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ABSTRACT 

Through use of an abbreviated form of the Wechsler 

Adult Intelligence Scale (WAIS), 48 subjects were assigned 

to either normal or superior IQ groups. With the constraint 

that equal numbers go to each group, .subjects were then ran­

domly assigned to either attribute identification (AI) or 

rule learning (RL) conceptual learning tasks. Using a recep­

tio~ paradigm, subjects solved bidimensional (two-valued) con­

cepts for each of three conceptual rules (conjunctive, dis­

junctive, conditional). It was expected that the order of 

rule difficulty and subjects' truth table problem solving 

strategies would vary as a function of the type of conceptual 

task and IQ level. 

Rejection of the hypothesis of homogeneity of vari­

ance precluded direct comparison of AI and RL tasks. Sep­

arate analyses of variance for each task type examined sub­

jects' error rates, hypotheses, and trials to criterion. 

Results ~evealed an effect of IQ level on trials to 

criterion for both tasks. Superior IQ subjects performed 

significantly better than did normal IQ subjects on this 

measure. The main effect of conceptual rule revealed a con­

junctive (easiest), disjunctive, conditional (most difficult) 

vii 



order of difficulty for the AI task. In the RL task, there 

was a reversal of difficulty between the conjunctive and dis­

junctive rules. In both tasks, the main effect was consis­

tently due to the difficulty of the conditional rule for both 

IQ groups. Subjects' problem solving strategies were examined 

in the context of the logical truth table of stimulus classi­

fication for bidimensional concepts. No effect of IQ was 

found on problem solving strategy. A main effect of truth 

table class was obtained for the RL task only. This effect 

showed TT and FF classes to be easier than the TF and FT 

classes for all rules. 

Rule difficulty and problem solving strategy were 

discussed in terms of the Sawyer-Johnson inference model. 

The applicability of the model to AI and RL tasks was consi­

dered. 
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INTRODUCTION 

The primary definitions of intellect and intelli­

gence in Webster's New World Dictionary (1974) refer to the 

abilities to perceive relationships and differences, to 

learn or understand from experience,· to acquire and retain 

knowledge, and to use reason in effectively solving problems 

or directing conduct. An examination of the experimental 

literature on problem solving and conceptual behavior re­

veals that these same general abilities apparently differ­

entiate successful and unsuccessful experimental subjects. 

This study investigates and attempts to determine the 

extent to which the abilities defined as "intelligence" 

(as expressed by the IQ) relate to problem solving and con­

ceptual abilities (as demonstrated by performance on 

concept learning tasks). This determination is made by 

examining subjects' performance on concept learning tasks 

as a function of task difficulty and intelligence. 

In the study of conceptual behavior, a class con­

cept is generally characterized by the presence or absence 

of one or more stimulus values and a rule specifying the 

necessary relationship between the relevant attributes 

(Haygood & Bourne, 1965). In a bidimensional concept, 

1 
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there are two relevant attributes. With such two-valued 

(bidimensional) concepts, eight unique relationships, or 

rules of combination, can be identified. Of these eight rule 

forms, four are "primary" relationships and four are their 

exact compliments (Salatas & Bourne, 1974). Where "A," "B" 

represe~t the two relevant attribute~, the four primary 

rule forms are: conjunctive (A_ and B); disjunctive (A or B); 

conditional (if A then B); and biconditional (if A then B, 

and if B then A). The present study examines the relative 

difficulty of the first three of these primary rule forms 

(conjunctive, disjunctive, conditional), as a function of 

the type of concept learning task, and the subjects' level 

of intelligence. 

Differences in the difficulty of conceptual rule 

forms may be examined in several ways, depending on the in­

formation available to the subject. In attribute identifi­

cation (AI) problems, the subject is told the rule which 

defines the necessary relationship between the two impor­

tant stimulus values. The subject's task is then to 

discover which two values are relevant to the concept. In 

a reception paradigm, stimuli are presented sequentially. 

For each stimulus, the subject gives a yes or no category 

response and is provided with immediate feedback concerning 

the correct classification of the stimulus. As the subject 

gains information regarding correct classification, he will 
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eventually discover which two stimulus values are related 

in the manner defined by the given rule. 

In a rule learning (RL) task, the subject is told 

which two stimulus values are important to the concept. In 

this case, the subject must then discover the rule which 

specifies the necessary relationship between the given rele­

vant values. Stimulus presentation and informative feedback 

follow the same procedural methodology (reception paradigm) 

as that used in the attribute identification (AI) task. 

As the subject gains correct classification information, it 

will eventually become apparent which rule form defines the 

necessary relationship between the two given relevant 

stimulus values. 

This study focuses on the difference in difficulty 

of the bidimensional rules in both AI (attribute identifi­

cation) and RL (rule learning) tasks. One of the assump­

tions here is that the abilities necessary for successful 

performance on these tasks is a function of intelligence. 

In looking at the difficulty of the bidimensional rules, it 

is also assumed that, as difficulty increases, the subject's 

abilities will be put to greater test. As this occurs, 

performance differences between subjects of greater and 

lesser abilities will increase. Differences in bidimen­

sional rule difficulty have been revealed in numerous 
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empirical investigations of both AI and RL problems. How­

ever, the order of difficulty is not always the same between 

task types. 

In RL tasks, the order of difficulty among the four 

primary rules has been reliably found to be, from lea.st to 

most difficult: conjunctive, disjunctive, conditional, and bi­

conditional (Bourne, 1970; Bourne & Guy, 1968a, 1968b; Neisser 

& Weene, 1962; Reznick & Richman, 1976; Salatas & Bourne, 1974) 

In spite of the consistency found in the order of rule 

difficulty in rule learning tasks, a number of theoretical 

interpretations of rule difficulty have been proposed. Neisser 

and Weene (1962), for example, proposed a system of logical 

complexity for the psychological processes required by 

different rules. Their analysis placed conjunctive, disjunc­

tive, and conditional rules in the same (easiest) category. 

Bruner, Goodnow and Austin (1956), on the other hand, have 

suggested that subjects develop a strategy whereby they 

focus on the attributes of a positive instance (i.e., a 

member of the stimulus class concept) and compare subsequent 

stimuli by varying one dimension at a time (conservative 

focusing). Bourne and Guy (1968b) examined subjects' utili­

zation of information from negative and positive instances 

for conjunctive, disjunctive and conditional rules on both 

RL and AI problems. Their results indicated that subjects 

may use positive and negative instances differently, de­

pending on the type of problem and the rule. For RL 
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tasks, subjects performed best when information from both 

positive and negative instances was available. On AI pro­

blems, performance was best when information from the 

smaller, more homogeneous class of instances (positive or 

negative) was available. As the variables of class size and 

homogeneity are determined by rule,. the difficulty of the 

rule will increase as class size is increased and/or as 

homogeneity decreases. 

Bourne (1970) and Salatas and Bourne (1974) also 

examined the theoretical models which attempt to account 

for the differences in difficulty found for the bidimen­

sional rules. These various models all predict a different 

order of difficulty for the four primary bidimensional 

rules. The association model, which employs a stimulus­

response logic, predicts equal difficulty of all rules. 

The hierarchy of logical operations model of rule complexity 

(Neisser & Weene, 1962) predicts conjunctive, disjunctive 

and conditional rules to be equally difficult, while the 

biconditional rule is more difficult. Hovland's (1952) 

model predicts conjunctive easiest, with disjunctive and 

biconditional equal, followed by conditional, and then 

disjunctive equal to biconditional as most difficult. The 

variability in the predictions derived from these models 

fails to account for the data which consistently reveals 

a conjunctive, disjunctive, conditional, biconditional 
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order of rule difficulty from least to most difficult. 

Research by Bourne (1970), Salatas and Bourne (1974), 

and that of Sawyer & Johnson (cited in Salatas & Bourne, 

1974) in rule learning have led to the development of a 

model which suggests that subjects acquire a truth table 

problem solving strategy based on the classification of 

stimulus values. In bidimensional concepts, where the 

class concept is defined by two stimulus values and a 

combinational rule, the logical truth table consists of four 

classes of events: True, True (TT); False, False (FF); True, 

False (TF); and False, True (FT). These classes represent a 

factorial combination of the presence (T) or absence (F) of 

the two relevant values (Salatas & Bourne, 1974). 

In the model, it is assumed that naive subjects 

approach the RL problem solving task with a bias favoring 

a conjunctive rule. Bruner, et al. (1956) have referred to 

this bias as a "conjunctive set." In developing a truth 

table strategy, the subject must learn to classify stimuli 

differently for each rule. Given a conjunctive bias, the 

extent to which the stimulus assignments differ from those 

for a conjunctive rule determines the difficulty of the 

rule. 

The results of Salatas and Bourne's (1974) investiga­

tion suggest that for RL problems, subjects make fewer 



7 

classification errors when (a) TT instances were positive, 

(b) FF instances were negative, and when (c) TF and FT 

instances were in the same category as FF instances. This 

particular classification scheme suggests the operational 

characteristics of a conjunctive set, in that it is facili­

tative only for a bidimensional conjunctive rule. This 

supports the contention that when stimuli are classified 

in categories according to a different rule, some degree of 

difficulty is introduced. Salatas and Bourne (1974) cal­

culated the degree O·f rule difficulty on the basis of the 

distribution of stimuli across truth table classes. The 

order of difficulty predicted by the model was supported by 

the results for the four primary bidimensional rules 

(Salatas & Bourne, 1974). 

The order of rule difficulty obtained with AI tasks 

is not as consistent as that found with RL problems. 

Taplin (1971, 1975) has reported instances in which the 

difficulty of disjunctive and conjunctive rules was re­

versed, and where the biconditional rule was equivalent in 

difficulty to the disjunctive rule. He pointed out, how­

ever, that differences in the obtained order of rule diffi­

culty are not surprising given the different tasks employed. 

