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QUIVER VARIETIES AND CRYSTALS IN SYMMETRIZABLE

TYPE VIA MODULATED GRAPHS

Vinoth Nandakumar and Peter Tingley

Abstract. Kashiwara and Saito have a geometric construction of the infinity crystal
for any symmetric Kac-Moody algebra. The underlying set consists of the irreducible
components of Lusztig’s quiver varieties, which are varieties of nilpotent representations
of a pre-projective algebra. We generalize this to symmetrizable Kac-Moody algebras
by replacing Lusztig’s preprojective algebra with a more general one due to Dlab and
Ringel. In non-symmetric types we are forced to work over non-algebraically-closed
fields.
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1. Introduction

Fix a symmetrizable Kac-Moody algebra g. Kashiwara’s crystal B(−∞) is a com-
binatorial object that encodes a lot of information about g and its integrable lowest
weight representations. It is usually defined using the corresponding quantized uni-
versal enveloping algebra, but it can be realized in other ways. In symmetric type,
Kashiwara and Saito [KS97] developed a very useful geometric realization. There the
underlying set consists of the irreducible components of Lusztig’s nilpotent varieties
from [Lus91, §12]: the varieties of nilpotent representations of Lusztig’s preprojective
algebra. This preprojective algebra is only defined in symmetric types, which is why
Kashiwara and Saito work in that generality.

However, even before Lusztig’s work, Dlab and Ringel [DR80] defined the pre-
projective algebra of a “modulated graph.” There is a natural way to associate a
symmetrizable Cartan matrix to any modulated graph, and all symmetrizable Cartan
matrices arise this way. As discussed in [Rin98], Lusztig’s preprojective algebra is a
special case of this construction.

Here we generalize Kashiwara and Saito’s work by replacing Lusztig’s preprojective
algebra with Dlab and Ringel’s. This gives realizations of B(−∞) for any symmetriz-
able Kac-Moody algebra. Kashiwara and Saito’s proof largely goes through, although
we make some modifications.

The current work can perhaps be generalized: Dlab and Ringel actually allow
division rings where we use fields. It would be natural to try to realize B(−∞) in this
even more general setting, but this involves some technicalities we prefer to avoid.

There is a well known way to study B(−∞) in symmetrizable types by “folding”
the quiver variety for a larger symmetric type (see [Sav05]). There the crystal for
the symmetrizable Kac-Moody algebra is the set of irreducible components of the
symmetric type quiver variety that are fixed set-wise by a diagram automorphism.
However, we feel it aesthetically important to have a quiver variety in symmetrizable
types that is actually a representation variety for some algebra. This may also sim-
plify some proofs by allowing the symmetric and symmetrizable cases to be handled
simultaneously.

Some recent papers of Geiss, Leclerc and Schröer [GLSa, GLSb, GLSc] also discuss
preprojective algebras in symmetrizable type. They take a different approach (using
quivers with relations) and do not consider crystals.

2. Background

2.1. Crystals. Let g be a symmetrizable Kac-Moody algebra with Cartan matrix
C = (cij)i∈I , and let D = diag{di}i∈I be such that DC is symmetric, with the di
relatively prime positive integers. Let P be the weight lattice of g, Q the root lattice,
and {αi} the simple roots. Let 〈·, ·〉 be the pairing between the root lattice and the
co-root lattice defined by 〈αi, α̌j〉 = cji, and (·, ·) be the symmetric bilinear form on
Q defined by (αi, αj) = dicij .

Definition 2.1. ([Kas95, §7.2]) A combinatorial crystal is a set B along with
functions wt : B → P , and, for each i ∈ I, εi, ϕi : B → Z and ei, fi : B → B ⊔ {∅},
such that

(i) ϕi(b) = εi(b) + 〈wt(b), α̌i〉.
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(ii) ei increases ϕi by 1, decreases εi by 1 and increases wt by αi.
(iii) fib = b′ if and only if eib

′ = b.

We often denote a combinatorial crystal simply by B, suppressing the other data.

Remark 2.2. In [Kas95], εi and ϕi are allowed to be −∞. We do not need that case.

Definition 2.3. A combinatorial crystal is called lowest weight if it has an element
b− (the lowest weight element) such that

(i) b− can be reached from any b ∈ B by applying a finite sequence of fi.
(ii) For all b ∈ B and all i ∈ I, ϕi(b) = max{n : fn

i (b) 6= ∅}.

For lowest weight combinatorial crystals, wt(b−) and the ei determine the rest of the
data.

Here we are concerned with the infinity crystal B(−∞), which can be thought of
as the crystal for U+

q (g). We use the following essentially as our definition. It is a
rewording of [KS97, Proposition 3.2.3], and can be found in [TW16, Proposition 1.4].

