
Rockefeller University
Digital Commons @ RU

Student Theses and Dissertations

2018

Dopaminergic Modulation Shapes Sensorimotor
Processing in the Drosophila Mushroom Body
Raphael Cohn

Follow this and additional works at: https://digitalcommons.rockefeller.edu/
student_theses_and_dissertations

Part of the Life Sciences Commons

This Thesis is brought to you for free and open access by Digital Commons @ RU. It has been accepted for inclusion in Student Theses and
Dissertations by an authorized administrator of Digital Commons @ RU. For more information, please contact nilovao@rockefeller.edu.

Recommended Citation
Cohn, Raphael, "Dopaminergic Modulation Shapes Sensorimotor Processing in the Drosophila Mushroom Body" (2018). Student
Theses and Dissertations. 471.
https://digitalcommons.rockefeller.edu/student_theses_and_dissertations/471

https://digitalcommons.rockefeller.edu?utm_source=digitalcommons.rockefeller.edu%2Fstudent_theses_and_dissertations%2F471&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.rockefeller.edu/student_theses_and_dissertations?utm_source=digitalcommons.rockefeller.edu%2Fstudent_theses_and_dissertations%2F471&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.rockefeller.edu/student_theses_and_dissertations?utm_source=digitalcommons.rockefeller.edu%2Fstudent_theses_and_dissertations%2F471&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.rockefeller.edu/student_theses_and_dissertations?utm_source=digitalcommons.rockefeller.edu%2Fstudent_theses_and_dissertations%2F471&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1016?utm_source=digitalcommons.rockefeller.edu%2Fstudent_theses_and_dissertations%2F471&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.rockefeller.edu/student_theses_and_dissertations/471?utm_source=digitalcommons.rockefeller.edu%2Fstudent_theses_and_dissertations%2F471&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:nilovao@rockefeller.edu


DOPAMINERGIC MODULATION SHAPES SENSORIMOTOR PROCESSING IN THE 

DROSOPHILA MUSHROOM BODY 

A Thesis Presented to the Faculty of 

The Rockefeller University 

in Partial Fulfillment of the Requirements for 

the degree of Doctor of Philosophy 

by 

Raphael Cohn 

June 2018 



© Copyright by Raphael Cohn 2018 
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DROSOPHILA MUSHROOM BODY 

Raphael Cohn, Ph.D. 

The Rockefeller University 2018 

To survive in a complex and dynamic environment, animals must adapt their 

behavior based on their current needs and prior experiences. This flexibility is often 

mediated by neuromodulation within neural circuits that link sensory representations to 

alternative behavioral responses depending on contextual cues and learned 

associations. In Drosophila, the mushroom body is a prominent neural structure 

essential for olfactory learning. Dopaminergic neurons convey salient information about 

reward and punishment to the mushroom body in order to adjust synaptic connectivity 

between Kenyon cells, the neurons representing olfactory stimuli, and the mushroom 

body output neurons that ultimately influence behavior. However, we still lack a 

mechanistic understanding of how the dopaminergic neurons represent the moment-to-

moment experience of a fly and drive changes in this sensory-to-motor transformation. 

Furthermore, very little is known about how the output neuron pathways lead to the 

execution of appropriate odor-related behaviors. 



We took advantage of the mushroom body’s modular circuit organization to 

investigate how the dopaminergic neuron population encodes different contextual 

cues. In vivo functional imaging of the dopaminergic neurons reveals that they represent 

both external reinforcement stimuli, like sugar rewards or punitive electric shock, as well 

as the fly’s motor state, through coordinated and partially antagonistic activity patterns 

across the population. This multiplexing of motor and reward signals by the 

dopaminergic neurons parallels the dual roles of dopaminergic inputs to the vertebrate 

basal ganglia, thus demonstrating a conserved link between these distantly related 

neural circuits. We proceed to demonstrate that this dopaminergic signal in the 

mushroom body modifies neurotransmission with synaptic specificity and temporal 

precision to coordinately regulate the propagation of sensory signals through the output 

neurons. 

To explore how these output pathways ultimately influence olfactory navigation 

we have developed a closed loop olfactory paradigm in which we can monitor and 

manipulate the mushroom body output neurons as a fly navigates in a virtual olfactory 

environment. We have begun to probe the mushroom body circuitry in the context of 

olfactory navigation. These preliminary investigations have led to the identification of 

putative pathways for linking mushroom body output with the circuits that implement 

odor-tracking behavior and the characterization of the complex sensorimotor 

representations in the dopaminergic network. Our work reveals that the Drosophila 

dopaminergic system modulates mushroom body output at both acute and enduring 

timescales to guide immediate behaviors and learned responses. 
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Chapter 1 

Introduction 

 

Neuromodulation of Neural Circuit Function 

 

Earlier this year, the Grey Art Gallery at NYU put on an exhibition of drawings by 

the father of modern neuroscience, Ramón y Cajal1. In exquisite sketches of stained 

neural tissue, Cajal captured the intricacy and diversity of neurons in the brains of 

different animals. With remarkable intuition, Cajal correctly inferred much about how the 

nervous system functions based primarily on these snapshots of neuronal anatomy. 

Building on this foundation with new technologies and methodologies, neuroanatomists 

continue to paint an increasingly detailed atlas of neural tracts and synaptic 

connections. The hope is that constructing a connectome – a complete description of 

the connections between the neurons in a neural structure – will help us to understand 

how these circuits work2. 
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While anatomical studies will continue to shed light on the function of neural 

circuits, connectomics alone will not be sufficient to understand how our brains work. 

Circuit diagrams are only part of the story. To truly understand the workings of the brain 

we need to examine the functional relationships between the components of each 

circuit. Here we are presented with an additional hurdle: these functional relationships 

are dynamic. There are a host of mechanisms by which circuits change on timescales 

ranging from seconds to lifetimes3,4. Synapses are grown and pruned. Neurons become 

more or less excitable. Many of these changes are mediated by neuromodulators, 

molecular signals used by the brain to adjust neural circuit function to serve the needs 

of its owner. The flexibility endowed by neuromodulation allows us to adapt to changing 

environments, adjust our behaviors based on internal states such as hunger or arousal, 

and, importantly, learn from our experiences. 

 

Given the importance of neuromodulation, it is not surprising that many disorders 

that result from dysfunctional regulation of brain states, such as depression and 

addiction, involve neuromodulators, such as dopamine and serotonin5,6. Interestingly, 

these same modulators are also implicated in movement disorders7,8, pointing to a 

diversity of roles that we will return to. Dissecting how neuromodulators appropriately 

tune neural circuits for any given situation is therefore essential not just to explain how 

the brain works, but to help develop treatments for a range of neurophysiological 

diseases. However, as anatomists continue to reveal, the dense web of  
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interconnections between neurons in even a miniscule volume of brain tissue is 

incredibly complex. Addressing not just how these circuits function, but also how their 

functions can be modulated is thus a daunting challenge. 

 

The capacity of neuromodulators to dynamically reconfigure the functional 

properties of anatomically static neuronal circuits is essential for many of the nervous 

system’s most remarkable capabilities. The flexibility of neural circuits allows for 

sensory processing and behavioral outcomes to be modulated based on changes in the 

external environment as well as the internal state of the animal. For instance, in the 

relatively simple stomatogastric ganglion of crustaceans, neuromodulators can modify 

many different properties of rhythmic circuit outputs4. In peripheral sensory circuits, 

modulators can change the gain of sensory processing based on inputs from other 

sensory modalities9, satiety state10 or behavioral state11. But modulation is especially 

important in the complex circuits that underlie the cognitive abilities of many different 

species. Neuromodulators are often essential for circuits that make decisions by 

combining information from multiple modalities, including sensory pathways and internal 

states12–14. With the capacity to affect changes that persist over a range of time scales, 

neuromodulators are also primary drivers of the circuit plasticity that underlies learning 

and memory15,16. 
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While neuromodulators have many important functions, understanding how they 

affect circuit function remains a distinct challenge. Significant insights have been made 

by investigating the modulation of relatively simple circuits. For instance, serotonin-

mediated synaptic facilitation has been shown to be responsible for sensitization of the 

gill-withdrawal reflex in Aplysia17. The same molecule can modulate a chemosensory 

circuit to alter odorant responses in the nematode, C. elegans18. While these systems 

have been valuable for describing mechanisms of neuromodulation and its effects on 

circuit function and behavior, it is unclear how far such findings can be generalized to 

more complex circuits. In particular, how are neural circuits modified so that the same, 

high dimensional, sensory representation can be alternately linked to different 

behavioral outputs, thereby imparting meaning to arbitrary sensory stimuli? 

 

Dopaminergic Signaling in Higher Brain Centers 

 

Investigations across several model systems have established the critical role of 

dopamine, a ubiquitous neuromodulator, in the neural circuits that endow animals with 

the ability to adjust their responses to sensory stimuli based on learned experience. The 

function of dopaminergic circuits in the vertebrate brain have been most heavily studied 

in the striatum, though dopaminergic projections to the prefrontal cortex have also been 

shown to play critical roles in cognitive functions19,20. Like the MB, the striatum receives 

convergent input from dopaminergic neurons (DANs) and from sensory circuits that 
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project from the thalamus and cortical regions, while striatal outputs are thought to 

contribute to action selection and execution21,22. In a remarkable case of neurobiological 

fulfillment of a prediction made by psychological modeling, dopaminergic projections 

from the ventral tegmental area (VTA) to the striatum of non-human primates were 

found to represent the presence of unexpected rewards. This neural representation of 

the difference between the expected and received reward is known as the reward 

prediction error (RPE) and was inferred to be an essential component of circuits that 

implement learned associations23. The ability to more selectively target specific 

dopaminergic populations using the genetic tools available in rodents has begun to 

elucidate more detailed properties of the RPE, while also allowing for inferences 

regarding the neuronal computations that give rise to these error signals24. Recent 

studies have also identified dopaminergic RPE representations in circuits that are 

responsible for other types of learning. For instance, a dopaminergic RPE signal in the 

zebra finch encodes the accuracy of song syllables produced by an adolescent bird in 

comparison with the tutor song it is intending to imitate25.  Thus, dopaminergic neurons  

appear to play the role of the ‘critic’26 in the implementation of a range of learning 

paradigms.   

 

The relative simplicity of this proposed role of dopaminergic signaling, however, 

conceals many layers of complexity and controversies. For one, RPEs are not the only 

signals present in striatal DANs. While many DANs respond to unexpected rewards, 

others respond to aversive stimuli27–29. Furthermore, it has long been known that DANs 
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also encode movement-related signals, and perturbation of dopamine signaling, such as 

occurs in Parkinson’s disease, leads to disruption of motor control8. One prevalent 

model held that movement-related signals might be encoded in the tonic activity of the 

DANs, while the more acute, phasic, activity was responsible for reward-related 

signals30. However, as the tools to record from identifiable subpopulations of DANs have 

improved, the accuracy of this model has come into question. Some studies have 

indicated that distinct subsets of striatum-projecting DANs encode reward signals and 

actions, respectively31–33. Still, others have suggested that the same DANs might 

encode action initiation during early phases of the learning process, but later come to 

represent reward expectation34 or that reward signaling is gated by the initiation of 

motivated movement35. The dual role of dopamine in representing motor-related signals 

and unexpected rewards is an interestingly conserved feature of this neuromodulator 

that we will explore further in subsequent chapters. Nonetheless, the anatomic and 

functional heterogeneity of DANs in the basal ganglia and the intricate wiring of their 

target neuropils29,36–38, has made it difficult for the field to coalesce around a single 

model for the role of these modulatory circuits.  

 

This picture is further complicated by the fact that dopamine can act over long 

distances, by diffusing through the extracellular space, and locally at select synaptic 

sites39. Dopamine also binds to multiple receptors that each couple to distinct 

intracellular signaling cascades, enabling this single neuromodulator to have diverse 

effects on synaptic function and communication. For instance, within the basal ganglia, 
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activation of the D1 or D2 dopamine receptors can lead to either an increase, or a 

decrease in intracellular cAMP, respectively20,40,41. Consequently, even if a consensus 

were to emerge regarding the types of signals encoded in the DANs of the striatum, how 

dopaminergic pathways sculpt synaptic connections to precisely shape circuit function 

remains unclear. 

 

The Mushroom Body 

 

The insect mushroom body (MB) is, in many ways, an ideal substrate for 

investigating how dopamine modifies neural circuits that underlie learned and context-

dependent processing of arbitrary sensory stimuli. The MB was first identified in 1850 by 

the French biologist Félix Dujardin42. A forerunner of Cajal, Dujardin similarly used 

careful anatomical observations and comparative studies to hypothesize that the MB 

was the seat of free will or intelligent control across diverse insect species43. In the 

decades since its discovery, the MB has been shown to play roles in many aspects of 

insect behavior, including locomotion44,45, sleep46–49, multimodal sensory processing50,51 

and multiple types of conditioning52,53. Functional investigations of the MB in honeybees 

and locusts have given insight into both the general and specific roles it plays in 

different insects54–59 while comparative studies of the MB have continued to shed light 

on how this structure is involved in complex invertebrate behavior43,60,61. For instance, 

recent investigations suggest that MBs may be present in specific crustaceans that 
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exhibit relatively sophisticated behaviors62,63. There may even be a common 

evolutionary origin for the MB and the vertebrate cortex64. Interestingly, as the anatomy 

of the MB has been dissected at increasing levels of detail, similarities with 

evolutionarily distant brain structures have emerged, suggesting convergent evolution of 

this particular circuit architecture. In particular, the MB circuitry bears a striking 

resemblance to that of the cerebellum and cerebellum-like structures65, suggesting that 

this organization is ideally suited for adaptive filtering of sensorimotor pathways. 

 

Over the course of the 20th century, as Drosophila melanogaster grew into a 

powerful genetic model organism, the tools to investigate the specific functions of the 

MB have flourished. A major milestone in the study of fly behavior came in the lab of 

Seymour Benzer in the 1970’s where it was shown that flies were capable of forming 

associative memories66. Subsequent studies leveraged the powerful Drosophila genetic 

toolkit and ablation studies to highlight the central role played by the MB in associative 

learning66–70 and to identify many of the genes that are required for normal memory 

functioning71–76. These genetic studies pointed to the importance of dopaminergic 

modulation for olfactory associative learning and identified many genes downstream of 

dopamine receptors that have since been shown to play conserved roles in memory 

from Aplysia to mammals77,78. 
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In the years since associative learning was first demonstrated in Drosophila the 

tools for studying learning and memory in the fly have continued to improve79,80. 

Increasingly detailed analyses of memory performance using different training protocols 

have identified multiple phases of both aversive and appetitive memory that are 

dependent on the MB, revealing that this same circuit architecture can support both 

transient and persistent memories81–92. The adoption of the Gal4/UAS system93,94 and 

the development of a steady stream of tools for the manipulation and recording of 

specific neuronal subpopulations in the Drosophila brain79 have facilitated the detailed 

dissection of the mechanisms underlying learning and memory in the MB. These 

investigations have demonstrated the necessity and sufficiency of particular neuronal 

populations within the MB for formation and retrieval of different phases of memory95–

102. In parallel, functional imaging experiments have begun to reveal potential changes 

in activity in parts of the MB as the result of learning95,97,103–105.The identification of such 

engrams–changes in the brain that occur through learning–has long been recognized as 

a fundamental goal in understanding how information is stored within the brain106,107.  

 

Together, these modern neurogenetic tools have further strengthened the case 

for using the MB as a model for studying the circuit mechanisms underlying flexible 

sensorimotor processing. A large body of research on the early stages of olfactory 

processing have provided a detailed framework for understanding how olfactory stimuli 

are processed before arriving at the Kenyon cells (KCs), which serve as the input layer 

of the MB108,109. These investigations have revealed that this sensory information is 
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conveyed to the MB in a format that is especially well suited to the assignment of value 

to arbitrary sensory inputs110–113. In the spirit of Cajal, detailed anatomical studies of the 

MB revealed a circuit architecture that is highly suggestive of how this learning center 

might function114,115. Deploying thermogenetic, chemogenetic and optogenetic tools, 

together with functional Ca2+ imaging has identified different dopaminergic neurons 

(DANs) innervating the MB that are necessary for the formation, but not retrieval, of 

olfactory associations116. Finally, in the past ten years, Gal4 lines labeling the output 

neurons of the MB have been developed and used to show the necessity and 

sufficiency of these output pathways to induce specific biases to the fly’s 

behaviors100,117–119. These investigations have led to a broad model of the MB’s role in 

learning: Any given odor is represented by the activation of a sparse subset of KCs. 

Distinct subsets of DANs encode either rewarding or punishing stimuli and modify KC to 

mushroom body output neuron (MBON) communication so that the MBON responses to 

the olfactory conditioned stimulus (CS) is changed after the learning experience. This 

modified pattern of MBON activity is then presumed to effectuate the altered behavior 

that is induced through learning. 

 

Investigating Dopaminergic Modulation of the Mushroom Body 

 

While this model provides a general framework for thinking about the function of 

the MB in olfactory learning, the precise mechanisms by which dopamine reshapes MB 
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signaling to generate flexible odor responses remain unclear. In recent years, it has 

become increasingly apparent that the same MB circuitry that underlies the formation of 

olfactory associations is also involved in other forms of context-dependent modulation of 

olfactory behaviors120–128. In hindsight, it may not be surprising that the same circuit 

architecture necessary for associative learning, where there is a convergence of 

sensory information with modulatory reinforcement cues, is also ideally suited to 

modulate ongoing behavior based on relevant contextual information. However, outside 

of their roles relaying rewarding and punishing reinforcement signals, we have a very 

minimal understanding of what features of the environment are relayed by the DANs. 

Even less is known about how ongoing DAN activity might modulate the MB circuit or 

the fly’s behavior. Furthermore, while general models for learning-dependent plasticity in 

the MB have been proposed, there has not yet been a satisfying functional 

demonstration of the synaptic modulation that occurs during learning and how such 

changes alter the output of the MB. Finally, while the MBONs have been shown to bias 

the fly’s behavior towards or away from specific odors, little is known about the 

downstream targets of the MBONs, or how the population of MBONs actually influences 

such circuits in order to lead to the appropriate behaviors.  

 

In my thesis work described here, we took advantage of the Drosophila genetic 

toolkit and the MB’s orderly anatomic organization to elucidate how dopaminergic 

pathways instruct synaptic and circuit plasticity in this structure.  
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In Chapter 2, I describe the background information relevant for understanding 

our investigations of the MB circuit. In particular, I give an overview of what is known 

about the Drosophila olfactory processing pathway and how this gives rise to the sparse 

encoding of odor stimuli within the MB. This is followed by a more detailed description of 

the MB anatomy that has allowed us to probe the plasticity mechanisms within it. 

 

In Chapter 3, I describe our development of a presynaptically localized Ca2+ 

indicator, syt-GCaMP, designed to reveal spatial patterns of dopaminergic modulation 

within the MB. I then detail a series of experiments in which we used syt-GCaMP to 

visualize spatiotemporal patterns of activity in the population of DANs innervating the 

MB. These investigations revealed that coordinated patterns of DAN activity represent 

both salient external cues as well as internally generated behavioral states. 

Furthermore, I explore how network interactions between DANs and MBONs may 

contribute to these patterns of DAN activity.  

 

In Chapter 4, I describe how we again made use of syt-GCaMP to search for 

local modulation of KC presynaptic Ca2+. These experiments revealed that presynaptic 

Ca2+ is asymmetrically distributed along the length of the KC axons, suggesting the 

possibility of local modulation of individual synapses. Further perturbations using 
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genetic manipulations of dopaminergic pathways and activation of DANs demonstrated 

that dopamine is indeed responsible for dynamically modulating the Ca2+ levels at each 

KC synapse. 

 

Chapter 5 expands upon this demonstration of dopaminergic modulation in the 

MB lobes by investigating the effects of this modulatory signal on KC-MBON synapses. 

These experiments revealed that the DANs bi-directionally modify KC-MBON synaptic 

efficacy with exquisite spatial and temporal precision. In particular, we demonstrated 

that a fictive learning paradigm, in which DANs are activated following KC odor 

stimulation, leads to robust synaptic depression. In contrast, unpaired or backward-

paired DAN activation leads to synaptic potentiation. These experiments provide a 

plausible mechanism for the role of dopaminergic modulation in the formation of 

olfactory associations, while revealing additional forms of plasticity within the MB circuit.  

 

Finally, in Chapter 6, I report the development of a closed loop apparatus in 

which a head-fixed fly can perform realistic odor-tracking behavior. This virtual olfactory 

arena allowed us to begin to explore the neural circuits downstream of the MB that are 

responsible for implementing odor valence-guided behavior. In particular, we identified a 

putative locus for the convergence of odor-valence information with directional cues in 

the fan shaped body (FSB). Furthermore, we used this system to demonstrate that the 
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population of DANs encodes detailed behavioral and sensory parameters while the fly is 

engaged in naturalistic walking and exploration of a virtual environment.  
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Chapter 2 

The Drosophila Mushroom Body and Flexible Odor Processing 

 

 The remarkable ability of the animal nervous system to flexibly generate a wide 

array of responses to a given sensory stimulus allows for a level of behavioral 

complexity and adaptability that far exceeds what can be encoded in the genome. 

Understanding how the relatively stable neural circuitry of the brain can generate such 

diversity remains a fundamental question in neuroscience. The neural circuits 

underlying this flexibility will necessarily mediate the convergence of sensory 

information with contextual signals. In this way, the same sensory input can be linked to 

alternate output circuits, leading to different behaviors that are contingent upon 

changing circumstances or previously learned associations.  

 

There are many possible mechanisms through which circuit function can be 

modulated, including changes in synaptic connectivity or strength, adjustments to cell-

intrinsic properties such as membrane excitability20, or even modification of plasticity 

rules129,130. Some of these changes can be mediated by intrinsic activity within a given 

circuit, and many different stimulation protocols have been found to induce various 
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forms of long term potentiation (LTP) or depression (LTD) at specific synapses131. For 

instance, spike-timing dependent plasticity (STDP) allows for the adjustment of synaptic 

strength between two neurons that is contingent upon the relative timing of action 

potentials in each synaptic partner132. While these modes of plasticity do not require the 

input of an external teaching signal, their implementations generally rely upon patterns 

of activity that occur over millisecond timescales, making it difficult to understand how 

they might account for sensory and behavioral associations that occur over longer 

periods of time. Alternatively, functional alterations in neural circuits often rely upon 

heterosynaptic input from neuromodulators, such as dopamine3,4. Since learning and 

other context-dependent modulation can often persist over a wide range of timescales, 

circuit plasticity may involve a variety of different molecular mechanisms, from local 

modifications in signaling pathways at individual synapses to global changes in 

transcription. Thus, it is desirable to study mechanisms of neuronal plasticity in the 

context of the behavioral modifications they underlie, thereby linking circuit physiology 

with the relevant impacts on animal survival.    

 

My thesis work has focused on the Drosophila MB, studying how 

neuromodulation acts on a neural circuit to adjust the behavioral responses to arbitrary 

sensory stimuli. The MB has a well-established role in olfactory learning and memory66–

70 that has been dissected using the powerful genetic toolkit of Drosophila from the level 

of molecular mechanisms through behavioral studies of various stages and types of 

memory133,134. These investigations have revealed a fundamental role for dopaminergic 
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modulation in mediating the plasticity necessary for forming learned associations116. The 

MB has also been shown to play a role in other context-dependent behaviors127,135,136, 

suggesting that the multimodal convergence necessary for forming associations also 

underlies the ongoing modulation of behavior based on the current circumstances. 

Furthermore, recent studies have provided a detailed understanding of how odors are 

represented in this structure110,137, while high resolution anatomical dissection of MB 

circuitry has suggested an elegant relationship between form and function114,115. This 

unique anatomical organization has made the MB particularly well-suited for functional 

investigation of circuit plasticity with the tools of modern functional neuroscience.   

 

Drosophila Olfactory Circuitry: Sensory Neurons to Kenyon Cells 

 

Early Olfactory Processing 

 

In order to probe the mechanisms by which a neural circuit can flexibly link a 

sensory input to a range of behavioral outcomes, it is essential that we have a thorough 

understanding of how sensory stimuli are represented at the input layer to such a circuit. 

Fortunately, the first stages of olfactory processing in Drosophila, up to and including 

how odor stimuli are represented in the MB, have been extensively studied108,109. Our 

understanding of olfactory representations in the MB is aided by the fact that odor 
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sensation at the periphery arrives at the KCs through a shallow circuit with only two 

intervening synapses. Odorants are initially sensed in the fly antennae by binding to 

olfactory receptors (ORs) in the dendrites of olfactory sensory neurons (OSNs) that are 

housed in sensory sensilla (Figure 2.1A). Each OSN expresses just one out of the 

approximately 60 ORs in the fly genome together with a highly conserved olfactory 

receptor co-receptor (ORCO, also known as OR83b) that is required for proper 

trafficking and function of the ORs138–140. In each OSN, the OR-ORCO pair is thought to 

form a heteromeric ion channel that opens in response to odorant binding, with odorant-

selectivity determined by the specific OR expressed in each OSN141. The necessity of 

ORCO expression for proper function of the entire set of ORs has made the ORCO 

gene a powerful tool for wholesale manipulation of the olfactory sensory pathway in 

flies138 and other insects142–144. In addition to the OR pathways, there are two other 

known chemosensory pathways in insects, which work through a family of ionotropic 

receptors145,146 and gustatory receptors147, respectively148.  

 

All OSNs that express the same OR project axons from the antennae to 

innervate a specific target glomerulus in the antennal lobe (AL, Figure 2.1A). Within the 

AL glomeruli, OSNs synapse onto approximately 150 olfactory Projection Neurons 

(PNs) along with a number of local interneurons. Local circuit interactions in the AL 

perform several important functions for incoming odor signals, including gain control and 

normalization149–155, thereby enhancing signal to noise and pattern separation. While 

our focus will be on the essential role of MB plasticity in flexible olfactory processing,  
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Figure 2.1, The Drosophila Olfactory Processing Pathway. A, Schematic of early 
olfactory processing circuitry in Drosophila. Olfactory Sensory Neurons (OSN, cyan) 
dendrites detect odorant molecules in the Antennae (An). OSNs synapse onto olfactory 
projection neurons (PN, red) in antennal lobe (AL) glomeruli. PNs project to the lateral 
horn (LH) and the calyx (Ca) of the mushroom bodies, where they synapse onto the 
claw-like dendrites of Kenyon cells (KC, green). Inset shows an individual PN axonal 
bouton in the calyx ensheathed by the claw-like dendrites of several KCs. B, Adapted 
from Wang et al.156 Combinatorial encoding of odor identity in the antennal lobe 
glomeruli. Heatmap shows GCaMP fluorescence in the PN dendrites in the antennal 
lobe in response to a panel of monomolecular odorants revealing distinct patterns of 
glomerular activity in response to each odor. C, Courtesy of Vanessa Ruta.110 The claw-
like dendrite of a single KC labeled using photoactivatable GFP (green) ensheaths the 
axonal bouton of a single PN labeled by dye-filling with Texas Red Dextran (red) in the 
MB calyx.  
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certain forms of context- and learning-dependent modulation have been proposed to 

also occur in earlier stages of the olfactory processing pathway10,157–160. 