In examining subjects' hypothesis testing on AI problems, 

Taplin (1975) suggested that differences in rule difficulty 
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may be a function of the processing required in confirming 

or disconfirming hypotheses using positive or negative 

instances. The additional processing for negative instances 

derives from transforming knowledge about what the stimulus 

is no~ to what it is. For AI problems, by virtue of the 

given rule, subjects should not display as strong a conjunc­

tive bias as in RL tasks. It seems reasonable to assume, 

however, that there could be some carry-over in terms of 

processing demands involved in applying a newly learned 

rule to AI tasks. Should this be the case, such bias 

should be reflected in the order of rule difficulty ob­

tained for both RL and AI problems. 

It is noteworthy that most studies involving suc­

cessive rule learning have found positive inter and intra­

rule transfer effects (Bourne & Guy, 1968a, 1968b) and that 

a reduction of differences in rule difficulty occurs 

rapidly across trials (Bourne, 1970; Haygood & Bourne, 

1965; Salatas & Bourne, 1974). This suggests that subjects 

acquire an effective problem solving strategy rather 

quickly and that differences in rule difficulty are most 

likely to be obtained with naive subjects. Further, it 

suggests that subjects may acquire the truth table problem 

solving strategy at different rates. The model proposed by 

Sawyer and Johnson and expanded by Salatas and Bourne (1974) 
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assumes that pre-experimental bias is influential in deter­

mining the rate at which subjects acquire a truth table 

strategy for different rules. Thus, subjects enter the ex­

perimental situation with 'different amounts of experience 

with conceptual problems, and possibly with non-conjunctive 

biases toward the conceptual probl·em. This latter possi­

bility has been examined by Dominowski and Wetherick .(1976) 

and Reznick and Richman (1976). Results from both of these 

studies, which used direct asses·sment of pre-experimental 

bias, indicate that not all subjects exhibit an initial 

conjunctive set. In examining subjects' initial truth 

table classification strategies, Reznick and Richman (1976) 

report that 29 percent of the subjects receiving·one set of 

relevant stimulus values, and 12 percent of the subjects 

receiving another set, revealed a conjunctive bias. Simi­

larly, Dominowski and Wetherick (1976) reJ?ort that nearly 

16 percent of their subjects exhibited an initial conjunc­

tive bias. Results of these investigations indicate that 

the stimulus properties of class ·complexity (i.e., the 

number of unique stimuli within each truth table class) and 

frequency (i.e., the total number of stimuli in each truth 

table class) may effect initial bias (Reznick & Richman, 

1976) and transfer of learning of correct stimulus classifi­

cation within each ·truth table class (within-class transfer) 
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(Dominowski & Wetherick, 1976). In both of these investi­

gations, the results indicate that initial classification 

bias affects subsequent rule learning in the manner proposed 

by the Sawyer and Johnson model. However, these results 

suggest an expansion of the model which would account for 

non-conjunctive bias in conceptual rule learning. 

This study is also concerned with the proposition 

that initial rule difficulty and the acquisition of concep­

tual problem solving strategies may differ for subjects 

of normal and superior intelligence. In light of the 

commonly referred to relationship between conceptual abili­

ties and level of intelligence, this proposition appears to 

have face validity. Further, numerous intelligence tests 

are designed in whole or in part to measure subjects' con­

ceptual abilities. Butcher (1968) points to the surpris­

ingly poor level of integration between the study of indi­

vidual differences and the study of concept learning. One 

purpose of the present research is to examine, in an ex­

ploratory fashion, such an integration. 

The experimental literature does provide some sup­

port for the proposition that intelligence and conceptual 

abilities are related. In a series of studies, Osler and 

her associates (Osler & Fivel, 1961; Osler & Trautman, 1961; 

Osler & Weiss, 1962) have investigated the role of 
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individual differences and conceptual behavior. Osler and 

Fivel (1961) found that subjects with superior IQ exhibit 

sudden, all or none learning consistent with an hypothesis 

testing strategy. On the other hand, normal IQ subjects 

show gradual learning consistent with a continuity theory 

interpretation. Other research by Osler has revealed that 

normal and superior IQ level subjects are differently 

affected by the nwnber of stimulus dimensions (Osler & 

Trautman, 1961) and experimental instructions (Osler & 

Weiss, 1962). On the basis of their results, Osler and 

Trautman (1961) conclude that "the process mediating con­

cept attainment is a function of intelligence" (p.9). An 

extension of this conclusion would suggest that the diffi­

culty of bidimensional conceptual rules and the acquisition 

of an effective problem solving strategy might also be a 

function of intelligence. 

A major assumption in this examination of rule dif­

ficulty is that subjects will exhibit more rapid concept 

attainment where their pre-experimental bias favors the 

relevant rule form (Dominowski & Wetherick, 1976; Reznick 

& Richman, 1976). Thus, without assuming a conjunctive set, 

and in the absence of direct assessment of pre-experimental 

bias, it is assumed that conceptual bias will be revealed 

in the obtained order of rule difficulty as based on the 
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number of trials to criterion for each rule. Therefore, 

should differences in conceptual bias between normal and 

superior IQ subjects obtain, as suggested by Osler and 

Trautman (1961), these should be revealed in the order of 

rule difficulty. In this context, it is expected that for 

both AI and RL tasks, performance differences between IQ 
. 

groups will increase as a direct function of the obtained 

order of rule difficulty for each group. Thus, performance 

differences between IQ groups are expected to be greatest 

on the rules found to be most difficult and smallest on 

the rules found to be easiest. This result is expected re­

gardless of whether the obtained order of rule difficulty 

is the same for the two IQ groups. Similarly, should 

both IQ groups reveal the same order of rule difficulty, 

it is expected that for a given rule, performance differ­

ences between the two IQ groups will increase as a func­

tion of the obtained order of difficulty. 

In this study, there are 54 possible two-valued 

concepts (108 possible ordered pairs for the conditional 

rule). In the AI task, the subject does not know which 

two values are relevant. In the RL task condition, there 

are four possible rules, the correct one of which is 

unknown to the subject. Therefore, it is assumed that 

.the processing demands in the AI task condition are 

greater than those in the RL task condition. Given this 
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differential in processing demands, it is expected that 

obtained differences between normal and superior IQ subjects 

will be greater in the AI condition than in the RL condition 

(Osler & Fivel, 1961; Osler & Trautman, 1961). Although it 

is not assumed that the AI and RL task conditions will 

yield the same results, it is of interest to the present 

study that the task conditions be roughly equivalent. As 

such, procedures and subject instructions are identical 

until subjects are required to solve either AI or RL pro­

blems, and stimulus materials are the same in both condi­

tions. In this way, it is possible to attribute obtained 

differences between AI and RL conditions solely to the 

nature of the task or the type.of processing required by 

the task (Bruner, Goodnow & Austin, 1956). 

In assessing the acquisition of a truth table 

strategy, subjects' performance is examined for each truth 

table class. As the subject learns to correctly assign 

stimuli to a truth table class, errors in that class de­

crease and eventually no errors are made for that class of 

stimuli (Bourne, 1970). It is expected that superior IQ 

subjects learn to assign stimuli to correct truth table 

classes more rapidly than normal IQ subjects. Thus, the 

error rate for any given truth table class should be 

greater for subjects in the normal IQ group than for those 

in the superior IQ group. Additionally, it is expected 
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that the propoition of classification errors will decrease 

more slowly across trials for the normal IQ group than for 

the superior group, as a function of the extent to which 

classification of stimuli for the relevant rule differs 

from that for the preferred (i.e., pre-experimentally bi­

ased) rule. 

The model of truth table classification strategy 

developed by Sawyer and Johnson and expanded by Salatas 

and Bourne (1974) applies to RL tasks. This is the case 

because when the subject is given the relevant stimulus 

values, it is immediately apparent when the values are (T) 

or are not (F) present. In this way, it is easy for the 

subject to classify stimuli on the basis of the presence 

of the relevant values, particularly following a minimal 

amount of practice (Bourne, 1970, 1974). It is of interest 

to the present study that the ease with which subjects 

acquire this type of classification strategy for RL pro­

blems may be a function of intelligence. It is also of 

interest that this type of classification strategy may be 

useful in AI problems as well. Since subjects are 

thoroughly instructed as to the nature of both AI and RL 

problems, it is expected that the importance of the presence 

or absence of the relevant stimulus values will be apparent 

to subjects in both task conditions (Bourne & Guy, 1968a). 
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For subjects in the AI condition, although the two relevant 

values are not known, the correct classification of stimuli 

will still be linked to such a truth table strategy. Due 

to the increased complexity of applying a truth table 

strategy to AI problems, relative to RL problems, it is 

expected that the difference in acquisition rates between 

normal and superior IQ groups will increase as a function 

of the task type, where as for RL problems, the difference 

is lesser than for AI problems. This is consistent with 

the general proposition that AI tasks are more difficult 

than RL tasks (Bourne & Guy, 1968b; Haygood & Bourne, 1965). 



METHOD 

Subjects 

Subjects were 48 paid ($3.00/hr.) participants. 

Subjects were recruited from a number of sources, pri­

marily from summer session courses at Loyola University of 

Chicago. Subjects were 29 females and 19 males, between 18 

and 34 years of age. A total of 50 subjects participated 

in the experiment, however, two normal IQ subjects were 

randomly eliminated so as to yield equal numbers of normal 

and superior subjects under each treatment condition. The 

average length of an experimental session was one to one 

and one-half hours. 

Design 

A 3 x 2 x 2 factorial design with variables (a) 

conceptual rule (conjunction, inclusive disjunction, condi­

tional); (b) task type (attribute identification [AI], rule 

learning (RL]); and (c) intellectual level (normal, superior) 

was employed. Subjects were nested within IQ and task type 

and were crossed with rule type. 