Proposition 2.4. Fix a set B and functions ei, fi, e
∗
i , f

∗
i : B → B ∪ {∅}. Assume

(B, ei, fi) and (B, e∗i , f
∗
i ) are both lowest weight combinatorial crystals with the same

lowest weight element b−, and wt(b−) = 0. Assume further that, for all i 6= j ∈ I and
all b ∈ B,

(i) ei(b), e
∗
i (b) 6= ∅.

(ii) e∗i ej(b) = eje
∗
i (b).

(iii) ϕi(b) + ϕ∗
i (b)− 〈wt(b), α̌i〉 ≥ 0.

(iv) If ϕi(b) + ϕ∗
i (b)− 〈wt(b), α̌i〉 = 0 then ei(b) = e∗i (b).

(v) If ϕi(b)+ϕ
∗
i (b)−〈wt(b), α̌i〉 ≥ 1 then ϕ∗

i (ei(b)) = ϕ∗
i (b) and ϕi(e

∗
i (b)) = ϕi(b).

(vi) If ϕi(b) + ϕ∗
i (b)− 〈wt(b), α̌i〉 ≥ 2 then eie

∗
i (b) = e∗i ei(b).

Then (B, ei, fi) ≃ (B, e∗i , f
∗
i ) ≃ B(−∞).

2.2. Modulated graphs and preprojective algebras. Modulated graphs (also
sometimes called species) date back to work of Gabriel [Gab73]. The preprojective
algebra construction here is due to Dlab and Ringel [DR80].

Fix an undirected graph Γ with no edges connecting a vertex to itself or multiple
edges. Denote the set of vertices by I and the set of edges by E. Let A be the set
of directed edges, which we call arrows; so there are two arrows in A for each edge in
E. Denote the arrow from i to j by jai.

A modulated graph M is a graph Γ as above along with a choice of a field F and:

• A finite extension Fi of F for each vertex i such that ∩iFi = F.
• An (Fj ,Fi) bimodule jMi for each jai where the two actions of F ⊂ Fi,Fj

agree.
• A non-degenerate Fi-bilinear form ǫji : iMj ⊗Fj jMi → Fi for each jai ∈ A.

The tensor algebra TM is

(1) TM =
⊕

i1i2···ik a path in Γ

kMk−1 ⊗Fk−1
· · · ⊗Fi3

i2Mi2 ⊗Fi2
i2Mi1 ,

with multiplication being tensor product if the end of one path agrees with the be-
ginning of the next, and 0 otherwise.
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For each jai ∈ A, the bilinear form ǫji defines a canonical element rij ∈ jMi⊗Fi iMj :

(2) rij :=
∑

k

vk ⊗ v
k

for any pair of dual Fi bases {vk} ⊂ jMi, {vk} ⊂ iMj. It is well known that this does
not depend on the choice of dual bases. Although the two Fj actions on jMi⊗Fi iMj

need not agree, it is true that zrij = rijz for all z ∈ Fj .
For each i ∈ I, define

(3) ri :=
∑

j:jai∈A

rji .

Definition 2.5. ([DR80, Introduction]) The preprojective algebra ΛM is the quotient
of TM by the ideal generated by {ri}i∈I .

Associate a symmetrizable Cartan matrix C = (cij) to a modulated graph by

(4) cij =





2 if i = j

− dimFi iMj if there is an arrow from i to j

0 otherwise.

As in [DR80, Introduction], ΛM is finite dimensional over F if and only if C is of finite
type. If C is symmetric then, taking Fi = C for all i and well chosen bimodules and
bilinear forms, one recovers Lusztig’s preprojective algebra from [Lus91] (see [Rin98]).
But, even then, different bilinear forms can give non-isomorphic algebras (see [Rin98,
§6] or §4.2 below).

Example 2.6. Let Γ be the graph where I = {1, 2} and E consists of a single edge
joining these vertices. Consider the modulated graph with F = F1 = R, F2 = C,

1M2 = 2M1 = C with the standard actions of R and C by multiplication, and bilinear
forms

(5)
ǫ21 : C⊗C C→ R

z ⊗ w→ Re (zw),

ǫ12 : C⊗R C→ C

z ⊗ w→ zw .

The corresponding Cartan matrix is of type C2. Consider the elements of TM :

• e1 = 1 ∈ F1 and e2 = 1 ∈ F2 in degree 0.
• τ = 1 ∈ 2M1 and τ̄ = 1 ∈ 1M2 in degree 1.

The relations defining the preprojective algebra ΛM are

(6) ττ = 0 and ττ − iττ i = 0.

As a real vector space,

(7) ΛM = Re1 ⊕ Ce2 ⊕ Cτ ⊕ Rτ ⊕ Rτi⊕ Cττ ⊕ Rτiτ.

