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The impact of information signals on market prices when agents have non-

linear trading rules. 

 

 

Abstract 

Several methods have been developed for filtering seasonal influences and extreme 

returns in financial and economic time series. The theoretical support for these 

approaches is rather questionable since it focuses on the effects of shocks on prices 

and not on their sources. Removing such effects modifies the true generating 

system of market dynamics because of the non-proportional character of non-

linearity.  Thus, taking into account that the underlying process of economic time 

series is highly non-linear we cannot be certain a priori what the impact of new 

information will be on the dynamic structure of a system. The main contribution of 

this paper is to demonstrate using the methodology of simulations the eventual 

distortions in time series data arising from the arrival of news when agents’ follow 

non-linear trading strategies. We argue that if news can really modify the 

dynamical behaviour of a system, then the methodology of filtering exogenous 

distortions needs to be re-examined. 

 

Key words: information signals, economic modelling, non-linear trading strategies, 

Heteroskedastic Mackey-Glass model. 

 

JEL classification: C15, C22, C52, G14 
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The impact of information signals on market prices when agents have non-

linear trading rules. 

 

1. Introduction 

 

Numerous empirical studies have analyzed the identification and nature of the underlying 

process of an economic system, as well as the influence of information on financial time series. 

The standard financial theory of efficient markets assumes identical investors having rational 

expectations of future stock prices who instantaneously discount all market information into 

these prices. This means that there are no opportunities for speculative profit, and both trading 

volume and price volatility are not serially correlated. 

     In reality, financial markets are highly complex systems as documented in Kyrtsou and 

Terraza (2002), and Kyrtsou, et al.  (2004), among others. Such complexity may be attributed to 

numerous factors such as the reaction to public and private information presented in Vega 

(2006) and Daniel and Titman (2006), the role of investors’ behaviour recently discussed in 

Hirshleifer, et al. (2006) and Bernhardt et al. (2006) or other factors. Complexity in commodity 

futures and currency markets is presented in Corazza et al. (1997) and Corazza and Malliaris 

(2002) respectively.  

    Regarding all available information we observe that it cannot be perfect. Often, information is 

rather inadequate, that is, noisy, insufficient and costly. Furthermore, traders have bounded 

rationality, that is, even if they receive all relevant economic information they are not able to 

interpret it correctly and they make mistakes in their economic reasoning. 

     To understand the inherent dynamics of financial markets, one needs to focus on a relevant 

question raised by Malliaris and Stein (1999) who ask: “If price changes are induced by changes 

in information, can information concerning the shocks in fundamental factors explain the 

magnitude of the observed price volatility? Or is the variance of price changes due to other 

factors?”. In fact, if the information is the cause of market anomalies, then why can we observe 
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excess returns occurring with little or no news? (Curlet et al., 1989). Indeed, “trajectories can 

easily exhibit complex dynamics, independently of any arrival of news” (Franke and Sethi 

(1998)). 

     As Lee et al., (2002) have pointed out, the important factor in market fluctuations is not the 

events themselves, but the human reactions to those events. The kind of complexity in agents’ 

behavioural rules will determine the nature of the underlying dynamics of price series. The 

difference in conditional volatility for stocks is due to the amount and quality of information as 

well as the mechanism the agents follow for making decisions. Such a mechanism accounts for 

the arrival of information and its incorporation into prices.  

     The information can arrive in the market randomly or follow a periodic pattern. Depending 

on the nature of the mechanism that determines the arrival of news, information can produce 

various kinds of stylised facts in the market. For example endogenous and exogenous shocks 

can affect in a dissimilar manner the market and cause unequal disturbances. The intensity of 

such shocks will depend on the particular characteristics of investors who receive the 

information, interpret it and finally incorporate it into asset prices via investment strategies. As 

Kyrtsou (2005a) has demonstrated, it is possible to observe departures of prices from their 

fundamental value, when assuming that the fundamental value is directly perturbed by 

exogenous news in an artificial market framework. 