 

Most ORs tend to be fairly promiscuous and broadly-tuned to odorants161, 

meaning that any given odor will lead to varying levels of activity throughout the 

population of OSNs, resulting in a combinatorial pattern of activity across the antennal 

lobe glomeruli (Figure 2.1B)156. This odor representation is then relayed via the PNs to 

two main targets in the protocerebrum: the lateral horn (LH) and the calyx of the MB 

(Figure 2.1A). Historically, the LH has been thought to mediate innate behaviors, such 

as attraction to food odors and responses to pheromones162–164, while the MB has long 

been known to be essential for learned olfactory associations69. However, recent studies 

have begun to reveal unexpected interactions downstream of the LH and MB that 

suggest the MB may also play a prominent role in innate or context-dependent 

behaviors162,165. In accord with the proposed role of the LH circuitry in mediating 

responses to odors with innate meaning, it has been suggested that PN synaptic targets 

in the LH are stereotyped across individuals and anatomically organized according to 

the innate valence or meaning of particular odorant mixtures163,164,166–172. In contrast to 

the hard-wired olfactory circuits of the LH, odor stimuli should be represented in the MB 

in a form that is amenable to the assignment of meaning to arbitrary olfactory cues 

through experience.  
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Sparse and Stochastic Coding of Olfactory Stimuli in the Mushroom Body 

 

In the MB calyx, PNs form large axonal boutons that synapse onto the claw-like 

dendrites of the KCs (Figure 2.1A,C)110,173–175. While the PN projections to the LH seem 

to obey a spatial and synaptic organization that is thought to result in segregated 

pathways for odors with different behavioral relevance, each KC appears to sample 

randomly from, on average, 7 of the PN boutons in the MB calyx110,111. This stochastic 

connectivity, together with non-linear integration of PN inputs by each individual 

KC176,177 and global inhibitory feedback through a large GABAergic neuron178–183  allows 

for any specific olfactory stimulus to elicit activity in a small and unique subset of the 

~2000 KCs (Figure 2.2A)137,184–187. Computational modeling has suggested that this 

type of sparse sensory representation is ideally suited to generate the greatest coding 

capacity, allowing for distinct representations of a large number of arbitrary sensory 

inputs113,188–191. Modeling studies have also suggested that the specific connectivity 

parameters in the MB and related circuit architectures, like the cerebellum, are 

optimized for the sparse, high-dimensional encoding of sensory stimuli that is amenable 

to the formation of associative memories112. 

 

While the Drosophila KCs receive predominantly olfactory information, there are 

a smaller number of inputs from other sensory modalities such as vision and 

gustation192–194. In other insects that rely more on non-olfactory sensory information the  
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Figure 2.2, Sparse Odor Coding in Kenyon Cells. A, Courtesy of Vanessa Ruta. 
Sparse encoding of odor identity in the KCs. Heatmap shows GCaMP fluorescence in 
the KC soma in response to a panel of monomolecular odorants. B, Anatomy of three 
main classes of KCs shown in schematics (left) and single-KC labeling using 
photoactivatable GFP (right, courtesy of Ari Zolin). Dorsal(D)-Ventral(V) and Medial(M)-
Lateral(L) dimensions are indicated below. 
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share of KC synaptic input from these other modalities can be much larger50,192. This 

suggests that the general architecture of the MB is not specifically optimized for 

olfactory processing, but rather represents a circuit organization that is suited for the 

implementation of general purpose learning and context-dependent behavioral 

flexibility195,196.  

 

Convergent Evolution of Olfactory Processing Circuitry 

 

The functional architecture of the early olfactory processing circuitry in flies and 

other insects bears a striking resemblance to mammalian olfactory circuits. In 

mammals, each OSN class likewise expresses a single OR (though in the case of 

mammals these are GPCRs while the insect ORs are a distinct gene family) and 

converge on a single glomerulus in the olfactory bulb197. From the olfactory bulb, there 

is a similar bifurcation of downstream pathways through the amygdala, thought to 

underlie innate odor responses198, and the piriform cortex199–201, thought to mediate 

learned olfactory associations. Interestingly, the piriform cortex, like the MB, is heavily 

targeted by neuromodulatory inputs, including DANs, suggesting that there, too, 

heterosynaptic modulation of olfactory processing shapes odor responses and 

associations202,203. It has been proposed that the remarkable convergence in the 

organization of odor processing circuits might have evolved because of the unique 

properties of olfactory space. Unlike other modalities, such as vision or audition, 
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olfactory space is determined by the shape of odorant molecules, without obvious 

features that are relevant to odor source or identity. The multilayered feature detection 

present in other sensory processing pathways is therefore absent in olfactory systems, 

which instead rely on shallow circuits that encode odor identity with distributed, 

combinatorial patterns of activity in sensory channels defined by a large class of 

receptor molecules with different binding affinities for a range of molecular shapes204. 

The striking resemblance between these distantly related olfactory circuits suggests the 

possibility that understanding the principles of circuit mechanisms and modulation in the 

Drosophila olfactory system will provide fundamental insight into how neural circuits 

achieve the functional flexibility in sensory processing that is necessary for survival. 

 

Mushroom Body Anatomy Underlying Flexible Sensorimotor Processing 

 

Kenyon Cell Anatomy and Classes 

 

Approximately 2,000 KCs make up the intrinsic neurons of the MB and propagate 

their odor responses along fasciculated parallel axon fibers through the pedunculus and 

into the MB’s output lobes. In Drosophila, the KC axons form five such output lobes:  the 

α and α’ lobes project dorsally while the β, β’ and γ lobes project medially. KCs can be 

assigned into one of three broad classes based on which lobes their axons target.  The 
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αβ and α’β’ KC axons bifurcate into the α/β and α’/β’ lobes, respectively, while γ KCs 

project a single axon into the medial γ lobe (Figure 2.2B). Neuronal recordings have 

suggested that the different KC classes possess distinct physiological properties205, 

while behavioral genetic experiments have demonstrated that each class may underlie 

distinct phases and forms of memory81–88. 

 

In this work, we have focused primarily on the γ KCs for several reasons. The γ 

KCs have been shown to be essential during the initial phases of memory formation and 

for short term olfactory associations206–208 suggesting it should be possible to 

functionally characterize learning-dependent γ lobe plasticity over timescales accessible 

in a relatively short-lived experimental preparation. Furthermore, the γ KC axons 

transect the largest number of contiguous compartments within a single, medial lobe, 

while the other classes of KCs bifurcate to form two perpendicular lobe structures 

(vertical lobes and medial lobes) (Figure 2.2B). The compartments traversed by the γ 

KC axons include sub-circuits that have been implicated in both appetitive and 

avoidance learning209–211. Thus, focusing on the γ lobe allowed us to visualize all γ lobe 

compartments in a single imaging plane (Figure 2.3), maximizing our ability to 

simultaneously investigate local modulation in compartments with different functions in 

learning.  
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Figure 2.3, Compartmentalized Architecture of the Mushroom Body. A, Schematic 
of mushroom body anatomy focusing on the γ lobe (left). Each γ Kenyon cell (KC, blue) 
receives olfactory input in the calyx and projects a single axon into the γ lobe (dashed 
line). KCs form en passant synapses with mushroom body output neurons (MBONs, 
green) and receive modulatory input from dopaminergic neurons (DANs, magenta) 
within discrete anatomic compartments (shown for γ2–γ5). Composite image showing 
compartmentalized innervation of the γ5 compartment by DANs (magenta), the γ5 
MBONs (green) together with a single KC highlighted with photoactivatable GFP (cyan, 
right). B, A single γ KC axon photolabeled with PA-GFP (cyan) projects across the 
complete length of the lobe (dashed line).  C, Segregated dendritic innervation of 
MBONs (green) is revealed by expression of GFP in pairs of MBONs in each panel 
using MBON-specific drivers. D, Compartmentalized axonal projections of DANs 
photolabeled with PA-GFP (magenta) in alternating compartments. PA-GFP is 
expressed under the TH and DDC promoters.  
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Within the MB lobes, the KC axons intersect with the processes of a number of 

MB extrinsic neurons. These include some neurons, such as octopaminergic neurons, 

the Dorsal Paired Medial (DPM) neurons, and the Anterior Paired Lateral (APL) neurons 

with broad innervation patterns throughout all or part of the lobes114,115. Here, however, 

we focus on two sets of extrinsic neurons, the MBONs and DANs whose innervation 

patterns in the MB define discrete compartments that tile along the length of the lobes 

(Figure 2.3), and which have been shown to play distinct roles in olfactory learning.  

 

Mushroom Body Output Neurons 

 

The MBONs are the primary synaptic targets of the KCs and must therefore 

translate KC odor representations into adaptive behavioral responses114,115,118,212. The γ 

KCs synapse onto MBONs in five distinct compartments, γ1-γ5 (Figure 2.3A,C). The 

KC-MBON synapses are thought to be primarily excitatory, cholinergic synapses213, 

however KCs may also release neuropeptides such as sNPF214,215. The ensemble of 

MBONs converges onto a small number of target neuropil where their concerted activity 

has been proposed to bias an animal’s olfactory preferences100,117–119,212. Most relevant 

for our studies, thermogenetic blockade or optogenetic activation of specific MBONs has 

been shown to lead the fly to express either approach or avoidance behavior, 

depending on which MBON is activated118,216. Similar optogenetic experiments also 

demonstrated roles for individual MBONs in contributing to sleep-related behavior, as 
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well as various types of conditioning118. While these studies have clearly demonstrated 

that MBONs can influence the fly’s actions, little is known about the circuits downstream 

of the MBONs or how their combined activity actually implements any given effect on 

behavior. We will return to this question in chapter 6. 

 

Dopaminergic Neurons 

 

The mushroom body lobes are also innervated by DANs (Figure 2.3D)114,115,217, 

which are thought to convey the contextual signals that impart meaning to an 

odor88,210,217–220. Rewarding and punishing experiences have been shown to activate 

distinct subsets of MB DANs88,210,221, each of which projects axons into just one or two 

of the lobe compartments (Figure 2.3A,D), mirroring the segregated innervation pattern 

of the MBONs. This anatomic arrangement suggests that DANs may convey positive 

and negative contextual information to each compartmentalized segment along a KC 

axon, potentially facilitating independent tuning of neurotransmission to each MBON in 

different circumstances.  

 

The idea that dopaminergic modulation of KC-MBON communication is 

responsible for the plasticity underlying learned associations is supported by the 

necessity of dopaminergic signaling pathways specifically in KCs. The DopR1 (also 
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known as DUMB, Dop1R1 or dDA1) dopamine receptor was shown to be required in the 

KCs for the formation of both aversive and appetitive memories222. Interestingly, another 

receptor, DopR2 (also known as DAMB or Dop1R2) was shown to be required for active 

forgetting of previously learned associations223. Thus, it appears likely that dopaminergic 

signaling in the MB works through distinct downstream signaling pathways leading to 

different types of plasticity within the MB. While this body of research clearly indicates 

the importance of dopaminergic modulation in MB-mediated learning, the specific 

mechanisms of plasticity remain unclear. This is, in part, because, as in mammals, 

dopamine can act through multiple receptors with different downstream 

effectors20,224,225. Several studies have demonstrated either increases100 or 

decreases117,119,226 in specific MBON responses to trained odors. Furthermore, while 

cAMP signaling has been implicated as an important driver of KC plasticity75,227–229, 

whether and how dopaminergic release might induce such plasticity has not been 

thoroughly investigated.  

 

Mushroom Body Anatomy Suggests a Logic for Learned Associations 

 

The distinct anatomical features of the MB circuitry evoke clear predictions about 

how it might function to flexibly impart olfactory stimuli with meaning based on 

experience. The parallel axons of the KCs, carrying sparsely encoded odor 

representations are poised to form independent connections with each MBON in distinct 
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anatomical compartments. The input from similarly compartmentalized modulatory 

signals in the DANs strongly suggests the possibility that behavioral modification could 

occur through independent tuning of synapses between odor-specific KCs and the post-

synaptic MBONs innervating each compartment216. It is interesting to note the striking 

similarity of many of these features with the architecture of the cerebellum and 

cerebellum-like structures65. At the input layer to each circuit, the intrinsic neurons (KCs 

in the MB and granule cells in the cerebellum) extend a small number of claw-like 

dendritic structures, each of which ensheaths the large axonal bouton of an incoming 

sensory signal. In both circuits, it is thought that non-linear integration of these synaptic 

inputs176,177,230–232, together with global inhibitory feedback178,181,182,233  leads to sparse 

activity of these neurons, allowing them to distinctly encode a large number of sensory 

inputs113,188. Recent computational studies have suggested that the particular 

parameters in each system (such as the number of neurons in each layer and fraction of 

connected neurons) are optimized for the task of forming flexible sensory 

associations112. In both the MB and cerebellum, there is a large expansion in the 

number of cells representing sensory stimuli, which then converge onto a much smaller 

set of output neurons. This type of ‘fan-out-fan-in’ circuitry is thought to be ideal for the 

translation of a large sensory coding space into the smaller space of sensory valence, 

which is more appropriate for the execution of a limited repertoire of behaviors234,235. To 

achieve this convergence, both sets of intrinsic neurons extend fasciculated parallel 

axonal process which synapse onto perpendicularly arrayed output neurons (MBONs 

and Purkinje cells, respectively). These output synapses are the targets of 
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heterosynaptic plasticity induced by DANs in the case of the MB and by climbing fibers 

in the cerebellum236. Finally, the parallels even extend to the feedback loops that are 

thought to lie downstream of the output neurons and influence the modulatory feedback 

in each circuit114,237. This remarkable convergence in neuroanatomy and functional 

organization suggests that this circuit architecture is optimized for the types of adaptive 

filtering and sensorimotor flexibility that these circuits are thought the implement. 

Related structural parameters have also been identified in other intelligent animals with 

complex brains234,235,238. To shed light on how this neural circuit architecture implements 

flexible sensorimotor processing, we set out to design tools and protocols that would 

allow us to probe the plasticity and functional properties of the MB circuitry with synaptic 

resolution. 
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Chapter 3 

Synaptic Ca2+ Imaging Reveals Population-Encoding of Context in DANs 

 

Dopaminergic modulation of neural circuits is ubiquitous across the animal 

kingdom and has been implicated in a range of neurological diseases, from depression 

and addiction to Parkinson’s disease. In the mammalian nervous system dopaminergic 

signaling has been identified as an essential component in conveying the rewarding 

signals that reinforce actions that lead to positive outcomes20. Investigations of these 

dopaminergic systems have suggested that they may relay the RPE signal that plays a 

prominent role in many supervised learning models23,239. While there is considerable 

evidence to support the idea that DANs in the striatum encode RPE, there is still 

extensive debate about what other signals might be encoded in subsets of the these 

neurons, such as motivational or movement-related representations240. Investigations 

into the role of dopaminergic signaling in Drosophila have revealed many conserved 

functions for this neuromodulator, including prominent roles in signaling the rewarding 

and punishing signals that lead to memory formation within the MB241. Interestingly, 

dopamine is also important for Drosophila motivation and movement242,243. Thus, 

dopaminergic modulation appears to be a common thread linking the neural circuitry 

underlying locomotor control and learned associations in very distantly related species.  
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Recent investigations into the role of dopaminergic signaling in the basal ganglia 

have benefited greatly from the ability to selectively record and manipulate distinct DAN 

populations based on differences in their anatomic projections or activity profiles 

29,32,33,244. These advances have led to the understanding that different regions within 

the striatum may receive distinct dopaminergic signals and play diverse roles in shaping 

behavior29,31,32. Different types of reinforcement-related signals have also been recorded 

in identified zones in the striatum, known as striasomes, when compared with the 

surrounding matrix245. In order to investigate similar regional specializations in the MB, 

the non-overlapping, compartmentalized innervation of DANs suggests that it should be 

possible to simultaneously visualize and distinguish between synaptic sites of different 

DANs. Optical recording methods using genetically encoded Ca2+ indicators (GECIs) 

should therefore allow for the measurement of activity throughout the DAN population. 

GECIs have undergone continual improvements in sensitivity over the past decade246, 

and the ability to measure intracellular Ca2+ influx as a proxy for neural activity247 has 

become a mainstay of modern neuroscience. In this chapter we describe the 

development of a presynaptically localized Ca2+ sensor, syt-GCaMP, that allowed us to 

simultaneously record from DANs across multiple compartments of the MB.  

 

However, intracellular Ca2+ is also a common target of molecular signaling 

cascades and neuromodulation20,248–250. This suggests that monitoring Ca2+ levels at 

presynaptic sites might tell us not only about the spiking activity of a neuron, but also 

provide insight into functional modulation at individual synapses. The anatomic 
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organization of the MB lobes raises the possibility that compartmentalized dopaminergic 

release might serve to locally modulate signaling within each segment of the KC axons. 

This model suggests that the ability to simultaneously monitor the functional properties 

of synapses within each compartment with high resolution would provide a powerful 

means to interrogate the mechanisms of plasticity underlying MB circuit flexibility. In 

Chapter 4, we will use syt-GCaMP to investigate this compartmentalized modulation of 

KC presynaptic Ca2+. 

 

An Optical Sensor of Presynaptic Activity 

 

Localization of activity reporters to subcellular compartments, especially 

synapses, has been achieved in several experimental systems and shown to afford the 

ability to resolve anatomical and functional properties that are not apparent with pan-

cellular cytoplasmic expression247,251–254. We therefore targeted the latest generation of 

GECIs246 to presynaptic sites in Drosophila neurons, allowing us to monitor local Ca2+ 

levels at each synapse and potentially serve as a readout of synapse-specific 

modulation. We anticipated that localizing GCaMP expression to presynaptic sites might 

result in weaker fluorescence signals compared to cytoplasmic GCaMP. We 

consequently decided to use GCaMP6s (rather than 6f or 6m) because it generates the 

highest signal to noise ratio in response to Ca2+ binding246. Following the strategy 

adopted by Ventimiglia et al.255, we designed constructs in which GCaMP6s was 
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tethered, via a C-terminal 3xGS linker, to either of two different synaptically localized 

proteins (Figure 3.2A): synaptogyrin, a modulator of synaptic vesicle biogenesis, chosen 

because of its abundance at Drosophila presynaptic sites256, and synaptotagmin, 

because it is known to bind to presynaptic Ca2+ as a mediator of synaptic vesicle 

fusion257. In order to assess whether these fusion constructs localized GCaMP to 

presynaptic terminals, we initially drove their expression in the majority of KCs under the 

control of OK107-Gal4258. This preliminary experiment revealed that synaptotagmin-

GCaMP (syt-GCaMP) provided significantly better synaptic localization when compared 

with synaptogyrin-GCaMP. We therefore focused on syt-GCaMP as a reporter of 

presynaptic Ca2+.  

 

To further confirm and characterize the presynaptic localization of this reporter, 

we co-expressed syt-GCaMP and tdTomato in a small subset of PNs under the control 

of MZ19-Gal4259. PNs have been extensively studied and are known to have distinct 

presynaptic sites in antennal lobe glomeruli, the calyx of the MB and the LH, connected 

by long axons lacking presynaptic machinery (Figure 3.1B-C)109. PNs are therefore 

useful to validate presynaptic targeting, since there should be clear differences between 

presynaptic zones and non-synaptic axonal tracts. Basal syt-GCaMP fluorescence in 

PNs was largely restricted to the known presynaptic sites while tdTomato was 

equivalently distributed throughout the neurons (Figure 3.1E). We then assessed 

whether functional imaging of syt-GCaMP during activation of the PNs would provide a 

synaptically localized readout of Ca2+ influx. We activated the dendrites of MZ-19  
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Figure 3.1, A Synaptically Localized Ca2+ Indicator. A, Schematic of the syt-GCaMP 
construct (left) showing protein domains of synaptotagmin (blue) and GCaMP6s (green), 
including membrane-spanning portion of synaptotagmin (TM) and a GS-repeat linker 
(yellow). Schematic of syt-GCaMP orientation placing the sensor outside the lumen of a 
synaptic vesicle (right). B, Schematic of antennal lobe projection neurons (PNs are red, 
presynaptic sites in green) labeled by MZ19-Gal4. PNs receive excitatory input and 
synapse onto interneurons in the antennal lobe glomeruli (including DA1). They project 
axons into the mushroom body calyx, where they form en passant synaptic boutons and 
then terminate in the lateral horn (LH).  C, MZ19+ neurons are labeled red with the red 
fluorophore, tdTomato, and their synapses labeled green with GFP-tagged presynaptic 
protein, bruchpilot (brp), expressed from the endogenous promoter through 
recombination in flies of genotype UAS-tdTomato, brp > stop > GFP; MZ19-Gal4/UAS-
FLP Recombinase. Presynaptic sites are visible in the antennal lobe glomeruli, 
mushroom body calyx and lateral horn. D, Peak syt-GCaMP fluorescence evoked by 
DA1 glomerular stimulation with acetylcholine and E, basal fluorescence of syt-GCaMP 
expressed in MZ19+ neurons (inset shows magnified boutons in calyx) indicating 
presynaptic localization that closely resembles the presynaptic sites identified by brp-
GFP labeling in B. Note the absence of syt-GCaMP labeling on the shaft of PN axons 
that lack presynaptic sites. Green scales represent fluorescence intensity (A.U.) in same 
units for D-E. F, Immunostaining of larval NMJ with syt-GCaMP expressed in 
motorneurons using VGlut-Gal4. α-GFP staining (green) shows co-localization of syt-
GCaMP with presynaptic cysteine string protein (CSP, left, red) and active zone protein 
bruchpilot (BRP, right, red). α-HRP staining (blue) labels motorneurons and highlights 
axon shaft.   
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labeled PNs in the DA1 glomerulus with iontophoresis of acetylcholine, an excitatory 

neurotransmitter, and recorded the fluorescence of syt-GCaMP in the DA1 glomerulus, 

along the PN axonal tract, in the MB calyx and in the LH. PN activation led to robust 

increases in fluorescence that were highly localized to PN presynaptic sites and largely 

absent from axonal tracts (Figure 3.1D), suggesting that syt-GCaMP effectively localizes 

to presynaptic sites.  

 

In order to further corroborate the synaptic targeting of syt-GCaMP we expressed 

it in motor neurons using VGlut-Gal4. The Drosophila neuromuscular junction (NMJ) is a 

well-studied system for understanding the development and plasticity of synaptic 

structures and therefore has well-established protocols for the identification of 

presynaptic markers260. We performed immunohistochemistry of the NMJ in order to 

visualize the motor neuron synapses and found that syt-GCaMP co-localized with other 

presynaptic proteins−bruchpilot (BRP) and cysteine string protein (CSP) (Figure 3.1F). 

Thus, we conclude that syt-GCaMP provides an effective means to monitor presynaptic 

Ca2+ in Drosophila neurons. We therefore proceeded to utilize this tool to investigate the 

population activity of the DANs in the MB lobes. 

 

 



 42 

Coordinated Dopaminergic Neuron Activity Encodes Rewards and Punishments 

 

Dopaminergic signaling pathways are prominent features of the MB circuitry261,262 

and play an essential role in the fly’s ability to learn olfactory associations222. Until fairly 

recently, it was thought that the DANs innervating the Drosophila MB were only required 

for the learning of aversive associations, while octopamine was implicated as the 

reinforcer of appetitive associations263. However, as the tools for investigating the MB 

circuitry have improved, it has become clear that the TH-Gal4 line264 that was thought to 

label all DANs was actually only expressed in a subset. Identification of additional DAN 

clusters (such as those labeled in the DDC-Gal4 line) revealed that DANs are actually 

responsible for both appetitive and aversive learning signals116,219. Subsequently, 

subpopulations of DANs have been shown to be responsible for conveying the neural 

signals that represent particular types of positive and negative 

reinforcement209,210,220,221,265–268. 

 

While the DANs have been shown to relay a diverse array of sensory stimuli that 

are used in conditioning paradigms (most frequently punitive electric shock and sugar 

rewards), recent anatomical studies have suggested that MBONs and DANs both 

project to a small number of convergence zones in the Drosophila protocerebrum114. 

This convergent architecture suggests that rather than independently relaying feed-

forward sensory signals, the different DAN classes might form part of an interconnected 
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network with the MBONs. We therefore asked whether imaging the entire population of 

MB DANs in response to salient sensory stimuli would shed light on the role of this 

circuit in representing relevant contextual information. 

 

We utilized the presynaptic localization of syt-GCaMP to monitor the activity of 

the DAN population and gain insight into the patterns of dopamine release across the 

MB lobes in different contexts. We combined the tyrosine hydroxylase (TH) and dopa-

decarboxylase (DDC) promoters to drive expression of syt-GCaMP in the DANs 

innervating most compartments of the MB lobes (Figure 3.2A). We found that syt-

GCaMP greatly enhanced our ability to visualize and resolve the borders between the 

individual MB compartments compared with soluble GCaMP6s (Figure 3.2B-C). 

Volumetric imaging of the DANs in the MB lobes in vivo revealed patterns of activity 

throughout the DAN population, suggesting that activity between DANs innervating 

different compartments may be coordinated (Figure 3.2D). As described above, we 

subsequently focused on DANs of the γ2-γ5 compartments, as their axon terminals 

could be monitored in a single optical imaging plane, allowing us to simultaneously 

record, with high temporal resolution, the synaptic responses of this subpopulation to 

positive and negative reinforcement stimuli. 

 

We found that while sugar-feeding activated the γ4 and γ5 DANs, in accord with 

previous reports and their behavioral role in driving the formation of appetitive olfactory  
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Figure 3.2, Imaging Population Activity of Mushroom Body Dopaminergic 
Neurons. A, Schematic of γ-lobe DANs labeled by combining TH and DDC promoters.  
B, Max-Z projection of basal fluorescence in the MB lobes for flies in which the 
combined TH-Gal4 and DDC-Gal4 promoters drive expression of syt-GCaMP or C, 
soluble GCaMP6s. Same imaging settings were used for both preparations highlighting 
the improved ability to resolve the DAN innervation of the different γ-lobe (outlined in 
magenta) compartments when using syt-GCaMP. D, Spontaneous activity 
simultaneously recorded using syt-GCaMP expressed using TH-DDC-Gal4 in 13 MB 
compartments using volumetric imaging of the MB lobes in vivo. Fluorescence for each 
compartment is internally normalized for display purposes. Compartments are ordered 
by average correlation between compartment activity among a cohort of flies. 
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associations88,210,221, ingestion of a sugar reward also inhibited γ2 and γ3 DAN activity 

(Figure 3.3A-B, Table 3.1). Conversely, the DAN innervating the γ2 compartment has 

been shown to respond to electric shock and contribute to aversive olfactory 

conditioning192,209,217,218,220. We confirmed that a brief electric shock applied to the fly’s 

abdomen activated the γ2 DAN, but found that it also activated the γ3 DANs and 

inhibited the γ4 and γ5 DANs (Figure 3.3C, Table 3.1). Thus, the DANs of each 

compartment represent reinforcement stimuli through either excitation or inhibition, 

analogous to the bidirectional signaling observed in mammalian midbrain DANs in 

response to positive and negative contextual cues27,29,36,239,269. The reciprocal patterns 

of DAN activity evoked by these appetitive and aversive stimuli suggest that mushroom 

body reinforcement pathways may act cooperatively to regulate olfactory processing 

through coordinated patterns of dopamine release across all compartments.  

