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RESEARCH ARTICLE
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Abstract

Range-restricted species generally have specific niche requirements and may often have

unique evolutionary histories. Unfortunately, many of these species severely lack basic

research, resulting in poor conservation strategies. The phylogenetic relationship of the

Critically Endangered Forest Owlet Heteroglaux blewitti has been the subject of a century-

old debate. The current classifications based on non-phylogenetic comparisons of mor-

phology place the small owls of Asia into three genera, namely, Athene, Glaucidium, and

Heteroglaux. Based on morphological and anatomical data, H. blewitti has been alterna-

tively hypothesized to belong within Athene, Glaucidium, or its own monotypic genus Het-

eroglaux. To test these competing hypotheses, we sequenced six loci (~4300 bp data)

and performed phylogenetic analyses of owlets. Mitochondrial and nuclear trees were not

congruent in their placement of H. blewitti. However, both mitochondrial and nuclear com-

bined datasets showed strong statistical support with high maximum likelihood bootstrap

(>/ = 90) and Bayesian posterior probability values (>/ = 0.98) for H. blewitti being nested

in the currently recognized Athene group, but not sister to Indian A. brama. The divergence

of H. blewitti from its sister taxa was between 4.3 and 5.7 Ma coinciding with a period of

drastic climatic changes in the Indian subcontinent. This study presented the first genetic

analysis of H. blewitti, a Critically Endangered species, and addressed the long debate on

the relationships of the Athene-Heteroglaux-Glaucidium complex. We recommend further

studies with more data and complete taxon sampling to understand the biogeography of

Indian Athene species.
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Introduction

Endemic and endangered species are often ecologically specialized and there is an urgent need

to better understand the ecology and phylogenetic history of endangered species to uncover

features that might be crucial for conservation. Such species could be viewed as model species

to understand evolutionary processes in the landscape of their occurrence [1–3]. However, our

knowledge of the evolutionary history of highly restricted, endemic species in the tropics is

limited, due to their rarity and incomplete genetic sampling [4]. This could have far-reaching

consequences on policy level decisions regarding species conservation.

Although the phylogeny of the higher order avian taxa has undergone several changes in

the past three decades [5–7], relationships among clades still remain poorly known. Owls

(Order: Strigiformes) is one such groups. Many rare or range-restricted species such as the

Critically Endangered Forest Owlet Heteroglaux blewitti (Hume, 1873), Spotted Owlet Athene
brama (Temmink, 1821) and Jungle Owlet Glaucidium radiatum (Tickell, 1833) were not

included in the most recently published owl phylogenies [8–10].

H. blewitti, endemic to India, has been a taxonomic mystery since its discovery in 1872.

Owing to its severely fragmented distribution and low population, H. blewitti has been catego-

rized as a “Critically Endangered” species by the International Union for Conservation of

Nature (IUCN) [11]. There have been many opinions on the phylogenetic affinities of H. ble-
witti by ornithologists over the centuries. In the past, the species has alternatively been placed

in either the genus Heteroglaux [12–16] or Athene [17–22]. Additionally, some researchers

have claimed Heteroglaux to be a subgenus of Glaucidium [23], related to the tail-flicking

behavior typical in the genus Glaucidium. Nevertheless, none of these opinions were founded

on formal phylogenetic analyses.

The genus Athene is represented by four species—Burrowing Owl A. cunicularia, Spotted

Owlet A. brama, Little Owl A. noctua and White-browed Owl A. superciliaris [9, 15]. All the

extant Athene members were classified in the genus Strix when first described. Following a

revision in taxonomy [17], A. brama and A. noctua were placed in the genus Athene, a place-

ment that remains unchanged to date. A. cunicularia was moved from Strix to Speotyto [24]

based on DNA-DNA hybridization studies, and later to Athene [8], based on mitochondrial

CYTB and nuclear RAG-1 gene data. Similarly, A. superciliaris was moved from Strix to Ninox
[25], and then to Athene [9]. Throughout this article, we refer A. brama and A. noctua as Eur-

asian Athene (with global distribution encompassing India) and A. superciliaris and A. cunicu-
laria as Athene from Madagascar and the Americas.

