerged within two 

weeks of SA node exclusion. The second group however developed chronically unstable 

junctional rhythms. Although Sealy and Seaber left the low atrial region intact with 

the AV node, the low atrial region did not develop a dominant rhythm. They suggested 

that the atrial subsidiary pacemakers were suppressed by a factor of "summation," 

meaning the region lacked atrial tissue that could generate summing wavefronts. 
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However a more likely cause of the unstable junctional rhythms, was that the arterial 

blood supply to the low atrial site was interrupted. Examination of the diagrams of 

their incision techniques, illustrated that the entire cristae terminalis down to the inlet 

of the IVC was separated. Such an incision would transect branches of the SA node 

artery that are distributed to the inferior right atrium, and compromise the low right 

atrial subsidiary pacemakers. Their methods included no evidence of sparing the SA 

node artery. 

Separate investigations of SA node excision showed similar results. In 1973, 

Goldberg et al. (192) studied pacemaker shifts from the dog SA node elicited by 

selective stellate stimulation before and after SA node excision. They found that after 

SA node excision, but prior to stellate stimulation, 54% of the control pacemaker were 

located within the posterior internodal tract region. Histologic studies of the internodal 

pathways already had demonstrated cells having nodal characteristics to be along the 

posterior internodal pathway especially within the ER and near the coronary sinus 

(260,262,4 7 3 ). 

In 1978, Jones et al. (267) found that after excision of the canine SA node along 

with 3-4 cm of the sulcus terminalis, most developed a stable low right atrial rhythm 

within a few weeks. After meticulous mapping, eighty percent of the animals 

demonstrated pacemaker location at the junction of the IVC and posterior right atrium. 

Further functional investigations were performed on these ASPs to study the response 

to autonomic blockade and exercise (422). In twelve dogs, after SA node excision, 

several bipolar electrodes were sutured on the epicardial surface of the atrium. 

Pacemaker activity was initially unstable but within several days, a low right ASP 

became dominant. In addition, they found a consistent waxing and waning in 

frequency similar to "sinus arrhythymia" which was abolished by atropine. The 

increased heart rate observed during exercise was markedly reduced after administering 
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propranolol. They concluded from these experiments that ASPs are regulated by both 

sympathetic and parsympathetic divisions of the autonomic nervous system. 

The results from this series of experiments are in agreement with those performed 

by Eyster and Meek (151), but differ from those obtained by Urthaler et al. (536,537). 

It was suggested that the discrepancy may have been due a nonselective suppression 

method used by Urthaler et al. (536,537). 

Suppression of the SA node was achieved by cannulating the SA node artery and 

injection of eserine (536,537). However, the angiograms (258,259), as well as injections 

of vinylite (254), radioactive microspheres (572), and indocyanine green dye (209), 

consistently showed a nonselective nutrient distribution of the SA node artery. In fact, 

the arterial distribution included the entire region of the sulcus terminalis and the 

junctional region between the IVC and the right atrium (209). The subsidiary 

pacemaker region identified by Jones et al. (267,268) was well within the distribution 

of the SA node artery. Therefore, the eserine injections by Urthaler et al. (536,537) were 

also likely suppressing this specialized area. 

c. Coronary Sinus Rhythms 

A clarification must be made about "coronary sinus rhythms." In 1922, following 

SA node excision in the dog, Eyster and Meek (15 I) also observed up to 2 weeks of 

unstable junctional rhythms. Eventually a stable dominant atrial pacemaker emerged 

that was mapped epicardially "in the region of the coronary sinus." This region has been 

described in relatively vague terms over several decades. Any activity originating in 

this general area was given the name coronary sinus rhythm (48,150,151,356,457-459). 

Yet, after two similarly described methods of SA node excision, both with histological 

verification (151,267,268,422), the more advanced mapping technique (267,268) 

determined the site of earliest activation to be at the IVC-inferior right atrial junction 
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(a region adjacent to, but not within, the coronary sinus). Furthermore, Sealy and 

Seaber stated that the subsidiary pacemakers emerged from a region "low in the right 

atrium not far from the coronary sinus (466)." In addition, during exercise and 

cholinergic blockade, both Eyster and Meek (151) and Randall et al. (422) showed 

similar effects on the subsidiary pacemakers (151,422). 

In fact, thermal probe stimulation on the endocardial surface of the coronary 

sinus in situ generated AV nodal rhythms, but failed to elicit coronary sinus rhythms 

(457). Coronary sinus rhythms (P waves occurring prior to the QRS) were observed only 

when the coronary sinus was stimulated epicardially and through the IVC (457). Thus 

any pacemakers warmed in this region, which now includes the region found by Jones 

et al.(267,268), were likely responsible for generating coronary sinus rhythms. 

Isolated preparations that included the coronary sinus and several millimeters of 

the posterior right atrial wall generated automatic and triggered activity in the presence 

of norepinephrine (578). Although, automaticity was not seen in the coronary sinus 

after it was separated from the atrial muscle, the coronary sinus did exhibit triggered 

activity (578). It is not known if the coronary sinus rhythms seen in vivo were triggered 

rhythms, or what type of ECG waveform would have been generated by this form of 

activity. 

However, in the chronic SA node excision or exclusion experiments, the 

accumulated evidence obtained from mapping, stimulation, progressive stability, 

spontaneous rate, and response to exercise and cholinergic blockade, all strongly suggest 

that the subsidiary pacemaker regions of Eyster and Meek ( 151 ), Randall and coworkers 

(267,268,421,422) and Sealy et al. (464,466) were emanating from a similar site. 

d. Subsidiary Pacemaker Instability 

In all studies of acute selective suppression of SA node pacemakers by either 
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excision or exclusion techniques, a 2-3 week instability period of junctional pacemakers 

was present (151,267,268,467). Thereafter, the low right atrial pacemakers emerged as 

the dominant stable pacemakers. Experiments by Euler et al. (149) suggested the 

instability may be autonomically mediated. In a typical experiment, they demonstrated 

a conversion from the unstable junctional rhythm to a stable atrial rhythm after 

injection of atropine. Since it had been previously shown that vagal effects may be 

more pronounced on low atrial rhythms than AV nodal rhythms (151,421), it would 

appear that specifically inhibiting these effects, allowed the stable dominant pacemaker 

to emerge. In addition, the ASP pacemakers may also be more sensitive to direct vagal 

influence than SA node pacemakers. Direct stimulation of the vagus during ASP 

automaticity caused complete asystole and prolonged recovery (332,421), compared to 

an earlier recovery from postvagal tachycardia seen with intact SA nodes. Furthermore, 

in vitro experiments on canine subsidiaries showed a significantly greater negative 

chronotropic effect of acetylcholine on the ASPs than the SA node pacemakers (443). 

Another possible mechanism may exist for causing the instability period. 

Overdrive suppression initially following SA node excision caused significantly 

prolonged corrected recovery times. Over the next several weeks, a progressive decrease 

occurred until the corrected recovery times approached control values (420,444). Thus 

suggesting adaptations at the intracellular level may gradually occur after the 

pacemaker shifts. A slow rate of adjustment may explain why it was found that no 

instability period occurred when gradually destroying the SA node (47,48). The specific 

cause of such an adjustment remains unknown. 

e. Jn Vitro 

The information gained a bout mechanisms of a utoma ti city in the a trial subsidiary 

pacemakers was reaching its limits with in vivo experiments. The need to isolate this 
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site was essential in order to study these mechanisms. Methods of isolating and 

maintaining selected regions of cardiac tissue stem from experiments performed by 

Draper and Weidmann (132). They isolated canine Purkinje fibers and placed them in 

a tissue chamber with continuous perfusion of oxygenated Tyrode's solution. Using 

Ling and Gerard (324) type microelectrodes, they recorded the first mammalian 

automatic action potentials. Hoffman and Cranefield (226), clarified that automatic 

cells were those "which show spontaneous depolarization during phase 4." This phase 

of the action potential is synonymous with the diastolic depolarization. They also 

distinguished the difference between true pacemakers and latent (subsidiary) 

pacemakers. A latent pacemaker is one "which shows spontaneous depolarization but 

which is excited by the arrival of a propagated action potential before it excites itself." 

In 1952, Trautwein and Zink (524) recorded the first true pacemaker action potentials 

from frog SA node. Three years later, the first true pacemaker action potentials from 

a mammalian species was recorded from the rabbit SA node by West (570). 

Transmembrane potentials demonstrating diastolic depolarization smoothly merging in to 

the upstroke of the action potential serve as a reference for distinguishing 

characteristics of a true pacemaker. Other potentials recorded from adjacent tissue, 

demonstrating diastolic depolarization with a more abrupt transition into the upstroke, 

were indicative for subsidiary pacemakers. 

Many pacemaking cells, either true or subsidiary, in the mammalian right atrium 

were found to be embryologically derived from within or immediately adjacent to the 

sinus venosus (286,542,589). This includes the entire area surrounding the SVC, venous 

valves, cristae terminalis, and the region of the coronary sinus (286,542,589). Paes de 

Carvalho (402) described these areas in the adult mammalian heart as the SA ring 

bundle. It was found that transmembrane potentials recorded from cells down the 

cristae termina lis away from the SA node had progressively less diastolic slope ( 401,402 ). 
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This corroborates the results of Eyster and Meek's finding of decreasing spontaneous 

rates (151,357). Also, the cristae terminalis had much faster conduction times, thus 

providing a specialized pathway towards the AV node (230,402). Because the cristae 

terminal is contained cells exhibiting "pacemaker potentiality" (subsidiary pacemakers), 

Paes de Carvalho (402) further speculated that under certain conditions pacemaker 

function may shift to other regions of the SA ring bundle. 

Davis et al. (106) performed experiments on isolated canine atria, and found that 

within the cristae terminalis, cells demonstrated transmembrane action potentials 

similar to Purkinje fibers, exhibiting a significant plateau. Hogan and Davis (228) 

demonstrated that these plateau fibers exhibited diastolic depolarization with abrupt 

transitions into the upstroke. The rate and magnitude of diastolic depolarization could 

be enhanced by isoproterenol or norepinephrine (105). Furthermore, the activity of 

these cells was relatively resistant to elevated extracellular potassium, similar to 

findings reported of the SA node and AV node (I 10,335,550). These similar 

characteristics, but from different species, added support to the existence of a 

functionally specialized SA ring bundle. Hogan and Davis (229) later showed that 

plateau fibers along this tract had a 2-3 times faster conduction velocity than 

surrounding atrial muscle. Therefore, the posterior internodal pathway along the 

cristae terminalis is a faster conducting path between SA and AV nodes than via typical 

atrial muscle. 

An in vitro right atrial preparation (90,584,585) was modified by Rozanski et al. 

(443,444) for studying the canine atrial subsidiary pacemakers at the IVC-right a trial 

junction. The isolated preparation, excluding the coronary sinus and AV node, was 

placed in a tissue chamber superfused with warmed oxygenated Tyrode's solution and 

perfused by a cannula placed within the SA node artery. A ligature was placed distally 

on the SA node artery midway up the sulcus terminalis, cutting off flow to the SA node 
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and maintaining flow to the ASP region. In the presence of 10-s M norepinephrine, the 

new site of earliest activation was mapped to a low atrial region at the junction of the 

JVC in 73% of preparations. The isolated preparation exhibited similar subsidiary 

pacemaker characteristics as those found in vivo. The atrial subsidiary pacemakers had 

an average spontaneous rate of 86 beats per minute, significantly slower than the 

average SA rate of 101 beats per minute. Increasing concentrations of norepinephrine 

caused significant increases in spontaneous rate of both SA node pacemakers (SNPs) and 

ASPs, with the ASP maximum rate significantly slower than SNPs. The ASP region was 

significantly more sensitive to acetylcholine than SNPs, causing a greater negative 

chronotropic response. Rozanski et al. (443,444) also demonstrated significant increases 

in corrected recovery time of ASPs versus SNPs following rapid pacing. 

This in vitro right atrial preparation was also used to study the differences 

between the acute and chronic ASP after SA node excision (444). They found no 

difference in ASP sites between the acute and chronic states. Also similar to acute 

ASPs, the chronic ASPs were less sensitive to adrenergic stimulation and more sensitive 

to cholinergic stimulation than SNPs. However, the chronic ASPs were found to be less 

dependent than acute ASPs upon background concentrations of norepinephrine to 

maintain spontaneous activity. Furthermore, the chronic ASPs became less sensitive to 

acetylcholine and overdrive pacing with time. These results suggests that the ASPs 

electrophysiologically change with time. 

In a later study, Rozanski and Lipsius (442) used standard intracellular 

microelectrode techniques to electrophysiologically characterize the pacemakers at the 

IVC-right atrial junction. A small section of atrial tissue was isolated from perfused 

right atrial preparations. This tissue had been electrophysiologically mapped and 

contained ASP activity after SA node artery ligation. The endocardial surface of this 

tissue included the ER, a vestigial IVC valve leaflet. In comparison with stimulated 
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atrial muscle action potentials, the ASP spontaneous action potentials exhibited a 

prominent diastolic depolarization, a significantly lower maximum diastolic potential, 

takeoff potential, overshoot, amplitude, and rate of rise. Relatively low concentrations 

of acetylcholine (ACh; <10-7 M), were found to inhibit conduction as well as decrease 

the diastolic depolarization, thereby decreasing spontaneous rate. It was also found that 

in quiescent preparations in the presence of norepinephrine, this tissue site could 

generate triggered activity. 

f. Other Atrial Subsidiary Pacemaker Sites 

Although selective suppression of the SA node allows the emergence of low right 

atrial pacemakers, other ectopic atrial pacemakers exist and may contribute to 

pacemaker activity as well as significant dysrhythmias. Boineau et al. (42-44) showed 

a multicentric pacemaker complex along the SVC-right atrial junction. Thus the 

functional location of primary pacemaker activity was found to exceed the histologic 

dimensions of the canine SA node. 

After Paes de Carvalho found that cells within the cristae terminalis had diastolic 

depolarization (402), related findings of possible pacemaker activity were obtained by 

other investigators in the cristae terminalis of the rabbit heart (110,223,449) and dog 

heart (223,228,268). In one study, sequentially inferior excisions of the cristae 

terminalis produced more inferior pacemaker sites with progressively less intrinsic rates 

(268). 

De Mello and Hoffman (l 10) also found that these subsidiary pacemakers were 

similar to the SA node when exposed to elevated levels of extracellular potassium ([K]
0

). 

The higher [K]
0 

depressed the excitability of working atrial muscle cells. Comparing 

resting potentials with equilibrium potentials in different [K]o, the SA node cells were 

found to be significantly more depolarized compared to the calculated potential. They 
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suggested the difference might be that SA node cells were less permeable to [K]
0 

than 

atrial muscle. The cells within the SA node, cristae terminalis, and AV node all 

demonstrated the resistance to elevated [K]0 (110,228). This further suggested that the 

cells within the specialized tracts or SA ring bundle may all have a relatively decreased 

permeability to [K]0 . 

Isolated tissues from the coronary sinus region in the dog have shown both 

automatic and triggered activity dependent on the presence of norepinephrine (578,579). 

Furthermore, Wit and coworkers have demonstrated sustained rhythmic activity in the 

mitral valve leaflet in dog (158,580), monkey (577), and human (581). Similar findings 

of automatic and triggered activity have been found in the tricuspid valve of dogs 

(16,440,441). Even areas within the left atrium at the entrance of the pulmonary veins 

has been shown to elicit pacemaker activity (359). All these areas have potential to 

generate dysrhythmias, yet it appears that the most consistent and stable pacemakers to 

emerge after SA node suppression are those found at the junction of the low right 

atrium and the IVC. 

B. STR UCTURE-FUNCTJON 

I. Atrial Embryology 

Many potential pacemaker sites exist within the atria. It will be shown, that many 

locations containing either primary or subsidiary pacemakers, can be localized to special 

regions within the atria. These sites, in the fully developed mammalian heart, form a 

SA ring bundle (45,86,261,402,517). The ring bundle includes fibers within the SA node, 

cristae terminalis, and internodal tracts. Recently, monoclonal antibodies were used to 

bind a neurofilament-like protein in myocytes along the cardiac conduction system 

(197). Even in the very early embryological stages of development, a ring-shaped 

distribution of these cells was found between the SA and AV nodes, along the cristae 
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terminalis and interatrial septum, and around the inflow tract of the superior and IVC 

(197). Recently, it has been suggested that the sites of atrial pacemaker activity and 

internodal conduction may have been derived from neural crest cells (196), instead of 

subendocardial mesoderm (554). 

Within the first three weeks of mammalian development, angiogenic cell clusters 

coalesce and form a lumen. This plexus of newly formed small blood vessels is 

horseshoe-shaped (542). The most anterior central region of the horseshoe is the 

cardiogenic area. From either side of the horeseshoe, two symmetric heart tubes 

approach each other and fuse. At day 23, the heart is basically a straight tube. The 

most caudal portion (venous pole) of the valveless heart tube is the sinus venosus and 

the primitive atria, also called the sinoatrial ostium. The sinus venosus is composed of 

right and left sinus horns (developed from the two limbs of the horseshoe) and an 

intermediate transverse region. Three pairs of primitive veins develop and enter 

laterally into the sinus venosus. This includes the omphalomesenteric, common cardinal, 

and umbilical veins which merge on either side to form the right and left sinus horns 

of the sinus venosus. About day 22, the heart tube begins to pulsate (I 13). It had been 

previously thought that the first site of electrical activity was located in pre-SA nodal 

tissue (540). However, pre-destined mid-ventricular tissue has recently been determined 

to be the actual initial automatic site (224,492). Similar to intestinal motility, blood is 

moved through the tube by peristaltoid motion (406,407,541). In the next few days, the 

pacemaking site gradually shifts caudally. Meda and Ferroni (540) and Van Mierop 

(540) have determined that by the 8-13th somite stage in the chick embryo (about day 

24 in human development), the pacemaker site is within the sinoatrial region. 

At approximately day 26, the sinus venosus and atria have passively formed two 

septa (right and left sinus valves) by an infolding at the sinoatrial venous inlet junction 

(157). Further in development, the left sinus valve is reduced in size and has blended 
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within the atrial septum (542). In addition, the superior portion of the right sinus valve 

later diminishes in size and becomes incorporated within the future region of the crista 

terminalis. The inferior segment of the right sinus valve persists and fuses with another 

passively formed septa (between the orifice of the omphalomesenteric vein and the 

orifice of the coronary ostium). This terminal portion of the right omphalomesenteric 

vein will later form the IVC-right atrial junction. Thus the inferior right sinus valve 

remains in the adult as the larger Eustachian valve (ER) at the opening of the IVC and 

the Thebesian valve at the orifice of the coronary sinus (542). 

In the next several days, functionally important sites within the atria begin to 

emerge. The SA node becomes morphologically distinct by day 30 and is derived from 

the ventrolateral wall of the right sinus horn (589). Near day 35, the proximal left sinus 

horn and the transverse portion between the two horns form a distinct coronary sinus. 

The distal left sinus horn and left common cardinal vein attenuate in size and function 

to the point of becoming a functionless ligament (ligament of Marshall). However, the 

proximal left sinus horn is later found to develop into the proximal innervated portion 

of the AV node (6). The umbilical veins of both horns degenerate and disappear. The 

right sinus horn enlarges with the proximal right cardinal and omnphalomesenteric 

veins. The anterior and posterior cardinal veins will become the SVC and the azygos 

vein respectively. 

Areas within the adult left atrium, that were embryologically adjacent to the 

sinus venosus, have been shown to be capable of pacemaker function. The pulmonary 

veins arise from an outpocketing of tissue by the fourth week which is immediately 

adjacent to the transverse tissue between the two sinus horns (542). Mirowski (359) has 

shown that some dysrhythmias in dogs were generated from subsidiary pacemakers 

located adjacent to the pulmonary venous inlet of the left atrium. The regions of the 

adult heart that were derived embryologically from cells within or immediately 
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adjacent to the sinus venosus are: the SA node, crista terminalis, coronary sinus, ER, 

proximal portion of the AV node and the pulmonary venous-left atrial junction. 

Therefore, the embryologic pacemakers within the sinus venosus are associated with the 

adult primary and subsidiary pacemakers within these regions 

(105,106,229,267,268,321,358,401,402,578). The Eustachian valve or ridge, 

embryologically within the sinus venosus, has been shown to be within a region of the 

low right atrium that is associated with important subsidiary pacemaker activity 

( J 50, 151,267 ,268,442-444,464,467). 

2. Cellular Structure and Function 

The mammalian SA node is located at the junction of the SVC and the free wall 

of the right atrium (286). This first morphologic investigation of the SA node described 

cells that were fusiform in shape with elongated nuclei. Although having the typical 

striated appearance, the cells were more pale than the surrounding atrial muscle tissue 

(286). The size of the SA node ranges with the type and size of mammal. For example, 

the SA node area in the cat is about JO mm2 (397), but in the pig it is about 60 mm 2 

(394,395). Collagen fibers have been found to be densely packed throughout the SA 

node (286,394-397). Fetal or newborn SA node tissue have minimal collagen content, 

whereas adult SN tissue is predominantly composed of collagen (255,394). Opthof (394) 

found that within the cat and pig SN region, fibroblasts and collagen fibers make up 

approximately 75% - 95% of the entire volume density. Five to twenty percent of the 

SN volume was myocytes, with the rest being blood vessels and nerve tissue. 

Recent investigations using electron microscopic techniques 

(87,262,342,344,394-397,513,523,553) have further described the SN to be composed 

primarily of three cardiac cells types. The three forms of cardiac cells include: I) pale 

cells (P cells), 2) working atrial muscle cells, and 3) transitional cells (an intermediate 
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classification between P cells and atrial muscle cells). Abrupt transitions among cell 

types are typical in the dog, pig and human SA node (255,262,395). The rabbit 

(37,344,394,396), guinea pig (396), bat (312) or monkey (95), however, were found to be 

more homogeneous, having a gradual transition from P cells to the working atrial 

myocytes. P cells were found to be adjacent to one another or a transitional cell, but 

never a working atrial myocyte. Transitional cells could be found adjacent to either a 

p cell, transitional cell, or working atrial muscle cell (262). 

For many years it had remained elusive as to which of the cardiac cell types was 

responsible for pacemaker activity. In an ultrastructural analysis, Trautwein and 

Uchinozo (523) dissected small tissue sections containing the electrophysiologically 

identifying pacemaker cells from the rabbit SN. They found that the majority of 

cardiac cells were small and spindle shaped, with sparse myofibrillar content. Direct 

confirmation that these were in fact the pacemakers was achieved by Taylor et al. (505). 

After recording transmembrane action potentials from spontaneously beating SA node 

preparations, intracellular ionophoretic injection of lanthanum was used to mark the 

true pacemaker cells (505). Electrophysiological criteria used for identification of the 

true pacemakers were: low maximum diastolic potential, smooth transition of the phase 

4 diastolic depolarization into the the phase 0 upstroke, slow upstroke velocity, and 

minimal overshoot. Structural examination of these tissues demonstrated lanthanum to 

be almost exclusively within P cell types. The ultrastructural characteristics of the P 

cell (descibed below) is considered unique and therefore predictive of having pacemaker 

potential (344). 

It has been estimated that the rabbit SA node has approximately 5000 typical P 

cells (37), while in the cat at most 2000, and the guinea pig with only 1000. 

Furthermore, some SA node preparations contained about 300 cells and still 

demonstrated ordinary pacemaking function (397). This suggests that normal 
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pacemaker function of the SA can be maintained with relatively few numbers of 

automatic cells. 

a. Glycocalyx and Cell Membrane 

Mammalian P cells are relatively small in diameter (5-7 µ; (262,394,395,397)) in 

comparison with atrial muscle cells (10-20 µ),and are spindle shaped (longitudinal axis 

of 20-40 µ; (87,342,397)). P cells are grouped in grapelike clusters that are surrounded 

by a basement membrane or glycocalyx (262), ranging in thickness from 40 - 500 A 

(171,262,353). The glycocalyx is an electron dense matrix rich in polysaccharides and 

acidic residues (21,231). There is evidence that this matrix may be an important 

modulator of cellular calcium permeability (309). Calcium-free perfusion (100), hypoxic 

(213) or ischemic conditions (266) cause disruption of the glycocalyx, all of which have 

been shown to increase intracellular calcium concentration (291,316). Therefore the 

glycocalyx may serve as an extracellular calcium buffer (310). 

b. Ca veolae or T-tu bules 

Along the cell membrane numerous caveolae or invaginations (previously called 

pinocytotic vesicles) are evident. The caveolae are more numerous at regions where 

cells are not closely apposed to one another. Numerous caveolae are present in the 

mammalian SA node (343,395-397). Caveolae are far more abundant in the SA node P­

cells than in atrial muscle (262). The presence of caveolae greatly increases the 

sarcolemmal surface area (317,343). In rat atria, the amount of caveolae has been found 

to be inversely proportional to the complexity of the T-tubules. Atrial muscle cells 

lacking a T-system contained abundant caveolae, conversely other atrial cells with a 

highly developed T-system had almost no caveolae (169). In cat SA node P-cells (397) 

or in amphibian hearts (189), no T-tubules are evident, yet the sarcolemma is abundant 

in ca veolae. These findings suggest ca veolae are either a rudimentary form of T-tu bules 
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or that T-tu bules are formed by ca veolar fusion ( 165, 166, 168,249,365). 

Along the sarcolemma of atrial muscle cells small T-tubular invaginations begin 

near the Z-band level (169,365). The T-tubules range from 350-1000 A in diameter and 

the basement membrane remains continuous within the tubule. T-tubules quickly 

branch, becoming smaller in diameter (483), tortuous and longitudinally oriented (169). 

There is a large diversity in the extent of T-tubules within atrial muscle cells among the 

different species. Mouse atrial cells have an elaborate T-tubular system, while evidence 

of T-tubules in cat atria was relatively scarce (353). Rat atria demonstrated a 

combination, cells were either found with an extensive T-tubular system, or devoid of 

any system (169). Furthermore, atrial cells without T-tubules were generally located 

toward the endocardial surface (482). 

In comparison to ventricular cells, atrial cells were found to have a less complex 

system (13,159,353). Of note is the fact that twice as many right atrial cells generally 

are found without a T-system than left atrial cells (49). These findings suggest that 

cells without T-tubules (less cellular membrane capacitance) were part of the atrial 

conducting system (49,483,487). This is further supported by the finding that the 

distribution of cells lacking T-tubules tends to occur along the internodal tracts 

( 45,86,261,402,517 ,553 ). 

c. Nucleus 

The nucleus, is generally located near the center of the cell, is ovoid or fusiform 

in shape (368). The nuclear chromatin is enclosed within a nuclear membrane which is 

interrupted periodically by nuclear pores. It is hypothesized that the pores serve to 

allow selective exchange between the nucleus and cytoplasm ( 155). 
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d. Myofibrils 

Myofibrils of P cells, composed of actin and myosin filaments, combine in a 

specialized orientation called sarcomeres. In mammalian SA node studies, 15% to 36% 

of cell volume (nuclear volume excluded) was filled with myofibrillar material in SA 

node studies of various mammals (342,394,396,397). This was significantly less than the 

corresponding atrial muscle (48% - 53%) and therefore accounts for the more pale 

appearance of the SA node (286,342,344,394,396,397). 