2.3. Nilpotent Representation varieties. Fix a modulated graphM and let Λ =
ΛM . There is a natural partition of the identity e ∈ Λ as e =

∑
i ei, where ei is the lazy

path at node i. Any Λ-module V decomposes as a vector space as V =
⊕

i eiV , and
each eiV is naturally a vector space over Fi. Given a dimension vector v = (vi)i∈I ,
fix a vi dimensional vector space Vi over Fi for each i. Define Λ(v) to be the variety
of representations of Λ on V = ⊕iVi such that eiV = Vi, the induced vector space
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structure on Vi agrees with the original vector space structure, and all sufficiently
long paths act as 0. Then Λ(v) a subset of

(8)
⊕

jai∈A

HomFj
(jMi ⊗Fi

Vi, Vj).

Denote a point in this space by the collection jxi ∈ HomFj
(jMi ⊗Fi

Vi, Vj). Then
Λ(v) is cut out by the equations stating that

• each ri acts as 0, and
• for all i1, i2, . . . in, where n > dimF V and each ik → ik+1 is an arrow in A,

the composition inxin−1
◦ · · · ◦ i2xi1 : inMin−1

⊗ · · · ⊗ i2Mi1 ⊗ Vi1 → Vin is
zero.

In particular, Λ(v) is the set of F points of an algebraic variety.

Example 2.7. Consider the modulated graph from Example 2.6. An element of
Λ((1, 1)) is defined by

• 2x1 ∈ HomC(C ⊗R R,C). Write this as (z1, zi) ∈ R2, where 2x1(1 ⊗ 1) =
z1 + zii.

• 1x2 ∈ HomR(C⊗C C,R). Write this as (w1, wi) ∈ R2, where 1x2(1⊗ 1) = w1

and 1x2(1⊗ i) = wi.

The conditions that the ri act as zero become equations as follows:

(9) r1 = 0 ⇔ 1x2 ◦ 2x1 = 0 ⇔ 1x2 ◦ 2x1(1) = 0 ⇔ w1z1 + wizi = 0,

(10) r2 = 0⇔ 2x1 ◦ 1x2 − i2x1 ◦ 1x2i = 0⇔ z1w1 + ziwi = 0, ziw1 − z1wi = 0.

These imply nilpotency, so Λ((1, 1)) is the set of R-points of the algebraic variety
cut out by these equations. There are two irreducible components defined by {w1 =
wi = 0}, and by {z1 = zi = 0}. The corresponding real algebraic variety would
contain a third component defined by {z2i = −z21 , w

2
1 = −w2

i , z1w1 = −ziwi}. This
contains no new R-points, and if we base change to C would decompose further into
two components: {iz1 = zi, iw1 = wi} and {−iz1 = zi,−iw1 = wi}. It is crucial that
we do not include this component. That is, that we work with the space of R-points,
not the abstract algebraic variety.

2.4. Topology. The F points of an algebraic variety X form a topological space
with the Zariski topology: closed sets are locally defined as the zero sets of some
polynomials. Recall that X is irreducible if it is not the union of any two proper
closed subsets. In that case, the dimension of X is the maximal d such that there is
a sequence of irreducible subsets

(11) ∅ ( X0 ( · · · ( Xd = X

If F is infinite andX is birationally equivalent to Fk then dimX = k. If X is reducible,
its irreducible components are the irreducible subsets which are not properly contained
in larger irreducible subsets.

The following is well-known and not difficult. For example, the case where Y is
irreducible follows from [sp], since any fiber bundle map is open. The general case is
then immediate.
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Lemma 2.8. If π : X → Y is a locally trivial fiber bundle with irreducible fiber F ,
then there is a bijection between the irreducible components of X and Y . If Y (or
equivalently X) is irreducible, then dimX = dimY + dimF . �

3. Realization of B(−∞)

Fix a modulated graph M with Cartan matrix C and preprojective algebra Λ.
From now on assume that |F| =∞. Fix V = ⊕i∈IVi, where each Vi is a vector space
over Fi. Let v be the dimension vector of V , and define dim V ∈ Q by

(12) dimV =
∑

i∈I

viαi.

We sometimes abuse notation by e.g. using (v,v) to mean (
∑

i∈I viαi,
∑

i∈I viαi).

3.1. Some spaces and maps.

Definition 3.1. For each i ∈ I, set V i =
⊕

j:jai∈A

iMj ⊗Fj
Vj .

A simple calculation shows

(13) dimF V
i = di dimFi

V i = 2divi − (v, αi) = di(2vi − 〈v, α̌i〉).

Definition 3.2. Recall the canonical element rji from (2). For each jai ∈ A, define

jιi : Vi → iMj ⊗Fj jMi ⊗Fi
Vi

v → rji ⊗ v .

Fix x = {jxi} ∈ Λ(v).

Definition 3.3. For jai ∈ A, define

j x̃i = (id⊗ jxi) ◦ jιi : Vi → iMj ⊗ Vj .

Definition 3.4. x̃i =
⊕

j:jai∈A

j x̃i : Vi → V i, and ix̃ =
⊕

j:jai∈A

ixj : V
i → Vi.