 

Dopaminergic Population Activity Represents Ongoing Motor State  

 

In our DAN population-imaging experiments we noticed that even in the absence 

of overt stimulation DANs exhibited significant fluctuations in their basal activity (Figure 

3.2D). Video monitoring of a tethered animal during DAN imaging revealed that these 

fluctuations are, in fact, highly correlated with a fly’s motor output (Figure 3.3D-E, Table  
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Figure 3.3, DAN Network Activity Reflects Both External Sensory Stimuli and 
Internal Behavioral State. A, syt-GCaMP was expressed in DANs of all γ-lobe 
compartments, driven by the combination of TH and DDC promoters.  B and C, 
Schematic of stimulus (top) with representative heatmap (ΔF/F0) and normalized 
intensity trace of DAN syt-GCaMP response to the stimulus (B, sucrose; C, shock) 
below. (Bottom) Stimulus-triggered averages ± SEM for DANs of each compartment are 
shown. (B, n = 10 traces in nine flies; C, n = 21 traces in 11 flies). Fluorescence in other 
lobes is masked for clarity. Black scale bar indicates 1 s throughout figures unless 
otherwise noted.  D, Representative normalized fluorescence traces of γ lobe DANs 
aligned to fly’s motion (top). Dashed lines delineate start and end of a single 
representative bout of flailing. Cross-correlations between motion trace and activity in 
DANs of each compartment are shown (bottom, n = 12 traces in six flies).  E, Schematic 
and still image from video showing the fly in flailing (right) and quiescent (left) behavioral 
states (top). Representative heatmap (ΔF/F0) of DAN activity in response to start and 
stop of flailing (middle). Average DAN fluorescence ± SEM in each compartment aligned 
to the start and stop of flailing (bottom, n = 14 traces in six flies).  See also Table 3.1. 
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Table 3.1

  γ2 DANs γ3 DANs γ4 DANs γ5 DANs 

Sugar 0.020684751 0.038021709 0.035413261 4.16266E-05 

Shock 8.5723E-05 2.20578E-07 0.008606605 0.000795113 

Flail 1.21501E-11 2.568E-10 0.044450088 5.11192E-06 

Still 8.37411E-12 5.51872E-12 0.036962279 6.16218E-07 

58E02-DANs> P2X2 1.07325E-09 0.61686413 3.94375E-07 1.56546E-08 

γ2 DAN>P2X2 0.009663704 6.87552E-09 2.06957E-06 6.71104E-06 

γ3 DAN>P2X2 0.000321854 0.000103841 1.19609E-05 3.48101E-07 

γ4 DAN>P2X2 0.000161199 0.001572201 6.61172E-06 1.29759E-05 

γ5 DAN>P2X2 0.013657448 6.42053E-05 3.52496E-05 0.000246935 
 
 
Table S1.  

Related to Figures 2 and 3. 

p-values from paired T-tests comparing fluorescence intensities in DANs of each compartment before and 

after each stimulus shown in Figures 2 and 3.  

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 

p-values from paired T-tests comparing fluorescence intensities in DANs of each com-
partment before and after each stimulus shown in Figures 3.3 and 3.5.

Statistical Measures of Induced Changes in DAN Fluorescence
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3.1). Tethered animals generally alternated between two distinct behavioral states—

quiescence and rapid, uncoordinated kicking or “flailing” that resembles escape 

behavior. Leg kicking was strongly correlated with high γ2/γ3 and low γ4/γ5 DAN 

activity, similar to the pattern evoked by electric shock. In contrast, quiescence elicited 

the reciprocal DAN activity pattern, resembling the response to sugar-feeding, although 

somewhat smaller in magnitude (Figure 3.4A). Thus, different behavioral states induce 

distinct patterns of bidirectional activity across the DAN population. It is interesting to 

note that a previous study found that flies are incapable of walking and eating at the 

same time, raising the possibility that the DAN response to sugar may be, at least 

partially, induced by the state of stillness that necessarily accompanies ingestion270.  

Similarly, it is possible that the DAN representation of electric shock is a result of the 

flailing behavior that shock elicits (Figure 3.3).  

 

Interestingly, the strict correlations exhibited by DANs during tethered behavior 

were altered when the same fly walked on a freely rotating ball (Figure 3.4B). For 

example, γ4 and γ5 DANs were no longer strictly synchronized during walking and γ4 

DANs instead became transiently entrained to either γ3 or γ5 DAN activity. Odor stimuli, 

likewise, disrupted the baseline correlations between DANs (Figure 3.4C). These 

observations imply that the functional relationships between specific DANs are not 

absolute but rather an emergent property, depending on both salient external sensory 

signals and a fly’s internal state. Dopaminergic signaling has been shown to be 

sufficient to alter subsequent behavioral responses12,128,271 suggesting that the ongoing  
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Figure 3.4, DAN Network Interactions Depend on Context. A,   Representative raw 
fluorescence traces of γ lobe DANs expressing syt-GCaMP in the same fly without any 
external stimulus (left) and in response to sugar ingestion (right) show that sugar-
induced responses of DANs are qualitatively similar, but quantitatively greater than 
baseline, motor correlated activity. Average sugar-induced responses were 2.2 (±0.35)-
fold greater in the γ4 DAN and 4.8 (±0.8)-fold greater in the γ5 DAN compared to the 
amplitude of spontaneous fluctuations in the same flies (n = 9).  B, Normalized basal 
intensity traces of γ lobe DANs expressing syt-GCaMP for the same fly when walking on 
a freely rotating ball (top left) and when taken off of the ball and transitioning between 
quiescence and flailing behavioral states (top right). The correlations between all 
compartments are altered in these different behavioral contexts. Note for example that 
activity in γ3 and γ4 DANs, generally anti-correlated when the fly is dangling, become 
transiently correlated when the fly walks on a ball. Tethered, dangling flies exhibit a very 
consistent pattern of DAN correlations (compare individual and average for all flies, n = 
12 traces in 6 flies, bottom), in accord with the notion that it underlies the consistent 
modulation of mushroom body processing we observe in Figure 4.3C.  C, Odor stimuli 
evoke responses in the DANs that alter basal correlations between dopaminergic 
compartments in a tethered animal. Representative traces of DANs show that odor 
(here isobutyl acetate) evokes increases in DANs of all 4 compartments, resulting in 
altered correlations between them. Note for example that odor evokes an increase in 
the correlation between γ2 and γ4 DANs, which basally are strictly anticorrelated in a 
tethered and dangling animal (bottom, correlation trace is running correlation of ten 
imaging frames aligned to center frame. Correlation scale same as in B.  
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activity representations of internal state in the DAN population might influence the fly’s 

reactions to ensuing events. 

 

Several other studies have recently reported similar ‘spontaneous’ or oscillatory 

DAN activity that likely reflects the same types of locomotor-states that we observe in 

our preparations. These studies have proposed that this ongoing DAN activity may play 

a role in both gating the formation of certain types of long term memory272 and in a 

‘forgetting’ signal that is necessary for erasing memories223,273,274. Thus, rather than 

simply representing rewards and punishments, the combinatorial patterns of DAN 

activity encode a range of internal states and external cues and may help guide the fly’s 

behavioral choices275. Studies of mammalian dopaminergic systems have also shown 

that in addition to RPE, dopaminergic populations likely represent and influence aspects 

of locomotion and action selection33,276,277. How do these coordinated patterns of DAN 

activity emerge in order to convey multimodal sensorimotor signals to the appropriate 

targets? By making use of the genetically identifiable DAN classes in the Drosophila MB 

together with targeted recording and manipulation of these neurons we were able to 

begin to address this question.   
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Functional Communication Between Compartments Coordinates DAN Activity  

 

The coordinated patterns of DAN activity could arise solely through common 

inputs from feedforward sensory and motor pathways or through network interactions 

with other parts of the MB circuitry. Anatomic evidence has suggested that there may be 

synaptic connectivity between the different MBONs and DANs114,278. We therefore 

asked whether the correlated, partially antagonistic activity patterns we observe across 

DANs of the γ lobe are shaped by circuit interactions between compartments. We first 

used the R58E02 promoter fragment210,279 to selectively express the ATP-gated P2X2 

channel in a subset of DANs, including those innervating the γ4 and γ5 compartments, 

and stimulated them by local application of ATP to their dendrites280. Activation of 

R58E02+ DANs evoked robust inhibition of the γ2 DAN (Figure 3.5A, Table 3.1). The γ3 

DANs were also frequently inhibited, but occasionally activated due to variable labeling 

of this compartment by the R58E02 promoter. Therefore, excitation of a subset of DANs 

is sufficient to suppress those targeting other compartments, yielding a bidirectional 

pattern of activity similar to that evoked by a sugar reward (Figure 3.3B). This result 

suggests that direct or indirect functional communication between DANs may underlie 

their concerted representation of reinforcement signals, distributed across the 

compartments of a lobe.  
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Figure 3.5, Functional Communication between Compartments Coordinates DAN 
Network Activity . A-E, DAN syt-GCaMP activity patterns evoked by activation of P2X2 
expressed in the A, R58E02+ DANs innervating γ4-5, B, γ2 MBON, C, γ3 MBON, D, γ4 
MBON, and E, γ5 MBON. syt-GCaMP was expressed in DANs of all γ-lobe 
compartments using the TH and DDC promoters. Schematic of stimulus (top left), 
representative heatmap (bottom left, ΔF/F0), normalized intensity trace for 
representative experiment shown (top right), and stimulus-triggered averages ± SEM for 
DANs of each compartment (bottom right) are shown. ATP stimulation is shown as pink 
bar(A, n=8; B,n=8; C,n=8; D,n=8; E, n = 12). See also Table 3.1.  
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To investigate whether feedback from MBONs may contribute to the functional 

coordination between DANs, we expressed P2X2 in each MBON of the γ lobe and 

examined how stimulation of individual output pathways influences the activity pattern of 

the DAN population. Activation of each MBON triggered either excitation or inhibition in 

the DANs of every compartment imaged (Figures 3.5B-E, Table 3.1), similar to the 

distributed patterns of dopaminergic activity evoked by physiological reinforcement 

experiences. The bidirectional nature of DAN activity elicited by excitation of single 

MBONs indicates that multisynaptic interactions likely link extrinsic neurons innervating 

different lobe compartments. Thus, MBONs and DANs comprise a complex 

interconnected network, providing a potential substrate for the diverse functional 

relationships between DANs that emerge in different sensory and behavioral contexts 

(Figure 3.3).  

 

Interestingly, a recent study demonstrated that suppression of the γ3 DAN is 

sufficient to induce reward learning281, which can also be induced by activation of the 

R58E02+ DAN population210. We speculate that this learning may be mediated by the 

reciprocal functional relationship between the R58E02+ DANs and the γ3 DAN that we 

observe (Figure 3.5A). Similarly, suppression of the γ1 MBON leads to aversive 

learning282, likely through the sort of feedback connections from MBONs to DANs 

described here (Figure 3.5B-E). These results suggest that learning in the MB is 

achieved not simply by autonomous activation of specific DANs, but rather by a 

coordinated, bidirectional pattern of activity throughout the DAN population. Subsequent 
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studies have revealed additional functional roles for the recurrent connectivity between 

MBONs and DANs, including the generation of behaviorally relevant persistent 

activity283, context-dependent control of learning284  and the ability to re-evaluate 

previously learned associations285. Together, these data suggest that DANs do not act 

autonomously to convey the valence of a reinforcement stimulus to just a single 

compartment. Rather, the DAN population functions as a dynamic ensemble, integrating 

information about environmental stimuli and internal state to convey the moment-by-

moment experience of the fly to all compartments of the lobe.   

 

A Conserved Dual Function of Dopaminergic Circuits 

 

Several decades of research on the mechanisms of learning in the Drosophila 

MB have revealed a role for dopaminergic signaling in reinforcement learning that is 

evolutionarily conserved from flies to humans. Phasic activity of DANs in the striatum 

has long been thought to represent the reward signals that are responsible for updating 

an animal’s behaviors based on learning24,286. Recent efforts have begun to describe 

how the DANs might calculate the RPE necessary for reinforcement learning287,288. 

However, there is considerable complexity to this circuitry, and it appears that some 

inputs to DANs already contain an RPE representation, further confounding our ability to 

understand the emergence of this signal24. Exploiting the accessibility of distinct 

dopaminergic populations in the MB and genetic control of specific neurons within the 
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MB circuits, we have begun to describe the source of their coordinated representations 

of rewards and punishments as emergent properties of an interconnected network. 

Further dissecting the computations performed by the interactions within this network 

will be an interesting topic for future investigations.  

 

The dopaminergic circuits in the basal ganglia are also known to be required for 

normal action initiation8,243,289, and recent experimental approaches have strengthened 

the suggestion that subsets of midbrain DANs represent and invigorate animal 

movement31–33. The unexpected finding that the MB DANs also relay motor signals 

further strengthens this parallel. The coupling of reinforcement signals and locomotor 

representations in the same neuromodulatory system across such distantly related 

phyla suggests an inherent connection between these dual roles of dopamine. Many 

different conceptual models have been proposed and revised in order to reconcile these 

two signaling modes of DANs in the striatum. For instance, the action-invigorating 

function of DANs has been incorporated into ‘actor-critic’ algorithms of reinforcement 

learning, suggesting that the dopaminergic signal is responsible for binding action to 

reward290,291. Alternative models that have recently found experimental support include 

the idea that the DAN activity represents the initiation of movement that leads to reward, 

rather than the reward itself34,291, or that dopamine is involved in arousing a behavioral 

response to salient sensory inputs31,292,293. The focus of these models is generally to try 

to understand the algorithmic function of the dopaminergic signals in underlying 

adaptive sensorimotor processing. However, very little is known about how these 



 60 

proposed functions of striatal DANs are actually implemented by the modulatory effects 

of the dopamine they release on downstream circuits. Because of the difficulty of 

studying circuit plasticity in vivo, nearly all studies of the neurophysiological functions of 

dopamine release in the striatum have either looked at the effects of dopaminergic 

perturbations on behavior, or taken place in in brain slices, where it is difficult to connect 

specific observations with behavior21,24. Taking advantage of the compartmentalized 

DAN innervation of the MB lobes and their well-defined roles in fly behavior, we 

therefore decided to probe the precise targets and mechanisms of dopaminergic 

modulation in the MB. These investigations form the basis for Chapters 4 and 5.  
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Chapter 4 

Kenyon Cell Presynaptic Ca2+ is Modulated by Dopaminergic Neurons 

 

The coordinated and partially antagonistic patterns of activity in the DANs 

(Figures 3.3-3.5) that tile along the length of the KC axons suggest the possibility that 

different segments of the KC axons might be independently modulated by the 

dopaminergic signals resulting from reinforcing stimuli and locomotor state. 

Intraneuronal functional differences between synapses have been described in a 

number of other systems294–296 and should provide increased computational capacity by 

allowing a neuron to differentially signal to different postsynaptic partners297–299. We 

therefore asked whether we might be able to monitor functional differences at the 

synapses along the γ KC axons using syt-GCaMP. Differential modulation of KC 

synapses along the length of the lobe would allow for the same activated KC to lead to 

different MBON activation depending on the context in which it is experienced and 

previously learned associations. In order to assess whether syt-GCaMP could be used 

to monitor the synapses at different points along KC axons we expressed syt-GCaMP in 

all KCs using a selective promoter and focally stimulated the calyx with the excitatory 

neurotransmitter acetylcholine to activate an individual neuron in a brain explant   
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Figure 4.1, syt-GCaMP Highlights Presynaptic Activity Along KC Axons. 
Iontophoresis of acetylcholine into the mushroom body calyx was titrated to excite a 
single KC, as revealed by a sole activated process running through the pedunculus, 
shown in schematic form in A, and syt-GCaMP response along the axon captured by 
volumetric imaging in B. Note that in a brain explant, we observe a relatively uniform 
syt-GCaMP signal at individual presynaptic sites along the entire length of the KC axon. 
C, Co-expression of tdTomato and synaptotagmin-GFP in a subset of γ KCs under 
VT043657-Gal4 shows the distribution of presynaptic sites along the entire length of a 
KC axon. Dashed line outlines the γ lobe. D, Comparison of soluble GCaMP6s and syt-
GCaMP response in KCs to minimal stimulation through acetylcholine iontophoresis into 
the mushroom body calyx. Note the individual presynaptic puncta clearly defined in the 
syt-GCaMP signal compared to the more continuous GCaMP6s signal along the KC 
axons in the pedunculus. 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(Figure 4.1A). We performed volumetric two-photon imaging to capture the fluorescently 

tagged synapses of the KC’s full axonal arbor as it ramifies through multiple imaging 

planes within the γ lobe. Stimulation of a single KC evoked robust fluorescence 

increases at punctate loci distributed along the length of its axon (Figure 4.1B), 

consistent with syt-GCaMP’s synaptic localization and anatomic evidence that KCs form 

output synapses in all compartments of the γ lobe (Figure 4.1C). This punctate pattern 

was not apparent when using soluble GCaMP6s in place of syt-GCaMP under the same 

experimental conditions (Figure 4.1D), highlighting the presynaptic localization of syt-

GCaMP. Thus syt-GCaMP facilitates the detection of Ca2+ influx at individual synaptic 

sites, providing a technical strategy to resolve differences in presynaptic function and 

modulation across the compartments of the lobe248. 

 

Compartmentalized Synaptic Domains Along Kenyon Cell Axons 

 

We expressed syt-GCaMP in the γ KCs (Figure 4.2A,E) and used volumetric two-

photon imaging to monitor the odor-evoked responses of the entire complement of 

synapses within the γ lobe of a living tethered fly. Unexpectedly, we observed that the 

distribution of odor-evoked presynaptic Ca2+ in vivo was highly non-uniform and 

displayed a modular pattern along the length of the lobe that was apparent in each of 

the 12-18 imaging planes (Figure 4.2B-C), despite the fact that labeled synaptic sites  
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Figure 4.2, Compartmentalized Ca2+ Domains along KC Axons In Vivo. A, 
Schematic (left) and representative basal fluorescence of syt-GCaMP expressed in γ 
KCs labeled with approximate compartmental borders (right).  B, Volumetric 2-photon 
resonant scanning imaging of γ KCs expressing syt-GCaMP under R16A06-Gal4 in 
response to an odor stimulus. Schematic of imaging strategy (top-left inset). At each 
time point, data was collected at 12-18 Z-planes encompassing the entire γ lobe. Peak 
fluorescence of the 12 individual Z-planes and maximum Z projection (top-right). 
Compartmental differences in Ca2+ distribution are apparent in every imaging plane and 
the maximum-Z projection.  C, Normalized intensity profile plot of syt-GCaMP 
fluorescence along the length of the lobe for each imaging plane (gray) and of the 
maximum-Z projection (white) for the representative images shown in B, indicate that 
every imaging plane displays a very similar Ca2+ distribution. (Only the 9 planes in which 
the entire length of the lobe is visible are included.)  Odor used was isobutyl acetate, 
however, a similar distribution of presynaptic Ca2+ was seen for all odor stimuli, see 
Figure 4.5B.  D, Immunolabeling of GFP tagged synaptic protein bruchpilot (brp) 
expressed in γ KCs under the R16A06-Gal4 promoter with α-GFP staining reveals an 
equivalent distribution throughout the compartments of the lobe.  E, Expression of syt-
GCaMP under R16A06-Gal4 shows homogeneous and specific labeling of γ KCs by this 
driver line (left). All KCs express DsRed and allow us to define the different mushroom 
body lobes as indicated (right). Image was taken in a brain explant. 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(Figure 4.2D)300 and the syt-GCaMP protein (Figure 4.2E) were equivalently distributed 

along the length of the lobe. 

 

Alignment of syt-GCaMP responses with the segregated projections of MBONs 

and DANs in the γ lobe indicated that the discrete Ca2+ domains apparent in KC axons 

map to the different compartments of the lobe (Figure 4.3A). To confirm this, we imaged 

KC synaptic Ca2+ in animals that also express tdTomato in a subset of DANs and 

observed that the sharp borders separating regions of high and low synaptic Ca2+ 

activity align to the compartmental boundaries (Figure 4.3B). Thus in a tethered animal, 

the odor-evoked synaptic responses of KCs were significantly more robust in the γ2 and 

γ3 compartments relative to those in the γ4 compartment, with even weaker responses 

apparent in the γ5 compartment (Figure 4.3C). The distribution of presynaptic Ca2+ in 

KC axons therefore adheres to the modular architecture of the lobes, demonstrating that 

the anatomic compartments represent functionally distinct units. 

 

Asymmetric presynaptic Ca2+ domains could arise from differences in KC 

innervation along the γ lobe or from functional variation along individual KC axons. 

Single cell labeling of more than 80 γ KCs confirmed that they invariantly traverse the 

entire lobe (Figure 4.4A) and are thus poised to carry the same odor signals to each 

compartment. However, functional synaptic heterogeneity was evident along sparsely 

labeled γ KC axons301 co-expressing syt-GCaMP and a red fluorophore to delineate   
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Figure 4.3, KC Ca2+ Distribution Reflects the Compartmental Organization of the 
MB Lobes. A, Registration strategy used to define compartmental borders. Fluorescent 
reporters were expressed in MBONs and DANs (bottom, n = 10, 1 representative 
example is shown) and labeling by extrinsic neuron innervation was used to define the 
average position of compartmental borders along the longitudinal axis of the γ lobe. The 
average border positions between compartments are indicated by dashed vertical lines. 
The SEM of the border positions are indicated between compartment names. To 
generate an average value of syt-GCaMP intensity for each compartment (termed the 
compartment average in C-D) the intensity values for the center 50% of each 
compartment were averaged (red area, see methods for details). The representative 
image and dot/box plot from C is shown.   B, tdTomato expressed in γ4 and γ5 DANs 
using R58E02-LexA (top, middle). Compartmentalized KC syt-GCaMP responses in the 
same fly shows synaptic Ca2+ domains have sharp boundaries that align to the border 
between γ3 and γ4 compartments.  C, Maximum-intensity Z-projection of all 15 imaging 
planes sampled through the γ lobe in the example shown in Figure 4.2B (top). Average 
normalized odor-evoked profile of syt-GCaMP fluorescence intensity along the γ lobe 
(gray line, n = 21 flies) and peak intensity for each compartment (black dots, n = 21) 
with mean ± SEM in red (middle). Odor-evoked time courses were imaged in each 
compartment for representative experiment shown above (bottom, blue lines indicate 1-
s odor stimulus). D, Representative image of syt-GCaMP signal in γ KCs in response to 
direct stimulation of KCs by acetylcholine iontophoresis into the mushroom body calyx in 
a brain explant (top). Normalized intensity profiles for ex vivo stimulation across a range 
of iontophoretic voltages (1–10 V) with average profile for each voltage in a different 
colored line (n = 6, voltage coloring as in Figure 4.6). Stimulation-evoked time courses 
were imaged in each compartment for representative experiment shown above (bottom, 
blue lines indicate stimulation). E, Odor response in a sparse subset of γ KCs 
expressing syt-GCaMP (heatmap, top) and tdTomato (grayscale, middle). Odor-evoked 
time courses were measured at individual synaptic boutons (bottom). All KC heatmaps 
in this figure represent peak fluorescence. Values marked with different lowercase 
letters represent significant differences (p < 0.05 by t-test with correction for multiple 
comparisons). 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Figure 4.4, Asymmetric Ca2+ Signals Along Individual KC Axons. A, Single KC 
labeling by PA-GFP expressed under the MB247 promoter demonstrates that γ KCs (n 
= 82, 16 shown) project their axons across the entire lobe, traversing all compartments 
(imaging courtesy of Ari Zolin).  B, Volumetric imaging of sparsely labeled γ KCs co-
expressing syt-GCaMP and tdTomato confirms compartmentalized presynaptic Ca2+ 
differences along single KC axons that traverse the full length of the lobe. 
Representative images for the same example shown in Figure 4.3E with tdTomato used 
to anatomically label axons (grayscale, top of each image), peak odor-evoked syt-
GCaMP fluorescence (heatmap, middle of each image) and peak syt-GCaMP 
fluorescence normalized by tdTomato signal within each pixel (heatmap, bottom of each 
image). Maximum intensity Z projection (top-left), normalized intensity profiles (top-
center) and each of the 12 optical planes from dorsal to ventral edge. Note that while 
the tdTomato signal is uniform along the length of the lobe, the syt-GCaMP signal is 
asymmetric and resembles the modular pattern apparent when imaging the total γ KC 
population. Odor used was benzaldehyde, however, a similar distribution of presynaptic 
Ca2+ was seen for all odor stimuli, see Figure 4.5B. 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their projections to the distal tip of the lobe (Figures 4.3E, 4.4B). We observed that 

synaptic boutons decorating the same KC axons exhibited differential responses to 

odor, with more robust activity evoked in the individual synapses in the γ2 and γ3 

compartments relative to those in the γ4 and γ5 compartments. Although we did not 

routinely image the γ1 compartment, presynaptic Ca2+ was often lower there in 

comparison to more distal portions of the lobe (Figure 4.3C), indicating it is unlikely that 

action potentials simply fail to propagate along the narrow KC axons. Together, these 

data suggest that the synapses along individual KC axons are functionally distinct, such 

that the same olfactory signal is differentially represented by each axonal segment of a 

neuron. 

 

Interestingly, the asymmetry in presynaptic Ca2+ was often present basally, prior 

to odor stimulation (Figure 4.5A) suggesting persistent differences in synaptic function 

along KC axons that could influence how all incoming odor stimuli are processed. 

Consistent with this idea, the same modular pattern of presynaptic Ca2+ was evoked in 

response to every odor tested and over a range of odor concentrations (Figures 4.5B). 

