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The specific and timely degradation of proteins is achieved by the Ubiquitin-Proteasome 

System (UPS), which governs a variety of cellular processes such as apoptosis, cell cycle 

progression, protein quality control, and metabolism. Using this system, cells maintain 

homeostasis by quickly and irreversibly altering signaling pathways in response to changing 

environmental stimuli. Protein degradation by UPS requires two consecutive steps, 1) the 

covalent attachment of the substrate by ubiquitin and 2) the delivery of the substrate to the 26S 

proteasome for breakdown and recycling of reusable ubiquitin. The 26S proteasome is a 2.5-

MDa multicatalytic protease consisting of two subcomplexes: a 20S core particle (CP) and a 19S 

regulatory particle (RP) that caps one or both ends of the 20S proteasome. Most investigations on 

proteasome regulation have focused on substrate recognition, binding, deubiquitination, 

unfolding, and translocation. However, evidence shows that the 26S complex itself can be 

regulated by the abundance of available subunits, rates of assembly and disassembly, post-

translational modification, localization, and a variety of interacting proteins. Yet, this data is 

limited and an extensive amount of knowledge remains to be uncovered regarding 26S 

proteasome regulation since it differs depending on the tissue and cellular context. Aging, for 

example, leads to reduced proteasome activity but it is unknown how proteasomes are affected 

throughout the aging process. 

In this thesis, the aim is to reveal how proteasomes are regulated by changes in 

nicotinamide adenine dinucleotide (NAD+) metabolism and how this impacts neurodegeneration. 



Using Drosophila melanogaster, I describe the necessity for the proteasome regulator, DmPI31, 

in neuronal maintenance and show that dietary restriction and NAD+ repletion, can regulate both 

DmPI31 and proteasome activity. Generation of dmPI31 mutant clones in the Drosophila eye 

show rapid degeneration of photoreceptor cells and RNAi knockdown of DmPI31 leads to 

eclosion defects and shortened lifespan. I demonstrate the ability of NAD+ repletion to increase 

proteasome activity and DmPI31 protein levels and show NAD+ acts via DmPI31 to increase 

26S proteasome activity. The importance of this pathway is illustrated by the finding that 

elevated levels of DmPI31 can extend lifespan and partially rescue neuronal degeneration in a 

Drosophila model of spinocerebellar ataxia type 1(SCA1). These results demonstrate a link 

between NAD+ and proteasomes that may ultimately prove useful for developing interventions 

that counter the effects of neurodegeneration and allow for an understanding why this system 

begins to fail in aging and age-associated diseases. 
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1. Introduction

1.1 Protein Degradation by the Ubiquitin-Proteasome System (UPS) 

1.1.1 The Ubiquitin-Proteasome System 

The concept of a tightly controlled and highly regulated mechanism for intracellular protein 

degradation was until a few decades ago underappreciated by many scientists. Now, the dynamic 

state of the proteome, by regulated synthesis and degradation, are recognized as being crucial for 

diverse cellular processes. The two major pathways of protein degradation in eukaryotic cells are 

the lysosomal proteolysis pathway and the ubiquitin-proteasome system (UPS). Lysosomal 

proteolysis is a bulk process that involves the uptake of extracellular proteins, cytoplasmic 

organelles, or cytosolic proteins into membrane bound vesicles that will fuse with the lysosome. 

Once inside these membrane-bound organelles, engulfed proteins are exposed to several 

digestive enzymes that will non-selectively degrade them at approximately the same rate. In this 

way, long lived cytoplasmic proteins are eventually degraded. The degradation of short-lived 

intracellular proteins however is primary conducted by the UPS. This system requires proteins to 

be tagged with a chain of an evolutionarily conserved polypeptide termed ubiquitin via a highly 

regulated enzymatic cascade. These polyubiquitinated proteins are then targeted for delivery to 

the multisubunit protease complex termed the proteasome. Both the attachment of ubiquitin and 

degradation of proteins by the proteasome are energy dependent processes that require ATP 

(Glickman and Ciechanover, 2002; Nedelsky et al., 2008). It was the discovery of this intricate 

cascade and the targeted degradation of proteins that transformed the field. It is now clear that 

targeted protein degradation plays a major role in a variety of cellular processes such as 
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apoptosis, cell cycle progression, differentiation, DNA repair, protein quality control, and 

metabolism.  However, much remains to be learned about the regulation of protein degradation 

by the UPS. Uncovering mechanisms that regulate proteasomal degradation under varied cellular 

contexts and determining how aberrations in this process bring about disease leave much to be 

discovered.  

 

1.1.2 Composition of the UPS 

The UPS is a selective pathway that degrades cytoplasmic and nuclear proteins. It requires 

two consecutive steps 1) the covalent attachment of the substrate by ubiquitin and 2) the delivery 

of the substrate to the 26S proteasome for breakdown and recycling of reusable ubiquitin. 

Ubiquitin (Ub) is a highly conserved 76-amino acid polypeptide that is attached to lysine 

residues to form polyubiquitin chains on proteins targeted for degradation by the 26S proteasome. 

Conjugation of ubiquitin usually occurs at lysine residues and requires 3 types of enzymes: E1 

(ubiquitin-activating enzyme), E2 (ubiquitin-conjugating enzyme), and E3 (ubiquitin ligase). 

Ubiquitin is activated in an ATP dependent manner by the E1 activating enzyme, which 

generates a high-energy thiol ester intermediate. Next, one of several E2 conjugating enzymes 

receives the ubiquitin from E1 and forms a similar thiol ester intermediate before binding to one 

of many E3 ubiquitin ligases. From here the E3 ubiquitin ligase binds to a specific substrate and 

catalyzes the transfer of ubiquitin from the E2 enzyme to the substrate. E3 ubiquitin ligases thus 

hold the key to substrate specificity in the UPS. The subsequent addition of ubiquitin to lysine 

residues on previously conjugated enzyme forms the polyubiquitin chain that is recognized by 

the 26S proteasome (Glickman and Ciechanover 2002; Hershko and Ciechanover 1998).  
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After tagging with ubiquitin, proteins are targeted to the 26S proteasome. This complex is a 

sophisticated 2.5-MDa multicatalytic protease consisting of two subcomplexes: a barrel shaped 

20S core or catalytic particle (CP) and a 19S regulatory particle (RP) that caps one or both ends 

of the 20S proteasome. Both subcomplexes are made up of distinct subunits. The 20S CP is made 

from the stacking of two identical outer alpha rings and two identical inner beta rings, each of 

which has seven distinct subunits. The N-terminal tails of the alpha subunits form a “gate” into 

the center of the core where the proteolytic beta subunits reside. The beta subunits, beta1, beta2, 

beta5, contain the three distinct catalytic functions, caspase-like, trypsin-like, and chymotrypsin-

like activity, respectively, so named due to the types of peptides they generate. These active sites 

are located deep within the barrel of the narrow entrance channel, 13 Å, thus proteins must be at 

least partially unfolded for translocation into the core particle prior to degradation (Groll et al., 

2000). The 19S RP is important for translocation of proteins into the CP but also functions in the 

recognition of ubiquitinated proteins and deubiquitination of substrates. It is composed of a base 

with three non-ATPases (Rpn1, Rpn2, Rpn13), six ATPases (Rpt1-6) and a lid with nine non-

ATPase subunits (Rpn3, Rpn5-9, Rpn11-12, Rpn15) and Rpn10, which is assumed to sit between 

the interface of the base and the lid (Murata et al., 2009). The six ATPases are responsible for 

gate opening and facilitating substrate entry. The C-termini of the six ATPase subunits contain a 

three-residue HbYX (Hydrophobic-tyrosine-X) motif that upon ATP binding allows for docking 

of these subunits into the pockets between the alpha subunits of the 20S CP to promote gate 

opening (Smith et al., 2007a). Subunits of the base including Rpn1, Rpn13, Rpt4, and Rpn10 

sequester ubiquitinated proteins directly or through intermediaries that contain both ubiquitin-

like domains (UBL) and ubiquitin-associated domains (UBA). The only subunit with a known 

biochemical function in the lid is Rpn11, which facilitates de-ubiquitination of substrates to 
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further their degradation (Coux et al., 1996, Glickman and Ciechanover, 2002). The other 

functions of the lid subunits remain elusive. 

Figure 1.1 Structure and function of the UPS 
Two steps are critical for degradation of substrates by the proteasome. First, substrates must be tagged 

with ubiquitin (ub), a 76 aa polypeptide. This involves three distinct classes of enzymes, E1, E2, and 

E3s, that work in concert to attach distinct ub chains. The ub-activating enzyme, E1, uses ATP to 

activate ub before transfer to the E2, ub-conjugating enzyme. The last step involves the E3 ub-ligase 

that takes ub and typically links it to a lysine residue on the target substrate. The specificity of 

degradation comes from E3 ub-ligases which are abundant and recognize one or a few specific 

protein motifs. After ubiquitination, substrates are targeted to the proteasome for degradation. The 

majority of active proteasomes reside as 26S proteasomes which are formed from the attachment of 

the 20S CP with the 19S RP. This complex works to recognize, deubiquitinate, unfold, and 

translocate substrates into the proteolytic barrel for cleavage. However, alternative activators exist 

such as the 11S and PA200 that support hydrolysis of small peptides. Due to the abundance of 

proteasome substrates, the proteasome is involved in a variety of cellular processes such as quality 

control, cell cycle, and signal transduction. Figure is adapted from (Vilchez et al., 2014).  
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1.1.3 Regulation of the UPS 

The regulation of the ubiquitin proteasome system can occur at the level of substrate 

ubiquitination and/or at the level of proteasome activity. Much of the earlier studies focused on 

regulation at the level of substrate ubiquitination. Protein substrates can be monoubiquitinated, 

multiubiquitinated, or polyubiquitinated and how each of these contributes to various cellular 

processes is being actively investigated. The attachment of ubiquitin to lysine residues gives 

flexibility to branching in the formation of polyubiquitin chains. This branching is highly 

regulated and results in different physiological processes such as protein degradation by the 

proteasome when ubiquitin is attached to Lys-48 and modification of signal transduction when 

attached to Lys-63 (de Bie and Ciechanover, 2011). However, it is now obvious that proteasomes 

themselves can be regulated by alternative activators, various interacting proteins, translational 

control, and post translation modifications. Currently, the direct regulation of proteasome activity 

is not well understood probably owing to tissue and context-specific regulators. Although the 

primary proteasome machinery found in eukaryotic cells is composed of the 20S CP and 19S RP 

to form the 26S holoenzyme, the population of proteasomes in any given cell may be 

heterogeneous. For instance, many 20S CP can be capped on one side by the 19S RP and a 

different complex, e.g., PA28, on the other. Impairment or failure of the UPS leads to defects in 

the proteostasis network often resulting in diseases such as cancer and neurodegeneration, thus 

properly assembled proteasomes directed to the appropriate locales are a necessity. Since 

proteasomal degradation is required for numerous cellular functions, the regulation of 

proteasome activity must be delicately and specifically tuned to meet the needs of specific cells 

at a given moment. Due to its role in modulating a variety of different cellular outcomes the UPS 

has arisen as an attractive target for the development of therapeutics. The drug Bortezomib is the 
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first therapeutic proteasome inhibitor to be used in humans. It is used to treat multiple myeloma 

by preventing proteasome mediated degradation of proapoptotic proteins and many times is 

given in combination therapy to overcome drug resistance (Chen et al., 2011). A major side 

effect that occurs in 30% of patients on Bortezomib is peripheral neuropathy and suggests that 

synapses may be particularly sensitive to proteasome inhibition  (Alé et al., 2015). Studying how 

the UPS is regulated can aid in the development of effective treatments for a variety of diseases 

and provide clues as to how these diseases may develop.  