An interesting correlation was found between myofibrillar density and primary 

pacemaker activity. By extracellular ionophoretic marking, the dominant pacemaker 

activity in rabbit SA node was localized to the region of cells with the least myofibrillar 

density (344). These results were confirmed in other mammalian species (396,397). 

Furthermore, it has been demonstrated that regions of cells with the least cellular 

density of myofilaments was associated with the lowest rate of rise in the action 

potential upstroke (344). Within individual SA node P cells, the myofibrils were 

randomly oriented. Transitional cells also exhibit this apparent random orientation 

(396,397), however the myofibrillar density is intermediate of P cells and atrial muscle 

cells. 

The density of myofilaments seen in atrial muscle cells are less than ventricular 

cells (365). The fibers are arranged in sarcomeres and are aligned parallel to the 

longitudinal axis of the cell (353). Typically, there is a perinuclear region absent of 

myofilaments (365). 

e. Mitochondria 

Mitochondria are small membrane bound organelles that are closely apposed to 

the myofilaments. Mitochondria have important function in energy maintenance 

through oxidative phosphorylation, and act as an important intracellular calcium buff er 
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(31 I). The inner mitochondrial membrane has convoluted folds that make-up the 

mitochondrial cristae (353). P cells contain relatively few mitochondria in comparison 

to working atrial myocytes, possibly related to the lack of contractile material and 

function. They are randomly dispersed throughout the cytosol. However, in atrial 

muscle the mitochondria are found between the densely packed myofibrils and just 

beneath the plasma membrane. Although their sizes in P-cells and atrial myocytes are 

similar (ranging from 0.5 to 1.0 µ), P-cell mitochondria have less intricate internal 

cristae structure than atrial muscle (262). 

f. Sarcoplasmic Reticulum 

The endoplasmic reticulum within cardiac cells form a fine network of tubules 

200-600 A in diameter which are in direct continuity with the nuclear membrane (483). 

Their membrane surface is generally devoid of ribosomes (typical of smooth 

endoplasmic reticulum) and has been labeled the sarcoplasmic reticulum ( 155). The 

tubules of the sarcoplasmic reticulum (SR) are in close proximity of the sarcolemma and 

myofibrils. Portions of the SR network that are in close apposition with the cell 

membrane (within 150 -200 A) or T-tubules are termed subsarcolemmal cisternae or 

junctional SR (155,415). Because P-cells of the SA node lack a T-tubular system 

(262,553), their junctional SR refer only to SR apposed to the sarcolemma. Junctional 

SR appear as flattened saccules (516,553), and are rarely found more than I micron 

from the myofilaments of the I band (413). Free SR tubules, 200-600 A in diameter, are 

found deeper within the cell. They form a fine network among myofilament bundles 

and mitochondria (155). Spheroidal vesicles (700-1100 A in diameter) called corbular 

SR are coupled to free SR tubules via peduncles (484). Corbular vesicles tend to be 

located mostly near Z-bands. Both junctional and corbular SR contain an electron 

opaque substance, whereas the free SR appears lucent (155,167,484,512). 

Immunocytochemical studies have demonstrated a preferential localization of 
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ca++Mg++ ATPase in free SR (271,275) and calsequestrin in the junctional and corbular 

SR (271-274). This suggests different forms of SR have different functions: junctional 

and corbular SR serve in calcium storage and release (514,571 ), whereas the free SR is 

responsible for calcium uptake (271-274). 

g. Intercellular Connections 

j) Intercalated Discs 

Intercalated discs are localized regions of intercellular connections that include 

desmosomes (macula adherens), intermediate junctions (fascia adherens), and nexuses. 

In general, most intercalated discs are associated with end-to-end connections 

( 154,351,480). However, intercalated discs have also been found to make side-to-side 

contacts between cells (207,220,352). At the intercalated disc, the ends of cells 

interdigitate with one another resulting in a zig-zag appearance. Thus the intercalated 

discs are divided into transverse and longitudinal segments (261). Most intercalated 

discs are associated with a terminal Z-Iine of the myofilaments (365). Although they 

are abundant in atrial muscle and transitional cells, discs are seldomly observed between 

SA node P cells (95,255,262). 

ii) Desmosomes (Macula Adherens) 

Desmosomes are an apposing pair of thickened, electron dense round spots of 

plasma membrane between two cells. The thickening is due to the desmosome being a 

site for the attachment of cytoplasmic tonofilaments. These slender filaments have been 

found to connect with other desmosomes and may function as a cytoskeleton (353). 

Dimensions in the dog and man are 1000 A along the plane of the plasma membrane and 

700-900 A in thickness (perpendicular to the plane of the plasma membrane). 

Intercellular distances at these sites are approximately 200 A (261) filled with a 
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granular amorphous material. In the SN, connections between cells predominantly 

consist of scattered desmosomes (262). In the transition to atrial muscle cells, 

desmosomes become numerous, and more frequent nexal connections appear. 

iii) Intermediate Junctions (Fascia Adherens) 

Similar to desmosomes, the intercellular gap distance of intermediate junctions 

is approximately 200 A and filled with a dense amorphous material. The actin 

filaments of the terminal I bands are found to insert into the filamentous mat. These 

myofibrillar insertion plaques are the point at which tension is generated during cell 

shortening (261,368). However, in the SA node the myofibrils are scarce and the number 

of intermediate junctions is proportional to the number of myofibrils (261 ). When 

intercalated discs are present, intermediate junctions constitute a major part of the 

transverse sections of the zig-zag (483),. Therefore, intermediate junctions have been 

ascribed the function of intercellular adhesion (351,483). 

iv) Nexal Connections 

Nexal connections are the sites of closest apposition of two cell membranes. The 

junctions are regions of secure cohesion (133,284,369). Although sparse in P-cells, they 

are abundant between atrial muscle cells. These sites have been suggested to be regions 

of low electrical resistance between cells (107,108,114,119,120,333,334). It was also 

thought that the nexus was a site of membrane fusion between cells (15,284). Later, it 

was found that there was actually a small 20 A gap between cells by utilizing a 

different staining technique (433). 

McNutt (351) found hexagonal arrays of small pits on the inner face of the nexal 

membranes. These pits were found to be intercellular channels (493). Recently, single 

channel slectrical events have been recorded across gap junctions (75). The nexus and 
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therefore electrical coupling has been found to be sensitive to intracellular divalent 

cation levels (101,107,109,115,411). Therefore, besides intercellular cohesion, the nexus 

is likely a site of low electrical resistance. Although nexal connections have been 

observed in the mammalian SA node, they have not been quantitated due their 

sparseness (394,396). Importantly, it has been calculated that just one nexal connection 

between P cells would be enough to maintain synchronous pacemaker activity (112). 

Description of smaller organelles such as centrioles, lysosomes, cytoplasmic 

granules, and Golgi complexes are not relevant to the present discussion. 

3. Internodal Tracts 

In the first morphologic description of the SA node by Keith and Flack, a possible 

specialized pathway to the AV node was also suggested (286). Three years later, Keith 

retracted this proposal (287). To this day, the controversy of the existence of internodal 

pathways has continued. In a histological study of the AV node, Baird and Robb (14) 

suggested that no specialized tracts led into the AV node. However, James (253) 

described three bundles of parallel aligned myocytes that adjoined the AV node. 

Similar observations were reported by Truex and Smythe (525) and Anderson et al. (4). 

It has since been suggested that the anterior, middle and posterior internodal tracts are 

preferential electrical conducting pathways between the SA and AV node 

(405,453,473,503,543,553,558,587). Recently, another extensive histologic study also 

confirmed the existence of three distinct bundles converging on the AV node (418). 

The anterior internodal tract arises from the superior end of the SA node and 

loops around the SVC. After sending a bundle branch into the left atrium (Bachmann's 

bundle), the tract extends down the anterior portion of the interatrial septum, and 

enters the anterior region of the AV node (252). 
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The middle internodal tract arises from the inferior portion of the SA node and 

immediately curves behind the SVC. The pathway then courses down the dorsal portion 

of the interatrial septum and converges onto the middle superior region of the AV node 

(553). 

The posterior internodal tract originates from the posterior edge of the SA node 

and enters directly into the crista terminalis. Small fan-like branches project laterally 

over the dorsal right atrium. The bundle that continues down the crista terminalis into 

the ER or valve, finally reaches the posterior margin of the AV node by traversing the 

coronary sinus (252,253,553). 

Ultrastructurally in dog and man, all three internodal pathways show similar 

heterogeneity, being composed of at least five cell types (473). P cells were frequently 

seen dispersed throughout the tracts. P cells, most similar to SA node P cells, were 

found in the ER of the posterior internodal tract (473). The anterior internodal 

pathway demonstated clusters of P cells similar to SA node P cells. However only 

individual P cells were observed within the ER (473). Similar to the SA node, P cells 

were found to be adjacent to either another P cell or a transitional cells. Gradual 

transitions to a trial muscle cells were typica II y seen ( 4 7 3,553 ). 

Transitional cells as described above, have been further subdivided anatomically 

(473) into slender and broad types. The distinction is that slender transitional cells have 

both a shorter length and diameter relative to the broad types. Cell types larger than 

transitional cells are subdivided into myofibrillar rich and poor cells. The myofibrillar 

rich cells are the atrial working myocytes, as have been described above. The 

myofibrillar poor cells have taken on two names, Purkinje-like (252), or intercalated 

clear cells (553). They are large in diameter, similar to working atrial myocytes, but are 

sparse in myofibrillar content. Although smaller than ventricular Purkinje fibers, these 

cells share other similarities, including a very pale appearance and an absence of T-
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tubules (473,553). 

A sixth cell type, the ameboid cell was identified in the ER (473). This cell type 

had several unique characteristics. The shape as the name implies, was ameboid with 

several pseudopodic projections. The pseudopods were filled with electron-opaque 

granules. These cells had abundant myofibrillar material, numerous mitochondria, and 

a multilobular nucleus. Although the accumulated anatomic evidence suggest 3 

pathways, electrophysiological verification has been more controversial. The 

anatomical pathways have demonstrated high conduction rates (42,195,222,230), and 

plateau action potentials with rapid rates of depolarization (228,229). Furthermore, 

Holsinger et al. (230) showed that transection of the anatomical paths caused an 

internodal conduction delay. However, others have reported no such functional 

evidence and that wavefronts over broad areas propagated to the AV node (263,486). 

C. CELLULAR ELECTROPHYSIOLOGY OF PACEMAKER ACTIVITY 

I. The Heart as an Oscillator 

An oscillator is a system that exhibits a cyclic or rhythmic change in a measurable 

quantity, which has a relatively constant waveform (172). There are numerous examples 

of biological oscillators, but the one most investigated is probably the heart. The heart, 

as an entire organ, oscillates or contracts rhythmically. Over three and a half centuries 

have passed since William Harvey found that the heart was made up of even smaller 

oscillators (210). While observing the rhythmic nature of fish and animal hearts, he 

noted that even small isolated sections of heart tissue could contract rhythmically (210). 

It has since been well established that the oscillatory nature of this multicellular organ 

is due to the synchronicity of its cellular oscillators. In general, cellular oscillators are 

of two distinct types, cytoplasmic or membrane oscillators (28). The membrane 

oscillators are further subdivided into metabolic and ionic flux oscillators (28). Thus, 
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the electrical activity of cardiac cells are considered to be an oscillation of ionic flux 

across the membrane. 

In any biological system, there are at least three essential elements required to 

generate oscillations. The components are I) an excitatory drive, 2) a restorative 

process, and 3) an inertial element (delay of action) which allows for an overshoot of 

a steady state value (I 72). Cardiac cells are electrically excitable. Action potentials are 

elicited by either an internal or external stimulus that causes the membrane potential 

to reach threshold. Surpassing the threshold potential results in a large inward flux of 

cations that rapidly depolarizes the cell. Following the depolarization, the cell 

repolarizes (the restorative process) after some delay from the excitatory event. 

However, only pacemaker cells have the first essential element: an internal excitatory 

drive to reach the threshold potential. The pacemaker cells are unique, they achieve the 

threshold potential by mechanisms which cause a diastolic depolarization of the 

membrane potential. 

Engelmann (146) hypothesized that the heart's rhythmic activity was due to an 

increased sensitivity to a constant weak internal stimulus throughout diastole. Indirect 

confirmation of this process was obtained by extracellular potential measurements that 

showed slow voltage changes during diastole in the snail heart (9) and frog sinus 

venosus (54). The first direct confirmation was made by Draper and Weidman (132). 

Using intracellular microelectrodes to record transmembrane potentials, they observed 

a slow diastolic depolarization in Purkinje pacemaker cells. Similar diastolic 

depolarizations were soon found in the primary pacemakers of amphibian hearts 

(55,524) and in the SA node of mammalian hearts (570). Diastolic depolarizations have 

since been recorded in many types of cardiac pacemakers 

( 40,62,98,214,222,336,401,440,442,580). 

Diastolic depolarization is common to triggerd and automatic activity which may 
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be experimentally difficult to differentiate. Triggered activity and automatic 

(spontaneous) activity can generate sustained rhythmic activity (577). Triggered 

activity is rhythmic activity initiated by one or more driven action potentials, such that 

a quiescent fiber remains quiescent unless driven by an action potential (577). 

Automaticity, on the other hand, is activity which occurs without the necessity of a 

prior action potential. 

The delayed afterdepolarization observed in triggered activity is caused by events 

(described below) during the previous action potential (8,527,577). According to Glass 

and Mackey (190), fibers exhibiting triggered activity have bis ta bili ty. A stable steady­

sta te resting membrane potential or a stable osciIIatory activity can be observed, 

depending on the immediate history of its activity. Thus, if left undisturbed from 

external influences, a quiescent fiber will remain quiescent or a rhythmically active 

fiber will remain rhythmically active. One method to distinguish triggered from 

automatic activity involves characteristic differences arising from single pulse voltage 

stimulations at different points in the cycle (phases) of the oscillation (190). Single 

pulse stimulations of an oscillator causes phase shifts (permanent advances or delays) 

of the oscillatory cycle (575). 

Theoretically, it has been determined that a stimulus delivered within a narrow 

range of phases and of a specific strength can completely stop (annihilate) the oscillator 

(200,575). However, only the triggered oscillatory activity has this stable second state 

(resting membrane potential), also termed a black hole (190,576). Theoretically, true 

automatic oscillators have only an unstable singular point, a singularity, that would 

cause annihilation (190,576). Experimentally, it is impossible to annihilate this 

automatic biological oscillator, due to the instability of the singularity (190). The 

smallest noise will start the voltage back into oscillations again. Therefore if one is to 

distinguish between triggered activity and spontaneous activity, one should be able to 
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experimentally annihilate a triggered rhythm but not an automatic one. In fact, Wit and 

Cranefield (577) showed annihilation of a triggered activity with a single pulse in a 

simian mitral valve preparation. 

Jalife and Antzelevitch (251) were able to annihilate pacemaker activity in the 

SA node, which has been considered to be a site of automatic pacemakers (99). 

However, Glass and Mackey (190) suggested that the annihilation of these pacemakers 

were performed in abnormal conditions which may have converted the automatic 

activity into a triggered activity. Furthermore, it was speculated that this conversion 

could only occur under pathological conditions (190). 

Atrial subsidiary pacemakers have exhibited both automatic and triggered 

activity either under control solutions or an added beta adrenergic agonist 

(228,229,327,441-443,449,577). After SA node excision (149,267,305,420-422,444) or 

selective suppression (332,449), the junctional region of the inferior right atrium and 

IVC assumed pacemaker control in the canine model. Initial functional characteristics 

of these subsidiary pacemakers showed important differences from SA node 

pacemakers. Specifically, the atrial subsidiary pacemakers displayed a dependency of 

.B-adrenergic stimulation (442,449), and an increased sensitivity to both parasympathetic 

stimulation (149,332,444,449) and overdrive pacing (420,449). Electrophysiological 

characteristics of pacemakers within this region exhibited prominent diastolic 

depolarization, relatively low maximum diastolic potential, and slow upstroke velocity 

(442). Although the differences in characteristics may have lessened after chronic 

control (444), disparities still existed. The mechanisms of pacemaker activity (diastolic 

depolarization) in these atrial subsidiary pacemakers have not been investigated. 

Analysis of cellular membrane ionic flux oscillators among different cell types 

are generally shown to be dependent upon at least two separate channels (28). An 

inward current channel (usually carrying sodium and calcium) permits the excitatory 
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or depolarizing phase, and the delayed outward current (usually carrying potassium) 

restores or repolarizes the membrane potential. Active ion pumps that maintain the 

ionic gradient driving force would be required if an oscillator were to remain 

functional over an extended time (28). True or subsidiary cardiac pacemakers, whether 

automatic or triggered, have special currents or combination of currents that result in 

diastolic depolarization (99). Thus, the currents responsible for generating the diastolic 

depolarization are considered as pacemaker currents. 

Therefore, the focus of this portion of the review will be on the cause of diastolic 

depolarization in cardiac pacemakers such as in the SA node. Since the pacemakers of 

the ER have embryologic origins similar to the SA node, it is hypothesized that these 

two sites share similar pacemaker mechanisms. 

2. Mechanisms of Diastolic Depolarization 

Application of the voltage clamp technique to the SA node was initially 

technically difficult due to its structure, but its development (240,382) has led to a long 

and changing course of the ionic current mechanisms involved in pacemaker activity. 

There are now at least 5 currents identified as contributors to the development of 

diastolic depolarization of the mammalian SA node. Ionic currents in general, as well 

as those specifically involved in diastolic depolarization, may take two forms: time 

dependent or time independent. Both types may contribute to the depolarization. The 

magnitude and the kinetics of the time dependent currents are important factors that 

would control pacemaker rate. However, only the magnitude is important in rate 

control for time independent currents (65). Examples of time independent currents are 

the background leak currents responsible for the level of the resting membrane 

potential. 
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The resting membrane potential (RMP) of the SA node (-40 to -60 mV) is 

relatively low compared to Purkinje fibers. It was hypothesized that the low RMP was 

a result of a higher ratio of the resting sodium and potassium permeabilities, a high 

PN
8
/PK ratio (241,490). In support of this, the SA node resting membrane potential is 

fairly constant with relatively large changes in extracellular potassium ([K]
0

; (380,543)). 

Similar findings were observed in isolated tissues of the coronary sinus (53). One 

possible mechanism of changing the PN8 /PK ratio may be related to the level of an 

outward background potassium current, iK1 (383). In ventricular cells this current is 

responsible for the large inward rectification seen in the I/V relationship (386,451 ). 

However, in the SA node and crista terminalis, the iK1 current was found to be much 

less pronounced (183,386,450). Furthermore, if less iK1 is responsible for the decreased 

potassium permeability in nodal cells, then it would be expected that nodal cells would 

have a greater specific membrane resistance. In fact, Noma et al. (386) found over a 

tenfold higher resistance in SA node cells compared to ventricular cells. 

Another contribution to the RMP may emanate from an inward sodium leak. If 

the in ward if current (described below) contributes to the passive membrane properties, 

then, without a strong outward current, less negative membrane potentials would be 

expected (243). In fact, sudden sodium chloride removal in SA node (380,471 ), 

embryonic cell aggregates (354), or coronary sinus tissue (53) caused a large 

hyperpolarization of the resting membrane potential. Although sudden sodium chloride 

removal may cause artifactual liquid junction potentials (491), control studies showed 

insignificant alteration of the experimental results (354). In the embryonic cell 

aggregates, it was found that the hyperpolarization could be blocked by cesium, a 

blocker of if current (354). Thus two currents, if and iK1 may contribute to the low 

resting membrane potential. A relative decrease in iK1 density, would cause a relative 
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decrease in PK compared to Purkinje fibers. The resultant increase in the PNa/PK ratio 

would, thereby, generate a more positive resting membrane potential. 

Cells of similar embryonic origin, within the SA ring bundle, appear to have a 

relative insensitivity to moderately elevated [K]
0

(53,110,335,336,440,543,549). The cells 

within the ER, also of similar origin, exhibit relatively low RMPs or maximum diastolic 

potentials (442). It therefore is hypothesized that the atrial subsidiary pacemakers have 

a relatively high PNa/PK ratio. 

LIK current 

IK is a time dependent outward potassium current, with a reversal potential at 

approximately -90 m V (127 ,381 ). Activation of the current occurs at po ten ti a ls positive 

to -50 mV, and further depolarizations exhibits a slight inward rectification 

(65,127,381,592). Therefore, this outward current is activated during the upstroke of 

the action potential and is major component of repolarization of the action potential to 

the maximum diastolic potential (68,244,476). After full repolarization, the conductance 

decreases, resulting in a decaying outward iK current, which may contribute to diastolic 

depolarization (65,68,244,476,592). However, if there is no preceding depolarizing 

voltage clamp or action potential, then this current would contribute little if any to 

pacemaker mechanisms (65). 

After measuring para cellular K + activity ([K]
0 

very close to the cell), the 

contribution of iK to diastolic depolarization of the SA node was challenged (348,349). 

If the iK current was turned off during diastolic depolarization, it was hypothesized 

that the rate of change of [K]
0 

should also change during this time (349). Hovever, the 

rate of [K]
0 

change remained nearly constant, and it was therefore concluded that iK 

decay was not an important factor of pacemaker activity (348,349). This conclusion 

came under scrutiny, since the method of measuring paracellular [K]
0 

caused an 
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enlarged paracellular space (349). Mathematical computation of such a systematic error 

was found to skew the results toward a constant rate of change (68,377). 

Llr current 

First discovered in the SA node, their current is activated by hyperpolarization 

and is a time dependent inward current (64,381,382,469,592). Several names have been 

associated with this current, ih, ir, and iP (63,349,381), for clarity, only ir will be used. 

By analyzing tail currents, the reversal potential was about -25 mV, halfway between 

EK and ENa• and could carry both sodium and potassium ions (63,126,129,348). 

Activation of the ir current begins at potentials negative to -50 mV (126,129,592). 

However, the maximum diastolic potential of cells within the SA node is in the range 

of -50 to -60 mV. Therefore, this suggests that ir is not fully activated in the 

spontaneous SA node preparation (68,377). Although the current can be elicited in the 

SA node, its participation in pacemaker activity was questioned. 

Low concentrations of cesium (I mM) have a fairly specific blocking effect on ir 

(125,129). Yet, the exposure of a spontaneously beating SA node preparation to l mM 

cesium only slightly increased the cycle length (348,385). Furthermore, a separate study 

evaluating relative contributions of pacemaker currents, determined that the proportion 

of contribution to diastolic depolarization, ir:iK, was approximately 1:4 (65). Thus, the 

voltage dependency, as well as minimal effects of cesium, suggests a minor importance 

for ir in pacemaker depolarization of the SA node. Although it seems ir may not be a 

major contributor to diastolic depolarization, it has been considered to be an important 

factor in the background inward current (243,354). 

The discovery of the ircurrent in the SA node led to the alteration of pacemaker 

mechanisms in the Purkinje fiber. This change was provoked by noticing similar 

characteristics between SA node pacemaker currents and barium treated Purkinje fiber 
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currents (122,123,129). In addition, if was found to be sensitive to [Na]0 in the SA node 

(I 29,388,470), similar to the previous iK2 current of Purkinje fibers (122, 129,350). Initial 

studies of pacemaker activity generated in Purkinje fibers showed an increase in total 

membrane resistance during diastolic depolarization (568), and was suggested to be due 

to a decrease in potassium conductance (135,522). This was later supported by voltage 

clamp studies at potential levels equal to the maximum diastolic potential (544). During 

the clamp, brief square wave current pulses were imposed to measure total membrane 

conductance changes during the clamp (544). Since conductance decreased with the 

duration of the clamp, it was suggested that the results were due to a decreasing 

outward current, iK2. Furthermore, the iK2 current exhibited a reversal potential that 

approximated EK, and a sensitivity to [K]
0 

that resulted in a slope of 60 mV /decade 

change in [K] 0 • Thus, leading to the conclusion that the pacemaker current in Purkinje 

fibers was a deactivating outward pure potassium current, iK2 (377,379,410,544). 

Two major problems existed with this conclusion for Purkinje fiber pacemaker 

mechanisms. First, the apparent reversal potential of iK2, although approximating EK, 

was consistent I y more negative than the predicted Nernst po ten ti al (93, 124,3 79,410,544 ). 

Second, the iK2 current might not have been a pure potassium current since it 

significantly depended upon the [Na]
0 

(122,129,350). 

A reversal potential more negative than EK led to the assumption of a local K 

depletion compared to the bulk concentration. For example, voltage clamp to potentials 

more negative to EK would cause an inward iK1 potassium current. The inward flux of 

potassium would then deplete the intercellular cleft concentration of potassium, causing 

a decay in current as well as shift EK to more negative levels. Conversely, voltage clamp 

to potentials positive to EK would cause potassium accumulation in the clefts. 

Potassium accumulation would decrease its gradient and cause a decay of outward 

current. Potassium accumulation/depletion at the intercellular clefts was found to 
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ca use sign if ican t changes in current measurements {18, 128,294,34 7 ,3 76). Subtracting the 

decaying iK1 current enabled the inward ir current to be unmasked (122,123). After 

elevating [K]
0 

to reduce depletion effects, or applying 5 mM barium to block iK 1 

(203,592), the total membrane conductance was remeasured (123,129). As if activated 

during the clamp, an increase in conductance was observed (123,124,129) contrary to 

vassalle's (544) result. Thus, the same current, iKl• determined to cause the RMP of 

Purkinje fibers to be more negative than SA node, was also likely masking the if current. 

Accumulation/depletion effects from iK1 cannot entirely explain the overlapping 

current decay. In single cell patch clamps, where depletion/accumulation effects should 

be absent, decaying kinetics of iK1 were still present (78,452). However, if no depletion 

occurred in the multicellualr preparations, then one would not expect any apparent 

shift in EK. Therefore, it seems likely that a combination of channel kinetics and 

depletion may be responsible for the iK1 decay. 

After blocking iK1 in Purkinje fibers with barium, reducing the extracellular Na 

shifted the if reversal potential to more negative levels (122,124). Shifting the reversal 

potential away from ENa is in good agreement with sodium crossing this channel 

(122,124). Furthermore, the I/V relationships at differing sodium concentrations were 

remarkably parallel, suggesting that changing the [Na]
0 

did not affect the channel 

conductance, but only altered the driving force. This is in contrast to the effects of [K]
0 

on the if current (469). Increasing [K]
0 

from 3 to 36 mM shifted the reversal potential 

by 25 mV in the positive direction. However, the slopes of the I/V relationships were 

not parallel. Increasing [K]
0 

was found to cause greater currents, thus increasing the 

slope conductance (125). Therefore, [K]
0 

affects channel conductance as well as the 

driving force. It was concluded that at least both Na and K ions contribute to the if 

current (63,348). 

