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THE HARVEY LECTURES, SERIES 92 

THE CENTRAL ROLE OF A CDK IN 

CONTROLLING THE FISSION YEAST CELL CYCLE 

PAUL NURSE 

Imperial Cancer Research Fund, Lincoln's Inn Fields, London, England 

Nature is nowhere accustomed more openly to display her secret mys­

teries than in cases where she shows traces of her workings apart from the 

beaten path; nor is there any better way to advance the proper practice of 

medicine than to give our minds to the discovery of the usual law of Na­

ture by careful investigation of rarer forms of disease. For it has been 

found in almost all things, that what they contain of useful or applicable 

nature is hardly perceived unless we are deprived of them, or they become 

deranged in some way. ( From a letter written six weeks before William 

Harvey's death in 1657.) 

I. INTRODUCTION

T
he cell cycle is the process by which cells reproduce themselves, 

and controls acting ov�r the cell cycle ensure an orderly progression 

through this reproductive process. An important element controlling cell 

cycle progression in eukaryotes is the cyclin dependent kinase (CDK) 

family of protein kinases, which regulate passage through the major events 

of the cell cycle in all eukaryotes. In this paper attention is focused on 

the simple unicellular eukaryote fission yeast Schizosaccharomyces 

pombe. Emphasis is placed on the role of cdc2p, the catalytic core of the 

CDK protein kinase that controls the cell cycle in fission yeast. Cell 

cycle controls are more elaborate in multicellular eukaryotes, but focus­

ing on a single model system has the advantage of providing a more 

coherent and complete description of how the controls operate than is 

yet possible in more complex systems. Also, understanding generated 

with a simple model such as fission yeast can be of use in unravelling 

the more elaborate and redundant controls operative in more compli­

cated Metazoan cells. 
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56 PAUL NURSE 

II. CELL CYCLE CONTROLS 

The cell cycle is often defined as the period in the life of a growing cell 
between the formation of the cell by the division of its mother and the time 
when the cell itself divides to form two daughters. This is a useful definition 
because it places emphasis on the fact that the cell cycle usually occurs only 
when cells are already in an active state of growth, and thus discussion about 
cell cycle control is not confused with cell growth control. The latter regu­
lates the transition from a non-growing to a growing state. In a free-living 
unicellular organism such as fission yeast, growth controls are concerned 
with the availability of essential nutrients in the growth medium, while in a 
mammalian cell growth, controls are concerned with growth factor signals 
that reflect the social interactions of cells operative in a multicellular organ­
ism. These growth controls are of great importance but will not be dealt 
with here. Consideration will be confined to the controls regulating progres­
sion through the cell cycle of a cell that is already actively growing. 

For the cell cycle to be successful it is necessary that at cell division the 
two daughters each receive a full complement of all the components neces­
sary for cell survival. Of particular importance is the genome, because each 
new daughter cell should contain a complete set of genes. Two events present in 
all normal eukaryotic cell cycles are essential to achieve this end. These are S­
phase (S), when the DNA making up the genome is replicated, and M-phase 
(M) or mitosis in the mitotic cell cycle, when the replicated chromosomes are
segregated into the two daughter cells. An important aspect of cell cycle control
is concerned with regulating the onset of these two events such that they occur
in the correct sequence of S-phase followed by mitosis, and only once in each 
cell cycle. Therefore much of the work considered here is concerned with eluci­
dating the mechanisms that control onset of these two events.

Precisely replicating and accurately segregating the genome is a complex 
process that ·can go wrong. Cell cycle checkpoint controls ensure that a cell 
does not divide with a partly or incorrectly replicated genome and that mis­
takes do not occur during chromosomal segregation. If a mistake occurs 
during S-phase that blocks DNA replication, then the onset of mitosis is also 
blocked. Similarly, if chromosome segregation is defective, then cell divi­
sion is blocked. These blocks give time for the mistakes and defects to be 
corrected, after which the blocks are relieved and normal cell cycle progres­
sion is allowed. Checkpoint controls are crucial for the fidelity of the ge­
nomic reproductive process and therefore also form an important part of cell 
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cycle control. Also of relevance in this regard is the mechanism that ensures 

that there is only one S-phase per cell cycle. Failure in this mechanism would 

lead to an increase in cell ploidy, and although each daughter would still 

receive a full complement of the genes, the ploidy changes would be detri­

mental for both proper development and sexual reproduction. These con­

trols, which are closely related to those regulating the onset of the events of 

S-phase and mitosis, maintain genomic stability, which is essential for the

survival of both unicellular and multicellular organisms.

