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Abstract: The aim of this study was to determine the influence of salinity and organism age on the chronic 

toxicity of waterborne lead (Pb) to Atherinops affinis and to compare the relative Pb sensitivity of A. affinis with 

other marine species. Chronic Pb exposure experiments were conducted in a water flow-through testing system. 

Survival, standard length, dry weight, and tissue Pb concentration were measured and lethal concentrations 

(LC), effective concentrations (EC), and bioconcentration factor (BCF) were calculated. In general, increasing 

salinity and organism age decreased Pb toxicity. The LC50s for larval fish at 14 and 28 ppt salinity were 15.1 

and 79.8 µg/L dissolved Pb, respectively; whereas, the LC50 for juvenile fish was 167.6 µg/L dissolved Pb at 

28 ppt salinity. Using standard length data, the EC10 values for larval fish were 16.4 and 82.4 µg/L dissolved 

Pb at 14 and 28 ppt salinity, respectively. The dry weight EC25 for low and high salinity were 15.6 and 61.84 

µg/L dissolved Pb, respectively. The BCF was higher with the lower salinity study (1,703) in comparison to the 

higher salinity study (654). Results of Pb speciation calculation showed higher fraction of Pb2+ in water with 

lower salinity, explaining the higher observed toxicity of Pb in lower salinity water than higher salinity water. 

Atherinops affinis is more sensitive to Pb than several other marine species. Evidences for abnormal swimming 

and skeletal deformities were observed in Pb exposure treatment. Results of the present study are useful for 

marine Biotic Ligand Modeling and support ecological risk assessment and deriving Pb environmental quality 

criteria for marine environment. This article is protected by copyright. All rights reserved 

Keywords: Lead toxicity, growth effect, lead bioaccumulation, bioconcentration factor, lead speciation 

 

 

 

INTRODUCTION 

Metal pollution has been an environmental issue for many decades. The introduction of heavy metals to 

marine ecosystems is concentrated near densely populated coastal areas and industrialized regions. Lead (Pb) 

has become a metal of concern due to its popular application in a variety of industries. Several metals, such as 

copper (Cu), zinc (Zn) are both essential to biological function at low concentrations but toxic at high 
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concentrations; whereas, Pb is considered a nonessential metal and therefore not required for any known 

physiological processes.  

Lead occurs in the environment as a consequence of both naturogenic and anthropogenic processes. 

Activities such as mining, smelting, coal burning, and manufacturing continue to contribute substantial amounts 

of Pb to aquatic environments (International Lead Association 2017). The world production of lead has 

increased from 4.602 million tons in 1970 to 11.134 million tons in 2016 (International Lead Association 2017). 

Once Pb enters the environment it remains as a persistent contaminant but can form complexes with organic and 

inorganic ligands which will potentially mitigate its toxicity.  Therefore, the increase of Pb production poses 

potential risks for the environment and chronic toxicity studies are more appropriate to evaluate the 

environmental risk of Pb.  

Most published lead toxicity research has been conducted with acute exposures and freshwater 

organisms (Pyatt et al. 2002; Grosell et al. 2006; Parametrix 2010; Mager et al. 2010, 2011; Brix et al 2012; 

Munley et al. 2013; International Lead Association 2017). Literature data for chronic toxicity of lead on marine 

organisms are limited in part due to the low solubility of lead in marine waters (Taylor et al. 1985; Denton and 

Jones 1986; Angel et al. 2016; Church et al. 2017). In freshwater, lead primarily exists as the divalent cation 

(Pb2+) under acidic conditions, and forms lead carbonate and hydroxide under alkaline conditions.  In seawater, 

the influence of chloride concentration on dissolved lead speciation is far greater compared to freshwater; the 

primary dissolved seawater species of lead are chloride and carbonate complexes (Turner et al. 1981). The 

abundance of dissolved ionic salts in marine environments causes Pb to precipitate out of solution and greatly 

reduces the bioavailability of Pb (Angel et al. 2016).  Angel et al. (2016) present the theoretical limit on lead 

solubility in seawater as 60 µg/L based on equilibrium with hydrocerrussite. 

Based on a recent review of literature for the effects of Pb in saltwater by Church et al. (2017), most of 

the available chronic Pb toxicity data are for marine invertebrate and algal species. In particular, chronic Pb 

toxicity has so far been reported only for one fish species (Cyprinodon variegatus), leading to a poor 

representation of fish in the species sensitivity distribution used for ecological risk assessment of Pb in marine 

environment.  
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The toxicity of Pb is believed to incorporate both osmoregulatory and ionregulatory stress (Denton and 

Jones 1986). For metal cations and fish the target site of action, i.e., the biotic ligand, is typically the gills, 

where metals induce ion regulatory impairments (Taylor et al. 1985). Increased environmental salinity yields 

fewer interactions between Pb and biotic ligands at the gills due to a cation competition. This competition 

potentially makes Pb less bioavailable to aquatic organisms and, therefore, would decreases toxicity (Church et 

al. 2017; DeForest et al. 2017). However, based on a review summary by Church et al. (2017), approximately 

72% of the chronic Pb toxicity data were for vertebrate and invertebrate species and at salinity ≥30 ppt. Studies 

at salinity between 20 and 30 ppt accounted for only 27%. Further, only 1% of the studies was conducted with 

brackish water salinity (15%). Given that Pb enters marine environment mainly from human activities on land, 

coastal environments, typically near river mouths at which salinities are lower than the open ocean, are likely 

more contaminated with Pb compared to average marine water. Therefore, research on chronic Pb toxicity at 

salinities representing both inshore and offshore environments are important.    