Recently, the if current has also been found to be sensitively modulated by the 
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[Ca]i (201). Increased [Ca]i in the physiologic range was found to depolarize the 

threshold of activation of ir by more than IO mV, therefore, further into the diastolic 

depolarization range (201). This would suggest that the calcium released from the SR 

might have a significant effect on increasing the contribution of ir on pacemaker 

activity. Although cesium does not have much of a negative chronotropic effect on 

normal tissue (348,385), it may have more negative influence in a calcium overloaded 

tissue. 

The cesium sensitive, ir pacemaker current has been identified in the S-A node 

(63,126, 129,348,385,590), Purkinje fibers (78, 122, 123,126,246), and a trial muscle (83, 138 ). 

It has recently been suggested that ir may also contribute to ectopic atrial pacemakers 

in the tricuspid valve (440). Specifically, 1 mM cesium decreased the slope of D1, the 

early portion of diastolic slope (440). However, SCL was not significantly increased in 

that tissue. 

In atrial subsidiary pacemakers of the ER, the dependency of an ircurrent has not 

been investigated. The maximum diastolic potential of these fibers was approximately 

-70 mV (442), which is 10 - 20 mV more negative than typical SA node pacemakers 

(63,335,349,570). Because of the SA node pacemaker having a more positive diastolic 

membrane potential, the amount of ircontribution was shown to be minimal. Therefore 

it might be expected that cesium may have more of an inhibitory effect on automaticity 

of the ASPs. 

d. Calcium Currents 

The slow inward current, i
8
i, is an inward current that persists in the absence of 

sodium ions (388,427). The current carries mainly sodium and calcium ions 

(428,431,518), and was shown to be responsible for the upstroke of the action potential 

in the SA node (62,299). Verapamil (62,297,298), D-600 a methoxy derivative of 
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verapamil (243,297), and Mn (97,204,205) block iai· l 8i currents recorded in the 

multicellular tissues show large variations in activation and inactivation kinetics (438). 

However, in the single cellular studies, multiple components of the iai were observed, 

some of which exhibited kinetics I 0 times faster than the multicellular results (361 ). 

One explanation of the different results obtained from the two different methods, may 

have been due to masking by the calcium activated transient outward current in the 

multicellular tissue. In support of this hypothesis, buffering intracellular calcium with 

EGT A, thus removing the induced outward current, caused a much faster and larger 

inward current (477). Another source for result differences between methods may have 

been related to an added series resistance that would be expected between multiple cell 

membranes with voltage clamp circuit (247,378). An increase in series resistance would 

cause artifactual slower kinetics. 

Two components of the old isi current have now been identified as 2 separate 

types of calcium channels found in atrial myocytes (19), ventricular myocytes (19,374), 

Purkinje cells (221 ), and in SA node pacemaker cells (202). The faster activating 

current has been labelled iT or T-type, and the slower, but longer lasting current, iL or 

L-type (374). The two calcium currents are differentiated by different holding 

potentials (19,202,374) and show large differences in kinetics and magnitudes. 

The iT current has a threshold of activation between -60 to -50 mV (202), 

coincident with diastolic depolarization (19,202). The activation threshold for i1 

current is about IO mV more positive than T-type channels (19,374). Current densities 

among different regions of the heart show that T-type current in the SA node is almost 

10 times greater than that seen in atrial or ventricular cells (19,202,374). Therefore, it 

has been suggested that T-type channels contribute more to the action potential 

configuration in SA node pacemaker cells than to other cardiac cell types (202). 

Although the T-type current is much lower in magnitude than L-type current, T-type 
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current is active rn the voltage range that contributes more to diastolic depolarization 

( 19,202). 

Both iL and iT currents are similar in that both can be blocked by 2 mM cobalt 

(19,202), and neither can be blocked by TTX (l 9,202,374). Although there are several 

similarities of the two currents, important differences do exist. Only the L-type 

channels are blocked by the dihydropyridines calcium channel antagonists (l 9,202,374) 

or 0600 (202). Furthermore, only L-type channels are activated by the dihydropyrdine 

calcium channel agonist, Bay K 8644 (19,202,221,374), and modulated by beta adrenergic 

stimulation (19). Therefore, the increased calcium current seen with increasing ATP or 

cAMP (242) has been shown to be a specific L-type current enhancement (529). 

Attempts to find specific blocking agents of T-type channels have thus far 

yielded agents which only show a concentration dependent difference. For example, 

relatively low concentrations of either the TTX derivative, tetramethrin (0.1 µM), or 

nickel (40 µM) has been found to be a specific T-type channel blocker. However, larger 

concentrations of each have been shown to block both L and T-type channels (202). 

When 40 uM Ni or 0.1 uM tetramethrin was applied to a spontaneously beating SA node 

cell, the diastolic slope decreased, especially during the later half (202). Although the 

iT current has significance for pacemaker activity in the SA node, the same cannot be 

assumed for Purkinje pacemakers since the T-type channel activation potential is too 

positive compared to its pacemaker voltage range (221). 

In the ASPs, triggered activity was elicited in the presence of exogenous 

norepinephrine (442). In the presence of verapamil, stimulated action potentials were 

still generated, but no triggered beats could be elicited (442). It was apparent that 

verapamil decreased the stimulated action potential amplitude but did not prevent an 

all-or-none response. If we assume that verapamil had achieved block of the L-type 

channels during repetitive stimulation, then the upstroke of the stimulated action 
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potentials may suggest participation of fast sodium channels. The contribution of L-

type calcium channels or fast sodium channels to the development of automatic activity 

in the atrial subsidiary pacemakers has not been investgated. 

e. Sodium Calcium Exchange and SR Components 

In voltage clamp studies of rabbit S-A node, Brown et al. (69), presented evidence 

for another component of the old i
8
i current, possibly mediated by intracellular calcium 

release from the sarcoplasmic reticulum. In addition, Escande et al. (148), have shown 

that an SR calcium-mediated component may participate in pacemaker activity recorded 

from abnormal, partially depolarized human atrial tissues. However, participation of 

such a current in atrial pacemaker automaticity may not necessarily result from an 

abnormal condition (69). 

The calcium mediated component may be similar if not identical to mechanisms 

that generate the transient inward current, iti• seen in calcium overloaded states 

(139,279,280,282,314). Delayed afterdepolarizations, shown to be responsible for the 

development of triggered activity (98,577,578) are considered to be generated by ifr In 

fact, a recent report by Tseng and Wit (527) showed that transient inward currents were 

responsible for delayed afterdepolarizations recorded from atrial tissue isolated from 

the canine coronary sinus. 

hi calcium overloaded multicellular tissues, a transient or oscillatory inward 

current was identified (279,282,552). Similarly, in the single cell studies, when [Ca]i is 

increased either by solution manipulations or SR release, an inward current is generated 

which is dependent on the transmembranous gradients of sodium and calcium 

(7,66,292,293,326,355). Furthermore, by the calcium dye, fura-2, cells demonstrating 

spontaneous oscillatory SR calcium release were found to have an elevated baseline of 

[Ca]i (573). The synchronized oscillatory release of calcium from the sarcoplasmic 
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reticulum has been determined to generate the iti current as well as the concurrent 

after-con traction (3, 191,280,301,328,57 4). 

In calcium overloaded states, junctional sarcoplasmic reticulum of papillary 

muscles have been demonstrated to accumulate calcium (273). During this condition, 

the SR spontaneously releases calcium in multiple cardiac cell types 

( 153,281,301,308,346,398,574). Furthermore, in single cells, it has been shown that the 

more synchronized as opposed to unifocal release of SR calcium, the greater the 

depolarizing effect (81 ). Membrane voltage changes such as repolarization from an 

action potential have been shown to aid in synchronizing the following spontaneous SR 

release (281,538). Thus, stimulated action potential as in triggered activity appear to 

be necessary in calcium overload to generate currents in the diastolic voltage range 

large enough to reach threshold. 

The role of the SR in the generation of this current has been well established, 

since the transient inward current is abolished by agents (caffeine and ryanodine) that 

deplete SR stores of calcium (8,121,208,276,279,339,439,497,547,566). Caffeine depletes 

SR calcium by enhanced release (39,89) and inhibition of sequestration (29,218). 

Ryanodine has been shown to specifically interact with calcium release channels of the 

SR and thereby functionally eliminate SR calcium release (439). According to Rousseau 

(439), ryanodine causes a sudden increase in the open probability time of SR release 

channels, leading to gradual depletion of SR calcium stores. By inhibiting calcium 

release from the SR, ryanodine has also been shown to reduce calcium-activated 

outward currents in Purkinje fibers (497) and to delay inactivation of slow inward 

current in ventricular myocytes (362). Both ryanodine and caffeine were found to 

prevent triggered activity in atrial fibers from the coronary sinus (8). 

The mechanism of SR calcium release generating iti has been associated with 

enhancement of a Na/Ca exchange current (iNa/ca), and/or activation of a nonspecific 
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cation current. Sodium calcium exchange was first proposed by Reuter and Seitz (432) 

when they found that the flux of the two ions were interdependent. After multiple 

separate investigations, the ratio of exchange (stoichiometry) of ions across the 

sarcolemma has been approximated at 3:1, Na+:ca 2+ (for reviews see (140,426,474). Thus 

three monovalent cations in exchange for l divalent cation causes the exchanger to be 

electrogenic. The reversal potential (370) of the exchanger ranges from -IO to about -25 

mV, dependent upon concentrations of control solutions and tissues used (292,325). At 

the diastolic potential range, an inward current is generated by the exchanger since 

intracellular calcium is being exchanged for extracellular sodium. 

The iti current generated from SR release of calcium has failed to show a reversal 

potential with normal [Na]
0 

(92,279,326), and therefore is in accordance with Na/Ca 

exchange (iNa/ca). The current generated in response to sudden increase in [Ca]i would 

show a negative (inward) deflection, no matter which side of the reversal potential 

(ENa/ca) of Na/Ca exchange that the membrane potential was voltage clamped (140,325). 

For example, if the membrane potential is clamped negative to ENa/Ca• then the [Ca]j 

surge causes the ENa/Ca to shift in the positive direction away from the clamped 

membrane potential. The calcium induced shift of ENa/Ca results in an increased 

driving force, causing an increased inward current (downward deflection) (140,326). 

However, if the membrane potential is clamped more positive to the ENa/Ca• the Na/Ca 

exchange current reverses, outward current (3 sodium out for l calcium in). 

Importantly, a [Ca]i surge still shifts ENa/Ca to more positive levels, closer to the clamped 

membrane potential. Thus, the calcium induced shift of the ENa/Ca now decreases the 

driving force, causing a decreased outward current (again a downward deflection) 

(140,326). By the exchanger mechanism, an [Ca]i surge would drive this current and 

would be expected to cause downward deflections and not reverse direction. This is in 

contrast to typical channel kinetics where equilibrium potentials remain fairly constant, 
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and it is the voltage change:;, not surges in concentration, that elicits current formation. 

Therefore, iNa/Ca does have a predicted reversal potential given specific intracellular 

and extracellular sodium and calcium concentrations. But iti• which in actuality is 

likely the iNa/Ca current during an intracellular calcium surge, causes a surge in the 

reversal potential (ENa/ca) to more positive levels. Therefore voltage clamping at any 

potential during SR release would always show downward current deflections, due to 

the consistent directional change of concentration gradients. Under special conditions, 

however, even in normal [Na]
0

, it has been hypothesized that iti may demonstrate an 

apparent reversal potential (140). 

Another possible mechanism of the transient inward current is a calcium 

activated nonspecific cation channel (80,96). This current is not dependent on [Na]
0 

(80,96,354). The nonspecific channel can carry sodium and potassium ions 

preferentially, but calcium ions were also found to contribute to the current (80). 

However, the findings of a strong dependence of the iti current to [Na]
0 

and [Ca] 0 in 

more physiologic conditions (355), and a voltage dependence of calcium extrusion 

(evidenced by incomplete relaxation), strongly suggested a more important role of 

Na/Ca exchange (355). Furthermore, coexistence of both Na/Ca exchange has been 

suggested (92,354). Na/Ca exchange would predominate in the more physiological 

presence of [Na]
0

, yet the calcium activated nonspecific current would prevail in a 

sodium free environment (354). 

ASPs from the junctional region of the IVC and inferior right atrium have 

demonstrated triggered activity (440,442). Development of these rhythms from 

quiescent preparations required norepinephrine to increase [Ca]i (440,442). Atrial tissue 

from a variety of species was found to need less calcium to mediate SR release than in 

either ventricular or Purkinje fibers (153). It has not been investigated if an SR 

mediated component contributes to normal automaticity in this region. 
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UNa Current 

Although the fast sodium current, iNa• can be elicited in mammalian SA node 

preparations (304,330,382,388) and in isolated nodal cells (390), it has been shown to 

have minor importance for diastolic depolarization (304,330,348,388,588). INa exhibits 

more importance in the upstroke of the action potential of atrial cells (62,438), Purkinjc 

fibers (134), and venticular cells (392). The minor iNa component of the SA node action 

potential upstroke was enhanced when the maximum diastolic potential was shifted to 

more negative levels by acetylcholine (330). Therefore, it appears that the amount of 

contribution of iNa to the upstroke in the SA node is voltage dependent. The atrial 

subsidiary pacemakers exhibited a mean maximum diastolic potential near -70 m V ( 442). 

Therefore, it is hypothesized that the atrial subsidiary pacemakers will demonstrate a 

relatively greater response to iNa blockade by TTX. 

g. Summary 

At this point in time, five currents: iK, if, iL, iT, and iNa/Ca are considered to 

contribute to diastolic depolarization. Importantly, the relative contribution of each 

of the individual currents varies from preparation to preparation. In view of the 

definitions of triggered activity and automatic activity, one might be able to categorize 

the currents as either triggered currents or automatic currents. A triggered current 

would be a current that is activated by the upstroke or repolarization of the action 

potential, and generates its effect during diastolic depolarization. The iNa/Ca (iti 

component) current would be considered as a triggered current. Automatic currents 

would be the if, iv and iT currents, since these currents exist without a prior action 

potential. It is hypothesized that triggered activity does not have a large enough density 

of automatic currents to spontaneously reach threshold. Thus a slight enhancement of 

an automatic current could transform a triggered focus into an automatic one. 
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Conversely, a slight degradation of an automatic current could transform an automatic 

focus into a triggered focus. Such a mechanism may have occurred in the experiments 

to cause annihilation in the SA node (251 ). Furthermore, if the iti current is enhanced 

by increasing [Ca]i into an oscillatory current (i.e. iNa/Ca during calcium overload), then 

the iti current would be apparent without a prior action potential. Thus, in this 

condition, iti would be a component of automatic but not triggered activity. It is 

speculated that through these mechanisms, slight alterations in a current intensity could 

significantly alter its pacemaker characteristics. For example, raising or lowering [Ca]i 

would cause activation or inhibition of spontaneous SR calcium release, and therefore 

result in either automatic or triggered activity respectively. Similar conclusions were 

reached in a recent investigation of ventricular cell preparations from 24 hour infarcts 

(102). They demonstrated automatic and triggered activity from ventricular cells which 

normally do not demonstrate either of these forms of activity. Similar preparations 3-4 

days post-infarct also did not exhibit this activity (102). Investigations into which 

currents may have been altered have yet to be performed. 

In view of the increasing number of pacemaker currents over the last few years, 

Brown said it best: " One thing that is perhaps already clear is that there is no single 

pacemaker current in the SA node but that nodal pacemaking depends upon a balance 

of membrane currents (65)." 

3. Autonomic Modulation of Pacemaker Activity. 

Although the heart can function autonomously of neural input, it is richly 

innervated and sensitively modulated by both branches of the autonomic nervous 

system. Even in the unstressed mammal, autonomic outflow generates moderate 

fluctuations in the beat to beat rate (370). Virtually all rate fluctuations of normal SA 

node automaticity above 0.03 Hz (a change in rate over 1.8 beats/min) have been 
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determined to be caused by a change in autonomic input. Specifically, rate changes of 

more than 9 beats/min were found to be mediated solely by changes in parasympathetic 

influence, whereas changes Jess than 9 beats/minute heart were secondary to changes 

in both sympathetic and parasympathetic inputs (2,23,403,414). With the identification 

of specific transmembranous currents, the last decade has brought an enormous wealth 

of information on mechanisms of autonomic modulation of these currents. 

a. Adrenergic 

i) 8-Adrenergic 

Adrenergic stimulation of the heart is mediated by norepinephrine, released from 

sympathetic efferents, binding to either a or f3 receptors. There are two forms of /3 

receptors, {3 1 and {3 2. In the ventricle, the majority of /3-receptors on the myocytes (85%) 

are of the /3 1 subtype (371). However, arterioles exhibit almost exclusively /3 2 receptors 

(371). {31 receptor activation on the myocytes has been related to increased heart rate 

and contractility (495,564). /32 receptor activation on myocytes also have positive 

chronotropic and inotropic responses similar to {3 1 activation, although {32 stimulation 

is much weaker (12,59,60,136,238,283). The primary role of {32 receptors apparently is 

focused more on their presence in arterioles, and mediate a dilatory function in the 

coronary vascula tu re (156,404,43 7 ,593 ). 

{31 receptor stimulation activates adenylate cyclase and increases the formation 

of cAMP (73,211,373,399,530). A stimulatory G-protein has been suggested to couple the 

f3 receptor to adenylate cyclase (216). Increased cAMP results in activation of cAMP­

dependent protein kinases, and thereby allows phosphorylation of specific intracellular 

proteins (I 98,278). One such phosphorylation activates the L-type calcium channel 

(278,488,520,529). It is proposed that the activation of the calcium channel by 

phosphorylation is a mechanism independent of the voltage gated mechanism 
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(429,430,489). Phosphorylated channels have an increased functional availability during 

a membrane depolarization (430), as well as an increased open state probability (74,77). 

This is in contrast to the mechanism of increased current by Bay K 8644. Bay K 8644 

does not increase cAMP, and appears to increase current by prolonging the open state 

of the channel (217 ,300,529). 

Another current possibly regulated by a cAMP mediated phosphorylation is the 

delayed rectifier iK current. Stimulation of ventricular cells with a (31 agonist, 

forskolin, or cAMP, elicited significant increases in iK (22,561). Furthermore, the 

increase was determined to be separate from a possible secondary influence of [Ca]j 

(22,561). However, increased iK also may be mediated through protein kinase C from a1 

receptor stimulation (511), and/or be a secondary effect of the increased [Ca]j directly 

enhancing iK (511 ). 

Increased contractility through (3-stimulation has been primarily related to the 

increased intracellular calcium from increased calcium influx through the L-type 

channels. Recently, additional contribution to the increased inotropy has been 

associated with cAMP dependent phosphorylation of phospholamban (46). 

Phospholamban is a SR protein that regulates the SR calcium pump (499,501). 

Phosphorylation of phospholamban causes significant increases in calcium transport 

into the SR (500,501). In addition to cAMP mediated phosphorylation of 

phospholamban (313,323,499,556), a calcium calmodulin-dependent phosphorylation 

(35,313), or a calcium activated phospholipid-dependent protein kinase phosphorylation 

(366), have also been shown. However, the calmodulin dependent mechanism may occur 

only as a supplemental pathway during high elevations of cAMP (556). The increase 

calcium pump activity is presumed to be the mechanism by which isoproterenol 

stimulation increases myocardial relaxation (323,499,555). Furthermore, the resultant 

increased calcium sequestration within the SR would enable an enhanced release of 
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calcium, causing an increased contractility (499). In addition to increased contractility, 

it is known that ,8-stimulation increases iti (46,527). Therefore, indirect enhancement 

of iNa/Ca can be elicited through ,B-stimulation which had increased SR release of 

calcium. 

Epinephrine was found to increase irin the SA node (63,64,67,126), atrial muscle 

cells ( 138), and Purkinje fibers (78). Similar results were obtained in experiments using 

isoproterenol, an almost pure ,81 agonist, in the SA node ( 126,20 l ). These results were, 

in part, due to a mechanism involving activation of adenylate cyclase and increased 

levels of cyclic AMP (201). The increased current was determined to be due to a shift 

of ir activation threshold to more positive levels, similar to an increased [Ca]i effect 

(126,201). However, a change in rate constants, not observed with increased [Ca]i, was 

noted during ,B-stimulation of ir, and may suggest a phosphorylation mechanism (201 ). 

Calcium was determined to have a direct effect on the channel without mediation 

through protein kinase C or calmodulin (201). Therefore ircurrent may be enhanced by 

,81-receptor stimulation through a secondary effect of increased calcium current, as well 

as a possible phosphorylation of a regulatory channel protein. 

,81 stimulation also may increase K accumulation within cardiac myocytes 

(143,546,557), possibly by activating the Na/K pump (118,315,408,563). However, it has 

also been observed that NE induced a hyperpolarization in Purkinje fibers ( 173) and the 

coronary sinus (52). It has been suggested that the effect on the resting membrane 

potential was due to an increased PK (52,173). This was supported by an initial increase 

of K efflux in the first minute following in vivo isoproterenol infusion in pig hearts 

(143), but soon after, a large sustained K influx was noted. The K influx is likely 

mediated by increasing cAMP activating the Na/K pump, since forskolin, an adenylate 

cyclase activator (143) or exposure to dibutyryl cyclic AMP (408) also caused a 

significant K accumulation (143). 
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ii) a-Adrenergic 

Norepinephrine may also bind to myocardial a 1 receptors (20,72) to regulate 

myocardial contractility (363,460). The effects of a-stimulation are due to mechanisms 

other than activation of adenylate cyclase (76), or elevation of cAMP levels (61). 

Although the mechanisms are not entirely clear, it has recently been shown that a 

receptor stimulation increases contractility, in part, by increasing the myofibrillar 

protein sensitivity to calcium (144). 

In addition, a 1 receptors are coupled to the turnover of phosphatidylinositol 

(71,296,461). The binding to an a 1 receptor activates phospholipase C, which recently 

has been determined to be mediated by a pertussis toxin insensitive G-protein (GTP-

binding transducer protein) (494). Phospholipase C selectively hydrolyzes 

phosphatidylinositol (26,71,296). Two of several products of phosphatidylinositol 

turnover are (1,4,5)-inositol triphosphate (IP3) and diacylglycerol (DG) (26). IP3 and 

DG act as second messengers in the heart (26,494). Although it remains controversial 

if IP3 enhances SR calcium release (289,367,389), IP3 continues to be the primary 

hypothesized pathway for a 1 receptor mediated increased inotropy. DG, on the other 

hand, has been implicated both to enhance and inhibit SR release (for review see (27)). 

DG function has been shown to be mediated by activation of protein kinase C (26). 

Protein kinase C is capable of phosphorylating phospholamban, however this action is 

relatively weak compared to cAMP (322). 

a 1 receptor stimulation is also a.ssociated with activating another pathway 

involving G-proteins, which may be more important in chronotropic changes. Alpha 

adrenergic stimulation has been observed to increase automaticity in rat atria (162,163), 

as well as elicit both a positive chronotropic effect in about 1/3 and a negative 

chronotropic effect in 2/3 of canine Purkinje fibers ( 416,436). The different directions 

of rate change in Purkinje fibers has been related to the concentration of a different 
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specific G protein, that is pertussis toxin-sensitive (436). Higher levels of this substrate 

are associated with a decrease in Purkinje fiber automaticity following stimulation by 

phenylnephrine (436). However, after inactivation of this G-protein with pertussis 

toxin, phenylephrine caused an increased automaticity (436). The decreased 

automaticity in Purkinje fibers by o 1-adrenergic stimulation is likely mediated by 

stimulation of the Na/K pump (ipump), distinct from a cAMP activation (472). 

Supportive evidence for pump activation was obtained by a resultant decrease in 

intracellular sodium activity after o1 receptor stimulation (562,596). It has been 

suggested that the pertussis toxin sensitive G-protein couples o 1 receptor stimulation to 

Na/K pump stimulation (472). Possibly the same pertussis toxin sensitive G-protein is 

now implicated in a muscarinic activation pathway that also slows automatic rate 

(345,412). 

Rate changes secondary to phenylephrine also have been associated with a 

decrease in potassium conductance (363,472). Although the mechanism is not clearly 

established, it has been suggested that a-receptor stimulation may inhibit iK1 (363) 

through a GTP regulatory protein that is insensitive to pertussis toxin (436,472). 

Suppression of iK1 by oi-stimulation in atrial and Purkinje fibers resulted in a 

depolarization of the membrane potential and increased net inward current during 

diastolic depolarization (363). Although significant o 1-mediated chronotropic effects 

are elicited in Purkinj~ fibers, no chronotropic changes have been observed in the SA 

node (219). 

iii) Summary 

In summary, f3 receptor stimulation can increase the rate of diastolic 

depolarization through multiple direct and indirect mechanisms. Specifically, 

norepinephrine will increase ic and iL by cAMP mediated events. Secondary to the 
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increased [Ca]j from enhancing iL, subsequent augmentation of if and iNa/Ca would also 

likely occur. On the other hand, a receptor stimulation activates at least 2 forms of G­

proteins. The pertussis toxin sensitive G-protein may be coupled to Na/K pump to 

mediate the decrease in automaticity seen in Purkinje fibers. The pertussis toxin 

insensitive G-protein may be coupled to hydrolysis of phosphatidylinositol to mediate 

increased contractility and automaticity, possibly by enhancement of iK, but inhibition 

of iKi· It is not known if this is mediated by all the same form of pertussis toxin 

insensitive G-protein. Thus sympathetic discharge may affect automaticity by 

modulation of at least four currents in the SA node (iK, if, iv and iNa/ca) and four 

currents in Purkinje fibers (if, iNa/Ca• iKl• and ipump). 

,8-adrenegic stimulation of atrial subsidiary pacemakers has been shown 

to have a positive chronotropic and dromotropic effect on in vivo (I 92,269,444) and in 

vitro (248,440,442) experiments. Similar propagation dependency on adrenergic 

stimulation has been demonstrated in other atrial sites (16,441). Furthermore, 

pacemakers that emerge, after SA node excision, show a dependence on ,8-adrenergic 

stimulation (442-444). The dependence wanes in the chronic animal experiments (444). 

In several in vitro experiments, true automatic pacemakers were evident without any 

background NE (442). NE exposure (2 x 10-8 M) almost doubled the spontaneous rate, 

hyperpolarized the MOP, and doubled the upstroke velocity (442). From the increased 

diastolic depolarization, it is obvious that NE enhanced one or more of the pacemaker 

currents in this preparation. It is not known which currents may be responsible for this 

increase, if any a receptor mediated effects are seen, or if any concomitant increase in 

contractility occurred. 

b. Cholinergic (Muscarinic) 

Acetycholine (ACh) stimulation of muscarinic receptors exerts most of its 

electrophysiological effects by increasing potassium conductance (84,180,235,329,521) 
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by possibly opening A Ch activated potassium channels (84,237 ,387 ,400,450,481 ). 