1.1.3.1 Alternative activators of the proteasome 

The most common and often referred to as “default” activator of the proteasomes is the 

19S core particle. This activator is ATP dependent and mostly mediates the degradation of 

ubiquitinated substrates. However, alternative activator complexes and alternative catalytic 

subunits exist that can regulate the activity of the proteasome as well. There are three well 

known alternative activators that can replace or work in concert with the 19S RP: PA28 (also 

known as REGα,β or 11S), REGγ and PA200/Blm10. PA28 is composed of two homologous 

subunits PA28α and PA28β that in vitro form a heptameric ring that stimulates the hydrolysis of 

small peptides by the 20S. Unlike the 19S cap, PA28 lacks ATPase activity and ubiquitin 

binding ability. It is thought to optimize MHC class I presentation and is upregulated in response 

to interferon γ stimulation (Cascio et al., 2002). REGγ shares a similar size to PA28, both being 

heptameric assemblies that have no ATPase activity or ubiquitin-sensing receptors to support 

unfolding of proteins, however is not induced by interferon γ. It has been reported to degrade key 

cell cycle inhibitors such as p21, p19, p16 and the regulatory protein steroid receptor coactivator-

3 (SRC-3) in a ubiquitin and ATP-independent manner. This alternative regulator is 

overexpressed in some cancers and linked to defects in mitosis and apoptosis (Li et al., 2006; Liu 



 7 

et al., 2013) . The third activator PA200/Blm10 is a large protein that binds to the CP as a 

monomer but takes on a circular shape (Schmidt and Finley, 2013). Blm10 again does not utilize 

ATP and is thus implicated in hydrolyzing peptides. It is suggested to act as an adaptor that 

functions under circumstances of hybrid proteasomes and is reported to have a role in a wide 

variety of processes such as spermatogenesis, DNA repair, mitochondrial inheritance, and 

possibly 20S assembly (Savulescu and Glickman, 2011; Stadtmueller and Hill, 2011). One study 

has also reported Blm10 to be necessary for sequestering 20S CP into proteasome storage granuli 

(PSG) during quiescence in yeast (Weberruss et al., 2013). Fairly recently, CDC48/p97 has also 

been described as a proteasome activator that binds to the 20S CP in archaea. CDC48 is a AAA+ 

ATPase that contains a HbYX domain much like the Rpt base subunits of the 19S and can bind 

to the 20S CP, induce gate opening, unfolding of substrates, and ultimately result in degradation 

(Barthelme and Sauer, 2012). Since many alternative activators may be transiently associated, 

context specific, or substoichiometric it is likely that with the advancement of tools more 

proteasome activators will be discovered. 

 

1.1.3.2 Transcriptional Regulation 

Transcriptional control is another means by which proteasome activity can be regulated. 

Proteasome subunits are thought to reside within cells only in relation to their respective their 

respective complexes, 19S or 20S, with the exception of Rpn10/S5a which has been found in a 

free state (Piterman et al., 2014). However, studies on the basal rate of proteasome subunit 

biosynthesis are lacking. Under stress however, proteasome subunits undergo a coordinated 

upregulation pointing to common signaling pathways regulating their gene expression (Livneh et 

al., 2016). Proteasome inhibition is reported to cause upregulated proteasome synthesis across 
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several species from humans to Drosophila. The two most well studies transcription factors 

involved are the mammalian Nrf1/Nrf2, orthologs of C. elegans SKN-1, and Rpn4 in yeast. In 

mammals, Nrf1 is found bound to the endoplasmic reticulum but in response to partial 

proteasome inhibition, it is processed and translocated to the nucleus. Here, it results in the 

transcription of all 26S subunits as well as CDC48/p97 (Sha and Goldberg, 2014). Nrf2 is similar 

to Nrf1 as they both recognize a common promoter element, antioxidant response element 

(ARE), in the genes they control. However, they differ in their regulation and subcellular 

localization, with Nrf2 being mitochondrial and then cytoplasmic upon induction. Also, from 

knockout studies in mice it is clear that Nrf1 plays a role in development while Nrf2 is important 

for response to oxidative stress and protection from neurodegeneration (Schmidt and Finley, 

2013). In yeast, Rpn4 is a short-lived protein that is quickly degraded by the proteasome. 

However, when proteasome activity is comprised Rpn4 levels accumulate and this protein acts as 

a transcription factor, binding to PACE (proteasome associated control elements) sequences 

upstream of proteasomal subunits. In this way Rpn4 is under negative feedback control and acts 

as a sensor for impaired proteasome biogenesis. Additionally, RPN4 gene transcription can be 

induced by Hsf1, under heat stress, Yap1, during oxidative stress, and Pdr1/3, during drug 

resistance. Thus, these conditions promote proteasome biogenesis through upregulation of Rpn4.  

Upregulation of single proteasome subunits has also been shown to coordinate the 

upregulation of other subunits and proteasome activity itself. For instance, upregulation of the b5 

subunit acts in a number of human cell lines to increase proteasome assembly and subsequent 

activity. This upregulation was shown to protect cells from oxidative stress by leading to higher 

degradation rates (Chondrogianni et al., 2005). Similarly, upregulation of Rpn6 under the 

transcriptional control of DAF-16/FOXO4 in C. elegans and humans, was shown to elevate 
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proteasome activity. This did not coincide with global proteasome subunit upregulation but is 

instead thought to enhance activity by accelerating the association between 20S and 19S particles 

(Pathare et al., 2012; Vilchez et al., 2012). Conversely, upregulation of the 26S proteasome 

subunit S5b via the TNFα/NFkB inflammatory signal is reported as an inhibitor of 26S activity 

by interfering with assembly. Interestingly, overexpression of S5b resulted in shorten lifespan 

and onset of aging phenotypes in mice while Drosophila mutants for S5b show rescue of tau 

induced rough eye and prolonged lifespan in tauopathy (Shim et al., 2012). These results show 

that proteasome regulation is complex, context dependent, and may be differentially controlled 

between cell types and species. 

1.1.3.3 Proteasome associated proteins 

Proteasome activity is required for a wide variety of cellular process with demands that 

may change depending upon tissue type, nutrient availability and developmental stage. Thus, in 

addition to the core proteasome subunits, proteasomes are associated with a wide variety of 

proteasome interacting proteins (PIPs). Several PIPs have been found to be involved in efficient 

assembly of proteasomes in mammalian cells such as p28, s5b, and p27 (Heinrichs, 2009). 

However, weakly associated or transiently associated factors that may have essential roles may 

prove difficult to identify. Additionally, the use of different purification techniques can cause the 

number of PIPs identified to range from 24 putative interactors (Verma et al., 2000) to a network 

of more that 471 proteins (Guerrero et al., 2008). The functions of these proteins vary and 

include E3 ligase activity, shuttling of ubiquitinated substrates to the proteasome, DUB activity, 

altered proteasome stability, and inhibition of the 20S CP. Although most PIPs are found at 

substoichiometric amounts, a few including Ecm29 are reported to be co-regulated with 

proteasome subunits and found at nearly the same levels. This protein, which is found 
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exclusively in the cytosol (Tai et al., 2010), is also shown to bind and stabilize the interaction 

between 20S and 19S particles (Leggett et al., 2002; Tai et al., 2010) and preferentially 

associates with mutant proteasomes (De La Mota-Peynado et al., 2013). Recent reports have 

shown the Ecm29 can inhibit proteasome-mediated protein degradation and disassemble the 26S 

proteasome in response to oxidative stress (Wang et al., 2017). Although the exact mechanisms 

are still under investigation, this protein likely functions to ensure that abnormal proteasomes 

remain inactive.  

Numerous studies have also demonstrated the association of neuronal proteins with the 

proteasome. Parkin, an E3 ubiquitin ligase, is capable of activating 26S proteasomes via its N-

terminal ubiquitin-like domain which enhances association with 19S subunits. Interestingly, 

mutations in parkin are linked to early-onset familial Parkinson’s disease (PD) and proteasome 

dysfunction (Um et al., 2010) implicating an essential role for proteasome activity in maintaining 

healthy neurons. Moreover, constituents of aggregates in PD namely a-synuclein and amyloid 

beta (Ab) interact with the proteasome and inhibit UPS function in vitro and in vivo (Chen et al., 

2006; Gregori et al., 1995; Snyder et al., 2003; Stefanis et al., 2001) indicating a role for 

proteasome dysfunction in the progression of PD.  

Another group of PIPs in the brain, identified by mass spectrometry in the rat cortex, are 

the 14-3-3 family members g, z, and d. In general, 14-3-3 protein family members have a broad 

range of functions in the brain stemming from their known interaction with over 200 proteins. 

They participate in cell signaling, cell cycle, apoptosis and neural development. Interestingly, 

some isoforms are enriched within the synapse to regulate transmission and plasticity. In concert 

with this is the finding that the phosphobinding protein14-3-3g is only found on synaptic 

proteasomes (Tai et al., 2010) and presumably regulates protein turn over at synapses. Another 
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14-3-3 family member, 14-3-3z, binds to PA28, a proteasome activator, and suppresses 

proteasome assembly and increases sensitivity of multiple myeloma cell lines to proteasome 

inhibition (Gu et al., 2018). Unpublished results from our lab by Dolors Ferres-Marco also 

indicate 14-3-3z plays a role in proteasome inhibition and showed that this protein modulates 

proteasome-mediated dendritic pruning of sensory neurons during development.   

Last, interacting proteins can regulate proteasome activity by localizing proteasomes to 

areas of proteolytic demand. This is especially true in neurons where cell bodies can be up to a 

meter away from sites of synaptic activity in the axon, where proteasomes are needed. Recently, 

the Drosophila homolog of the LC8 dynein light chains, Cut up (Ctp), was shown to interact 

with 19S and 20S proteasome subunits in motor neurons of Drosophila 3rd instar larvae. This 

interaction facilitates the transport of proteasomes and it was found to be independent of synaptic 

vesicle proteins. This report shows that proteasomes also exhibit more anterograde movement 

than retrograde and mutations in ctp severely affect transport leading to an increase in the 

number of satellite boutons (Kreko-Pierce and Eaton, 2017). These studies demonstrate a critical 

need for proteasome regulation at the synapse and show that defects in proteasome localization 

lead to irregular synapse formation and function. 

 

1.1.3.4 Posttranslational modifications 

Several posttranslational modifications can modify proteasome activity. More than 345 

modifications of 11 different types were shown to associate with the yeast 26S proteasome with 

many sites being a target for more than one modification. This indicates that communication 

between post-translational modifications may regulate proteasome activity (Hirano et al., 2016). 