Proposition 3.5. The maps x̃i and ix̃ are both Fi linear.

Proof. The map jιi intertwines the left Fi-module structure on Vi with the left Fi-

module structure on iMj (because zr
j
i = rji z for all z ∈ Fi), which immediately implies

that each j x̃i is Fi linear, so x̃i is as well. That ix̃ is Fi linear is immediate. �

Definition 3.6. For each i, let Si be the simple Λ-module such that eiSi = Si and
dimFi

eiSi = 1. That is, Si is a copy of Fi lying over vertex i, and all jxi are 0.

Lemma 3.7. Fix a representation V of Λ. Then Hom(Si, V ),Hom(V, Si), Ext
1(Si, V )

and Ext1(V, Si) are all naturally Fi vector spaces, with

• Hom(Si, V ) ≃ ker x̃i.
• Hom(V, Si) ≃ (Vi/ im ix̃)

∗.
• dimFi

Ext1(Si, V ) = dimFi
Ext1(V, Si) = dimFi

V i−dimFi
im x̃i−dimFi

im ix̃.
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Proof. The first two statements are obvious. For the third, we prove only the state-
ment about Ext1(V, Si), since the other is similar. We seek to classify extensions

(14) 0→ Si
ι
−→ V ′ f

−→ V → 0

up to equivalence. Clearly V ′
j = Vj if j 6= i. Choose a vector space splitting V ′

i ≃
Vi ⊕ Fi, where Fi = im ι. An extension is uniquely determined by an Fi linear map
φ : V i → Fi subject to the condition that the composition

(15) Vi ⊕ Fi
(x̃i,0)
−−−−→ V i (ix̃,φ)

−−−−→ Vi ⊕ Fi

is 0. This precisely says that kerφ ⊃ im x̃i, so φ ∈ Hom(V i/im x̃i,Fi).

Two maps φ, φ′ give rise to the same class in Ext1(Si, V ) if there exists a map

(16) θ : Vi ⊕ Fi → Vi ⊕ Fi

which is the identity on Fi and on (Vi ⊕ Fi)/Fi, and such that

(17) (ix̃, φ
′) = θ ◦ (ix̃, φ).

Such maps are exactly (v, x) → (v, x + κ(v)) for linear κ : Vi → Fi, and stabilize the
short exact sequence if and only if kerκ ⊃ im ix̃. Thus the orbit of a short exact
sequence is parameterized by κ|im ix̃, and the result follows. �

Lemma 3.8. For any finite dimensional representation V of Λ and any i ∈ I,

dimExt1(Si, V ) = dimExt1(V, Si) = dimHom(Si, V )+ dimHom(V, Si)−〈dim V, α̌i〉,

where dimensions are all over Fi.

Proof. By Lemma 3.7 it is enough to consider Ext1(Si, V ), and we have

(18)

dim Ext1(Si, V )− dim Hom(Si, V )− dim Hom(V, Si) + 〈dimV, α̌i〉

=dim(V i/im(x̃i))−dim(im(ix̃))− dim(ker(x̃i))−dim(Vi/im(ix̃))+ 〈dimV, α̌i〉

=dimV i − dim(im(x̃i))− dim(ker(x̃i))− dimVi + 〈dimV, α̌i〉

=dimV i − 2 dimVi + 〈dimV, α̌i〉 = 0.

The last equality uses (13). �

Remark 3.9. For Lusztig’s preprojective algebra, Lemma 3.8 still holds if Si is
replaced by an arbitrary finite dimensional module W (see [C-B00, Lemma 1]). How-
ever, for Dlab and Ringel’s preprojective algebras, this is not true (see §4.2).

3.2. Relations between components. For each i ∈ I, define ϕi : Λ(v) 7→ Z≥0 by

(19) ϕi(x) = dimFi
ker x̃i.

Let Λ(v)i;k be the subset of Λ(v) where ϕi takes the value k. For each k this is an
open subset of a closed subset of Λ(v), which is to say ϕi is constructible.

Fix v and k, and let v̄ = v − kαi. Fix vector spaces V, V̄ of graded dimensions
v, v̄, such that V̄j = Vj for all j 6= i. Let Λ(v; i; k) be the variety whose points consist
of an element of Λ(v)i,k along with a short exact sequence

(20) 0→ Fk
i → V → V̄ → 0
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which is trivial on Vj for all j 6= i. Explicitly, Λ(v; i; k) is the set of triples (x, p, q)
where x ∈ Λ(V )i;k, p : Vi 7→ V̄i is surjective, q : Fk

i 7→ V is injective, and ker p =
im q = kerxi. Consider the obvious projections

(21) Λ(v)i;0
π3←− Λ(v̄)i;0 × Surj(Vi, V̄i)

π2←− Λ(v; i; k)
π1−→ Λ(v)i;k,

where Surj(Vi, V̄i) is the space of surjective linear maps. The following generalizes
[KS97, Lemma 5.2.3] (see also [Lus91, §12]).