Moreover, KC classes innervating other lobes also exhibit modular syt-GCaMP signals 

(Figure 4.5C), suggesting that compartmentalized synaptic Ca2+ is a general feature of 

odor representations in the mushroom body lobes. We compared the KC Ca2+ 

distributions in the γ lobe in response to KC stimulation by acetylcholine iontophoresis in 

vivo and in vitro. Interestingly, the asymmetry present in vivo is not apparent in a brain 

explant (Figure 4.3D, 4.6A-E), suggesting that this pattern of modulation is maintained   
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Figure 4.5, Compartmentalized Ca2+ is Independent of Odor Identity or an 
Animal’s Satiety State. A, Compartmentalized KC Ca2+ is also apparent in the basal 
state (top), prior to odor stimulation but becomes more apparent in odor-evoked 
responses (bottom). Note the heatmaps represent different intensity scales and there is 
a significant increase in syt-GCaMP fluorescence evoked by an odor stimulus. B, The 
distribution of presynaptic Ca2+ along KCs was independent of odorant identity or satiety 
state. Normalized intensity profiles of peak fluorescence shown for isobutyl acetate, 
trans-3-hexen-1-ol, ethyl acetate, and apple cider vinegar at a range of concentrations 
(top, n = 4). Average normalized intensity profile of odor-evoked γ KC syt-GCaMP 
fluorescence in sated flies (black, n = 21) and in flies that were food-deprived for 20-26 
hr (red, n = 9) reveals no apparent difference in presynaptic Ca2+ distribution along the γ 
lobe (bottom). C, Schematic of compartmentalized anatomic organization in the α’ and 
β’ lobes (top). Odor-evoked presynaptic Ca2+ signal in α’β’ KCs visualized by 
expressing syt-GCaMP under the R35B12-Gal4 driver (bottom) reveals 
compartmentalized signals similar to those observed in γ KCs. Image is a maximum 
intensity projection of peak odor-evoked fluorescence from volumetric imaging of the 
lobe.  
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Figure 4.6, Compartmentalized Ca2+ Requires Ongoing In Vivo Modulation. A, 
Representative images of peak syt-GCaMP signal in γ KCs in response to direct 
stimulation of KCs by iontophoresis of acetylcholine on their dendrites in the mushroom 
body calyx in a brain explant. A range of iontophoretic voltages was used, as indicated.  
B, Normalized intensity profiles for experiment shown in A. The color of the line in the 
profile plot indicates the iontophoretic voltage used as shown in A. Each trace is the 
average of two stimulations at the indicated voltage for n = 6 mushroom bodies. 
Statistical analysis done using values averaged from traces at all voltages used. Values 
marked with different lowercase letters represent significant differences with p < 0.05 by 
t test with correction for multiple comparisons. C, Representative images for same 
stimulation protocol as in A in a tethered fly in vivo.  D, Same as B, but for in vivo data in 
C, n = 6 mushroom bodies.  E, Peak odor-evoked intensity in a living fly across a range 
of odor concentrations (isobutyl acetate). F, Integrated normalized basal DAN activity in 
tethered flies in each compartment (n = 6 flies). Normalized intensities for each 
compartment were summed over entire recordings and each data point represents the 
sum for that compartment over the total sum for all four compartments in that fly.  
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by a mechanism that is active in a living fly but not in an explant. We therefore 

wondered whether there was any corresponding asymmetry with the movement-

associated patterns of DAN activity described above. Analyzing the DAN activity levels 

across all recordings in each γ lobe compartment revealed that there was significantly 

more activity in the γ2-γ3 compartments compared with the γ4-γ5 compartments 

(Figure 4.6F). This correlation between higher spontaneous DAN activity and 

heightened KC presynaptic Ca2+ suggests the possibility that active modulation by the 

DANs that tile the γ lobe may regulate synaptic signaling within each compartment.  

 

Dopaminergic Neurons Dynamically Modulate Kenyon Cell Synapses 

 

We next asked whether acute alterations to the state or circumstance of an 

animal are sufficient to modify the pattern of presynaptic Ca2+ along KCs. Given that 

sucrose ingestion elicits the reciprocal pattern of DAN activity (high γ4/γ5 and low 

γ2/γ3, Figure 3.3B) as that associated with flailing behavior (Figure 3.3D-E), we 

reasoned that this appetitive reward might alter the distribution of presynaptic Ca2+ 

across lobe compartments. While it has been suggested that neuropeptide-mediated 

hunger signals suppress the synaptic output of specific DANs302, overnight fasting of 

flies did not change the profile of presynaptic Ca2+ along γ KCs (Figure 4.5B). However, 

following sucrose ingestion, the odor-evoked syt-GCaMP signal in the γ4 and γ5 

compartments relatively increased, while the response in the γ2 compartment relatively 
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decreased (Figure 4.7A). Sucrose ingestion therefore differentially modulates the 

olfactory responses of KC synapses across the γ lobe compartments, paralleling the 

bidirectional pattern of DAN activity evoked by this appetitive reward.   

  

To confirm that the sugar-induced modification of KC synaptic responses is 

mediated by DANs, and not through other signaling downstream of sugar ingestion, we 

used the R58E02 promoter to drive expression of the P2X2 channel in a subset of 

DANs, including those innervating the γ4 and γ5 compartments excited by sugar-

feeding. Stimulation of R58E02+ DANs shifted the profile of subsequent odor-evoked 

Ca2+ along γ KC axons, relatively increasing the signal in the distal lobe compartments 

while decreasing it in the proximal compartments, closely resembling the changes 

induced by sucrose ingestion (Figure 4.7B). ATP application in control animals, lacking 

P2X2 expression, had no effect on the distribution of presynaptic Ca2+ (Figure 4.7C) 

confirming the specificity of this manipulation. Thus, both exogenous and physiological 

activation of DAN reinforcement pathways can modulate the state of KC synapses with 

precise spatial localization. In both cases, transient DAN activation resulted in changes 

in odor-evoked presynaptic Ca2+ that persisted for the duration of an experiment (up to 

~1 hour, Figure 4.7D). Intense salient experiences, like tethering or sugar ingestion, 

therefore appear sufficient to modulate the state of KC synapses with enduring 

consequences for how subsequent olfactory signals are processed.    
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Figure 4.7, Dopaminergic Neurons Shape the Distribution of Presynaptic Ca2+ 

Along KC Axons. A, Representative odor-evoked KC syt-GCaMP response before and 
after sucrose ingestion (bottom left). Normalized intensity profiles pre- and post-sugar 
ingestion and the change due to sugar feeding (post-pre) for the representative images 
are shown (top right). Average change in normalized intensity profile induced by sugar 
ingestion (bottom right, n = 11 flies). B, Schematic of γ lobe P2X2 expression under the 
58E02 promoter (top left) and representative odor-evoked responses in γ KCs 
expressing syt-GCaMP, pre- and post-activation of 58E02+ DANs with ATP (bottom 
left). Normalized intensity profiles and change due to DAN activation for the 
representative images (top right). Average change in normalized intensity profile 
induced by DAN activation (bottom right, n = 10 flies). C, As in B, but in control flies 
lacking P2X2 expression (n = 6 flies).  D, Representative time course for experiment 
shown in B shows that transient DAN-activation using P2X2 (indicated by dashed line) 
induces a persistent shift in the pattern of odor-evoked presynaptic Ca2+ along KC 
axons. The ratio of the peak odor-evoked syt-GCaMP signal for KC axon segments in 
the γ4 and γ2 compartments is plotted over the course of an experiment.  All KC 
heatmaps in this figure represent peak fluorescence to odor stimulation. Error bars in all 
panels are SEM. Significant differences in relative compartment intensity compared to 
wild-type are indicated as follows: *p < 0.05, **p < 0.005, and ***p < 0.0005.  
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Dopaminergic Signaling Modulates Synaptic Responses Along KC Axons 

 

As DANs can co-release additional neurotransmitters along with dopamine303–305, 

we sought to verify that dopaminergic signaling directly contributes to the 

compartmentalized synaptic modulation we observe. At least two of the four Drosophila 

dopamine receptors, DopR1 and DopR2, are highly expressed within the lobes and are 

known to be essential for the formation and maintenance of learned olfactory 

associations206,222,306. However, how deficits in dopamine reception alter odor 

processing in the mushroom body has never been functionally investigated. We 

therefore examined olfactory responses in mutants for these receptors and observed 

that the profile of odor-evoked syt-GCaMP fluorescence along γ KCs is strikingly 

inverted in DopR2 mutants (Figure 4.8A). Selective knock down of DopR2 in γ KCs 

using RNAi significantly altered the pattern of odor-evoked synaptic Ca2+ along their 

axons (Figure 4.8B-C), confirming that dopamine signaling acts presynaptically in KCs 

to shape odor processing along the lobe.  

 

DopR1 mutants exhibited a subtler phenotype, displaying a somewhat more 

uniform distribution of Ca2+ across compartments relative to wild-type controls (Figure 

4.8D). Subsequent investigations in the lab have revealed that the DopR1 mutant, 

originally thought to be a null-mutation307, used for these experiments is actually a 

hypomorph. Therefore, we cannot rule out the possibility that a null mutant would lead to  
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Figure 4.8, Dopaminergic Signaling Pathways Modulate Presynaptic Ca2+  

in KCs. A, Representative odor-evoked response of γ KCs expressing syt-GCaMP in 
DopR2 mutant and wild-type flies (top). Fluorescence in other lobes is masked for 
clarity. Average normalized odor-evoked profile across the γ lobe and compartmental 
averages (bottom) in flies mutant for DopR2 (red, n = 8) and wildtype (black, n = 8) are 
shown. B, As in A, but comparing γ KC-specific knock- down of DopR2 using RNAi (red, 
n = 14) to wildtype flies (black, n = 5). C, Whole brain mRNA transcript levels quantified 
by RT-PCR for the indicated dopamine receptors in animals expressing DopR2-RNAi 
pan-neuronally using the synaptobrevin promoter (left) relative to transcript levels in 
Gal4 driver only control (right).  D, Representative odor-evoked syt-GCaMP fluorescence 
in WT and DopR1 mutant flies (top). Intensity profiles (bottom) for WT (black, n = 8 
mushroom bodies) and DopR1 (red, n = 7 mushroom bodies) flies show that DopR1 
profiles are somewhat more uniform, with a slight but significant difference in Ca2+ 
distribution apparent in γ5.  E, As in D, but for DopR1, DopR2 double mutant, n = 8 
mushroom bodies.  F, As in D but for the dopamine reuptake transporter (DAT) mutant, n 
= 5.  All KC heatmaps in this figure represent peak fluorescence to odor stimulation. 
Error bars in all panels are SEM. Significant differences in relative compartment 
intensity compared to wild-type are indicated as follows: *p < 0.05, **p < 0.005, and ***p 
< 0.0005. 
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a more significant phenotype. Interestingly, the distribution of synaptic Ca2+ in 

DopR1/DopR2 double mutants was still asymmetric (Figure 4.8E), suggesting the 

possibility that additional dopamine receptors or other neuromodulatory or peptidergic 

pathways that innervate the mushroom body114,115,308 may contribute to the patterning of 

presynaptic Ca2+ in KCs. We also examined synaptic responses in mutants for the 

dopamine reuptake transporter (DAT) which mediates the clearance of dopamine from 

the synaptic cleft309–311 and impairs dopamine signaling independent of any specific 

receptor.  We found the profile of odor-evoked presynaptic Ca2+ in DAT mutants was 

significantly altered, resembling the phenotype of the DopR1/DopR2 mutant (Figure 

4.8F). These manipulations of dopamine detection and handling confirm that 

dopaminergic signaling contributes to the precise spatial topography of presynaptic Ca2+ 

along KC axons, providing a functional link between molecular and neural mechanisms.  

 

The capacity of the DAN network to differentially modify the synapses along a KC 

axon greatly expands the computational power of each KC. While many modulatory 

mechanisms work at the level of cell-wide properties, the fact that dopamine 

independently adjusts each KC synapse suggests that it is the synapse, rather than the 

neuron as a whole that should be considered the computational unit of the MB. This 

focus on synaptic properties mirrors many approaches in neural network modeling, in 

which learning signals are used to modify synaptic weights rather than cell-wide 

properties of individual units312. While the pattern of synaptic connectivity is certainly an 

important aspect of circuit function, it has become clear that modifications to synaptic 
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properties are just as important. Because each DAN subset targets a discrete 

compartment, which is co-innervated by a unique and genetically identifiable set of 

output neuron dendrites, we were able to ask how modulation by subsets of DANs 

changes KC-MBON signaling in the targeted compartment. This investigation forms the 

basis of the next chapter.  
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Chapter 5 

Dopaminergic Modulation of Kenyon Cell-MBON Neurotransmission 

 

Our experiments indicate that dopaminergic modulation can acutely modify 

presynaptic Ca2+ in discrete subcellular domains along individual KC axons. If this 

presynaptic modulation results in altered neurotransmission to the MBONs, our data 

would suggest that the state of the DAN network can dynamically regulate how olfactory 

information is conveyed to the different output pathways of the mushroom body. 

Individual MBONs can drive different types of behavior such as approach or avoidance, 

and it has been suggested that tuning the strength of KC-MBON synapses could shift 

the balance of activity in the MBON population in order to bias the fly’s 

behavior117,118,212,216. However, it has not yet been directly shown that dopaminergic 

signaling modifies these synaptic connections. We therefore asked whether the 

presynaptic KC modulation described above might be translated into differential 

signaling from a KC to each of its postsynaptic MBONs.  
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MBON Odor Responses Mirror Compartmentalized Kenyon Cell Ca2+ 

 

Heterogeneous neurotransmission from the synapses along a single axon has 

been described in the cortex and hippocampus as a possible substrate for independent 

plasticity between a neuron and its many postsynaptic targets297,298,313. However, rarely 

has it been possible to trace the propagation of neural signals from nearby synapses on 

the same axons to distinct postsynaptic neurons. We took advantage of the 

compartmentalized architecture of the MB to examine whether localized synaptic 

modulation along the same KC axons results in differential functional responses across 

the MBONs that tile the lobe. We expressed soluble GCaMP6s in pairs of γ MBONs 

(γ2/γ4 or γ3/γ5, Figures 2.3C, 5.1A), and simultaneously measured dendritic Ca2+ 

responses to the same odor stimuli in their segregated projections. Within the same fly, 

a given odor presentation consistently evoked more robust responses in the γ2 and γ3 

MBONs in comparison to γ4 and γ5 MBONs (Figure 5.1B), paralleling the differences in 

presynaptic Ca2+ exhibited by KC axons in response to odor (Figure 4.3C). In contrast, 

direct stimulation of KCs in a brain explant elicited essentially equivalent responses 

across MBONs (Figure 5.1C), again mirroring what we observed in KC Ca2+ in the 

explant (Figure 4.3D). Thus, in the absence of in vivo modulation, KCs have the 

inherent capacity to transmit equivalent signals to the different output pathways of the 

lobe. These results suggest the possibility that the olfactory responses of MBONs 

innervating each compartment may be differentially tuned by the activity of their cognate 

DANs.  
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Figure 5.1, MBON Odor Responses Mirror Compartmentalized Kenyon Cell Ca2+. 
A, Schematic shows pairs of MBONs expressing soluble GCaMP6s used for functional 
imaging in B and C. B and C, Representative heatmaps of evoked fluorescence (top left 
in each panel, ΔF/F0), time courses (bottom left), and scatterplots (right) of responses 
to odor stimuli (blue line) in pairs of MBONs in vivo (B, n = 8 for γ2 versus γ4, n = 11 for 
γ3 versus γ5) and evoked by calycal stimulation in a brain explant (C, n = 8 for each 
pair). Values marked with different lowercase letters represent significant differences (p 
< 0.05 by t test with correction for multiple comparisons).  
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Dopamine Potentiates KC-MBON Synapses 

 

The correlation between the pattern of presynaptic Ca2+ in the KCs and the 

response magnitudes of the MBONs in each compartment suggest that the same DAN 

activity that was sufficient to modulate KC Ca2+ distribution might also alter the strength 

of KC-MBON synaptic transmission. We therefore used whole-cell electrophysiology 

recordings to examine whether DAN activity modulates KC-MBON neurotransmission at 

the resolution of individual synaptic events. We performed voltage-clamp recordings of 

the γ4 MBON, as it innervates the compartment in which we observed the most robust 

dopamine-dependent modulation of KC presynaptic Ca2+ (Figure 4.7B). Recordings 

were carried out in a brain explant, where reduced basal activity allows for the 

measurement of well-isolated synaptic currents and provides precise control over the 

neuromodulatory state of synapses. We stimulated KC dendrites in the calyx to evoke 

excitatory postsynaptic currents (EPSCs) in the γ4 MBON and observed that the 

strength of these synaptic inputs drastically increased following acute activation of the 

R58E02+ DANs expressing the P2X2 channel (Figure 5.2A). The amplitude of 

spontaneous synaptic events was also potentiated whether DANs were activated by 

stimulation of P2X2 or a red-shifted channelrhodopsin variant (Figure 5.2B). The 

average latency of EPSCs after KC stimulation was 3.8±0.1 ms, consistent with 

monosynaptic transmission154,314, thereby identifying the KC-MBON synapses as the 

site of dopaminergic modulation. Focal application of the inhibitory neurotransmitter 

GABA onto KC dendrites in the calyx resulted in the loss of synaptic events, further   
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Figure 5.2, Dopamine Potentiates KC-MBON Synaptic Transmission. A, Schematic 
of experimental setup. Synaptic currents were measured in the γ4 MBON (green) by 
voltage-clamp recordings in response to direct KC stimulation by acetylcholine 
iontophoresis in the calyx (Stim). P2X2-expressing R58E02+ DANs (magenta) were 
activated by local ATP injection (left). Representative γ4 MBON recordings (center) 
show overlay of ten KC stimulations pre- (grayscale) and post- (redscale) activation of 
R58E02+ DANs by ATP injection. Note the potentiation evident in both spontaneous 
and evoked EPSCs. Vertical line denotes 2-ms KC stimulation. Amplitude of evoked 
currents in the γ4 MBON pre- and post-ATP injection (right, average of ten stimulations 
each in n = 5 recordings). B, Mean γ4 MBON spontaneous EPSC profiles (left) and 
histogram of EPSC amplitudes (right) with (red) and without (black) ReaChR expressed 
in R58E02+ DANs (n = 5 flies ReaChR, n = 6 flies control, p < 0.0005). C, GABA 
injection into the KC dendrites in the MB calyx suppresses spontaneous EPSCs 
measured in the γ4 MBON. D, Representative KC spike trains evoked by 2 pA current 
steps in KC current clamp recordings before and after activation of R58E02+ DANs 
through P2X2 (left). Mean (+/- SEM) number of spikes evoked by current injection in KC 
current clamp recordings show no apparent change in KC properties following DAN 
activation (right, n = 6 flies, p > 0.6). 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substantiating KCs as the source of this potentiated synaptic input (Figure 5.2C). In 

contrast to the prominent modulation of synaptic currents, activation of R58E02+ DANs 

had no apparent effect on the baseline membrane voltage or evoked spiking of γ KCs, 

as measured through whole-cell recordings (Figure 5.2D). Dopaminergic modulation 

therefore locally potentiates neurotransmission at KC-MBON synapses without 

appearing to change the overall excitability of KCs, providing a mechanism to alter the 

propagation of olfactory signals to each MBON without modifying the underlying KC 

odor representation. 

  

Compartmental Specificity of Dopaminergic Modulation 

 

While the anatomic compartmentalization of DAN innervation points to localized 

modulation, dopamine has been shown to adjust circuit properties at a distance from its 

site of release311. To probe the spatial specificity of KC-MBON synaptic modulation, we 

asked whether the dopaminergic modulation of KC-MBON synapses is spatially 

restricted to the compartments innervated by activated DANs. Functional imaging 

revealed that the dendritic Ca2+ response of the γ4 MBON to direct KC stimulation was 

enhanced after activation of R58E02+ DANs (Figure 5.3A-B), consistent with the 

potentiation we measured by electrophysiology. Likewise, activation of the γ2 DAN 

strengthened the γ2 MBON response to KC stimulation (Figure 5.3C-D), verifying that 

dopaminergic potentiation of KC-MBON synaptic signaling is a common modulatory  
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Figure 5.3, DAN Potentiation of KC-MBON Signaling is Compartment-Specific. 

Schematic (top), time courses (bottom left), and quantification of responses to KC 

stimulation (bottom right) before and after ATP injection were recorded in A, the γ4 

MBON with activation of the γ4-γ5 (R58E02+) DANs (n = 6), B, the γ4 MBON with no 

P2X2 expression (control), C, the γ2 MBON with activation of the γ2 DAN (n = 6), D, the 

γ2 MBON with no P2X2 expression (control), E, the γ2 MBON with activation of the γ4-

γ5 DANs (n = 6), and F, the γ4 MBON with activation of the γ2 DAN (n = 6). All pairwise 

comparisons plot mean ± SEM. Significance of change after activation is indicated as 

follows: *p < 0.05 and **p < 0.005.  
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mechanism across different γ lobe compartments. In contrast, activation of the 

R58E02+ DANs, had no effect on the γ2 MBON response to KC stimulation (Figure 

5.3E), while activation of the γ2 DAN actually resulted in a small, but significant, 

depression of activity in the γ4 MBON (Figure 5.3F). These experiments indicate that 

the segregated innervation of DAN axons in the lobe permits spatially restricted 

potentiation of KC-MBON neurotransmission, localized to the synapses within a 

compartment.    

  

State-Dependent Changes to the Pattern of MBON Activity 

 

Having demonstrated that DAN activity can potentiate KC-MBON signaling in a 

brain explant, we asked whether activation of DANs, either by exogenous activation or 

through reward signaling, was sufficient to change MBON odor responses in vivo. We 

therefore compared odor-evoked activity of the γ4 MBON, prior to and after stimulation 

of the γ4 DANs expressing P2X2 under the R58E02 promoter. After DAN stimulation the 

responses of the γ4 MBON to all odors tested were significantly potentiated (Figure 

5.4A) while γ2 MBON responses remained unaffected (Figure 5.4B). Together, these 

observations indicate that localized dopaminergic modulation can independently 

regulate neurotransmission between the same KC ensemble and each of its MBON 

partners, permitting an odor stimulus to drive distinct patterns of output activity in 

different contexts. We next compared the odor-evoked responses of the γ4 and γ2  



 97 

 

 

 
 
 
 
 
 
 
Figure 5.4, State-Dependent Modulation of MBON Odor Responses. A, Schematic 
(left) and quantification of γ4 MBON odor responses before and after stimulation of the 
γ4-γ5 (R58E02+) DANs (n = 6, right). B, As in A, but γ2 MBON response with activation 
of the γ4-γ5 DANs was quantified (n = 6).  C, Ratio between odor-evoked responses in 
the γ4 MBON and γ2 MBON before and after sugar feeding (n = 10). All pairwise 
comparisons in this figure represent the mean (±SEM) with significant changes 
indicated as follows: *p < 0.05, **p < 0.005, and ***p < 0.0005.  
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MBONs prior to and after sugar feeding, an appetitive stimulus that activates the γ4/γ5 

DANs and inhibits the γ2/γ3 DANs (Figure 3.3B). Sucrose ingestion resulted in an 

enhancement of the γ4 MBON odor response relative to the γ2 MBON response (Figure 

5.4C), mirroring the spatially precise alteration of presynaptic Ca2+ along KC axons 

following a sugar reward (Figure 4.7A). Acute changes to the state of an animal can 

thus rapidly gate the transmission of olfactory signals through the MBONs of a lobe, 

producing a different pattern of output activity to the same odor stimulus.  

 

DAN Activity Bidirectionally Modulates KC-MBON Signaling 

 

Dopamine can modulate synaptic communication in diverse ways—including 

potentiation or depression of neurotransmission and modifications to both short- and 

long-term plasticity20,41. Our data indicate that activation of DANs through salient 

experiences or exogenous stimulation is sufficient to modify the basal state of the KC 

synapses within a compartment, with enduring consequences for how all subsequent 

olfactory signals are processed. This finding can potentially explain why salient 

experiences that do not involve associative training can still lead to changes in 

subsequent animal behavior315–317. In contrast, during associative learning the 

contingent pairing of olfactory and reinforcement pathways is thought to selectively alter 

neurotransmission from odor-selective KC ensembles to allow formation of specific 

olfactory memories133. We therefore asked whether coincident activation of KCs and 
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DANs might elicit a distinct form of synaptic modulation in comparison to the 

potentiation we observe when DANs are activated independently of KC stimulation due 

to the changing context of an animal. We found that temporally pairing R58E02+ DAN 

activation with KC stimulation significantly depressed KC-evoked responses in the γ4 

MBON, in contrast to the robust potentiation induced by activation of DANs without 

simultaneous KC activity (Figure 5.5A-D). Alternating temporally paired and unpaired 

stimulation protocols resulted in depression and potentiation within the same 

preparation, indicating that KC-MBON synapses are capable of rapid bidirectional 

plasticity (5.5B-C).  Conversely, repetition of the paired protocol generally resulted in 

further depression or no additional change, while repetition of unpaired DAN activation 

maintained or increased responses (Figure 5.5E-G). Furthermore, the potentiated state 

induced by unpaired DAN activation was maintained through several rounds of KC 

stimulation (Figure 5.5H). Thus, the rapid depression and potentiation induced by 

alternating protocols (Figure 5.5B-C) is not simply the effect of rebounding from an 

extreme state. Depression of KC-MBON signaling was restricted to the compartment 

innervated by the activated DANs, suggesting similar spatial specificity for these 

opposing forms of modulation (Figure 5.5I).  

 

If plasticity of KC-MBON signaling were limited to the KCs that were concurrently 

activated during an olfactory experience, our observations would provide a mechanistic 

basis for the odor-specific modulation thought to underlie learned olfactory associations 

within the mushroom body. We therefore monitored responses of the γ4 MBON to two  
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Figure 5.5, DAN Activity Bidirectionally Modulates KC-MBON Signaling. A, 
Schematic (left) and experimental design (right) for B-I. The γ4 MBON responses to 
direct KC stimulation were recorded before and after R58E02+ DAN activation that was 
either temporally paired or unpaired with KC stimulation. Dashed lines here and below 
represent >45s delays.  B, Representative time course of γ4 MBON GCaMP 
fluorescence in response to direct KC stimulation in which R58E02+ DANs expressing 
P2X2 were alternately activated in the absence of KC stimulation (unpaired), or 
synchronously with KC stimulation (paired). Paired KC-DAN activation resulted in 
depression of MBON responses that had been previously potentiated (gray lines in D 
and G). Time courses (top) and heatmaps (bottom) of the γ4 MBON response with 
stimulation protocol indicated between recordings. Blue lines indicate KC stimulation. C, 
Same as in B, but demonstrating unpaired protocol after paired protocol. D, Changes in 
γ4 MBON responses to KC stimulation following activation of 58E02+ DANs that was 
either paired (left, n = 6, starting from a potentiated state) or unpaired (right, n = 12, 
starting from a depressed state) with KC stimulation (as in B-C). E-G, As in B-D but for 
a protocol in which the same protocol (either paired or unpaired) was repeated twice 
rather than alternating between protocols. Magenta lines in G are for repeated protocols 
(as in E-F, gray lines are same data from D, showing alternating protocols.   H, As in B-
G, but for a series of KC stimulations in which there was only a single, unpaired 
activation of R58E02+ DANs, showing that γ4 MBON responses are stable over 
successive recordings after potentiation by dopamine.  I, Stimulation of R58E02+ DANs 
had no effect on γ2 MBON responses to KC stimulation whether KC-DAN activation 
was synchronous (paired) or DANs were activated independently of KC stimulation 
(unpaired). All pairwise comparisons in this figure represent the mean (±SEM) with 
significant changes indicated as follows: *p < 0.05, **p < 0.005, and ***p < 0.0005.  
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alternately presented odors and then paired one odor with stimulation of R58E02+ 

DANs expressing P2X2. Following DAN activation, the response of the paired odor 

relative to the unpaired odor was significantly reduced (Figure 5.6A-B). Similar odor-

specific depression of KC-MBON synapses was also observed in other studies119,226, 

confirming this result. Thus DAN activity can bidirectionally modulate KC-MBON 

signaling, allowing for both odor-independent synaptic potentiation, as well as odor-

specific depression. 