Many of the functional consequences of these post-translational modifications have not been 
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identified. Of interest to this thesis are posttranslational modifications that have been identified 

to alter proteasome function in response to metabolic changes. These modifications point to 

pathways that might alter proteasome activity depending on nutrient availability and the 

metabolic status of the cell. In Drosophila, 26S proteasomes are modified by O-linked N-acetyl 

glucosamine (O-GlcNAc) that inhibits proteasome activity (Sümegi et al., 2003). O-GlcNAc 

transferase (OGT) adds the O-GlcNAc moiety to the Rpt2 subunit of the 19S cap, specifically 

affecting the ATPase activity of the proteasome and leading to an inhibitory affect. Yet another 

example of metabolically regulation proteasome function is through Protein kinase A (PKA) 

phosphorylation. PKA activity is dependent on cyclic AMP (cAMP) levels in the cell. Using 

purified 26S proteasomes it was shown that 26S proteasome activity is enhanced via PKA 

phosphorylation of Rpt6, an AAA+ ATPase located in the 19S regulatory cap (Zhang et al., 

2007a). Lastly, the Steller lab has shown another potential mechanism by which proteasomes are 

metabolically regulated. This mode of regulation does not directly target a proteasomal subunit 

but instead targets the PIP, PI31. TNKS is shown to mediate the ADP-ribosylation of PI31which 

reduces its binding affinity for 20S a subunits. The model predicts that this modification relieves 

20S repression thus promoting 26S assembly. The necessity for ADP-ribose subunits links this 

pathway to metabolism since these subunits are derived from intracellular nicotinamide adenine 

dinucleotide (NAD+) pools (Cho-Park and Steller, 2013). NAD+ is a metabolite for a variety of 

cellular processes and redox reactions within the cell but also acts as a substrate for NAD+ 

consuming enzymes such as poly ADP-ribose polymerases (PARPs) like TNKS. The role of 

NAD+ in regulating proteasome activity will be explored in this thesis and the neuroprotective 

function of NAD+ discussed in a later section.  
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1.1.4 DmPI31 is an essential proteasome regulator 

An essential regulator of proteasome activity was identified in a screen for defective 

caspase activation in Drosophila spermatogenesis. A novel F-box protein termed nutcracker, that 

is the ortholog of mammalian FBXO7, was isolated and shown to interact with SkpA and Cullin-

1, components of an Skp/Cullin/F-box (SCF) ubiquitin ligase complex. Nutcracker mutants are 

defective in caspase activation and proteasome activity (Bader et al., 2010). A biochemical 

screen for proteins interacting with Nutcracker identified DmPI31. It was shown that nutcracker 

binds to DmPI31 via a conserved Fbxo7/PI31 (FP) domain and stabilizes DmPI31 (Bader et al., 

2011; Chu-Ping et al., 1992). DmPI31 is homologous to mammalian PI31, a 31kD proline rich 

protein, which was initially isolated as an inhibitor of 20S proteasomes. DmPI31 shares over 

45% homology with mammalian PI31 proteins.  The interaction between these proteins was 

shown to be necessary for caspase activation, proteasome activity and ultimately 

spermatogenesis in Drosophila. Although, PI31 was initially found to be an inhibitor of 20S 

proteasomes in vitro that competes with PA28 for binding (Chu-Ping et al., 1992), (Zaiss et al., 

1999) in vivo activation of DmPI31 stimulated proteasome activity and rescued proteasome 

defects. Loss-of-function studies in Drosophila result in defects in protein breakdown further 

defining the role for DmPI31 in stimulating proteasome function. Thus, DmPI31 serves as an 

activator of the 26S proteasome and its activity is essential for normal protein breakdown and 

organismal survival. This protein is also shown to be an activator of 26S proteasomes while 

inhibiting 20S proteasomes in vitro. DmPI31 mutants also display reduced proteasome activity 

and lethality during the 3rd instar larvae to pupal transition (Bader et al., 2011). The full activity 

of DmPI31 is dependent on the HbYX motif located at its C-terminus. This motif is shared by 
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other modulators of proteasome activity such as the AAA+ ATPase Rpt subunits of the 19S 

proteasome and CDC48/p97.  

In search for regulators of DmPI31 activity, TNKS, an ADP-ribosyltransferase, was 

identified as a direct binding partner that modulates PI31 activity through ADP-ribosylation. 

TNKS is a member of the PARP superfamily of proteins and it widely known for its role in 

binding the negative regulator of telomere length, TRF1. It localizes to many subcellular 

locations including telomeres, spindle poles, and the cytoplasm and several binding partners of 

TNKS have been identified that containing an RXXPDG motif or a degenerate form, including 

PI31. Similarly, the ADP-ribosylation of PI31 by TNKS is shown to be necessary as TNKS 

inhibition decreases proteasome activity in vivo. ADP-ribosylation of PI31 blocks the binding of 

PI31 to the a subunits of the 20S proteasome and thus relieves 20S inhibition by PI31. 

Additionally, ADP-ribosylation promotes the binding of dp27 and dS5b to PI31, which 

sequesters them from the 19S RP to promote 26S assembly. The C-terminal HbYX motif is 

required for DmPI31 binding to TNKS and the assembly chaperones dp27 and dS5b (Cho-Park 

and Steller, 2013). These data provide a mechanism by which PI31 acts as a regulator of 

proteasome assembly that is potentially under metabolic control (Figure 1.2).  

Native gel analysis shows that recombinant GST tagged PSMF1/PI31 can form trimers, 

hexamers, and nonamers. In silico modeling of PSMF1/PI31 predicts that this protein may form 

a heptameric ring that binds to the 20S in replacement of the 19S RP and inhibits substrate entry 

into the 20 CP (Clemen et al., 2015). In vitro, PI31 was shown to bind 26S proteasomes but has 

no effect on activity nor did PI31 overexpression or RNAi cause cellular proteasome defects. 

However, this paper also reports that the 10 -22 residue C-terminal peptides of PI31 can activate 

20S hydrolysis in a HbYX dependent manner but that the C-terminus of PI31 itself inhibits the 
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20S CP. Interesting, the N-terminus of PI31 alone does not shown any inhibition of 20S CP 

suggesting that PI31 can regulate proteasome activity via its C-terminal tail mediating gate 

opening (Li et al., 2014). 

 

 

 

 

 

 

 

Figure 1.2 Current Model for Increased Proteasome Assembly by ADP-ribosylation of PI31  

The current model for increased proteasome activity by ADP-ribosylation of PI31 shows that TNKS uses 

NAD+ as a donor for ADP-ribose groups. TNKS directly binds to PI31 to transfer ADP-ribose and this 

binding requires the HbYX domain of PI31. This model predicts that PI31 sits on the 20S CP blocking the 

entry chamber but that upon ADP-ribosylation of PI31, 20S binding is relieved and PI31 binding to 19S 

chaperones increases. These two events allow the 20S and 19S to come together more efficiently under 

conditions that require increased 26S proteasome activity. Figure adapted from (Cho-Park and Steller, 

2013). 

 

How DmPI31 interacts with the proteasome to regulate its function is still unclear given the 

difference between activities in vitro and in vivo. An Arabidopsis homologue of PI31, named 

proteasome regulator 1 (PTRE1), was shown to be a positive regulator of 26S proteasomes and 

mediates auxin suppression of proteasome activity. Mutations in ptre1 result in severe 

developmental defects in plants and auxin is thought to mediate proteasome activity by altering 



 16 

PTRE1 localization (Yang et al., 2016). Unpublished data from our lab by Kai Liu also indicate 

that DmPI31 functions as a modulator of proteasome localization. However, whether PTRE1 

interacts with other proteins or undergoes post-translational modifications requires further 

investigation. The yeast ortholog of PI31, Fub1, was shown to co-immunoprecipitate with both 

the 20S and 26S proteasome but not free 19S particles. Fub1 also shows an inhibitory effect on 

20S in vitro but did not show any inhibitory effects on proteasome degradation in vivo. In fact, 

neither deletion not overexpression of Fub1 in vivo had any deleterious effects on proteasome 

function. It was only when DFub1 was combined with deletion of a 20S assembly chaperone, 

Dpba4, did lethality occur and this lethality could be rescued by Da3, a CP subunit, or deleteion 

of the N-terminal of Da7 (Yashiroda et al., 2015). However, the generation of alternative 

proteasome complexes, where deleted subunits can replace others, complicates the interpretation 

of Fub1 function in vivo. Thus, an understanding of the structure of PI31 interaction with 20S 

and 26S proteasome in vivo will elucidate its role in regulating proteasomes.  

 

1.2 Protein homeostasis in neurodegeneration 

In late-onset neurodegenerative diseases such as Alzheimer’s, Parkinson’s, and 

Huntington’s disease there is an accumulation of ubiquitin conjugated aberrant proteins into 

aggregates in the brain. These aggregates often show accumulation of chaperones and 

proteasome subunits suggesting that UPS activity was initiated but proteasomes fail to degraded 

these proteins. For instance, defining traits of AD include the accumulation of 

Ab neurite plaques and tau containing neurofibrillary tangles. These protein aggregates can also 

be seen in the brain during the normal aging process suggesting an important role for cellular 

degradation systems in the clearance of proteotoxic aggregates during aging (Gray et al., 2003). 
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A possible explanation for the accumulation of toxic proteins and subsequent aging phenotypes 

is the impairment of the UPS. Indeed, many reports describe a decrease in proteasome activity in 

aged organisms. This decrease has been associated with altered expression of proteasome 

subunits and impairment in proteasome assembly (Dasuri et al., 2009; Rogers et al., 2012; 

Vernace et al., 2007; Vilchez et al., 2014). Loss-of-function mutations that result in decreased 

proteasome activity also shown enhance neurodegenerative phenotypes. Mutations in FBXO7, 

the mammalian homolog of Drosophila nutcracker that binds to and stabilizes DmPI31, was 

found to cause early onset Parkinsonian-pyramidal disease (PPD) (Di Fonzo et al., 2009) FBXO7 

was shown to interact with the PSMA2/alpha2 subunit of the proteasome and modifies it via 

ubiquitination. Additionally, mutations in Parkin, a ubiquitin ligase, lead to a failed interaction 

between this protein and its substrate a-synuclein resulting in the formation of Lewy bodies and 

eventually in familial PD. Parkin expression is also downregulated in AD and may contribute to 

accumulation of intracellular Ab (Zheng et al., 2016). Spinocerebellar ataxia type 3 (SCA3) is a 

polyglutamine disorder caused by the CAG expansion of in the gene encoding Ataxin-3. Ataxin-

3 itself if a DUB containing a ubiquitin interacting motif that when overexpressed in Drosophila 

can protect from polyQ induced neurodegeneration (Winborn et al., 2008). Another member of 

the ataxia family of neurodegenerative disorders is that of Spinocerebellar ataxia-type 1 (SCA1). 