Proposition 3.10. π1 is a locally trivial fiber bundle with fibers isomorphic to

GL(V̄i)×GL(Fk
i ).

π2 is a locally trivial fiber bundle with fibers isomorphic to

GL(Fk
i )×Hom(FdimV i−dimV i

i ,Fk
i ).

In particular, this gives a bijection between Irr Λ(v)i;0 and Irr Λ(v)i;k.

Remark 3.11. The Hom(FdimV i−dimV i

i ,Fk
i ) in the fiber of π2 is because, to extend

an element of Λ(V̄ ) to an element of Λ(V ), where V = V̄ ⊕ Fk
i , one must choose a

map from V̄ i to F k
i , subject to the condition that its kernel contains im x̃i.

Proof of Proposition 3.10. Let r = dimV i − dim V̄i. Fix the following data:

• An isomorphism ψ : V i ⊕ Fk
i → Vi. Let W = ψ(V i) ⊂ Vi, and let ψ1 :

V i → W be the resulting isomorphism. Consider also the isomorphism
m : Fk

i → Vi/W and the projection map π : Vi → Vi/W .
• An injective map ι : Fr

i →֒ V i.

For all x in some open dense subset of Λ(v; i; k), Vi =W ⊕ kerxi. Let

(22) πkerxi
: Vi → kerxi, and πW : Vi →W

be the corresponding projections. Notice that πkerxi
is well defined on Vi/W , and

(23) πkerxi
◦ π|kerxi

= Id, π ◦ πkerxi
= IdVi/W .

First consider π1. The map

(24) (x, p, q)→ (x, (p ◦ ψ1,m
−1 ◦ π ◦ q))

is the required local isomorphism on the open set where W ∩ kerxi = 0, with inverse

(25) (x, (a, b))→ (x, a ◦ ψ−1
1 ◦ πW , πker xi

◦m ◦ b).

Now consider π2. The local isomorphisms are:

(26)
(x, p, q)→

(
(x̄, p) ,

(
m−1 ◦ π ◦ q,m−1 ◦ π ◦ ix ◦ ι

))

((x̄, p), (r, γ))→ (x, p, πker xi
◦m ◦ r),

where x is the extension of x̄ to V̄ ⊕Fk
i defined by γ, thought of as an element of Λ(V )

using the isomorphism ψ. These are defined on the open subset of Λ(v̄)i;0×Surj(Vi, V̄i)
where ker(p)⊕W = Vi and im(ι) ∩ im(x̃i) = 0.

Since |F| = ∞ the fibers are irreducible and so Lemma 2.8 gives the required
bijection. �

Definition 3.12. Let D(v) =
∑

i∈I

div
2
i .
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Lemma 3.13. Λ(v) has pure dimension D(v)− 1
2 (v,v) over F. Each Λ(v)i;k is also

pure dimensional of this dimension, and there is a bijection Irr Λ(v) 7→
∐

k Irr Λ(v)i;k
which takes X to X ∩ Λ(v)i;k for the unique k for which this is dense in X.

Proof. Proceed by induction on v, the case v = 0 being trivial. Fix v 6= 0, and
assume the statement for all smaller v′.

Fix k ≥ 1. By Proposition 3.10, Λ(v; i; k) is a fiber bundle over each of Λ(v)i;k
and Λ(v − k1i)i;0. By considering the dimensions of the fibers,

(27) dimF Λ(v)i;k = dimF Λ(v − kαi)i;0 + dik dimFi
V i.

Using induction and substituting the dimension of V i (see (13)) gives

(28)

dimF Λ(v)i;k

= D(v − kαi)−
1

2
(v − kαi,v − kαi) + 2kdivi − k(v, αi)

= {D(v)− 2divik + dik
2}−

1

2
{(v,v)−2k(v, αi) + 2dik

2}+ 2kdivi − k(v, αi)

= D(v) −
1

2
(v,v).

Now, fix X ∈ IrrΛ(v). Every point is a nilpotent representation, so is in Λ(v)i;k
for some i and k ≥ 1. In particular, X has an open dense subset contained in Λ(v)i;k
for some i and k ≥ 1. The result follows for X since it is true for Λ(v)i;k.

Finally we must handle the case of Λ(v)i;0. But this is open in Λ(v), so every
irreducible component is open and dense in some irreducible component of Λ(v), and
the result follows by the previous paragraph.

The required bijections of components are clear. �

3.3. Crystal operators. Let

(29) B =
∐

v

Irr Λ(v).

By Proposition 3.10, we have bijections

(30) fi;k :
∐

v

Irr Λ(v)i;k →
∐

v

Irr Λ(v)i;0.