 

The role of the MBONs in regulating various aspects of fly behavior have been 

examined in several other labs100,117,119,216,226. These behavioral studies allow us to 

consider our findings concerning plasticity of the KC-MBON synapses in light of their 

findings, which suggest that a fly’s decision to approach or avoid an odor is a function of 

the net activity in the population of MBONs. Some MBONs bias the fly to approach an 

olfactory stimulus while others lead to avoidance118. As a consequence of learning, the 

balance of activity among the MBON population in response to a given odor is shifted, 

leading to a change in subsequent odor responses216. Integrating our findings with this 

body of literature reveals a plausible model for the circuit mechanism for dopaminergic 

signaling in the formation of olfactory associations. For example, activation of the γ4 

MBON has been shown to drive avoidance behavior, while the γ4 DAN is activated by 

appetitive stimuli, such as sucrose ingestion (Figure 3.3B). Thus, when exposure to a 

specific odor is paired with a reward, the paired activation of odor-specific KCs and the 

sugar-responsive γ4 DAN leads to depression of the synapses between those KCs and  
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Figure 5.6, Mechanisms of DAN Modulation for Associative Learning. A, Change in 
γ4 MBON response to an odor that was paired with R58E02+ DAN activation using 
P2X2, relative to a second odor that was unpaired (n = 10).  B, Representative example 
showing depressed response in the γ4 MBON to an odor that was paired with R58E02+ 
DAN activation using P2X2, while the unpaired odor response is unchanged. C, The 
potentiation of MBON olfactory responses by unpaired DAN activation is independent of 
odor identity. The responses of the γ4 MBON to hexanol and isobutyl acetate were 
equivalently enhanced after activation of R58E02+ DANs, such that the ratio of the 
responses remained unchanged (n = 6 flies, p > 0.6). This is in contrast to the odor-
specific depression evident using these same odors, after pairing one odor with DAN 
stimulation as shown in A.  D, Representative trace showing changes in γ4 MBON 
responses to KC stimulation in a brain explant following forward paired KC-DAN 
stimulation, unpaired DAN stimulation, and reverse paired KC-DAN stimulation 
(courtesy of Annie Handler). E, Model for how dopamine-mediated synaptic depression 
underlies associative learning in the MB. In the naïve fly (left), the KC response to an 
innately neutral odor leads to activation of both attraction-inducing and avoidance-
inducing MBONs. The balance of activity in the MBONs leads to a net neutral response. 
During appetitive learning (center) the pairing of odor sensation and activity in the 
reward-responsive DANs (such as the γ4 DANs) leads to long-term depression of the 
synapses between the odor-responsive KCs and MBONs (such as the γ4 MBONs) that 
promote avoidance behavior. When the fly is subsequently exposed to the trained odor 
(right) the weakened response in the avoidance-promoting MBONs shifts the balance of 
activity in the MBON population, leading to net attraction. All pairwise comparisons in 
this figure represent the mean (±SEM) with significant changes indicated as follows: *p 
< 0.05, **p < 0.005, and ***p < 0.0005. 
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the γ4 MBON (Figure 5.6A-B). When the fly is then re-exposed to that odor, the γ4 

MBON response has been weakened, thus reducing its avoidance-inducing effect, and 

shifting the fly’s behavior towards approach of the now-appetitive odor (Figure 5.6E).   

 

Temporal Control of DAN-induced Synaptic Plasticity 

 

While the extensive MB literature provides a satisfying framework for 

understanding dopaminergic modulation in the context of associative conditioning, the 

role of the odor-independent potentiation that we observe from unpaired DAN activation 

is less clear. One line of research has suggested that locomotor-induced DAN activity in 

the absence of odor presentation is responsible for the active erasure of memories, a 

process that is abrogated by the lack of such activity when the fly is quiescent, such as 

during sleep, when the MB circuit is effectively consolidating memories223,274,306. These 

findings suggest the possibility that in addition to forming memories, the DANs are 

responsible for erasing associations that are no longer predictive or relevant211,274.  

 

Regardless of the specific behavioral role, our findings confirm that dopamine 

can induce different, sometimes opposing, forms of plasticity in a neural circuit41,318–321 

and that the mode of modulation is dependent upon the timing of the DAN signal relative 

to KC activity322. Therefore, together with Annie Handler, another student in the lab, we 
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asked whether varying the pairing protocol might also affect the form or strength of 

plasticity observed. Indeed, we found that reversing the order of KC-DAN pairing, where 

R58E02+ activation preceded KC stimulation, resulted in even stronger potentiation 

when compared with unpaired DAN activation of equivalent strength (Figure 5.6D). Such 

reversal of the pairing order between the conditioned (CS) and unconditioned stimulus 

(US) has also been shown to induce opposing effects on the valence of the learned 

behavioral response to the CS322,323. Thus, our results suggest that dopaminergic 

signaling in the MB can implement different types of plasticity in the KC-MBON 

synapses with exquisite temporal and spatial precision. 

 

The diversity of plasticity mechanisms under control of DAN signaling in the MB 

raises a number of interesting questions about the mechanisms underlying such 

plasticity. cAMP signaling pathways have been shown to be an important component of 

learning in the MB as well as many other circuits that implement learning227–229,324–326. It 

has been proposed that the primary cellular means for detecting coincident CS and US 

activity in the KCs is through the Ca2+ sensitive adenylyl cyclase, rutabaga327,328. 

However, our finding that the direction of plasticity induced is extremely sensitive to the 

relative timing of these two signals suggests that the order of signals, and not simply 

their coincidence, is detected at the molecular level. A recent demonstration that the 

rules of plasticity differ across the compartments of the MB211 indicates that further 

investigations will be needed to reveal how distinct modulatory mechanisms are 

mediated throughout the MB.  
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Together with behavioral and functional studies from several other 

labs118,119,211,212,226, we believe that our findings regarding dopaminergic modulation of 

KC-MBON synapses contribute to a plausible model for the role of the MB in associative 

learning. These results, however, have also revealed additional complexity within the 

MB circuitry, suggesting that the DANs represent the fly’s locomotor state in addition to 

reinforcement signals, and that dopamine can induce different types of plasticity 

depending on the timing and position of its release. While our findings indicate that the 

extreme behavioral states present in a tethered fly are sufficient to induce DAN-

mediated modulation of MB signaling (Figures 4.3C, 5.1), it will be interesting to 

determine whether, and how, patterns of DAN activity during more naturalistic behaviors 

might modify the flow of sensory information through the MB. Furthermore, while the 

studies mentioned above have demonstrated the general effects of exogenous MBON 

activation and suggested how learning might adjust these responses to change the fly’s 

behavior, we have a very limited understanding of the neural pathways downstream of 

the MBONs and the specific mechanisms by which they control the fly’s actions. Our 

preliminary attempts to address these questions are described in the next chapter.  
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Chapter 6 

Linking the MB to the Execution of Flexible Behaviors 

 

The results described here, combined with decades of behavioral genetic and 

functional investigations of the MB, provide a starting circuit model for how a single 

sensory input can lead to different patterns of output circuit activity depending on the 

present context or past experiences of an individual animal. Olfactory sensory stimuli 

are represented by the activation of a sparse subset of KCs such that each odor has a 

unique representation at this input layer to the MB. When an odor is paired with a salient 

contextual cue, such as sugar or an electric shock, strong dopaminergic signals that 

follow the odor will lead to weakening of the synapses between the KCs activated by 

that odor and the MBONs in the same compartments as the activated DANs. In this 

way, the MB acts like a switchboard, where the routing of the same odor-specific KC 

input to different MBONs is controlled by the network of DANs. By changing the balance 

of activity in the different MBONs, the net output of this circuit can shift the fly’s 

behavioral response towards approach or avoidance depending on which DANs were 

co-activated when the animal encountered the odor. Importantly, we find depression of 

KC-MBON synapses only occurs when the odor precedes the DAN activity and predicts 
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the reinforcement signal. Reversing the temporal order of DAN and KC activation 

indicates that the odor is not predictive of the US, and instead of depressing these 

synapses, will actually potentiate them, consistent with behavioral studies showing that 

conditioned odor preferences similarly depend on timing322,323,329. Finally, ongoing 

fluctuations in the DANs that represent the behavioral state of the fly might serve as a 

modulatory signal to affect immediate behavior, or to prime the circuit for learning−a 

question we will return to below. However, it remains unclear how the output pathways 

from the MB are actually linked to different motor programs or action sequences 

necessary for moving towards or away from an odor source. In the preliminary results 

described in this chapter, we describe a novel closed-loop olfactory system that is 

compatible with functional imaging of the MB circuitry, facilitating our ongoing 

investigations of the downstream targets of the MB. 

 

Studying Olfactory Navigation in Individual Flies 

 

Flies and other animals display a range of behavioral strategies for tracking 

towards appetitive odors330,331. One well-described chemotactic strategy, which is 

prevalent across many species, is anemotaxis, in which an animal will turn upwind upon 

encountering an appetitive olfactory cue332–338. Anemotactic strategies provide an 

appealing target of analysis for understanding the execution of olfactory-guided 

behaviors in the fly. For one, the decision to turn upwind could reflect a discrete binary 
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choice, potentially mediated by relatively simple circuit mechanisms, amenable to 

functional studies. Furthermore, we hypothesized that allowing flies to use 

mechanosensation of wind-direction as an additional source of information, as might 

happen in a natural setting, could help generate more robust chemotaxis assays. Many 

behavioral assays, such as the T-maze traditionally used in the Drosophila field to 

examine odor preferences66, have relied on end-point measurement of the movement of 

a large population of tens of flies towards or away from an odor source. However, there 

are distinct advantages to using single animal tracking as a readout of odor 

preferences220,336,339 if individual behavior is sufficiently robust. Incorporating wind-

direction cues that allow for naturalistic anemotactic behaviors is therefore a promising 

approach for the design of single-animal assays of olfactory navigation.  

 

In order to investigate how MB output circuitry impinges on pathways underlying 

olfactory navigation we sought to devise a behavioral setup that is compatible with 2-

photon imaging, in which a tethered fly can perform odor-tracking behaviors. It has been 

increasingly appreciated that the interplay of motor execution and sensory feedback 

plays an integral role in the neural circuits responsible for sensorimotor 

processing340,341. Our goal was therefore to mimic the relevant wind-direction cues and 

sensory feedback that a fly would encounter while freely walking in an odor plume. We 

designed an apparatus in which a head-fixed fly can walk comfortably on a spherical 

treadmill. As the fly walks, the rotation of the ball is tracked in real-time and used to 
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adjust the angle of an air- and odor-delivery tube directed at the fly in closed loop with 

the fly’s turns.  

 

The first iteration of this closed loop system was a relatively simple design in 

which the air-delivery tube was attached to an arm that was driven around the fly by a 

servo motor (Figure 6.1A). The fly was either glued to a pin at the thorax for purely 

behavioral experiments or mounted in a custom imaging chamber based on Green et 

al.342 for functional experiments, and placed on an air-supported foam ball343. We 

tracked the rotation of the ball using FicTrac software344 and used the calculated 

heading changes of the fly to direct the motor, adjusting the angle of the air tube in real 

time. While this system has the benefit of simplicity of design, its main drawback is that 

the range of tube-motion is limited to approximately 180 degrees due to obstruction of 

complete revolution by necessary structural components (Figure 6.1A). While this 

limitation did not preclude the use of this system to investigate odor-tracking behavior 

(see below), it does present certain problems. In particular, rotations beyond the 

available angles necessitate rapid swinging of the arm from side to side and disruption 

of continuous airflow – leading to sensory stimuli that we found to be extremely salient 

to the fly as evidenced by the prominent responses elicited in relevant neural circuits. 

Such artifacts necessitated discarding significant portions of certain datasets. 

Furthermore, as our goal was to simulate a realistic virtual environment for the fly, the 

presence of these discontinuities might contribute to a loss of the closed loop illusion. 

We therefore designed a second iteration of our closed loop olfactory system in which  
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Figure 6.1, A Closed Loop System for Virtual Olfactory Navigation. A, 3D rendering 
of the first iteration of the closed loop olfactory environment. A head-fixed fly is 
positioned comfortably on an air-supported foam ball. A small tube carrying an air 
stream is positioned near the fly. The angle of the wind/odor stream is controlled by a 
servo motor whose activity is yoked to the real-time calculation of changes in the fly’s 
heading on a virtual 2D plane. Movement of the tube angle is limited to approximately 
180 degrees. B, 3D rendering of the second iteration of the closed loop system in which 
the air stream can fully rotate around the fly. Cutaway view shows inner mechanism by 
which a fixed air inlet is coupled to a rotating output stream. Central blue part remains 
fixed while outer gray piece is rotated by the gear belt. Air enters through the air inlet 
and is routed to an air channel at the interface between the two parts. Air-tightness is 
ensured by O-rings above and below the channel.  
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the air-delivery tube was able to move continuously through the entire 360 degrees 

around the fly (Figure 6.1B). This system uses a stepper motor coupled to a custom 

rotary union via a gear belt. The rotary union unit receives the air stream via a fixed 

input connection, while the output tube facing the fly can rotate continuously without 

limit. Both systems proved to be capable of inducing and recording robust upwind odor 

tracking behavior (see below) and we therefore pool data from both systems or indicate 

which system was used where relevant.  

 

Closed Loop System Verification 

 

While flies have sensory bristles distributed over their entire bodies, the aristae, 

feather-like sensory bristles extending from the third antennal segment, are the primary 

sense organs associated with detection of wind direction345. We therefore measured the 

position of the aristae of a mounted fly and found that changing the airflow direction of 

our closed loop system led to appropriate deflections of the aristae (Figure 6.2A). 

Together with the odor-tracking results described below, this suggests that our air-

delivery apparatus can faithfully simulate the change in sensory input associated with a 

change in relative wind direction. How the sensation of wind direction in the aristae is 

encoded and relayed to the relevant navigational circuitry in the fly brain remains an 

interesting question for future study.   
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Figure 6.2, Naturalistic Anemotaxis in a Virtual Olfactory Environment. A, 
Verification that changes in wind direction in closed loop systems appropriately deflect 
the aristae. A fly was placed in the closed loop system and the position of the aristae 
(Ar), featherlike sensory hairs that extend from the antennae (An), were imaged using 
the brightfield microscope. Dashed box shows position of imaging field of view (left). 
Angles of aristae were manually traced when the airflow was turned off (center, blue) 
and with the airflow on (right) and the airtube positioned directly in front of the fly 
(yellow), to the fly’s right (green) or left (red). Manual tracing of the aristae angles in all 
cases matched expected deflections. (Fly drawing modified from www.flinnsci.com). B, 
Representative 2D trajectories of the same fly walking for 5 minutes on the spherical 
treadmill in the dark with the airflow turned off (left, ‘asensory’) and with airflow turned 
on and closed loop system engaged (right). In ‘asensory’ condition, the fly is unable to 
maintain a stable heading without sensory feedback and generally walks in circles 
within a small area. In closed loop the fly can maintain a relatively straight heading over 
extended periods of time (Courtesy of Ari Zolin). C, Representative example of heading 
relative to wind direction (top) and D, 2D trajectory of a fly exposed to multiple 
presentations of apple cider vinegar odor while walking in the closed loop system. Each 
time the odor is presented (red), the fly robustly walks upwind, evident above by 
maintenance of a heading near 0, and below by the upwind trajectory. Odor offset often 
leads to increased turning that resembles local search behavior. E, Heading traces as in 
C, aligned to time of odor onset shows robust upwind turning in response to 49 odor 
presentations in n=7 flies. 
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Flies walking in virtual visual environments have been shown to maintain a 

relatively fixed heading over long periods of time342,346. However, when the visual 

feedback is removed, the heading direction of these flies will drift over time since they 

no longer have the sensory feedback needed to remain on course346. If we compare the 

fictive 2D trajectory of the same fly walking on a ball in the absence of sensory feedback 

or in our closed loop virtual reality system, we find that the fly can maintain a relatively 

straight, long path when in closed-loop, but walks in circles when deprived of this 

sensory feedback (Figure 6.2B). This is consistent with the idea that the fly is indeed 

using the wind direction as a salient directional cue in order to maintain a constant 

heading direction. We next asked whether flies in closed loop would engage in 

anemotactic behavior in response to the presentation of appetitive odor. Indeed, we find 

that flies track relatively straight upwind when presented with the appetitive odor of 

apple cider vinegar, and often perform what appears to be local search behavior at odor 

offset347 (Figure 6.2C-E). Thus, we have developed what we believe to be the first head-

fixed preparation in which a fly can engage in naturalistic odor tracking behavior while 

walking.  

 

Linking MBONs to Olfactory Navigation Behavior 

 

Our preliminary results are in line with what has previously been observed in flies 

and other insects333,337,338,  suggesting that when flies detect an appetitive odor, they 
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can rely on directional signals conveyed by the wind to track towards the odor source. 

Therefore, the neural circuits that assess olfactory cues must ultimately converge with 

pathways that relay wind direction information, such that odor valence gates wind-

tracking behavior. However, in our odor-tracking experiments, the olfactory stimulus is 

inherently linked to the wind, as in the context of natural odor plumes, since it is 

delivered by integration into the carrier air-stream in the same tube. We therefore 

optogentically activated the majority of OSNs to evoke a fictive olfactory response 

independent of wind. This type of stimulation has been previously shown to effectively 

drive upwind tracking in freely walking flies336 and allows us to fully decouple ‘odor’ 

sensation from wind presentation. We expressed csChrimson in the majority of OSNs 

using the ORCO-Gal4 promoter and found that optogentic activation of this peripheral 

sensory population indeed evoked robust anemotaxis behavior, which was apparent 

from their maintenance of an upwind heading to a clean air stream in the closed loop 

paradigm (Figure 6.3A, D). We observed no obvious change in heading direction or 

walking velocity of flies in which OSNs were activated in the absence of airflow (Figure 

6.3B) or when flies lacking csChrimson expression were stimulated with light (Figure 

6.3C). Thus, the activation of olfactory sensory circuits increases the behavioral 

relevance of wind direction and causes the fly to turn upwind and attend to this 

directional cue.  

 

 We next asked whether the MB output pathways, which have been shown to 

represent learned and context-dependent odor valence, might directly influence upwind  
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Figure 6.3, Activation of Olfactory Sensory Neurons and MBONS Gates Upwind 
Odor Tracking. A, Representative trace of heading of a fly expressing csChrimson 
under control of ORCO-Gal4. Fly is in closed loop system with a constant, clean, 
airstream. Green lights indicate exposure to a 630nm LED, showing that optogenetic 
activation of OSNs leads to upwind tracking behavior in the absence of odor. B, When 
the wind flow is turned off, LED exposure has no apparent effect on the behavior of the 
same fly. C, LED exposure also has no apparent effect on control flies without 
csChrimson expression. D, Heading traces from 30 LED exposures in 6 flies aligned to 
the time of LED onset in ORCO>Chrimson flies shows that ORCO activity elicits robust 
upwind tracking behavior, apparent as maintenance of a heading near 0 (upwind). E, As 
in D, but for flies expressing csChrimson in the γ2 MBON, showing that this MBON 
elicits upwind tracking behavior (72 trials in n=8 flies). F, As in D-E, but for flies 
expressing csChrimson in the γ4 MBON, demonstrating a lack of upwind tracking, and 
instead, an increase in sharp turning when the LED is turned on (45 trials in n=5 flies).  
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turning. We expressed csChrimson under the control of split Gal4 lines, each of which 

selectively drives expression in a single or small subset of MBONs114. We then 

optogenetically activated each MBON class while the fly was walking in a clean air-

stream in closed loop. Activation of either the γ2 or γ3 MBONs elicited robust upwind 

tracking (Figure 6.3E), in agreement with previous results showing that activation of 

these mushroom body output pathways replicates odor attraction in a population 

assay118. Thus, the olfactory-attraction mediated by MBONs may be, in part, 

implemented through a downstream circuit that relies on wind direction to guide 

anemotaxis in response to appetitive odors. Conversely, activation of the γ4 MBON, 

which has been shown to lead to avoidance118, did not evoke upwind turning, and 

instead elicited increased turning rates in the closed loop system (Figure 6.3F). Taken 

together, these preliminary results suggest that circuits downstream of the MBONs 

mediate the convergence of odor valence representations with information about wind 

direction in order to guide anemotactic behavior.  

  

 We therefore used a newly developed trans-synaptic tracing mechanism, known 

as trans-TANGO348, to identify neural loci that are both downstream of the MB and 

encode directional cues. In trans-TANGO, a modified glucagon receptor is expressed 

pan-neuronally, together with downstream machinery that initiates expression of a 

reporter gene, such as tdTomato, when the receptor is activated. A Gal4 driver line is 

used to drive expression of a glucagon construct that is tethered to the extracellular 

surface of presynaptic terminals. This system thus allows for anterograde labeling of 
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any neurons that are postsynaptic to those labeled by a Gal4 line of interest (Figure 

6.4A). We crossed the trans-TANGO flies with selective split-Gal4 lines targeting 

individual MBON classes to visualize putative downstream neurons. From this labeling, 

it appears that MBONs synapse onto diverse neurons with projections in many different 

parts of the protocerebrum. However, an intriguing shared target of many MBON 

postsynaptic partners are the dorsal and medial layers of the fan shaped body (FSB) 

(Figure 6.4C), a part of the central complex (CX) which has been previously suggested 

to be downstream of MBONs based on anatomical proximity of neuronal processes114. 

  

The CX comprises a set of discrete neuropils in the central brain and is known to 

play roles in encoding spatial cues and controlling directional motion349–353. Work in 

recent years highlighted a set of neurons, known as EPGs, that innervate a donut-

shaped structure called the ellipsoid body (EB) along with the linearly-arranged 

glomeruli of the protocerebral bridge (PB)342,346,354 (Figure 6.4B). These neurons have 

been shown to function as a ring attractor, in which a single peak of activity travels 

around the span of the ellipsoid body and maintains a faithful record of the heading 

direction of the fly relative to a visual landmark354. We asked whether these same 

neurons might represent the fly’s heading relative to the wind direction in the absence of 

visual feedback. In preliminary experiments, we expressed GCaMP in the EPG neurons 

and recorded their activity while the fly navigated within the closed loop paradigm. We 

found that the EPG activity peak was indeed well-correlated with the heading of the fly, 

with an arbitrary offset, replicating findings from visual virtual navigation (Figure 6.4D).   
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Figure 6.4, Convergence of Odor Valence and Wind Direction in the FSB. A, 
Schematic demonstrating the use of the trans-TANGO system in order to label neurons 
that are postsynaptic to the γ2 MBON. A Gal4 line is used to express one part of the 
trans-TANGO system, a synaptically localized, membrane-tethered glucagon, along with 
a visualizable reporter (γ2 MBON, red). A pan-neuronally expressed modified glucagon 
receptor is activated only in neurons that are postsynaptic to the targeted γ2 MBON. 
Receptor activation leads to expression of another reporter (green). Many MBONs 
appear to synapse onto neurons that project to the FSB. B, Schematic of the 
protocerebral bridge (PB), fan-shaped body (FSB) and ellipsoid body (EB), three 
components of the central complex (CX). The PB is made up of 18 glomeruli that are 
roughly linearly aligned along the posterior edge of the brain. The patterns of innervation 
by different neurons in the FSB define discrete rows and columns. Many neurons 
innervating the EB tile the circumference of the structure into discrete wedges. Color-
coding indicates wedges and glomeruli that are connected by a subset of CX neurons. 
Adapted from Turner-Evans and Jayaraman355. C, trans-TANGO labeling of neurons 
downstream of several MBONs highlights their common projections to the dorsal and 
medial layers of the FSB. D, Representative recording of peak of GCaMP fluorescence 
of EPG neurons in the wedges of the EB (grayscale) aligned with the fly’s heading 
direction (red) while the fly navigates in the closed loop system. Adding in the odor of 
apple cider vinegar leads the fly to track in a relatively upwind direction. E, As in D, but 
imaging the PFN neurons along the span of the FSB. When the wind is temporarily 
turned off, the heading no longer aligns with the peak of activity in the FSB, but snaps 
back into place when the wind returns. (Note that in D and E, the wedge phase has 
been shifted by an arbitrary offset in order to maximize alignment with heading over the 
course of the recording, as described in Seelig et al.346) 
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This correspondence was lost when the wind source was turned off but the air tube was 

still yoked to the fly’s position. This preliminary result suggests that wind direction can, 

indeed, be used to update and maintain this heading representation. It is, perhaps, 

unsurprising that multimodal sensory inputs are integrated into a unified heading signal 

in the EPGs, as it has been previously shown that olfactory inputs can modulate visual 

processing in flight9. In future experiments it will be interesting to extend on these 

observations and to determine whether this wind-direction information is relayed to the 

CX through the same types of neurons that convey visual directional cues350. 

 

 The highly recurrent circuit organization of the CX356 suggests that there are 

multiple copies of EPG-like heading signals carried by different neural populations in 

this neuropil342,346,357 (Figure 6.4B). We therefore asked whether neurons innervating 

the fan shaped body, and therefore poised to interact with the putative MBON targets 

identified by trans-TANGO, also represent the fly’s heading direction relative to the 

wind. We expressed GCaMP in a set of neurons, known as PFN neurons, which extend 

projections into the same layers of the FSB that were identified as targets of MBONs in 

our trans-TANGO labeling. The PFNs also innervate the noduli and the PB, a shared 

target of EPGs, suggesting they may carry a heading representation (private 

communication from Cheng Lyu). We observed a single peak of activity along the span 

of the FSB columns that provided a faithful representation of the fly’s heading relative to 

the wind direction (Figure 6.4E). As observed when imaging the EPG heading signal, 

temporarily removing the wind flow resulted in uncoupling of the PFN activity peak from 
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the fly’s heading direction, while restoring the wind induced the PFN peak to ‘snap back’ 

into alignment with the heading. Interestingly, these preliminary recordings in both the 

PFNs and EPGs showed no obvious change in signal intensity upon odor presentation. 

This implies that the encoding of spatial orientation in these neurons is distinct from the 

representation of a goal (an attractive odor source) that might lead to the maintenance 

of an upwind heading.   

 

These results suggest that the FSB is likely to be one point of convergence 

between odor-valence decisions carried by the MBONs and wind-direction information 

contained in the activity of the PFNs. While it remains to be seen whether and how this 

convergence might impact the fly’s behavior in response to an odor, we believe that the 

FSB provides a promising target for future investigation of how olfactory-based 

decisions are translated into action. Another region of interest highlighted by trans-

TANGO as a target of several MBONs is the lateral accessory lobe (LAL), a brain region 

that also contains the dendrites of many descending neurons358,359, suggesting these 

neurons might directly influence motor control. There are likely to be multiple points of 

convergence of odor information and spatial orientation representations within the fly 

brain. For instance, airflow is also represented in the MB itself360. Nonetheless, our 

closed loop paradigm will serve as a powerful tool in future studies exploring the circuits 

that link MB output to the execution of anemotaxis behavior.  
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Dopaminergic Neurons Represent Details of Sensorimotor Context 

 

Investigations into the neural circuits responsible for controlling action selection 

and modifying motor control based on experience have revealed that internal 

representations of behavior tend to appear in conjunction with the learning signals that 

motivate future choices. For instance, it appears that the presence of locomotor signals 

in the dopaminergic circuitry of the basal ganglia may be important for invigorating 

movement33,276,361,362. Our discovery of locomotor-related signals in the reinforcement-

signaling DANs of the MB (Figure 3.3D-E) suggests that this connection between 

reward representation and motor state is conserved across distantly related species, 

pointing to an intrinsic connection between the roles of these seemingly distinct neural 

codes. However, this initial observation was made in a dangling fly – a seemingly 

extreme behavioral state with unknown ethological significance. Initial recordings of 

DAN activity while the fly walked on a spherical treadmill revealed that the correlations 

apparent in a dangling fly were not maintained during more naturalistic walking (Figure 

3.4B). Therefore, in collaboration with Ari Zolin, another student in the lab, we decided 

to investigate the role of the γ lobe DANs in representing the fly’s actions in a more 

relevant behavioral context: tracking towards an appetitive odor stimulus in our closed 

loop olfactory paradigm.  
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In trying to understand the relevance and purpose of the locomotor signals in 

learning centers, we again simultaneously recorded the activity of several genetically 

distinct subpopulations of DANs and used the compartmental organization of the MB 

lobes to unambiguously identify each subset (Figure 3.2). Making use of a closed loop 

paradigm allowed us to record detailed sensory and behavioral parameters while 

placing the fly in a context in which it could perform meaningful, sensory-guided 

behaviors. We began by recording from the γ lobe DANs in flies walking comfortably on 

the ball, but without providing a wind source or any other overt external sensory cues. In 

this ‘asensory’ setup, DAN activity was frequently coordinated (Figure 6.5A), but the 

correlations between DANs of different compartments and between DANs and the fly’s 

behavior were significantly more complex than the simple binary states apparent in the 

flailing animal. While, on average, the activity in all compartments correlated with the 

initiation of walking bouts, the γ3 DANs were nearly perfectly correlated with this 

locomotor state, while the other DANs exhibited more variability (Figure 6.5B-C). 