Atherinops affinis is a marine fish species that has been used for toxicology research due to its relative 

sensitivity to a variety of toxicants and its amenability to laboratory culture (Anderson et al. 1991; Middaugh 

and Anderson 1992; Anderson et al. 1995). The fish is also of high ecological importance as a primary and 

secondary consumer within the coastal food web (Middaugh and Anderson 1992). Studies show that larval A. 

affinis are amenable to toxicity testing at estuarine salinities from 5 to 33 ppt (Anderson et al. 1995). Although 

A. affinis tolerate lower salinities, they prefer marine conditions. Atherinops affinis are abundant in California, 

Washington, and Oregon along coastlines and within estuaries. The reproductive period of A. affinis is during 

dry summer months at spawn sites such as harbors and estuaries (Anderson et al. 1991). During a spawn 

migration, A. affinis encounter a warm thermocline in the shallow estuary environment and the fish eggs 

respond to this warmer thermal gradient and hatch (Anderson et al. 1991). It is important to consider the effect 

of salinity on metal toxicity to species whose choice of habitat is dependent on life cycle and spawn events. 

The objective of the present study is to determine the chronic effects of Pb exposure on A. affinis; 

specifically, looking at the influence of salinity and organism age on Pb toxicity to A. affinis. Relative 

sensitivity of A. affinis and other marine species to Pb exposure is also discussed in the present study.   
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MATERIALS AND METHODS 

Experimental design 

Twenty eight day chronic Pb toxicity tests with A. affinis were performed in a flow-through test system 

with synthetic saltwater. Lethal effect concentrations (LCs), effect concentrations (ECs), no observed effect 

concentration (NOEC), and lowest observed effect concentration (LOEC) were determined based on survival 

and growth data (fish length and dry weight). 

To determine the influence of salinity on chronic Pb toxicity, tests were conducted with ≤3 d old larval 

A. affinis in 14 ppt and 28 ppt synthetic saltwater. For the influence of organism age on the chronic toxicity of 

Pb to A. affinis, toxicity tests were conducted in 28 ppt synthetic saltwater using ≤3 d old larval and 2.5 mo old 

juvenile A. affinis. The designed concentrations for test with 14 ppt salinity and ≤3 d old fish were 0 (control), 

25, 50, 100, 150, and 200 µg/L total Pb. For test with 28 ppt salinity and ≤3 d old fish, the concentrations were 

0 (control), 50, 100, 200, 400, and 600 µg/L total Pb. These concentrations were chosen based on the results of 

a preliminary range finding test conducted in our laboratory (unpublished data). Four replicates per treatment 

with 10 fish per replicate were designed for these tests. Due to an availability issue with 2.5 mo old fish, three 

treatments including control (0, 100, 200 µg/L total Pb) were used for test with 28 ppt salinity and 2.5 mo old 

fish. Two replicates per treatment with 10 fish per replicates were used for this test.  

Organisms 

Fish were purchased from Aquatic Biosystems Inc. (Fort Collins, Colorado, USA) and priority shipped 

to the Loyola Ecotoxicology and Risk Assessment Laboratory. Fish were 1 d old and 1 mo old by the time they 

arrived. Upon arrival, the shipment’s water quality parameters (e.g., dissolved oxygen (DO), pH, salinity, 

conductivity) were checked to ensure the organisms had not undergone physical stress due to low water quality. 

Fish were then transferred to a holding container, fed freshly hatched brine shrimp (brine shrimp eggs obtained 

from Brine Shrimp Direct Inc.), and inspected for health. Fish that exhibited abnormal behavior or anatomy 

were euthanized. The observationally healthy fish (1 d old) were then acclimated to our synthetic saltwater and 
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laboratory conditions over a period of 24 h but no longer than 2 d prior to testing. Juvenile A. affinis (1 mo old) 

was acclimated to laboratory conditions for 1.5 mo. During acclimation, fish were fed daily with freshly 

hatched brine shrimp. Once acclimated, chronic Pb toxicity tests were conducted in a water flow-through test 

system. Synthetic test water was prepared by dissolving an equivalent amount of Crystal Sea Laboratory 

Bioassay Formula (Marine Enterprises) in 16-18 MΩ MilliQ water (Barnstead E-pure) to achieve a desired test 

salinity. To increase solubility of Pb, a small amount of trace metal grade HNO3 (Fisher Scientific Inc.) was 

added to the reconstituted seawater (90 µL of 50% HNO3 in 16 L water) to decrease pH to, and maintained at 

approximately 7.9, during exposure. 