Define

(31) fi :=
⊔

k

f−1
i;k−1fi;k, ei :=

⊔

k

f−1
i;k+1fi;k,

where for X ∈ Irr Λ(v)i;0 we set fi(X) = ∅. By Lemma 3.13, Irr Λ(v) is in bijection
with

∐
k Irr Λ(v)i;k, where X corresponds to the component of

∐
k Irr Λ(v)i;k that

is dense in X . This gives operators fi and ei on B.
We also need the ∗ operators, which are constructed in an analogous way. Define

(32) ϕ∗
i (x) = dimFi

Vi/im(ix̃) and Λ(V )ki = {x ∈ Λ(v) : ϕ∗
i (x) = k}.

Let Λ∗(v; i; k) be the variety whose points consist of on element of Λ(V )ki along with
a short exact sequence

(33) 0→ V̄ → V → Fk
i → 0.
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Consider the natural projections π∗
1 : Λ∗(v; i; k)→ Λ(v)ki and π∗

2 : Λ(v; i; k)→ Λ(v̄)0i .
π∗
2 ◦ (π

∗
1)

−1 defines a bijection f∗
i;k on the level of irreducible components. Let

(34) f∗
i =

∐

k

(f∗
i;k−1)

−1 ◦ f∗
i;k and e∗i =

∐

k

(f∗
i;k+1)

−1 ◦ f∗
i;k.

Irr Λ(v) and
∐

k Irr Λ(v)
k
i are in bijection, so this gives operators on B.

3.4. Reworded operators. Recall that a property is said to hold generically on a
topological space if it holds on an open-dense subset.

Proposition 3.14. Fix X ∈ Irr Λ(v). For generic x ∈ X and a generic extension

0→ Si → (V ′, x′)→ (V, x)→ 0,

(V ′, x′) is in a single irreducible component Y ∈ Irr Λ(V ′), and Y = eiX. Further-
more, the subset of Y which can be realized in this way is open-dense.

Similarly, for generic x ∈ X and a generic extension

0→ (V, x)→ (V ′, x′)→ Si → 0,

(V ′, x′) is in a single irreducible component Y ∈ Irr Λ(V ′), and Y = e∗iX. Further-
more, the subset of Y which can be realized in this way is open-dense.

Proof. Consider the first statement. Let k be the generic value of ϕi on X . Let X̂o be
the subset of X ∩ Λ(v)i;k consisting of points which are not in any other irreducible

component of Λ(v). Clearly X\X̂o is closed and X̂o is non-empty, so X̂o is open
dense. Consider

(35) Λ(v; k)

π1

yy

π3π2

&&

Λ(v + αi; k + 1)

π′

3
π′

2

vv

π′

1

''

Λ(v)i;k Λ(v − kαi)i;0 Λ(v + αi)i;k+1.

Recall that all these maps give bijections of irreducible components. Let X ′ = ei(X),

and define X̂ ′
o analogously to X̂o. Then the stated condition holds for any x in

(36) Xo = X̂o ∩ π1(π3π2)
−1π′

3π
′
2(π

′
1)

−1X̂ ′
o,

which is open dense. The second statement follows by a symmetric argument. �

3.5. The realization. Recall that B =
∐

v
Irr Λ(v). For each X ∈ Irr Λ(v), define:

• wt(X) =
∑

i viαi.
• ϕi(X) = min

x∈X
ϕi(x) = min

x∈X
dimFi

ker x̃i, εi(X) = ϕi(X)− 〈wt(X), α̌i〉.

• ϕ∗
i (X) = min

x∈X
ϕ∗
i (x) = min

x∈X
dimFi

Vi/im(ix̃), ε∗i (X) = ϕ∗
i (X)− 〈wt(X), α̌i〉.

Lemma 3.15. B along with either {ei, fi} or {e
∗
i , f

∗
i } and the additional data defined

above is a lowest weight combinatorial crystal, where the lowest weight element is Λ(0).

Proof. For either structure the conditions in Definitions 2.1 are immediate from the
construction. The condition that any x ∈ Λ(v) is nilpotent implies that, for any
X ∈ B of weight 6= 0, there are i and j such that fiX, f

∗
jX 6= 0. This, along with

the definition of ϕi(X), ϕ∗
i (X), shows that these combinatorial crystals are lowest

weight. �
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Lemma 3.16. Fix X ∈ B. For generic T ∈ X,

ϕi(X) + ϕ∗
i (X)− 〈wt(X), α̌i〉 = dimExt1(T, Si) = dimExt1(Si, T ).

Proof. This is immediate from Lemma 3.8 and the definitions of ϕi(X) and ϕ∗
i (X). �

Proposition 3.17. Fix X ∈ B and i, j ∈ I.

(i) If ϕi(b) + ϕ∗
i (b)− 〈wt(b), α̌i〉 = 0, then ei(X) = e∗i (X).

(ii) If ϕi(b) + ϕ∗
i (b)− 〈wt(b), α̌i〉 ≥ 1, then ϕi(e

∗
i (X)) = ϕi(X) and ϕ∗

i (ei(X)) =
ϕ∗
i (X).