This polyQ disease is caused by a CAG repeat in the gene product, ataxin-1. In this model, 

proteasome activity has been shown to be directly impaired by decreased degradation of a short-

lived fluorescent protein (Park et al.). Modifier screens have been conducted in Drosophila 

models of both SCA1 and SCA3 to look for suppressors of neurodegeneration. In these studies 

the role for proper protein folding and protein degradation are highlighted as the majority of 

modifiers fell into the chaperone or UPS category.  
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1.2.1 Role of the UPS in Wallerian degeneration 

Wallerian degeneration is the result of damage to nerve fibers that can be seen early on in 

diseases such as Alzheimer’s, Parkinson’s, and multiple sclerosis. It occurs in response to 

infections, diabetes, and normal aging. The Wallerian degeneration slow mouse (wlds) is an 

autosomal dominant genetic alteration that encodes for the first 70 amino acids of the 

ubiquitination factor Ufd2a and full length Nmnat1. It shows resistance to nerve cell damage 

both in vitro and in vivo. Overexpression of Nmnat1, an enzyme that catalyzes that last step in 

NAD+ biosynthesis, has been shown to protect axon degeneration induced by transection in the 

dorsal root ganglion neurons (Mack et al., 2001). The protection seen in the wlds mouse could be 

a result of protecting NAD+ levels since depletion of NAD+ and ATP is accompanied with 

axonopathy. This protection of NAD+ provides a possible role for proteasomes in the protection 

of axon degeneration due to TNKS mediated ADP-ribosylation of PI31. PARP-1 inhibitors may 

also play a role in protection from neuronal death. Excessive activation of PARP-1 leads to the 

depletion of cytosolic NAD+ which has been linked to PARP-1 mediated neuronal cell death. 

Reports have shown that the induction of DNA strand breaks in PARP-1-/- neurons saves 

cytosolic NAD+ levels and rescues neuronal death. In addition, replenishing NAD+ levels in 

neurons that have suffered DNA damage can prevent PARP-1 induced neuronal death (Alano et 

al., 2010). Thus, the beneficial effects of NAD+ in neuronal protection may in part be related to 

the ADP-ribosylation of PI31 and subsequent proteasome assembly.  

 

1.2.2 Age-associated decline in proteostasis 

In Drosophila melanogaster, aging is associated with a decline in proteasome activity and 

this appears to be due to reduced assembly of the 26S proteasome (Tonoki et al., 2009). Aged 
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flies show an accumulation of ubiquitinated proteins and a decline in the level of 26S proteasome 

protein compared to young flies. This age-related reduction in 26S proteasomes can be overcome 

with the overexpression of Rpn11, a component of the 19S RP known for its de-ubiquitinating 

activity. The overexpression of this subunit also suppresses the accumulation of poly-

ubiquitinated proteins with age, increases fly lifespan, and rescues SCA3 induced 

neurodegeneration (Tonoki et al., 2009). Another recent study in Drosophila showed that 

impairment of the proteasome with the feeding of proteasome inhibitors promoted the aging 

phenotype and reduced lifespan. However, this study uncovers a proteasomal regulatory circuit 

that upregulates proteasome mRNAs and subunits in response to impaired proteasome 

functionality. This upregulation is dependent on Nrf2, which is a transcription factor that is 

traditionally known for its role in mediating responses to oxidative stresses (Tsakiri et al., 2013).  

Additional evidence for a critical role for proteasomes in aging comes from studies of 

elevated proteasome activity. In such a study conducted in Saccharomyces cerevisiae, UPS 

capacity was manipulated with the use of the Rpn4 transcription factor. Cells deleted for RPN4 

show a decrease in proteasome levels, while loss of the ubiquitin ligase that regulates Rpn4 

turnover, UBR2, upregulates Rpn4 and thereby increases in proteasome components. The 

replicative life span in this yeast model was significantly extended with increased UPS capacity 

while a decrease in UPS capacity shortens replicative life span. In yeast models for 

neurodegenerative diseases, a loss of UBR2 results in improved clearance of toxic huntingtin 

fragments suggesting that increased proteasome capacity prolongs lifespan through the 

elimination of toxic proteins (Kruegel et al., 2011).  
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1.2.3 Proteasome transport to the synapse   

Efforts to identify the causes and mechanisms underlying neurodegenerative diseases 

have undoubtedly uncovered defective proteostasis as a major cause for the progression of 

neurodegeneration. However, whether the various types of toxic aggregates lead to progressive 

impairments in proteostasis that only manifest in disease overtime or whether some other factors 

play a role is still a major question. AD is of major interest since it is the most common brain 

degenerative disorder and begins with impairments in cognitive function that prevent the 

formation of new memories followed by progressive loss of previously encoded memories. Since 

patients at the early stages have intact motor and sensory neurological function it is suggested 

that failure at the synapses required to form new memories are the cause. Although Ab plaques 

and tau tangles are hallmarks of the disease, early studies report dysfunction at the synapse as the 

initial target of AD. Indeed, deficits in a number of neurotransmitters accumulate with disease 

progression and loss of synapses correlate more robustly to cognitive decline than the number of 

Ab plaques or tau tangles (Selkoe, 2002). This poses the question of how proteostasis is 

maintained at the synapse under physiological conditions. Many studies have shown a 

requirement for the UPS to maintain synaptic plasticity and that proteasome activity is distinctly 

regulated at the synapse (Hamilton and Zito, 2013; Tsai, 2014). One way in which proteasome 

activity is regulated here is by transport of proteasomes from the cell body to the synapse and 

within different synaptic compartments such as the dendritic shaft to dendritic spines. Both 19S 

and 20S proteasomes are previously described as being trafficked into dendritic spines upon 

activity and this is correlated with an increase in degradation of polyubiquitinated proteins in 

spines. Theses proteasomes are shown to be tightly associated with the actin cytoskeleton 

suggesting proteasomes can be actively transported to subcellular localizations where protein 
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degradation is needed (Bingol and Schuman, 2006). Since then several reports have established 

proteasome association with molecular motors and support the hypothesis that proteasomes 

move both anterograde and retrograde to carry out local degradation to maintain synapses (Otero 

et al., 2014; Hsu et al., 2015; Kreko-Pierce and Eaton, 2017). Evidence of local dysfunction in 

proteasome degradation results in early phases of tauopathies and the formation of ubiquitin 

conjugated tau aggregates (Tai et al., 2012). Thus, mechanisms that disrupt the transport of 

proteasomes to axons could initially lead to synaptic dysfunction which compounds overtime and 

leads to neurodegenerative phenotypes.  

 

1.2.4 Neuroprotective role of NAD+ metabolism  

Nicotinamide adenine dinucleotide (NAD+), it phosphorylated form (NADP+) and 

reduced forms (NADH and NADPH) have crucial roles in processes such as transcription, cell 

cycle control, DNA repair, and metabolism.  There are two major pathways via which cells 

produce NAD+, the de novo pathway that uses tryptophan and the NAD+ salvage pathway that 

recycles nicotinamide and nicotinic acid from the diet. This molecule serves as a substrate for 

three classes of enzymes: poly (ADP-ribose) polymerases (PARPs), cADP-ribose synthases, and 

Sirtuins. PARPs are NAD+ consuming enzymes that produce an ADP-ribosyl protein 

modification and/or form ADP-ribose polymers. The addition of each unit of ADP-ribose to an 

acceptor protein requires one molecule of NAD+ creating a considerable challenge for cellular 

NAD homeostasis when ADP-ribosylation is activated. One of the major causes of cell death due 

to genotoxic stress is the hyperactivation of PARP-1, which depletes cytoplasmic and nuclear 

NAD+. The depletion of NAD+ also results in the inability for a cell to generate ATP, which is a 

major requirement for 26S proteasome mediated degradation. cADP-ribose synthases, CD38 and 
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CD157, are ectoenzymes that use NAD+ as a substrate to generate second messengers, such as 

cADP-ribose, which contributes to calcium mobilization. Sirtuins are enzymes whose function to 

deacetylate lysine residues of transcription factors and histones is dependent on the 

NAD+/NADH redox ratio. These enzymes have emerged in the regulation of cell survival and 

longevity. Specifically, Sir2 has been shown to mediate lifespan expansion in S. cerevisiae, 

C.elegans, and D. melanogaster (Belenky et al., 2007). Recent studies have shown that genetic 

or pharmacological inactivation of the PARP1 homolog, pme-1, in C. elegans increases NAD+ 

pools and extends lifespan through sir-2.1, the worm sirtuin homolog, and boosts mitochondrial 

metabolism (Mouchiroud et al., 2013).  

The therapeutic potential of NAD+ metabolism is well recognized, as pathophysiological 

states such as neurodegeneration can be suppressed by increasing NAD+ production or 

associated enzymes. For instance, overexpression of Nmnat1 in dorsal root ganglion (DRG) 

neuronal explant cultures protected axons from both mechanical transection, ischemia, and 

toxins such as vincristine (Araki et al., 2004, Coleman and Perry, 2002 )(Gillingwater et al., 

2004).  The addition of exogenous NAD+ 24 hours prior to axonal transection also delays axonal 

degeneration although this protection is less effective than lentiviral expression of Nmnat1 

(Araki et al., 2004). It was also found that degenerating axons show a decrease in NAD+ levels 

and protection of this NAD+ pool efficiently protects axons from degeneration (Wang et al., 

2005). Overexpression of Nmnat has also been shown to suppress tauopathy by reducing the 

number of hyperphosphorylated tau oligomers. This protection is independent of its NAD+ 

synthase activity and was shown that Nmnat can directly interact with phosphorylated tau and 

promote its ubiquitination and clearance (Ali et al., 2011). Drosophila models of spinocerebellar 

ataxia 1 (SCA1) showed that both Nmnat as well as an enzymatically inactive form of Nmnat are 
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neuroprotective. This study found that Nmnat acts independent of its NAD+ synthase activity 

and instead acts as a chaperone for neuronal maintenance and protection (Zhai et al., 2008). 

NAD+ levels vary significantly between tissues and are dramatically altered by dietary levels of 

nicotinic acid and nicotinamide (Belenky et al., 2007; Elhassan et al., 2017). Dietary niacin has 

shown to confer protection from the development of AD and cognitive decline (Morris et al., 

2004). Recent data has found that the reduced form of NAD+, NADH can directly bind 26S 

proteasomes via a putative binding motif found on 19S subunits. Interestingly, addition of 0.1 or 

0.5 mM NAD+ to NIH3T3 cells increased the levels and activity of 26S proteasomes. This was 

likely due to increased assembly as there was no change in proteasome subunit expression 

(Tsvetkov et al., 2014). In Drosophila pink1 mutants, increasing the NAD+ salvage pathway via 

supplementation of nicotinamide prevents neurodegeneration and rescues mitochondrial defects 

(Lehmann et al., 2017). This precursor was also shown to ameliorate mitochondrial dysfunction 

and motor deficits in a Drosophila model for PD (Jia et al., 2008). These findings point to a 

pathway that may link neuroprotection, NAD+, and the proteasome. The exact mechanisms by 

which Nmnat and NAD+ confer neuroprotection and whether they are independent of each other 

remain to be determined.  