16 
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Materials 

Assessment of intelligence. Prior to the concept 

learning phase of the experiment, all subjects were given 

four of the eleven subtests comprising the Wechsler Adult 

Intelligence Scale (WAIS). The subtests used consisted 

of two Verbal subtests, Similarities (S) and Vocabulary (V); 

and two Performance subtests, Picture Completion (PC) 

and Picture Arrangement (PA). 

In selecting these four subtests, several criteria 

were considered. Due to the constraints of the proposed 

design, it was necessary to evaluate intellectual level 

and execute experimental manipulations in the same 

session. This precluded use of the WAIS Full Scale IQ 

in differentiating subjects. For this reason, it was 

necessary to differentiate IQ on the basis of either a 

shorter test or a subset of the tests given in the full 

scale WAIS. Due to the widespread use and standardization 

of the WAIS, the latter choice seemed advisable. The 

relevance to conceptual behavior of the subtests used in 

the present study was based on published descriptions of 

the subtests by Zimmerman and Woo-Sam (1973) and Matarazzo 

(1972), as well as loading on Cohen's (1957) general intel­

ligence factor (G). 

In their consideration of the S subtest, Zimmerman 

and Woo-Sam (1973) describe performance on similarities as 
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representing "a specific application of man's ability to 

generalize, abstract, and find relationships that are not 

obvious at first ••• emphasizing concept formation rather 

than word difficulty ••• [and] making implicit or 

explicit use of classificatory relationships." (P. 87, 

emphasis added) • 

Matarazzo (1972) describes as important in the S 

subtest "the individual's ability to perceive the common 

elements of the terms he is asked to compare and, at higher 

levels, his ability to bring them under a single concept" 

(p. 205), as well as the ability to "discriminate between 

essential and superficial likenesses" (p. 207). Cohen's 

(1957) factor analysis reveals Similarities as a good 

measure of G (r = 0.77). Zimmerman and Woo-Sam (1973) 

consider this correlation to reflect a capacity for verbal 

concept association. 

Although the V subtest does not involve abilities 

clearly associated with concept formation, it is consi­

dered to be one of the best measures of G. Cohen's (1957) 

data reveal a very strong (0.83) correlation. Zimmerman 

and Woo-Sam (1973) have stated that performance on the V 

subtest "indicates sensitivity to new information and ideas 

and the ability to store and associatively regroup these 

as the occasion demands." They note that "by inference, 

it reveals classificatory and conceptualizing skills." 
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(P. 108). These considerations, in addition to the fact 

that Vocabulary has the highest reliability of the WAIS 

subtests, support the inclusion of Vin the short form for 

assessment of intellectual functioning. 

Cohen's (1957) analysis reveals that PC obtained 

the highest loading of the WAIS performance subtests on 

the general intelligence factor (r = .75). Other major 

factors associated with PC include Verbal Comprehension, 

Perceptual Organization, and Freedom from Distractability 

(Zimmerman and Woo-Sam, 1973). Zimmerman and Woo-Sam also 

point out as important the ability to identify the inter­

relationships among the various major elements of the 

stimulus items. This ability is clearly involved in 

solving concept identification problems and is consistent 

with Matarazzo's (1972) statement that Picture Completion 

"measures the individual's basic perceptual and conceptual 

abilities ••• " (P. 210). Matarazzo also notes the 

importance of the individual's ability to differentiate 

essential from non-essential details. Although PC does not 

directly measure conceptual ability, success on this sub­

test involves skills similar to those required in concep­

tual tasks. 

The PA subtest involves the same skills as those 

associated with PC in the identification of essential 

features and relating parts to the whole. Zimmerman and 
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Woo-Sam (1973) have also noted sequential planning, 

synthesis of parts, and the ability to see cause-effect 

relationships as important factors in the PA subtest. 

Cohen's analysis reveals a moderate (r = .70) correlation 

with G. 

In addition to the above mentioned criteria, the 

reliability coefficients and standard errors of measure-. 

ment (WAIS Manual, 1955) for each subtest were considered 

in establishing the short form used in the present st~dy. 

These figures for the Age 25-34 standardization sample 

are represented on the diagonal in Table 1. 

Table 1 also depicts the intercorrelation matrix 

(WAIS Manual, 1955) for these four subtests and the WAIS 

Full Scale IQ. This correlation matrix was submitted to 

a stepwise multiple regression analysis (Nie, Hull, 

Jenkins, Steinbrenner & Bent, 1975) which provided weights 

for predicting the WAIS Full Scale IQ: Similarities (.20); 

Vocabulary (.37); Picture Completion (.24) and Picture 

Arrangement (.25), (multiple, R = .90). In order to pre­

dict IQ from the four subtests, each subject's raw scores 

were converted to scaled scores, multiplied by the 

obtained beta weights, and summed by Equation 1.0: 



Table la 

Intercorrelation of WAIS Subtests and WAIS Full Scale IQb 

Subtests 

s V PC PA FS 

Similarities (S) r=.85 .74 .56 .52 .74 
SE=l.15 

Vocabulary (V) r=.95 .61 .62 .82 
SE=.67 

Picture Completion (PC) r=.85 .57 .72 
SE=l. 73 

Picture Arrangement (PA) r=.60 .72 
SE=l. 73 

Full Scale IQ (FS) r=.97 
SE=2.60 

Note. Reliability coefficients (r) and standard errors of measurement 

(SE) appear on the diagonal. 

a Adapted from the WAIS Manual, 1955, p. 13, p. 16. 

bThese figures apply to the age 25-34 standardization sample. 

N ..... 
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scaled score for subtest i 

regression weight from 
multiple R. 

(1) 

Normal IQ level was defined as predicted scores. in 

the range of 90 to 114. The lower boundary for the normal 

range follows that used by Osler and Fivel (1961). The 

upper boundary was raised above that used by Osler and 

Fivel since a higher mean IQ was expected in the present 

sample of college students. Superior IQ subjects were 

classified as those with.predicted IQ in excess of 115. 

All materials for the assessment of intelligence 

were taken from the Wechsler Adult Intelligence Scale and 

the WAIS Manual. Each of the four subtests described 

above was given in their entirety as they would be in the 

administration of the full scale WAIS. The WAIS subtests 

were administered by the Experimenter who has had 

graduate level training and experience in administration 

and scoring of the Wechsler Intelligence Scales. 

concept learning materials. Stimuli consisted 

of geometric designs presented on 5" x 8" white index 

cards. These stimuli varied along four three-valued 

dimensions: Number of Figures {one, two or three); 
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Color of Figures (red, blue or green); Shape of Figures 

(circle, square or triangle) and Shading of Figures 

(open, diagonal or cross hatched). For each problem, a 

subset of 36 of the 81 possible patterns was presented 

sequentially in a predetermined order subject to the 

following constraints: 

1. For each problem, stimuli equally represented 

each of the four truth table classes (TT, TF, FT, and FF), 

i.e., nine each; 

2. Stimuli were presented in blocks of nine, such 

that the naturally occuring ratio of negative and positive 

instances for the relevant rule was preserved; and 

3. The 36 stimuli were repeated twice, as 

necessary, for the subject to reach the criterion of 

12 consecutive correct stimulus classifications, three for 

each truth table class, for problem solution. 

Procedure 

There were two phases in this study. The first 

phase consisted of administration of the four WAIS sub­

tests (S, V, PA, PC) and differentiation of subjects by 

level of intelligence. In phase two, subjects were 

trained in the four primary bidimensional rules. 

Following training, subjects solved one problem for each 

of three rules: conjunctive, disjunctive, and conditional, 
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in either an AI or RL paradigm. 

As a control for systematic inter-rule transfer 

effects in both AI and RL conditions, the problem order 

for the three conceptual rules was counter-balanced, 

using six permutations of three rules in raridom rotation. 

Each subject received one problem utilizing each of the 

three conceptual rules. For subjects in the RL condition, 

an awareness of this procedure may have facilitated anti­

cipation of the rule to be learned. That is, a 33 percent 

probability of any one rule on the first problem, a 50 

percent probability of one of the two remaining rules on 

the second problem, etc. In order to offset this anticipa­

tion, two procedures were adapted. First, all subjects 

were instructed in one irrelevant rule (biconditional). 

Second, subjects were instructed that the relevant rule 

was to be determined by random selection with replacement 

among the four possible rules. Thus, the relevant rule 

could have been any one of four possible rules on any 

problem. In order to increase the believability of the 

random selection instruction, subjects were given four 

problems. The second in the series of four problems 

utilized the same rule as the first problem in the series. 

Only the first of these two problems was considered in the 

analysis. 

Phase one. Subjects were informed that there 



25 

were two phases in the experiment. Each subject was then 

given instructions pertaining to Phase 1 (see Appendix A). 

Subjects were told that they would be given four 

tests taken from the Wechsler Adult Intelligence Scale. 

It was explained that these tests would be used as a 

measure of general intelligence only for purposes of com­

paring experimental participants, that results would be 

kept confidential, and that professional ethics would not 

allow the Experimenter to inform subjects of the outcomes 

of these measures. Subjects were given the four WAIS 

subtests in the respective order of their administration 

in the Full Scale WAIS (S, V, PC, PA). 

Following the administration of the four WAIS 

subtests, subjects were given a short break before the 

start of Phase Two. The Experimenter then computed 

estimated IQ (see Equation 1.0) and assigned subjects to 

AI and RL task conditions on an alternating basis as a 

function of IQ level, so as to yield equal numbers of 

normal and superior IQ level subjects under each treatment. 

Phase two. All subjects were instructed in the 

principles of the concept learning tasks (see Appendix A). 

The nature of the stimuli and the four primary bidimen­

sional rules were explained and subjects were shown 

examples of the stimuli which represented each value of 

the four dimensions. For their reference during the task, 
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subjects were provided with a list of the four three­

valued dimensions (see Appendix B) and a sheet explaining 

the four primary rules (see Appendix C). For each stimulus, 

subjects were required to make a category response by 

saying either "yes" or "no," indicating membership or 

nonmembership in the concept class. Subjects received 

feedback from the Experimenter who indicated the correct 

category response by saying either "yes, it is" or "no, 

it is not." 