Elucidation of these controls is difficult because of their complexity, but 

is much assisted by a genetic approach. Specific mutants disrupt single ele­

ments acting in the controls, and careful study of the subsequent mutant 

phenotype or pathology is revealing about the normal processes involved. 

When this is combined with molecular genetics allowing the cloning of the 

relevant genes, it is then possible to work out the molecular mechanisms 

underlying the controls. Fission yeast is a genetically amenable organism 

that is particularly suited for such a genetic analysis of cell cycle controls 

(Nurse, 1975; Nurse, et al., 1976). Work with this organism has been illumi­

nating about most of the controls outlined above. In particular it has drawn 

attention to the cdc2 gene (encoding cdc2p) as an important element in the 

controls (Nurse, 1990), and the mode of action and regulation of cdc2p will 

now be summarized. 

III. ACTION AND REGULATION OF cdc2p

As mentioned above, cdc2p is a catalytic protein kinase core (Simanis 

and Nurse, 1986). It is 34 kD in size and must be complexed with a cyclin 

regulatory subunit to become active. There are four cyclins in fission yeast; 

three of these are B-cyclins, cdc13p (Hagan et al., 1988), cig l p, and cig2p, 

all of which have roles in the cell cycle. The fourth is puc 1 p, which is closely 

related to the CLN cyclins of budding yeast (Fors burg and Nurse, 1991 ). In 

fission yeast pucl p has no clearly identified role in the cell cycle, but does 

have a minor role in controlling conjugation and meiosis (Forsburg and Nurse, 

1994). As well as this requirement for cyclin binding, cdc2p needs to be 

phosphorylated on threonine T167 for active protein kinase activity (Gould 

et al., 1991). This Tl67 phosphorylation may stabilize cyclin binding. 

The cdc2p protein kinase activity is subject to three further types of regu­

lation. The first is an inhibitory phosphorylation of tyrosine Yl5 located in 

the active site of the enzyme (Gould and Nurse, 1989). When phosphory-



58 PAUL NURSE 

lated on Y15 the protein kinase activity is reduced although not eliminated. 

Specific protein kinases (primarily weel p) (Russell and Nurse, 1987) and 

protein phosphatases (primarily cdc25p) (Russell and Nurse, 1986; Gould 

et al., 1990) regulate the phosphorylation state of Y15. The second type of 

regulation is association of the cdc2p CDK with a specific CDK inhibitor 

rumlp  (Moreno and Nurse, 1994; Correa-Bordes and Nurse, 1995). This 

association completely inhibits the cdc2p-cdcl3p CDK protein kinase ac­

tivity at least in vitro, but is less effective against the cdc2p-cigl p  and cdc2p­

cig2p CDKs. The third type of regulation is controlled proteolysis of the 

cyclin component of the cdc2p CDK. Proteolysis of cdc13p is brought about 

by the proteosome, although rumlp may play a role in efficiently directing 

cdc 13p to the proteosome. All three types of regulation are used at different 

stages of cell cycle regulation in fission yeast. 

IV. CONTROLLING MITOTIC ONSET

The best understood cell cycle transition in fission yeast is the control 

acting at mitotic onset. This is brought about by the cdc2p-cdc13p CDK, 

although cdc2-cig 1 p CDK may play a very minor role. The complex of cdc2p 

with cdc13p begins to form around S-phase, and sufficient complex for ad­

equate mitotic protein kinase activity is present by the first part of G2 (Moreno 

et al., 1989). The main control determining the timing of mitotic onset in­

volves Y 15 phosphorylation (Gould and Nurse, 1989). As soon as the cdc2p­

cdc l 3p complex is formed, Y15 becomes phosphorylated primarily by the 

weel p  protein kinase, although the miklp  protein kinase also plays a con­

tributory role. This leads to a low level of cdc2p-cdc 13p protein kinase ac­

tivity from S-phase to G2 during the cell cycle. The Y15 phosphate is removed 

primarily by the cdc25p protein phosphatase, although the pyp3p protein 

phosphatase also plays a contributory role. When Y15 is dephosphorylated, 

a high level of cdc2p-cdc 13p protein kinase is formed, which brings about 

mitosis. Thus activation of the cdc2p-cdc 13p CDK at the end of G2 depends 

mainly on the balance between the activities of the wee lp  protein kinase 

and the cdc25p protein phosphatase. Activation occurs when the cell attains 

a critical mass (Nurse, 1975), and removing wee 1 p (Russell and Nurse, 1987) 