Dietary Restriction (DR) without malnutrition was first describe by McCay et al. in 1935 to 

extend mean and maximal lifespan of rats and since then its beneficial effects have been 

described as reducing cancer incidence and delaying the onset of aging phenotypes. Interestingly, 

DR increases intracellular NAD+ levels (Guarente and Picard, 2005) providing yet another 

connecting to possible regulation of proteasome activity via DmPI31. DR is thus far the only 

non-genetic way in which to increase lifespan in every model organism studied from primates to 

yeast. Many hypotheses for how dietary restriction contributes to longevity have been proposed 
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such as enhancement of apoptosis, increased physical activity, reduced metabolic rate, 

attenuation of insulin IGF-1 signaling, and protein turnover (Xiang and He, 2011). In yeast, 

dietary restriction was shown to extend replicative lifespan through a mechanism that was 

dependent on Sir2 and Npt1, a nicotinic acid phosphor-ribosyltransferase. Interestingly, NAD+ 

salvage pathway proteins and nicotinamide induced NAD+ increase can mediate neuroprotection 

and longevity (Lin et al., 2000; McClure et al., 2012; Ocampo et al., 2013).  

 

 

 

 

 

 

 

Figure 1.3 NAD+ de novo synthesis and salvage pathways in Drosophila 

NAD+ is an essential coenzyme crucial for a variety of cellular processes, redox reactions, and cellular 

respiration. It is also the substrate for three major classes of enzymes, sirtuins, cADPRs, and PARPs. 

NAD+ can be synthesized from the aa tryptophan via de novo synthesis or from dietary intake of 

metabolites Na and Nam via the NAD+ salvage pathway. Byproducts of NAD+ digestion are recycled 

back into useful forms by enzymes in the salvage pathway, available enzymes in flies are indicated in red 

with CG number. NMNAT is essential for neuronal health and mammals have 3 genes corresponding to 

different subcellular localization while flies have one gene, CG13645. This salvage pathway is also 

essential in humans as lack of dietary metabolite intake results in the vitamin deficiency disease pellagra.  
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1.3 Relevance 

The therapeutic potential of NAD+ metabolism is well recognized, as pathophysiological 

states such as neurodegeneration can be suppressed by increasing NAD+ production or 

associated enzymes. Additional data shows that TNKS mediated ADP-ribosylation of PI31, 

which requires NAD+ can promote 26S proteasome assembly. Natural aging may predispose to 

neurodegeneration as both proteasome assembly and NAD+ are shown to decline with age in 

worms and mice (Tonoki et al., 2009, Mouchiroud et al., 2013, Gomes et al., 2013, Yoshino et 

al., 2011, Ramsey et al., 2008). Both of these findings suggest a mechanism by which declining 

NAD+ levels can cause decreased proteasome activity and lead to the progression of age 

associated neurodegeneration. The overarching aim is to bridge metabolic and genetic 

mechanisms of proteasome regulation to expand the scientific body of knowledge on how 

proteolysis impacts aging and neurodegenerative diseases. Understanding protein degradation 

during the progression of neurodegeneration and the regulators involved will uncover potential 

therapeutic targets to delay the onset of these diseases. This thesis will address the role of 

DmPI31 in Drosophila neurons during development and in maintaining neuronal health in 

addition to studying how NAD+ metabolism influences PI31 mediated proteasome activity.  
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 2. Characterization of DmPI31 in neuronal maintenance and longevity 

 

 

2.1 Summary 

Neuronal remodeling and maintenance are processes that require a tight balance between 

protein synthesize and degradation. The UPS mediates proteolysis in neurons in a highly 

regulated fashion by tagging specific proteins with ubiquitin and targeting them to the 

proteasome for degradation. Proteasomes are regulated in a diverse manner through interactions 

with alternative activators, post-translational modifications, and changes in localization. This 

chapter characterizes the role of a proteasome-interacting protein, Drosophila PI31 (DmPI31), 

within neurons of both larvae and adult flies. This protein is shown to localize to distinct brain 

regions where it co-expresses with proteasome subunits. Generation of mitotic clones mutant for 

dmPI31 revealed that this protein is essential for protein degradation in adult photoreceptor 

neurons, as these cells accumulate poly-ubiquitinated proteins and rapidly degenerate. Targeted 

RNAi-mediated knockdown of PI31 in neurons resulted in eclosion and motor neuron defects 

further suggesting an essential role for DmPI31 in neurons. Lastly, the crucial role of regulating 

expression of this protein is shown as a result of its impact on Drosophila lifespan. Together, 

these results uncover previously unknown roles for DmPI31 in the Drosophila nervous system.  

 

2.2 Rationale  

In a screen for regulators of caspase activation during Drosophila spermatogenesis, a 

proteasome regulatory complex composed of nutcracker and DmPI31 was found to be necessary 

for proper sperm differentiation. Nutcracker interacts with and promotes DmPI31 stability and 
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together they participate in non-apoptotic caspase activation that drives cellular remodeling in 

the testes. DmPI31 mRNA transcripts are highly expressed in the testes while females and 

mutants lacking germline cells express reduced amounts (Bader et al., 2011). However, dmPI31 

mutants display pupal lethality suggesting a role for this protein outside of the testes as well. 

Initially reported as an inhibitor of 20S proteasomes in vitro, PI31 has a conserved HbYX (Hb= 

Hydrophobic amino acid, Y = Tyrosine, and X= any amino acid) motif shared by Rpt subunits 

for binding or activation of 20S proteasomes (Smith et al., 2007b; Kumar et al., 2010). Indeed, 

DmPI31 was shown to function in vivo as a proteasome activator that can rescue the dominant-

negative temperature sensitive proteasome alleles DTS5 and DTS7, mutations in subunits B2 and 

B5 respectively. The HbYX motif at the C-terminal tail of DmPI31 is necessary for full 

proteasome activation but deletions in this region still manage to increase 26S proteasome 

activity in vitro and in vivo (Bader et al., 2011). However, knowledge on the in vivo role of 

DmPI31 outside the testes is lacking. Similar to sperm, neurons go through periods of cellular 

remodeling where proteolysis must play a critical function.  

In this chapter, I explore the role of DmPI31 in neuronal function by characterizing the 

localization of this protein as well as associated mutant phenotypes. The localization of 

proteasomes within neurons plays a key role in regulating protein degradation during processes 

such as dendritic pruning, synaptic plasticity, and neuronal maintenance (Wójcik and DeMartino, 

2003; Janse et al., 2004; Patrick, 2006). Endogenous PI31 displays both cytoplasmic and nuclear 

localization but expresses more highly the central brain of 3rd instar larva. In adult flies, DmPI31 

localizes to a subset of neurons in the central brain as well as photoreceptor axons. Using loss of 

function mutants and driving RNAi of PI31 in specific neuronal subtypes, I show that PI31 is 

essential for neuronal maintenance. Polyubiquitinated proteins accumulate, neurons rapidly 
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degeneration, and the number of active zones is reduced. These studies clarify the role of 

DmPI31 as a proteasome activator in vivo and illustrate the importance of PI31 in neuronal 

maintenance.  

 

2.3 Results 

2.3.1 DmPI31 is expressed in the Drosophila central brain and adult photoreceptor axons 

It was reported that the majority of adult DmPI31 mRNA resides in the testes (Bader et al., 

2011). However DmPI31 mRNA is present at low levels in the adult female and is expressed 

throughout the Drosophila life cycle (Arbeitman et al., 2002). Furthermore, mass spectrometry 

from an enriched membrane fraction of adult Drosophila heads identified DmPI31 along with 

other proteasome subunits (Aradska et al., 2015) confirming the presence of DmPI31 in locales 

beyond the testes. In order to determine the role of DmPI31 in neuronal function, I explored the 

expression and localization of this protein in the brains of 3rd instar larval and adult flies. To 

probe for the localization of this protein in vivo, I took advantage of a transgenic line expressing 

a mCherry-DmPI31 fusion protein driven by the endogenous promoter for DmPI31 

(PI31::mCherry-PI31). This fusion protein was previously shown to properly localize in the 

testes and to rescue mutant phenotypes (Bader et al., 2011). Confocal z-stack images of 3rd instar 

larval brains show that DmPI31 is highly expressed in the central brain (CB) and ventral nerve 

cord (VNC) relative to the optic lobes (OLs) (Figure 2.1). Both the larval CB and VNC contain 

large neural stem cells termed neuroblasts that are multipotent and generate the neuronal and 

glial diversity in the adult central nervous system (CNS) (Egger et al., 2008; Homem and 

Knoblich, 2012). Proteasome function has been reported to play a crucial role in neuroblasts and 

neurogenesis. Mutations in the 19S proteasome subunit Rpn10 show strong mitosis defects in 
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larval neuroblasts (Szlanka et al., 2003) while Prosb21, a dominant temperature-sensitive 

mutation (DTS5) in the b2 subunit of the 20S proteasome, caused mild mitotic defects in these 

cells (Neuburger, 2006). To determine whether DmPI31 is specifically localized to larval 

neuroblasts, I stained PI31::mCherry-PI31 larval brains with the neuroblast markers deadpan 

(Dpn), which marks the nuclei of large neuroblasts, and prospero (Pros), which marks the 

smaller nuclei of ganglion mother cells (GMCs). Although DmPI31 is fairly ubiquitous in the 

CB, Dpn positive cells show a higher expression of DmPI31 in the CB compared to Pros positive 

cells (Figure 2.2a). Proteasome expression levels within the larval brain were determined by 

assaying the expression of a GFP-tagged a2 subunit under the endogenous promoter since 

proteasome subunits are rarely found as single components. a2-GFP is ubiquitous but highly 

expressed in the perinuclear region of the neuroblasts and cytoplasm. This protein is also seen to 

localize to the cytoplasm of neural progeny (Figure 2.2b). To determine whether DmPI31 co-

localizes with the proteasome in neuroblasts, flies expressing GFP-tagged a2 or Rpt3 subunits 

under their endogenous promoters (Ma et al., 2002) were crossed to PI31::mCherry PI31 lines. 