Toxicity Testing  

Toxicity tests were performed based on the American Society for Testing and Materials 2004 (ASTM 

2004) standard guidelines for conducting early life-stage toxicity tests. Test water was synthetic saltwater as 

described in the organism section. Once prepared, test water was aerated continuously for at least 24 h prior to 

use for preparing test treatments. Lead stock solution was aliquoted to synthetic saltwater to prepare test 

treatments. The solutions were then aerated again for at least 24 h for chemical equilibrium before distributing 

to test chambers. Test chambers were 3 L polypropylene containers. All test chambers were washed with nitric 

acid, and subsequently rinsed with deionized (DI) water to avoid any interference from metal contamination. A 

desired amount of Pb(NO3)2 was dissolved in 18MΩ MilliQ water to produce Pb stock solution of 10,000 mg/L. 

The solution was subsequently acidified with HNO3 to a pH of approximately 2 to maximize Pb solubility. Prior 

to use, the concentration of the Pb stock solution was verified by a NeXion 300S Inductively Coupled Plasma 

Mass Spectrometer (IC-PMS) (Perkin Elmer Inc.).  

All tests were conducted using a water flow-through testing system at a desired temperature of 18 oC 

and a light photoperiod of 16 h light and 8 h dark in an aquatic toxicology testing room at the Loyola Institute of 

Environmental Sustainability. Large aerated treatment water basins were placed above the test chamber. A 

series of peristaltic pumps (Cole Palmer Inc.) aliquoted 83.4 mL to each discrete replicate every 30 min. A hole 

was bored into each replicate to fit a modified silicone stopper. Once the water level within a replicate exceeded 

2 L, treatment water flowed through the modified silicone stopper and exited the test chamber. This ensured 
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fresh treatment water remained within each replicate volume. The flow-through system was set to replace the 

total volume of each discrete replicate, 2 L, once every 12 h. The peristaltic pumps were scheduled to turn on 

every 30 min (Aqua Logic Inc.). All test chambers were placed in a water bed to control the temperature. A 

water chiller (Pentair Aquatic Eco-Systems, Inc.) was programmed to keep the water bed at 18 ºC. Once water 

in test chambers reaches 18 oC, fish was transferred into test chambers to initiate a test.  

Fish were unbiasedly transferred into test chambers one or two at a time to ensure randomization. Fish 

were only used for testing if they appeared healthy. All tests specimens were fed freshly hatched brine shrimp at 

least two hours prior to test initiation and daily during the 28 d test period. Dead fish (if observed) was removed 

from the test chambers daily. At test termination on day 28, surviving fish were collected, rinsed with DI water, 

euthanized with tricaine methanesulfonate (MS-222) solution, and preserved in 10% formalin solution for later 

measurement of body weight, standard length, and tissue Pb concentrations. Standard length refers to the length 

of a fish from the tip of the snout to the last vertebrae and was measured using scientific image analysis 

software program Image J (SciJava).  

To determine fish weight, fish were washed with deionized water to remove any excess saltwater or 

formalin and weighed on a XS64 Toledo balance with a readability of 0.1 mg to determine wet weight. After 

wet weight was recorded, the fish were dried in an oven set to 60°C for 24 h to determine dry weight. Fish were 

then subsequently digested with HNO3 based on the US EPA Method 3050B for tissue Pb determination 

(USEPA 1996) and finally analyzed by ICP-MS. 

Water chemistry and chemical analyses  

Water quality measurements, such as DO, pH, temperature, and salinity were measured one hour after 

preparing test solutions and then once a day during subsequent test days. Measurement of pH was performed 

using a pH meter (model AP110; Fisher Scientific Inc.). Temperature and DO were measured by an YSI 550 

meter (YSI Inc.). Salinity was measured by an YSI 30 meter (YSI Inc.). Alkalinity was measured weekly by 

titrating the test water with 0.02 N H2SO4.      

Water samples were collected at test initiation and weekly throughout the test for total and dissolved 

metal, anion, cation, and dissolved organic carbon (DOC) analyses. Samples for DOC analysis were collected 
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into 30 mL amber glass bottles. All other samples were collected into acid washed 15 mL polypropylene tubes. 

Dissolved metal, anion, cation and DOC samples were filtered using a 0.45 µm Whatman™ filter (GE 

Healthcare Life Sciences Inc.). Total and dissolved metal samples were acidified with HNO3 to an approximate 

pH of 2. All samples were stored at 4 °C in a refrigerator prior to analysis. Analysis of metals was performed by 

ICP-MS. Concentrations of anions and cations were analyzed with an Ion Chromatograph (Metrohm USA Inc.). 

A TOC analyzer was used to measure concentrations of DOC in the test water (Shimadzu Inc.). 