Stimulation of the muscarinic receptor activates a membrane bound G-protein (145,485) 

that may be directly coupled to the potassium channel, iK-ACh (412,481). 

The iK-ACh current is time and voltage dependent (387,400). Membrane potential 

effects are seen within 30 msec after ACh application (387,400). The G-protein 

activator of iK-ACh has been shown to be pertussis toxin sensitive (41,145,412,485). 

Administering pertussis toxin, blocks the negative chronotropic response of muscarinic 

stimulation, and may even result in a positive chronotropic response in atrial and SA 

node tissue (1,41,533). 

Muscarinic stimulation is also known to inhibit adenylate cyclase (565), and 

therefore reduces cAMP (215,285). Suppression of adenylate cyclase is modelled as 

muscarinic acti va ti on of an in hi bi tory G-protein ( 131, 164,215). This inhibition has been 

suggested to cause the decreased calcium current observed during muscarinic 

stimulation (161,506,519). Support of a G-protein pathway was added when it was 

found that pertussis toxin blocks muscarinic inhibition of adenylate cyclase (345,412). 

Subsequent muscarinic stimulation after toxin exposure was associated with an increase 

in contractility, demonstrating that a muscarinic path, possibly to phosphatidylinositol, 

was still functional (485). 

Furthermore, muscarinic stimulation has been shown to increase [Na]i in Purkinje 

fibers likely by inhibition of the Na/K pump (236,302) or an increase in sodium 

conductance (502). The muscarinic stimulation was also associated with increased 

contractility in ventricular cells (302) and Purkinje fibers, which may be related to the 

increased [Na]j by altering Na/Ca exchange (303), or through hydrolysis of 

phosphatidylinositol (70, 71). Similar to o1 stimulation (322,494), muscarinic stimulation 

activates phospholipase C also by a pertussis toxin insensitive G-protein (345). 

ACh has been found to cause an inhibition of the ir current by shifting its 
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activation voltage range to more negative levels (130). The mechanism of inhibition is 

related to a decrease in cAMP levels (131). Recently, acetylcholine has been found to 

have no effect on if in Purkinje fibers in the absence of .8-agonist stimulation (88). It 

is hypothesized that the difference seen between Purkinje fibers and SA node 

pacemakers, may be that Purkinje fibers have a much lower basal level of cAMP (88). 

Therefore, it appears that if is closely regulated by cAMP levels which sympathetic 

stimulation can increase but which is secondarily regulated by parasympathetic 

stimulation. In a similar vein, the cAMP enhanced iK described above, can be 

antagonized by muscarinic stimulation (215). 

In summary, acetylcholine can inhibit automaticity by direct activation of iK-ACh 

and by indirect suppression of i1, iK, and if through inhibition of adenylate cyclase. 

Accentuated antagonism of sympathetic activity by paraympathetic stimulation has 

been determined to be caused by both interneuronal and intracellular mechanism (for 

review see ( 419)). Since {31 stimulation activates adenyla te cyclase, and muscarinic 

stimulation can inhibit this activation, one can now see the specific currents involved 

in the intracellular mechanisms of accentuated antagonism. ASPs were found to be 

significantly more sensitive to acetylcholine effects on automatic rate (443,444) than 

SA node, by producing a significant decrease in the rate of diastolic depolarization 

(442). In fact, the sensitivity may have been a result of accentuated antagonism, since 

it had been shown that the ASPs are dependent upon, as well as regulated by 

sympathetic stimulation (442-444). ACh was found to block propagation of activity to 

surrounding fibers as well as cause pacemaker shifts (442). At high concentrations of 

A Ch (> 10-7 M), complete suppression of automaticity was observed, and likely were 

secondary to a profound hyperpolarization of the membrane potential (442). 

Autonomic innervation and modulation of atrial subsidiary pacemakers has been 

well established (149,192,332,422,443). The effects not only alter rates of activity, but 
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have been associated with pacemaker shifts (51,402,421,443) as well as development of 

dysrhythmias (149,332,402,422). The electrophysiologic mechanisms of the autonomic 

modulation of atrial subsidiary pacemakers have not been investigated. 

D. CLINICAL ATRIAL ECTOPIC DYSRHYTHMIAS 

Atrial ectopic dysrhythmias are well recognized to generate clinically significant 

rhythm disturbances. The emergence of atrial subsidiary pacemaker activity may be 

related to a variety of abnormalities including congenital malformations of the heart, 

genetic tendencies (i.e. in collagen vascular diseases), post-surgical complications, 

myocardial infarcts, and aging. Seventy-five percent of the patients found with 

significant ECG changes significant for ectopic rhythms had heart disease of either 

athersclerotic or rheumatic origin (360). 

Ectopic atrial dysrhythmias, as weli as all cardiac dysrhythmias, result from 

abnormal automaticity and/or abnormal conduction (227). Thus, the ASP emerges if 

there is a depression of automaticity of the SA node pacemaker as seen by cholinergic 

interactions (337,360), or by enhancement of automaticity of the subsidiary pacemaker 

through sympathetic influences (337,456,532). Another mechanism for the ASP 

emergence is through abnormal conduction. The most well recognized clinical example 

is from either atrial surgery for correction of an atrial septa! defect or transposition of 

the great arteries (212,465 ). 

I. Ectopic Supraventricular Dysrhythmias 

An infrequent form of dysrhythmia generated by an atrial subsidiary pacemaker 

is the ectopic supra ventricular tachycardia. There are two forms of atrial tachycardias: 

reentrant rhythms, and ectopic pacemakers (186). The ectopic form of atrial 

tachycardias, although rare in adults, is found more commonly in children ( 184, 194,455). 
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The incidence has been reported to occur in about I of every 25,000 children (184). 

Specific mapping to identify the site of origin has included areas near the junction of 

the IVC and the right atrium (106), a site well documented experimentally for 

subsidiary pacemaker activity (26 7 ,268,421,422,464,467). 

Gillette and Garson (186) investigated treatments of reentrant atrial dysrhythmias 

versus ectopic atrial dysrhythmias. Although digoxin was found to be most effective 

for reentrant rhythms, it had little or no effect in controlling ectopic rhythms. The beta 

blocker propranolol was found to be effective in managing reentrant better than the 

ectopic types ( 186). Furthermore, digoxin, quinidine and procainamide also have shown 

minimal efficacy (212). Although verapamil may initially give good results, it is too 

dangerous to administer in infants due to their greater sensitivity of the drug to the SA 

and AV nodes (179). Recently, catheter ablation techniques (104,188,478) or encainide 

(212) have proved more successful in the treatment of the ectopic forms. 

2. Surgical Trauma 

Most of the atrial ectopic dysrhythmias are a result of surgical repairs in the atria 

near the SA node or internodal tracts. Transposition of the great arteries appears in 

about 9% of all congenital heart disease (288). One surgical repair, the Mustard 

procedure, developed in 1964 (372), involves creation of a baffle to separate the vessels. 

The original procedure was performed by excising the atrial septum and suturing a 

pericardia! flap (baffle) to the atrial wall. The baffle is placed so that the pulmonary 

and systemic inflow are redirected to opposite ventricles (372). The suture line around 

the pericardia! flap runs in close proximity to the the SA and atrioventricular node 

(597). Postoperative atrial dysrhythmias have been reported ranging from 20-90%, 

many of which were generated from ectopic sites (91,142,185,318,448). Many of these 

dysrhythmias were noted to be similar to those seen in sick sinus syndrome (141, 199), 
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including ectopic atrial tachycardia (212). 

Several studies have shown that the repair may cause damage to the SA node or 

its arterial supply (142,187), to any or all three internodal pathways (245,318,448,583), 

or direct damage to the AV node (32,57). One study stated that part of their procedure 

included specific resection of the ER with the tissue margins sewn over (583). In 

addition, partial damage has been related to suture placement that resulted in SA node 

artery hemorrhage, narrowing, or occlusion from intimal sclerosis (142), or fibrotic 

scarring within the internodal tracts (33,318). Furthermore, it was observed that just 

the placement and securing of the venous cannulae for the circulatory bypass, may 

create damage to the SA node or its artery (91,185). 

After modification of the procedure, aimed at protecting the SA node and its 

arterial supply, a reduction of atrial dysrhythmias by up to 35% was observed 

(141,318,526,535). However, long term follow-up of this modified procedure noted a 

regression of stable SA rhythm (137). In fact, many required pacemaker implantation 

for symptomatic development of sick sinus syndrome (l 37). 

Another surgical repair for transposition of the great arteries is the Senning 

procedure (468). Diversion of blood flow in this technique is made by reconstruction 

of the right atrial free wall and the interatrial septum. A conduit is made that diverts 

blood flow from the SVC and IVC to the mitral valve (468). Initial studies comparing 

the resultant postoperative dyrhythmias between the Senning and Mustard procedure 

showed no difference (l 11,341,534). Furthermore, the dysrhythmias after the Senning 

procedure also were shown to be similar to the sick sinus syndrome (594). The late 

follow-up of patients who had either the Mustard or Senning procedure showed 

significant degeneration of SA node stability, requiring implantation of a pacemaker 

in up to 10% of patients (111,534). 

In an experimental study to investigate arrhythmogenesis, bipolar electrodes were 
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implanted in the internodal tracts of dogs (340). The Mustard and the Senning 

procedure produced varying degrees of damage to the anterior and posterior internodal 

tracts. However significant damage to the region of the posterior internodal tract was 

seen consistently by both techniques. In fact, it was suggested that sutures placed in the 

posterior internodal pathway was the likely cause of the atrioventricular block seen in 

some animals (340). Furthermore, a close association with the more lethal forms of AV 

block were also related to damage of the posterior internodal pathway (318). 

Repair of atrial septa! defects also have been found to develop similar 

postoperative dysrhythmias (36,199,391,465). As would be expected, the etiology of the 

dysrhythmias has been related to SA node injury during the repair (199). 

Pharmacological regimens to treat atrial dysrhythmias in the postoperative 

infants has been restricted to digoxin. Beta blockers are contraindicated in these 

patients. It has been found that whatever rhythm the patients do generate, it is 

exquisitely sensitive to the depressant effects of the medication (212). If digoxin does 

not stabilize the rhythm, implantation of a pacemaker is indicated (212). 

3. Sick Sinus Syndome 

Sick sinus syndrome is a grouping of clinical signs and symptoms secondary to a 

dysfunctional SA node (281). Disease involvement of the SA node directly and/or its 

preferential conducting pathways may result in clinically significant dysrhythmias. 

Disease or trauma to the arterial supply (SA node artery) of the SA node and its 

adjacent tissue may also result in SA node dysfunction. Furthermore, dysfunctional 

autonomic regulation of the SA node may affect automaticity or its conduction to 

generate acutely symptomatic dysrhythmias. Therefore, any dysfunction in the 

mechanisms that sustain or regulate the normal function or cellular integrity of the SA 

node may result in the sick sinus syndrome. If the dysfunction is confined to the SA 
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node, a pacemaker shift to an atrial subsidiary pacemaker may occur (290). 

Any of the following six electrocardiographic criteria may determine the presence 

of sick sinus syndrome (281,290): I) Persistent bradycardia; 2) Sinus pause or arrest with 

or without an emerging ectopic escape rhythm; 3) Sinoatrial exit block; 4) Chronic atrial 

fibrillation; 5) I nsensi ti ve a trial f i bri Ila ti on to DC cardioversion; 6) Brad ycard ia­

tach ycardia syndrome. Symptomatic features of sick sinus syndrome include syncope 

(25-45%), dizziness, dyspnea, or chest pain (each 10-40%; (447,496)). 

Two classifications of the disease have been assigned to sick sinus syndrome. 

Both classes have identical symptomatology, but the distinction is made by the effect 

of autonomic blockade (270,290). Signs and symptoms that persist after the 

administration of atropine and propranolol are classified as intrinsic. Conversely, if 

autonomic blockade abolishes the rhythm disturbance, then the classification is 

extrinsic. Both hypersensitive carotid sinus syndrome and orthostatic hypotension are 

examples of the extrinsic or autonomic mediated symptoms of sick sinus syndrome 

(103,510). Occasionally, both intrinsic and extrinsic forms of the syndrome may coexist 

in the same patient (290). 

Direct involvement of SA node tissue may occur from the normal aging process. 

Sick sinus syndrome is a clinical entity that is normally associated with the elderly 

population (281,290). It has been found that with increasing age, there is an increased 

collagen density within the heart (117,255,424). The collagen vascular disease, 

amyloidosis has similar SA node infiltration as aging (255,393). Amyloid has been 

related to the development of significant atrial dyrhythmias including bradycardia and 

atrioventricular block (85). 

Patients with HLA B27 associated rheumatic disorders (ankylosing spondylitis, 

sacroiliitis, uveitis), have shown a high incidence (2-10%; (24,375)) of atrial brady-tachy 

dysrhythmias, as well as all degrees of atrioventricular block (24,25,50). Development 
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of these forms of dysrhythmias have been linked to the diffuse increase in myocardial 

in tersti ti al connective tissue (58 ). 

Diseases that involve the arterial supply to the SA node may include polyarteritis 

nodosa or atherosclerosis. Polyarteritis nodosa commonly affects the medium and small 

sized arteries such as the coronary arteries, by causing a necrotizing inflammation (417). 

Furthermore, the SA node artery is frequently affected and results in atrial conduction 

abnormalites (256,508). Atherosclerosis involving the right coronary or left circumflex 

ca using inferior wall infarctions common! y demonstrate SA node dysfunction ( 434,4 79). 

The natural outcome of sick sinus syndrome has generally been indicated to have 

a good prognosis (425,454). Treatment of sick sinus syndrome has been directed at the 

symptomatic patient by implantation of an artificial pacemaker (290). Pharmacolologic 

agents for use in therapy, as well as for testing, must be carefully monitored. The 

present function of the SA node in this disease may hazardously deteriorate in the 

presence of sympatholytic agents such as alpha-methyldopa and guanethidine (456). 

Furthermore, it should be remembered that in experimental animals, the atrial 

subsidiary pacemaker function showed a dependence on sympathetic stimulation 

(442-444). Recent clinical support of this caution has been documented for the use of 

propranolol in patients with sick sinus syndrome (532). 

4. Summary 

The hierarchy of atrial pacemaker activity has been established (423). However, 

the ability of subsidiary pacemakers to maintain "normal cardiac rhythm" will depend 

on the extent of the disease, or trauma. Therefore disease entities causing a 

dysfunctional SA node may require atrial subsidiary pacemakers to maintain adequate 

cardiac function. In fact, patients with sick sinus syndrome generally remain 

asymptomatic until the subsidiary sites also fail (290). Furthermore, subsidiary 
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pacemaker failure is associated with a decline in the patient's prognosis (290). 

Therefore, diseases that may affect both the SA node and the atrial subsidiary 

pacemaker regions, such as those affecting their arterial supply (myocardial infarcts, 

polyarteritis nodosa, atrial surgical procedures), or diffuse tissue infiltration 

(amyloidosis, rheumatic disorders, aging), may cause more serious symptomatic 

dysrhythmias (i.e. complete AV block). One should recall the results of SAN excision 

experiments of Eyster and Meek (151): premature death occurred in those dogs that did 

not develop a transition from AV nodal rhythm to an atrial subsidiary rhythm. Thus, 

if the SA node is dysfunctional, it is seems clearly advantageous to maintain the 

integrity and function of the atrial subsidiary pacemakers. 



III. METHODS 

A. Preparation and Experimental Set-Up 

Cats (N = 154) of either sex weighing 2 to 4 kg were anesthetized with sodium 

pentobarbital (50 mg/kg, i.p.). A right thoracotomy was performed through the fifth 

intercostal space. The heart, including 2 to 3 cm of both vena cavae was quickly excised 

and placed into a dissecting dish containing a modified Tyrode's solution (composition 

is listed in Table 1) that was bubbled with 95% 0 2, 5% C02 and warmed to between 33-

350 C. The ventricles were separated from the atria by cutting a few millimeters below 

the atrioventricular sulcus and across the interventricular septum. The atria were then 

placed into a second dissecting dish containing fresh, warmed oxygenated Tyrode's 

solution. The right atrium was separated from the left and opened to expose the atrial 

free wall. The Eustachian ridge is located on the endocardial surface, at the junction 

of the inferior vena cava and the posterior wall of the right atrium (Figure 1). The 

Eustachian ridge varied in form, appearing in some preparations as only a small raised 

ridge on the endocardial surface, while in others it took the form of a delicate, thin 

sheet of tissue resembling a valve leaflet. Approximately a 5 mm x 3 mm strip of the 

Eustachian ridge was carefully excised and placed into a small tissue bath (Figure 2), 

similar to the chamber used in studies by Gadsby et !!l. (175-177). This fast-flow 

chamber provides a method for rapidly altering the extracellular solution. 

The tissue was gravity superfused with Tyrode's solution at a rate of 5 ml/min 

and warmed to 36 ± 0.5° C by a thermostatically controlled circulator (Haake, Model 

D8L). A two-path valve (Hamilton) for switching solutions was positioned very close 
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TABLE I 

COMPOSITION OF TYRODE'S SOLUTION 

NaCl - 125.0 

KC! - 4.0 

NaHC03 - 24.0 

NaH 2P04 - 1.2 

CaCI 2 - 1.8 

MgCI2 - 1.0 

Glucose - 11.0 

pH 7.35 ± 0.02 • 

Osmolarity 293 ± 0.9 mOsm/L (n=5)•• 

*Measured by Beckman ~ 60 pH Meter 

**Measured by Advanced Instruments Osmometer 
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Tyrode's solution was prepared the morning of each experiment and only twice 

distilled, deionized water was used. 
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Schematic endocardial view of the posterior wall of the right atrium. SVC = 

superior vena cava, CT= crista terminalis, ER = Eustachian ridge, IAS = interatrial 

septum, IVC =inferior vena cava, CS= ostium of coronary sinus, TV= tricuspid valve. 
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to virtual grOl.lld -

Schematic diagram of the fast-flow chamber taken from Gadsby and Cranefield's 

modification (175) of the Hodgkin-Horowicz tissue chamber. 
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to the inlet of the bath. A magnet placed within the valve handle completed a circuit, 

causing a 5 volt deflection whenever the valve position was switched. This voltage 

deflection was recorded and used to precisely indicate changes in bath solution. At a 

flow rate of 5 ml/min, the half-time for solutions to change in the middle of the bath 

channel was 0.5 seconds (175). The preparation was carefully pinned to the Sylgard 

(Dow Corning) floor of the tissue bath with stainless steel pins. After recording initial 

spontaneous rates, the tissue was often cut down into 2-3 preparations, each being 1-2 

mm 2 in area. 

B. Recording of Transmembrane Potentials 

Standard intracellular recording techniques were used to record transmembrane 

potentials. Ling and Gerard type glass microelectrodes (324), were made using a vertical 

pipette puller (David Kopf Instruments, Model 700c) and filled with a 3M KC! solution. 

Each microelectrode was placed into a microelectrode holder (WPI, MEH-3R) filled with 

3 M KC! and containing a Ag-Ag/Cl half cell. Each microelectrode holder was then 

attached to a probe mounted on a micromanipulator (Prior). Each probe was connected 

to a high impedance preamplifier (WPI, Model 750) with capacitance neutralization. 

The two unity gain outputs from the preamplifier were subtracted and then amplified 

!Ox via a custom-made differential amplifier. The resulting signal was fed into a 

connecting circuit which allowed it to be simultaneously displayed on a dual beam 

storage oscilloscope (Tektronix 5113), a two channel chart recorder (Gould 220), and 

recorded on a 4 channel FM tape recorder (Racal 4DS). Action potential signals were 

also fed into a differentiator to determine the maximum rate of rise of the upstroke. 

The tissue bath was grounded by a KCL agar bridge connecting to a pot 

containing 3 M KC!. The pot had a Ag-Ag/Cl wire immersed within it that was 

connected to virtual ground. The microelectrode resistances were measured by placing 
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the tip of a microelectrode in the tissue bath containing Tyrode's solution and passing 

a 50 mV pulse across a 50 Mohm resistor in series with the microelectrode. The resultant 

voltage drop across the microelectrode was displayed on the storage oscilloscope and the 

microelectrode resistance was calculated. Only electrodes with tip resistances of 20-50 

Mohms were used. 

Tension was measured using a home-made (plans obtained from A. Wasserstrom, 

University of Chicago) tension transducer (Figure 3). A dissecting pin was glued to the 

end of a spinal needle and used to hook the edge of the tissue. The spinal needle was 

supported by two thin strips of bronze (.002" thick), acting as springs that were clamped 

to a micromanipulator. Attached to the needle between the bronze strips was a thin 

metallic vane. With each contraction, the vane passed in front of a photodiode (Texas 

Instruments, TIL-138) fixed to the micromanipulator. The output of the photodiode was 

fed into a variable gain amplifier with a variable noise filter. Calibration of the 

transducer demonstrated a linear relationship between force and voltage output over 

the range of IO - 70 mg (Figure 4). Control tension was determined by pulling the 

needle and thus stretching the tissue to produce a tension that was 75% of the maximum. 

C. Data Measurement 

To study subsidiary pacemaker characteristics, control action potentials were 

measured and compared to those obtained during a test response. Action potentials were 

replayed from the FM tape recordings at real time into a three channel chart recorder 

(Gould 2400S). The schematic diagram in Figure 5 (Panel A) demonstrates the values 

of the action potential measurements. The basic cycle length (BCL) was measured in 

milliseconds (msec) and is defined as the time between the peak upstrokes of two 

consecutive action potentials. The maximum diastolic potential (MDP) refers to the 

most negative voltage of the action potential, and the peak potential (PP) which 
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FIGURE 3 

TENSION TRANSDUCER 

~----VANE 

..---SPINAL 
NEEDLE 

Pin at end of needle was used to carefully hook one edge of the tissue. 

Contractions generated slight back-and-forth motion in spinal needle by the bronze strip 

springs. The vane attached to the spinal needle passed in front of photodiode. 
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The tension transducer was loaded from 10 mg to 70 mg in increments of IO mg 

(N==3). At a gain of 500, the voltage was plotted above as the mean ± SE. 
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FIGURE 5 

ACTION POTENTIAL MEASUREMENTS 

-o 

TOP 

--70 mV 

500 msec 

Spontaneous subsidiary pacemaker action potentials exhibiting two phases of 

diastolic depolarization. Slope of early (01) and late (02} phase was measured as a line 

drawn tangent with linear portion of each phase. Takeoff potential (TOP) was 

measured at intersection of lines drawn tangent with late phase of diastolic 

depolarization and upstroke. 
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describes the peak positive voltage. Both are measured from the zero potential and are 

in units of millivolts (mV). The action potential amplitude is the absolute value of the 

voltage difference between the MOP and PP. Action potential duration (APO) was 

measured at 60% of repolarization from the PP. The diastolic slope, measured in 

millivolts/second (mV /s), was separated into two components, 0 1 and 0 2. 0 1 and 0 2 

were measured as the slope of a line drawn tangent to the first and second portions of 

diastolic depolarization, respectively (Figure 5). Although, this form of diastolic 

depolarization was frequently found, if the depolarization did not demonstrate both 

components, then 0 1 and 0 2 were assumed to have the same value. The take-off 

potential (TOP) was measured at the intersection of lines drawn tangent to 0 2 and the 

steepest portion of the action potential upstroke. 

Tension was measured as an estimated index of the intracellular calcium 

concentration. Since the experiments were designed to observe relative changes, tension 

values were normalized. In addition, due to variability in the amount of working atrial 

muscle among preparations, measurements of absolute tension would have been 

inappropriate. 

0. Ultrastructure Studies 

A series of experiments were done to correlate the structural and functional 

characteristics of fibers within Eustachian ridge and to compare these characteristics 

with those of sinus node and working atrial muscle. In seven preparations the 

Eustachian ridge, sinus node, and a portion of the right atrial appendage were isolated. 

The sinus node region and a strip of right atrial appendage was superfused in a tissue 

bath simultaneously. All tissues were allowed to equilibrate for one hour before 

intracellular recordings were begun. The pacemaker site of earliest activation (SEA) 
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was electrophysiologically mapped in both SA node and Eustachian ridge by recording 

an extracellular bipolar electrogram from one end of the preparation, and making 

systematic, multiple intracellular impalements throughout the tissue. The site of earliest 

acitvation was defined as the location in which the action potential preceded the 

electrogram by the greatest time interval. Action potential configuration was also used 

as a criterion in estimating the site of earliest activation. None of the tissues isolated 

from the atrial appendage exhibited spontaneous activity, although they were 

electrically excitable with external stimulation (Pulsar 4i). 

After intracellular recordings were completed in each tissue, the microelectrode 

was gently advanced, leaving the electrode tip at the site of earliest activation. Each 

tissue was then quickly placed in glutaraldehyde for fixation. To better visualize the 

recording site for later morphological analysis, the fixed tissue was placed under a 

dissecting microscope and a small dot of India ink (approx. 400 µm diam.) was placed 

at the postion of the electrode tip. In addition, a diagram was made, noting the positon 

of the site of earliest activation, to aid in localizing the recording site. Tissues were 

exposed to Tyrode's solution for no more than 3 hours before being fixed. 

Tissues were immersed in cold 4% glutaraldehyde in 0.15 N cacodylate buffer (pH 

7.4), rinsed in cacodylate buffer. Following fixation, each tissue was cut in half 

directly through the center of the ink dot used to label the site of earliest activation. 

Each half of tissue was then postfixed in l % osmium tetroxide in cacodylate buffer (pH 

= 7.4), dehydrated in graded series of acetone, and embedded in Epon. One micron 

sections were cut from each block face (through the site of earliest activation) using an 

LKB ultramicrotome with glass knives and stained with 1 % toluidine blue for light 

microscopic evaluation using an Olympus AHBS compound microscope. Thin sections 

(70-80 nm) for electron microscopy were cut with a diamond knife, mounted on 200-

mesh copper grids and stained with uranyl acetate and lead citrate to enhance contrast. 
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Sections were evaluated with an Hitachi H-600 electron microscope operated at 75 kV. 

Ten micrographs were taken of each tissue at random locations within the recording 

areas of both Eustachian ridge and SA node from each animal. The sampling method 

included systematically scanning one section per grid and recording the first ten grid 

spaces that contained P cells. In every case, the grid was positioned so as to selectively 

photograph only P cells in that grid space. Grid spaces which either contained artifact 

or did not contain P cells were excluded from the sample. The micrographs were 

photographically enlarged to a final magnification of 24,700 x and coded so that during 

analysis, the source of the tissue was not known. Volume densities of P cell nuclei, 

myofilaments, mitochondria and cytoplasm were estimated using a 99 point grid on a 

transparent overlay and applying standard point counting stereological methodologies 

(567). Apposed and unapposed subsarcolemmal cisternae in P cells was determined by 

directly counting each structure in both recording areas. Data for each variable 

measured was tested to determine if a significant difference existed between P cells in 

the Eustachian ridge and SA node by the Student's t test (two-tailed with a P value of 

less than 0.5 was considered statistically significant). 