     Several methods have been developed for filtering financial and economic series from 

“acquired” structures such as seasonal structures and extreme observations as in Bollerslev and 

Ghysels (1996), Beller and Nofsinger (1998), Burridge and Taylor (1999), Balke and Fomby 

(1994), Van Dijk et al. (1999) and Franses et al. (2004). Nonetheless, this unidimensional 

analysis of the effects of shocks on prices could be found inappropriate when the series under 

study present more complicated dynamics than the traditional theory of Efficient markets 

suggests. The appearance of nonlinear structures in association with the non-proportional 

character of non-linearity, (i.e. the effect is not proportional to its cause) doubt the effectiveness 

of any removal procedure of outliers or seasonality, especially when the investigator is 

interested in finding the true generating system of economic dynamics. Based on the above and 
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taking into account that the underlying process of economic series is highly non-linear (Kyrtsou 

and Vorlow (2005), Kyrtsou and Serletis (2006), and Kyrtsou and Labys (2006, 2007), Kyrtsou 

et al. (2006)), we cannot be sure a priori what the impact of new information on the dynamic 

structure of the system will be. 

     The main objective of this article is to identify, using simulations, the effects of 

incorporating periodic or irregular information into linear and non-linear time series. If news 

can modify the dynamical behaviour of the system, that is, the structure of the attractor and its 

dimensionality and induce “acquired” structures, then many questions arise about the efficiency 

of different models for filtering such effects. 

     The remainder of the paper proceeds as follows. Section 2 presents different models 

describing possible trading rules, including the Kyrtsou and Terraza (2003) process. Section 3 

discusses the results of simulation experiments, while the last section provides some concluding 

remarks. 

2. Linear and non-linear trading rules 

The increasing number of econometric studies and empirical results supporting the existence of 

non-linear structures has led financial economists to the conclusion that the linear hypothesis is 

not inherent to the economic system, but rather it has been used for reasons of analytic 

simplicity. 

     When dealing with financial markets, inherent instability is significant and thus it is 

simplistic to argue about linear cause and effect relationships. It is more realistic to consider that 

relationships among economic agents are non-linear and are driven by non-linear trading rules. 

The nature of traders’ beliefs is a crucial point in our study since Kurz, et al. (2003) show that 

diversity in beliefs can explain why different interpretations arise given the same information.  

These authors propose that the true law of motion of an economy follows nonlinear complex 

dynamics that is unknown.  Agents have long historical data generated by such a law of motion 

and by analyzing such data they form appropriate trading strategies.  In contrast to a rational 

expectations equilibrium where the true law of motion is common knowledge, agents in the 
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Kurz, et al. (2003) paper form beliefs based on the available data and their behaviour reduces to 

rational expectations only as a special case. 

     As it is emphasized by Franke and Sethi (1998) “the source of the erratic …(high-

dimensional) price trajectories can be identified in the formulation of chartists’ demand for the 

asset”, which is non-linear. Noise traders (or chartists) can drive prices away from their 

fundamental values. Besides, these noise traders, according to Shefrin and Statman (1994)  

“distort the mean-variance efficient frontier, thereby creating abnormal returns to particular 

securities”. They also commit errors when new information arrives in the market. Thus it is 

quite possible that less important information creates high volatility when it is incorporated into 

prices via a non-linear (noise) trading rule. 

     According to Yang and Satchell (2003) “the market in the absence of technical traders would 

reach the fundamental equilibrium with fluctuations only due to exogenous shocks”. This means 

that exogenous information has been incorporated into prices as it was; so prices do not reflect 

any other distortions due primarily to endogenous trading. Nevertheless, “in the presence of 

technical traders,” having non-linear strategies, “fluctuations off the fundamental equilibrium 

can be systematically and endogenously induced by the feedback effect brought about the 

technical analysis”. 

     To demonstrate the informative power of the non-linear trading rules we compare the 

following agent’s strategies. 

1. A linear strategy: Xt = aXt-1 

2. A non-linear strategy, the chaotic logistic equation: Xt = bXt-1(1- Xt-1) = bXt-1 – bX2
t-1 

3. A second non-linear strategy, the chaotic Mackey-Glass equation: Xt = α
c

t

t

X1

X

τ−

τ−

+
-δXt-1 

with c=2 and τ=1, where c is a constant and τ the delay. For these values of parameters we 

can obtain Xt = Xt-1(α 2

1tX1

1

−+
-δ). 