Data Analysis 

Survival data were used to determine LCs. The Probit method was used for calculation of LCs for tests 

with low and high salinity and larval fish. The LCs for test with high salinity and juvenile fish were calculated 

using the Linear Interpolation method. Effect concentrations were determined with standard length and weight 

data and based on Linear Interpolation method. No observed effect concentration and LOEC were determined 

with both survival and growth data using Dunnett’s Test method. All data analyses were performed using 

CETIS (Tidepool Scientific Software Inc.) and based on the measured dissolved Pb concentrations. CETIS is a 

statistical package that was developed for analysis of results from environmental toxicity tests. Bioconcentration 

factor (BCF) for larval fish at low and high salinity was calculated as the ratio of tissue Pb concentration (in dry 

weight) to the dissolved Pb concentration in the exposure media.  

Lead speciation calculations were performed with all stability constants taken as concentration constants 

as opposed to activity constants.  This method was previously reported for copper by Tait et al. (2015). This 

avoids the need to specify an activity model for seawater (Angel et al. 2016). The specific constants, logK 

values, for each exposure solution were calculated and the corresponding logK values were interpolated from 

National Institute of Standards and Technology (NIST 2004) tabulated stability constants over the range 0.0 to 

1.0 mol/L ionic strength. The ionic strength of the 28 ppt exposure water were assumed to be 0.61 mol/L, and 

0.31 mol/L for the 14 ppt exposure water based on 32 ppt seawater having an ionic strength of 0.7 mol/L. 

Interpolated certified logK values also require total concentrations for each complexing agent. These anion 

concentrations were determined by measurement and used directly in modelling. For organic matter binding, the 

conditional logK values of Kozelka and Bruland (1998) were selected corresponding to two binding sites, one 
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stronger site at lower concentration (NOM1) and a weaker site at higher concentration (NOM2). The 

simultaneous equilibrium was presented in tableau notation and solved using an in-house Matlab (Mathworks, 

Natick, MA, USA) script based on the equations presented in Carrayrou et al. (2004).  The complete tableaus, 

including conditional concentration-based equilibrium constants is given as Supplementary Information (Table 

SI1). 

RESULTS 

Water chemistry and Pb speciation and biological measurement endpoints  

The average measured salinity of test water for the low salinity (14.1 ppt) and high salinity (28 ppt) tests 

were less than 1% different from the designed salinity (Table 1). The average measured temperature and pH 

were in the ranges 18.1 to18.4 oC and 7.92 to 8.02, respectively. Alkalinity of the low salinity water (58 mg/L as 

CaCO3) was approximately half the alkalinity of the high salinity water (105 to 115 mg/L as CaCO3) (Table 1). 

Concentrations of DO were 6.99 to 8.88 mg/L. These DO concentrations are greater than the minimum 

requirement by the test method (4.5 mg/L). The DOC concentrations of test waters ranged from 1.73 to 2.45 

mg/L, values that fall within the normal range of DOC concentrations found in coastal waters (DePalma et al. 

2011). Concentrations of anions and cations were within the concentration range of ocean water. 

The measured total Pb concentrations for tests with low salinity and larval fish and high salinity and 

juvenile fish were approximately within 60% of the nominal concentrations (Table 2). Results of QC samples 

(spike of 1643e, standard reference material of National Institute of Standards and Technology) for Pb showed a 

recovery within 10% of the certified concentration. Inevitable lead precipitation was visually observed in some 

of the test waters. As presented in the modeling results, precipitation explains the lower Pb concentrations in the 

test waters compared to the nominal Pb (Fig. 1A). The measured dissolved Pb concentrations were 

approximately 30% lower than the measured total Pb concentrations, except for the treatment of 100 µg/L for 

high salinity and juvenile fish, showing a difference of 50% (Table 2). Lead concentration in the control was 

below the method detection limit (<0.002 µg/L).  

Water chemistry in Table 1 and total Pb concentrations in Table 2 were used to calculate concentrations 

of free Pb2+ and other Pb species in the test waters with low and high salinity.  At a total Pb concentrations of 
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approximately ≤25 µg/L, the total organic Pb (Pb-NOM1 + Pb-NOM2) was the dominant species (Fig. 1A) and 

accounted for at least 60% of the total Pb in the 14 ppt water (Fig. 1B) or 45% of the total Pb in the 28 ppt water 

(Fig. 1C). Above 25 µg/L total Pb and for 14 ppt water or between 60 and 170 µg/L total Pb and for 28 ppt 

water, the total inorganic Pb species became dominant (Fig. 1A). Among the Pb species, free Pb2+ was one of 

the least dominant species at both salinity (Fig. 1B, 1C). Free Pb2+ concentration increased with total Pb 

concentration and reached saturation at a concentration of approximately 105 µg/L total Pb in the 14 ppt salinity 

water or 160 µg/L total Pb in the 28 ppt salinity water (Fig. 1A). Salinity affected Pb speciation. At total Pb 

concentrations greater than approximately 10 µg/L, concentrations of Pb2+ were higher in the low salinity water 

than in the high salinity water (Fig. 1A).  

Toxicity of Pb  

In general, mortality increased with exposure time, especially after about 2 wk of exposure (Fig. SI1, 

Supplemental data). The 28 d total mortality increased and standard length and dry weight decreased with 

increasing water Pb concentration (Table 2). At high Pb concentrations of tests with larval fish, complete 

mortality (100%) was observed. Therefore, standard length and dry weight were not determined for these 

treatments. Mortality of the control (≤15%) was less than the acceptable mortality (20%). Tissue Pb 

concentrations of larval fish ranged from 0.9 (control) to 83.8 mg/kg, dry weight (Table 2).    