Since H. blewitti and A. brama are morphologically similar in appearance [17] and are co-

distributed (Fig 1, S1 Fig), they would be expected to form a sister group. Although Wolters

(1975) hypothesized that H. blewitti and A. brama together form a subgenus Heteroglaux,

nested within Athene [26], he did not provide an explanation for this classification [16]. In

contrast, König et al. (1999) argue that the tail flicking behavior, a characteristic of Glaucidium,

shown by H. blewitti, suggests that the species is closely related to Glaucidium and could be

nested within Athene or Glaucidium [23]. The current classification of H. blewitti in a mono-

typic genus Heteroglaux claimed by Rasmussen & Collar (2013) is based solely on an assess-

ment of morphological [12, 16] and osteological characteristics [16], without phylogenetic

data. This classification needs further scrutiny by incorporating phylogenetic information.

Furthermore, a report on the hybridization between H. blewitti and A. brama [27], was dis-

puted [28–31], and this underscores the need to examine the taxonomic status of the species.

Data available on acoustic [32], morphological, osteological and behavioral characters [16] of

H. blewitti show that the species differs from other Athene species in osteological features such

as multiple cranial characters, especially, wider, inflated anterior and posterior frontals, larger

The critically endangered forest owlet Heteroglaux blewitti is nested within the Athene clade
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lacrimals and maxillopalatines, stouter tarsometatarsi, and behavioral features such as non-

undulating flight and tail flicking. Rasmussen & Collar (2013) argue that this difference could

well be at the genus level [16]. The authors further propose that the plumage similarities in A.

brama and H. blewitti could be due to convergence but given the distinct osteological and

behavioral features of H. blewitii, another possibility is that H. blewitti evolved from an ancient

divergence event separating the genus Heteroglaux from Athene [16].

We test three proposed phylogenetic relationships as competing hypotheses—Rasmussen &

Collar (2013) [16], König et al. (1999) [23], and Wolters (1975) [26] using molecular data to

infer phylogenetic relationships among H. blewitti, A. brama, and G. radiatum. Our study will

also address the debate about Athene-Glaucidium-Heterogla ux relationships using genetic

data. We also expect that this new phylogenetic information on an endemic and Critically

Endangered species will help understand priorities in conservation strategies.

Materials and methods

1. Taxon sampling

Based on data from extant phylogenies [8–10], we generated data on the three Indian Owlets

H. blewitti, A. brama, and G. radiatum as well as the Madagascan species A. superciliaris. We

sampled, three out of five subspecies of A. brama namely A. b. brama (North India), A. b.

indica (South India) and A. b. albida (Parts of Gujarat, Pakistan, and Iran), and two subspecies

of G. radiatum namely G. r. radiatum (Peninsular India) and G. r. malabaricum (Southwest

India). The assignment of subspecies was based on distributional limits described in Ali & Rip-

ley (1983) [19]. For field-based sample collection from the three species of owls (H. blewitti, A.

brama, and G. radiatum), we followed all legalities and obtained prior permissions from State

Forest Departments (Madhya Pradesh, Maharashtra, Gujarat and Chhattisgarh). The Madhya

Pradesh Forest Department granted one of the authors (PM) permits to capture and color tag

H. blewitii individuals as part of an independent study on the species. The Chhattisgarh Forest

Department permitted capture and blood collection, whereas our permits from Maharashtra

and Gujarat were limited to visual surveying of the Forest Owlet (H. blewitti). We captured

Forest Owlets using Bal-chatri traps, known to be the most effective trapping technique for

Fig 1. Co-distributed Indian owlets show plumage similarity, however can be identified based on size and markings on the chest and forehead. Presence of

white spots and brown bars in case of A. brama and G. radiatum respectively are identification keys. Photo credits: color banded H. blewitti individual by PM, A.

brama and G. radiatum by PK.

https://doi.org/10.1371/journal.pone.0192359.g001

The critically endangered forest owlet Heteroglaux blewitti is nested within the Athene clade
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capturing birds of prey without inflicting injury [33]. The capture and release protocol was

reviewed by the Madhya Pradesh State Forest Department’s expert committee before granting

the research permit to PM.