As it can be seen, only for the two non-linear trading strategies, the amplitude of stock prices 

movements (X
2

t-1) influences investors’ expectations for future price fluctuations. The impact of 
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X
2

t-1 on Xt in the case of the second rule is additive while for the third the impact is 

multiplicative.  

     Non-linear trading rules seem to be a more efficient way to model the observed behaviour, 

since the impact of new information both on mean and variance dynamics is analysed by the 

agents’ expectations mechanism. In this manner, investors with non-linear trading strategies can 

profit from their ability to better understand the market. 

     The knowledge of the underlying dynamics is also important because we can specify the way 

that exogenous perturbations such as noise and seasonality are amplified in the system. To 

describe this amplification of information we simulate the previous three models perturbed by 

noise with and without exogenous information. 

     The choice of the Mackey-Glass and logistic equations is intentional. In a recent series of 

papers (Kyrtsou and Terraza (2003), Kyrtsou (2005b, 2006), and Kyrtsou and Serletis (2006)), 

evidence is provided that heterogeneity in agents’ expectations, large shocks and market 

complexity decrease the power of traditional stochastic models. On the basis of simulation 

experiments Kyrtsou and Terraza (2003) explain how simple short-term autocorrelated series 

can be generated by high-dimensional chaotic models, like the heteroskedastic Mackey-Glass 

process.  

     The noisy version of the Mackey-Glass process in discrete time offers several advantages, 

especially when financial series are tested. With a slight modification in the values of 

parameters c and τ it is possible to produce extremely rich dynamics that mimic properties of 

real returns series. Moreover, the noisy Mackey-Glass model captures feedback behaviour in a 

market where heterogeneous investors interact. A recent extension of the initial model 

developed by Kyrtsou (2006), called the Generalized Noisy Mackey-Glass, which also includes 

the Logistic equation, filters separately positive and negative feedback strategies. 

     High-dimensional non-linearity in mean is an interesting feature of asset returns series. 

Researchers working on Garch modelling and risk analysis have ignored its impact on volatility 

dynamics. Nevertheless, Kyrtsou and Terraza (2008) have demonstrated that taking into account 



 7 

 

chaotic non-linearity in the mean of French assets with the use of the heteroskedastic Mackey-

Glass model, improves Value-at-Risk estimations. 

     Since the role of endogenous instability is crucial for the determination of market prices, 

appropriate trading strategies should be considered in order to arrive to realistic conclusions. 

 

3. Simulations experiments and empirical results 

In this section the following models are used in our simulations experiments. The values of 

parameters have been chosen based on the simulation study performed by Kyrtsou and Terraza 

(2003). For these specific values, the nonlinear models have the properties we are usually 

observed in real economic and financial time series. 

• An AR(1) model with φ1=0.5, X0=1.2 (hereafter AR). 

Xt = φ1Xt-1+ εt               εt∼N(0,1) 

• A logistic equation with and without noise and b=3.8, X0=1.2 (hereafter LogEq without 

noise, LogEqN with white noise and LogEqA with heteroskedastic noise). 

Xt = bXt-1(1- Xt-1) 

• Mackey-Glass
1
 equations with and without noise and τ=1, c=2, 10, 30, α=2.1, δ=0.05, 

a0=0.2, a1=0.6, X0=1.2. 