Salinity strongly influenced Pb toxicity to A. affinis. In general, mortality was higher in the lower 

salinity test than in the higher salinity test (Table 2). As a result, the LC50 (95% CI) value for the 28 ppt salinity 

test was 79.84 (66.18 - 92.04) µg/L Pb; whereas, the LC50 (95% CI) value for the 14 ppt study was 15.14 

(11.82 - 17.74) µg/L Pb (Table 3). All other LC values were approximately five times higher for the high 

salinity test than the low salinity test (Table 3). The NOEC and LOEC were at least four times and six times 

higher for the high salinity test than the low salinity test (Table 3). These results indicate that Pb toxicity 

decreased when salinity was increased.  

In comparison of the LC values of juvenile fish and larval fish, the LC50 values for juvenile fish (167.60 

µg/L) was approximately 2 times higher than the LC50 value for larval fish (79.84 µg/L) tested at the same 

salinity (28 ppt) and 11 times higher than that for larval fish tested at a lower salinity (14 ppt). A similar 
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difference in other LC50 values for larval and juvenile fish was found (Table 3). These results signify that 

juvenile fish are less sensitive to Pb than larval fish.  

The effect endpoints based on dry weight data also indicate the influence of salinity on Pb toxicity to A. 

affinis.  The EC values for test with high salinity were approximately two to eight times higher than the EC 

values for test with low salinity fish, typically for EC40 (21.47 vs 163.20 µg/L) and EC50 (26.47 vs >171 µg/L) 

(Table 3). The NOEC and LOEC for the low salinity test were <13.82 and 27.06 µg/L, while they were 45.52 

and 89.92 µg/L for the high salinity test, respectively. Similar results were found for standard length data. The 

EC values for high salinity test was up to 23 times higher than the EC values for low salinity test (Table 3). The 

BCFs were higher for 14 ppt salinity test than 28 ppt salinity test. On average, the BCF was 1703 for 14 ppt 

salinity test and 654 for 28 ppt salinity test (Table 3).  

DISCUSSION  

Influence of salinity on Pb toxicity 

Metal toxicity has been found to be influenced by water chemistry due to complexation with nontoxic 

components, such as dissolved organic carbon (DOC), carbonate (CO3
2-), chloride, etc. and form various metal 

species (Mager et al. 2010, 2011; Esbaugh et al. 2011). Among the metals species, free metal or ionic metal is 

believed to be the most bioavailable and responsible for toxic effect. In the present study, the toxicity of Pb to 

A. affinis was higher in water with low salinity (14 ppt) than in water with high salinity (28 ppt), regardless of 

the measurement endpoints (Table 3). The results of Pb speciation calculation showed that at the same total Pb 

concentration, Pb bioavailability (Pb2+) was higher in the 14 ppt salinity water than in the 28 ppt salinity water. 

This indicates an influence of salinity on Pb bioavailability and would explain the difference in the toxicity of 

Pb to A. affinis at 14 ppt and 28 ppt salinity. The decrease in free ionic Pb2+ in the high salinity water was likely 

due to formation of more inorganic soluble lead species, such as chloro complexes (i.e., PbCl+. PbCl2, PbCl3
-) 

and PbSO4 in the high salinity water compared to the low salinity water (Fig. 1B, 1C, and shown in 1A where 

the black dashed line is above the blue dashed line).  

It is also important to mention that concentration of free ionic Pb2+ increased with increasing total Pb in 

the water but was saturated when hydrocerrusite Pb (Pb3(CO3)2(OH)2) begins to precipitate (Angel et al. 2016). 
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In the present study, the saturation point occurred at a lower total Pb concentration (105 µg/L) in the low 

salinity water than the high salinity water (160 µg/L) (Fig. 1A). These suggest that Pb bioavailability and 

toxicity might not significantly change in salinity range of 14 to 28 ppt when total Pb concentrations are greater 

than 160 µg/L. This could explain the observation of no significant protective effect of salinity on Pb toxicity to 

mysid Neomysis integer at which, the LC (4,274 µg/L Pb) was approximately 27 times higher than the 

saturation concentration (Verslycke et al. 2003).   

The toxicity of Pb is also dependent on the competition with other cations for binding site at the biotic 

ligand. Free ionic Pb is believed to compete with divalent cations (e.g., Ca2+, Mg2+) at the biotic ligand (Davies 

et al. 1976; Mager at al. 2011; Mebane et al. 2012). Lower salinity will increase the total free ionic Pb to cation 

ratio within the water column because concentrations of cations are lower in lower salinity water than higher 

salinity water. This will lead to less competition at the biotic ligand, allowing more Pb to be available for uptake 

and/or toxicity (Blanchard and Grosell 2006; De Polo and Scrimshaw 2012). Lead stresses fundamental 

biological processes of fish physiology. These interactions occur at the cellular and molecular levels and are a 

result of the ability of Pb to mimic or displace cations during specific physiologic processes (Baysoy et al. 