Subjects were given practice utilizing a card 

sorting procedure. The card sorting procedure was repeated 

for each rule with 12 of the 52 playing cards representing 

three instances from each truth table class. For each 

rule, the sorting procedure was repeated as necessary for 

subjects to correctly sort all twelve cards according to 

the relevant rule and values, which were given. Errors 

were corrected and explained immediately for each stimulus. 

When repetition was necessary, the relevant values were 

changed·and the rule remained the same until the practice 

criterion was reached. 

Following the practice procedure, subjects were 

instructed for either AI or RL problems (see Appendix A). 

Subjects were given as much time as necessary to respond 

to each stimulus card and immediate feedback was provided. 
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After being given the correct response, the subject was 

given five seconds to view the stimulus before the next 

card was presented. 

Upon completion of the four concept learning pro­

blems,. subjects were requested to indicate the extent to 

which they believed ~he random rule selection instruction 

on a Likert-type five point scale. This procedure was 

designed to indicate the extent to which subjects in the 

Rule Learning (RL) condition may have anticipated the rule 

to be learned. 

At the conclusion of the experimental session, 

subjects were thanked and paid for their participation. 

A brief explanation of the experiment was offered and 

subjects' questions were answered. 



RESULTS 

Pooled within group estimates of error variance 

were computed separately for AI and RL task conditions. 

Homogeneity of variance between task conditions was then 

tested with the F statistic at the .25 level of signifi­

cance. This alpha level was set in order to avoid the type 

two error of failing to reject a false null hypothesis of 

homogeneity (i.e., no difference}. Six of the 10 tests for 

homogeneity of variance revealed significant differences 

between the two task conditions for each of the following 

dependent variables. On reaching criterion, F (22,22} = 

2.938, E. < .01 and F (44,44} = 3.958, E.<. .01, for subjects 

within IQ and subjects x rule within IQ, respectively. 

On proportion of total errors, F (22,22} = 2.048, E.< .10 

and F (44,44} = 1.373, E. <..10, for subjects within IQ and 

subjects x rule within IQ, respectively. On proportion of 

errors within truth table class, F (22,22} = 2.172, E. < .OS 

and F (66,66} = 1.869, E. <. .01, for subjects within IQ and 

subjects x truth table class within IQ, respectively. 

The F test for homogeneity of variance failed to 

28 
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reach significance on the variable correct hypothesis for 

both subjects within IQ and subjects x rule within IQ. 

Similarly, there was a failure to reject the hypothesis 

of homogeneity of variance on the proportion of errors 

within truth table class for subjects x rule within IQ and 

subjects x rule x truth table class within IQ. Thus there 

was no significant difference in variance between the two 

task conditions on these dependent variables. On the 

whole, however, the null hypothesis of homogeneity of 

variance between the AI and RL task conditions was rejected 

and all subsequent analyses were performed separately for 

each of the two task conditions. 

Mean IQ scores and the corresponding variance was 

computed for both normal and superior IQ groups in the AI 

and RL task conditions. These figures can be found in 

Table 2. The strength of association between the dependent 

and independent variables was also computed. T - tests 

and computation ofw2 (from Hays, 1973, p. 414) for each 

task condition showed that a significant proportion of the 

variance was accounted for by IQ level. For the AI task, 

w2 = .6648, while for the RL task,w2 = .7125, showing 

nearly equal amounts of variance accounted for by IQ in the 

two task conditions. 

In order to evaluate the extent to which subjects 
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Table 2 

Mean and Variance of IQ 

for Normal and Superior Subjects 

IQ Level Mean Variance 

Superior 

AI Task 122.1 24.41 

RL Task 120.3 17.39 

Normal 

AI Task 108.3 25.72 

RL Task 107.5 15.08 
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believed the random rule selection instruction, subjects' 

confidence ratings were examined. The mean confidence 

level on a five point Likert-type scale was 4.79, indicating 

a very high level of confidence in the veridicality of this 

instruction. 

Due to the constraints placed on the stimulus set, 

for the conditional rule, it was possible for the subjects 

in the AI task condition to formulate an hypothesis which 

could not be disconfirmed. For subjects under this treat­

ment condition, when an incorrect hypothesis was stated, 

the stimulus set was examined for possible disconfirmation. 

When the stated hypothesis could not be disconfirmed, the 

subject was given credit for the correct hypothesis • Of 

17 subjects giving an incorrect hypothesis under the AI 

conditional rule treatment condition, five subjects stated 

hypotheses which could not be disconfirmed. For purposes 

of this analysis, those five subjects were treated as 

having stated the correct hypothesis. 

Attribute Identification 

A 2 (IQ level) x 3 (conceptual rule) analysis of 

variance was computed for the AI (Attribute Identification) 

task. The dependent variables for this analysis were: 

(a) the proportion of total errors to total responses; 

(b) statement of the correct hypothesis; and (c) reaching 
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the criterion of 12 consecutive correct responses within 

the maximum of 72 trials. Table 3 presents a summary of 

this ANOVA. Part (i) contains the summary for the 

dependent variable of reaching criterion. Parts (ii) and 

(iii) present the summary for correct hypothesis and propor­

tion of errors, respectively. For this task condition, the 

analysis revealed a main effect of conceptual rule on all 

three dependent measures. F (2,44) = 12.8701, E,< .01, 

F (2,44) = 14.3257, E.< .01, F (2,44) = 13.5539, E.< .01, for 

criterion, hypothesis, and errors, respectively. Table 4 

shows the mean percentage of subjects failing to reach cri­

terion as a function of conceptual rule. Table 5 shows the 

mean percentage of subjects failing to state the correct 

hypothesis as a function of conceptual rule and IQ level, 

and Table 6 shows the mean proportion of errors to total 

responses as a function of conceptual rule and IQ level. 

The ANOVA also revealed a significant interaction 

of rule and IQ level on subjects' statements of the correct 

hypothesis in the AI task. F (2,44) = 3.5814, E,<.. .OS. 

The figures in the matrix of Table 5 represent the percen­

tage of subjects failing to state the correct hypothesis 

as a function of the IQ level, conceptual rule interaction. 

For both normal and superior IQ levels, the order of rule 

difficulty was the same (in order of descending difficulty): 



Table 3 

Attribute Identification Task 

2(IQ Level) X 3(Conceptual Rule) ANOVA Summary 

Source ss df MS F 

Part ( i) : Criterion 

Between 

IQ .001389 1 .001389 .1209 

Subjects (IQ) 2.53 22 .11489 

Within 

Rule 2.25 2 1.625 12.8701** 

IQ X Rule .5278 2 .26389 2.09 

Subjects x Rule (IQ) 5.56 44 .12626 

Part (ii) : Hypothesis 

Between 

IQ .00556 1 .00556 .3284 w 

Subjects (IQ) 3.722 22 .16919 
w 

Within . 

Rule 3.11 2 1.56 14.3257** 

IQ X Rule .7778 2 .3889 3.5814* 

Subjects x Rule (IQ) 4.778 44 .10858 



Table 3, cont. 

Source ss df MS F 

Part (iii) : . Errors. 

Between 

IQ .8888 1 .8888 .0064 

Subjects (IQ) 3079.04 22 139.96 

Within 

Rule 1912.11 2 956.06 13.5539** 

IQ X Rule 448.11 2 224.06 3.1764 

Subjects x Rule (IQ) .3103. 64 .44 70.54 

** p < .01 

* p < .05 
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Table 4 

Mean Percentage of Subjects Failing to Reach 

Criterion in the AI Task* 

Conceptual Rule Conjunctive 

00 

Disjunctive 

12.5 

Conditional 

50 

*These figures are based on n = 24 subjects 



36 

Table 5 

Mean Percentage of Subjects Failing to State 

the Correct Hypothesis in the AI Task 

Conceptual Rule 

IQ Level Conjunctive Disjunctive Conditional 

Normal 

Superior 

0 

0 

0 

33 

0 

17 

42 

58 

50 

Note. The marginal column totals represent the means 

for the main effect of rule. The figures within the matrix 

represent the Rule x IQ interaction. 
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Table 6 

Mean Proportion of Errors to Total Responses 

for the AI Task Condition 

Conceptual Rule 

Conjunctive Disjunctive Conditional 

22.33 23.08 28.33 

18.67 19.25 35.17 

20.50 21.16 31.75 

I 24.58 

I 24.36 

~- These figures represent the mean proportion of 

errors x 100. 
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conditional, disjunctive, and conjunctive. 

In order to examine the differences between the 

rules which contributed to the significant overall main 

effect of rule on the dependent measure of reaching 

criterion (see Table 4), a Newman-Keuls test was performed. 

Utilizing the q statistic (see Winer, 1971), this test r 
revealed significant differences between the conditional 

rule and each of the other rules {i.e., conjunctive and 

disjunctive). SB q_ 95 {3,44) = .2487, E< .OS; and SB q_ 95 

{2,44) = .2066, E< .OS, for the difference between conjunc­

tive and conditional; and disjunctive and conditional, 

respectively. 

An analysis of simple main effects on the inter­

action of IQ level and rule on the dependent measure of 

stating the correct hypothesis {see Table 4) was performed. 

This analysis revealed a significant effect of rule on both 

IQ groups. F (2,44) = 5.374, E< .01, for normal IQ sub­

jects, and F {2,44) = 12.534, E<-01, for superior IQ 

subjects. This simple main effects analysis also showed 

a significant effect of IQ on the disjunctive rule, F 

(1,63) = 5.125, e<-OS. The simple main effect of IQ on 

the conjunctive and conditional rules was not significant. 