Confocal z-stacks of 3rd instar larval brains were analyzed and showed more expression of 

DmPI31 within a2 and Rpt3 positive cells (Figure 2.2c,d). However, not all a2GFP expressing 

cells showed elevated PI31 indicating that this protein is actively regulated depending upon the 

cellular state. Both a2GFP and Rpt3GFP display nuclear and cytoplasmic localization consistent 

with previous reports on proteasome localization in Drosophila  (Ma et al., 2002) although Rpt3 

has a broader cytoplasmic expression pattern (Figure 2.2d). The increase in expression of these 

subunits within neuroblasts may be attributed to proteasome demand being higher in actively 

dividing cells (Wójcik and DeMartino, 2003). To determine DmPI31 localization in the adult 

brain, whole-mount brain dissections from age matched PI31::mCherry-PI31 adults were fixed 
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alongside Oregon-R brains to control for background fluorescence(Figure 2.3a). The expression 

pattern of DmPI31 in the central brain is consistently localized to a specific subgroup of cells in 

the central brain that is yet unexplored (Figure 2.3b,c). I cannot rule out that these neurons are 

undergoing apoptosis or PE remodeling and thus show upregulated DmPI31 that may suggest 

upregulate proteasome activity. However, mcherry-PI31 additionally localizes to the R7 and R8 

photoreceptor axons found in the adult medulla (Figure2.3d-e). This localization points to the 

possibility that DmPI31 is being actively transported to axons, since these axons project a fair 

distinct from their cell bodies. Visualizing the outermost axon terminals shows high levels of 

PI31 expression overlapped with the cell specific marker for the R7/R8 axons (Figure 2.3f) 

providing further evidence to support the idea that PI31 is transported to these distal locations.  
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Figure 2.1 DmPI31 expression is highly localized to the central brain and ventral nerve 

cord in 3rd instar larval CNS 

(a) Schematic of 3rd instar larval central nervous system. Central brain (CB), ventral nerve cord 

(VNC), optic lobe (OL), outer proliferation center (OPC), inner proliferation center (IPC), 

neuroblasts in optic lobe and central brain (NB), medulla (me), neuroepithelium (NE), lamina 

furrow (LF). (b-f) Ventral view of confocal z-stack projections of 3rd instar larval brains 

expressing PI31-mCherry fusion protein under the PI31 endogenous promoter. (b) Composite 

image shows DmPI31 expression in red relative to neural progenitors marked by anti-deadpan 

(Dpn) in green, neural progeny labeled with anti-prospero (Pros) in white and DAPI in blue 

labelling nuclei. (c) Endogenous PI31 expression localizes to the CB and VNC where its 

expression is higher in large cells, called neuroblasts, marked by anti-Dpn. (d) anti-Dpn staining 

marking neural progenitors in the CB and VNC. (e) anti-Pros staining marking the neural 

progeny in a stereotype fashion that does not overlap with anti-Dpn. (f) DAPI staining shows 

nuclei of all cells in the CB, OL, and VNC. (g-k) Dorsal view of the larval CNS. (g) Composite 

confocal projection showing DmPI31 expression from the dorsal side overlapping with anti-Dpn 

in green and with anti-Pros in white. (h) Endogenous mCherry-PI31 (i) anti-Dpn (j) anti-Pros (k) 

DAPI. All images are shown at 20X magnification.  
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Figure 2.2 DmPI31 and proteasome subunits co-express in the central brain of 3rd instar 

larval CNS  

(a-d) Confocal z-stack projections show the CB and OL at 63X magnification. (a) mCherry 

tagged PI31 is expressed ubiquitously in the CNS but more notably in the nucleus and cytoplasm 

of large neuroblast cells in the CB. Confocal z-projections show the specific staining pattern of 

anti-Pros (white), anti-Dpn (green), PI31(red), and DAPI (blue). (b) The alpha2-GFP tagged 

subunit of the 20S proteasome is expressed in the cytoplasm and perinuclear region of the 

neuroblasts. This protein is also seen to localize to the cytoplasm of neural progeny. The 

composite image shows alpha2-GFP (green), anti-Pros (white), anti-Dpn (red), and DAPI (blue). 

(c) 3rd instar larval brains co-expressing both endogenous mCherry-PI31(red) and endogenous 

alpha2-GFP (green) a 20S proteasome subunit. Brains were stained with anti-Dpn (purple) 

marking neuroblast nuclei and Dapi (blue) staining all nuclei. The vast majority of neuroblasts 

express both PI31 and alpha2GFP however there are a few exceptions (white arrows). (d) 3rd 

instar larval brains co-expressing both endogenous mCherry-PI31 and endogenous RPT3-GFP, a 

19S regulatory subunit. RPT3 is highly expressed in the cytoplasm and perinuclear region of the 

neural progenitors as well as in the cytoplasm of neural progeny along with PI31. 
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Figure 2.3 DmPI31 expresses within the adult CNS 

(a-e) Confocal z-stack projections at 20x magnification of whole-mount adult Drosophila brains. 

(a) Wildtype brains show the mCherry background signal along with DAPI staining. (b) DmPI31 

expresses in a stereotyped fashion in a subset of neurons. (c) A similar pattern of neuronal 

expression is seen within a different set of optical sections in a separate brain. (d) Optic lobe 

image of wildtype flies labeled with DAPI. (e and e’) Optic lobe images show high expression of 

mcherry-PI31 in the R7/R8 medulla axons at 20X and (e’) 63X. (f) Z-stack projections at 63X of 

the optic lobe medulla show PI31(red) highly expressed in the R7/R8 axon terminals labeled 

with anti-chaoptin (white).  
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2.3.2 DmPI31 mutants display mitotic defects and accumulate polyubiquitinated proteins 

DmPI31 was found to cause accumulation of polyubiquitinated proteins and cell-cycle 

defects in the male-germline (Bader et al., 2011). However, whether DmPI31 functions in a 

similar manner in neuronal tissue is unknown. To learn more about the function of DmPI31, I 

stained brains from dmPI31 mutants which survive into the pupal stage, for the presence of 

polyubiquitinated proteins (FK2), an apoptosis marker (Dcp-1), and the cell cycle factor (cyclin 

B). Since heterozygous mutants for dmPI31 are viable and show no obvious phenotype, it is 

expected that proteasomes are not impaired and thus this line was used as a control for FK2 

staining. However, FK2 did not show an accumulation in dmPI31-/- larval brains compared to the 

dmPI31-/+ (Figure 2.4a’,b’). It is possible that the impairment of proteasomes activates a 

compensatory degradation machinery, such as autophagy, in these cells that acts to degrade any 

accumulated proteins (Lőw et al., 2013; Nedelsky et al., 2008). To determine whether there was 

increased apoptosis in these mutants, I stained for cleaved Dcp-1, the active form of a critical 

effector caspase. A slight accumulation of cleaved DCP-1 is observed but brain size between 

control and mutant groups was not affected (Figure 2.4c,d). Staining for cyclin B however 

showed a slight accumulation in the cytoplasm of cells in both the optic lobes when compared to 

wild-type controls (Figure2.4 c,d). Cyclin B is a substrate for the proteasome so this 

accumulation suggests defective proteasome activity. Interestingly, degradation of cyclin B is 

required for exit from mitosis (Castro et al., 2005). Likewise, dmPI31 mutant brains show altered 

localization of the stem cell markers Deadpan and Prospero (Figure 2.4 e,f). In control lines, Pros 

staining is restricted to the nucleus of GMCs and does not overlap with nuclear Dpn staining. 

Dpn also shows restricted localization and typically marks mitotic areas of the optic lobes. In 

mutants, Pros staining is diffuse, cytoplasmic, and overlaps with Dpn, whose expression pattern 
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is greatly expanded. (Figure 2.4 e,f). Pros is a transcriptional repressor that is restricted to the 

nucleus to downregulate cell cycle genes and restrict GMCs to one terminal mitosis. Dpn on the 

other hand plays an important role in neuroblast self-renewal and specification. Reports have 

shown that ectopic expression of Dpn promotes ectopic self-renewing divisions of neuroblast 

(Zhu et al., 2012). Thus, it appears that dmPI31 plays a role in cell cycle exit and loss of this 

protein results in cell cycle defects, accumulation of Dpn, and over-proliferation of neuronal 

stem cells.  

In order to determine the consequences of loss of PI31 through all stages of development, I 

took advantage of the FLP/FRT technique that is used to generate mitotic clones in a 

heterozygous animal in specific tissues and stages (Golic et al., 1997). The FLP/FRT technique 

can yield mosaic wild-type, heterozygous, and homozygous mutant cells in a specific tissue of an 

animal heterozygous for a wild-type and mutant allele. Using a heat shock inducible flippase, I 

generated dmPI31 mutant clones by subjecting heterozygous larvae to 3 rounds of 1hr heat shock 

over 72 hours. Similar to results obtained with antibody staining in dmPI31 mutant larva, larval 

mutant clones did not show aggressive accumulation of poly-ubiquitinated proteins in the brain 

or eye discs (Figure 2.5a). However, leg discs with patches of mutant clones showed marked 

accumulation of poly-ubiquitinated proteins (Figure 2.5a,b). This may point to a more essential 

role for PI31 in this tissue or a compensatory mechanism held by the brain and eye discs to 

overcome proteotoxic stress. Of note, is the finding that DmPI31 was shown to be essential for 

leg development, thus the effect of loss of PI31 in this compartment may be more detrimental to 

proteasome function (Grubbs et al., 2013).   

Additionally, I assayed PI31 function in adult tissues by generating mutant clones in the 

adult photoreceptors using an eye specific flippase. I found that photoreceptors which lack 
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dmPI31 rapidly degenerate and accumulate poly-ubiquitinated proteins, suggesting a defect in 

proteasome function (Figure 2.6c). However, heterozygous photoreceptor axons also appear 

affected with many displaying twisted and degenerative phenotypes as shown by GFP expression 

in these axons (Figure 2.6c). Photoreceptor clones induced by eye specific flippase in a different 

context also showed rapid degeneration. Live images of photoreceptors clones were taken with 

the cornea neutralization technique using transgenes that express GFP specifically in 

photoreceptors 1-6. Generation of mutant clones for Nmnat1, an essential enzyme in the NAD+ 

salvage pathway, does not show degeneration at 1 day PE and mutant cells can be seen by lack 

of Tomato (red) but maintenance of GFP (green) (Figure 2.6a). These mutant cells are reported 

to degenerate with age. However, dmPI31 mutant clones showed rapid degeneration of 

rhabodmeres as early as 1 day PE (Figure 2.6b) suggesting an essential role for PI31 in 

maintaining cellular health in this context. 
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Figure 2.4 dmPI31 mutants display elevated cyclin B and DCP-1 

(a) 3rd instar larva of heterozygous dmPI31 mutants were used as a control to show the OL and 

CB stained for anti-DCP-1 (an effector caspase, red), FK2 (green), and DAPI (blue). (a’) anti-

FK2, a marker for conjugated ubiquitin, stains large cells which are likely, neural progenitors. (b) 

dmPI31 null mutant OL and CB stained for DCP-1 (red), FK2 (green), and DAPI (blue). (b’) 

anti-FK2 staining shows cytoplasmic staining of large neural progenitors but no difference in 

signal accumulation when compared to heterozygous larva. (c) Oregon-R strains were used as a 

control for anti-cyclin B, anti-DCP-1, and anti-Dpn staining. Compared to the control strain, 

dmPI31 mutants show accumulation of cyclin B and a slight accumulation of DCP-1 in a subset 

of cells. Dpn expression, which typically marks mitotic areas of the optic lobe and is nuclear in 

neuroblasts, is altered and appears in a large number of smaller cells, whose localization 

coincides with neural progeny. (e) DmPI31 mutants show diffuse anti-pros (white) and anti-Dpn 

(green) in the cytoplasm of cell clusters pointing to potential proliferation defects. Note that anti-

Dpn again stains more cells and appears cytoplasmic in clusters of cells. (f) Control brains show 

distinct anti-pros (white) staining that is high in neural progeny surrounding the neuroblasts, 

which are marked by nuclear Dpn staining. All confocal images were taken at 63X 

magnification.  
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Figure 2.5 dmPI31 mutant clones show accumulation of ubiquitin in leg imaginal discs 

DmPI31 mutant clones were generated using a heat shock promoter driven flippase to generate 

clones in various tissues and assay accumulation of conjugated ubiquitin using anti-FK2. Larvae 

were heat shocked for 1 hour in a 37°C incubator 3 times over 72 hours. (a) Confocal z-stack 

images show anti-FK2 (green) accumulation in leg imaginal discs (LD) of 3rd instar larva. Wild-

type clones are marked by RFP. Mutant clones in the eye disc (ED) and brain are outlined but 

FK2 does not show significant accumulation in these tissues. Image is viewed at 20X 

magnification. (b) Z-stack projections at 63X zoom show FK2 (green) accumulation in larval leg 

disc clones mutant for PI31. Wildtype clones are labeled in red and do not show accumulation of 

ubiquitinated proteins.   
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Figure 2.6 dmPI31 mutants show various neuronal degeneration phenotypes 

(a-b) Confocal images from the retina of living flies using the cornea neutralization technique. 