2013). In the present study, concentrations of divalent cations (e.g., Ca2+, Mg2+) in the 28 ppt salinity water 

were approximately 2 to 3 times higher than those in the 14 ppt salinity water. As a result, greater competition 

between these cations and Pb2+at the biotic ligand could likely occur in the 28 ppt salinity water than in the 14 

ppt salinity water and resulted in higher Pb toxicity in the lower salinity than higher salinity water in the present 

study. In addition, behavior and morphological effects were visually observed in the present study. Some fish in 

Pb exposure treatments but not in the control experienced erratic swimming and skeletal deformities (curved 

body, Fig. 2). Physical abnormalities, such as black tails, lordoscoliosis (spinal curvature), paralysis, have been 

observed in rainbow trout chronically exposed to Pb at sublethal concentrations (Davies et al. 1976). Osman et 

al. (2007) also reported malformation effects of Pb on embryos of the African catfish Clarias gariepinus 

(Burchell, 1822). The physical abnormalities are believed to be associated with direct neurological damage due 

to lead exposure (Davies et al. 1976). These abnormal swimming and morphological effects would affect fish’s 
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ability to avoid predators and catch its preys - these can lead to population effects. More quantitative study 

should be conducted to address these consequences of chronic Pb exposure.      

At the same salinity, BCF appeared to be lower at higher water Pb concentrations (Table 3). This is in 

agreement with McGeer et al. (2003) who reported that Pb BCF for fish decreased with increasing water Pb 

concentration. Results of the BCF support the assumption of competition of Pb and cations at the biotic ligand. 

On average, the BCF for fish in the 14 ppt salinity water (1,703 L/kg) was approximately 2.6 times higher than 

the BCF for fish in the 28 ppt salinity water (654 L/kg) (Table 3). These results suggest that higher salinity 

could cause more cations-Pb competition at the biotic ligand and leaded to less Pb accumulation in the tissue. 

The results of Pb accumulation indicate an influence of salinity on Pb accumulation and Pb BCF. These results 

are in agreement with previous finding on the influence of salinity on Pb accumulation in fish (Somero et al. 

1977; Tsui et al. 2016). 

Influence of organism age on Pb toxicity 

Based on survival endpoint, results of the present study indicate that larval A. affinis are more sensitive 

to chronic Pb exposure than juvenile A. affinis, as the LC values were higher for juvenile fish than for larval fish 

(Table 3). These results are supported by the general assumption that earlier life stages of fish are more 

sensitive to metals than later developmental stages due to less development of defense system and 

detoxification mechanism in younger fish than older fish (Sorensen 1991). The results are in agreement with 

Marr et al. (1995) who found that larval brown trout (Salmo trutta) and rainbow trout (Oncorhynchus mykiss) 

were more sensitive to metal mixtures (Zn, Cu, Pb, Cd) than juvenile fish. Newly hatched mottled sculpin 

(Cottus bairdii) has been reported to be less resistant to Cd, Cu, and Zn than were older fish (Besser et al. 

2007). In addition, Hoang et al. (2004) also reported that 24 h old fathead minnow were more sensitive to Ni 

than 1 mo old fathead minnow.  However, different age/size sensitivities of fish to metals have been reported in 

the literature. Mebane et al. (2012) found that the sensitivity of rainbow trout to Pb and Zn increased when fish 

age/size increased from the swim-up fry life stage (approximately 0.1 g) to 0.5 g. For cutthroat trout 

(Oncorhynchus clarkii), a bi-phases sensitivity was observed with the most sensitive to Pb and Zn at the fish 

size of approximately 0.3 g (Mebane et al. 2012). More research with ages between larval (3 d old) and juvenile 
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(2.5 mo old) should be conducted to determine whether the bi-phases age sensitivity response to Pb would occur 

to the A. affinis.  

Relative sensitivity of A. affinis and other marine species to Pb  

Since salinity and organism age both influenced Pb toxicity to A. affinis, to compare the relative Pb 

sensitivity of A. affinis with other species, it was necessary to select literature toxicity data from research 

conducted under similar salinity, organism age, DOC, and exposure duration to the experimental conditions of 

the present study. Eight toxicity values (LC10s) ranging from 12.4 to 1,201.7 µg/L were found in the literature 

(Parametrix 2010; Beiras et al. 2013; Vukov et al. 2013). The salinity for these studies ranged from 25 to 35 ppt. 

The studies used ≤24 h old organisms at the start of the exposure and were conducted for 18 d (Beiras et al. 