For this study, during the capture process, we handled captured owlets for a maximum of

twelve minutes and released them immediately after banding and biometrics procedure. We

carried out the banding procedure very close to where the owlet was captured so we could

release it at the same spot. Once captured, we covered the head of the owlet with a cloth to

minimize stress. We collected feathers that were shed during the process of capture and han-

dling from each bird. We collected up to two feathers per individual. We stored the feathers in

separate paper envelopes and placed these in airtight containers for transport. Color tagging of

birds ensured that we could identify different individuals and sources for the samples. We

used these feathers to create reference genetic data for the species. In two instances, we col-

lected broken eggshells fallen below known nest-sites of H. blewitti. We compared genetic data

collected from eggshells (S1 Table) with the reference genetic data to identify species. We iden-

tified the species using a criterion of�99% sequence identity with the reference data. After

species assignment, we proceeded with further analysis. We also obtained a museum feather

sample of H. blewitti from the Bombay Natural History Society (BNHS) and used the same cri-

teria mentioned above to ensure species identity. In case of A. brama and G. radiatum, we col-

lected fallen feathers below known nest-sites outside Protected Areas or shed feathers from

injured bird rescued by NGOs. We trapped G. radiatum individuals in mist nets (in Chhattis-

garh). We sampled spatially non-overlapping and distant nest-sites to avoid resampling the

same individuals. For both the species, for ensuring species identity, we followed the same

approach as for H. blewitti. We sequenced target genes from a vouchered tissue of A. superci-
liaris obtained from the Field Museum of Natural History (details of samples and sources are

provided in S1 Table and S2 Fig).

2. Laboratory procedure

We extracted DNA using DNeasy blood and tissue kit (Qiagen, Hilden, Germany, Product no.

69504), following the manufacturer’s protocol with a few modifications. We added 20 μl of 1%

Dithiothreitol (DTT) in the lysis reaction. To ensure a higher concentration of DNA and mini-

mize loss, we eluted DNA twice in separate vials, each time in 100 μl of AE buffer, instead of

the recommended one elute of 200 ul and used the first elute for further analysis. We amplified

two mitochondrial genes (CYTB, COI), a nuclear exon (RAG-1), and three nuclear introns

(TGFB2, LDH, MYO). These genes were chosen based on previously available data on other

species of Athene and Glaucidium [8, 9]. We carried out all PCR amplifications after optimiza-

tions (S2 Table) of reaction conditions. We sequenced the purified PCR products in both for-

ward and reverse directions with an ABI 3730 Genetic Analyzer and analyzed raw sequences

with the ABI 3730 Genetic Analyzer software (Applied Biosystems, Foster City, USA). We

designed two owlet specific primers for amplifying COI gene from A. brama and G. radiatum.

We used primers for other genes available from published studies [34–42]. We submitted all

the sequences from the study to GenBank (see S3 Table for accession numbers).

3. Sequence analyses and phylogenetic reconstruction

We viewed and manually edited the sequences in Chromas Lite 2.1.1 (Technelysium, Brisbane,

Australia) and aligned them using the software Geneious v7.0.6 (Biomatters, Auckland, New

Zealand) [43]. We downloaded sequences of other owls from GenBank (S4 Table). We trans-

lated coding sequences in Geneious to check for the presence of stop codons and/or nuclear

inserts of mitochondrial DNA (numts). We processed individual gene alignments in MEGA

The critically endangered forest owlet Heteroglaux blewitti is nested within the Athene clade
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v4.0 [44] for counting the proportion of variable sites, parsimony informative sites, and single-

tons. We tested for positive selection, to avoid introducing possible error in phylogenetic infer-

ence as shown in [45, 46], in CYTB, COI, and RAG-1, using HyPhy [47] and Tajima’s test of

neutrality [48] implemented in MEGA v4.0.