or over-expressing cdc25p (Russell and Nurse, 1986) advances cells into 

mitosis at a reduced cell mass. 

When the cdc2p-cdcl 3p CDK is fully activated, mitosis takes place. A 

number of key substrates required for the major events of mitosis are thought 



CDK AND FISSION YEAST CELL CYCLE 59 

to become phosphorylated at this time (Moreno and Nurse, 1990). These 

include formation of a mitotic spindle, chromosome condensation, and 

changes in the nuclear envelope that occurs as the nucleus extends during 

mitosis. Little work has been done on these substrates, but cdc2p has been 

found in the spindle pole body ( of obvious relevance for forming the mitotic 

spindle), and when a vertebrate lamin (a component of the nuclear enve­

lope) is expressed in fission yeast, it is phosphorylated by cdc2p-cdc13p 

and becomes dispersed during mitosis (Enoch et al., 1991). To get out of 

mitosis, the cdc2p-cdc13p CDK activity must be much reduced. This is 

brought about by specific cdc 13p proteolysis and requires the action of nuc2p 

and cut9p, two components of the proteosome. When these components are 

defective, cells block in mitosis because of their failure to degrade cdc 13p, 

and as a consequence a high level of cdc2p-cdc 13p protein kinase activity is 

maintained, which blocks mitotic exit. Only when cdc2p-cdc13p activity is 

at a low level can cells exit mitosis and complete the cell cycle. 

V. CONTROLLING S-PHASE ONSET 

Onset of S-phase is less well understood. The primary cyclin involved is 

cig2p, and cdc2p-cig2p CDK protein kinase activity rises to a peak at the 

G 1/S boundary. If cdc2p is inactive, then cells fail to enter S-phase, but the 

mechanisms controlling activation and inactivation of cdc2p-cig2p have yet 

to be elucidated. 

cig2p is not the only B�cyclin that can act at the G 1/S boundary. Both 

cig 1 p and cdc 13p can substitute for cig2p if the latter cyclin is not present. 

Usually cdc2p-cig2p is activated earlier in the cell cycle, and so neither 

ciglp  nor cdc13p normally have any function at G 1/S. However, if the cig2 

gene is deleted, then either cig 1 p or cdc 13p can bring about S-phase (Fisher 

and Nurse, 1996). When both cigl and cig2 are deleted, the mitotic-cyclin 

cdc13p becomes essential for onset of both S-phase and mitosis. Activity 

associated with cdc2p-cdc 13p increases during the cell cycle, first bringing 

about S-phase and then mitosis because the lattei: event requires a greater 

level of activity. 

The molecular mechanism by which cdc2p brings about S-phase is likely 

to involve cdc18p. This protein plays a key role for the initiation of DNA 

replication in fission yeast (Kelly et al., 1993; Nishitani and Nurse, 1995). 

When cdcl8 is deleted, onset of S�phase is blocked, and when cdcl8 is 

over-expressed, multiple rounds of DNA replication occur even in the ab-
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sence of continued protein synthesis. This identifies cdcl8p as a major rate­

limiting step for the initiation of DNA replication. cdcl8p complexes with 

orp 1 p, an orc l p-related protein thought to be part of an origin recognition 

complex (ORC) associated with origins of replication, and with cdc21p, a 

mcm4p-related protein (Grallert and Nurse, 1996). At present, speculation 

on the modes of cdc 18p action must be tentative, but it could be imagined 

that cdc 18p is required for S'"'phase onset at a point downstream of cdc 18p 

accumulation, and so cdc2p-cig2p CDK protein kinase activity may act at 

the point where cdc18p activates ORCs. 