1. Xt = α
10

1t

1t

X1

X

−

−

+
-δXt-1                                                                                   (hereafter Mac10) 

2. Xt = α
10

1t

1t

X1

X

−

−

+
-δXt-1+ εt   with   εt∼N(0,1)                                               (hereafter Mac10n) 

3. Xt = α
10

1t

1t

X1

X

−

−

+
-δXt-1+ εt   with  εt∼N(0,ht) and ht=a0+a1ε

2
t-1                     (hereafter Mac10a) 

4. Xt = α
30

1t

1t

X1

X

−

−

+
-δXt-1                                                                                   (hereafter Mac30) 

                                                
1
 For more details about Mackey-Glass equation with normal and heteroskedastic errors see Kyrtsou and 

Terraza (2003) and Kyrtsou (2006). For a multivariate setting see Kyrtsou and Labys (2006, 2007), 

Hristu-Varsakelis and Kyrtsou (2008), Kyrtsou and Vorlow (2009). 
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5. Xt = α
30

1t

1t

X1

X

−

−

+
-δXt-1+ εt   with   εt∼N(0,1)                                                (hereafter Mac30n) 

6. Xt = α
30

1t

1t

X1

X

−

−

+
-δXt-1+ εt   with  εt∼N(0,ht) and ht=a0+a1ε

2
t-1                     (hereafter Mac30a) 

7. Xt = α
2

1t

1t

X1

X

−

−

+
-δXt-1+εt   with   εt∼N(0,1)                                                  (hereafter Mac2n) 

8. Xt = α
2

1t

1t

X1

X

−

−

+
-δXt-1+εt  with  εt∼N(0,ht) and ht=a0+a1ε

2
t-1                     (hereafter Mac2aex) 

9. Xt = α
2

1t

1t

X1

X

−

−

+
-δXt-1+εt with εt∼N(0,ht), ht=a0+a1ε

2
t-1, and εt = εt-1+εt-2   (hereafter Mac2aen) 

After 1000 replications for each model we obtain simulated series of 4096 observations. The 

sample statistics of these series are given in Table 1. When a dummy representing the arrival of 

new information is added to the series, sample statistics change completely. We did not study 

the properties of the deterministic part of the AR(1) model, since for X0=1.2, Xt converges to 

the fixed point X =1. With the same justification we exclude from the simulation experiment 

the deterministic part of the Mac2n model; for an initial value equal to 1.2, Xt converges to its 

equilibrium point. 

     Looking at Table 1, we observe that information signals do not modify the normality of the 

AR(1) model. On the contrary, in the case of LogEq, LogEqN and LogEqA, both periodic and 

irregular perturbations increase the non-normality. Concerning the different Mackey-Glass 

processes, the obtained results are more complex. In the deterministic cases, Mac10 and Mac30, 

information increases kurtosis and Jarque-Bera. In the stochastic cases, Mac2n, Mac2aex, 

Mac2aen, Mac10n, Mac10a, Mac30n and Mac30a, a dual effect emerges: (1) Exogenous 

information is lost in the structure of white noise and so globally we do not have significant 

modifications on kurtosis and Jarque-Bera; (2) Interactions between exogenous signals and 

heteroskedastic noise could stabilize the system.  For example, for S_Mac2aex kurtosis and 

Jarque-Bera were reduced from 4.898 to 4.428 and from 657.7 to 399.9 respectively. 
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     The dynamic behaviour of the linear and non-linear trading rules before and after the 

influence of information is described in Figures 1-13. The three attractors of the linear 

stochastic model (Figure 1) are identical. For the non-linear deterministic models, the addition 

of information signals leads to systems with multiple attractors. The dual effect that we 

described previously, can be clearly identified in Figures 6, 7, 9, 10, 11, 12, and 13. 

     In Table 2, we report the results from the estimation of the most representative simulated 

series. For example, estimations for LogEqA are not included in Table 2, since they do not 

significantly differ from the estimations of the LogEqN model. The main objective is to study 

the stability of the coefficients of the different models. If the estimated values are similar with 

those used in the simulation experiments, then the dynamic structure of the system remains 

unchangeable even if new information perturbs the market. Otherwise, information signals can 

affect the underlying structure.  

As is shown in Table 2, on the one hand the incorporation of either periodic or irregular 

information into AR(1) does not modify the coefficient φ1. In all cases it is close to 0.5 (value 

used in our simulations). On the other hand, exogenous information can drastically affect the 

structure of the non-linear models. For LogEqN the coefficient b is equal to 0.51 in the case of 

periodic signals (i.e. S_LogEqN) and 0.27 in the case of irregular signals (i.e. S2_LogEqN). 