Interestingly, there appeared to be a reciprocal opponency between the γ2 and γ4 

DANs (Figure 6.5B-C), resembling the population-wide opponency apparent in the ‘flail’ 

and ‘still’ states (Figure 3.3D-E). Additional analysis revealed that during movement 

bouts, the activity of the γ4 DANs is correlated with the fly’s forward velocity (Figure 

6.5D,F). Thus the DAN population represents multiple aspects of the fly’s locomotor 

state, in addition to internal DAN network dynamics.   



 130 

 

 
Figure 6.5, DANs Represent Details of Sensorimotor Context. A, Overlay of net 
velocity of the fly walking on a spherical treadmill and neuronal activity in four of the 
dopaminergic neuron subpopulations innervating the γ lobe of the mushroom body in 
three representative animals expressing syt-GCaMP in all dopaminergic neurons and 
dsRed in KCs. B-C, Pearson correlation coefficient (r) of net motion and γ2 (top row, 
blue), γ3 (second row, red), γ4 (third row, green), or γ5 (bottom row, magenta) DAN 
activity as animals initiate (B) or terminate (C) locomotion. Columns correspond to all 
instances of locomotion initiation (B) or cessation (C) performed by an individual animal. 
Animals are ordered from lowest to highest average pearson correlation coefficient 
between net motion and γ2 DAN activity within each condition. n=36 animals initiating 
locomotion 1038 times (B). n=38 animals terminating locomotion 676 times (C). D, 
Representative trace showing that the activity in the γ4 DANs (green, average of left 
and right MBs) is roughly correlated with the forward velocity (black) of the fly during a 
walking bout. G, Representative trace showing that the difference between the syt-
GCaMP fluorescence in the left and right γ4 DANs roughly correlates with the changes 
in heading of the fly walking in closed loop (black). H, Linear filters describing the 
relationships between behavioral parameters and γ4 DAN activity. Black traces 
represent average filters across n=10 flies, with filters fit from individual flies shown in 
gray. Filters suggest that forward velocity is positively correlated with average γ4 DAN 
activity (top), odor sensation leads to increases in γ4 DAN activity (middle) and air tube 
angle is correlated with the difference between the γ4 DAN activity on the left and right 
sides of the brain (bottom). These filters look similar across closed loop (left) and white 
noise (right) conditions, indicating that they are not significantly effected by the state-
change associated with closed loop behavior, and that the Left-Right difference 
represents sensation of wind direction and not turning behavior. Courtesy of Ari Zolin 
(A-G) and Rich Pang (H).  
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We next asked whether allowing the fly to navigate relative to the wind direction 

in our closed loop system would reveal additional aspects of behavior that might be 

encoded by the DAN population. During upwind tracking, we noticed that while the 

activity of most γ lobe DANs was bilaterally equivalent, the activity of the γ4 DANs was 

significantly different between the right and left MBs. The deviation between the two 

sides correlated well with the left and right turns made by the fly, indicating that the γ4 

DANs represent an additional aspect of the fly’s behavior: the small turns within the air 

stream required to maintain an upwind direction (Figure 6.5E-F). Because the 

movement of the air tube and changes in the fly’s heading are linked in the closed loop 

condition, it is impossible to determine whether this γ4 DAN difference represents the 

act of turning or the sensation of changing wind direction. We began a collaboration with 

Rich Pang, a student from Adrienne Fairhall’s Lab at the University of Washington, to 

quantitatively describe the different states within the DAN network and how they depend 

on behavior and sensory inputs. We exposed the fly to a white noise stimulus of air tube 

motion that replicated the statistical properties of tube movement observed in closed 

loop, but was uncorrelated with the fly’s behavioral output. These experiments revealed 

that the difference between right and left γ4 DAN activity is actually a representation of 

the changes in wind direction induced by turning, and not the act of turning itself (Figure 

6.5F). Thus in the closed loop paradigm, the γ4 DAN activity reflects both sensory 

feedback resulting from changes in wind direction as well as the fly’s forward velocity.  
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Finally, we asked whether the DANs might represent additional sensory- or 

motor-related signals in the context of olfactory navigation. We presented flies in the 

closed loop paradigm with pulses of apple cider vinegar odor while recording from the γ 

lobe DANs. We found that the γ4 DANs gave the most robust responses to the 

presentation of this appetitive odor, with other compartments only weakly responding or 

being inhibited, though the odor responses were somewhat variable. In order to 

determine the contributions of odor-related signals and velocity representations, 

respectively, to γ4 DAN activity, we again turned to a white noise stimulus paradigm. 

Using the same white noise air tube motions describe above, we added in a series of 

randomized odor pulses. Rich Pang fit linear filters to the behavioral and functional 

imaging data and found that both odor presentation and forward velocity contribute to 

the γ4 DAN activity, and confirmed that the left-right difference between γ4 DANs 

correlates with air tube motion (Figure 6.5F). The γ4 DAN activity therefore contains 

complex, multiplexed information encompassing aspects of behavioral state as well as 

multimodal sensory inputs that include reward signals, wind direction, and odor 

responses.  

 

Investigations into the functional properties of the MB circuitry have revealed how 

the specialized circuit architecture that first drew the interest of neurobiologists over 150 

years ago is ideally suited to dynamically assign meaning to sensory inputs based on 

experience. Our own work has helped to describe the specific mechanisms by which 

dopaminergic modulation within the compartments of the MB lobe contribute to this 
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flexibility. However, very little is known about how the odor valence, shaped by the 

population of DANs and carried in the joint activity of the MBONs, is translated into 

appropriate, odor-guided behavior. Using a closed loop, virtual wind environment in 

which flies can perform realistic olfactory navigation, we have begun to observe and 

perturb the activity of neurons within and downstream of the MB.  We believe this tool 

will be instrumental for future experiments that explore how MBON activity is translated 

into action. 

 

Our findings thus far demonstrate that in addition to reinforcement signals, the 

MB DANs encode specific parameters of the fly’s locomotor state. This detailed 

behavioral representation again draws an interesting parallel to the dopaminergic 

circuits of the mammalian striatum. Striatal DANs have been shown to represent and 

contribute to specific aspects of animal activity, including movement initiation, vigor, 

action sequences and action selection32,33,276,293,361,363,364. Interestingly, just as we see 

differences in the types of behavioral and sensory signals that are represented in the 

distinct MB compartments, regional specializations and differences between 

subcompartments of the striatum have also been described32,365,366. As in studies of 

these mammalian systems, our ability to parse the correlations between DAN activity 

and behavioral parameters was aided by advances in techniques that allowed us to 

simultaneously record from identifiable subpopulation of DANs, as well as the 

development of novel behavioral paradigms that are compatible with functional imaging 

and the execution of meaningful actions.  
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The parallels between the MB and the basal ganglia raise several interesting 

questions for future investigation. The dopaminergic locomotor signals in the striatum 

have been suggested to be specifically linked to the initiation of motivated actions, 

perhaps with the expectation of reward33,34,240,269,291. This leads us to ask whether the 

MB DANs might similarly show distinct representations of goal-oriented movements. 

Preliminary investigations using our closed loop system suggest that γ4 DAN activity is 

specifically enhanced when the fly is motivated to track upwind towards an appetitive 

odor. Additionally, ongoing experiments, and recent reports367, indicate that perturbing 

MB DAN activity can lead to increases or decreases in motivated locomotion, paralleling 

the effects that changes in dopaminergic activity have on mammalian behavior, whether 

due to experimental manipulations or disease33,225,361,365,368. It thus appears that the 

control of motivated behaviors and reinforcement learning in highly divergent species 

rely on shared dopaminergic circuits whose coordinated activity acts to modulate the 

flow of sensory information and impart meaning to sensorimotor experience. 
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Chapter 7 

Discussion 

 

In the work described here, we took advantage of the orderly architecture of the 

Drosophila MB to gain insight into how neuromodulatory mechanisms mediate flexible 

circuit processing. Recent data118,119,125 and our own experiments (Figure 6.3E-F) 

suggest that the ensemble of MBONs act in concert to bias an animal’s behavioral 

response to an odor, such that altering the balance of their activity can modify the 

olfactory preferences of both naïve and trained animals. We showed that 

compartmentalized dopaminergic signaling permits independent tuning of synaptic 

neurotransmission between an individual KC and its repertoire of postsynaptic MBON 

targets. As a consequence, a single odor representation can evoke different patterns of 

output activity depending on the state of the animal and the dopaminergic network. 

Thus, we reveal how a distributed neuromodulatory network is poised to direct plasticity 

across all the compartments of the MB and selectively route olfactory signals through 

different MBONs, allowing for adaptive behavioral responses based on the acute needs 

or past experience of the animal.   
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Neuromodulation: A Challenge and a Guide 

 

The awesome complexity of the nervous system presents a daunting and exciting 

challenge for neuroscientists studying animals from worms to humans. The intricate 

wiring in our brains and bodies must somehow give rise to our ability to sense, reason 

and imagine. The task of understanding neural circuit function would be challenging 

enough if the hundreds of trilliions of synaptic connetions in our brains were fixed. The 

fact that these connections are constantly being modified, and that this modulation is 

inherent to our ability to generate flexible behaviors suggests an insurmountable 

roadblock. However, while the dynamic nature of circuit function certainly presents 

some difficulties, exploring the modulation of neural circuits can also provide insights 

that help explain the relationships between the structural organization of specific brain 

regions and their functions.  

 

One of the most ubiquitous sources of behavioral modulation across all animals 

is satiety state, and investigations of the relevant modulatory pathways have improved 

our understanding of the neural circuits controlling food-related actions. Animals must 

adjust their behaviors depending upon their level of hunger in order to ensure the 

availability of nutrients necessary for survival. Internal sensation of nutrient availability is 

therefore a potent modulator of neural circuits that control behaviors related to the 

acquisition of food. In mammals, the identification of hunger-activated AgRP neurons 
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has greatly accelerated our understanding of the circuits that are modulated by hunger 

in order to lead to increased food-seeking and intake369,370. Interestingly, activity in these 

hunger-activated neurons can serve as a negative-valenced reinforcement signal371, 

while satiety state also affects food-reward related signals in brain regions involved in 

learning372, including DANs in the striatum373. In the Drosophila MB, satiety state has 

also been shown to influence the formation of long term memory374,375 and to control the 

excitability of specific DANs, thereby gating the expression of appetitive memories302, 

thus demonstrating an additional role of the DANs in mediating the effect of internal 

state on MB circuitry. In collaboration with Leslie Vosshall’s lab, we explored the effect 

of satiety state on the sugar-ingestion responses of a set of gustatory interneurons in 

the Drosophila subesophageal zone. We found that the activity of these neurons in 

response to sugar ingestion is significantly modulated by both the quality of the food 

source as well as the satiety state of the fly (Figure 7.1). When the fly is sated, these 

neurons respond transiently to sugar intake, while in hungry flies, they exhibit a 

sustained sugar response (Figure 7.1E-G). These findings helped to explain how these 

neurons might function to control the fly’s feeding behavior under different conditions, 

and opened up new avenues of exploration of a pharyngeal gustatory pathway376. In all 

of these instances, investigations into the modulation of specific circuits by hunger-

mediated modulatory pathways led to the elucidation of neural mechanisms for animals 

to adjust their feeding-related behaviors. Thus, neuromodulatory mechanisms can serve 

as a handle into the dissection of complex neural circuits and the behaviors they control.  
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Figure 7.1, Satiety State Modulates Activity in a Gustatory Pathway. A, 
Representative IN1>GCaMP6s responses recorded in the same 24-hr-fasted female 
before, during, and after 1 M sucrose ingestion. Still images captured by the video 
camera (a–d; see B for corresponding raw traces), with the eye pseudocolored in red 
and 1 M sucrose drop in blue (top). Heatmap of IN1 neuron activity in response to 
indicated stimuli (bottom).  B, Trace of IN1 fluorescence in a.u., with letters a–d 
indicating the corresponding still image and activity heatmaps in B. C, Fluorescence 
traces are normalized using F0. The gray lines show data from individual flies; bold 
green and blue lines show average traces for the indicated stimuli. D, Peak of stimulus-
evoked IN1 neuron activity (p < 0.05, one-way ANOVA with pairwise post hoc 
Bonferroni test; error bars indicate mean ± SEM; n = 4–6). E, Normalized IN1 neuron 
activity in fed or 24-hr-fasted flies to 1 M or 100 mM sucrose. Mean traces for indicated 
stimuli and conditions (colored lines) ± SEM (gray). Summed histogram of ingestion 
duration (bottom). F, Peak of stimulus-evoked IN1 neuron responses to indicated stimuli 
and conditions (p < 0.05, unpaired Student’s t test with Bonferroni correction; error bars 
indicate mean ± SEM; n = 5–6).  G, Area under the curve (A.U.C.) measurement of the 
GCaMP6s signal showing the persistent activity of IN1 neurons to indicated stimuli and 
conditions (p < 0.05, Student’s t test with Bonferroni correction; error bars indicate mean 
± SEM, n = 5–6). Adapted from Yapici et al.376  
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Our investigations into dopaminergic modulation of the MB377, together with many 

other studies of the MB’s role in learning and context-dependent behavior, have likewise 

shed light on some of the organizational principles within the MB circuitry. Our 

demonstration that individual KC synapses can be independently modulated by 

dopaminergic inputs underscores the significance of the compartmentalized 

organization of the MB lobes. This circuit architecture allows for the flow of sensory 

information to be independently modulated within each compartment, resulting in 

precise control of each set of MBONs and their collective downstream influence on 

behavior. Descriptions of the plasticity rules at KC-MBON synapses and at parallel fiber 

output synapses in other cerebellum-like structures have informed computational 

analyses suggesting that optimal encoding for associative learning may dictate the 

choice of specific connectivity parameters at the input layers of these structures112. 

Finally, our demonstration of coordinated DAN network activity representing many 

parameters of the sensorimotor state of the fly helps to explain the potential role of the 

recurrent circuitry in the MB and related structures. Thus, our studies of dopaminergic 

modulation in the MB help elucidate the elegant relationship between structure and 

function in this neural circuit.  

 

Nonetheless, it is important to recognize the limitations of our findings. In 

particular, while we investigated the immediate effects of dopamine-induced plasticity 

within particular γ lobe compartments, it is known that the MB is responsible for many 

different forms of memory, some of which are thought to result from interactions 
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between multiple compartments. Recent studies have begun to explore these 

differences, suggesting that the learning rules may differ between compartments based 

on the form of memory they encode133,211. Thus, additional investigations into the 

diverse capabilities of this brain structure are likely to further expand our understanding 

of the many different ways that dopamine and other neuromodulators affect circuit 

function.  

 

Mechanisms for Spatiotemporal Precision of DAN Modulation  

 

The interplay between structural and functional studies in the MB help to explain 

the mechanisms by which DANs control the flow of sensorimotor information with 

striking spatiotemporal precision. We demonstrated that dopaminergic modulation of 

both KC presynaptic Ca2+ and KC-MBON synapses appears to be restricted to the 

precise compartmental boundaries (Figures 4.3A-B, 5.3)226. This spatial precision is 

remarkable in that the boundaries between compartments span only a few microns and 

dopamine has been shown to be capable of acting over considerable distances via 

diffusion311. Our functional findings, however, are nicely supported by recent EM studies 

that examined the distribution of DAN synapses within a MB lobe305. These studies 

revealed that while dopaminergic synapses are not always co-localized with KC-MBON 

synapses, they invariable appear within approximately 2 microns of each synapse in a 

compartment. This short distance should allow for dopamine released by DANs to reach 
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all synapses within a compartment through local diffusion, while significantly greater 

distances would have to be traversed to affect synapses in neighboring compartments. 

Thus, detailed anatomic studies provide a plausible physical mechanism to explain the 

spatial precision of neuromodulation we demonstrate, while our functional observations 

of this precise targeting enlighten us as to the utility of this structural organization. 

 

In addition to the selective targeting of specific KC synapses, we also found that 

MB DANs can induce opposing forms of synaptic plasticity depending upon the precise 

temporal ordering of activation of KCs and DANs (Figures 5.3-5.6). While it has long 

been held that rutabaga, a Ca2+ dependent adenylyl cyclase, mediates detection of 

coincident odor stimulation of the KCs with DAN activity75,228, our findings necessitate a 

more nuanced understanding. Rather than a single mechanism for coincidence 

detection, the bidirectional modulation of KC-MBON signaling we observe suggests the 

presence of molecular mechanisms for the detection of three distinct temporal patterns 

of dopamine release: forward paired, backward paired and unpaired.  

 

Ongoing studies in our own lab and others have suggested that these distinct 

forms of plasticity may be mediated by at least two different dopamine receptors, DopR1 

and DopR2223,306, through distinct downstream signaling cascades. One model 

suggested that the choice of engaging one pathway versus the other might be a function 

of differences in dopamine affinity between the two receptors306, thereby distinguishing 
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between low and high levels of dopamine release. This proposed mechanism parallels 

the notion that dopamine-affinity differences between the D1 and D2 dopamine 

receptors are responsible for the selective engagement of the direct and indirect striatal 

pathways by phasic and tonic DAN activity in the striatum, respectively378. However, an 

increasing accumulation of evidence suggests that this hypothesis is unlikely to fully 

explain the modes of plasticity observed in the MB. For one, the dichotomy suggested in 

the mammalian circuitry has recently come into doubt, as increasingly detailed analyses 

have revealed commingling of receptors between the two pathways378. Furthermore, 

while the classical viewpoint held that the direct pathway was responsible for driving 

locomotion and the indirect pathway was involved in opposing movement, more recent 

studies have suggested that both pathways contribute to different aspects of action 

sequences361,362, further muddying the previously proposed distinctions. Meanwhile, 

within the MB circuitry, significant questions remain about how these distinct forms of 

plasticity are implemented. In the experiments described here, we found that identical 

levels of DAN stimulation were able to alternately recruit opposing types of plasticity, 

based solely on the relative timing of their activation (Figure 5.6D). A difference in 

receptor affinity would therefore be unable to explain this distinction. Additionally, both 

dopamine receptors have been shown to induce the production of cAMP223, raising 

questions as to how downstream pathways can distinguish between their activation. 

Thus, how these different patterns of dopamine release recruit distinct, opposing modes 

of plasticity at KC-MBON synapses remains an interesting open question.  
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Ongoing studies in our lab have begun to trace the distinct molecular 

underpinnings of the bidirectional modulation induced by forward and backward KC-

DAN pairing in the MB. Future experiments will continue to explore the mechanisms by 

which these opposing pathways are engaged in the fly depending upon the precise 

temporal relationship of convergent inputs. We hope that by interrogating how these 

complementary forms of plasticity work to guide behavior in the fly, we will also help to 

resolve the ongoing uncertainties about specific mechanisms of dopaminergic 

modulation in other model organisms. 

 

Modern Tools for Linking Animal Behavior with Neural Circuits 

  

The digital revolution has unleashed a steady stream of tools that have 

dramatically changed most scientific fields. The wide availability of electronics, such as 

digital recording devices and affordable data processing and storage options, allows for 

the study of animal behavior with a resolution that was previously unattainable. 

Olfactory preference and learning assays in Drosophila have traditionally used 

population assays, such as the T-maze designed for the original learning 

demonstrations in the Benzer lab66. While such assays established the foundations of 

the entire field of learning and memory in Drosophila, there is much to be gained from 

the analysis of individual, rather than population activity. For one, it has been shown that 

interactions between flies can effect their collective behavior379, potentially confounding 
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the interpretation of any given behavioral phenotype. Furthermore, tracking the behavior 

of individual animals over time allows for higher resolution analysis of their behaviors, 

providing insight into the specific actions that lead to the endpoint measurements often 

recorded in population assays380. This type of high resolution behavioral tracking has 

led to insights into the structure of animal behavior in many different model 

organisms211,220,363,381–383. In mice, for instance, novel methods of recording and 

analysis coupled with neural recordings are beginning to delineate the contributions of 

the direct and indirect striatal pathways to behavior, as described above382. The 

application of modern methods in machine learning have increasingly improved the 

resolution and accuracy of the automated classification of behaviors, giving insight into 

the structure of behavioral transitions and the neural mechanisms underlying them384–

386. Recent studies of behavior in the nematode, C. elegans, have utilized automated 

behavioral tracking of worms to link various neuromodulatory systems with the 

expression of individuality in behavioral patterns387, while others have attempted to 

decipher the circuit basis for integration of sensory information in order to execute an 

appropriate response388. These studies, among many others, indicate how the 

increased capacity for monitoring individual animals has contributed to our 

understanding of the link between neural circuitry and the execution of specific 

behaviors.  

 

In Drosophila, single animal tracking assays have also proven to be extremely 

useful. Tracking the trajectories of individual flies in an odor choice task has identified 
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neural circuits that appear to accumulate sensory evidence and use that information to 

make behavioral decisions220,389. Other studies have used high resolution behavioral 

data to begin to dissect the strategies used by flies to navigate towards or away from 

various stimuli118,211. Such analyses have revealed that flies can use distinct tracking 

strategies to approach different appetitive odors390, and suggested that flies might 

perform path integration in order to return to the site where they received an appetitive 

stimulus347. Thus, the development of tools for monitoring the behaviors and olfactory 

preferences of individual flies in our own lab and others220,336,339 has begun to provide 

new insight into the behavioral strategies and neural circuits used. 

 

With the development and refinement of assays to measure individual animal 

behavior comes the possibility of measuring neural activity in the context of specific 

behaviors of interest. In certain vertebrate systems, continuing improvements in 

electronics miniaturization allows for the possibility of mounting recording devices on a 

freely behaving animal381,391,392. In many cases, however, and certainly in flies, the best 

tools available for high resolution neural recordings require placing the animal in a head-

fixed apparatus (although see Grover et al.393 for an intriguing exception). This necessity 

for head-fixed recordings while trying to monitor naturalistic, individual animal behaviors 

provides a formidable challenge. In freely behaving animals, the actions taken, almost 

invariably, will cause some change in the animal’s environment, which is then sensed 

by the animal. Such feedback may be inconsequential in peripheral sensory circuits with 

relatively invariant responses to specific stimuli. As we move into higher brain circuits, 
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however, where patterns of activity rely upon multimodal integration and state-

dependent modulation, the lack of this closed loop interaction between animal behavior 

and sensory input becomes highly problematic. For this reason, there has been an 

increasing push for placing head-fixed animals in realistic virtual environments, meant to 

mimic the experience of unrestrained behavior341,394–396. In flies, the development of 

virtual environments containing visual landmarks has contributed greatly to our 

understanding of navigational decisions made in flight397 and the spatial representations 

of environments maintained in the central complex, described above342,343,346. 

 

Here too, improvements in the available technology have contributed greatly to 

our ability to create virtual environments that elicit naturalistic behaviors. In the case of 

the closed loop olfactory system describe here, the use of high resolution 3D printing 

technology, fast image analysis software for the tracking of spherical treadmill rotation344 

and affordable microprocessor-based electronics platforms, such as Arduino, facilitated 

the design, prototyping and execution of multiple iterations of this system. The finished 

product allows us to monitor and manipulate the activity of neural circuits in the fly brain 

while the animal executes realistic olfactory anemotaxis behavior (Figures 6.2-6.5). This 

system is now being used in the lab to directly explore how the dopamine-induced 

plasticity we observed in the MBONs correlates with the individual behavioral responses 

to odors. Recording from the population of DANs during navigation in this apparatus has 

also given us insight into the role of this modulatory network in the execution of goal-
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directed behaviors. As is often the case, however, as the resolution and sensitivy of our 

tools improves, they continue to reveal additional questions for future study.  

 

The Dopaminergic Network and the Encoding of Behavioral State 

 

Our ongoing examination of the DAN network in the context of olfactory 

navigation (Figure 6.5) highlights what can be learned from new tools, but also raises 

additional questions. By recording from the DAN population while animals navigate in a 

virtual olfactory environment, we have identified a detailed representation of the 

sensorimotor state of a fly in the DAN network activity. These investigations paint a 

picture of the MB DAN system that increasingly resembles what is known about 

dopaminergic circuits of the basal ganglia. As in mammalian DANs, we observe motion 

related signals in parallel with reward representations. These patterns of activity 

correlate with multiple behavioral parameters, such as locomotor state and velocity, as 

well as sensory inputs, such as odor stimuli and wind direction. Because these DANs 

are genetically identifiable across animals, we are able to precisely quantify these 

relationships and determine that the same individual dopaminergic neurons that 

respond to reinforcement stimuli also represent these aspects of locomotion. Finally, by 

recording the activity in this modulatory network across different internal states and 

sensory environments, we are beginning to identify changes in network parameters that 

suggest a role in encoding motivational state−a hypothesis which we are primed to 
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investigate through perturbations of particular circuit elements. In addition to helping us 

to understand the role of the DAN network in the MB circuitry, it is our hope that insights 

gained in this relatively simple nervous system might help to clarify the complexity and 

controversies regarding the role of DANs in the basal ganglia.  