E. Drug Protocols 

1. Preparation of solutions 

Tyrode's solution (concentrations listed above) was freshly made the morning of 

each experiment. All tissues were equilibrated in this solution for at least one hour 

before cellular recordings were attempted. In several experiments the ionic 

concentration of the Tyrode's solution was altered. To determine the PNa/PK ratio, the 

extracellular potassium concentration ([K]
0

) was randomly varied among I, 2, 4, 8, 16, 

32, 64, and 128 mM. The results from these experiments were plotted and fitted to 

curves calculated from the Goldman-Hodgkin-Katz equation (193,225). To maintain a 
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constant osmolarity, the extracellular sodium concentration ([Na]0 ) was adjusted 

proportionately in each of these solutions such that the sum of [K)0 + [Na)
0 

= 153 mM. 

The preparations were exposed to each solution until a steady state potential was 

reached, usually about 3-5 minutes. The influence of acetylcholine (ACh) was tested 

after reaching a steady RMP by switching to the same [K)
0 

but with 10-4 M ACh for 30 

seconds. The ACh solution was washed out to the previous solution before the [K)
0 

was 

switched again. Chloride free solutions were not used since the permeability of chloride 

ions have been consistently shown to contribute little to the cardiac RMP 

(17,53,82,170,234). 

In experiments that tested the effect of low [Na)
0 

(50%), sucrose was substituted 

for sodium (Na:sucrose = 1:1.8 in mM), to maintain constant osmolarity. Reducing the 

sodium, also causes a large reduction in the [Cl)
0

, and to avoid changes in potentials due 

to the development of junction potentials, these experiments were performed by using 

a flowing 3M KC! reference electrode (Fisher Scientific). 

When the experimental protocol required altering calcium, no other adjustments 

were made. The concentrations of calcium examined ranged from 0.54 to 5.4 mM. 

2. Autonomic Neurotransmitters 

Norepinephrine (Levophed bitartrate, Winthrop-Breon) and isoproterenol (Isuprel, 

Winthrop-Breon) stock solutions were prepared in doublely distilled, deionized water. 

To prevent oxidation of norepinephrine in the Tyrode's solution, ascorbic acid (Sigma) 

was added at a concentration of 6 x 10-5 M (569). The stock solutions were all prepared 

the morning of each experiment. The effects of exogenous neuromediators were 

assessed by analyzing action potential characteristics in the absence (control) and 

presence (test) of the test solutions. Action potentials were measured every 15 seconds, 

but only values measured at 60 seconds were used for statistical analysis. Experiments 
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directed toward determining the mechanism of norepinephrine required several 

reapplications in the presence of different blocking agents. Therefore, control 

experiments were performed to demonstrate that this adrenergic agonist could 

repeatedly initiate activity without significant differences. 

The autonomic receptor antagonists atenolol (Sigma), prazosin (Pfizer), and 

atropine (atropine sulfate, Sigma), were all prepared in stock solutions and kept 

refrigerated. 

3. Pharmacological Agents 

Channel blocking agents used to assess mechanisms of subsidiary pacemaker 

automaticity included: tetrodotoxin (Sigma), verapamil (+/- verapamil hydrochloride, 

Sigma), cesium (cesium chloride, Fisher Scientific). Stock solutions of each drug were 

made the morning of each experiment. The experimental drug Bay K 8644 (gift from 

Dr. Scriabine, Miles Laboratories, New Haven Connecticut), recently shown to enhance 

the slow inward current (462,463), was stored in a refrigerated stock solution of 10-3 M 

in ethanol, contained within an amber glass jar. Bay K 8644 and norepinephrine have 

been shown to increase the classically described slow inward current by specifically 

enhancing the current through L-type calcium channels (19,202,374). Throughout the 

results and discussion sections, the terminology of slow inward current will be ref erring 

to this mechanism. Acetylstrophanthidin was prepared the morning of the experiment 

in a stock solution with 1% ethanol at a concentration of 10-4 M. 

Ryanodine (Penick Corp., Lyndhurst, NJ) a drug which has a direct influence on 

calcium movements from the sarcoplasmic reticulum (34,265,409,497,498), was prepared 

from a refrigerated stock solution, and used at 10-6 M. The effects of ryanodine were 

irreversible. To assess the mechanism of norepinephrine action on SAP automaticity, 

dibutyryl cAMP (N 6-2'-0-dibutyryladenosine 3':5'-cyclic monophosphate, Sigma), was 
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tested. 

F. Data Analysis 

Action potential and membrane potential measurements and volume densities 

were all represented as the mean plus or minus the standard error of the mean (x ± 

SEM). Analysis of electrophysiological data was performed by comparison of two 

paired or unpaired groups (control versus test) and by applying the appropriate 

student's t-test. The ultrastructural volume density data was analyzed by comparing the 

Eustachian ridge versus either the sinus node or atrial muscle. Differences were 

considered statistically significant at a p < 0.05 (560). 



CHAPTER IV 

RESULTS 

A. ELECTROPHYSIOLOGY AND ULTRASTRUCTURE OF 

EUSTACHIAN RIDGE FROM CAT RIGHT ATRIUM: 

A COMPARISON WITH SA NODE 

(J.Mol.Cell.Cardiol. 12.:965-967, 1987) 

I. Electrophysiology 

Stable spontaneous activity was exhibited by six of seven SA node preparations 

and five of seven Eustachian ridge (ER) preparations. In the two quiescent ER 

preparations, norepinephrine (NE; approximately 1 o-9 M) elicited sustained spontaneous 

activity. Action potentials from both SA node and ER preparations were recorded from 

the site of earliest activation and therefore represent the 'primary' pacemaker of each 

tissue. Figure 6 shows action potentials recorded from a spontaneously beating SA node 

[panel (a)] and ER preparation [panel (b)]. Table 2 summarizes the average value of 

each action potential parameter recorded from each tissue. The spontaneous cycle 

length of subsidiary pacemakers was more than twice that of SA node and was more 

variable among different preparations. Even though the maximum diastolic and take­

off potentials of each pacemaker were similar, the amplitude of the overshoot and 

maximum rate of rise of subsidiary pacemakers were significantly greater than those 

in SA node. Although SA node exhibited a longer mean action potential duration, there 

was no statistical difference compared to subsidiary pacemakers. 
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FIGURE 6 

SPONTANEOUS ACTION POTENTIALS FROM SA NODE 

AND EUSTACHIAN RIDGE 
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Spontaneous action potentials recorded from the site of earliest activation in SA 
node (A) and Eustachian ridge (B). The top traces show bipolar electrograms (BPE) 
recorded from the periphery of each preparation. The bottom traces show the first 
derivative of maximum rate of rise of action potential upstroke (V /sec). 
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TABLE 2 

Eustachian ridge Sinus node 

SCL (ms) 948 + 1938 434 + 8 

MDP (mV) -69.9 + 1.7 -69.2 + 1 

OS (mV) +7.7 ± 1. 5a -6.4 + 3.2 

AMP (mV) 77.6 + 1. 7a 63.2 + 3.3 

APD-60% (ms) 109 ± 2 132 + 10 

TOP (mV) -52.5 + 2.7 -53.3 + 1. 5 

dV/dt (V/s) 5.5 + 0. 2b 2.2 ± 0.4 

SCL = spontaneous cycle length; MOP = maximum diastolic potential; OS = over­

shoot; AMP= amplitude; APD-60% =action potential duration at 60% repolarization; 

TOP= take-off potential; dV /dt = maximum rate of rise. 

ap<0.05; bp<0.001--Significantly different from sinus node. 
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2. Morphology 

Eustachian ridge tissues were more heterogenous than SA node, having at least 

four different types of myocardial cells. These could be broadly classified as P cells, 

transitional, typical working atrial muscle and ameboid cells, as described by Sherf and 

James (473). The endocardial region from which the site of earliest activation was 

recorded consisted primarily of small cells (Fig. 7). 

In both ER and SA node, electron microscopic examination of cells at the 

endocardial site of earliest activation revealed that P cells were the most predominant 

cell type. The P cells in the endocardial region of the Eustachian ridge had 

ultrastructural characteristics similar to those of P cells in SA node (compare Figs. 8 and 

9). Typically, they were clustered in groups of three or more cell profiles surrounded 

by a single basal lamina. Cells were approximately 5 to 7 µin diameter, were irregular 

in shape and showed a large variety of profile sizes in any one plane of section. The 

sparse content of internal organelles gave these cells the characteristic pale appearance. 

Myofibrillar content was sparse and randomly oriented. It was not unusual to see both 

longitudinal and cross sectional profiles of myofibrillar material within a single P cell 

(Fig. 10). Although an occasional Z line was observed, other components of a sarcomere 

were not clearly evident in P cells. Nuclei were relatively large in relation to cell size 

and centrally located. The nucleus was usually surrounded by endoplasmic reticulum, 

Golgi complexes, and small mitochondria. Mitochondria were also dispersed throughout 

the cytoplasm. Abundant small vesicles or calveoli were associated with the internal 

surface of the sarcolemmal membrane, at regions that did not directly appose another 

cell surface membrane. Vesicular mambranes were frequently continuous with the 

sarcolemma and therefore appeared pinocytotic. 

Both SA node and ER contained abundant nerve fibers in close proximity to P 

cells. Nerve fibers contained either clear or dense core vesicles and both types of fibers 
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LOW POWER ELECTRON MICROGRAPH OF EUSTACHIAN RIDGE 

Low power electron micrograph of Eustachian ridge 
sectioned through the site of earliest activation. P cells 
clusters are scattered throughout the subendocardial region 
(dashed line). Connective tissue separates the subendocardial 
region from working atrial muscle cells (AM) . Cell types were 
confirmed with high power electron microscopy. Bar indicates 
40 µm. 
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FIGURE 8 

ELECTRON MICROGRAPH OF SA NODAL CELLS 

AT THE SITE OF EARLIEST ACTIVATION 

Electron micrograph showing SA nodal P cells taken at 
site of earliest activation. Note the sparse internal 
organelles and randomly oriented myofibrillar material. 
Bundles of axons (arrows) are observed in close proximity to 
P cells. Bar indicates 1.0 µm. 
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ELECTRON MICROGRAPH OF EUSTACHIAN RIDGE P CELLS 

AT THE SITE OF EARLIEST ACTIVATION 

Electron micrograph of a typical cluster of Eustachian 
ridge P cells taken at the site of earliest activation. Each 
cluster is surrounded by a basal lamina (arrows). Some 
collagen fibers and occasional neural elements in the 
extracellular compartment are present. Bar indicates 1.0 µm. 
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FIGURE 10 

ELECTRON MICROGRAPH OF P CELL AND TRANSITIONAL CELL 

IN THE EUSTACHIAN RIDGE 

P cell (P) adjacent to a transitional cell (T) in 
Eustachian ridge. In the vicinity are several nerve fibers 
(arrows) which contain numerous clear vesicles and occasi onal 
large dense-core vesicles. Bar indicates 1.0 µm. 
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are seen within the same nerve bundle (Figs. 8, 9, 10). 

In terce llu lar junctions consisted primarily of undiff eren tia ted regions, with some 

desmosomes and poorly developed fascia adherentes (Figs. 8, 9, 10, 12). In rare 

instances, nexal connections were observed between either a P cell and a transitional 

cell or between adjacent P cells in the ER (Fig. 11). There were no specialized 

junctional regions such as an intercalated disc. P cells appeared to make intercellular 

connections between other P cells or transitional cells. Transitional cells were 

considered those cells that were slightly larger in diameter than P cells and appeared 

to have a higher volume density of more organized myofibrillar material (Figs. 10 and 

12). 

The sarcoplasmic reticulum commonly formed subsarcolemmal cisternae along the 

cell margins with diffuse globular densities situated between each cisternae and the 

sarcolemma (Figs. 12 and 13). ERP cells had a unique organization of subsarcolemmal 

cisternae never seen in SA node P cells. The subsarcolemmal cisternae were often 

directly apposed to one another between connected P cells (Fig. 13) or between a 

connected P cell and a transitional cell (Fig. 12). In 79 random photomicrographs of ER 

tissue from a total of 227 subsarcolemmla cisterna, 18 subsarcolemmal cisternae were 

directly apposed to one another (9 pairs). These values do not include the 

su bsarcolemmal cisternae shown in Figures 12 and 13, which were selected for 

illustration. An examination of 97 random photomicrographs of SA node revealed 298 

subsarcolemmal cisternae and no directly apposed subsarcolemmal cisternae. 

3. Quantification 

In four hearts, after electrophysiological recordings were made from both ER and 

SA node, each tissue was then morphologically analyzed to determine relative volume 

densities of nuclei, myofilaments, mitochondria, and cytoplasmic space. Table 3 
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ELECTRON MICROGRAPH OF NEXAL CONNECTIONS 

IN THE EUSTACHIAN RIDGE 

Nexal connections (arrows) between a P cell (P) and 
transitional cell (T) (panel A) and between two adjacent P 
cells (panel B) in Eustachian ridge. Bar indicates 0.25 µm. 
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FIGURE 12 

ELECTRON MICROGRAPH OF DIRECTLY APPOSED 

SUBSARCOLEMMAL CISTERNAE 

Di rect apposition of subsarcolemmal cisternae 
(arrowheads) at three different sites in a P cell (P) and 
transitional cell (T) in Eustachian ridge. The cells are 
connected by several junctional complexes. Bar indicates 1.0 
µm. 
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FIGURE 13 

HIGH POWER ELECTRON MICROGRAPH OF 

DIRECTLY APPOSED SUBSARCOLEMMAL CISTERNAE 

Two additional examples of paired subsarcolemmal 
cisternae (arrowheads) directly apposed to one another in 
Eustachian ridge P cells. Note that each apposed cisterna are 
approximately equal in length. Bar indicates 0.25 µm. 
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TABLE 3 

RELATIVE VOLUME DENSITIES IN PERCENTS (N=4) 

Eustachian Ridge SA Node 

Myof ilaments 26.5 ± 18.7 28.9 ± 6.8 

Mitochondria 18.5 ± 5.6 15.9 ± 4.2 

Nucleus 7.6 ± 9.8 6.9 ± 4.5 

Cytoplasm 47.5 ± 10.8 48.4 ± 0.7 

Values are expressed as the mean± standard error of the mean and were obtained 
by Weibel's method of point counting. Statistical analysis was performed using 
Student's t test. P < 0.5 was considered statistically significant. No statistical 
differences were found between the values. 
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summarizes the results. There were no significant differences between P cells in ER 

and those in SA node. 

B. MECHANISMS OF AUTOMATICITY IN SUBSIDIARY PACEMAKERS 

FROM CAT RIGHT ATRIUM 

(Circ.Res. 64:648-657, 1989) 

The following experiments were designed to determine mechanisms of 

automaticity of atrial subsidiary pacemakers. Only automatic isolated ER preparations 

(described in METHODS), which exhibited a discernible D1 and D2, were used in this 

series of experiments. In eight control experiments, the slopes of D1 and D2 were 55.3 

± 8.1 and 39.6 ± 4.5 mV /sec, respectively (p < 0.05). At a mean SCL of 696.7 ± 58.4 msec 

the initial diastolic slope (D 1) contributed 30.8% and the secondary slope (D2) 

contributed 69.2% of the the total time required for the diastolic membrane potential 

to depolarize from the maximum diastolic potential, that is, over the pacemaker voltage 

range (-75 to -55 mV). The transition from D 1 to D2 was estimated at approximately 310 

msec, measured from the action potential upstroke. 

1. Cesium 

The contribution of a cesium-sensitive pacemaker current to subsidiary 

pacemaker automaticity was assessed by exposure of spontaneously active preparations 

to 1 mM cesium. Figure 14A shows control pacemaker action potentials. In panel B, 

exposure to I mM cesium significantly decreased the slope of diastolic depolarization, 

resulting in a significant increase in spontaneous cycle length (SCL; +37.7 ± 7.8%). As 

shown in Table 4, cesium significantly decreased the slope of D 1 (-45 ± 8.5%) and D2 

(-33.6 ± 7.6%), with the change in D 1 being significantly greater than the change in D2 

(p<0.025). The only other cesium-induced effect was a small but significant increase in 
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FIGURE 14 

EFFECT OF CESIUM ON PACEMAKER ACTION POTENTIALS 

A e c 
-o 

-IO•V 

Panel A = control; panel B = effect of l mM cesium; panel C= recovery. The 
bottom trace shows the first derivative of action potential voltage changes. All action 
potentials were recorded from the same cell. 



TABLE 4 

SCL MOP OSP AMP TOP APO 01 02 dv/dt T 
(ms) (mV) (mV) (mV) (mV) (ms) (mV/s) (mV/s) (V/s) (%) 

CONTROL 727+47 -70.5:!;_3.9 9.4+3.6 79.8+6.5 -52.3:!;_3.4 116+6 51:!;.7 33+4 5.4:!:_1.0iil 
CESIUM 987!23# -70 .0:!:_3. 7 9.8!3.5 79.5!6.6 -55.2:!;_3.4 119!9 25:!;.1" 21!1iil 6.0:!;_1.3 

n=5 

CONTROL 723:!;.42, ·73.8:!;_3.0iil 12.7:!;_2.2# 86.6:_3.0# -52.5+3.4 117+4 65+7 40+4 7.2:!;_1.6@ 100 
-57.7!2.7" 110!4@ 80!9iil - * NE 489:!;_28" ·75.3:!;_3.2 14.6:!;_2.2 89.9:!:_2.9 66:!;.5 9.1:!:_1.9 157:!;.12" 

n=7 

CONTROL 781:!;.51, -75.8:_4.4# 12.1+1.8 88.2+4.5 -53.0:_4.2# 120+10 60+5 37+5 3.7+0.6 100 
BAY K 8644 532:!;.34" -76.9:!:_4.3 14.6!1. 7• 91.8!3.9" -59 .0:_4.0 117!9 70!8iil 55!4# 5.8!0.6" 300:_13+ 

n=6 

CONTROL 623+40 -77.4+1.8 13.0:_0.9@ 90.4:_2.0+ -59.2+2.1 110+10 61+9 47+6 7.5+2.0 
763!45+ -n.0!2.1 - + 116!10 54!6 37!3+ 7.3!1.9 TTX 11.4:!;_1.0 88.4:!;_2.5 -56.1:!:_3.4 

n=5 

CONTROL 757+79 -74.5+2.3 12.0+2.9 86.5+4.7 -53.1:!:_1. 7 104+12 51+8 39+4 5.4+1.2 100 
RYAN0-1 730+78+ -74.2+2.2 13. 0+2 .4 87.2+3.9 -53.2+1.5 103+12 53+8 40+5 5 .6+1.4 101+4 
RYAN0-15 2051!271" -70.9!1.9" 22.9!1.1" 93.7!2.0 -53.8!0.7 111!5 51!7 7!4# 7.8!2. 1 0-

Cn=5) 

Values represent mean :!:. standard error of the mean. SCL =spontaneous cycle length; MOP= maxi""-'11 diastolic potential; OSP =overshoot potential; 

AMP= total a~litude; TOP= take-off potential; APO= action potential duration (60%); 01 =slope of early diastolic depolarization; 02 =slope of 

late diastolic depolarization; T =percent change in tension development. RYAN0-1 = ryanodine at 1 minute of exposure; RYAN0-15 = ryanodine at 15 

minutes of exposure. Concentrations of cesium= 1 mM; NE = 2 x 10·9 M; BAY K 8644 = 10·7 M; TTX = 10·6 M; Ryanodine = 10·6 M. + = p < 0.05; iii = p < 

0.02; . = p < 0.01; # = p < 0.005; * = p < 0.001; ! = p < 0.0005 

'D 
'D 
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maximum rate of rise. Exposure to 5 mM cesium produced a greater increase in SCI and 

depolarized the maximum diastolic potential. 

2. Norepinephrine and Bay K 8644 

The role of the slow inward current was investigated by testing the effects of Bay 

K 8644 and norepinephrine (NE). As shown in Figure 15 and summarized in Table 4, 

10-7 M Bay K 8644 significantly decreased the SCL (-31.4 ± 9.3%), increased overshoot 

potential and action potential amplitude, elicited a negative shift in maximum diastolic 

and takeoff potentials, increased maximum rate of rise, and increased tension threefold 

(n=2). In addition, Bay K 8644 elicited a significantly greater increase in the slope of 

D2 (+57.5 ± 12.3%) than in the slope of D 1 (+14.9 ± 3.5%) (p<0.01). 

Relatively low concentrations of NE (2 x 10-9 M) had effects on pacemaker action 

potentials similar to those of Bay K 8644 (Table 4). In addition, NE elicited a 

significantly greater increase in the slope of D 2 (+71.3 ± 12.9%) than in the slope of D 1 

(+24.3 ± 6.5%) (p<0.01), resulting in a significant decrease in SCL (-32.0 ± 3.2%). In five 

additional preparations, 2 x 10-9 M NE was administered in the presence of the /3 1-

adrenergic receptor blocking agent atenolol (l o-6 M). Under these conditions, NE 

elicited only a small but significant decrease in SCL (-5.3 ± 0.6%, p<0.005) that was 

associated with a similar increase in D 1 (+11.4 ± 1.8%, p<0.05) and D 2 (+11.0 ± 4.8%, NS). 

3. Verapamil and Tetrodoxin 

Figure 16 shows the effects of verapamil in pacemaker action potentials. At the 

left in panel A, the preparation was beating spontaneously under control conditions. 

Action potentials recorded at this time are shown more clearly in panel B. At the arrow 

in panel A, the preparation was exposed to 4 x 10-7 M verapamil. Initially, SCL 

gradually increased until the diastolic potential failed to reach threshold. Action 
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FIGURE 15 

EFFECT OF BAY K 8644 ON PACEMAKER ACTION POTENTIALS 

AND TENSION 

A B 
-o 

--60mV 

I 5V/& 

250ms 

Panel A = control; Panel B =effects of 10-7 MBA Y K 8644. The middle trace 
shows the first derivative of action potential voltage changes. All action potentials 
were recorded from the same cell. Bottom trace shows tension (T). 
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FIGURE 16 

EFFECT OF VERAPAMIL ON PACEMAKER ACTION POTENTIALS 

l'IU!lllll!l!IUll!liJi!illl IJ_JJllJ!UllllUll I I I I 111111 I I I I I I I I I I I I I I I I l5Y/a 

Panel A= at the arrow, the preparation was exposed to 4x 1 o-7 M verapamil. Panel 
B & C =selected portions of the signals shown in panel A (horizontal bars), shown at an 
expanded time scale. Note that the time scale in panel A is slower than in panels B & 
C. The bottom trace shows the first derivative of action potential voltage changes. All 
action potentials were recorded from the same cell. 
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potentials recorded at this time are shown in Panel C. Over the next several beats, the 

late diastolic slope was replaced with oscillatory potentials that initiated action 

potentials at irregular intervals. Note in panel C that although the diastolic potential 

was markedly affected, the action potential amplitude and rate of rise were essentially 

unchanged. With time (>30 seconds) there was a progressive decline in action potential 

amplitude and rate of rise and an increase in SCL. After approximately 2 minutes the 

diastolic oscillatory potentials failed to initiate activity and the preparation became 

quiescent. Similar results were found in a total of five experiments with verapamil and 

one experiment with nisoldipine (10-6 M), a more specific slow channel (L-type) 

antagonist. In six additional experiments, a decrease in extracellular calcium ([Ca)
0

) 

from control ( 1.8 mM) to 0.54 mM had effects similar to those of verapamil. 

TTX (10-6 M) had no significant effect on maximum rate of rise of the upstroke. 

However, it elicited a small but significant decrease in overshoot potential and total 

amplitude (Table 4). Similar results were found in one additional experiment where the 

concentration was raised to 10-5 M. In addition, TTX decreased the slope of 0 1 and 0 2, 

shifted the takeoff potential more positive, and increased SCL (+23.9 ± 9.2%), but only 

changes in 0 2 were statistically significant (Table 4). 

4. Ryanodine 

The possibility that calcium entry may be influencing automaticity through a 

secondary release of intracellular calcium was assessed by exposure of spontaneous 

preparations to ryanodine. Figure 17 A shows control action potentials and tension. 

Within the first 2 minutes of exposure to 10-6 M ryanodine, the predominant effect was 

a gradual decrease in tension and a concomitant decrease in diastolic slope, leading to 

an increase in SCL. These changes continued until the diastolic membrane potential 

failed to reach threshold, resulting in a cyclic pattern of dysrhythmic activity 
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FIGURE 17 

EFFECT OF RY ANODINE ON SUBSIDIARY PACEMAKER ACTION POTENTIALS 

AND TENSION 

A c 
-o 

-60mV 

1 sec 1 sec 

B 

5 sec 

Panel A = control; panel B = early effects of 10-6M ryanodine after about 3 
minutes of exposure; panel C =steady state effects of 10-6 M ryanodine after about 15 
minutes of exposure. Note that the time scale in panel Bis 5 X slower than in panels 
A & C. All action potentials were recorded from the same cells. Bottom trace is tension. 
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panel B). Dysrhythmic activity lasted approximately 8-10 minutes before pacemaker 

rhythm stabilized at a prolonged cycle length. Panel C shows the steady state effects 

of ryanodine after about 15 minutes of exposure. It is apparent that ryanodine 

decreased the late diastolic slope (02) and thereby prevented the diastolic potential from 

initially reaching threshold. As a result, the diastolic potential exhibited a late 

oscillation or delayed afterdepolarization and an increase in SCL. In the five 

preparations tested, ryanodine elicited a mean decrease in 0 2 slope of 32 mV /sec (-84.8 

± I0.4%), which translates into a mean increase in SCL of 1,294 msec (+172 ± 23%) 

(Table 4). Ryanodine abolished tension within 3-5 minutes (n=2). Dysrhythmic activity 

elicited during early exposure to ryanodine occurred in four of five preparations tested. 

In addition, the steady state effects of ryanodine included a significant increase in 

overshoot potential, a marked increase in maximum rate of rise, and a positive shift in 

maximum diastolic potential. The takeoff potential, action potential duration, 

amplitude, and slope of 0 1 were not changed significantly. Since the effects of 

ryanodine were irreversible, recovery from the drug was not possible. 

Figure 18 illustrates in more detail the specific effect of ryanodine on the slope 

of 0 2• In this figure, every 20th action potential was traced and superimposed for the 

first 169 beats after exposure to ryanodine. Since there were no significant changes in 

maximum diastolic potential over this period (approximately 2 minutes), this portion 

of the action potential was superimposed. It is apparent that the predominant effect of 

ryanodine was a specific and progressive decrease in the slope of D2, with little effect 

on the slope of D1. At the 169th beat, the membrane potential failed to reach threshold. 