Both values are far from 3.8. For Mac2n, α is equal to 1.65 and 2.06, while δ is equal to –0.11 

and 0.02 in the cases of periodic (i.e. S_Mac2n) and irregular signals (i.e. S2_Mac2n) 

respectively. These values are also far from the initial values: 2.1 for α and 0.05 for δ.  

Regarding deterministic dummies, the results can be classified in two categories. When the 

mechanism is high-dimensional, i.e either pure stochastic or stochastic chaotic, we obtain 

statistical significance only for D1, D2, and in a few cases also for D5. In contrast, when the 

generating mechanism is low-dimensional, i.e. chaotic, statistical significance is detected for the 

five dummies. 
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4. Implications 

 

The main point of the paper is to present by simulation experiments the impact on trading rules 

arising from the arrival of new information in the market when these rules follow non-linear 

dynamics. The empirical findings provide clear evidence that the incorporation of exogenous 

information into a series generated by a non-linear mechanism has a direct impact on the 

dynamic structure of the system itself, while strong seasonal structures appear as long as the 

system exhibits low-dimensional non-linear dynamics. 

     Linear systems have the convenient property that smooth changes in their parameters lead to 

smooth changes in the behaviour of the trajectories. The situation when the system is non-linear 

is quite different. The laws of motion of the system change as the system moves in the state 

space. This inherent complexity could explain why exogenous information in a non-linear 

market can produce unexpected results. Thus, when new signals invade the market, it is very 

difficult to predict the price evolution if the investors’ trading rules are non-linear. 

     The significance of all seasonal dummies only in the case of low-dimensional non-linear 

trading rules indicates that as underlying complexity increases obtained results change 

dramatically. Additional empirical work is required in order to investigate whether and under 

which conditions deviations of highly complex prices can be isolated.  

     In conclusion, our work demonstrates that when agents follow non-linear trading rules, the 

arrival of new information can cause high volatility and instability in financial markets. Such 

high volatility and instability do not occur in simulations when trading rules are modelled to be 

linear. Thus, further research on the nature of nonlinear investment strategies is needed to solve 

the relevant problems about the causes of instability and high volatility in financial markets. 
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Table 1: Sample statistics and autocorrelation of the simulated series
2
. 

Models Kurtosis Skewness Jarque-Bera Q(12)1 Q(24)1 

AR(1) 2.93 0.01422 0.9345 1233 (0.000) 1254 (0.000) 

S_AR(1) 2.937 0.055 2.794 917.25 (0.000) 1077.9 (0.000) 

S2_AR(1) 2.94 0.043 1.869 1125.2 (0.000) 1145 (0.000) 

LogEq 1.978 -0.5157 359.63 2054.2 (0.000) 2081.7 (0.000) 

S_LogEq 3.0152 0.8514 494.89 6447.3 (0.000) 12243 (0.000) 

S2_LogEq 5.656 0.9718 1849.27 932.66 (0.000) 1010.9 (0.000) 

LogEqN 1.8812 -0.4397 345.619 1619.2 (0.000) 1638.5 (0.000) 

S_LogEqN 3.006 0.819 458.49 5774.5 (0.000) 11115 (0.000) 

S2_LogEqN 5.233 0.8743 1373.05 693.09 (0.000) 752.86 (0.000) 

LogEqA 1.847 -0.426 350.65 1791.4 (0.000) 1802.7 (0.000) 

S_LogEqA 2.99 0.838 479.43 6089.6 (0.000) 11603 (0.000) 

S2_LogEqA 5.262 0.922 1454.35 815.14 (0.000) 888.92 (0.000) 

Mac2n 2.699 0.0209 15.716 2076.4 (0.000) 2085.1 (0.000) 

S_Mac2n 2.757 0.034 10.79 1681.4 (0.000) 1762.8 (0.000) 

S2_Mac2n 2.697 0.02 15.869 1991.2 (0.000) 1998.6 (0.000) 

Mac2aex 4.898 0.2502 657.708 5655.5 (0.000) 5742 (0.000) 