 

Nonetheless, these investigations have also raised many questions as to the 

function of these dopaminergic signals in the MB. One possibility is that these ongoing 

patterns of motor-related dopaminergic activity might actively modulate MB activity, 

thereby contributing to the ongoing behavior of the fly. This possibility has gained 

support from studies suggesting that the MB, and the DAN network, does, indeed, play 

a significant role in controlling fly behaviors such as food-seeking136, sleep118,124 and 

context-dependent odor responses127,307. This idea is also consistent with our 

demonstration of robust odor-independent potentiation of KC-MBON synapses by the 

ongoing DAN activity in a tethered animal (Figure 5.4). We found, for instance, that in 

our in vivo preparations, the odor responses of the γ2 and γ3 MBON are much greater 

than those in the γ4 and γ5 MBONs (Figure 5.1), likely due to the ongoing aversive 

signal in the γ2-γ3 DANs during flailing (Figures 3.3D-E, 4.6F). Since the γ2-γ3 MBONs 

have been shown to drive approach behavior118 (Figure 6.3E), these results lead us to 

speculate that when the fly is in a particularly dire situation, any incoming odor stimulus 

is considered more attractive than it otherwise would be. This makes intuitive sense and 

is in line with behavioral experiments which have demonstrated that flies show reduced 

odor aversion (or, in other words, increased odor attraction) following exposure to an 
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electric shock315. Conversely, when the fly is in a particularly rewarding situation 

(leading to higher activity in the γ4-γ5 DANs and increased odor responses in the 

avoidance-inducing γ4-γ5 MBONs), incoming odors should be interpreted as being less 

attractive, leading the animal to remain in its current, rewarding, situation. Thus, the 

ongoing activity of the distributed DAN network, encoding information about an animal’s 

current environmental context and behavioral state, is poised to continuously 

reconfigure the activity patterns of the MBON population to allow for adaptive odor 

responses based on the acute needs of the animal.   

 

However, there are several other possible roles for the ongoing DAN activity that 

may occur instead of, or in parallel with, direct modulation of fly behavior275. For 

instance, given the prominent role of the DANs in associative learning, it is possible that 

the behavioral modulation of DAN activity may serve to gate the capacity for learning. 

The idea that learning rules can be altered has been explored in the locust MB, where 

octopaminergic modulation has been shown to control the timing windows for STDP129. 

It has also been suggested that one role of the dopaminergic circuitry of the basal 

ganglia is to gate the updating of goals or context in the prefrontal cortex291. 

Interestingly, it was recently demonstrated that the locomotor state of mice has a robust 

effect on their ability to learn in an eyeblink conditioning task398. If learning is similarly 

contingent upon behavioral state in the fly, reafferent motor signals in the DANs might 

serve as the mediators of this gating mechanism. In parallel with the development of the 

closed loop apparatus described here, Thomas Graham, a postdoc in the lab, has 



 152 

developed a high-throughput assay for measuring anemotaxis behavior in freely 

behaving flies. Analysis of learning effectiveness in individual, freely behaving flies 

might allow us to begin to investigate the possibility that learning is contingent upon the 

locomotor state of the fly at the time of training. This system can also be used to explore 

the possibility that motor-related DAN activity might be relevant in operant learning, 

where rather than learning an association between two stimuli controlled by the 

experimenter, the fly must execute a particular behavior in order to lead to a rewarding 

stimulus 399.  

 

Finally, there is experimental and computational support for the idea that the 

ongoing activity of the DANs might direct the formation, consolidation and erasure of 

memory traces in the MB. In an intriguing demonstration of the capacity of the MB as a 

general-purpose learning machine, Ardin et al. showed that a MB-like circuit could be 

used to record visual snapshots along the foraging route of an ant, in a way that could 

then be used to chart a course back to the home nest195. This model utilized a periodic 

plasticity-inducing signal to record each snapshot, but this role would likely be played by 

the DANs in an actual MB. Thus, it is easy to imagine that the motor signals represented 

in the DANs might serve as salience detectors, indicating the significance of the current 

context, and forming a plasticity window in the MB synapses. Indeed, the idea that the 

MB plays a role in the detection of salient or novel sensory cues has also recently found 

experimental support123. Other experimental results have suggested that the ongoing 

DAN activity might be important for the consolidation of memories for longer term 
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storage272 and that movement-related DAN signals are particularly important for the 

active forgetting of previously learned associations274,306. Thus, the complex encoding of 

movement in the DAN network raises many intriguing questions and possibilities for the 

roles of these neuromodulatory signals.  

 

A Recurrent Neuromodulatory Network 

 

Understanding the potential significance of the DAN network in the various 

behavioral roles described above will require investigation into the functional effects of 

dopaminergic release on downstream effectors. Our investigations of dopamine-

mediated plasticity at KC-MBON synapses aids in our understanding of the role of 

DANs in the formation of associative memories, while hinting at additional forms of 

plasticity that might underlie other functions of this circuit. The tools and protocols we 

used here are likely to be similarly effective in further exploring the other, non-

associative effects of DAN activity in the MB. However, the interconnectedness of the 

MB circuitry and the complexity of the interactions between the different neuronal 

classes will also necessitate the development of new tools and technologies. For 

instance, recent EM studies of the MB have demonstrated the presence of a number of 

unexpected synaptic relationships in the MB lobes, including direct synaptic connections 

between DANs and MBONs and axo-axonic connections between KCs305. A more 

complete understanding of the effects of dopaminergic modulation on the MB will 
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therefore rely upon our ability to isolate different pairs of synaptically connected 

populations for independent manipulation.  

 

Furthermore, our DAN population imaging demonstrated that the dopaminergic 

inputs to each compartment represent both appetitive and aversive stimuli through 

bidirectional changes in their activity, and that DANs and MBONs of different 

compartments are functionally linked through complex multisynaptic interactions. Thus 

DANs may not act independently but, as a consequence of their rich interconnectivity, 

provide a coordinated representation of reinforcement experiences to orchestrate 

plasticity at KC-MBON synapses throughout the mushroom body. One implication of the 

functional interdependence of DANs is that positive or negative reinforcement may be 

conveyed to an odor by either the activation or suppression of specific DANs in different 

compartments. Indeed, behavioral studies suggest a requirement for DANs activated by 

aversive stimuli in appetitive learning219 and a role for sugar-responsive DANs in relative 

aversive learning400. Intriguingly, midbrain DANs responsive to punishment and reward 

also project to distinct targets in the mammalian brain and display a similar functional 

opponency as a consequence of reciprocal network interactions29,36,239,401. Thus the 

concerted and partially antagonistic action of neuromodulatory pathways responsive to 

stimuli of opposing valence may represent a general and conserved circuit principle for 

generating adaptive behavioral responses. 
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While DAN network activity regulates the transmission of olfactory information to 

MBONs, the extensive feedback we observe between MBONs and DANs suggests that 

the net output of the mushroom body can dynamically shape the activity of the 

dopaminergic network. Such recurrent connectivity is a fundamental feature of circuits 

that use information from one moment to shape neural function at later time-points402,403.  

Thus the patterning of MBON activity by an animal’s state or experience has the 

potential to both bias its immediate olfactory behavior as well as influence future 

responses through positive or negative feedback onto different DANs. An interesting 

consequence of this arrangement is that the plasticity induced on MBON odor 

responses by a previously learned association will influence the dopaminergic activity 

elicited by that odor. A recent study investigated a particular MBON-DAN feedback 

circuit and found that this recurrence allows the fly to re-evaluate an odor that was 

previously associated with an appetitive sugar reward285. When the fly is re-exposed to 

an appetitively trained odor, but denied the expected reward, the modulated pattern of 

activity in the DANs leads to the formation of a parallel, aversive ‘disappointment’ 

memory285. Interestingly, the withholding of a reward in this paradigm leads to a change 

in DAN activity that is reminiscent of the RPE that emerges in mammalian DANs when 

an expected reward is denied.  

 

The complexity of activity patterns in the DAN network and the feedback 

connections between MBONs and DANs emphasizes the need to identify the sources of 

synaptic input onto the DANs. Recent studies have begun to trace specific sensory 
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pathways that feed into the DANs, including gustatory projection neurons404 and 

afferents from the LH branch of the olfactory pathway405. However, these circuits likely 

represent only a small fraction of the inputs onto the DANs, and unfortunately, at 

present there are no effective means for retrograde tracing of neural circuits in the fly. In 

place of genetic tracing mechanisms, EM reconstructions of progressively larger 

portions of the fly brain, in larvae and adults, have begun to provide some insight into 

the circuitry upstream of the DANs165,305,406. The picture emerging from this connectomic 

data is that the DANs are likely to receive synaptic input from hundreds or thousands of 

different sources. Understanding how the complex activity patterns in the DAN network 

emerge will therefore require identification of which input synapses are particularly 

significant in controlling DAN activity in different behavioral or sensory contexts.   

 

Towards an Understanding of a Complete Flexible Sensorimotor Circuit  

 

The ultimate role of the nervous system is to use the totality of sensory 

information available to select the set of actions that will give an animal the greatest 

chance of surviving in its environment. Thus, tracing the route of neural circuits that link 

sensory input to behavioral output, and understanding how sensory signals are 

processed and transformed along the way is a fundamental goal of neuroscience. In the 

simplest cases, studies of monosynaptic reflex arcs, in which a specific stimulus elicits 

an acute, innate response, have elucidated basic properties of input-output coupling in 
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neural circuits407. In organisms with relatively simple nervous systems, sensorimotor 

circuits spanning a small number of synaptic connections have been used to investigate 

various forms of non-associative learning and context-dependent modulation of 

behavior17,77,408. Meanwhile, studies of neural circuits underlying innate behaviors in 

Drosophila have provided valuable insight into the computational principles that lead 

from sensation to appropriate behavioral responses. For instance, the delineation of the 

olfactory and gustatory processing pathways underlying male Drosophila courtship 

behaviors identified circuit motifs, such as balanced coupling of feedforward excitation 

and inhibition, that might serve to gate entry into particular behavioral states164,409. 

Recent investigations in the Drosophila visual system identified a set of optic lobe 

neurons that detect approaching dangers and directly connect to a neuron that induces 

rapid escape behavior410,411. These studies revealed an elegant neurophysiological 

circuit for the selective activation of these neurons by looming stimuli as well as a neural 

circuit mechanism for selecting the type of escape behavior to execute. These findings, 

among many others, exemplify the types of insights that have been gained by 

leveraging the tools of modern neuroscience to the tracing and interrogation of 

sensorimotor pathways. 

 

The MB sits at the nexus between the mostly feed-forward sensory processing 

steps of the olfactory sensory circuitry and the output circuits that control the execution 

of the entire behavioral repertoire of the fly. Thus, understanding how the dopaminergic 

network shapes the flow of sensory information through the MB helps to fill in an 
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essential link that brings us closer to the complete tracing of a sensorimotor circuit 

connecting complex, arbitrary sensory stimuli with flexible behavioral output. Our 

investigations are built on the solid foundation of knowledge about the early stages of 

sensory processing, from sensation at the periphery through the olfactory PNs that carry 

odor signals to the KC dendrites in the MB calyx. The sensory signals passing through 

these early layers are filtered and transmitted into the expanded coding space available 

in the large population of KCs as a sparse encoding of odor identity. The coordinated 

activity of the DAN network, representing both salient external stimuli and the internally 

generated behavioral state of the fly, precisely modifies synaptic connectivity in the MB 

lobes. In doing so, they condense the sparse KC odor code into a lower dimensional 

representation of odor valence in the MBON population that encapsulates the learned 

experience and current circumstances of the individual. Our development of a closed 

loop olfactory navigation system has allowed us to further investigate the MB circuitry in 

the context of a fly engaged in realistic odor tracking behavior. Going forward, this 

system will provide the opportunity to explore how the patterns of modulated activity in 

the MBON population lead to the execution of specific odor-related behaviors. In doing 

so, we will come closer to the goal of tracing the flow of flexible sensorimotor processing 

from sensory input to behavioral output. 

 

 



 159 

Conclusion 

 

Together with decades of research on this fascinating structure, the work we 

present here suggests that the MB embodies many of the properties that we associate 

with neural circuits responsible for higher cognitive functions. It serves as a 

convergence point for multimodal signals representing a range of sensory stimuli as well 

as internal and behavioral state information. This convergence allows for sensory 

processing to be modulated in complex ways, such that the behavioral response of the 

fly takes into account a whole range of relevant contextual information. Furthermore, 

through the use of neuromodulatory mechanisms with long-lasting effects on the MB 

circuitry, the fly’s decisions rely not only on current circumstances but are informed by 

its previous experiences. These properties of the MB, combined with the striking 

functional and anatomical resemblance between the MB and circuits in the vertebrate 

brain, indicate that the insights we describe here might shed light on the neural 

mechanisms underlying our ability to learn about and adjust to the world around us. 

These findings and parallels suggest that the ability to generate flexible behavioral 

responses based on experience, whether past or present, may rely on common 

integrative brain structures in which neuromodulatory networks act with exquisite spatial 

and temporal precision to shape sensory processing.  
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Materials and Methods 

Generation of syt-GCaMP Transgenic Flies  

The coding sequence for GCaMP6s246,412 (Addgene Plasmid #40753) was 

appended to the Drosophila synaptotagmin 1 coding sequence (DGRC Stock #4839) 

with an intervening 3xGS linker by PCR and Gibson Assembly279. The resulting product 

(syt-GCaMP) was ligated into pJFRC- 10xUAS (Addgene Plasmid #36432) and pJFRC-

LexAOP (Addgene Plasmid #26224) and used to generate transgenic flies by PhiC31-

based integration into attp40, attp5 and VK00005 by Bestgene Inc. Additional 

transgenics were generated in which GCaMP6s was tethered to synaptogyrin (DGRC 

Stock #17821) but preliminary expression studies in Kenyon cells revealed inferior 

presynaptic localization with fluorescence along the shaft of axons lacking presynaptic 

sites (data not shown).  

Fly Strains  

Flies were maintained on conventional cornmeal-agar-molasses medium at 23-

25°C and 60-70% relative humidity, under a 12 hr light: 12 hr dark cycle.  

Strains and sources  

VT026001-Gal4, VT043657-Gal4, VT203149-Gal4 (Vienna Drosophila Resource 

Center (VDRC); https://braingazer.org/brainbaseweb); R25D01-Gal4, R93B07-Gal4, 

R66C08-Gal4, R16A06-Gal4, R35B12- Gal4, R53C03-LexA, R25D01-LexA, R14C08-

LexA, R58E02-Gal4, R58E02-LexA, R60A06-Gal4, R37G12413, 83F01-Gal4376,  
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MB298B, MB77B, MB83C118 (http://flweb.janelia.org/cgi-bin/flew.cgi), trans-TANGO348 

(gift from Mustafa Talay and Gilad Barnea), UAS-GCaMP6s, UAS-tdTomato, LexAOP-

tdTomato, LexAOP- ReaChR259, MZ19-Gal4414, ORCO-Gal4, nSYB-Gal4, VGlut-Gal4, 

UAS-DopR2-RNAi (TRiP.HMC02893, generated by the TRiP at Harvard Medical School 

(NIH/NIGMS R01-GM084947)) (Bloomington Drosophila Stock Center); MB247-

DsRed99 (gift from Andre Fiala, University of Göttingen); MB247-LexA280 (gift from Scott 

Waddell, University of Oxford); LexAOP-P2X2258 (gift from Orie T. Shafer, University of 

Michigan); OK107-Gal4264; TH-Gal4415; DDC-Gal4416; Tub>Gal80>310 (gift from Kristin 

Scott, University of California, Berkeley); fmn dDAT mutant307; DopR1attP, 

DopR2attP164, DopR1attP-DopR2attP Double Mutant (Gift from Daisuke Hattori); UAS-

C3PA-GFP, LexAOP-SPAGFP-T2A-SPAGFP300; UAS-FLP, brp>STOP>GFP164,417 (gift 

from Larry Zipursky, University of California, Los Angeles). 

Detailed fly genotypes used by figure (with neuronal expression description):  

Figures 2.2B,2.3B,4.4A: 
LexAOP-SPA-T2A-SPA;MB247(KCs)-LexA, LexAOP-SPAGFP  

 
Figures 2.3C, 5.1, 5.4C,: 
UAS-GCaMP6s;VT026001(γ4-MBON)-Gal4,UAS-GCaMP6s/R25D01(γ2-MBON)-Gal4 
UAS-GCaMP6s/UAS-GCaMP6s;R93B07(γ3-MBON)-Gal4/R66C08(γ5-MBON)-Gal4 

  
Figure 2.3D: 
UAS-C3PA-GFP/UAS-C3PA-GFP;TH(DAN subset)-Gal4, DDC(DAN subset)-Gal4/UAS-
C3PA-GFP  

 
Figure 3.1C: 
MZ19(PN subset)-Gal4/UAS-tdTomato;UAS-FLP,brp>STOP>GFP 

 
Figure 3.1D-E: 
MZ19(PN subset)-Gal4/UAS-sytGCaMP;UAS-tdTomato 
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Figure 3.1F: 
VGlut(motorneurons)-Gal4;UAS-sytGCaMP 

 
Figures 3.2B,D, 3.3, 3.4, 6.5: 
UAS-sytGCaMP, MB247(KCs)-DsRed;TH(DAN subset)-Gal4, DDC(DAN subset)-Gal4 

 
Figure 3.2C:  
UAS-GCaMP6s; TH(DAN subset)-Gal4, DDC(DAN subset)-Gal4 

 
Figure 3.5A: 
UAS-sytGCaMP, MB247(KCs)-DsRed/R58E02(γ4-5 DANs)-LexA;TH(DAN subset)-
Gal4, DDC(DAN subset)-Gal4/LexAOP-P2X2  

 
Figure 3.5B:  
UAS-sytGCaMP, MB247(KCs)-DsRed/R25D01(γ2 MBON)-LexA;TH(DAN subset)-Gal4, 
DDC(DAN subset)-Gal4/LexAOP-P2X2 

 
Figure 3.5C:  
UAS-sytGCaMP, MB247(KCs)-DsRed/R93B07(γ3 MBON)-LexA;TH(DAN subset)-Gal4, 
DDC(DAN subset)-Gal4/LexAOP-P2X2   

 
Figure 3.5D:  
UAS-sytGCaMP, MB247(KCs)-DsRed/R53C03(γ4 MBON)-LexA;TH(DAN subset)-Gal4, 
DDC(DAN subset)-Gal4/LexAOP-P2X2   

 
Figure 3.5E:  
UAS-sytGCaMP, MB247(KCs)-DsRed/R14C08-LexA(γ5 MBON);TH(DAN subset)-Gal4, 
DDC(DAN subset)-Gal4/LexAOP-P2X2  

 
Figures 4.1B,D, 4.2A-D, 4.3A,C,D, 4.5A-B, 4.6, 4.7A, 4.8: 
UAS-sytGCaMP;R16A06(γ KCs)-Gal4  

 
Figure 4.1C: 
UAS-tdTomato, UAS-sytGFP;VT043657-Gal4 

 
Figure 4.2E: 
R16A06(γ KCs)-Gal4 

 
Figure 4.3A: 
R58E02(γ4-5 DANs),LexA,LexAOp-tdTomato;VT026001(γ4-MBON)-Gal4, UAS-
GCaMP6s/25D01(γ2-MBON)-Gal4 
 
Figure 4.3B: 
UAS-sytGCaMP/R58E02(γ4-5 DANs)-LexA;R16A06(γ KCs)-Gal4/LexAOP-tdTomato  
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Figures 4.3E, 4.4B: 
hsFLP;UAS-sytGCaMP/UAS-tdTomato;R16A06(γ KCs)-Gal4/Tub>Gal80>  

 
Figure 4.5C: 
UAS-sytGCaMP;R35B12(α’β’ KCs)-Gal4  

 
Figure 4.7B,D: 
UAS-sytGCaMP/R58E02(γ4-5 DANs)-LexA;R16A06(γ KCs)-Gal4/LexAOP-P2X2  

 
Figure 4.7C: 
UAS-sytGCaMP;R16A06(γ KCs)-Gal4/(LexAOP-P2X2)  

 
Figure 4.8A-E: 
UAS-sytGCaMP;;OK107(KCs)-Gal4   

 
Figure 4.8A: 
UAS-sytGCaMP;DopR2attP/DopR2attP;OK107(KCs)-Gal4 
 
Figure 4.8B: 
UAS-sytGCaMP/UAS-DopR2-RNAi;16A06(γ KCs)-Gal4 

 
Figure 4.8C: 
nSyb(neuronal)-Gal4 nSyb(neuronal)-Gal4/UAS-DopR2-RNAi  

 
Figure 4.8D: 
DopR1attP/DopR1attP;OK107(KCs)-Gal4 
 
Figure 4.8E: 
DopR1attP, DopR2attP/ DopR1attP,DopR2attP;OK107(KCs)-Gal4 
 
Figure 4.8F 
dDAT mutant/dDAT mutant;R16A06(γ KCs)-Gal4/UAS-sytGCaMP 
 
Figures 5.2A, 5.3A, 5.4A, 5.5A-H, 5.6: 
UAS-GCaMP6s/R58E02(γ4-5 DANs)-LexA;VT026001(γ4-MBON)-Gal4, 
UASGCaMP6s/LexAOP-P2X2 
 
Figure 5.2B-C: 
UAS-GCaMP6s/R58E02(γ4-5 DANs)-LexA;VT026001(γ4-MBON)-Gal4/LexAOP-
ReaChR  

 
Figure 5.2D: 
UAS-GFP/R58E02(γ4-5 DANs)-LexA;R16A06(γ KCs)-Gal4/LexAOP-P2X2  
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Figure 5.3B: 
UAS-GCaMP6s;VT026001(γ4-MBON)-Gal4,UAS-GCaMP6s/(LexAOP-P2X2)  
 
Figure 5.3C: 
R25D01(γ2 MBON)-LexA/UAS-P2X2;VT203149(γ2 DAN)-Gal4/LexAOP-GCaMP6s  
 
Figure 5.3D: 
R25D01(γ2 MBON)-LexA/(UAS-P2X2);LexAOP-GCaMP6s  
 
Figures 5.3E, 5.4B, 5.5I: 
R58E02(γ4-5 DANs)-LexA/UAS-GCaMP6s;25D01(γ2 MBON)-Gal4/LexAOP-P2X2 
 
Figure 5.3F: 
R53C03(γ4 MBON)-LexA/UAS-P2X2;VT203149(γ2 DAN)-Gal4/LexAOP-GCaMP6s 
 
Figure 6.3A, D: 
UAS-csChrimson; ORCO(OR83b, OSNs)-Gal4; 
 
Figure 6.3C: 
UAS-csChrimson;; 
 
Figure 6.3E: 
UAS-csChrimson;MB77B(γ2 MBON)split-Gal4 
 
Figure 6.3F: 
UAS-csChrimson;MB298B(γ4 MBON)split-Gal4 
 
Figure 6.4C: 
trans-TANGO x MB298B(γ4 MBON)split-Gal4 
trans-TANGO x MB77B(γ2 MBON)split-Gal4 
trans-TANGO x MB83C(γ3 MBON)split-Gal4 

 
Figure 6.4D: 
UAS-GCaMP6m;R60A06(EPGs)-Gal4 
 
Figure 6.4E: 
UAS-GCaMP6m;R37G12(PFNs)-Gal4 
 
Figure 7.1: 
UAS-GCaMP6s;83F01(IN1)-Gal4 
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Sparse Labeling  

Sparse labeling of γ KCs for functional imaging (Figures 4.1C, 4.3E, 4.4B) was 

achieved by stochastic excision of ubiquitous Gal80 repression through expression of 

FLP-recombinase under the heat-shock promoter as described418. Briefly, flies with the 

genotype: hsFLP;UAS-sytGCaMP/UAS- tdTomato;R16A06(γ KCs)-Gal4/Tub>Gal80>, 

were incubated at 21°C to reduce spontaneous FLP-recombinase activation and 

transferred into new vials every 1-2 days. During the late pupal stage the vials were 

heatshocked by immersion in a 37°C water bath for 10-30 minutes and then returned to 

incubation at 21°C until dissection.  

Imaging  

All functional imaging experiments were performed on an Ultima two-photon laser 

scanning microscope (Bruker Nanosystems) equipped with galvanometers driving a 

Chameleon Ultra II Ti:Sapphire laser. Emitted fluorescence was detected with either 

photomultiplier-tube or GaAsP photodiode (Hamamatsu) detectors. Images were 

acquired with an Olympus 60×, 0.9 numerical aperture objective at 512 pixels × 512 

pixels resolution. For fast-scanning volumetric imaging in vivo, the laser was directed 

through an 8kHz resonant scanning galvonometer and the objective was controlled by a 

piezo-electric Z- focus. Z-planes were defined in order to encompass the entire volume 

of the γ lobe. 12-18 planes were recorded, spaced ~2 μm apart and the entire volume 

was imaged at a rate of ~1.5Hz.  

 



 166 

Photolabeling of neurons  

To photolabel DANs innervating specific γ lobe compartments (Figure 2.3D) we 

expressed C3PA-GFP in most DANS driven by the combination of TH-Gal4 and DDC-

Gal4. To label individual γ KCs (Figures 2.1C, 2.2B, 2.3A-B, 4.4A) we expressed SPA-

GFP in all KCs driven by MB247-LexA. We targeted specific γ lobe compartments (for 

DAN labeling) or individual KC soma (for single KC labeling) using 925 nm laser 

illumination, a wavelength that does not cause significant photoconversion. To 

photolabel neurons, we defined an ROI in PrairieView Software in a single Z-plane and 

exposed the target area to 710 nm light (~10-30 mW at the back aperture of the 

objective) 10-15 times. After diffusion of the photoconverted fluorophores throughout the 

targeted neurons for 10-30 minutes, we imaged at 925 nm using 1 μm steps.  

Functional Imaging  

For ex vivo experiments brains were dissected in external saline (108 mM NaCl, 

5 mM KCl, 2 mM CaCl2, 8.2 mM MgCl2, 4 mM NaHCO3, 1 mM NaH2PO4, 5 mM 

trehalose, 10 mM sucrose, 5 mM HEPES pH7.5, osmolarity adjusted to 275 mOsm), 

briefly treated with collagenase in external saline (2 mg mL-1, 30 sec), washed, and 

then pinned with fine tungsten wires to a thin Sylgard sheet (World Precision 

Instruments) in a 35 mm petri dish (Falcon) filled with saline. For in vivo imaging, flies 

were prepared as previously described 419. Briefly, 2-5 day old flies were temporarily 

anaesthetized using CO2 (for <30 s) and then tethered to a piece of tape covering a 

hole in the bottom of a modified 35 mm petri dish using a human hair placed across the 
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cervical connectives. A small hole was cut into the tape, precisely above the head, to 

allow the top of the head capsule to extend above the plane of the tape. A dot of UV-

curable glue (Loctite) was applied to the eyes to restrict head movement. The dish was 

then filled with external saline and the head capsule was opened by carefully cutting 

and folding back the flap of cuticle covering the dorsal portion of the head. Muscle 16 

and obstructing trachea were removed with sharpened forceps. In ATP and 

acetylcholine injection experiments, the open head capsule was briefly bathed in 

collagenase (2 mg mL-1, 30 sec) to weaken the perineural sheath. Care was taken to 

keep the antennae and antennal nerves intact. On rare occasions, flies showed no 

movement or odor responses and were discarded. For closed loop behavior 

experiments (Figure 6.1-6.5) flies were glued into custom imaging chambers as 

previously described342. Chambers were milled out of delrin on a Roland 540 MDX CNC 

with Tool Magazine and Rotary Axis attachments. 