It should also be noted that ryanodine caused a brief initial shortening of the cycle 

length before lengthening occured. This can be seen at the 20th (No. 20) action 

potential. In the five preparations tested, mean SCL significantly decreased by 27 msec 

within the first 60 seconds of ryanodine exposure (Table 4). 
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FIGURE 18 

SUPERIMPOSED ACTION POTENTIALS DURING 

RY ANODINE ADMINISTRATION 

20 40 80 120 160 

\I li°/1?0/ liO I 

169 

_J 

This illustration demonstrates the progressive effect of 10-6 M ryanodine on the 
late phase of diastolic depolarization. Action potentials were superimposed using the 
maximum diastolic potential as reference point. C =control; numbers 20 through 169 
indicate consecutive spontaneous beats. The dashed lines were drawn tangent with the 
late phase of diastolic depolarization for each beat to illustrate the changes in slope. 
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To assess the direct contribution of an increase in slow inward current on 

pacemaker automaticity, Bay K 8644 was administered after sarcoplasmic reticulum 

(SR) calcium release was blocked by ryanodine. Figure l 9A shows control action 

potentials and tension. Panel B shows the steady state effects of ryanodine (10-6 M), 

that is, a decrease in 0 2, an increase in SCL, and zero tension. Addition of Bay K 8644 

(J0-7 M) in the presence of ryanodine elicited a progressive increase in the amplitude 

of the early diastolic potential (01), resulting in intermittent periods of regular 

pacemaker activity. Average SCL during these periods of regular activity (988 ± 157 

msec) was significantly shorter than the SCL with ryanodine alone (2,038 ± 172 msec, 

p<0.05) and was not significantly different from the control SCL (821 ± 61 msec). This 

cyclic pattern of activity was similar to that seen during early exposure to ryanodine 

alone. In addition, tension returned to a small extent (approximately 2 mg), indicating 

an increase in intracellular calcium. This cyclic pattern of activity remained stable as 

Jong as Bay K 8644 was present. Panels D and E show an expanded view of the last 

period of regular activity shown in panel C (dashed lines). In Panel D, the onset of 

regular activity was initiated as the amplitude of the early diastolic potential increased, 

bringing the membrane potential to threshold (arrow). However, it is difficult to 

determine whether 0 1 was enhanced or 0 2 was restored. In panel E, as the maximum 

diastolic potential became more negative, the membrane potential failed initially to 

reach threshold, resulting in a delayed afterdepolarization superimposed on a slow 

diastolic depolarization and return to a prolonged SCL. Similar results were found in 

all four preparations tested with Bay K 8644 plus ryanodine. The effects of Bay K 8644 

were reversible on washout of the drug (not shown). 

To determine the contribution of the cesium-sensitive conmponent after 

inhibition of the calcium mediated component, preparations were exposed to l mM 

cesium after at least 15 minutes of exposure to ryanodine (10-6 M). Figure 20A shows 
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FIGURE 19 

EFFECT OF BAY K 8644 IN THE PRESENCE OF RY ANODINE 

A B 

-o 

-·60mV 

--==--'15 mg -r.;c 
c 

_____ ..___..__ ___ ,.. ______ ..._ ___ ,...,,-., --15 mg 

5ffC 

D E 

The bottom trace in each panel is tension. Panel A = control; Panel B = steady 
state effect of 10-6 M ryanodine alone; panel C =effect of 10-7 MBA Y K 8644 in the 
presence of ryanodine; panel D = expanded view of records in panel C (three dashed 
lines); panel E =expanded view of records in panel C (four dashed lines). Note that the 
time scale in panel C is 5 X slower than in panels A,B,D and E. All action potentials 
were recorded from the same cell. 
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FIGURE 20 

EFFECT OF CESIUM IN THE PRESENCE OF RY ANODINE 

A B 

-o 

-·60mV 

c D 

-o 

-·60mV 

1 sec 

Panel A= control; panel B =steady state effects of 10"6 M ryanodine alone; panel 
C = effects of I mM cesium in the presence of 10-6 M ryanodine; panel D = recovery 
after washout of cesium only. All action potentials were recorded from the same cell. 
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the control action potentials. Panel B shows the steady state effects of ryanodine, as 

previously described. In panel C, addition of I mM cesium decreased both the 

amplitude and slope of D 1, shifted the diastolic potential more negative, and further 

increased SCL. Panel D shoes recovery after washout of cesium but still in the presence 

of ryanodine. In a total of six experiments, 1 mM cesium significantly increased mean 

SCL by 462 ± 98 msec (+25.7 ± 8%, p<0.02) and decreased the mean slope of D 1 by 15 ± 

3 mV /sec (-39.3 ± 8%, p<0.005). These changes were similar to those elicited by cesium 

under control conditions. 

C. CYCLIC BRADYDYSRHYTHMIAS GENERA TED BY 

ATRIAL SUBSIDIARY PACEMAKERS 

(J.Electrophys. 2_:90-103,1988) 

This work has shown that atrial muscle isolated from the ER region of cat right 

atrium normally generates stable subsidiary pacemaker activity (Fig 20A). In a few 

preparations, however, a consistent pattern of dysrhythmic activity developed 

spontaneously in preparations that previously exhibited rhythmic pacemaker activity. 

The records in Figure 21 show a typical example of this dysrhythmia. Panel A was 

recorded at a relatively slow chart speed in order to show the cyclic pattern and 

consistent nature of the activity. Panel B shows a portion of the records in panel A at 

an expanded time scale. Changes in SCL and maximum diastolic potential (MDP) 

during three periods of activity have been quantitated in the graph in Figure 22. As 

shown in Figure 21, periods of rhythmic pacemaker activity are cyclically interrupted 

by periods of irregular bradycardia. Periods of rhythmic pacemaker activity are 

characterized by gradual changes in cycle length: an initial decrease to about 800 msec 

followed by a gradual increase to about 1000 msec (Fig. 22). As cycle length 

Progressively increased, the diastolic membrane potential eventually failed to reach 
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FIGURE 21 

VOLTAGE AND TENSION RECORDS OF A TYPICAL 

CYCLIC BRADYDYSRHYTHMIA 

T 

B 
-omv 

-60 mV 

T 11111111111111111111111111111111111 I I I l I l I l I llll 
Action potentials and tension (T) recorded from a subsidiary atrial pacemaker 

exhibiting a typical cyclic brady dysrhythmia. The bar at the top of panel A, (labeled 
PANEL B), indicates the section of the recording that is illustrated in panel B, at an 
expanded time scale. Tyrode's solution contained 2.7 mM [Ca]0 , atenolol (10-6 M) plus 
atropine (J0-7 M). 
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BEAT TO BEAT CHANGES IN SPONTANEOUS CYCLE LENGTH 
AND MAXIMUM DIASTOLIC POTENTIAL 
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Changes in spontaneous cycle length and maximum diastolic potential (MOP) for 
each successive beat during three cycles of a dysrhythmia. The lines connecting the 
spontaneous cycle length data points were included for clarity. 
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threshold (Fig. 21B), resulting in a single oscillation and an increase in SCL. Over the 

next three beats, SCL progressively increased as the earlier oscillations in diastolic 

potential failed to reach threshold. At this time, SCL reached a maximum of almost 5 

sec (Fig. 22). 

Cycle length then began to progressively decrease as the amplitude of the last 

diastolic oscillation in each interval increased and attained threshold. Eventually, only 

a single oscillation followed each action potential. This oscillation progressively 

increased in amplitude, producing irregular changes in SCL (Fig. 22). When the 

oscillation became large enough to reach threshold, another period of rhythmic 

pacemaker activity was initiated. It should be noted that, during the periods of 

bradycardia, the initial diastolic slope is unchanged and only the later phase of diastolic 

depolarization is decreased and exhibits oscillatory activity. The graph in Figure 22 

shows that the MOP changed in phase with SCL. As SCL increased at the onset of a 

period of bradycardia, MOP became more positive and then, as SCL decreased, it 

became more negative. During periods of rhythmic pacemaker activity, the MOP 

hyperpolarized slightly. Action potential amplitude also exhibited frequency-dependent 

alterations. Amplitude reached its nadir at the longest cycle length and increased to a 

steady-state during periods of rhythmic activity. Frequency-dependent changes in 

tension are evident as well. Starting with a period of rhythmic activity, tension 

initially dipped and then exhibited a gradual positive staircase. As cycle length 

increased during the bradycardia, tension displayed a more marked positive staircase 

and then declined as cycle length shortened. 

Cyclic bradydysrhythmias developed spontaneously in a total of 12 preparations 

which previously exhibited stable, rhythmic pacemaker activity. The dysrhythmia 

developed after variable periods of time in vitro, ranging from minutes to several hours, 

and invariably led to quiescence. One additional pre para ti on exhibited the dysrhythmia 
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when first placed in the tissue bath. The spontaneous onset of the dysrhythmia was 

always associated with a gradual run-down in pacemaker activity, as characterized by 

an increase in spontaneous cycle length. However, it should be noted that increases in 

spontaneous cycle length were commonly observed in other experiments in which 

bradydysrhythmias did not appear. In seven preparations exhibiting the dysrhythmia, 

periods of rhythmic pacemaker activity averaged 18.9 ± 0.4 sec and periods of 

bradycardia averaged 18.8 ± 1.4 sec. Cyclic bradycardias lasted from only a few 

minutes up to 3 hours. 

Bradydysrhythmias were also induced in four quiescent preparations by brief 

exposure to either relatively low concentrations of NE (2-4 x 10-9 M; n=3) or elevated 

[Ca]
0 

(2.7-5.4 mM; n=2). Each of these preparations initially exhibited rhythmic 

spontaneous activity. Three of the four preparations exhibited periods of 

bradydysrhythmia before becoming quiescent. Figure 23 shows a typical response to 

high [Ca]
0 

of a quiescent preparation which had exhibited a bradydysrhythmia prior 

to quiescence. At the left in panel 23A, the resting membrane potential is recorded in 

Tyrode's solution containing 1.8 mM [Ca]
0

; At the arrow, raising [Ca]
0 

to 5.4 mM elicited 

a gradual depolarization of the resting membrane potential, the development of 

oscillatory prepotentials, and the initiation of sustained rhythmic activity . After 

approximately 2 minutes, [Ca]
0 

was returned to 1.8 mM. This resulted in a gradual 

decrease in tension, an increase in SCL, and after about 25 seconds, the development of 

a typical pattern of cyclic bradydysrhythmia. Brief exposure to NE had effects similar 

to those of elevated [Ca]
0

• Although NE could induce bradydysrhythmias, its presence 

was not required to sustain them. Short exposures (5 2 min) to NE could induce cyclic 

bradycardias which were sustained for up to 42 minutes. Moreover, in four 

experiments, cyclic bradycardias were unaffected by autonomic receptor blockade with 

atenolol (10- 6 M) plus atropine (10-7 M). 



115 

FIGURE 23 

CYCLIC BRADYDYSRHYTHMIA INDUCED BY HIGH [Ca]
0 

A 

0 

5.4 Cah 

' -70mv 

T l l10mg 

Effect of high extracellular calcium concentration ([Ca]
0

) to induce the 
development of a cyclic brady dysrhythmia in a quiescent preparation. The preparation 
was exposed to 5.4 mM [Ca]0 for approximately 2 min. and then returned to control 1.8 
mM [Ca]0 • The signals in panel A and Bare continuous recordings and were taken from 
the same cell. Ty rod e's solution contained a tenolol (I o-6 M) and atropine (I 0-1 M). 
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The frequency dependent changes in maximum diastolic potential suggested that 

activation of an electrogenic sodium pump current may be responsible for modulating 

the cyclic pattern of activity. To test this point, preparations exhibiting cyclic 

bradycardias were exposed to acetylstrophanthidin (AcSt) to inhibit sodium pump 

activity. As shown in Figure 24, before exposure to AcSt, periods of rhythmic 

pacemaker activity and bradycardia lasted approximately 19 and I 8 sec, respectively. 

The preparation was exposed to 10-6 M AcSt about 2 seconds after the onset of a period 

of bradycardia. Exposure to AcSt shortened the period of bradycardia, resulting in the 

initiation of rhythmic pacemaker activity 8 seconds earlier than under control 

conditions. It is also apparent that at 19 seconds (open arrow; upper trace), when the 

bradycardia would have reappeared before exposure to AcSt, pacemaker activity was 

now sustained. Also note, at this time, AcSt had no affect on tension (open arrow; lower 

trace). In fact, tension only began to increase above control values approximately 5 

seconds after exposure to AcSt was discontinued (second solid arrow). Approximately 

58 seconds after exposure to AcSt was discontinued, the bradycardia reappeared. Note 

that the bradycardia returned at a time when tension and presumably intracellular 

calcium were elevated. In three additional experiments (in which tension was not 

recorded), lower concentrations of AcSt (2-4 x 10-7 M) had similar effects on pacemaker 

activity. In two of the three experiments, atenolol (10-6 M) and atropine (5 x 10-7 M) 

were present. In one additional experiment where tension was measured, exposure to 

4 x 10-7 M AcSt for approximately 3 minutes established sustained, rhythmic pacemaker 

activity and had no affect on tension. 

The contribution of the electrogenic pump activity was tested further by 

electrically pacing dysrhythmic preparations to enhance pump activity. Preparations 

were electrically stimulated with a bipolar extracellular electrode using square wave 

pulses of 2-3 msec duration at 50% above threshold voltage. Pacing cycle length was set 
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FIGURE 24 

EFFECT OF ACETYLSTROPHANTHIDIN ON CYCLIC BRADYDYSRHYTHMIAS 

T j 1omg 

20s 

Effect of 1 o-6 M acetylstrophanthidin (AcSt) on action potentials and tension (T) 
of a preparation exhibiting cyclic brady rhythms. AcSt was administered for 40 s 
(filled arrows). The upper open arrow indicates the time at which the brady rhythm 
would have re-appeared in the absence of AcSt. Note AcSt established rhythmic 
pacemaker activity at a time when tension was unchanged (lower open arrow). 
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at approximately the same cycle length that the preparation beat spontaneously during 

periods of rhythmic pacemaker activity. The pacing protocols were performed on 

preparations which initially exhibited cyclic dysrhythmias that stabilized into 

relatively rhythmic periods of bradycardia. Figure 25 shows the response to pacing at 

800 msec for 3.5, 7.5, 15, and 30 seconds. The Tyrode's solution contained atenolol (10-6 

M) and atropine (10-7 M) to prevent the effects of any endogenous neuromediators that 

may have been released by electrical stimulation (38). Shorter pacing periods resulted 

in the development of spontaneous action potentials immediately following the pacing 

period, which were inversely related in number to the pacing duration. Thus, pacing 

for 3.5, 7.5, and 15 seconds elicited 11, 8, and 2 spontaneous beats, respectively. At a 

longer pacing duration of 30 seconds, only suppression of pacemaker activity was 

elicited. Pacing for 60 seconds elicited a greater period of suppression (not shown). It 

should be noted that the banding created by the stimulus artifact (best illustrated in 

Fig. 25D) initially rises and then falls during the pacing period. This was due to the 

diastolic membrane potential becoming initially more positive and then more negative 

at the time of stimulation, resulting from an initial increase and then decrease, 

respectively, in the slope of diastolic depolarization. Qualitatively similar results were 

obtained in a total of three preparations tested. 

The previous work has shown that intracellular calcium may mediate a component 

of subsidiary pacemaker automaticity. This suggested that the development of the 

dysrhythmia may be related to alterations in intracellular calcium and, thereby, 

automaticity. To test this hypothesis, dysrhythmic preparations were exposed to 

elevated [Ca]
0 

or NE to enhance intracellular calcium. Figure 26 shows action potentials 

and tension recorded from a preparation exhibiting cyclic bradycardias in 1.8 mM [Ca]
0

• 

At the first arrow, [Ca]
0 

was increased from 1.8 to 5.4 mM. The tension recordings 

indicate that within 3-4 beats intracellular calcium was increased, and by the end of the 



119 

FIGURE 25 

EFFECT OF ELECTRICAL PACING OF DYSRHYTHMIC EUSTACHIAN RIDGE 
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Effect of electrical pacing on action potentials and tension (T) of a dysrhythmic 
preparation. The numbers at the top of panels A-D indicate the duration of pacing in 
seconds. The filled arrows in panel A-C indicate the first and last non-driven beats 
elicited immediately following each pacing period. Signals in each panel were recorded 

from the same cell. 
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FIGURE 26 

EFFECT OF 5.4 mM [Ca]
0 

ON A DYSRHYTHMIC EUSTACHIAN RIDGE 
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' 
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Effect of 5.4 mM [Ca)
0 

on action potentials and tension (T) recorded from a 
dysrhythmic preparation. A l.75 min. section of rhythmic pacemaker activity was 
deleted for clarity of presentation. Tyrode's solution contained atenolol (10-6 M) and 
atropine (l o-7 M). 
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next period of rhythmic activity, tension was six times greater than control. This first 

period of rhythmic activity in 5.4 mM calcium was already longer in duration than 

control. In addition, the cycle length following this period was significantly longer and 

required more time to recover. Once pacemaker activity resumed, however, it remained 

stable as long as [Cal
0 

was elevated. At the second arrow, [Cal0 was returned to 1.8 mM 

and within about 25 seconds rhythmic pacemaker activity ended and the dysrhythmic 

pattern returned. Note that tension was still elevated when rhythmic activity ended and 

the bradycardia returned. Similar results were obtained in a total of five preparations 

where [Ca]
0 

was raised to 5.4 mM (n=3) or 2.7 mM (n=2). 

As shown in Figure 27, exposure of dysrhythmic preparations to 5 x 10-9 M NE 

also prevented development of bradycardias by establishing rhythmic pacemaker 

activity. Before exposure to NE, periods of rhythmic activity lasted about 23 seconds. 

NE was administered toward the end of a period of bradycardia for 60 seconds (arrows). 

It is apparent that NE established rhythmic activity and a progressive increase in 

tension. Approximately 23 seconds after NE was discontinued, the bradycardia 

returned even though tension was still elevated. Similar results were obtained in a total 

of five experiments with NE concentrations 2-5 x 10-9 M. Tension was measured in two 

of five experiments. 

In two experiments, dysrhythmic preparations were briefly exposed (5 minutes) 

to verapamil (0.5 to l.O x 10-7 M). Verapamil decreased periods of rhythmic pacemaker 

activity and prolonged periods of bradycardia (data not shown). Longer exposure 

resulted in bradycardias that led to quiescence. 

In the previous study of normal subsidiary pacemaker function it was shown that 

ryanodine, a putative blocker of SR calcium release (339,497), specifically depressed the 

later phase (02) of diastolic depolarization, significantly inhibiting automaticity. 

Figure 28 shows a typical experiment in which panel A shows control action potentials 



122 

FIGURE 27 

EFFECT OF NOREPINEPHRINE ON CYCLIC BRADYDYSRHYTHMIAS 

T 110mg 

20 s 

Effect of 5xl0-9 M norepinephrine (NE) on action potentials and tension (T) 
recorded from a dysrhythmic preparation. NE was administered for approximately 
60 s. 
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FIGURE 28 

RY ANODINE INDUCED BRADYDYSRHYTHMIA 

RYANODINE (10-6 M) 

B 
-o 

--70mV 

---------....... __ ~---------------------' 15mg 
1 s 105 

Effect of ryanodine on spontaneous action potentials and tension (T) recorded 
from a preparation exhibiting rhythmic pacemaker activity. Panel A shows control 
action potential configuration and tension (T). In panel B the preparation had been 
exposed to 10-6 M ryanodine for approximately 3 min. Note that the time scale in Panel 
A is ten times greater than in panel B. Signals in panel A and B were recorded from the 
same cell. 
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and tension recordings from a preparation exhibiting stable, rhythmic pacemaker 

activity. In panel B, the preparation had been exposed to 10-5 M ryanodine for about 

3 minutes. It is apparent that ryanodine elicited a pattern of cyclic bradycardia 

qualitatively similar to those preparations in which the dysrhythmia developed 

spontaneously or was induced. During the bradycardia, the later portion of diastolic 

depolarization is reduced, while the initial slope is unaffected. The oscillatory 

potentials during diastolic intervals are significantly attenuated compared to those in 

the dysrhythmias occurring spontaneously or were induced in quiescent preparations. 

Ryanodine also abolished tension. Dysrhythmias induced by ryanodine usually lasted 

8-10 minutes. Over time, periods of bradycardia lengthened and periods of rhythmic 

pacemaker activity shortened until a rhythm with a prolonged cycle length ensued (not 

shown). Ryanodine induced cyclic bradycardias in four of five preparations tested. 

D. SUBSIDIARY PACEMAKER RESISTANCE TO [KJ
0 

It was shown that the MOP of spontaneously active Eustachian ridge preparations 

was not significantly different from SA node pacemakers. In addition, quiescent 

preparations in normal [K]
0 

exhibited resting membrane potentials (RMP) near -60 mV 

similar to SA node. This suggested that the passive membrane properties of the ER, 

specifically the PNa/PK ratio, might also be similar to that of nodal pacemaking fibers. 

In five ER preparations made quiescent by a background concentration of 10-6 M 

verapamil, the RMP was recorded in 8 different extracellular potassium concentrations 

([K]
0

; logarithmic changes), ranging from l mM to 128 mM. The sum [K]
0 

+ [Na]
0 

was 

kept constant at 153 mM in the different solutions tested. The RMP stabilized within 

3-4 minutes of the solution change. In Figure 29, the RMP is plotted against the log [K]
0 

(open circles). In addition, if it is assumed that membrane of the ER cells is permeable 
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FIGURE 29 

PNa/PK RA TIO WITH AND WITHOUT ACETYLCHOLINE 
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Resting membrane potential was recorded at different [K]0 levels. Open circle or 
triangles (open circle: control; open triangle: 10-4 MA Ch) represent mean control values 
(N=5) at all levels of [K]

0 
except [K]

0 
= 128 mM (N=3), and vertical bars indicate± S.E. 

Note the linear-log scale. Solid line is the calculated EK at 36° C, and [K]i = 155 mM. 
Dotted line is calculated Goldman-Hodgkin-Katz equation with PNa/PK = 0.076, and 
dashed line has a PNa/PK = 0.015. 
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to only potassium ions then the equilibrium potential of potassium (EK) should 

accurately predict the RMP in the different potassium concentrations. EK was 

calculated, 

and plotted for comparison (solid line). R is the gas constant, T is the absolute 

temperature, and Fis the Faraday constant. The [K]i is assumed to be 155 mM (53). 

Furthermore, it is assumed that the [K]i remains relatively constant during these short 

changes in [K]0 (170). It is clear that at the lower levels of [K]0 that the equilibrium 

potential for potassium fails to accurately predict the measured values of RMP. This 

result suggests that the relatively low RMP may be secondary to either a low [K]i or that 

the membrane is not exclusively permeable to potassium. The low RMP of cells in the 

canine coronary sinus, was predominantly due to a cellular permeability to sodium ions 

(53). Therefore, the Goldman (l 93), Hodgkin & Katz (225) equation was employed in 

a similar fashion: 

to determine if sodium permeability could also explain the relatively low RMP seen in 

this tissue. By setting the PNa/PK ratio to a value of 0.076, a line (dotted line) was 

generated that closely fit the data. Examination of the results of this line, shows that 

a large deviation from EK results at the lower [K]
0 

levels. But when [K]
0 

is increased, 

the RMP more closely approximates EK. Therefore, it is apparent that 155 mM is an 

accurate approximation of the [K]j. Thus it is suggested that the relatively low RMP is 

due to a high PNa/PK ratio. 

This conclusion can also be ascertained by a second method which experimentally 

decreases the PNa/PK ratio (53). A decrease in the PNa/PK ratio, by increasing the 

permeability to K ions should shift the RMP to more closely approximate EK. 
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Stimulating muscarinic receptors are known to increase K permeability in atrial cells 

(84,180,235,329,521). Therefore, acetylcholine should decrease the PNa/PK ratio and 

hyperpolarize the membrane potential to values closer to EK. The effect of [K]
0 

was 

repeated on the Eustachian ridge preparations. When the RMP had stabilized, the 

solution was switched to one containing 10-4 M acetylcholine for short durations of 15-

30 seconds. The resulting RMP was again plotted against log [K]
0 

(open triangles, 

Figure 29), illustrating the shift toward EK. The best fit curve (dashed line) according 

the Goldman-Hodgkin-Katz equation had a PNa/PK ratio equal to 0.015 (five times less 

than above). Atropine, the muscarinic blocker, at concentrations of 10-5 M blocked the 

effects produced by acetylcholine. 

To directly assess sodium permeability, six preparations were studied in low 

sodium (50% of control). Exposing the tissues to low sodium for 30 seconds elicited a 

significant hyperpolarization of the RMP (control:-55.9 ± 1.7 mV vs. 50% Na: -61.0 ± 2.2 

mV, p<.001). During washout of the low sodium solutions it was noted that there were 

immediate depolarizations to levels above the control RMP. 

2. Effect of [K]
0 

on Sp on ta neous Activity 

Many cardiac cells within the distribution of the SA ring bundle have been shown 

to be resistant to elevated [K]
0 

(53,110,228,335,336,549,550). The K resistance is 

associated with a high PNa/PK ratio, resulting from a low iK1 current density PK, 

(183,386,450). This raises the question of whether the subsidiary pacemakers in the ER 

will exhibit K resistance. 

Six spontaneously active ER tissues were each exposed to five different [K]
0

, 

ranging from 1 mM to 16 mM. Action potentials were measured after equilibrating for 

3-5 minutes. As shown in Figure 30, all preparations remained spontaneously active in 
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FIGURE 30 

SUBSIDIARY PACEMAKER AUTOMATICITY IS RESISTANT TO HIGH [K]
0 
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Atrial subsidiary pacemaker in the Eustachian ridge is resistant to elevated levels 
of [K]0 • Automatic activity persists in 16 mM [K]

0
• At 32 mM [K]

0
, activity is abolished 

and the RMP is approimately -34 mV. 
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16 mM [K]
0

• At 8 mM [K]
0

, SCL was significantly increased (Table 5, control: 595 ± JOO 

ms vs. 8 mM: 721 ± 119 ms; p<O.O I), and the MOP was significantly decreased (control: -

78 ± 3.2 mV vs. 8 mM: -68.9 ± 3.0 mV; p<0.001). In 16 mM [K]0 , the SCL, although more 

variable, increased further (8651 ± 2367 ms), and an additional significant 

depolarization of the MOP was seen (-54.1 ± 2.1 mV, p<0.001). Four of these 

preparations were also exposed to 32 mM [K]
0

, all of these were rendered quiescent and 

had a mean RMP of -34.4 mV. 

E. MECHANISMS OF INITIATION OF ATRIAL SUBSIDIARY 

PACEMAKER ACTIVITY 

In several preparations (32%), the cat ER was found to be quiescent, but could 

initiate activity in the presence of relatively low concentrations of NE (I-JO nM). 