VI. BLOCKING M UNTIL S IS COMPLETE

An important cell cycle checkpoint control is the block over mitosis that 

occurs when S-phase is incomplete (Enoch and Nurse, 1991). This control 

is revealed when DNA replication is blocked with the inhibitor hydroxyurea, 

which blocks mitotic onset (Enoch and Nurse, 1990; Enoch et al., 1992). 

The control works through cdc2p because mutants that reduce cdc2p Y15 

phosphorylation fail to block mitosis even though S-phase is incomplete. 

Various genes have been identified that are required for this checkpoint block­

ing signal. Mutants in these genes lead to hydroxy urea sensitivity and so the 

genes implicated are called hus genes. Many hus genes are also radiation­

sensitive and are found to be identical to previously identified rad genes. 

This has led to the view that there is at least some overlap between the 

mechanisms blocking mitosis due to failures to complete DNA replication and 

due to DNA damage. The present view is that blocks in DNA replication and 

damage to DNA send signals that are communicated to the cdc2p-cdc13p mi­

totic CDK by hus/rad gene pathway. Although both checkpoints share some 

common features, other gene functions may be unique to each pathway. 

cdc 18p, together with a specific subset of proteins required for the initia­

tion of DNA replication, is crucial for sending the signal that S-phase is 

incomplete. When cdc 18 is deleted, cells fail to initiate S-phase and also fail 

to block the subsequent mitosis. This suggests that cdc18p is required both 

to initiate DNA replication and also for sending the signal that DNA replica­

tion is in process. Other replication proteins that behave in a similar way 

include orplp and DNA polymerase alpha (D'Urso et al., 1995). All three 

proteins are required at an early stage in the initiation of DNA replication. 

Loss of other replication proteins acting later in the initiation process, in­

cluding DNA polymerase delta and epsilon and PCNA, block S-phase and 
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also block mitotic onset. This indicates that at these later mutant blocks the 

checkpoint signal monitoring that DNA replication is in process has been 

sent. This can be understood if the checkpoint signal is sent by the forma­

tion of replicative complexes acting at the initiation of DNA replication. 

These are formed at the onset of S-phase, and their presence signals that 

DNA replication is in process. All these replication complexes are consumed 

during the process of DNA replication, and so at the end of S-phase no 

further inhibitory signal is sent and cells can undergo mitosis. Deleting 

genes that block late in the replication process (e.g., DNA polymerase 

delta) does not affect formation of the replicative complexes, and so 

mitosis is blocked. In contrast, deleting genes that block early (e.g., 

cdc l8p) prevents the formation of the complexes, and so no inhibitory 

signal is sent and cells enter mitosis. 

An early G 1 cell has also not completed S-phase and should not undergo 

mitosis, and yet it has not yet formed any replicative complexes and so can­

not block onset of mitosis by the mechanism described above. During this 

phase of the fission yeast cell cycle it is rum 1 p that prevents mitotic onset 

(Moreno and Nurse, 1994; Correa-Bordes and Nurse, 1995). When a cell 

completes mitosis and enters G 1, rum 1 p levels rise, inhibiting any cdc2p­

cdc 13p CDK present and promoting cdc13p protein turnover. This mecha­

nism ensures that early G 1 cells do not enter mitosis. However, if rum] is 

deleted, cells blocked in early G 1 will proceed to mitosis even though S­

phase has not taken place. ruml-deleted cells blocked in S-phase using hy­

droxyurea do not proceed to mitosis because the Y15 phosphorylation 

checkpoint control is still intact in these cells. 

VII. BLOCKING S UNTIL M IS COMPLETE 

When a fission yeast cell is arrested in G2, it does not re-initiate another 

S-phase. In other words, S-phase can only take place when the mitosis of

the previous cell cycle is completed, that is, there can only be one S-phase

per cell cycle. This checkpoint control also involves the cdc2p-cdc l3p CDK

that inhibits re-initiation of DNA replication during the G2 phase of the cell

cycle. When cdcl3 is deleted (Hayles et al., 1994) or the specific cdc2p­

cdc13p CDK inhibitor rumlp is over-expressed (Moreno and Nurse, 1994),

there is a very low level of cdc2p-cdc13p CDK protein kinase activity present

in the cell. As a consequence, G2-arrested cells re-initiate DNA replication

and so cell ploidy increases.
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The advantage of this inhibitory control mechanism is that it explains 