2013), 28 d (Parametrix 2010) or 30 d (Vukov et al. 2013). These experimental conditions are the most similar 

to the experiment conditions of the present study. These toxicity values were used together with our toxicity 

value (LC10) for high salinity test and larval fish to construct a species sensitivity distribution (SSD). Results 

show that A. affinis is the second most sensitive to Pb after A. bahia and fell in the 20th percentile of the 

distribution (Fig. 3). When incorporating our toxicity value (LC10) into the SSD for chronic exposure to marine 

fish by Church et al. (2017) without taking the influence of salinity and organism age into account, the 

distribution percentile for A. affinis was about 25%.  Atherinops affinis was less sensitive to Pb than Champia 

parvula, Americamysis bahia, and Mytilus trossolus but was more sensitive to Pb than many other species, such 

as Cyprinodon variegatus, Dunaliella tertiolecta, Mytilus galloprovincialis, Neanthes arenaceodantata, 

Strongylocentrus purpuratus. Given the importance of A. affinis in the food web of the coastal and marine 

ecosystems, including A. affinis in the SSD for developing environmental water quality criteria is relevant.  

CONCLUSIONS AND IMPLICATIONS   

The present study characterized the chronic toxicity of Pb to A. affinis and the influence of salinity and 

organism age on Pb toxicity. Results indicate that Pb toxicity is inversely related to both salinity and organism 

age. Atherinops affinis is relatively sensitive to Pb compared to other marine species. In addition, abnormal 

swimming and skeletal deformities were observed in the present study. Results of the present study are useful 

for a potential marine Pb Biotic Ligand Model and support development of species sensitivity distributions for 



 
 

  
 A

cc
ep

te
d

 P
re

p
ri

n
t

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 
 
 

This article is protected by copyright. All rights reserved 
 

ecological risk assessment and deriving Pb environmental quality criteria for protection of marine environment, 

especially for low salinity environments, such as coastal and estuarine ecosystems.   

Supplemental Data—The Supplemental Data are available on the Wiley Online Library at DOI: 

10.1002/etc.xxxx. 
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Figure 1. Lead speciation as a function of total lead (A: blue lines correspond to 14 ppt salinity water and black 

lines to the 28 ppt salinity water; B: percentage of each speciation in the 14 ppt salinity water; C: percentage of 

each species in the 28 ppt salinity water). 

Figure 2. Morphological effect of Pb on A. affinis (photos were taken from two replicates of treatment 1 of the 

28 ppt salinity test with juvenile fish; fish with deformities are circled). 

Figure 3. Relative sensitivity of A. affinis and other marine species to Pb at similar salinity, life stage, and 

exposure duration. (data for A. affinis were from the present study, C. variegatus data were from Parametrix 

2010, T. battagliai data were from Beiras et al. 2013, A. bahia data were from Vukov et al. 2013). 
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Table 1. Chemistry of test waters (mean ± standard deviation)  

Test  

Salinity                    

(ppt)  

Temperature 

(°C)  
pH 

Alkalinity 

(mg/L as 

CaCO3) 

DO DOC SO4 
+2 Cl - Na + Mg 2+ K + Ca 2+ 

(mg/L)  

Low salinity and larval fish  14.1 ± 0.1 18.2 ± 0.3 7.96 ± 0.17 58 ± 5 7.58 ± 0.39 2.14 ± 0.53 58 ± 8 7561 ± 226 5927 ± 334 507 ± 61 138 ± 24 125 ± 16 

High salinity and larval fish  28.0 ± 0.6 18.1 ± 0.2 7.92 ± 0.07 105 ± 8 6.88 ± 0.60 1.73 ± 0.25 6168 ± 304 21683 ± 710 13877 ± 383 1063 ± 368 368 ± 12.0 430 ± 18 

High salinity and juvenile fish  28.0 ± 0.3 18.4 ± 0.4 8.02 ± 0.09 115 ± 4 8.88 ± 0.33 2.45 ± 0.65 3155 ± 90 15685 ± 319 10336 ± 601 1707 ± 346 591 ± 132 502 ± 111 
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Table 2. Lead concentrations of test water and measured biological endpoints (mean ± standard deviation) 
 

Study 

Nominal Pb   

(µg/L) 

Dissolved Pb                                                  

(µg/L) 

Total Pb                   

(µg/L) 

Mortality 

(%) 

Standard length 

(mm)                                 

Dry weight                                         

(mg) 

Tissue Pb 

(mg/kg, dw) 