Initiation is a stimulation through ionic or pharmacologic manipulations of the 

preparation to generate automaticity without stimulated action potentials. A typical 

initiation sequence by NE is seen in Figure 31 (panel A). During the infusion of the NE 

containing solution, the RMP gradually depolarizes, forms oscillatory prepotentials, 

until reaching the threshold potential. Once threshold is reached, sustained rhythmic 

activity is maintained until washout of the NE. This study investigates the possible 

electrophysiologic mechanisms of initiation. 

l. Effect of Adrenergic Blockade 

To determine the relative extent that the NE-induced responses were mediated via 

Ct1 or {31 adrenergic receptors, preparations were pretreated with either 10-6 M atenolol 

(selective beta-1 blocking agent) or 10-6M prazocin (selective alpha-I blocking agent). 

Neither atenolol nor prazocin alone had any significant effect on the RMP. In all ten 

preparations tested, atenolol, but not prazosin, blocked initiation of activity by NE. In 



TABLE 5 

SCL MOP OSP AMP TOP APO 01 02 dv/dt 
(ms) (lnV) (mV) (lnV) cmv> (ms) cmvts> cmvts> (V/s) 

CONTROL 595!,100 ·78.0!,3.2 10.3!_2.3 88.4!_4.9 ·60.6!_1.5 98!,7 60!:4 47!,7 9.6!_1.5 

1 ""' [I(] 0 518!,89 ·81.3!_4.5 6.6!_2.2 87.9!_6.2 ·62.4!_3.8 106!,7 87!,13 78!,17 7.4!_1.6 

2 ""' [I(] 0 602!,91 ·81.7!,4.5" 9.2!_1.8+ 90.9!,5.0+ ·62.1!,1.9 103!,7* 74!,7 62!,9 8.4!,1.2 

8 ""' [I(] 0 n1!119. ·68.9!,3.0* 11.0!,1.4 80.8!,3.5" ·57.5!,2.7 93!,8 27!,5" 27!,5" 9.9!,1.3 

* * * 18!,4* * 16 ""' [1()0 3651!,2367 ·54.1!,2.1 11.6!_2.1 65.7!_3.6 ·46.4!,2.3 81!,6" 10!,4 6.9!_0.9 

Values represent mean! standard error of the mean. SCL =spontaneous cycle length; MOP= maxilll.lll diastolic 

potential; OSP =overshoot potential; AMP c total arrplitude; TOP= take·off potential; APO= action potential 

duration C60X); 01 =slope of early diastolic depolarization; 02 =slope of late diastolic depolarization. 

+ * = p < 0.05; • = p < 0.01; = p < 0.001 

""' 0 



FIGURE 31 

INITIATION OF ACTIVITY WITH NOREPINEPHRINE AND ACETYL-

NE 
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Panel A: Administration of 2 x 10-9 M NE to quiescent Eustachian ridge 
preparation (arrows in A and B), induced a depolarization of the RMP, causing small 
oscillatory prepotentials, until reaching threshold. Bottom trace shows first derivative 
of action potential voltage changes. Panel B: NE initiation in same preparation as in A, 
after eqilibration in 10-6 M ryanodine. Recordings in panels A and Bare from the same 
preparation. Panel C: Administration of 10-6 M AcSt initiates activity (arrows in C and 
D,). Panel D: After equilibration in ryanodine, AcSt fails to initiate activity. Bottom 
traces are the first derivative of the action potential voltage changes. Recordings in 
panels C and Dare from the same preparation. 
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3 additional experiments, 5-50 nM isoproterenol (a specific beta-I receptor agonist) was 

also shown to initiate activity similar to NE. Furthermore, isoproterenol initiation was 

also blocked by 1 o-6 M a tenolol. 

2. Effect of Dibutyryl Cyclic AMP (DBcAMP) 

NE is known to affect myocardial tissues primarily through mechanisms 

involving activation of adenylate cyclase and increasing intracellular cAMP 

(211,373,399,530). To determine if NE initiation resulted from cAMP mediated events, 

dibutyryl cAMP was studied in five preparations at concentrations of either 0.5mM or 

1 mM. Tissues were equilibrated in 10-6 M atenolol and io-7 M atropine to block {31 and 

muscarinic receptors. Although the RMP remained fairly stable, after 5 minutes the 

oscillatory prepotentials eventually developed and grew in amplitude until threshold 

was reached (Figure 32). In all 5 preparations tested, DBcAMP caused initiation of 

subsidiary pacemaker activity. Cessation of activity occurred within 10 minutes 

following washout of DBcAMP. 

3. Effect of Bay K 8644 

Enhancement of inward calcium currents by norepinephrine has been shown to 

be partially due to cAMP phosphorylation of L-type calcium channels (278,520,529). 

Bay K 8644 has been shown to activate the L-type calcium channels without cAMP 

phosphorylation (217,300,529). Six preparations were pretreated with 10-6 M atenolol 

and 10-7 M atropine, and then tested for the effects of 10-7 M Bay K 8644. Bay K 8644 

elicited a depolarization of the RMP, followed by oscillatory prepotentials, and 

pacemaker initiation (Figure 33). The activity continued until washout of Bay K 8644. 

In two preparations, the calcium channel blockers verapamil and nisoldipine, completely 

inhibited initiation by Bay K 8644. 



FIGURE 32 

INITIATION OF ACTIVITY WITH DIBUTYRYL cAMP 
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The arrow indicates the time at which DBcAMP began being administered. After 
5 minutes, oscillatory prepotentials developed and reached threshold to initiate activity. 
Middle trace is the differentiated voltage signals. Bottom trace is tension. 
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FIGURE 33 

INITIATION OF ACTIVITY WITH BAY K 8644 

-omv 

BAY K 8644 {10-7M) 

r--60mV 

5 sec 

Arrow indicates exposure to Bay K 8644. RMP gradually depolarized and 
initiated activity. 
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4. Effect of Cesium 

To determine the possible role of the cesium-sensitive pacemaker current Or) in 

the NE-induced responses, seven preparations were first equilibrated with I mM cesium 

before exposure to NE. Although cesium alone elicited a slight hyperpolarization of the 

RMP (control: -57.4 ± 1.6 mV vs Cs: -59.3 ± 2.3 mV; p>0.05), NE still elicited a 

depolarization of the RMP, oscillatory prepotentials, and pacemaker initiation similar 

to the effects of NE. 

4. Effect of Tetrodotoxin CTTX) 

It is not known if NE initiation is related to enhancement of the fast sodium 

current (iNa). In three preparations, initial exposure to tetrodotoxin (TTX) produced 

a small, but insignificant, hyperpolarization of the RMP (control: -54.2+/-3.7 mV vs. 

TTX: -56.4+/-2.9 mV). Upon addition of NE, TTX did not affect any of the 

characteristics of NE initiation. 

5. Effect of Verapamil 

To test the possibility that NE initiated activity by enhancing the slow inward 

current, seven preparations were tested in the presence of 10-6 M verapamil. Verapamil 

blocked the NE-induced (4-10 nM) oscillatory prepotentials and initiation in all seven 

preparations tested. Although verapamil alone caused no significant change in the RMP 

(control: -59.7+/-2.2 mV vs. verapamil: -60.7+/-l.7 mV), NE still elicited a small 

depolarization of the RMP (verapamil: -60.7 ± 1.7 mV vs. verapamil +NE: -58.l ± 1.6 

mV, p<.001). This depolarization was more than 4 mV short of reaching the threshold 

potential seen in the control initiation (Control NE TOP: -53.9 ± 2.1 mV vs. Verap +NE 

RMP: -58.l ± 1.6 mV, p<0.01). Therefore, verapamil prevented initiation not only by 

blocking the action potential upstroke, but also by inhibiting the NE-induced 
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depolarization. 

6. Effect of Low Sodium 

The previous work has shown that calcium released from the SR may mediate a 

component of spontaneous activity. SR function can be enhanced by elevated levels of 

cAMP (46). Furthermore, the SR may generate oscillatory release of calcium in calcium 

overloaded sta tcs ( 153,281,301,346,398,531,573,574). Therefore, NE ini tia ti on of activity 

may be partially mediated by enhancement of an SR-mediated component by either or 

both of the above mechanisms. Thus it was questioned whether SR activation could 

initiate activity separate from activation of the L-type current. 

Decreasing [Na]
0 

has been shown to increase [Ca]i (571), probably through a Na/Ca 

exchange mechanism (140,292,325,370), resulting in voltage oscillations secondary to 

spontaneous oscillatory SR calcium release (153,531). To test if intracellular calcium 

overload can initiate subsidiary pacemaker activity, six preparations were exposed to 

low sodium (50% of control, sucrose replaced) for different durations of time (30, 60, 

and 120 seconds). All preparations were initially equilibrated in 10-5 M atenolol and 

10-7 M atropine. Exposing the tissues to 50% sodium for 30 seconds elicited a significant 

hyperpolarization of the RMP (control: -55.9 ± 1.7 mV vs. 50% Na 30: -61.0 ± 2.2 mv, 

p<.001 ). During washout of the low sodium solution there was an immediate 

depolarization, and the development of oscillatory potentials (Figure 34, panel A). In 

one of the six preparations, the depolarization reached threshold and initiated 

pacemaker activity. Exposure to 50% sodium for 60 seconds produced a similar 

hyperpolarization of the RMP (control: -55.5 ± 1.4 mV vs. 50% Na60: -61.5 ± 1.8 mV, 

p<.001). After returning to normal Tyrode's solution, three of six preparations 

depolarized to threshold and initiated pacemaker activity (Figure 34, panel B). 

Exposure to low [Na)
0 

for 120 seconds had similar effects on the RMP (control: -53.7 ± 



FIGURE 34 

INITIATION OF ACTIVITY IN LOW SODIUM 
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Panel A: Brackets indicate a 30 sec exposure to low sodium solution (50%, replaced 
with 133 mM sucrose). Note that after the return to control solution, oscillatory 
potentials are seen. Panel B: The preparation was exposed to low sodium solution for 
60 sec. One action potential is elicited at about 35 second into the exposure. After 
return to the control Tyrode's solution initiation of sustained activity is seen. Panel C: 
During the exposure to low sodium for 2 minutes, oscillatory prepotentials develop 
which result in a sustained rhythmic activity that persisted for several minutes after 
return to the control solution. 
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0.8 mV vs. 50% Na 120: -60.2 ± 1.0 mV, p<.001). Pacemaker activity initiated in four of 

six preparations, two of which initiated activity before returning to 100% sodium 

(Figure 34, panel C). 

7. Effect of Acetylstrophanthidin (AcSt) 

Another method to create a calcium overloaded state, is through inhibition of the 

Na-K pump (121,531). Eleven quiescent preparations were first equilibrated in atenolol 

and atropine as above. The effect of administration of 10-6 M AcSt was then studied. 

The RMP gradually depolarized, formed oscillatory prepotentials, and initiated activity 

in ten of the eleven preparations (Figure 31, panel C). Sustained rhythmic activity 

persisted until washout of the AcSt. 

7. Effect of Ryanodine 

The above experiments suggested that calcium overload without activation of 

calcium channels can initiate activity. Furthermore, initiation may be mediated by 

spontaneous oscillatory SR calcium release. To examine if initiation induced by NE was 

mediated by enhancement of an SR component, six preparations were studied in the 

presence of 10-6 M ryanodine. All 6 tissues initiated activity in control stimulation by 

NE without ryanodine (Figure 31, panel A). Equilibration in ryanodine (20 minutes) 

was shown to have no significant effect on RMP (control: -59.5 ± 2.3 mV vs. ryanodine: -

60.0 ± 1.8 mV). In the presence of ryanodine, norepinephrine again induced a 

depolarization of the RMP and initiatied activity in all preparations (Figure 31, panel 

B). One notable characteristic difference, however, was that ryanodine caused a slower 

rate of the NE-induced automaticity. In fact, the SCL had almost doubled (Control NE: 

1327 ± 459 msec vs. RY AN + NE: 2224 ± 630 msec; p<0.05). 

Three of the six preparations, that initiated activity after exposure to 10-7 M Bay 
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K 8644, were also reexamined after equilibration in 10-6 M ryanodine. Again, 

ryanodine did not significantly change the RMP (control: -58.0 ± 2.9 mV vs. RY AN: -58.4 

± 1.6 mV). Reapplication of Bay K 8644 depolarized all three tissues and initiated 

pacemaker activity. 

The effect of ryanodine was also studied in three of eleven preparations that 

initiated in the presence of AcSt. After equilibration in 10-6 M ryanodine, 10-6 M AcSt 

depolarized the RMP, but no oscillatory potentials developed. Initiation of activity by 

AcSt was blocked in all three preparations (Figure 31, panel D). 



CHAPTER V 

DISCUSSION 

A. ELECTROPHYSIOLOGY AND ULTRASTRUCTURE OF 

EUSTACHIAN RIDGE FROM CAT RIGHT ATRIUM: 

A COMPARISON WITH SA NODE 

(J .Mol.Cell.Ca rdiol. 12.:965-976, 198 7) 

I. Electrophysiology 

The present findings indicate that fibers within cat Eustachian ridge generate 

stable pacemaker activity and are functionally different or specialized compared to 

typical working atrial muscle. Similar results have been found for right atrial tissue 

isolated from the Eustachian ridge region of the dog (442). Pacemaker action potentials 

recorded from Eustachian ridge were similar to those recorded from SA node in that 

their maximum diastolic and take-off potentials were similar. However, as expected, 

subsidiary pacemaker spontaneous cycle length was significantly longer than that of SA 

node. Since the maximum diastolic and takeoff potentials were not significantly 

different, it seems likely that the longer cycle length of subsidiary pacemakers is due 

to their more gradual diastolic slope. Moreover, although both pacemaker action 

potentials take off from essentially the same membrane potential, the maximum rate of 

rise and overshoot of subsidiary pacemakers is significantly larger than in SA node. 

Even so, they were still only about 5 V /sec, suggesting activation of slow inward current 

during the upstroke. This is supported by the fact that subsidiary pacemaker action 

140 
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potential upstroke and amplitude is suppressed by slow channel blockade and 

unaffected by tetrodotoxin. 

Perhaps the simplest explanation for the electrophysiological differences between 

the two pacemakers is related to possible differences in ionic current mechanisms. 

However, since little is presently known about the ionic currents responsible for 

subsidiary atrial pacemaker activity, it would be premature to speculate on a specific 

hypothesis. An alternative or additional explanation may be related to the present 

morphological findings that the overall architecture of the two tissues differ. The 

present study, as well as others (262), shows that the cellular organization of the 

Eustachian ridge is more heterogeneous than that of SA node. Since pacemaker cells in 

both tissues are, presumably, electrotonically coupled to surrounding cells, differences 

in structural organization as well as passive membrane properties of individual units 

could strongly influence pacemaker characteristics. For example, subsidiary pacemaker 

cells in Eustachian ridge tissue may be more electrotonically influenced by adjacent 

non-automatic atrial muscle cells than are pacemaker cells in SA node. This could 

contribute to or be solely responsibe for the relatively gradual diastolic slope and longer 

spontaneous cycle length of subsidiary pacemakers. 

2. Morphology 

All four Eustachian ridge and SA node preparations used for morphological study 

exhibited stable, spontaneous pacemaker activity. In order to compare the 

characteristics of pacemaker cells we restricted the morphological studies of each tissue 

to cross sections taken at the site of earliest pacemaker activation. P cells were 

invariably the predominant cell type found in each cross section and generally were 

located in clusters on the endocardial surface of the preparation. The idea that P cells 

are, in fact, responsible for generating pacemaker activity is strongly supported by the 
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work of Taylor et al., (505) in rabbit SA node. By using an intracellular marker they 

were able to directly correlate cells exhibiting primary pacemaker action potentials with 

cells exhibiting P cell ultrastructural characteristics. We felt that a similar approach 

of intracellular marking would be of limited value in this study since it is apparent, 

from this study as well as others (262), that Eustachian ridge tissue is not as homogenous 

as SA node. However, the present study does demonstrate that P cells were found 

consistently, in each preparation studied, at the endocardial site of earliest activation. 

It therefore seems reasonable to suppose that P cells are responsible for generating 

subsidiary pacemaker activity in Eustachian ridge, as they are in SA node. 

Studies in rabbit atrioventricular valve tissues have also correlated pacemaker 

action potentials with the presence of P cells (31 ). On the other hand, although Bassett 

et al., (16) were able to record pacemaker action potentials from canine tricuspid valve 

tissue, ultrastructural studies did not reveal any P cells or other specialized 

morphological characteristics. 

The presence of P cells in regions of the right atrium, outside of SA node, is not 

new (31,262,553). Sherf and James (262) have shown that in dog atrium, P cells are 

found in the Eustachian ridge and Bachmann's bundle. However, P cells were observed 

to be grouped in clusters only in Bachmann's bundle but not in Eustachian ridge. In 

contrast, the present findings show that P cells in cat Eustachian ridge were commonly 

found in clusters (Figure 9) surrounded by a single basal lamina. The discrepancy may 

be due to species differences. However, clustered pacemaker cell organization is typical 

of SA node P cells and may be important in synchronization of pacemaker activity. 

The present morphological studies show that P cells in the Eustachian ridge are 

richly innervated with nerve fibers containing both clear and dense core vesicles. These 

would presumably correspond to cholinergic and adrenergic vesicles, respectively (353) 

that mediate the regulation of subsidiary pacemaker activity. Thus, application of 
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acetylcholine or norepinephrine decreases or increases subsidiary pacemaker 

automaticity, respectively (446). In vivo and in vitro studies of dog atrial subsidiary 

pacemakers showed a dependency on p-adrenergic stimulation for propagation of 

activity (269,422,442). Thus, sympathetic stimulation might allow better propagation 

and thereby prevent exit block as was seen in the dog (442). 

The morphometric measurements show that P cells in the Eustachian ridge have 

ultrastructural characteristics that are not different from those found in SA node. 

However, only P cells in the Eustachian ridge exhibited paired subsarcolemmal cisternae 

directly apposed across adjacent cell borders. Paired cisternae were found within 

connected P cells or a connected P cell and transitional cell. Several considerations 

suggest that the apposition of cisternae was not a fortuitous association: I) they were 

always observed at regions of cells connected by desmosomes, 2) cisternae were directly 

apposed and similar in length, and 3) similar structures were not found in SA node. One 

micrograph of the guinea pig AV node showed direct apposition of subsarcolemmal 

cisternae, although its presence was not mentioned in the paper (512). Since the present 

study is, as far as we know, the first ultrastructural study of P cells in cat Eustachian 

ridge, the presence of these structures may be species dependent. 

The functional significance of paired subsarcolemmal cisternae is not clear. It 

is well known that calcium mediated calcium release from subsarcolemmal sites is 

essential to initiate cardiac contraction (153). However, based on myofibrillar content, 

it seems likely that contractile activity is of minor importance in these cells. 

Alternatively, calcium release from subsarcolemmal sites may influence cardiac 

electrical activity. Thus, calcium release from sarcoplasmic reticulum may mediate a 

transient inward current that is responsible for delayed afterdepolarizations and 

oscillatory membrane potentials (281). This calcium mediated inward current may also 

contribute to subsidiary pacemaker automaticity. Thus, ryanodine, a putative blocker 
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of calcium release from sarcoplasmic reticulum (497), specifically depresses the later 

portion of diastolic depolarization and significantly inhibits subsidiary pacemaker 

automaticity generated from the Eustachian ridge. It therefore seems possible that the 

specialized organ iza ti on of apposed su bsarcolemmal cisternae may, somehow, con tribute 

importantly to subsidiary atrial pacemaker function. 

Finally, the presence of P cells and pacemaker activity in Eustachian ridge tissue 

is not surprising. There is evidence that specialized zones of cells exist at junctions 

between the primordial chamber of the cardiac tube; between the sinus horn and atrium 

is the SA ring tissue (5). This region of tissue is visualized as extending from superior 

to inferior vena cava, along the length of the crista terminalis and extending into the 

posterior regions of the atrioventricular ring tissue. These cells ultimately form the 

developed sinoatrial node and the "posterior internodal pathway". In fact, based on 

morphological studies, a caudal extension of the SA node travels within and parallel 

with the crista terminalis, toward the posterior border of the coronary sinus ostium 

(515,517). Recent additional evidence for the existence of the SA ring tissue has been 

obtained through the use of monoclonal antibodies (197). Since the Eustachian ridge is 

within the distribution of the SA ring tissue it is not unexpected that it would contain 

cells with electrophysiological and ultrastructural pacemaker characteristics. 

B. MECHANISMS OF AUTOMATICITY IN SUBSIDIARY PACEMAKERS 

FROM CAT RIGHT ATRIUM 

(Circ.Res. 64:648-657, 1989) 

One of the main findings of this study is that calcium released from the 

sarcoplasmic reticulum may mediate a component of subsidiary pacemaker au tom a tici ty. 

This component contributes significantly during the last half of diastolic depolarization 

to bring the membrane potential to threshold. This interpretation is based primarily on 
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the fact that ryanodine abolished tension and elicited a relatively specific decrease in 

the late diastolic slope (D2), resulting in a significant inhibition of automaticity. 

Ryanodine has been shown to specifically interact with calcium release channels of the 

sarcoplasmic reticulum and thereby functionally eliminate SR calcium release (439). 

According to the work of Rousseau et al. (439), ryanodine causes a sudden increase in 

the open probability time of SR release channels, leading to a gradual depletion of SR 

calcium stores. This may account for the small, initial decrease, followed by the 

gradual increase in spontaneous cycle length, elicited by ryanodine in the present 

experiments. These findings may also be important in relation to the morphological 

studies on cat Eustachian ridge tissues. Those studies showed that the site of earliest 

pacemaker activation is correlated with presence of cells exhibiting P cell 

characteristics. Although these P cells are morphometrically identical to P cells found 

in SA node, Eustachian ridge P cells exhibit a unique apposition of prominent 

subsarcolemmal cisternae (junctional SR) not seen in SA node P cells. These 

subsarcolemmal cisternae not only have been determined to be the site from which 

calcium is released (271,514,571), but they also contain ryanodine receptors (79,239,307). 

Since P cells typically contain little myofibrillar material needed for contractile 

activity, it seems possible that the unique organization of cisternae found in Eustachian 

ridge P cells may, somehow, be related to the SR calcium mediated pacemaker 

component described here. 

By inhibiting SR calcium release, ryanodine may also alter other intracellular 

calcium-dependent currents. Thus, ryanodine has been shown to reduce calcium­

activated outward currents in Purkinje fibers (497) and to delay inactivation of slow 

inward current in ventricular myocytes (362). Either of these effects could account for 

the increases in action potential amplitude and rate of rise induced by ryanodine in the 

present study. 
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In voltage clamp studies of rabbit SA node, Brown et al., (69) have also presented 

evidence for a secondary component of slow inward current, possibly mediated by 

intracellular calcium release, that may bring the last third of the diastolic slope to 

threshold. In addition, Escande et al. (148) have shown that an SR calcium mediated 

component may participate in pacemaker activity recorded from abnormal, partially 

depolarized human atrial tissues. However, it is apparent from the present study, as 

well as those on SA node (69) that the participation of a calcium-mediated component 

in atrial pacemaker automaticity is not necessarily the result of abnormal function. 

The calcium-mediated component proposed in the present experiments may be 

similar, if not identical, to the transient inward current associated with delayed 

afterdepolarizations (280,314). A study by Tseng and Wit (527) showed that transient 

inward currents are responsible for delayed afterdepolarizations recorded from atrial 

tissue isolated from the canine coronary sinus. In addition, Aronson et al., (8) reported 

that in coronary sinus, ryanodine suppresses delayed afterdepolarizations. If the 

transient inward current contributes a late component to the diastolic slope, then the 

time course of both events should be similar. In fact, the spontaneous pacemaker cycle 

lengths reported here, about 700 ms., are within the same order of magnitude as the time 

to peak of transient inward currents recorded in atrial muscle (527) as well as other 

preparations (582). In addition, interventions that raise or lower intracellular calcium 

cause a decrease or increase, respectively, in time to peak, and an increase or decrease, 

respectively, in amplitude of the transient inward current (527,582). As shown in the 

present study, interventions that are expected to raise (NE and BAY 8644) or lower (low 

[Ca]
0 

or slow channel block) intracellular calcium elicit decreases or increases, 

respectively, in spontaneous cycle length through changes in late diastolic slope. 

Although transient inward currents and delayed afterdepolarization are usually 

recorded from tissues that are abnormally loaded with calcium (314,582), the pacemaker 
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tissues studied in the present experiments did not require interventions designed to load 

intracellular calcium. In fact, there is evidence that the transient inward current is 

normally present in atrial (8) as well as ventricular tissues (314,328), and is only 

enhanced by interventions that raise intracellular calcium. It therefore seems likely 

that calcium-mediated inward currents are normally present in cardiac tissues and may 

function in certain atrial cells as a major determinant of automaticity. In favor of this 

idea are the findings by Fabiato (152) that sarcoplasmic reticulum and calcium-induced 

release of SR calcium are more developed in atria than in ventricular tissue. 

These experiments show that both NE and BAY K 8644 elicit a significantly 

greater increase in late (02) than early (DI) diastolic slope. Since BAY K 8644 acts 

primarily through activation of the slow inward current channels (300,509), these 

findings suggest that a significant portion of the positive chronotropic effect of NE is 

mediated through an increase in slow inward current and subsequent SR calcium 

release. In addition, this effect of NE is mediated predominately through beta-I 

adrenoreceptors. This is consistent with the well known role of beta-I receptors in 

mediating increases in slow inward current (528). Rozanski (440) has also reported that 

in rabbit tricuspid valve pacemakers the positive chronotropic response to isoproterenol 

(a selective beta receptor agonist) is associated with a significantly greater increase in 

the slope of 02 than DI. 

Alternatively or in combination, the increase in diastolic slope observed in both 

NE and Bay K 8644 may be related to an increase in the ir current. Adrenaline 

(63,64,67) and isoproterenol (126,201,384) are reported to increase ir in the sinus node. 

In addition, both NE and Bay K 8644 significantly increased the MOP, which may have 

further activated ir ( 63, 7 8, I 22, I 23, 125, 126, 129,348,385,591 ). Raising [Ca]i may also 

increase ir (20 I). Although Bay K 8644 can increase [Ca]j (339), its effects on other 

currents that may contribute to automaticity, such as the cesium-sensitive ircurrent are 
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unknown and therefore cannot be excluded. 

Although TTX had little effect on action potential upstroke, it significantly 

increased SCL. This resulted from a positive shift in the takeoff potential and a 

decrease in the slope of diastolic depolarization. Perhaps the simplest explanation is 

that TTX acted by blocking fast sodium channels that carry inward current during 

diastole. However, Vassalle and Lee (551) have shown in Purkinje fibers that TTX 

directly reduces intracellular sodium activity and tension, suggesting a secondary 

decrease in intracellular calcium through sodium-calcium exchange. This suggests that 

the TTX-induced increase in SCL may also involve a secondary decrease in intracellular 

calcium. 