(iii) If either i 6= j or ϕi(b) + ϕ∗
i (b)− 〈wt(b), α̌i〉 ≥ 2, then e∗i ej(X) = eje

∗
i (X).

Proof. Fix X and let T be the representation corresponding to a generic point in X ,
meaning one where all ϕi, ϕ

∗
i are minimal.

In case (i), by Lemma 3.16, Ext1(T, Si) = Ext1(Si, T ) = 0, so the generic extensions
in Proposition 3.14 are in fact trivial extensions, and ei(X) = e∗i (X).

In case (ii), by Lemma 3.16, dimExt1(T, Si) > 0, so, if T ′ is the generic extension

(37) 0→ Si → T ′ → T → 0,

from Proposition 3.14, then Hom(T ′, Si) ≃ dimHom(T, Si). Using Lemma 3.7,
ϕi(e

∗
i (X)) = ϕi(X). The other equality is true by a similar argument.

In case (iii), consider generic T ′ ∈ ejX and T ′′ in e∗i ejX . We claim that the natural
homomorphism from the i-socle of T ′′ to the j-head is trivial. If i 6= j this is clear. If
i = j, it suffices to show that Si is not a direct summand of T ′′. First, notice that Si

cannot be a summand of T : If T = Si + T then, since T is generic, this would imply
Ext1(T , Si) = 0, and hence Ext1(T, Si) = 0, which is false by Lemma 3.16. Since
Ext(Si, T ) > 0, using Proposition 3.14, a generic T ′ ∈ eiX also doesn’t contain Si as
a direct summand. But then, using Lemma 3.8,

(38) dim Ext1(T ′, Si) = dim Ext1(T, Si)− 1 > 0.

The same argument then shows that T ′′ also does not contain Si as a direct summand.
By Proposition 3.14, applying either f∗

i fj or fjf
∗
i generically takes a subquotient

that decreases the dimension of both the i-head and j-socle by 1. The homomorphism
from i-head to j-socle is trivial so these operations commute. Hence

(39) f∗
i fje

∗
i ejX = fjf

∗
i e

∗
i ejX = X.

But f∗
i fjeje

∗
iX = X as well so, using Definition 2.1(iii), e∗i ejX = eje

∗
iX . �

Theorem 3.18. B is a realization of B(−∞).

Proof. By Proposition 3.15 it remains to check the conditions of Proposition 2.4.
Condition (i) is immediate, (iii) is clear from Lemma 3.16, and (ii),(iv),(v),(vi) are
Proposition 3.17. �

4. Examples

4.1. Type C2. Consider the modulated graph from Example 2.6, where F1 = R and
F2 = C. In this case Λ is representation-finite, and each indecomposable represen-
tation can be uniquely identified by its socle filtration, which we record from right
to left. So, for example, CR2 means the unique indecomposable with a copy of the
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R RC RCR

C

⑧⑧⑧⑧⑧⑧⑧⑧

CR

❈❈❈❈❈❈❈❈

②②②②②②②②

CR2

❊❊❊❊❊❊❊❊

CR2C

R2C

PPPPPPPPPPPPPP

❧❧❧❧❧❧❧❧❧❧❧❧❧❧❧

Figure 1. Indecomposable representations for the preprojective
algebra of type C2. Lines connect pairs which admit a non-trivial
extension.

simple C over vertex 2 in its head, and two copies of the simple R over vertex 1 in its
socle. The isomorphism classes of indecomposable Λ-modules are listed in Figure 1.

To see that there are no other indecomposables, first check that RCR and CR2C are
the indecomposable projectives. Next fix some module V . If an element of 2M1⊗1M2

acts non-trivially on some v ∈ V2, it is easy to see that the sub-module generated by v
is isomorphic to CR2C, and hence occurs as a direct summand. Similarly, if an element
of 1M2 ⊗ 2M1 acts non-trivially on some v ∈ V1, then the submodule generated by v
is isomorphic to RCR, so is a summand. If there are no such elements then V is a
direct sum V1 ⊕ V2, where τ |V1

= 0, and τ |V2
= 0, and these are easy to analyze.

In each irreducible component of Λ(v), the isomorphism class of the corresponding
representation is constant on an open-dense set. The classes that show up this way
are exactly the rigid representations: ones where no two indecomposables in the
Krull-Schmidt decomposition admit a non-trivial extension. Hence the irreducible
components of Λ(v) correspond to collections of indecomposables none of which are
connected by lines in Figure 1, whose total dimension in v. For example, the number
of Kostant partitions of 3α1 + 2α2 is 5, so the results above imply there must be 5
irreducible components of Λ((3, 2)). The corresponding rigid modules are:

(40) R⊕ CR2C, CR⊕ CR2, CR⊕ RCR, RC⊕ R2C, RC⊕ RCR.

Unfortunately, Λ usually has infinitely many isomorphism classes of indecomposable
representations, even in finite type, so this method does not generalize.