We conducted the analyses using three different sets of data—mitochondrial (CYTB +

COI), nuclear (RAG1 + TGFB2 + MYO), and concatenated (CYTB + COI + RAG1 + TGFB2

+ MYO). There was a missing in-group taxon (A. noctua) in the LDH dataset; therefore, we

did not include the dataset in the final combined analysis. The concatenated dataset contained

<9% missing data. We used codon-specific DNA substitution models (PartitionFinder v1.1.1,

S5 Table) [49]. We tested the separate gene as well as concatenated datasets for best-fit DNA

substitution models (Details in S5 Table).

We conducted phylogenetic analysis with maximum likelihood using RaxML v8.0 [50],

Bayesian Inference using MrBayes v3.2.2 [51], and multi-species coalescent tree using BEAST

[52]. We used members of the Tytonidae family (Tyto alba and Phodilus badius) as outgroup

taxa since this is the family closest to the Strigidae family with an estimated known divergence

time for the Strigidae / Tytonidae split (54–83 Ma) [53–56].

We used PartitionFinder to first determine the best partitioning scheme of gene regions

based on evolutionary rates. We used these partitions in RAxML and MrBayes. In RAxML, we

used ML+rapid bootstrap function with 10000 bootstraps for all analyses. In MrBayes, we con-

ducted two runs of five chains (one cold) for 30–70 million generations and sampling every

1000th generation. We set the temperatures of the heated chains to 0.25. We discarded the first

25% of samples (burnin) and continued the MCMC run till the standard deviation of split fre-

quency dropped below 0.005.

We ran each ML and Bayesian analysis thrice, to ensure consistency in the results, for the

concatenated dataset with the following options—partitioning of the dataset in all codon posi-

tions of coding sequences, only the third codon position of coding sequences, and all codon

positions for the mitochondrial genes and only the third codon position for the nuclear exon.

We used the concatenated dataset, without LDH data, to build species phylogeny in Beast

v1.8.1. The species tree analysis does not take into consideration columns with missing data;

hence, we did not include LDH dataset for which A. noctua data was missing. We ran the anal-

ysis for 1.5 billion runs. We viewed and edited the trees in FigTree v1.4.2. We also used Densi-

Tree v2.2.5 [57], based on the Bayesian output of BEAST, to plot sets of trees.

To test for congruency in mitochondrial and nuclear datasets, we performed a Shimodaira-

Hasegawa test [58] in RaxML. We also conducted gene jack-knifing analysis in which we seri-

ally removed individual genes from the concatenated dataset to see which gene/s may influ-

ence the phylogenetic analysis [39].

4. Fossil calibrations and molecular dating

Owls have an adequate fossil and sub-fossil record, largely from Europe and North America

[59]; however, classification of many of the sub-fossils remains ambiguous [60]. In addition,

very few phylogenetic studies of Strigiformes have used molecular dating and there is no con-

sistency in fossil calibrations used. Only fossil calibrations with sufficient support, as discussed

in [61, 62], and those that have been used in multiple studies, were used in this study. We used

A. otus / O. leucotis (23.7–16.4 Ma) [63] and the oldest Athene fossil (3.6–5.3 Ma) [64] for cali-

brations. We used different combinations of data (concatenated, mitochondrial, and nuclear,

partitioned alignments), to check for consistency in results, to obtain molecular dates after per-

forming tests for a molecular clock [65] in MEGA v4.0 and using both the strict and the uncor-

related relaxed lognormal clocks. Substitution models, clock models and trees option were set

The critically endangered forest owlet Heteroglaux blewitti is nested within the Athene clade
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to unlinked for all the partitions. We used the lognormal distribution for fossil calibrations

with the means of distributions set such that 95% of the distribution probability fell within

expected ranges of time intervals. We ran BEAST on CIPRES portal (www.cipres.org) for 1 to