A Newman-Keuls test on the differences between 

rules for the mean proportion of total errors revealed 

relationships similar to those found on the criterion 
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measure (see Table 6). For the difference between condi­

tional and conjunctive rules, SB q_
95 

(3,44) = 5.880, 

E <.OS; and for the difference between conditional and dis­

junctive rules, SB q_
95 

(2,44) = 4.886, E< .OS. 

A contrast on the mean proportion of total errors 

also revealed a significant difference between the conjunc­

tive-disjunctive rule pair and the conditional rule, F 

(1,69) = 27.02, E<-00l. The difference between the con­

junctive and disjunctive rules was not significant. 

In order to examine the proportion of errors to 

total responses within each truth table class, a 2(IQ 

level) x 3(conceptual rule) x 4(truth table class) analysis 

of variance was performed for the AI task condition. Table 

7 represents this ANOVA in summary form. This analysis 

showed a main effect of conceptual rule, F (2,44) = 

12.9437, £(.01, with rules ordered conjunctive, disjunctive 

and conditional, respectively, from least to most difficult. 

This analysis also revealed significant interactions in the 

AI task condition for conceptual rule and IQ level, F 

(2,44) = 3.2788, E(.05, and between conceptual rule and 

truth table class, F (6,132) = 7.1484, E<-01. Table 8 

represents the proportion of errors to total responses, 

summed across truth table class, as a function of rule and 

IQ level. Table 9 shows the proportion of errors to 



Table 7 

Attribute Identification Task 

2(IQ Level) x 3(Conceptual Rule) x 4(Truth Table Class) ANOVA 

Summary for Truth Table Class Errors 

Source ss df MS F 

Between 

IQ 10.125 1 10.125 0.0182 

Subjects (IQ) 12240.44 22 556.38 

Within 

Rule 7299.52 2 3649.76 12.9437** 

IQ X Rule 1849.08 2 924.54 3.2788* 

Subjects x Rule (IQ) 12406.75 44 281.97 

Class 2106.24 3 702.08 1. 8110 

IQ x Class 597.90 3 199.30 0.5141 

Subjects x Class (IQ) 25587.04 66 387.68 

Rule x Class 12691.80 6 2115.30 7.1484** 

IQ x Rule x Class 258.10 6 43.02 0.1454 

Subjects x R11le x 39060.23 132 295.91 
Class (IQ) 

.r:,. 
0 

** p<. 01 

* 0 <.05 
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Table 8 

Mean Proportion of Errors to Total Responses 

for Subjects in the AI Task Condition 

Conceptual Rul.e 

Conjunctive D.i.sjunctive Conditional 

22.90 23.21 28.35 

18.98 19·.21 35 .15 

20.94 .2.1.2.1 .31.75 

I 24.82 

I 24.45 

Note. These figures represent the the mean {proportions) 

x 100. The marginal column totals represent the means for the 

main effect of rule, while the means within the factorial 

matrix represent rule by IQ interaction. These figures are 

summed across truth table class. 
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Table 9 

Mean Proportion of Errors to Total Responses 

As a Function of Truth Table Class and Rule in the AI Task 

Truth Table Class 

Rule TT TF FT FF 

Conjunctive 22.92 21.92 30.25 8.67 

Disjunctive 7.79 20.96 27.21 28.88 

Conditional 32.29 38.58 24.50 31.62 

Note. Figures represent means (proportions) X 100. 
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total responses within each truth table class as a func­

tion of conceptual rule summed across IQ levels. 

An additional 2(IQ level) x 3(conceptual rule) 

analysis of variance was performed for the AI task condition 

using the number of trials to criterion as the dependent 

measure. For purposes of this analysis, subjects failing 

to reach criterion within 72 trials were assigned the 

maximum score of 72 trials. Results of this analysis in­

dicate a significant main effect of IQ, F (1,22) = 5.07, 

£ < .05, and rule, F (2,44) = 15. 75, £ < .05, on number of 

trials to criterion. Table 10 presents a summary of this 

ANOVA, while Table 11 shows the mean number of trials to 

criterion as a function of IQ and conceptual rule. 

A Newman-Keuls test revealed a significant differ­

ence between superior and normal IQ groups, SA q_ 95 (2,22) = 

9.487, E<-05; and between all rule pairs, SB q_ 95 (2,44) = 

9.798, E<-05 for the difference between the conjunctive­

disjunctive and disjunctive-conditional rule pairs, and 

SB q_ 95 (3,44) = 11. 792, E ( .05 for the differ.ence between 

the conjunctive and conditional rules. 

Rule Learning 

A 2(IQ level) x 3(conceptual rule) analysis of 

variance was computed for the RL task condition. As in 

the AI task, the dependent variables for this analysis 



Source 

Between 

IQ 

Subjects (IQ) 

Within 

Rule 

IQ X Rule 

Subjects x Rule 

Total 

** p <. 01 
* p < .05 

Table 10 

Attribute Identification Task 

2(IQ Level) x 3(Conceptual Rule) ANOVA 

Summary for Number of Trials to Criterion 

ss df MS 

10151.5 23 441. 37 

1901. 39 1 1901.39 

8250.11 22 375.00 

22090.0 48 460.21 

8937.58 2 4468.79 

668.36 2 334.18 

(IQ) 12484.06 44 283.73 

71 

F 

5.07* 

15.75** 

1.18 

~ 
~ 
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Table 11 

Mean Number of Trials to Criterion 

As a Function of IQ Level and Rule in the AI Task 

Conceptual Rule 

IQ Level Conjunctive Disjunctive Conditional 

Normal 33.25 47.08 53.33 I 45.56 

Superior 22.67 29.50 53.67 I 35.28 

27.96 38.29 55.00 

Note. Subjects failing to reach criterion were assigned 

a maximum of 72 trials. The marginal column totals repre­

sent the means for the main effect of rule, while the 

marginal row totals represent the means for the main effect 

of IQ level. 
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were: (a) subjects reaching criterion of 12 consecutive 

correct responses within a maximum of 72 trials; (b) sub­

jects' statement of the correct hypothesis; and (c) propor­

tion of errors to total responses. A summary of the ANOVA 

for each of these dependent measures is represented in 

Parts (i), (ii) and (iii) of Table 12. 

For the RL task condition, the 2 x 3 ANOVA revealed 

a significant main effect of conceptual rule on statement 

of correct hypothesis, F (2,44) = 8.8847, E<-0l, and 

proportion of total errors, F (2,44) = 15.2778, E< .01. 

Table 13 shows the percentage of subjects failing to state 

the correct hypothesis as a function of conceptual rule 

and IQ level. Table 14 shows the mean proportion of errors 

to total responses as a function of conceptual rule and IQ 

level. 

A Newman-Keuls test on the statement of correct 

hypothesis showed significant differences on all possible 

ordered comparisons of rule pairs (see Table 13). For 

conjunctive-disjunctive and conjunctive-conditional pairs, 

SB q_ 95 (2,44) = .05757. For the disjunctive-conditional 

comparison, SB q_ 95 (3,44) = .069286. Similarly, a 

Newman-Keuls test revealed significant differences in total 

errors '(see Table 14) between the disjunctive and condi­

tional rules, SB q_ 95 (2,44) = 4.161. 

In order to examine the proportion of errors within 



Table 12 

Rule Learning Task 

2(IQ Level) x 3(Conceptual Rule) ANOVA Summary 

Source ss df MS F 

Part (i) : Criterion 

Between 

IQ .001389 1 .001389 0.3548 

Subjects (IQ) .8611 22 .003914 

Within 

Rule .2500 2 .12500 3.1936 

IQ X Rule .00278 2 .001389 0.3548 

Subjects x Rule (IQ) 1.722 44 .003914 

Part (ii) : Hypothesis 

Between 

IQ .500 1 .500 3.8824 

Subjects (IQ) 2.833 22 .12878 

Within 
,r:,.. 
-.J 

Rule 1.75 2 .8750 8.8847** 

IQ X Rule .5833 2 .29167 2.9616 

Subjects x Rule (IQ) 4.333 44 .009848 



Table 12, cont. 

Source ss df. MS F 

Part ( iii) : Errors 

Between 

IQ 122.72 1 122.72 1. 7955 

Subjects (IQ) 1503.71 22 68.35 

Within 

Rule 1569.361 2 784.68 15.2778** 

IQ X Rule 232.03 2 116.01 2.2588 

Subjects X Rule (IQ) .2259.88 . 44 51.36 

** p (. 01 
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Table 13 

Mean Percentage of Subjects Failing to State 

the Correct Hypothesis in the RL Task 

Conceptual Rule 

Conjunctiv.e. D.i s j uncti ve Conditional 

17 0 58 

8 0 17 

12 • .5 0 37.5 

Note. The marginal column totals represent the means 

for the main effect of rule 
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Table 14 

Mean Proportion of Errors to Total Responses 

for Subjects in the RL Task Condition 

Conceptual Rule 

IQ Level Conjunctive Disjunctive Conditional 

Normal 10.08 11.50 21.50 

Superior 12.42 5.42 17.42 

11.25 8.46 19.46 

Note. These figures represent the proportion of 

errors x 100. 
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each truth table class in the RL task condition, a 2{IQ 

level) x 3(conceptual rule) x 4(truth table class) 

analysis of variance was computed. A summary of this 

ANOVA is presented in Table 15. This analysis revealed 

significant main effects of conceptual rule, F (2,44) = 

14.1362, E< .01, and truth table class, F (3,66) = 19.3972, 

E < . 01. 

Part (i) of Table 16 shows the mean proportion of 

errors within each truth table class summed across con­

ceptual rule and IQ level. As can be seen in Part (i) 

of Table 16, subjects made the fewest number of errors in 

TT instances with errors increasing respectively for FF, 

TF and FT instances. Part (ii) of Table 16 shows the mean 

proportion of errors for each rule summed across truth 

table and IQ level. 