4.2. Deformed pre-projective algebra over C for ŝl2. Dlab and Ringel’s con-
struction need not agree with Lusztig’s even when all the Fi are chosen to be C. Such

an example is given in [Rin98, §6] for ŝln, n ≥ 3. Here we give an example for ŝl2.
Consider the graph where I = {1, 2} and E consists of a single edge joining 1 and

2. Choose F1,F2 = C, and 1M2 = 2M1 = C2, with the actions of both F1 and F2

being scalar multiplication on both bimodules. The corresponding Cartan matrix is

of type ŝl2. Define

(41)
ǫ21 : 1M2 ⊗C 2M1 → C

(s1, s2)⊗ (t1, t2)→ s1t1 + s2t2
and

ǫ12 : 2M1 ⊗C 1M2 → C

(t1, t2)⊗ (s1, s2)→ t1s1 − t2s2.

Fix a graded vector space V = V1 ⊕ V2. For any x ∈ Λ(V ), consider the four maps

• m1 = 2x1((1, 0)⊗ ·), m2 = 2x1((0, 1)⊗ ·) in Hom(V1, V2),
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• m1 = 1x2((1, 0)⊗ ·), m2 = 1x2((0, 1)⊗ ·) in Hom(V2, V1).

These determine x, and the preprojective relations are

(42) m1m1 −m2m2 = 0 and m1m1 +m2m2 = 0.

Take V1 and V2 to both be one dimensional, with bases {v1}, {v2} respectively. Define

(43) m1 = m2 is the map which sends v1 to v2, and m1 = m2 = 0.

These satisfy (42), so define a module for Λ.
Now take a second copy V ′ of this module with basis vectors v′1, v

′
2. Any extension

of V by V ′ is determined by a, b, c, d ∈ C defined by

(44) m1(v
′
1) = v′2 + av2, m2(v

′
1) = v′2 + bv2, m1(v

′
2) = cv1, and m2(v

′
2) = dv1.

The preprojective relations give

(45) c− d = 0 and c+ d = 0.

The only solution is c = d = 0, so any such extension has a two-dimensional head.

A simple calculation shows that, for Lusztig’s preprojective algebra of type ŝl2, any
indecomposable V that fits into a short exact sequence 0 → S2 → V → S1 → 0 has
a self-extension with a 1-dimensional head. Hence, with the above choices, Dlab and
Ringel’s preprojective algebra is not isomorphic to Lusztig’s. It can still be used in our
realization of B(−∞), so our results generalize existing literature even in symmetric
types.

Note also that Lemma 3.8 fails here if both modules are taken to be V , since

(46) dim Ext1(V, V )− 2dim Hom(V, V ) + (dim V, dimV ) = 1− 2 + 0 6= 0.

There is actually a family of preprojective algebras parameterized by z ∈ C× de-
fined as above but with ǫ12 = zt1s1 − t2s2. If z = −1 this is Lusztig’s preprojective
algebra, but for all z 6= −1 the above argument shows that it is not. Hence Dlab and
Ringel’s construction can be thought of as non-trivially deforming Lusztig’s prepro-
jective algebra in this case.

5. Further directions

There are many possible future directions for this work. Essentially, for every result
proven using or about Lusztig’s quiver varieties, one can ask if it can be extended to
our generality. Here we briefly discuss a few examples.

5.1. Semi-canonical and canonical bases in symmetrizable types? Here we
only consider the crystal B(∞), but in symmetric types one can also realize U−(g)
using a convolution product on constructible functions on Lusztig’s quiver varieties.
Can one extend this to our quiver varieties, and hence define semi-canonical bases in
full generality? Even more ambitiously, can one use some version of perverse sheaves
built from modulated quivers to study canonical bases in non-symmetric types? There
seem to be some obstacles. One approach would be to modify our construction to
work over algebraically closed fields, since many geometric techniques work better
in that setting, but this would require some new ideas (for instance, Example 2.7
shows that naively base-changing to C would give the wrong number of irreducible
components). Geiss-Leclerc-Schröer [GLSa, GLSb, GLSc] have another approach to
non-symmetric preprojective algebras which works over algebraically closed fields, so
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perhaps the first step would be to better understand how our work is related to their
construction.

5.2. Nakajima quiver varieties, and B(λ) crystals. In [Sai02], Saito uses irre-
ducible components of Nakajima’s quiver varieties to realize the integrable highest
weight crystals B(λ) in symmetric types. It should be possible to extend this to
non-symmetric types by extending our construction to include Nakajima’s varieties.

5.3. Comparing with combinatorial realizations. In types A and D, Savage
[Sav06] describes the relationship between certain combinatorial realizations of crys-
tals and Kashiwara-Saito’s geometric realization. He also considers some simply laced
affine types. It would be interesting to extend this to types B and C, as well as to
non-symmetric affine types.
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