Mosaic clones were generated by flippase-mediate recombination driven in the eye with ninaC-

GFP being expressed in the R1-R6 photoreceptors. (a) Mosaic clones of NMNAT, an essential 

enzyme in the NAD+ salvage pathway, show the retention of photoreceptors (green) in 1 day old 

flies. These photoreceptors are reported to degenerate with age. Tomato (red) marks wild-type 

clones. (b) Mosaic clones of PI31-/- show that only wild type clones (red) retain photoreceptors 

(green) while mutant photoreceptors rapidly degenerate and lack ninaC-GFP (green). (c) PI31 

mutant mosaic clones were generated in the eye and whole mount staining of adult optic lobes 

show the accumulation of conjugated ubiquitin (FK2) in mutant photoreceptor axons (lack of 

GFP and marked with brackets) from R7 and R8 photoreceptors. These mutant axons also show 

severe degeneration indicating an essential role for DmPI31.  
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2.3.3 Neuron specific knockdown of dmPI31 results in eclosion and motor neuron defects 

DmPI31 mutant larva are reported to develop melanotic tumors (Bader et al., 2011) but 

also show impairments in crawling and response to mechanical touch. I sought to address 

whether DmPI31 has additional neuronal functions outside of the brain. The larvae motor 

neurons are a well-defined system and display stereotyped projections thus making altered 

phenotypes identifiable through immunostaining. I assayed DmPI31 mutant larva for defective 

motor neuron phenotypes. To do this, the motor neurons between muscle 6 and muscle 7 were 

stained for HRP, labeling neuronal membranes, and Bruchpilot (Brp) that labels the presynaptic 

active zones (AZs). DmPI31 mutant motor neurons show less AZs on average compared to 

controls (w1118: 421.5 +/- 150 foci, dmPI31-/-: 271.9 +/- 84.4 foci, *p= 0.021) without any 

significant differences in branching or bouton number (w1118: 58 +/- 21 boutons, dmPI31-/-: 45.3 

+/- 22 boutons, p=0.053; w1118: 12.4 +/- 3.6 branches, dmPI31-/-: 13.1 +/- 4.7 branches, p=0.8) 

(Figure2.7a-b). The reduction in AZs points to a role for dmPI31 in neurons and specifically at 

the axon terminals. To address the specific effect of DmPI31 on the adult neurons, I used RNAi 

against PI31 driven by a pan-neuronal driver nervana2 and found that homozygous flies fail to 

eclose completely from the pupal casing. The head and thorax of these flies emerge but they 

continue to struggle and never escape the casing while their heterozygous counterparts emerge 

within seconds (data not shown). Since this phenotype is depicted, I considered the possibility 

that the motor neurons were being affected in the hind legs (L3). To test these hypothesis, I 

manually removed partially eclosed living flies from their pupal casing and dissected the L3 legs. 

The femurs were stained with HRP which labels neurons and the amount of innervation was 

assayed by counting branch length and number (Figure 2.7c-e). Interestingly, PI31 knockdown 

resulted in shorter branched motor neurons with a tangled phenotype that did not extend the 
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length of the femur as in control lines (Figure 2.7d). Overepxression of PI31 showed a similar 

branch length and motor neuron morphology as the control (Figure 2.7e) and these results were 

quantified and shown to be significant (Figure 2.7f). It is of note, that the cell bodies of these 

motor neurons reside in the adult VNC located in the thorax and the staining here identifies the 

axons that project into the L3 legs.  
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Figure 2.7 Neuronal knockdown of DmPI31 results in eclosion and motor neuron defects 

(a) Wandering 3rd instar larva neuromuscular junction (NMJ) from control flies and (a’) PI31 

mutant larva were stained with anti-HRP (red) and anti-Brp (green) to mark the presynaptic 

neuron and presynaptic active zones, respectively. Representative photos of the NMJs between 

muscles 6 and 7 are shown and taken at 63x magnification. PI31 mutant larva display less active 

zones while the bouton number and branch number do not significantly change. (b) 

Quantification of active zone number (w1118: 421.5 +/- 150 foci, dmPI31-/-: 271.9 +/- 84.4 foci, 

*p= 0.021), bouton number (w1118: 58 +/- 21 boutons, dmPI31-/-: 45.3 +/- 22 boutons, p=0.053), 

and branch number (w1118: 12.4 +/- 3.6 branches, dmPI31-/-: 13.1 +/- 4.7 branches, p=0.8). n=9 

(c-e) Whole mount dissection of adult L3 leg were stained with anti-HRP to mark neurons. (c) 

Control L3 legs show neurons that are elongated and branched. Purple overlap shows a set of 

traces that were used for analysis in ImageJ which indicate the average branch length as 143.1 

pixels. (d) RNAi mediated knockdown of PI31 results in shorter and twisted neurons with an 

average length of 100.9 pixels. These neurons also appear to show less elongated branch 

numbers. (e) PI31 overexpression in neurons shows elongated neurons similar to the control with 

an average length of 136.61 pixels.(f) Quantification of branch length for n=3 for adult L3 legs 

shows that RNAi of PI31 significantly reduced branch length.  
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2.3.4 DmPI31 levels alter lifespan in Drosophila melanogaster  

Drosophila have been a useful model to study the effect of proteins on aging and health-

span due to their relatively short lifespan. Reports have shown that proteasome activity decreases 

with age and results from a decrease in proteasome assembly (Tonoki et al., 2009). TNKS, an 

ADP-ribosyltransferase, was identified as a direct binding partner that modulates PI31 activity 

through ADP-ribosylation. ADP-ribosylation of PI31 by TNKS is shown increase 26S 

proteasome assembly by reducing the affinity of PI31 to the alpha subunits of the 20S 

proteasome to relieve 20S inhibition (Cho-Park and Steller, 2013). DmPI31 provides a link 

between proteasome assembly and aging. Thus, I sought to address whether activating PI31 later 

in life could maintain the activity of proteasome and thus extend lifespan in Drosophila. To do 

this, I used a temperature sensitive Gal4 driver under the alpha tubulin promoter (Tubulin-Gal4, 

tubulin-Gal80ts) to drive expression of various UAS transgenes. Tubulin-Gal80ts inhibits the 

expression of Gal4 until flies are moved to the restrictive temperature, 30°C. Using these lines, I 

was able to turn on and off gene expression in a temporal fashion and determine whether 

overexpression of dmPI31 late in life can extend lifespan.  Age matched embryos were collected 

and distributed into bottles, so as to prevent overcrowding. Early eclosers were discarded, and 

age matched flies were collected and allowed to sexually mature for 3 days before male and 

females were separated into respective vials containing 30 flies each. Lines were allowed to 

develop at room temperature and flipped every 3 days until switched to higher temperatures of 

25°C at day 25. At this temperature, it is excepted that Gal80ts is partially degraded but still 

restricts some transgene expression. This was done since, dmPI31 overexpression is shown to be 

lethal at high levels. In both males and females expression of RNAi against PI31 decreases 

average lifespan (RNAi PI31 in males 33 +/- 1.74 days, RNAi PI31 females 27 +/- 1.41 days) 
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compared to control (male 38 +/- 0.69 days, female 36 +/- 0.60 days) (Figure 2.8a,b). 

Interestingly, males but not females display lifespan extension when overexpressing dmPI31 

(UAS dmPI31 males 46 +/- 0.91 days, UAS dmPI31 females 34.14 +/- 0.83 days) (Figure 

2.8a,b). In a more stringent assay, age matched female flies were developed and aged at 18°C 

until being switched at day 47 to either 25°C or 29°C. At 25°C , the lifespan of female flies 

overexpressing dmPI31 does not significantly increase compared to control lines however, at 

29°C both females showed increased lifespan under PI31 overexpression compared to control 

(Figure 2.8c). This experiment points to levels of dmPI31 being important for lifespan extension 

since higher temperatures result in greater induction of the transgenes. The differences seen 

between male and female flies could be due to expression differences between the sexes as it is 

known that dmPI31 is highly expressed in the testes.    
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Figure 2.8 DmPI31 levels influence lifespan in Drosophila 

Lifespan assays were conducted with transgenic flies expressing various PI31 constructs under a 

temperature sensitive tubulin Gal4 promoter. OASIS 2 online application was used for survival 

analysis and to conduct statistical analysis on the lifespan of PI31 knockdown and 

overexpression flies compared to controls. (a-b) Flies were aged matched at RT, and females (a) 

and males (b) were reared separately at RT after reaching sexual maturity. At day 25 flies were 

switched to 25°C to drive expression of transgenes. (a) In female flies, knockdown of PI31 

resulted in shortened average lifespan (27 days) compared to control (36 days), *p=3.6 x 10-4. 

Overexpression of PI31 did not significantly alter lifespan (34 days) compared to control, 

p=3.84. (b) Male flies also show reduced lifespan when PI31 is knocked down (33 days) 

compared to control (38 days), *p=0.0025. In males however, overexpression of PI31 extend 

lifespan (46 days) compared to control (38 days), *p=2.8 x 10-9. (c) Female flies were subject to 

more stringent induction of PI31 transgene expression with temperature sensitive lines developed 

and reared at 18°C and then switched to 25°C or 29°C at 47 days PE. At 25°C, average lifespan 

between control (73 days) and PI31 overexpression lines (78 days) is extended by 5 days. With 

higher transgene expression at 29°C, PI31 overexpression results in an 18 day increase in 

lifespan compared to control (57 days).  
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2.4 Discussion 

The essential role of DmPI31 in the Drosophila nervous system was highlighted in this 

chapter through studies on localization and mutant phenotypes. It was shown that DmPI31 

expression appears ubiquitous but is most abundant in the larval and adult central brain. In 

addition, DmPI31 expresses in the photoreceptor axons of the adult optic lobes meaning there is 

a possible mechanism that transports DmPI31 to these distal locations. Within the central brain 

in larvae, DmPI31 expresses highly in the neuroblasts, which are the neuronal stem cells that 

self-renew and asymmetrically divide to produce the diversity of neurons in the Drosophila 

brain. Here in the neuroblasts, DmPI31 is shown to co-express with the proteasome subunits a2 

and Rpt3. It is likely that neuroblasts require higher levels of proteasomes to keep up with the 

demands of proliferation and these proteasomes require a stringent level of regulation. In line 

with this is the observation that dmPI31 mutants accumulate cyclin B and show expanded 

numbers of Dpn positive cells. Cyclin B is typically degraded by the 26S proteasome to initiate 

the termination of mitosis (Tokumoto et al., 1997). The accumulation of cyclin B indicates 

impaired 26S proteasome activity in dmPI31 mutants leads to aberrant mitosis. Since the size of 

the brain does not appear to change, it would be interesting to check the balance between 

apoptosis and proliferation with TUNEL staining and EdU (5-ethynyl-2’-deoxyuridine) 

incorporation respectively. It is possible that DmPI31 in brain tissue is regulated in a different 

manner than in the leg discs, since polyubiquitinated proteins do not accumulate to the same 

extent. The decreased number of active zones in the larval NMJ and decreased branch number in 

the adult motor neurons points to dmPI31 playing a role in synaptic remodeling as well. Whether 

this is through proteasome mediated degradation of specific substrates is yet to be determined but 
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a screen for modifiers of the photoreceptor degeneration seen using the cornea neutralization 

technique in dmPI31 clones could lead to potential candidates.  