Although these studies show that agents or interventions that alter slow inward 

current influence diastolic slope, they also show that these responses may be explained 

by secondary changes mediated by SR calcium release. It therefore is difficult to 

separate the direct from the indirect contribution of slow channel activation on 

automaticity. The finding that BAY K 8644 was able to elicit a partial positive 

chronotropic response in the presence of ryanodine may be interpreted as a direct 

contribution of slow inward current. On the other hand, the effects of BAY K 8644 

may also be mediated indirectly through increases in free intracellular calcium 

independent of SR calcium release. Thus, BAY K 8644 elicited a measurable return of 

tension, in spite of the presence of ryanodine, indicating that intracellular calcium was 

increased (Figure l 9C). This is consistent with the work of Marban and Wier (339) who 

showed in Purkinje fibers that BAY K 8644 in the presence of ryanodine increased the 

aequorin luminescence and contraction, although only to a small fraction of control. 

In fact, by opening SR calcium release channels (439), ryanodine may promote the 

accumulation of cytosolic calcium (30) by functionally eliminating the SR as a buffer 

of intracellular calcium. As a result, beat to beat increases in intracellular free calcium, 
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enhanced by BAY K 8644, may act directly on the sarcolemmal membrane to activate 

transient inward current and progressively enhance diastolic slope (Figure 19). In any 

case, without a functionally intact sarcoplasmic reticulum an increase in slow inward 

current elicits a limited and dysrhythmic positive chronotropic response. Although 

these experiments show that an increase in slow inward current may enhance pacemaker 

activity, it remains to be determined to what extent the slow inward current may 

contribute directly to automaticity under basal conditions. 

The fact that pacemaker activity persists after exposure to ryanodine indicates 

that the calcium-mediated component is not the only mechanism operating. Indeed, the 

present experiments show that a cesium-sensitive component contributes significantly 

to diastolic depolarization. Cesium elicited a significant negative chronotropic effect 

under control conditions (Figure 14), and after exposure to ryanodine (Figure 20). This 

component would presumably correspond to the cesium-sensitive pacemaker current, ir, 

found in SA node (63, 126, 129,348,385,591 ), Purkinje fibers (78,122,123, 125,129), a trial 

muscle (83,138), as well as single right atrial myocytes isolated from cat heart (331). The 

fact that cesium inhibited DI significantly more than D2 (see Table 4), suggests that the 

cesium-sensitive component contributes to a greater extent during early diastolic 

depolarization. This is consistent with the greater activation of ic at more negative 

voltages (63, 78, 122,123, 125, 126,129,348,385,591 ). Rozanski ( 440) also found that in 

tricuspid valve pacemakers, I mM cesium specifically inhibited DI. However, 

spontaneous cycle length was not significantly increased in that tissue. Apparently, the 

contribution of the cesium-sensitive current to automaticity is variable among different 

types of atrial pacemakers. The present studies also indicate that although the cesium­

sensitive component contributes significantly it is not essential to sustain automaticity. 

This conclusion is similar to that reported in studies of SA node (63,68,385), and other 

atrial pacemakers (440). Finally, even after inhibition of the cesium-sensitive current 
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plus inhibition of the calcium-mediated component by ryanodine, pacemaker activity 

persists. It appears that other mechanisms, such as slow inward current or a decreasing 

potassium current, may be operating to maintain automaticity. 

C. CYCLIC BRADYDYSRHYTHMIAS GENERATED BY ATRIAL 

SUBSIDIARY PACEMAKERS 

(J.Electrophys . .f.:90-103, 1988) 

The previous work has shown a unique apposition of the SR in the Eustachian 

ridge. Furthermore, SR calcium release mediates a significant contribution to the 

diastolic depolarization in the pacemaker activity of Eustachian ridge. Inhibition of 

this calcium-mediated component by ryanodine generated a cyclic bradydysrhythmia 

during the initial period of exposure to ryanodine. This dysrhythmia was almost 

identical to cyclic bradydysrhythmias generated under control conditions. The 

spontaneous appearance of this dysrhythmia suggests partial contribution from 

abnormal SR function. 

This work reports a specific pattern of abnormal pacemaker rhythm generated by 

subsidiary atrial pacemakers maintained in vitro. The dysrhythmia usually developed 

spontaneously in otherwise normal preparations, and was characterized by cyclic 

periods of brady rhythm, frequency-dependent changes in maximum diastolic potential, 

action potential amplitude and tension, and diastolic oscillations in membrane potential. 

The cyclic nature of the activity suggested that a negative feedback system may be 

involved. This idea, coupled with the fact that changes in the maximum diastolic 

potential were in phase with changes in SCL suggested that stimulation of an 

electrogenic pump current may be operating to modulate pacemaker rhythms. It is well 

known that changes in pacemaker frequency can influence pump activity and that 

changes in pump activity can, in turn, influence pacemaker function 
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(94,174,445,545,579). In the present study, brief exposure to relatively low 

concentrations of AcSt prevented the development of brady rhythms by establishing 

stable, rhythmic pacemaker activity. Since the AcSt-induced changes in pacemaker 

rhythm were established in only a few seconds and its affects on electrical and 

mechanical activities did not correlate, it seems likely that AcSt acted through direct 

inhibition of sodium pump activity rather than through a secondary increase in 

intracellular calcium. Responses of dysrhythmic preparations to electrical pacing also 

supports the idea that electrogenic pump activity is a contributing factor. Although 

shorter pacing periods elicited spontaneous beats, the number of beats decreased as 

pacing duration increased. Moreover, longer durations of pacing (30 & 60 s), elicited 

complete pacemaker suppression. This progressive inhibition of pacemaker activity as 

pacing duration is increased is characteristic of overdrive suppression (545), resulting 

from stimulation of electrogenic sodium pump activity (94,174,445). It therefore seems 

likely that stimulation of a net outward electrogenic pump current during periods of 

rhythmic pacemaker activity may be responsible for the gradual increase in SCL, 

eventual failure of the diastolic potential to reach threshold and the onset of brady 

rhythms. As in any negative feedback loop, pump activity not only causes changes in 

SCL, it is also affected by them. As SCL initially increases during the brady rhythm, 

pump activity slows and net outward current decreases. This would account for the 

progressive depolarization of MOP during the first few beats of the brady rhythm. The 

progressive decrease in net outward current results in enhanced oscillatory potential 

amplitude and a progressive decrease in cycle length. As SCL decreases, pump activity 

is once again stimulated, resulting in a more negative MOP during the later portion of 

the brady period and into the next period of rhythmic pacemaker activity. The cycle 

repeats itself once again as another period of rhythmic pacemaker activity is initiated. 

This represents a negative feedback loop and appears to be the primary mechanism 
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responsible for the cyclic pattern of activity. 

However, pacemaker activity does not normally overdrive suppress itself. 

Additional mechanisms must be involved to allow outward pump currents to modulate 

cycle length and thereby produce rhythm disorders. There are several lines of evidence 

indicating that this additional mechanism is related to a depression of automaticity 

ca used by impaired intracellular calcium metabolism. Thus, interventions that augment 

calcium influx, such as exposure to high [Ca]
0 

or NE, prevent the development of brady 

rhythms by establishing stable, rhythmic pacemaker activity. In addition, short pacing 

periods, which increase intracellular calcium (306), enhance automaticity and elicit 

spontaneous action potentials immediately following the pacing period. On the other 

hand, verapamil inhibition of calcium influx through slow channels decreased periods 

of rhythmic pacemaker activity and prolonged periods of brady rhythm. Moreover, in 

preparations that became quiescent, interventions that raise intracellular calcium (NE 

or elevated [Ca] 0 ) restored rhythmic pacemaker activity. However, once the calcium 

agonist was removed, pacemaker activity deteriorated into cyclic brady rhythms. 

Finally, ryanodine elicited dysrhythmias in normal preparations, that were similar to 

those that developed spontaneously or were induced in preparations that became 

quiescent. Taken together, these results suggest that the fundamental mechanism 

underlying development of the dysrhythmia is related to a depression of automaticity, 

due to impaired intracellular calcium metabolism. With automaticity depressed, even 

a small net outward current generated by stimulation of an electrogenic pump would 

have a relatively strong modulating influence on pacemaker activity. This would be 

especially true in pacemaker cells which are known to have a relatively high membrane 

resistance due to a low background potassium conductance (181 ). In fact, measurements 

in this preparation indicate a PNa/PK ratio of 0.076. 

The fact that ryanodine could induce the development of cyclic brady rhythms 



153 

in norma I preparations suggests that the depression of au tom a tici ty may be more 

specifically related to impaired calcium release from the sarcoplasmic reticulum. The 

ryanodine-induced dysrhythmias only appeared during early exposure (<IO min.) to the 

drug. It seems likely that this time-dependent effect may be related to ryanodine's 

mechanism of action. Thus, Rousseau et al (439) reports that ryanodine acts by 

reducing unit conductance and increasing open probability time of SR calcium release 

channels. The authors propose that by reducing the ability of the SR to handle calcium, 

ryanodine induces a time-dependent depletion of SR calcium. In heart cells, the calcium 

released into the cytosol would be extruded by the Na/Ca exchanger. In relation to the 

present work, the time-dependent depletion of SR calcium by ryanodine would result 

in a progressive inhibition of the calcium mediated component, resulting in a depression 

of automaticity. Similar considerations can be applied to preparations in which cyclic 

brady rhythms developed spontaneously. In these preparations a spontaneous run-down 

in intracellular calcium may lead to a decrease in SR calcium content and release, 

thereby depressing automaticity. The reason for this spontaneous run-down is not clear. 

In preparations that became quiescent, SR calcium may be depleted or too low to 

support pacemaker automaticity at all. Brief exposures to NE or high [Ca]0 could 

restore SR calcium enough to restore rhythmic pacemaker activity. However, once these 

calcium agonists are removed, SR calcium gradually runs down once again, allowing 

only a limited degree of automaticity and the development of the dysrhythmia. The 

similarities between the ryanodine-induced dysrhythmias and those that developed 

spontaneously or were induced in quiescent preparations, suggests that the fundamental 

mechanism underlying the onset of the dysrhythmia is impaired SR calcium release. 

Therefore it is proposed that the cyclic brady dysrhythmia results from an interaction 

between two phenomena: I) a background depression of automaticity caused by 

impaired intracellular calcium metabolism, probably related to impaired SR calcium 
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release, and 2) frequency-dependent changes in electrogenic sodium pump current that 

act as a negative feedback mechanism to cyclically modulate pacemaker rhythm. 

An alternative explanation for the depression of automaticity may be related to 

the effects of intracellular calcium on intercellular communication (116). A decrease 

in intracellular calcium, may reduce internal resistance. Better coupling between 

pacemaker and non-pacemaker fibers may depress automaticity and lead to 

dysrhythmias (264,539). Although this explanation cannot be ruled out, it is not 

consistent with the data. After exposure to AcSt (Figure 24), high [Ca]
0 

or NE, tension 

and presumably intracellular calcium were still elevated at a time when brady rhythms 

reappeared. In addition, changes in tension during dysrhythmias indicate that 

intracellular free calcium was highest during periods of brady rhythm, lowest at the 

onset of periods of rhythmic pacemaker activity and higher at the end of a period of 

rhythmic activity than at its onset (Figure 21). Whether these beat to beat changes in 

intracellular calcium can affect nexal resistance is not clear. 

The fact that pacing dysrhythmic preparations elicited spontaneous beats 

immediately following short pacing periods, suggests that the first few action potentials 

during a period of rhythmic activity may be "triggering" subsequent beats in the period. 

The characteristics of this triggered activity, as well as rhythmic subsidiary pacemaker 

activity in general, are similar in some ways to triggered activity described in other 

atrial preparations (449,577-579). Both activities share a common mechanism i.e. an 

intracellular calcium mediated component. However, the primary distinctions between 

the two types of activities is that subsidiary pacemakers exhibit the property of 

automaticity. For example, as shown in the present study (figs. 25 & 26), suppression 

of subsidiary pacemaker activity does not result in arbitrarily long periods of 

quiescence; spontaneous oscillations in membrane potential lead to resumption of 

pacemaker activity. Since subsidiary pacemaker automaticity is based on an 
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intracellular calcium mediated component, it can be enhanced by interventions that 

raise intracellular calcium. 

After discontinuing exposure to AcSt, high [Ca]
0 

or NE, the brady rhythm 

returned, even though tension, and presumably intracellular calcium, was still elevated 

(Figure 24,26,27). This apparent inconsistency may have several possible explanations. 

Fabiato (152) has shown that the absolute concentration of free calcium is not the only 

factor governing calcium-induced calcium release; the level of preload of SR calcium 

as well as the rate of change of free calcium are also important. Since automaticity of 

these pacemakers may be modulated by calcium-induced calcium release, these 

additional factors may also influence pacemaker rhythm responses. Another 

consideration stems from ultrastructural characteristics of this tissue. Cells correlated 

with pacemaker activity, i.e. P cells, have little myofibrillar material, and therefore 

probably contribute little to total tension development. This suggests that changes in 

tension may not accurately reflect changes in intracellular calcium within pacemaker 

cells, resulting in a dissociation between electrical and mechanical events. In addition, 

P cells in cat Eustachian ridge exhibit a unique structural organization of apposed 

subsarcolemmal cisternae, not described in ordinary atrial muscle, that may influence 

the way calcium is handled by subsidiary pacemaker cells. These structures may create 

a calcium pool that modulates electrical rather than contractile activity. Indeed, studies 

of cardiac tissue have provided evidence for different intracellular calcium pools that 

may serve different cellular functions (232,271,514,571). 

These experiments demonstrate that right atrial subsidiary pacemakers can 

generate dysrhythmias characterized by periods of abnormally slow rhythm. The 

importance of these findings are apparent since bradycardia is a primary criterion used 

in the clinical diagnosis of atrial rhythm disorders such as sick sinus syndrome (160). 

Although electrocardiographic recordings of upright P waves are commonly used to 
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indicate that atrial rhythm disorders originate from within the sinus node, it has been 

shown that P wave polarity and morphology are poor indicators of the site of origin of 

atrial activation (558,559). In fact, upright P waves and P-R intervals within normal 

limits are recorded from dogs after surgical removal of the SA node, where right atrial 

subsidiary pacemakers control the heartbeat (420-422). It therefore seems possible that 

under pathological conditions, atrial pacemaker activation could shift from a failing 

sinus node to subsidiary pacemakers that are also suffering from depressed 

automaticity. Indeed, depressed automaticity of subsidiary atrial pacemakers has been 

proposed as a possible contributing factor in atrial dysrhythmias associated with sick 

sinus syndrome in man (435). In addition, with a background depression of subsidiary 

pacemaker automaticity, the influence of frequency-dependent electrogenic pump 

activity on pacemaker rhythm may be exaggerated. This is consistent with the fact that 

rapid atrial pacing in patients with sick sinus syndrome frequently results in prolonged 

periods of pacemaker suppression (338,435). 

D. SUBSIDIARY PACEMAKER RESISTANCE TO [KJ
0 

The resting membrane potential of the Eustachian ridge is relatively low (-61.7 

± 2.5 mV, Figure 29) compared to typical atrial muscle cells. Furthermore, the RMP of 

cells within the Eustachian ridge exhibited a relative resistance to moderate increases 

in [K]
0

. The relatively high PNa/PK ratio, determined to be 0.076, suggested the low 

RMP may be related to a decrease in potassium conductance. Low potassium 

conductance has also been observed in the cristae terminalis (182) and sinus node 

(386,475). Specifically, this has been attributed to a decreased iK1 (386,450). However, 

the resultant PNa/PK may also be associated with a higher sodium conductance. Support 

of this alternative was observed when low sodium exposure caused a significant 5 mV 

hyperpolarization. However, exposure to cesium elicited only a small hyperpolarization 
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of the RMP, suggesting that background sodium conductance is not carried by a cesium 

sensitive current as reported in embryonic cell aggregates (354). Boyden et al. (53) 

postulated that sodium influx may occur through pathways associated with transient 

inward current in cells within the coronary sinus. Although these mechanisms have 

been shown to be important in calcium overload conditions (96,279,280,282,527), it was 

not demonstrated whether they existed in control conditions to contribute to the RMP. 

Automaticity of the Eustachian ridge has a significant calcium mediated component 

during diastolic depolarization. The spontaneous activity observed in 104 out of 154 

preparations, in a Tyrode's solution containing 1.8 mM CaCl 2 and without 

norepinephrine, argues against a calcium overloaded condition. Therefore, in quiescent 

preparations in similar solutions, sodium entry via this pathway, either through a 

Na/Ca exchange, or a nonselective calcium mediated conductance cannot be excluded. 

In either case, a decreased potassium or an increased sodium conductance, the 

PNa/PK ratio demonstrates that the RMP of cells within the Eustachian ridge are 

resistant to moderate elevations of [K]
0

• This was further substantiated by the fact that 

these pacemakers sustained their automaticity in 16 mM [K]
0

• Therefore, these results 

are in accordance with other tissues within the SA ring bundle also resistant to [K]0 

(53, 110,228,335,548,550). 

E. MECHANISMS OF PACEMAKER INITIATION 

This study has demonstrated two separate routes to initiation of pacemaker 

activity: ryanodine-sensitive and insensitive pathways. The ryanodine-sensitive 

pathway is invoked during conditions of elevated levels of [Ca]i that presumably cause 

spontaneous oscillatory SR calcium release. Alternatively, the ryanodine-insensitive 

pathway requires the stimulation of voltage activated calcium channels. These two 

forms of initiation of activity through the development of oscillatory prepotentials is 
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distinct from triggered activity. Initiation through oscillations is generated from 

growing oscillations in membrane potential that reach threshold (543), whereas triggered 

activity is dependent upon a prior stimulated or propagated action potential (577). 

However the two forms of activity appear to have a common mechanism: a dependence 

on intracellular calcium. Therefore, the distinction between a ryanodine-sensitivc 

oscillatory pathway and triggered activity may only be a matter of intacellular calcium 

concentrations (discussed below). 

Cesium or TTX did not inhibit NE-induced initiation of activity. This fact 

strongly suggests that the mechanism of the initial depolarization was not related to an 

enhanced cesium-sensitive pacemaker current or the fast sodium current. Although NE 

increases ir in the sinus node (63,64,67), the cesium-sensitive current does not appear 

important in the initiation of activity in Eustachian ridge. 

The most likely mechanism responsible for NE-induced initiation is an 

enhancement of the slow inward current. The ability of atenolol, but not prazosin, to 

block the NE-induced effect suggested that initiation resulted from {31 receptor 

stimulation. Furthermore, isoproterenol (a specific f3 agonist) elicited responses similar 

to NE, which were also blocked by atenolol. The fact that DBcAMP mimics the effects 

of NE supports the idea tha NE acts via stimulation of adenylate cyclase 

(211,373,399,530). Thus, phosphorylation of L-type calcium channels (278,520,529) may 

also be responsible for the NE-induced initiation seen in the Eustachian ridge. 

Further support for a NE-induced increase in slow inward current comes from the 

finding that verapamil blocked NE-induced initiation, whereas BAY K 8644 mimicked 

it. Verapamil block of initiation can be interpreted simply as a blockade of the 

upstroke. Most notable however, was the fact that in the presence of verapamil, NE 

caused only a 2 mV depolarization. This depolarization was approximately one third 

of that required to reach the threshold potential under control conditions. In addition, 



159 

Bay K 8644, a specific calcium channel agonist that is not mediated via cAMP 

(217,300,529), also generated depolarization of the RMP until reaching the threshold 

potential. Therefore, it appears that the verapamil/Bay K 8644-sensitive calcium 

channels are important in the depolarization of the RMP prior to reaching threshold. 

The NE-induced depolarization of the RMP in the Eustachian ridge is in contrast to the 

effects of NE on coronary sinus (52). Boyden et al. (52) found that NE caused a 

significant hyperpolarization of the RMP, resulting from an increase in potassium 

permeability. If a similar mechanism exists in the Eustachian ridge, it is likely being 

masked by a stronger effect on calcium channels. The calcium channels which are 

affected presumably are L-type channels. Although T-type calcium channels have 

recently been shown to contribute to the later half of diastolic depolarization (202), (3-

adrenergic stimulation has affects only on L-type channels (19,202,374). 

Alternatively, the conversion of a triggerable focus into an automatic focus, 

instead of enhancement of an automatic current such as iL, might also have been 

responsible for the NE-induced initiation. It has been previously discussed that the 

activation of a triggered current would emerge only after an action potential, and 

thereby enhance diastolic depolarization. An example of a triggered current was the 

iNa/Ca current. Elevated levels of [Ca]i cause increases in the iti current (527,531). This 

current is generated by SR calcium release, and may be mediated by Na/Ca exchange 

(92,279,326). Moreover, it has been shown that SR calcium release during spontaneous 

activity in the ER contributes to the diastolic depolarization. If however, the ER tissue 

is quiescent and the SR spontaneously releases calcium, then oscillatory depolarizations 

of the RMP would be expected. Such spontaneous oscillations would suggest that the 

triggered current (it) was now active without a prior action potential and therefore 

would be a component of automatic activity. This suggests that the transition in the 

type of activity was likely mediated merely by elevation of [Ca]i. 
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In a calcium overloaded condition, spontaneous oscillations of membrane 

potential and tension have been related to oscillatory SR calcium release 

(153,281,301,308,346,398,574). Thus, by increasing calcium influx, NE may be 

enhancing SR function to generate oscillatory release of calcium. In fact, Capagrossi 

et al., (81) have shown that synchronous SR release of calcium in single cells can 

depolarize the membrane potential past threshold and generate action potentials. 

Two methods of loading intracellular calcium were used, low sodium or AcSt 

exposure. Both have been shown to develop oscillatory prepotentials and initiate 

activity in Purkinje fibers (98), and both techniques were shown to consistently develop 

oscillatory prepotentials and initiate activity in the Eustachian ridge. Thus it appears 

that SR release of calcium may provide an additional mechanism of initiation. 

Ryanodine would be expected to functionally eliminate an SR calcium release 

component (439,497). Repeating attempts to initiate activity through the two possibly 

different mechanisms, NE stimulation (cAMP mediated) and AcSt exposure (calcium 

overload mediated), resulted in two different results. Although ryanodine did not 

prevent NE-induced initiation, it abolished the ability of AcSt to initiate activity. 

Therefore, it appears that initiation of activity may indeed occur through at least two 

distinct pathways. This suggests that calcium overload initiates activity through a 

ryanodine-sensitive pathway, while NE initiates activity predominantly through a 

ryanodine-insensitive pathway. Thus, NE initiation is likely mediated by enhancement 

of the slow inward current. It is suggested that /3 1 receptor binding activates adenylate 

cyclase to increase intracellular cAMP, which can then phosphorylate and activate 

calcium channels. However, the fact that ryanodine significantly increased the cycle 

length of NE-induced activity, suggests that SR calcium release significantly 

contributed to the diastolic depolarization, similar to that seen in spontaneously active 

preparations. 
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The effect of ryanodine to inhibit AcSt initiation is consistent with the ability 

of ryanodine to reverse digitalis toxic dysrhythmias in the whole animal (206,277). 

Furthermore, ryanodine has recently been shown to inhibit ischemic and reperfusion 

dysrhythmias (507), which are also related to calcium overload (291,316). Lastly, 

ryanodine can inhibit triggered activity in calcium overloaded cells of the coronary 

sinus (8). Therefore a ryanodine-sensitive pa th way exists in triggered activity as well 

as calcium overload-induced (AcSt) initiation of activity. Thus, SR calcium release, 

either activated by calcium overload or triggered by action potentials, can generate 

sustained rhythmic activity. The calcium-mediated automaticity (calcium overload 

resulting in spontaneous oscillatory SR calcium release) may be experimentally 

differentiated from triggered activity. Triggered and not automatic activity, has a 

bistability, and therefore can be experimentally annihilated by single pulse 

perturbations (190). It is speculated that fibers that generate triggered activity may be 

converted to the automatic calcium-mediated rhythm simply by a further increase in 

[Ca]i. This mechanism may be related to the difficulty in distinguishing triggered and 

reentrant dysrhythmias (582) and therefore may identify a new mechanism of 

dysrhythmias. 



SUMMARY 

Isolated preparations of the cat Eustachian ridge exhibit structural and functional 

similarities to that found in the sinus node. The morphological analysis revealed that 

the Eustachian ridge consisted of a variety of cells, with P cells being the most 

prominent at the site of earliest pacemaker activation. Furthermore, there were no 

significant differences from P cells within the SA node in cellular volume densities of 

cytoplasm, nucleus, mitochondria, or myofilaments. However, the Eustachian ridge 

exhibited a unique apposition of subsarcolemmal cisternae between cells not seen in the 

SA node. 

The pacemaker activity recorded in the Eustachian ridge are slow response action 

potentials that can be inhibited by verapamil. The pacemaker action potentials 

exhibited two phases of diastolic depolarization, suggesting multiple mechanism of 

pacemaker activity. The earlier steeper slope (01), was more inhibited by cesium than 

the later more gradual slope (02), suggesting the involvement of the ir pacemaker 

current. Ryanodine selectively inhibited the 0 2 portion, suggesting that SR calcium 

release mediates a significant component of late diastolic depolarization. In addition, 

the slow inward current may also directly contribute to the diastolic slope. 

Although the Eustachian ridge typically exhibits rhythmic pacemaker activity, 

a small percentage of the preparations demonstrated cyclic bradydysrhythmias. The 

present findings suggest that the development of these dyrhythmias may be due to 

impaired [Ca]i metabolism. This mechanism interacts with frequency dependent changes 

in electrogenic sodium pump activity which act as a negative feedback mechanism to 

cyclically modulate pacemaker rhythm. 
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Cells within the Eustachian ridge demonstrated characteristics which were typical 

of regions found within the SA ring bundle. Atrial subsidiary pacemakers within the 

Eustachian ridge exhibited a high PNa/PK ratio (0.076), and a relative resistance to 

moderate elevations of [K]
0

• Pacemaker activity continued at 16 mM [K]
0

• 

Initiation of pacemaker activity can occur by either ryanodine-sensitive or 

insensitive pathways. Norepinephrine initiation is ryanodine-insensitive and may result 

from a {J1 receptor stimulation of a cAMP mediated pathway to activate calcium 

channels. Calcium overload initiation of activity by acetylstrophanthidin toxicity was 

likely mediated by the spontaneous generation of oscillatory SR calcium release. This 

ryanodine-sensitive, calcium-mediated automaticity may identify another mechanism 

of dysrhythmias. 

The calcium released from the sarcoplasmic reticulum in the cat Eustachian ridge 

likely contributes significantly to all forms of its pacemaker activity: rhythmic, 

dysrhythmic, and initiated. 

The atrial subsidiary pacemakers are clinically important when the sinus node 

fails or is damaged. Further study into the specific currents will help establish the 

mechanisms of subsidiary pacemaker activity, and may better define the mechanisms 

of dysrhythmias. Continued emphasis should be communicated to cardiac surgeons on 

the location and functional importance of these pacemakers. 
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