2 billion MCMC runs. We set up the sampling frequency at 1000 and re-sampled data using

Log Combiner v1.8.1. The BEAST output was viewed in Tracer v1.6 and trees were combined

in TreeAnnotator v1.8.1. We compared our results with other studies to check for consistency

of our molecular date estimates. We first compared our results with Fuchs et al. (2008) [66]

who used Mlı́kovský (1998) fossils of A. otus and O. leucotis [63], along with a geographical

event dating which does not include our study area. Further, we compared our Strigidae /

Tytonidae split dates with other relevant studies [53–56]. We used Effective Sample Size (ESS)

values as one of the criteria to compare among analyses.

Results

1. Phylogenetic analysis

In the concatenated tree analysis, we recovered H. blewitti as nested within the Athene, and sis-

ter to the other Athene from Madagascar and Americas (Fig 2 and S3 Fig). We observed that

in all gene trees (S4–S9 Figs), A. brama and A. noctua were sisters to each other. Similarly, G.

radiatum and G. cuculoides were sisters in all the analyses. We did not find significant congru-

ence (P< 0.01) at the H. blewitti node in mitochondrial (S10 Fig) and nuclear (S11 Fig) trees

when we performed the Shimodaira-Hasegawa test (Fig 3 and S3 Fig). In the mitochondrial

tree, H. blewitti was sister to the Eurasian Athene clade, whereas in the nuclear tree it was sister

to Athene from Madagascar and the Americas (Fig 3). We always recovered the mitochondrial

tree topology when any one of the three nuclear genes (TGFB2, MYO and RAG-1) were

removed from the concatenated dataset during gene jack-knifing.

2. Molecular dating analysis

The molecular dating analyses resulted in varied estimates of divergence (Table 1). Our mito-

chondrial and concatenated datasets, however, failed to converge in dating runs. Based on the

analyses for the nuclear dataset (Table 1, analysis 2), for which ESS values were the highest and

the Tytonidae / Strigidae and A. otus / O. leucotis divergence estimates matched with other

published estimates, we predicted diversification dates for H. blewitti between 4.3 and 5.7 Ma,

A. brama / A. noctua split between 3.9 and 5.8 Ma, A. cunicularia / A. superciliaris split between

2.2 and 3.9 Ma and G. radiatum / G. cuculoides split between 0.1 and 1.8 Ma.

Discussion

1. Heteroglaux as a synonym of Athene
Our analysis using mitochondrial, nuclear and concatenated datasets (Figs 2 and 3, and S4–

S11 Figs) show that H. blewitti is nested within the Athene clade, rejecting the König et al.
(1999) hypothesis that the species is nested within Glaucidium [23], and the Rasmussen & Col-

lar (2013) hypothesis that Heteroglaux is a monotypic genus sister to Athene [16]. Our results

also refute the Wolters (1975) hypothesis [26] that H. blewitti is sister to A. brama. H. blewitti
and A. brama show similarity in lengths of tibiotarsus and ulna, and relatively shorter tarso-

metatarsi as compared to A. noctua to occupy arboreal niche [16]. Therefore, our results sup-

port the Rasmussen & Collar (2013) interpretation of the morphological similarities in A.

brama and H. blewitti being either convergence of traits or plesiomorphies, further supported

by the observation that a strong arboreal nature is absent in A. noctua. We find two contrasting

results–H. blewitti as a sister clade, either to Athene from Madagascar and the Americas

The critically endangered forest owlet Heteroglaux blewitti is nested within the Athene clade
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(concatenated and nuclear datasets, Figs 2 and 3, S3–S9 and S11 Figs) or Eurasian Athene
(mitochondrial dataset, Fig 3 and S10 Fig), making the exact phylogenetic position of the spe-

cies uncertain. Phylogenetic analyses with additional sampling of genetic markers, individuals

per species, and distinct subspecies of A. brama, A. noctua, and A. cunicularia may help pro-

vide a better resolution. Based on our results, we propose that Heteroglaux is treated as a syno-

nym of Athene, identifying Heteroglaux blewitti as Athene [Heteroglaux] blewitti.