No significant two-way interactions were revealed 

in the RL task condition. However,the three-way (IQ x 

Rule x Truth Table Class) interaction was significant, 

F (6,132) = 2.2965, E(.05. Part (iii) of Table 16 shows 

the proportion of errors within each truth table class as 

a function of conceptual rule for the normal IQ group, 

while Part (iv) of Table 16 presents those figures for the 

superior IQ group. 

In order to examine-which differences contributed 

to the significant IQ x Rule x Truth Table Class interaction 



Table 15 

Rule Learning Task 

2(IQ Level) x 3(Conceptual Rule) x 4(Truth Table Class) ANOVA 

Summary for Truth Table Class Errors 

Source 

Between 

IQ 

Subjects (IQ) 

Within 

Rule 

IQ X Rule 

Subjects x Rule (IQ) 

Class 

IQ x Class 

Subjects x Class (IQ) 

Rule x Class 

IQ x Rule x Class 

Subjects x Rule x 
Class (IQ) 

** p <. 01 

* P< .05 

ss 

555.55 

5636.39 

6317.92 

940.33 

9832.50 

12070.57 

575.47 

13690.21 

1648.82 

3861.44 

36992.40 

df 

1 

22 

2 

2 

44 

3 

3 

66 

6 

6 

132 

MS 

555.55 

256.19 

3158.96 

470.17 

223.47 

4023.52 

191.82 

207.43 

274.80 

643.57 

280.25 

F 

2.1684 

14.1362** 

2.1040 

19.3972** 

0.9248 

0.9806 

2.2965* 

U1 

"' 



Table 16 

Mean Proportion of Errors to Total Responses Within Truth Table Class 

for Subjects in the RL Task Condition 

Part (i): Errors Summed Across Rules & IQ Level 

Truth Table Class 

Errors 

TT 

3.85 

TF 

18.53 

FT 

20.08 

FF 

11.07 

Part (ii): Errors Summed Across Truth Table Class & IQ Level 

Rule 

Errors 

Conjunctive 

11.58 

Disjunctive 

8.76 

Conditional 

19.80 

lJ1 
w 



Table 16, cont. 

Part ( iii) : Errors for Normal IQ 

Truth Table Class 

Rule TT TF FT FF 

Conjunctive 4.50 19.67 11.58 6.33 

Disjunctive 3.08 20.67 18.00 6.25 

Conditional 7.83 21.83 39.42 18.08 

5.14 20.72 23.00 10.22 

Part (iv): Errors for su12erior IQ 

Truth Table Class 

Rule TT TF FT FF 

Conjunctive 4.42 10.67 20.25 10.25 

Disjunctive o.oo 11.75 7.58 2.75 

Conditional 3.25 26.58 18.67 22.75 

2.56 16.33 17.17 11.92 

Note. These figures represent the proportion of errors x 100. 
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revealed by this ANOVA, differences between truth table 

classes for each rule and differences between the rules for 

each truth table class were computed. These differences 

were computed separately for the two IQ levels. 

For individual comparisons within subjects, the 

following correlated t formula may be used: 

t -
V(MS Rx TT x S(I) x 16 

( 2) 

Where: 

R = Conceptual Rule 

TT = Truth Table Class 

S(I) = Subjects within IQ level 

Data for the correlated t computations are found in 

Parts (iii) and (iv) of Table 16. Using a two tailed test 

of significance, with alpha= .05, significant differences 

for normal IQ subjects were found for: the FT truth table 

class, conjunctive-conditional and disjunctive-conditional; 

for the conjunctive rule, TT - TF; for the disjunctive 

rule, TT - TF, TT - FT, TF - FF; and for the conditional 

rule, TT - TF, TT - FT, TF - FT, and FT - FF. All other 

comparisons for the normal IQ group were not significant. 

For superior IQ subjects, significant differences 

were found for: the TF truth table class, conjunctive­

conditional, disjunctive-conditional, and for the FF class, 



56 

disjunctive-conditional; for the conjunctive rule, TT - TF, 

TT - FT, and TT - FF. All other comparisons for the 

superior IQ group failed to reach significance. 

An additional 2 (IQ level) x 3 (conceptual rule) 

analysis of variance was performed on the dependent variable 

number of trials to criterion. Table 17 presents the 

summary of this ANOVA. As was the case in the AI task 

condition, subjects failing to reach criterion were assigned 

the maximum of 72 trials for purposes of this analysis. 

The ANOVA revealed a significant main effect of IQ level, 

F (1,22) = 9.06, E<-01, and a main effect of rule type, 

F (2,44) = 25,78, 2<.0l. There was also a significant 

IQ x rule interaction, F (2,44) = 7.66, E<·0l. The mean 

number of trials to criterion as a function of IQ level 

and rule type are presented in Table 18. The figures in 

Table 18 represent both the main effects and, within the 

matrix, their interaction. 

A simple main effects analysis on the number of 

trials to criterion revealed a significant effect of rule 

type for normal IQ subjects, F (2,44) = 29.48, £< .01; 

and for superior IQ subjects, F (2,44) = 3.95, £ ,.05. The 

simple main effect of IQ level was significant only for the 

conditional rule, F (1,66) = 23.20, £<._.01. 



Source 

Between 

IQ 

Subjects (IQ) 

Within 

Rule 

IQ X Rule 

Subjects x Rule 

Total 

** p <. 01 

Table 17 

Rule Learning Task 

2(IQ Level) x 3(Conceptual Rule) ANOVA · 

Summary for Number of Trials to Criterion 

ss df MS 

3626.61 23 157.68 

1058.00 1 1058.0 

2568.61 22 116.76 

14658.67 48 305.39 

6815.20 2 3407.60 

2025.58 2 1012.79 

(IQ) 5817.89 44 132.22 

71 

F 

9.06** 

25.78** 

7.66** 

U1 
-..J 
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Table 18 

Mean Number of Trials to Criterion 

As a Function of IQ Level and Rule Type in the RL Task 

Conceptual Rule 

IQ Level Conjunctive Disjunctive Conditional 

Normal 17.5 16.75 48.33 I 27.53 

Superior 20.42 13.00 26.17 I 19.86 

18.96 14.875 37.25 

Note. Marginal column totals represent means for the 

main effect of rule type, while marginal row totals are 

means for the main effect of IQ level. Figures within the 

matrix represent the IQ by Rule interaction. 



DISCUSSION 

Bidimensional rule difficulty varied as a function 

of the type of rule (conjunctive, disjunctive or conditional) 

for almost all dependent measures in this study. The one 

exception to this effect was the criterion measure in the 

RL task condition. For that variable, the mean number of 

subjects failing to reach criterion was equivalent for the 

conjunctive and disjunctive rules and only slightly greater 

for the conditional rule. Aside from this exception, each 

dependent measure in both the AI and RL task conditions 

showed a significant main effect of conceptual rule type. 

As revealed in several post hoc analyses, the main 

effect of rule was invariably due to the difficulty exper­

ienced by subjects in working with the conditional rule. In 

some cases, differences between the conjunctive and disjunc­

tive rules also contributed to this effect. The difficulty 

of the conditional rule was consistent for both the AI and 

RL tasks. 

In the AI task, the conjunctive rule was always 

either easiest or equal in difficulty to the disjunctive 

rule. In the RL task, this order was reversed, with the 

59 
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disjunctive rule always easiest or equivalent to the con­

junctive rule. In other words, the obtained order of rule 

difficulty was consistent with each task type on all de­

pendent measures. For the AI task, the rules were ordered, 

from easiest to most difficult: conjunctive, disjunctive, 

conditional. For the RL task, this respective order of dif­

ficulty was disjunctive, conjunctive, conditional. 

Predictions made by use of the Sawyer and Johnson 

inference model of rule learning were generally supported 

by the results of the present study. Assuming that subjects 

approach the task with a pre-experimental bias favoring a 

conditional rule, the model predicts that subjects will per­

form best on the conjunctive rule, followed by the disjunc­

tive rule, and then the conditional rule. In the AI task 

condition, this ordering of the rules was clearly evident. 

For the RL task condition, this predicted order was partially 

revealed in that the conditional rule was most difficult. 

The conjunctive - disjunctive order was reversed, however. 

In as much as the quantification of the inference 

model is somewhat arbitrary (Salatas & Bourne, 1974), it 

could be argued that the expected differences between rules 

which ·are adjacent in difficulty might be negligible, while 

comparisons with non-adjacent rules are likely to be signi­

ficant. Therefore, non-significant differences might be 
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expected between the conjunctive and disjunctive rules. 

Further, these differences might reveal either ordering of 

the rules found in the present study. 

Salatas and Bourne (1974) have expanded the Sawyer­

Johnson model to include the compliments to the four primary 

bidimensional rules. When all eight rules are included in 

predictions of rule difficulty, the conjunctive and disjunc­

tive rules are respectively ordered easiest and next to 

easiest, while the conditional and biconditional rules are 

next to most difficult and most difficult, respectively. 

Given the quantification of the model imposed by Salatas 

and Bourne (1974), the conditional rule is several steps 

removed from both the conjunctive and disjunctive rules. 

According to the logic developed here, the present study 

provides support for the Sawyer-Johnson model in both the 

AI and RL tasks. 

For the most part, the results of the present study 

are consistent with the Sawyer-Johnson model. However, 

some difficulty remains in accounting for the reversal of 

conjunctive and disjunctive rule difficulty in the RL task 

with this model. It seems that a major source of difficulty 

in reconciling the present results with predictions from the 

Sawyer-Johnson model lies in the assumption that subjects 

approach the· conceptual tasks with a conjunctive bias. In 
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examining subjects' initial classification strategies, 

Dominowski and Wetherick {1976) found that about 58 percent 

of their subjects were· using a strategy consistent with a 

disjunctive rule, while approximately 16 percent used a 

conjunctive strategy. Although they only examined a condi­

tional rule and a negation rule, the results reported by 

Dominowski and Wetherick {1976) are significant to the pre­

sent results in that they show that subjects may approach 

a rule learning task with a non-conjunctive bias. 