Low salinity,   Control BDL BDL 12 ± 4 14.8 ± 1.4 4.6 ± 0.8 0.9 ± 0.1 

larval fish  25 14 ± 1 17 ± 1 50 ± 2 13.7 ± 1.5 3.4 ± 0.6 27.6 ± 4.7  

 50 27 ± 2 34 ± 1 92 ± 2 12.1 ± 0.8 2.2 ± 0.7 38.7 ± 22.6 

 100 51 ± 3 69 ± 4 100 N/A N/A N/A 

 150 80 ± 7 85 ± 15 100 N/A N/A N/A 

 200 117 ± 19 127 ± 16 100 N/A N/A N/A 

High salinity,  Control BDL BDL 13 ± 11 12.2 ± 1.3 1.8 ± 0.2 7.5 ± 0.6 

larval fish  50 46 ± 10 58 ± 9 18 ± 9 11.9 ± 1.5 1.6 ± 0.2 33.7 ± 6.9 

 100 90 ± 20 107 ± 20 72 ± 6 10.8 ± 1.3 1.2 ± 0.0 66.6 ± 42 

 200 171 ± 22 200 ± 14 92 ± 13 9.7 ± 0.5 0.8 ± 0.0 83.8 ± 45 

 400 259 ± 24 386 ± 43 100 N/A N/A N/A 

 600 435 ± 48 563 ± 45 100 N/A N/A N/A 

High salinity,  Control BDL BDL 15 ± 7 38.2 ± 4.0 617.0 ± 4.1 N/A 

juvenile fish  100 100 ± 21 154 ± 67 0 34.1 ± 5.9 532.6 ± 160.0 N/A 

 200 190 ± 30 239 ± 98 65 ± 35 35.6 ± 2.5 727.5 ± 88.8 N/A 

BDL: below the method detection limit of 0.002 µg/L 

N/A: not applicable 

  



 
 

  
 A

cc
ep

te
d

 P
re

p
ri

n
t

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 
 
 

This article is protected by copyright. All rights reserved 

 
Table 3: Lethal effect concentrations, ECs, NOEC, LOEC, and BCF for A. affinis and Pb at different 

salinities and organism ages (µg/L) 

Endpoints Low salinity and larval fish High salinity and larval fish High salinity and juvenile fisha 

Survival  LC5 7.68 (3.83 - 10.33) 36.56 (23.68 - 47.39) 105.30 (98.71 - 124.60) 

 LC10 8.28 (4.96 - 11.53) 43.44 (29.89 - 54.54) 110.90 (97.11 - 152.40) 

 LC15 9.88 (5.90 - 12.45) 48.81 (34.95 - 60.03) 116.80 (95.19 - 183.80) 

 LC20 10.70 (6.75 - 13.24) 53.54 (39.53 - 64.84) 123.00 (92.90 - 219.20) 

 LC25 11.47 (7.57 - 13.97) 57.96 (43.9 - 69.33) 129.50 (90.23-259.00) 

 LC40 13.64 (10.05 - 16.13) 70.79 (56.91 - 82.48) 151.20 (79.58 - N/A) 

 LC50 15.14 (11.82 - 17.74) 79.84 (66.18 - 92.04) 167.60 (69.94 - N/A) 

 NOEC <13.82 45.52 N/A 

 LOEC 13.82 89.92 N/A 

Dry weight  EC5 0.97 (0.18 - 22.78) 1.80 (0.22 - 75.43) N/A 

 EC10 2.90 (0.16 - 23.49) 6.81 (N/A - 81.41) N/A 

 EC15 6.69 (N/A - 23.44) 20.83 (N/A - 97.70) N/A 

 EC20 14.03 (N/A - 21.33) 48.85 (N/A - 129.30) N/A 

 EC25 15.62 (0.36 - 22.74) 61.84 (N/A - N/A) N/A 

 EC40 21.47 (13.87 - N/A) 163.20 (13.90 - N/A) N/A 

 EC50 26.47 (19.16 - N/A) >171 (N/A - N/A) N/A 

 NOEC <13.82 45.52 N/A 

 LOEC 27.06 89.92 N/A 

Standard 

length  EC5 5.04 (0.076 - 23.76) 56.01 (N/A - 73.72) N/A 

 EC10 16.36 (2.99 - 22.71) 82.43 (51.23 - 116.70) N/A 

 EC15 5.04 (14.98 - 28.46) 117.6 (79.34 - 154.30) N/A 

 EC20 >27 (N/A - N/A) >171 (N/A - N/A) N/A 

BCF (L/kg, 

dw)  Treatment 1b 1974 733  N/A 

 Treatment 2c 1433 790  N/A 

  Treatment 3d N/A 490  N/A 

 Mean ± Stdev 1703 ± 383 654 ± 142 N/A 

Data in parentheses for LCs and ECs are 95% confidence intervals 

N/A: not applicable  
aLC values for this test should be interpreted with caution as there were only two treatment concentrations 
b25 µg/L Pb for low salinity and larval fish test, 50 µg/L Pb for high salinity and larval fish test  
c50 µg/L Pb for low salinity and larval fish test, 100 µg/L Pb for high salinity and larval fish test 
d100 µg/L Pb for low salinity and larval fish test, 200 µg/L Pb for high salinity and larval fish test 
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Fig. 1. Lead speciation as a function of total lead (A: blue lines correspond to 14 ppt salinity water and black lines to the 

28 ppt salinity water; B: percentage of each speciation in the 14 ppt salinity water; C: percentage of each species in the 28 

ppt salinity water).  
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Fig.2. Morphological effect of Pb on A. affinis (photos were taken from two replicates of treatment 1 of the 28 ppt salinity 

test with juvenile fish; fish with deformities are circled)  

 

 

Fig. 3. Relative sensitivity of A. affinis and other marine species to Pb at similar salinity, life stage, and exposure duration. 

(data for A. affinis were from the present study, C. variegatus data were from Parametrix 2010, T. battagliai data were 

from Beiras et al. 2013, A. bahia data were from Vukov et al. 2013). 
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