2. Molecular dating and biogeography of A. [H.] blewitti
The overlapping dates of diversification of A. [H.] blewitti (4.3–5.7 Ma), A. brama / A. noctua
split (3.9–5.8 Ma), and A. cunicularia / A. superciliaris split (2.2–3.9 Ma), based on the nuclear

dataset (Table 1, analysis 2), indicate a rapid diversification of all three owlets in India, perhaps

in response to Plio-Pleistocene climatic fluctuations. This diversification is from the same

period as A. inexpectanta (3.6–5.3 Ma, Early Pliocene), the oldest fossil Athene owl from Africa.

Fig 2. A species tree reconstruction using BEAST on concatenated (mitochondrial + nuclear) dataset indicate that H. blewitti is nested within the Athene
clade. The brown text indicates the species sampled in the present study. The nodal values show Bayesian posterior probability (PP). All the nodes are highly

supported (PP = 1) except for those where PP is mentioned as nodal value.

https://doi.org/10.1371/journal.pone.0192359.g002
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Pavia et al. (2014) argue that the genus Athene originated in Africa and had a much wider dis-

tribution than previously thought [64]. Given the rich island endemic Athene fossil records,

from Late Pliocene of Palearctic [67], Nearctic [68–71], and Early Pleistocene of Palearctic [60,

72, 73], we speculate that Athene species might have undergone multiple diversifications and

extinction events, possibly as a response to Plio-Pleistocene climate change, as observed in

other groups such as the Western Ghats montane birds [7, 74].

Fig 3. A Maximum Likelihood Phylogenetic tree of Athene-Heteroglaux-Glaucidium members. 3A: Tree constructed using mitochondrial (CYTB + COI)

dataset; 3B: Tree constructed using nuclear (RAG-1 + TGFB2 + MYO) dataset. The red text indicates the species sampled in the present study. The nodal values

indicate Bayesian posterior probability separated by maximum likelihood bootstrap support.

https://doi.org/10.1371/journal.pone.0192359.g003

Table 1. Summary of molecular dating analysis using (uncorrelated) relaxed lognormal clock.

Attribute Analysis 1 Analysis 2 Analysis 3

Dataset Mitochondrial Nuclear Concatenated

Substitution model GTR+I+G HKY+I+G HKY+I+G

MCMC runs (X10^7) 150 150 200

Overall ESS <200 >>200 <200

Posterior -13117.02 -6161.38 -16360.55

Prior 69.56 -334.72 -11.17

Likelihood -13186.6 -5826.66 -16349.37

tmrca (AB/AN) 4.89 ± 0.63 4.82 ± 0.95 1.24 ± 0.06

tmrca (AC/AS) 4.21 ± 0.66 3.05 ± 0.86 0.97 ± 0.07

tmrca (Athene) 7.22 ± 0.6 5.28 ± 0.44 1.91 ± 0.05

tmrca (HB/AC/AS) 7.21 ± 0.61 4.94 ± 0.65 1.78 ± 0.05

tmrca (HB/AN/AB) 6.63 ± 0.65 5.26 ± 0.47 1.91 ± 0.06

tmrca (all) (Tytonidae / Strigidae) 19.33 ± 2.17 45.1 ± 2.6 4.13 ± 0.14

tmrca (Asioninae) 11.52 ± 1.01 16.36 ± 1.24 2.22 ± 0.05

tmrca (GR/GC) 2.34 ± 0.47 0.98 ± 0.85 0.46 ± 0.07

AB: A. brama, AN: A. noctua, AC: A. cunicularia, AS: A. superciliaris, HB: H. blewitti, GR: G. radiatum, GC: G. cuculoides.

https://doi.org/10.1371/journal.pone.0192359.t001
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Perhaps the Plio-Pleistocene climatic fluctuations and the subsequent retraction of ever-

green forests [75, 76], during the Upper Sivalik time (1.6–5.1 Ma) of India, facilitated A. brama
expansion into Peninsular India, while A. noctua expanded northward to a cooler climate.