S_Mac2aex 4.428 0.275 399.9 4254.2 (0.000) 4499.7 (0.000) 

S2_Mac2aex 4.725 0.266 556.57 5317.3 (0.000) 5411.4 (0.000) 

Mac2aen 3.629 -0.0228 67.937 3756.7 (0.000) 3774.4 (0.000) 

S_Mac2aen 3.539 0.0126 49.719 3042 (0.000) 3156.9 (0.000) 

S2_Mac2aen 3.668 0.0098 76.428 3583.9 (0.000) 3603.6 (0.000) 

Mac10 3.2216 -0.0126 8.494 5420.4 (0.000) 5522.4 (0.000) 

S_Mac10 3.129 0.21 33.24 3385.4 (0.000) 4134.2 (0.000) 

S2_Mac10 3.423 0.149 45.923 4478.8 (0.000) 4560.1 (0.000) 

Mac10n 2.9071 0.0233 1.844 223.95 (0.000) 231.99 (0.000) 

S_Mac10n 2.98 0.075 3.984 252.13 (0.000) 355.18 (0.000) 

S2_Mac10n 2.94 0.044 1.9206 212.95 (0.000) 224.41 (0.000) 

Mac10a 3.769 0.032 101.72 594.93 (0.000) 601.97 (0.000) 

S_Mac10a 3.519 0.065 48.91 490.32 (0.000) 645.35 (0.000) 

S2_Mac10a 3.677 0.0647 81.22 555.44 (0.000) 563.78 (0.000) 

Mac30 3.468 0.01615 37.674 6815.1 (0.000) 10137 (0.000) 

S_Mac30 3.2318 0.16 26.857 4003.8 (0.000) 6291.2 (0.000) 

S2_Mac30 3.503 0.1155 52.307 5622.7 (0.000) 8350.5 (0.000) 

Mac30n 3.005 0.026 0.4814 112 (0.000) 121.78 (0.000) 

S_Mac30n 3.055 0.0639 3.3219 195.75 (0.000) 324.56 (0.000) 

S2_Mac30n 2.987 0.0408 1.165 110.05 (0.000) 121.5 (0.000) 

Mac30a 3.487 -0.0607 43.015 321.84 (0.000) 326.67 (0.000) 

S_Mac30a 3.44 -0.027 33.57 343.82 (0.000) 506.05 (0.000) 

S2_Mac30a 3.468 -0.0368 38.475 295.29 (0.000) 302.72 (0.000) 

1: Probability is given within parenthesis 

2: We note S when periodical information signal is considered and S2 for irregular information 

signal. 
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Figures 1a,b,c: Attractors of the AR(1) model with and without information signals 
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Figures 2a,b,c: Attractors of the LogEq model with and without information signals 
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Figures 3a,b,c: Attractors of the LogEqN model with and without information signals 
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Figures 4a,b,c: Attractors of the LogEqA model with and without information signals 
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Figures 5a,b,c: Attractors of the Mac10 model with and without information signals 
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Figures 6a,b,c: Attractors of the Mac10n model with and without information signals 
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Figures 7a,b,c: Attractors of the Mac10a model with and without information signals 
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Figures 8a,b,c: Attractors of the Mac30 model with and without information signals 
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Figures 9a,b,c: Attractors of the Mac30n model with and without information signals 
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Figures 10a,b,c: Attractors of the Mac30a model with and without information signals 
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Figures 11a,b,c: Attractors of the Mac2n model with and without information signals 
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Figures 12a,b,c: Attractors of the Mac2aex model with and without information signals 
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Figures 13a,b,c: Attractors of the Mac2aen model with and without information signals 
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Table 2: Estimation results for simulated series 

 Mean  Equation Variance  Equation 

Models φφφφ1 b αααα δδδδ D1 D2 D3 D4 D5 a0 a1 

AR(1) 
0.4849 
(36.395) 

          

S_AR(1) 
0.4881 
(36.208) 

   
1.003 

(29.149) 

-0.546 
(-14.243) 

-0.04178 
(-1.2236) 

-0.00137 
(-0.0378) 

-0.082526 
(-2.3857) 