In exploring a multibased expansion of the Sawyer­

Johnson model, Reznick and Richman {1976) provide additional 

evidence that not all subjects have a conjunctive bias. 

Their research also shows that while the ordinal position of 

conjunctive and disjunctive rule difficulty reflects the 

subjects' bias, conditional rule difficulty is stable re­

gardless of the pre-experimental bias of the subject. More 

important, in attempting to explain the reversal of con­

junctive and disjunctive rule difficulty found between the 

AI and RL tasks in the present study, is Reznick and 

Richman's {1976) finding that subjects' pre-experimental 

bias may be affected by stimulus variables {such as the 

value of the relevant attributes), and that rule difficulty 

is easily altered by truth table class frequency and com­

plexity. Given this lack of stability, and by extension of 

this finding, it seems likely that the present results 



63 

reflect the sensitivity of subjects' initial bias to the 

demands of a particular task. In the present study, the AI 

task promoted a conjunctive bias, while the RL task elicited 

a disjunctive bias. This finding is also consistent with 

Taplin's (1975) suggestion, and the results obtained by 

Bourne and Guy (1968b) which indicate that rule difficulty 

is readily influenced by the processing demands of the par­

ticular conceptual task. 

overall, this study failed to reveal significant 

differences between the two IQ groups. Generally, however, 

in both AI and RL task conditions, superior IQ subjects re­

vealed better performance than did normal IQ subjects on 

every dependent measure in the study. Differences between 

the two groups were negligible in both task conditions ex­

cept for number of trials to criterion, where superior IQ 

subjects performed significantly better than did the normal 

IQ groups on both AI and RL tasks (see Tables 11 and 18). 

It was suggested that there might be differences be­

tween normal and superior IQ groups on pre-experimental 

bias. There was no evidence in the present study to provide 

support for this suggestion in either task condition. The 

order of rule difficulty was the same for IQ groups on all 

de:Eendent measures. 

One of the major areas of focus in the present study 
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was performance differences between IQ groups as a £unction 

of rule difficulty. The expectation that differences be­

tween IQ levels would increase as rule difficulty increased 

was supported in the RL task condition, where subjects in 

the superior IQ group showed significantly fewer trials to 

criterion than normal IQ subjects on the conditional rule 

(see Table 18). 

Although there were no other significant effects of 

IQ in the RL task, the data on statement of the correct 

hypothesis were in the expected direction (see Table 13). 

On the disjunctive rule (easiest), there were no differences 

between IQ groups. For the conjunctive rule (next to 

easiest), a slight difference favoring the superior IQ group 

was obtained. On the conditional rule (most difficult), the 

differences favoring the superior IQ group were even greater. 

Results in the AI task run counter to the prediction 

that differences between IQ groups will increase as a func­

tion of rule difficulty. For proportion of errors to total 

responses, collapsed across truth table class, the IQ level 

by rule interaction shows fewer errors for the normal IQ 

group than for the superior IQ group on the conditional 

rule (see Table 8}. 

A similar result was obtained for statement of the 

correct hypothesis on the conditional rule in the AI task 
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(see Table 5). For this dependent measure, subjects in·both 

IQ groups stated the correct hypothesis for the conjunctive 

rule. For the disjunctive rule, all superior IQ subjects 

stated the correct hypothesis, while 33 percent of the 

normal IQ subjects in this condition failed to state the 

correct hypothesis. For the conditional rule, 58 percent of 

the subjects in the superior IQ group and 42 percent of the 

normal IQ subjects failed to state the correct hypothesis. 

As mentioned above, this result is responsible for the IQ 

by rule interaction on this measure. However, the simple 

main effects analysis shows that the significant difference 

between IQ groups was on the conjunctive rule, not the con­

ditional rule, and this difference is in the predicted di­

rection. 

In the AI task, the crossover between normal and 

superior IQ groups on proportion of errors is not as easily 

dismissed as is the crossover on statement of the correct 

hypothesis. For proportion of errors, the greatest differ­

ence between IQ groups is evidenced on the conditional rule, 

where subjects in the normal IQ group performed better than 

superior IQ subjects. Why this is the case is not readily 

ascertained from the data. One subject in the normal IQ 

group did not make any errors in this treatment condition, 

but this does not account for the crossover. An examination 

of truth table class errors reveals no major differences 
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between IQ groups which would help explain this result.· It 

remains for further research to examine this particular 

condition before some explanation is to be found. 

The present study also examined truth table classi­

fication strategies between IQ groups in both AI and RL 

tasks. Based on analysis of errors within truth table 

classes, this effect is consistent with the Sawyer-Johnson 

model of rule difficulty and truth table problem solving 

strategy, in that TT and FF instances were both easier than 

TF and FT instances (see Table 16). This result was con­

sistent for both IQ groups. 

It was expected that superior IQ subjects would ac­

quire a truth table problem solving strategy more rapidly 

than normal IQ subjects and that this would be evident in 

different error rates within truth table classes for the 

two IQ groups. This expectation was not confirmed, although 

it was not contradicted in the present study. That is, the 

results were generally in the predicted direction in the RL 

task. Additionally, superior IQ subjects revealed fewer 

significant differences in error rates between the truth 

table classes than did normal IQ subjects. This means that, 

as truth table classification became more difficult, the 

normal IQ gr0up did not perform as well as the superior IQ 

group. 
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group. 
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In general, for the RL task, the present results 

for truth table class errors are consistent with previous 

findings. Dominowski and Wetherick (1976) predicted that 

TT and FF classes should be easier than TF and FT classes, 

given their results in examining classification bias. The 

results of the present study provide support for this pre­

diction for both IQ levels and all three rules. In the AI 

task condition, no such regularity was obtained. This is 

reflected in the lack of a significant main effect of truth 

table class, which argues against the proposition that sub­

jects may acquire a truth table problem solving strategy 

in AI tasks. If an extension of the truth table problem 

solving model was appropriate for AI tasks, it would be ex­

pected that error rates for TT stimuli would be the same or 

similar for all three rules since they are like (i.e., all 

positive) instances. Also, for FF stimuli, error rates 

should be similar for the conjunctive and disjunctive rules 

(where FF instances are negative) and greater for the condi­

tional rule, where FF stimuli are positive. As Table 9 

clearly shows, however, this result was not obtained in the 

present study • 

. The present re.sul ts for the AI task do not conform 

to predictions from any model which examines the effects of 

subiects' classification bias and problem solvinq strategy. 

Although future research may shed some light on this, at 
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present, it can only be concluded that there is no evidence 

supporting the suggestion that subjects may acquire a con­

sistent truth table problem solving strategy in attribute 

identification tasks. At the very least, this study sug­

gests that the quantification of the Sawyer-Johnson model 

for rule difficulty and truth table strategy cannot be ex­

tended to AI problems. This holds for the model as ex­

panded by Salatas and Bourne (1974) and for the multibiased 

modifications suggested by Reznick and Richman (1976). 

Reject.ion of the hypothesis of homogeneity of var­

iance between AI and RL task conditions indicates that there 

are significant differences between the two types of task. 

This supports previous contentions that the processing re­

quired by AI and RL tasks is not the same (Bruner, et al., 

1956; Salatas & Bourne, 1974; Taplin, 1975). Regardless of 

differences in processing demands between AI and RL tasks, 

the conditional rule form is consistently more difficult than 

either the conjunctive or the disjunctive rules. This latter 

conclusion is supported by the difficulty experienced by all 

subjects in the present study during the training phrase of 

the experiment. Whereas all subjects were able to respond 

correctly in the card sorting task for the conjunctive and 

disjunctive rules, the conditional rule presented consider­

able difficulty for all subjects. 
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In light of these findings, it seems that although 

the Sawyer-Johnson model may account for rule difficulty in 

both AI and RL tasks, separate models may be required to 

explain subjects' problem solving strategies in the two 

types of tasks. Truth table responses may not be an appro­

priate dependent measure for AI tasks. On the other hand, 

the consistent ordering of rule difficulty for all dependent 

measures within each type of task indicates a close rela­

tionship between subjects' statement of hypotheses, error 

rates, and nmnber of trials required to reach criterion for 

learning both AI and RL tasks. 

One of the major foci of the present study was the 

relative performance of the two IQ groups. In general, pre­

dictions regarding differences between normal and superior 

IQ subjects were not contradicted in the present study. At 

the same time, however, the IQ factor was not revealed as 

significant a variable as was expected. There are several 

possible reasons for this apparent lack of difference be­

tween normal and superior IQ. 

It is possible that the small nmnber of subjects in 

each cell (n = 12) failed to produce reliable differences of 

a great enough magnitude to be detected in the present study. 

'l'he small but fairly .. consistent differences observed between 

IQ levels lends some .support to this interpretation. Along 
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similar lines, it is possible that the small sample used in 

this study was a fairly homogeneous group. This would have 

the effect of reducing the reliability of predicting differ­

ences between subjects assigned to the two groups {Anastasi, 

1976) • 

Given the type of design used in the present study, 

another possible explanation of the lack of a significant 

main effect of IQ is provided by Winer {1971). He points 

out that the main effect of IQ is confounded with dif­

ferences between groups of subjects nested under the IQ 

factor. The effect of this confounding is to lower the 

sensitivity of the test due to a greater number of uncon­

trolled sources of error variance. Winer {1971) also notes 

that when there is a positive and constant correlation be­

tween pairs of measurements, the error term for the between 

subjects variable will be greater than that for within 

subject variables. 

In the present study, there is some evidence of such 

a positive and constant correlation between the IQ factor 

and spurious differences between groups not due to IQ per se. 

This correlation is seen in the consistency with which the 

error terms for the between subjects variable is greater 

than for the within subjects variable. Although this 

does not mitigate entirely the lack of significant main 

effects for IQ level, it does argue for further consideration 
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of the IQ variable in studies of conceptual learning. The 

suggestion here is that future research should employ an 

alternate design which would include a covariate which 

would statistically absorb a portion of the variance in the 

between subjects error term (Winer, 1971}. 