Recent studies have shown that H. blewitti occupies moderately dense dry deciduous forests,

with intermittent open spaces [77, 78]. This peculiar choice of habitat influenced by climate,

along with prey preference and ecological interactions with other similar-sized competitors

might have restricted the range of A. [H.] blewitti. The species’ diurnal, ambushing predatory

nature might be an adaptation to maximally utilize the available niche, given the presence of

other co-distributed crepuscular and nocturnal owlets such as A. brama and G. radiatum in

the same area. Further information on the dietary preference of H. blewitti and its ecological

interactions with other species would help understand its adaptations. Nevertheless, our study

provides another line of evidence to the role of climatic fluctuations in the diversification of

Indian birds.

Our divergence estimates, based on the nuclear dataset (Table 1, analysis 2), are overlapping

but more recent (15.1–17.6 Ma) than those derived by Fuchs et al. (2008) for A. otus / O. leuco-
tis split (16.7–19.3 Ma) [66]. For the Tytonidae / Strigidae split, our divergence estimate of

42.5–47.7 Ma (Table 1, analysis 2) overlaps with Ericsson et al. (2006) estimate of 40–60 Ma

[53], however, it also presents an underestimate when compared with other studies [54–56].

Our molecular dating analyses runs that included mitochondrial DNA (Table 1, analysis 1

and 3) did not converge despite 1.5 to 2 billion runs, perhaps due to the saturation of signal for

these deep lineages.

3. Conservation implications

Genetic sampling of tropical birds is poor, especially in the Old World Tropics, thereby

impacting, regional conservation needs [4, 79]. Although the new information on the phyloge-

netic status of A. [H.] blewitti does not directly impact the IUCN status of the species, its rank-

ing in international conservation listings that use phylogenetic information may change. The

Evolutionary Distinct and Globally Endangered (EDGE) listing will perhaps no longer carry

the same evolutionary distinctness score for the species [79].

A. [H.] blewitti is a species of Central Indian old growth dry deciduous forests, occurring in

protected as well as non-protected areas [11]. Across most of its range, it is also co-distributed

with A. brama, a phylogenetically close relative based on this study. A. [H.] blewitti is under

severe threat of habitat loss due to large-scale logging, timber harvesting, and land-use change

[11, 77, 78]. A. brama, on the other hand, occurs in the vicinity of human habitation [19].

Although we detected no admixture between A. [H.] blewitti and A. brama (a mitochondrial

genetic distance of 16 ± 1% indicative of low sharing of alleles) in this study, hybridization can-

not be wholly ruled out. In the rapidly changing human-dominated landscape of the Central

India, circumstances are similar to other owls such as Barred and Spotted Owls [80] and

Northern and California Spotted Owls [81], where hybridization facilitated by anthropogenic

activities, has led to numerous conservation challenges.

With this first molecular phylogenetic study of this Critically Endangered species, we dem-

onstrate that crucial information can only be obtained through capture-based sampling that

strengthens and supports ecological data collected through conventional methods. Capture-

based genetic studies still do not find support from conservation managers in India [82, 83],

but such studies are instrumental in providing vital information on taxonomy, evolutionary

biogeography, and in identifying conservation units. Our study provides the first genetic data-

set that needs to be followed up with further spatially explicit sampling that can be used for

conservation prioritization.
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The new information provided here will facilitate both the taxonomic revision of the Athene
/ Heteroglaux clade and highlight the need for studies predicting species responses to climate

change.

Supporting information

S1 Fig. Distribution of few Palearctic and Oriental owlets as per Birdlife International

(2015). H. blewitti is the only range-restricted, rare owlet among Indian owlets.

(TIF)

S2 Fig. Map of sampling locations.

(TIF)

S3 Fig. Densitree representation, based on the Bayesian output of BEAST analysis, of the

concatenated phylogenetic tree. Blue line: the consensus tree (primary hypothesis), magenta

line: the next most popular tree after consensus (secondary hypothesis), green lines: tertiary

hypotheses.