why there is only one S-phase during each cell cycle. In the normal cell 

cycle, cdc2p-cdc13p protein kinase activity has to be reduced to a very low 

level before a cell can exit mitosis. Such reduction would not only lead 

to mitotic exit but also to release from the block acting over the re-initia­

tion of DNA replication. Thus the cdc2p-cdc 13p mitotic CDK must have 

two roles during G2. It prepares the cell for mitosis, the legitimate event 

for a G2 cell, and it prevents the cell from undergoing S-phase, the ille­

gitimate event for a G2 cell. Upon exit from mitosis and entering Gl ,  the 

second inhibitory function is lost because S-phase is now the legitimate 

event for a G 1 cell. 

The manner by which the cdc2p-cdc 13p CDK inhibits re-initiation of DNA 

replication is not known, but it is of interest that cdc 18p has cdc2p consen­

sus phosphorylation sites that appear to be inhibitory for cdc l 8p function. 

Perhaps phosphorylation of cdc 18p and of other proteins may prevent repli­

cative complexes from being formed. This can be incorporated into a two­

step mechanism for the initiation of DNA replication (Stem and Nurse, 1996). 

In the first step, cdc2p CDK protein kinase activity must be reduced to a 

level that allows formation of the initiating replicative complexes on origin 

regions of the DNA. In the second step, cdc2p CDK (usually complexed 

with cig2p) protein kinase activity must rise to a level that brings about 

initiation. In such a scheme the second step automatically inhibits the first 

step. This would prevent the re-establishment of replicative complexes on 

regions of the DNA that have already been replicated, thus ensuring that no 

region is replicated twice during one S-phase. 

VIII. EVOLUTIONARY ASPECTS 

From the above account it can be seen that the cdc2p CDK plays a key 

role in maintaining an orderly progression through the cell cycle. In early 

G 1, cdc2p CDK activity is very low, allowing step one for the initiation of 

DNA replication. A rise of cdc2p-cig2p CDK activity at the end of G 1 car­

ries out step two and brings about S-phase, while at the same time it pre­

vents the re-replication of any region of DNA that has already been replicated. 

The continued presence of cdc2p CDK activity in the form of cdc2p-cdc 13p 

during G2 prevents another S-phase from taking place. Finally, further acti­

vation to a higher level of cdc2p-cdc13p leads to mitotic onset. To exit mi­

tosis and enter G 1 of the next cell cycle, cdc2p CDK activity must fall to a 
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very low level again. Therefore, orderly progression through the cell cycle 

__ is driven by increasing activity associated with the cdc2p protein kinase. 

Although in fission yeast these transitions are normally brought about by 

different cyclin complexes, primarily cdc2p-cig2p and cdc2p-cdc 13p, it is 

possible for cell cycle progression to be regulated entirely by the single 

CDK cdc2p-cdc l3p. This may echo the situation present in more primitive 

ancient eukaryotes when the cell cycle may have been controlled by a single 

CDK, the activity of which gradually increased throughout the cell cycle, 

bringing about the major cell cycle transitions and establishing the major 

cell cycle checkpoints. 

What is not clear, however, is why the eukaryotic cell should have in­

vested so much control in a single CDK that regulates the onset of such 

different events as S-phase and mitosis. It is possible that in the primitive 

ancient eukaryotic cell, DNA replication and chromosome segregation were 

not distinct events (Nurse, 1994). Bi-directional replication results in two 

replicating forks moving away from each other. This separating process may 

have also been the primitive mechanism for chromosomal segregation if 

there was only one origin per chromosome. The replicative complexes present 

at the two forks could segregate the helix containing the Watson strand away 

from the other helix containing the Crick strand. Thus, initiation of replica­

tion (S) and segregation (M) could have been the same process, which was 

controlled by the same mechanism involving a primitive CDK. As eukary­

otic cells became more complex with larger amounts of DNA, they required 

multiple origins for replication and chromosome condensation for mitosis. 

As a consequence, the two events S and M had to become distinct. How­

ever, the same CDK would still be initiating both events, with low levels 

initiating S and higher levels M. Such evolutionary scenarios are obviously 

speculative but provide at least a tenable explanation for why CDKs have 

such a central role to play in the regulation of such different events as S­

phase and mitosis during the cell cycle. 
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