Volumetric imaging of single KC in a brain explant  

To visualize Ca2+ influx throughout the axonal arbor of a single KC (Figures 4.1B) 

with high spatial resolution, the same voltage was used to repeatedly iontophoretically 

stimulate the calyx with acetylcholine as described below, allowing for equivalent 

activation of the neuron at each of 45 planes spaced ~1 μm apart. The representative 

image shown is the maximum Z-projection of the peak intensity response to stimulation 

for each imaging plane. In comparison to volumetric imaging by resonant scanning used 

in vivo (below), this strategy yielded better image quality due to greater temporal 

averaging at this slower scanning rate.  
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Odor stimulation  

Odor stimulation was achieved by directing a continuous stream (400-500 

mL/min) of clean air through a 2 mm diameter teflon tube directed at the fly’s antenna 

(carrier stream). 5-10% of the total airstream was diverted through the headspace of a 

10 mL glass vial containing paraffin oil (odor stream). At a trigger, a custom-built 

solenoid valve controller system redirected the odor stream from a blank vial to a vial 

containing various odorants diluted in paraffin oil (Sigma) to a final volume of 1 mL. 

Final odorant dilutions were between 1:20-1:200, depending on the identity of the 

odorant. In experiments where odor concentration was varied (Figures 4.5B and 4.6E), 

the fraction of odor stream directed to the fly was adjusted to give final concentrations 

between 1:100 and 1:1000. Odorants used were isobutyl acetate (CAS #110-19-0), 

trans-3-hexen-1-ol (CAS #928-97-2), benzaldehyde (CAS #100-52-7), 3-octanol (CAS 

#589- 98-0), methancyclohexanol (CAS #589-91-3) and Apple Cider Vinegar (Heinz). In 

a subset of experiments, a fraction of the olfactometer output air stream was redirected 

to a mini-PID (Aurora Scientific) in order to measure odorant waveforms and ensure the 

consistency of odor presentations across trials. Given that we observed no difference in 

the patterns of pre-synaptic Ca2+ along KC axons or MBON responses to different 

odorants, we averaged responses across odors to generate the normalized odor-

evoked syt-GCaMP profile in Figures 4.3 and to generate MBON response profiles in 

Figure 5.1.  
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Activation of P2X2-expressing Neurons by ATP Injection  

To activate DANs or MBONs expressing P2X2, a glass stimulating electrode, 

pulled to a resistance of 7-10 MΩ, was filled with 2 mM ATP in external saline. 

Stimulating electrodes were positioned dorsal to the mushroom body’s medial lobes, in 

the superior medial protocerebrum, at the site of rich γ4 and γ5 DAN dendritic and 

MBON axonal innervation. In some experiments tdTomato was co-expressed in 

R58E02+ DANs to serve as an anatomic guide. The stimulating electrode was coated 

with BSA-conjugated Texas Red Dye (Life Technologies) in order to visualize electrode 

position67,68. In experiments examining in vivo modulation of KC presynaptic Ca2+, ATP 

was injected in short bursts (~15 pulses) over the span of 2-3 minutes, with >1 minute 

between the pre-injection odor stimulus and the start of injection and >1 minute recovery 

period following injection before post-injection odor stimulus. For the pairing protocols in 

Figure 5.6D, ATP was iontophoresed for 600ms at 5V alone (unpaired), immediately 

following a 500ms stimulation of KCs (forward paired) or ending 500ms before start of 

KC stimulation (reverse paired). For all other experiments involving ATP injection a 

single brief pulse of positive pressure was applied manually or using a custom-built 

pressure injector. Protocol for ATP stimulation in other experiments described below.  

Calycal and Glomerular Stimulation  

Glass stimulating electrodes were pulled to a resistance of 7–10 MΩ and then 

filled with 10 mM acetylcholine (Sigma) in external saline. Stimulating electrodes were 

positioned into the mushroom body calyx or the center of the DA1 glomerulus (Figure 



 170 

3.1D) viewed under IR-DIC optics. Square voltage pulses (500 ms long, 0.1-10V for all 

imaging experiments, 0.1-2ms long, 10-100V for electrophysiology in Figure 5.2A) 

generated by a stimulator (Grass Technologies) were used to excite Kenyon cell or 

antennal lobe projection neuron dendrites. To account for variation in electrode tip and 

positioning, the iontophoretic voltage was titrated to evoke robust but non-saturating 

responses in the neurons being recorded. For Figure 4.1, the iontophoretic voltage was 

titrated until 1-2 KCs were stimulated, as evident by a sole active process running 

through the pedunculus where KC axons are unbranched, fasciculated, and parallel. For 

Figures 4.6, stimulation was performed twice at each voltage indicated between 1-10V.  

Paired and Unpaired Stimulation Protocols  

For ‘paired’ stimulation of DANs and KCs, KC stimulation and DAN activation via 

ATP injection were temporally paired as illustrated in Figure 7G. In experiments where 

KCs were directly activated (Figures 7H-I and S7C-J) KC stimulation was performed as 

described above for a duration of 500 ms, immediately followed by a 200 ms ATP 

injection via pressure injector as described above. For odor stimulation in vivo (Figure 

7J), two odors (isobutyl acetate and hexanol) were each presented as described above 

at least 2 times with >45 seconds between exposure to establish stable baseline 

responses. One of the odors was then paired with a 200 ms pressure pulse of ATP 

beginning 500 ms after the start of the odor pulse. Each odor was used as the ‘paired’ 

odor in alternate experiments in order to control for any odor-specific effects. All DAN 

activation experiments were ‘unpaired’ unless noted. In ‘unpaired’ experiments, KC 
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stimulation or odor presentation were performed >45 seconds before and after ATP 

injection in order to temporally separate DAN and KC activation.  

Recording Fly Motor Activity  

To simultaneously record the dangling fly’s motor activity during imaging (Figures 

2B, 2D-2E, and S2) a Point Grey Firefly Camera with Infinity Lens (94 mm focal length) 

was focused on the fly, which was illuminated by infrared LED lights. Video was 

captured at 30 frames per second. Fly motion traces were extracted using a custom 

Matlab script that measures average absolute difference in pixel intensities between 

each frame and the preceding frame. Manual inspection of this automated analysis 

confirmed that it accurately registers the difference between the two behavioral states 

(flailing and quiescence) we observed in the tethered fly. Laser-scanning onsets and 

offsets, visible in the video recordings due to laser illumination through the head-capsule 

were used to align videos with imaging data. In light of the demonstrated correlation 

between DAN activity state and fly locomotion, we note that all other imaging 

experiments were performed without regard for the fly’s behavioral state, which was 

presumably a comparable alternating pattern of flailing and pausing.  

Sugar feeding 

1-3 day old flies were fasted for 20-26 hours by transferring to an empty vial 

containing only a damp Kim- wipe. Flies were tethered for imaging as described above 

and positioned on the microscope. After recording baseline neural responses, a small 

wick of Kim-wipe fibers soaked in 0.2-1 M sucrose solution was positioned near the fly’s 
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proboscis using a motorized micromanipulator (Scientifica). The wick was touched to 

the proboscis to initiate feeding. Blue food coloring was added to the sucrose solution 

and fly abdomens were inspected after each experiment to confirm sucrose ingestion. 

Data for flies that had not consumed the sucrose solution were discarded. We observed 

no apparent difference in evoked changes in KC activity depending on sucrose 

concentration so data from different stimulations were pooled. For DAN and MBON 

imaging 0.2 M sucrose solution was uniformly used. Sugar feeding for imaging of 

Pharyngeal Interneurons is described in Yapici et al.376 

Electric Shock  

The in vivo dissection dish described above was modified so that two steel 

threaded studs (McMaster-Carr) could be precisely positioned to make contact with 

either side of the fly’s abdomen during tethering. The ends of the steel electrode leads 

were connected to a stimulator (Grass Technologies), which was used to apply a 500 

ms pulse of 60-150V, comparable to the electrical shock parameters used in classical 

olfactory conditioning paradigms420. Current flow through the circuit was monitored by 

an oscilloscope and the stimulating voltage was adjusted to maintain approximately 

equivalent current flow across trials to compensate for buildup of resistance following 

shocking.  
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Simple Simulated Walking (Figure 3.4B)  

A small foam ball (~1 mm diameter, Matsubara Sangyo Co.)421 was positioned 

within the fly’s grasp to allow the fly to ‘walk’ on the ball during imaging. Placement was 

adjusted to ensure free range of motion over 360°.  

Closed Loop System 

Air-supported foam ball was modified based on Seelig et al.346 and Green et 

al.342. The ball was recorded using the camera/light setup described above at 60 fps. 

Ball rotation was calculated in real time using FicTrac software344 running on Ubuntu 

12.04 on computers with processors with speeds of at least 3GHz. FicTrac-calculated 

heading was transmitted to an Arduino Mega via serial port. Custom Arduino code was 

used to translate heading into tube position controlled by motors described below. For 

white noise stimuli, tube movement was controlled independently of tracking data using 

random movements with parameters based on previously recorded closed loop data. 

White noise odor presentations consisted of a combination of a) presentation of odors at 

random intervals (10-15s) and of random duration (1-5s) and b) m-sequence 

presentation with minimal duration of 500ms.  

Both iterations of the closed loop air-delivery system were custom designed 

using OnShape (www.onshape.com) and 3D printed using Visijet Crystal material at 

XHD resolution in a 3DSystems Projet 3510 HD Plus. O-ring OD and ID Gland surfaces 

were designed with excess material for printing, then manually modified on a lathe for 

improved RMS [surface] finishing. Tube rotation for the first iteration 180 degree system 
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was driven by a MG90S High Torque Metal Gear Micro Servo (Adafruit Product ID 

1143). Tube rotation for the second iteration 360 degree system was driven by a bipolar 

stepper motor (Pololu item #1206) controlled through a A4988 Stepper Motor Driver 

Carriers (Pololu #2980) coupled by a Dust-Free Timing Belt XL Series, 1/4" Width, 

(McMaster-Carr, 1679K121, Trade No. 130xL025) to the rotating tube system which 

rotated mounted on a Ultra-Corrosion-Resistant Stainless Steel Ball Bearing (3/4" Shaft 

Diameter, 1-5/8" OD, Mcmaster-Carr 5908K19). Air channel was kept airtight using oil-

resistant o-rings (1/16 Fractional Width, Dash Number 020, Mcmaster-Carr 2418T126). 

Motor rotation was measured by a rotary encoder (CUI Inc., AMT10 Series) that was 

used in order to correct for skipped steps. 

Image processing and Data Analysis  

All image processing was done using FIJI/ImageJ (NIH). Further analysis was 

performed using custom scripts in ImageJ, Microsoft Excel, Matlab and R. When 

necessary, to correct for motion during in vivo imaging, recordings were stabilized using 

the TurboReg ImageJ plugin. When neurons were co-labeled with tdTomato, the 

MultiStackReg ImageJ plugin was used to stabilize the red channel and the 

transformations generated were applied to the green functional imaging channel. 

Images were smoothed with a Gaussian filter (s of 1-2 pixels). Areas outside of the γ 

lobes were partially masked in representative images for clarity as indicated.  
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Intensity profile plots (Chapter 4) 

The frame containing the peak fluorescence (see below) from an odor stimulus 

was manually rotated so that the longitudinal axis of the γ lobe lay along the x-axis, with 

the lateral-most edge at x=0. Regions outside of the γ lobe, easily distinguishable from 

the dense KC labeling within the lobe, were manually masked in each image. To 

generate the intensity profile across the lobe, we averaged the intensity of all pixels 

along the y-axis, for each point x along the horizontal axis of the lobe. To account for 

variations in imaging orientation, the resulting profiles were normalized to the same 

length (1000 ‘pixels’) by linear interpolation. The average raw profile length was 315 

pixels with a standard deviation of 19 pixels. The resulting 1000 ‘pixel’ profile plots were 

smoothed by calculating a moving average of 30 ‘pixels’ (3% of the total profile length). 

Each intensity profile was normalized to its mean intensity value in order to allow for 

comparison across animals and conditions. Similar results were obtained from 

normalizing to the maximum intensity value or median intensity value. For every data 

point, the plots of 2 odor-evoked profiles were averaged to correct for any motion 

artifacts. Because we observed no difference in the Ca2+ profiles evoked by different 

odorants, we averaged data across odor stimuli. Initial experiments were carried out 

using the maximum intensity projection from volumetric imaging experiments. However, 

as we observed little variation in the intensity profile across imaging planes, we 

combined data from experiments collected in traditional galvo scanning mode at single 

planes with maximum intensity Z-projections from resonant scanning volumetric data. 
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When single planes were imaged, we chose planes that revealed the largest 

longitudinal portion of the lobe and contained γ2-γ5 compartments.  

Quantification of neural activity using functional Ca2+ imaging is typically 

performed by normalizing the change in intensity by the pre-stimulus intensity (ΔF/F0). 

This normalization helps control for variations in reporter expression and imaging 

parameters so that comparisons can be made between different neurons or different 

experiments. In quantifying the modulation of KC synapses, however, we found this 

measure to be inappropriate. The asymmetric distribution of Ca2+ along KC axons is 

often apparent in the basal state, prior to odor stimulation. Differences in synaptic Ca2+ 

along KCs are not present in the brain explant indicating that they reflect in vivo 

modulation rather than differences in syt-GCaMP expression. Therefore, normalizing 

odor-evoked responses by the basal fluorescence values would serve to mitigate the 

modulation we were seeking to quantify. Thus to quantify Ca2+ distribution along the γ 

lobe we used the peak intensity values.  

To calculate the change in intensity profiles due to artificial or physiological DAN 

activation from sugar feeding, we subtracted the average normalized intensity profile 

measured prior to DAN activation from the average normalized intensity profile after 

activation in each fly. The resulting difference plot was averaged across flies.  

Compartmental border determination (Chapter 4) 

To generate an average intensity value for each compartment of the γ lobe we 

needed to accurately define compartmental borders. In order to define consistent 
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compartmental borders, we used the strategy outlined in Figure 4.3A. Specifically, flies 

with fluorescently labeled DANs and/or MBONs (n=10 including TH-Gal4, DDC-

Gal4>UAS-GCaMP6s; 58E02-LexA>LexAOP-tdTomato; 25D01-Gal4, VT026001-

Gal4>UAS-GCaMP6s) were aligned and profiled as described above to generate the 

intensity profile plots for KCs. Regions of extrinsic neuron innervation in each 

compartment were used to generate average border positions, that divided the 1000 

‘pixels’ along the x-axis. We defined the average γ2-3 border at pixel x=297, γ3-4 

border at pixel x=560 and γ4-5 border at pixel x=821. The border positions were 

relatively consistent across animals but showed minor variability due to inevitable 

individual anatomic variation and differences in imaging orientation (see SEM depicted 

in Figure 4.3A). Therefore, to account for any potential uncertainty in the border 

assignment, we calculated the intensity value for each compartment by averaging pixels 

within the area comprising only the middle 50% of each compartment within the 

calculated borders. These values were used to calculate significance of 

intercompartmental differences within individuals, changes within compartments due to 

DAN activity and differences between control profiles and dopamine signaling mutants 

or RNAi.  

For imaging of DANs and MBONs, ROIs were manually drawn based on the 

clear anatomic segregation of their innervation patterns in different compartments. For 

KC time-series traces ROIs were defined by compartmental border determination as 

described above. For single synapse time-series traces, circular ROIs were manually 

drawn around individual synapses along the length of the lobe, identified by puncta 
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labeled with syt-GCaMP. In sparsely labeled KC axons co-expressing syt-GCaMP and 

tdTomato, the tdTomato signal was first used to generate a mask in order to eliminate 

background signal due to low basal fluorescence outside of the labeled axons. The syt-

GCaMP odor responses were then divided by the tdTomato signal on a pixel-by-pixel 

basis. For ΔF/F0 calculations in DANs and MBONs the difference between the pre-

stimulus value (average of 4-5 frames ending >1 frame before stimulus) and post-

stimulus value (average of the 2-3 frames spanning the peak of the stimulus evoked 

response) was divided by the pre-stimulus value.  

Note that in the case of DAN population imaging (Chapter 3), the DANs exhibit 

strong fluctuations in their basal activity, making it inaccurate to define a single absolute 

baseline F0. The F0 values used in the heatmap images are therefore simply the 

immediate pre-stimulus average, as described above, and should not be interpreted as 

a true minimum baseline. Indeed, because all DAN populations appeared to fluctuate 

between high and low activity states, the representative traces and stimulus-triggered 

averages for DAN population activity were all normalized between 0 and 1, where 0 

represents the minimum fluorescence of the DAN compartment during a trace and 1 

represents the maximum. Raw fluorescence traces of DAN activity depicting the relative 

levels of activation due to different stimuli are presented in Figure 3.4A. The normalized 

DAN activity data was used to measure the integrated basal activity in Figure 4.6F. As a 

consequence, we potentially underestimate the differences between basal signals in 

each DAN population, as the raw intensities in γ2- γ3 were generally higher than those 

in γ4- γ5 (data not shown).  
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Stimulus-Triggered Averages  

 The normalized time series of syt-GCaMP fluorescence in each compartment 

were aligned to the time point when the stimulus was applied for each replicate. In the 

case of flailing behavior, the ‘stimulus’ refers to the time point at which bouts of leg 

flailing started and stopped, as identified in the fly motion traces and confirmed by 

manual video analysis. Traces beginning 5 seconds before the stimulus and ending 5 

seconds after the stimulus were averaged and displayed.  

Cross-correlation Analysis: 

 Motion-tracking data was aligned to functional imaging data as described above. 

Pearson product-moment correlation coefficients between pairs of DANs and between 

individual DANs and motion were calculated for a 60-120 second recording in each 

animal. The resulting correlation coefficients were averaged and used to generate the 

cross-correlogram shown in the figures.  

Central Complex Imaging 

For EB imaging (Figure 6.4D), the entire EB was imaged using volumetric 

imaging with 20 z-planes. The resulting volumes were max-projected perpendicular to 

the imaging plane to allow visualization of the ring-shaped EB. The area of the EB was 

then split into 16 wedge ROIs of equal angular size for fluorescence measurements. 

Fluorescence within each wedge was internally normalized. FSB imaging (Figure 6.4E) 
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except that the volume was z-projected and the span of the FSB was then manually 

splite into 8 ROIs of equal width.  

trans-TANGO 

trans-TANGO flies were processed according to Talay et al.348. Briefly, male flies 

were raised for at least 3 weeks at 18C and then immunostained as described above. 

Statistical Analysis  

Statistical analysis was performed using custom scripts in Excel and R. The 

significance of all results was tested by ANOVA followed by 2-tailed T-tests with Holm-

Bonferroni post-hoc correction for multiple comparisons. Paired T-tests were used for 

changes in DAN activity due to all stimuli, compartmental differences in KC Ca2+, KC 

Ca2+ changes due to DAN activation or sugar feeding, MBON activity differences and 

changes, DAN basal activity differences, and comparison of KC spiking due to current 

injection. Unpaired T-tests were used for DopR/dDAT mutant/RNAi and comparisons of 

EPSC amplitudes due to optogenetic DAN activation. To measure the significance of 

changes in DAN activity within each compartment due to exogenous stimuli or changes 

in behavioral state, DAN activity values were calculated by averaging the fluorescence 

intensity for 5 frames prior to the stimulus and for the 5 frames spanning the peak of the 

stimulus evoked response. The same windows were used for all compartments and all 

individuals within each panel. Changes within each compartment were then measured 

by paired-T-test (Table 3.1). In some experiments (as indicated), each mushroom body 

of an animal was treated as an independent sample.  
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DAN Linear Filters (Figure 6.5H) 

Each filter depicts the best-fit relationship between two signals, a predictor 

(forward velocity, odor, time derivative of air tube angle) and a target (γ4 DAN average 

activity or difference between left and right γ4 DAN activity). The filter h-values are the 

weights applied to the predictor signal at different time delays to best predict the target. 

The best-fit h-values were determined by minimizing the (squared) error between the 

weighted sum of the predictor values (I.e. the target estimate) using the h-values as the 

weights, and the true value of the target, averaged over all time points in the trial. 

Optogenetic Activation of DANs (Figure 5.2B) 

 Flies expressing ReaChR, a red-shifted channelrhodopsin variant, in DANs using 

58E02-LexA, LexAOP- ReaChr transgenes, were placed on food containing 400 μM all-

trans retinal, a ReaChR cofactor, for 18-36 hours prior to dissection. Targeting of the γ4 

MBON soma was carried out under fluorescence guidance, using the minimum possible 

intensity and duration of illumination by a 490 nm LED. Nevertheless, upon initiation of 

whole-cell recording, we observed that γ4 MBONs exhibited significantly larger 

excitatory postsynaptic potentials (EPSPs) and excitatory postsynaptic currents 

(EPSCs) when the 58E02-LexA, LexAOP-ReaChr transgenes were present in 

comparison to control animals lacking ReaChr expression. This observation suggests 

that ReaChr stimulation during dissection of the brain from its capsule under white light 

LED illumination and targeting of the γ4 MBON soma under fluorescence illumination is 

sufficient to activate DANs and alter properties of synaptic transmission. 
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Optogenetic Activation of OSNs and MBONs (Figure 6.3)  

csChrimson expressing flies were place on the closed loop system as described 

above. A 630nm LED was positioned approximately 2 inches above the fly and powered 

by an LED driver or standalone power source.  

Larval NMJ Immunostaining  

Wandering third instar larvae were fileted in PBS. Dissected larvae were fixed for 

2 min in Bouin's solution (Sigma) then rinsed with PBS 4 times and blocked in 5% 

Normal Goat Serum in PBS + 0.1% TritonX-100 for 2 hours at RT. Primary antibody 

1:250 mouse anti-DCSP-2 (6D6) (Developmental Studies Hybridoma Bank), 1:50 

mouse anti-Bruchpilot (NC82) (Developmental Studies Hybridoma Bank) and 1:10,000 

rabbit anti-GFP (Life Technologies A-11122) was incubated overnight 4°C. Larvae were 

washed extensively in PBS + 0.1% TritonX-100 then incubated for 2 hours at RT with 

1:400 goat anti-mouse Alexa Fluor 633 (Life Technologies A-21052), 1:400 goat anti-

rabbit Alexa Fluor 488 (Life Technologies A- 11034) and 1:500 Rhodamine Red-X 

conjugated goat anti-Horseradish Peroxidase (Jackson ImmunoResearch Laboratories 

123-295-021). Larvae were then washed extensively in PBS + 0.1% TritonX-100 and 

mounted in Vectashield (Vector Laboratories). Images were captured on a Zeiss LSM 

880 using a Plan-Apochromat 40X (1.4 NA) Oil DIC objective.  
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Adult Brain Immunostaining  

 Day 1 adult brains were dissected in 1X PBS pH 7.4 then immediately transferred 

to cold 1% PFA (Electron Microscopy Sciences) and fixed overnight at 4oC. Following 

overnight incubation samples were washed in PAT3 Buffer (0.5% BSA/0.5% Triton/1X 

PBS pH 7.4) 3 times. Brains were blocked in 3% Normal Goat Serum for 90 minutes at 

RT. Primary antibody 1:1000 rabbit anti-GFP (Life Technologies A- 11122) was 

incubated 3 hours at RT then overnight at 4°C. Brains were washed extensively in PAT3 

Buffer. Secondary antibody 1:400 goat anti-rabbit Alexa Fluor 488 (Life Technologies A-

11034) was incubated 3 hours at RT then 5 days at 4°C. Brains were washed 3 times in 

PAT3 Buffer then once in 1X PBS. Samples were mounted in Vectashield (Vector 

Laboratories). Images were captured on a Zeiss LSM 880 using a Plan-Apochromat 

20X DIC objective.  

RNA Isolation and qRT-PCR  

Total RNA was isolated from dissected brains of day 1 adult females. RNA was 

extracted using Qiazol reagent (QIAGEN) then column purified by RNeasy micro kit 

(QIAGEN). cDNA was generated using Quantitect Reverse Transcriptase kit (QIAGEN). 

Taqman real-time qPCR experiments were performed on a QuantStudio 12K Flex Real-

Time PCR System (ThermoFisher Scientific) following the manufacturer’s instructions. 

Data were analyzed using the comparative 2ΔΔCt method using alphaTub84B as an 

endogenous control. The average fold-change relative to the pan-neuronal nsyb-GAL4 

driver line alone was calculated. The following Taqman assays from ThermoFisher 
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Scientific were used: alphaTub84B (Dm02361072_s1), DopR1 (Dm02134814_m1), 

DopR2 (Dm02151745_m1), and D2R (Dm01845575_m1).  

Electrophysiology  

 γ4 MBON and KC soma were targeted for patch recording by fluorescence from 

expression of soluble GCaMP or CD8-GFP. Dissected brain explants were treated with 

2 mg mL−1 collagenase (Sigma) in external saline for ~30 sec to soften the perineural 

sheath and pinned to a Sylgard sheet. The exposed neuropil was then continuously 

perfused (about 2–3 mL min−1) with perfusion saline (108 mM NaCl, 5 mM KCl, 2 mM 

CaCl2, 8.2 mM MgCl2, 26 mM NaHCO3, 1 mM NaH2PO4, 5 mM trehalose, 5 mM 

sucrose, 5 mM HEPES, osmolarity adjusted to 275 mOsm). The perfusion saline was 

continuously bubbled with 95% O2/5% CO2 and reached a final pH of 7.3. To gain 

access to the soma, the sheath was broken by positive pressure from ejection of saline 

through a large bore broken electrode.  

Intracellular recordings were performed with fire-polished patch electrodes (10–

15 MΩ for MBONs, 15-20 MΩ for KCs) filled with internal saline (130 mM potassium 

aspartate, 8 mM KCl, 0.2 mM MgCl2, 5 mM sucrose, 10 mM HEPES pH 7.3, 10 mM 

EGTA). Current traces were acquired in voltage-clamp mode (for MBONs and KCs) and 

current-clamp mode (for KCs) using a Multiclamp 700B amplifier, digitized at 10 kHz 

and filtered at 1 kHz. The membrane potential of voltage clamp recordings was 

nominally -70 mV, a voltage at which unclamped action potentials rarely break through 

and could be readily detected by their large amplitude. Evoked EPSCs were stimulated 
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by acetylcholine iontophoresis into the calyx as described above. For each experiment, 

the responses to a train of 10 identical stimulation voltages, spaced 3 s apart were 

recorded before and after DAN activation. The data plotted in Figure 5.2A are the peak 

amplitude from stimulus-triggered averages for each experiment before and after DAN 

activation. In rare cases where stimulation evoked MBON spikes despite the voltage 

clamp, those responses were excluded from the average. We note that EPSC durations 

are likely exaggerated by low-pass filtering due to the high access resistance (50-100 

MΩ) common to whole-cell recordings from Drosophila neurons336.  

In Figure 5.2BA, spontaneous EPSCs from 30-60 s traces (1 per fly) were 

analyzed in Clampfit (Molecular Devices), using a template search algorithm, with the 

template defined by the prominent EPSCs in the modulated MBON prep. As EPSCs in 

the unmodulated state were sometimes too small for reliable detection, this template 

search algorithm likely results in an underestimate in the difference in EPSC amplitude 

due to DAN stimulation.  

To confirm that the spontaneous ESPCs measured in the MBON originated from 

KC activity (Figure 5.2B), we filled a fine electrode with 0.2 M GABA in external saline. 

After recording baseline EPSCs, the GABA electrode was moved from a position within 

the perfused saline to within the center of the mushroom body calyx. No further positive 

pressure was required to eject GABA. GABA applied in this manner rapidly inhibited 

measured EPSCs and EPSPs but did not suppress occasional spontaneous spiking in 

the MBON in current clamp recordings (data not shown.)   
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