(TIF)

S4 Fig. A Bayesian phylogenetic tree constructed using CYTB data. The species code used

can be referred from S3 and S4 Tables. The nodal values show Bayesian posterior probability

(PP) separated by Maximum Likelihood bootstrap support. HB: H. blewitti; ASUP: A. superci-
liaris; ATHNB: A. brama; ANOCT: A. noctua; ACUN: A. cunicularia; GLRAD: G. radiatum
and GCUCU: G. cuculoides.
(TIF)

S5 Fig. A Bayesian phylogenetic tree constructed using COI data. The species code used can

be referred from S3 and S4 Tables. The nodal values show Bayesian posterior probability (PP)

separated by Maximum Likelihood bootstrap support. HB: H. blewitti; ASUP: A. superciliaris;
ATHNB: A. brama; ANOCT: A. noctua; ACUN: A. cunicularia; GLRAD: G. radiatum and

GCUCU: G. cuculoides.
(TIF)

S6 Fig. A Bayesian phylogenetic tree constructed using RAG-1 data. The species code used

can be referred from S3 and S4 Tables. The nodal values show Bayesian posterior probability

(PP) separated by Maximum Likelihood bootstrap support. HB: H. blewitti; ASUP: A. superci-
liaris; ATHNB: A. brama; ANOCT: A. noctua; ACUN: A. cunicularia; GLRAD: G. radiatum
and GCUCU: G. cuculoides.
(TIF)

S7 Fig. A Bayesian phylogenetic tree constructed using TGFB2 data. The species code used

can be referred from S3 and S4 Tables. The nodal values show Bayesian posterior probability

(PP) separated by Maximum Likelihood bootstrap support. HB: H. blewitti; ASUP: A. superci-
liaris; ATHNB: A. brama; ANOCT: A. noctua; ACUN: A. cunicularia; GLRAD: G. radiatum
and GCUCU: G. cuculoides.
(TIF)

S8 Fig. A Bayesian phylogenetic tree constructed using MYO data. The species code used

can be referred from S3 and S4 Tables. The nodal values show Bayesian posterior probability

(PP) separated by Maximum Likelihood bootstrap support. HB: H. blewitti; ASUP: A. superci-
liaris; ATHNB: A. brama; ANOCT: A. noctua; ACUN: A. cunicularia; GLRAD: G. radiatum
and GCUCU: G. cuculoides.
(TIF)
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S9 Fig. A Bayesian phylogenetic tree constructed using LDH data. The species code used

can be referred from S3 and S4 Tables. The nodal values show Bayesian posterior probability

(PP) separated by Maximum Likelihood bootstrap support. HB: H. blewitti; ASUP: A. superci-
liaris; ATHNB: A. brama; ACUN: A. cunicularia; GLRAD: G. radiatum and GCUCU: G. cucu-
loides.
(TIF)

S10 Fig. A Bayesian phylogenetic tree constructed using mitochondrial dataset (CYTB

+ COI). The species code used can be referred from the S4 Table. The nodal values show

Bayesian posterior probability (PP) separated by Maximum Likelihood bootstrap support. HB:

H. blewitti; ASUP: A. superciliaris; ATHNB: A. brama; ANOCT: A. noctua; ACUN: A. cunicu-
laria; GLRAD: G. radiatum and GCUCU: G. cuculoides.
(TIF)

S11 Fig. A Bayesian phylogenetic tree constructed using nuclear dataset (RAG-1 + TGFB2

+ MYO). The species code used can be referred from the S4 Table. The nodal values show

Bayesian posterior probability (PP) separated by Maximum Likelihood bootstrap support. HB:

H. blewitti; ASUP: A. superciliaris; ATHNB: A. brama; ANOCT: A. noctua; ACUN: A. cunicu-
laria; GLRAD: G. radiatum and GCUCU: G. cuculoides.
(TIF)
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