  

S2_AR(1) 
0.4728 

(34.3397) 
   

0.2286 
(5.9796) 

-0.1667 
(-4.4914) 

-0.043 
(-1.2594) 

-0.002615 
(-0.071985) 

-0.08315 
(-2.4048) 

  

LogEqN  
3.8 

(4359.11) 
         

S_LogEqN  
0.5158 
(27.647) 

  
1.54955 
(185.976) 

1.2081 
(44.657) 

0.5376 
(62.8014) 

0.5484 
(65.4503) 

0.551176 
(65.84104) 

  

S2_LogEqN  
0.273 

(17.187) 
  

0.81729 
(48.225) 

0.670126 
(71.93129) 

0.577427 
(64.45429) 

0.58894 
(67.339) 

0.591922 
(67.76205) 

  

Mac2n   
2.1987 

(31.7397) 

0.0629 
(2.9057) 

       

S_Mac2n   
1.65712 
(23.3419) 

-0.1103 
(-4.9443) 

0.9731 
(28.6295) 

-0.49209 
(-11.389) 

0.032529 
(0.96938) 

-0.005253 
(-0.149536) 

-0.006756 
(-0.1971) 

  

S2_Mac2n   
2.0601 
(28.997) 

0.0277 
(1.2629) 

0.203690 
(5.5198) 

-0.1117 
(-3.0165) 

0.02726 
(0.81675) 

-0.002723 
(-0.0781) 

-0.008588 
(-0.25216) 

  

Mac2aex   
2.109 

(46.2048) 

0.0545 
(2.7101) 

     
0.2059 
(28.108) 

0.57869 
(17.184) 

S_Mac2aex   
1.3095 
(24.714) 

-0.3161 
(-13.0865) 

0.9549 
(46.4878) 

-0.6503 
(-23.1798) 

-0.009956 
(-0.4961) 

0.007216 
(0.3743) 

0.001756 
(0.0944) 

0.2829 
(27.992) 

0.498 
(13.73) 

S2_Mac2aex   
2.0465 
(38.863) 

0.0213 
(0.9294) 

0.182 
(7.8138) 

-0.0766 
(-3.7242) 

-0.018859 
(-1.02258) 

0.00433 
(0.2422) 

0.0108 
(0.5734) 

0.2642 
(27.6397) 

0.5244 
(15.118) 

Mac10n   
2.161 

(48.6012) 
0.0327 
(2.3835) 

       

S_Mac10n   
1.5622 

(29.2282) 

-0.0592 
(-4.10217) 

0.97748 
(27.5334) 

-0.2922 
(-5.264464) 

0.0193 
(0.5353) 

0.01538 
(0.4289) 

0.0536 
(1.4908) 

  

S2_Mac10n   
2.0495 
(42.446) 

0.0152 
(1.0999) 

0.21572 
(5.6801) 

-0.06209 
(-1.5215) 

0.02026 
(0.5726) 

0.01817 
(0.5164) 

0.0539 
(1.519) 

  

Mac10a   
2.1115 

(93.4907) 

0.0548 
(5.6815) 

     
0.2019 
(27.138) 

0.5779 
(17.34) 

S_Mac10a   
1.39797 
(36.5165) 

-0.1728 
(-10.3816) 

1.0265 
(40.9048) 

-0.3787 
(-8.6863) 

0.03146 
(1.2927) 

-0.00788 
(-0.3624) 

0.0407 
(1.8674) 

0.5353 
(28.1578) 

0.2984 
(8.9877) 

S2_Mac10a   
2.0049 
(72.49) 

0.0203 
(1.7462) 

0.08926 
(3.38175) 

-0.0387 
(-1.6686) 

0.0234 
(1.3035) 

-0.00042 
(-0.02415) 

0.04028 
(2.0288) 

0.2873 
(21.7265) 

0.54704 
(14.96167) 

*t-statistic is given within parenthesis. Underlined values are significant. We note that White Heteroskedasticity-Consistent standard errors and covariance as well as 

Bollerslev-Wooldrige robust standard errors and covariance are used. 
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