One additional explanation for the lack of a signi­

ficant IQ effect is the possibility that the training proce­

dure may have reduced the differences between IQ groups. It 

was previously mentioned that subjects had some difficulty 

in learning to respond successfully on the card sorting 

task. During that phase of the experiment, subjects had 

particular difficulty with the conditional rule. Bourne 

and Guy (1968a) have observed strong transfer effects, 

partic~larly when subjects are trained with a conditional 

rule which focuses on responding to TF and FT stimuli and on 

classifying FF instances as positive. Furthermore, training, 

even without such a focus, may result in changes in strategy 

from those of the naive subject (Bourne, 1970; Bruner, et 

al., 1956). In light of this possibility, when training pro­

cedures are used, it might be fruitful in future research to 

examine group differences in the number of practice trials 

necessary for basic understanding of the various rules. 

This study has examined the role of individual 

differences in conceptual behavior and problem solving. 
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Although the magnitude of the IQ group differences was often 

not statistically significant, general support for the exis­

tence of IQ group differences in conceptual behavior has 

been provided. At the very least, this study argues for 

continued investigation in the area. Consistent differences 

between the conditional rule and the conjunctive and dis­

junctive rules have been found in both AI and RL tasks. 

Support was also found for the acquisition of a truth table 

problem solving strategy for both IQ groups in the RL task, 

although this type of problem solving strategy was not evi­

denced in the AI task. 

Lastly, this study also shows that it is both pos­

sible and desirable to examine the relation of IQ and the 

conceptual abilities with which it is typically associated. 
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APPENDIX A 

Instructions 

Phase One 

"There will be two parts in this experiment. In 
the first part, you will be given four tests which are 
taken from the Wechsler Adult Intelligence Scale. Perfor­
mance on these tests will be used as a measure of general 
intelligence, for purposes of comparing groups of subjects 
who will be participating in this experiment. The results 
from these tests will not be used for any other purpose 
and you cannot be identified individually. Professional 
ethics prevent the Experimenter from revealing the results 
of these measures and you will not be given any informa­
tion on this phase of the experiment. Do you have any 
questions? 

Phase Two 

In the second part of this experiment, you will be 
asked to solve several problems. In solving these pro­
blems, it will be necessary for you to form and use con­
cepts. A concept is an idea, acquired through experience, 
which enables us to "zero-in"£!! the eroperties or qualities 
of thin~s.that are_meariiil<;ful, whil7 ignoring the properties 
or qualities of things which are unimportant. 

The Experimenter has placed a list of the properties 
and qualities of the materials which we will be using on the 
table in front of you. As you can see, there are four pro­
perties or dimensions, each having three qualities or 
values. 

1) The Number of Figures: one, two, three 

2) The Shape of the Figures: circle, square, 
triangle 

3) The Color of the Figures: red, blue, green 

4) The Shadinfi of the Figures: open, diagonal, 
cross hate ed 

Each stimulus card will have a combination of one value 
from each of the four dimensions. There are 81 different 
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possible combinations of this sort. 

The Experimenter has placed three examples of 
stimulus cards on the table in front of you. As tha ex­
ample cards show, one value from each dimension will be 
represented on each card. Between the three example 
stimuli, you can see all possible values from each dimen­
sion. 

1) One, Blue, Square, Cross Hatched 

2) Two, Red, Circle, Diagonal 

3) Three, Green, Triangle, Open 

Each of the concepts that you will be learning will 
be based on only two of these values. For example: "one," 
blue." In this case, one, blue are the two important-­
qualities or values, and all other values are unimportant 
to the concept. However, this is only part of the informa­
tion that you will need to solve the problem. 

The other part of the information that will be 
necessary is the way in which these values are related. 
With two-valued concepts, there are several relationships 
or rules of combination which can be used. We are going 
to be concerned with four of these rules. The Experimenter 
has placed on the table in front of you a list of the four 
rules which we will be using. Using "A," "B" as the two 
important values, these rules are: -

1) Conditional: IF A THEN B 

2) Disjunctive: A ORB 

3) Conjunctive: A AND B 

4) Biconditional: IF A THEN B AND IF B THEN A ----
For each stimulus you will be required to say either 

"yes" or "no" depending on whether or not you think the 
stimulus presented is a member of the concept group. 
Remember that the concept will depend on both the rule and 
the two important values. Following the previous example 
of "ONE, BLUE," your response would be "yes" if the 
conditions""'are met as follows for each rule: 

Conditional: IF the stimulus has ONE figure 
THEN it must be BLUE-.-



Disjunctive: 

Conjunctive: 

IF the stimulus has EITHER ONE 
figure OR it is BLUE 
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IF the stimulus has BOTH ONE figure 
AND it is BLUE 

Biconditional: IF the stimulus has ONE figure THEN 
it must be BLUE AND IF the stimulus 
is BLUE THEN it musthave ONE figure 

In order to help you understand these rules, you will 
practice by sorting ordinary playing cards according to each 
of the rules. For practice purposes, let us say that the 
playing cards have two dimensions, with two values each: 
Color (red, black) and Shape (face card, numbered card). Aces 
will not be used. For the practice problems you will be told 
both the rule and the two important values. Your task is to 
sort the cards into two categories, those which are members of 
the concept group, and those which are not. You may refer to 
the rule definition sheet which has been provided. Do you 
have ariy questions? 

For your first practice problem, the important values 
are Red, Numbered Card. For each card, respond by saying 
eith~"yes" or "n~using a Conditional Rule. 

For the second practice problem, the important values 
are Black, Face Card. For each card, respond using a~­
junctive Rule. -

For the third practice problem, the important values 
are Red, Face Card. For each card, respond using a Bicon­
ditional Rule.-

For the fourth practice problem, the important values 
are Black, Numbered Card. For each card, respond using a 
Disjunctive Rule. -

Rule learning instructions: For the problems you will 
now be giveii, you will be told only the two important values. 
Your task will be to discover the rule which defines the re­
lationship between the two values. In order to prevent you 
from anticipating the correct rule, it will be chosen ran­
domly from the four rules and then replaced. In this way, any 
one of the four rules could be the correct rule on-any problem. 

The Experimenter will show you a·series of cards, 
one at a time. For each card, respond "yes" if you feel 
the important values exist in the correct relationship. If 
you think the important values do not exist in the correct 
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relationship, you should respond "no." The Experimenter will 
record your responses and tell you if the stimulus is actually 
a member of the correct group or not by saying "yes, it· is" 
or "no, it is not." After the series is complete, the Exper­
imenter will ask you to name the rule which defines the cor­
rect relationship between the important values. 

Because you will not know which of the four rules has 
been selected for this concept, your responses to the first 
few stimulus cards will only be guesses. But, after dis­
covering the correct responses to the stimulus patterns, you 
will soon gain enough information to use the concept that has 
been selected correctly. There is no penalty· for the wrong 
response and no reward for the correct response. What is im­
portant is that you eventually discover the rule which defines 
the correct relatio~ship between the important values. Try to 
be right as often as you can, and, just as importantly, try to 
gain as much info;mation as you can about the concept from eacl 
pattern. Feel free to refer to the list of dimensions or the 
rule definition sheet if necessary. 

Do you have any questions? 

Attribute identification instructions: For the problemi 
you will now be given, you will be told only the rule which de· 
fines the relationship between the two important values. Your 
task will be to discover which two values are important. The 
rule will be chosen randomly from the four rules and then re­
placed. In this way, any one of the four rules could be used c 
any problem, and you will be told which rule has been chosen. 

The Experimenter will show you a series of cards, one 
a time. For each card, respond "yes" if you feel that the care 
has the important values in the relationship defined by the 
rule. If you think that the card does not have the important 
values in the relationship defined by the rule, you should res· 
pond "no." The Experimenter will record your responses and 
tell you if the stimulus is actually a member of the concept 
group or not, by saying "yes, it is" or "no, it is not." 
After the series is complete, the Experimenter will ask you to 
identify the two important values which make up the concept. 

Because you will not know which are the two important 
characteristics, your responses to the first few stimulus 
cards will only be guesses. But, after discovering the 
correct responses to the stimulus patter.ns, you will 
soon gain enough information to use the ~oncept that has 
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been.selected correctly. There is no penalty for the wrong 
response and no reward for the correct response. What is 
important is that you eventually discover the two values 
which make up the concept. Try to be right as often as you 
can, and, just as importantly, try to gain as much informa­
tion as you can about the concept. Feel free to refer to 
the list of dimensions or the rule definition sheet if 
necessary. 

Do you have any questions? 

Random selection instructions: [The following pro­
cedure was repeated for all subjects prior to each problem]. 
For each problem, the conceptual rule will be chosen at 
random. In order to do this, the Experimenter has assigned 
one of the four conceptual rules to each of these four 
Aces. You are to pick one of the four cards and the rule 
which has been assigned to that card will be the chosen rule 
for this problem. Do not take the card from the Experi­
menter and do not look at the card. Simply indicate the 
card the Experimenter should use by pointing to the card. 
[In the AI task condition, the subject was then informed 
which rule had been chosen. In the RL task condition, the 
subJect was then informed which two stimulus values would 
be relevant]. 
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APPENDIX B 
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APPENDIX B 

· Stimulus Dimensions 

DIMENSIONS VALUES 

Number of Figures: ONE TWO THREE 

Shape of Figures: CIRCLE SQUARE TRIANGLE 

Color of Figures: RED BLUE GREEN 

Shading of Figures: OPEN DIAGONAL CROSS HATCHED 
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APPENDIX C 
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APPENDIX C 

Rules Definitions 

Conditional: IF A THEN B 

Disjunctive: A ORB 

Conj unc·ti ve: A AND B 

Bicondition:al: . 'IF A THEN B, AND :!!:, B THEN A 
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