 This chapter emphasis that proteasome activity needs to be temporal and spatially 

restricted to prevent nonselective protein degradation. The subcellular localization of dmPI31 

and mutant phenotypes link this proteasome interacting protein to essential functions in neuronal 

maintenance and health. Lifespan assays show that reduced levels of PI31 lead to shorten 

lifespan while overexpression can extend lifespan in males, and at very high levels in females. 

However, whether alterations in DmPI31 levels causes differential proteasome assembly during 

lifespan extension phenotypes is not yet known.   

 

2.5 Materials and Methods  

 

Fly stocks and culturing  

All stocks were maintained on a standard cornmeal-molasses medium containing 3% yeast at 

25°C unless otherwise indicated. John Belote generously provided the alpha2-GFP and Rpt3-

GFP lines while PI31 mutants and tagged lines were generated previous in the lab by Maya 

Bader. RNAi for PI31 (105476) was obtained from VDRC. Rh1-GAL4,ey-FLP; UAS-GFP-

ninaC; FRT82BninaE-dTomato-ninaC and Rh1-GAL4,ey-FLP; FRT42DninaE-dTomato-ninaC; 

UAS-GFP-ninaC were generated by former lab members Alexis Gambis and Bertrand 

Mollereau. Oregon-R or w1118 were used as control lines. Nervana2Gal4 (6794), was obtained 

from Bloomington.  
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Brain dissection and immunostaining 

3rd instar larva imaginal discs or adult brains were dissected in ice cold PBST (0.1% Triton-X) 

and fixed in 4% paraformaldehyde (PFA) for 40min on ice. After fixation, CB and VNC were 

separated from other discs and washed 3X in cold PBST before incubation for 1 hour in 2% BSA 

blocking buffer. Primary antibodies were diluted in 2% blocking buffer plus 5% normal donkey 

serum and incubated overnight at 4°C. anti-Deadpan (1:100, 11D1BC7 abcam195173), anti-

Prospero (1:100, MR1A), anti-cyclin-B(1:100, F2F4) were all obtained from DSHB while mouse 

monoclonal anti-FK2 (1:100, Stressgen), cleaved anti-DCP-1 (1:200, cell signaling technologies) 

were obtained from the respective companies. Secondary antibodies corresponding hosts were 

diluted (1:500) in blocking buffer and incubated overnight at 4°C before samples were washed 

3X in PBST. Brains were mounted in Vectashield plus DAPI and imaged with Zeiss confocal 

microscope by taking z-stacks and making maximum intensity projections.  

 

Generation of mitotic clones  

Lines of yw hsflp; FRT42DubiRFPn/s were crossed to FRT42D PI31HR11 and heat shocked at 

37°C 24 hours after egg laying and every 24 hours for 3 days before 3rd instar larva were 

dissected for imaginal discs and fixed in 4% paraformaldehyde. Tissues were washed 3X with 

PBST and blocked in 2% BSA. For poly-ubiquitin staining, mouse monoclonal FK2 was used 

(1:100) and incubated overnight at 4°C. Primary antibody was washed 3X for 10min each at 

room temperature before addition of secondary Donkey anti-mouse-FITC (1:500) which was 

incubated overnight at 4°C. Tissues were washed 3X with PBST and mounted in Vectashield 

plus DAPI. Confocal z-stacks were taken of mitotic clones marked by the absence of RFP and 

subsets of images were taken before applying maximum intensity projections using ImageJ.   
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Motor neuron whole-mount immunostaining 

3rd instar larva of either control or PI31 mutants lines were dissected and immunostaining of 

NMJs were carried out according to the following protocols (Brent et al., 2009a, 2009b). Briefly, 

larval were filleted open using minutien pins and organs were carefully removed. Body walls 

were fixed with 4% PFA in HL3 saline (NaCl 70mM, KCl 5mM, CaCl2 1.5mM, MgCl2 20mM, 

NaHCO3 10mM, sucrose 115mM, and Hepes 5mM) for 25min and then washed 3X with HL3 

saline. After fixation samples were moved to 1.5mL Eppendorf tubes containing 2% BSA 

blocking buffer and blocked for 30min at RT. Then primary antibody a-Brp (1:500, nc82) and 

Cy3 Goat-Horseradish peroxidase (1:500, Jackson immunoresearch) were added and incubated 

overnight at 4°C. Subsequently, gentle washing with PBST 3X was done before adding 

secondary antibody Donkey anti-mouse FITC (1:500) overnight in cold room. Samples were 

washed and NMJs between muscle 6/7 were imaged with z-stacks at 63X magnification with 

Zeiss Confocal microscope.  

 

Live imaging of Drosophila photoreceptors   

Generation of mosaic adult Drosophila photoreceptor clones was done following the protocol 

described in (Dourlen et al., 2013). Briefly, Rh1-GAL4, ey-FLP; UAS-GFP-ninaC; FRT82B 

ninaE-dTomato-ninaC and Rh1-GAL4,ey-FLP; FRT42DninaE-dTomato-ninaC; UAS-GFP-

ninaC were crossed to FRT82BNmnat1 (BL 24886) and FRT42D PI31HR11 respectively. Adult 

flies of the correct genotype were anesthetized and mounted in low melt agarose at 45-55°C by 

submerging one wing of the fly into the agarose along with half of the head to prevent movement 

during imaging. Clones were identified by confocal imaging using a 40X water objective.  
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Drosophila lifespan assays and OASIS analysis  

Lifespan analysis was carried out on UAS lines crossed to the Tubulin Gal4, Tubulin Gal80 

temperature sensitive driver at indicated temperature either 18, 25, or 29°C. Stock of these lines 

were made over balancers and isogenized by backcrossing to w1118 lines. The following 

protocols were followed for lifespan assay set up and data analysis (Han et al., 2016; Linford et 

al., 2013). Lines were expanded and age matched eggs were collected and put into bottles. Aged 

matched eggs were allowed to reach sexual maturity and male and females were separated 30 to 

each vial. Vials were flipped every 3 to 4 days and the number of dead flies in each vial were 

scored. Statistical analysis was carried out using OASIS 2 online software.  
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 3. Metabolic influence on proteasome regulation by NAD+ 

 

3.1 Summary 

An understanding of how 26S proteasomes are regulated in response to metabolic changes within 

the cell is lacking but are critical to understanding why this system begins to fail in aging and 

age-associated diseases. DmPI31 provides a potential target for metabolically regulated 

proteasome modulation because of its modification by TNKS-mediated ADP-ribosylation. In this 

chapter, I explore proteasome regulation during two metabolic states, dietary restriction (DR) by 

means of yeast dilution and NAD+ repletion through nicotinamide and nicotinic acid 

supplementation. Drosophila at various developmental time points were subject to diets with 

defined amounts of yeast or the NAD+ precursors, nicotinamide (Nam) and nicotinic acid (Na). 

Both DR and supplementation of NAD+ precursors are shown to boost proteasome activity. I 

show that DmPI31 is necessary for the increase in proteasome activity seen during NAD+ 

repletion and more specifically the activity of 26S proteasomes.  The rise in proteasome activity 

coincides with an enhanced expression of DmPI31 and increased 26S proteasome assembly. 

These findings demonstrate that proteasomes are actively regulated during varied metabolic 

states and demonstrate a potential pathway by which proteasomes can quickly adapt to metabolic 

changes. I conclude the chapter with studies in the context of Nmnat, an essential enzyme 

involved in the synthesis of NAD+ from Na and Nam. Generation of nmnat-/- photoreceptor 

clones reveals a decrease of DmPI31 along with photoreceptor axon degeneration. However, 

DmPI31 appears not to physically interact with Nmnat. Instead, feeding the flies NAD+ 
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precursors in an nmnat-/- background can rescue the loss of DmPI31 providing further evidence 

that DmPI31 and proteasomes are regulated by NAD+ metabolism.  

 

3.2 Rationale 

The degradation or cleavage of substrates by the UPS is essential for many cellular 

processes including apoptosis, cell cycle control, cell signaling, and protein quality control. The 

structure and function of proteasomes is well known but how they are regulated in vivo is not 

well understood, most likely due to tissue and context specific regulators. However, evidence 

that proteasomes are actively regulated during metabolic changes exists with examples of 

posttranslational modifications of proteasome subunits, the accumulation of metabolic 

abnormalities during proteasome inhibition, and a decline in proteasome function during aging 

(Zhang et al., 2003, 2007b, 2007a; Tomaru et al., 2012; Tonoki et al., 2009). A potential 

candidate to explore in this context is the proteasome regulator, DmPI31, which was found to be 

an activator of 26S proteasomes in vivo by increasing assembly. This increase in assembly comes 

about through the posttranslational ADP-ribosylation of DmPI31 by the ADP-ribosyltransferase, 

tankyrase (TNKS) (Cho-Park and Steller, 2013). The source of ADP-ribose units is nicotinamide 

adenine dinucleotide (NAD+), which has been shown in a variety of systems to be 

neuroprotective and increase healthspan (Lehmann et al., 2016; Ocampo et al., 2013; Verdin, 

2015; Wang et al., 2008; Zhang et al., 2016). Thus, NAD+ provides a link between cellular 

metabolism and proteasome activity. In our natural diet, nicotinic acid, nicotinamide, and 

tryptophan can be used to synthesize, NAD+, which is a key substrate for NAD+ consuming 

enzymes and a co-enzyme for redox reactions where in its reduced state becomes NADH.  

Increasing intracellular NAD+ content is involved in maintaining neural integrity in a variety of 
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contexts (Lehmann et al., 2016; Ocampo et al., 2013; Verdin, 2015) and is capable of extending 

healthspan (Anderson et al., 2003; Yoshino et al., 2011; Zhang et al., 2016). Whether these 

effects are mediated by gene expression changes, improved mitochondrial health, or increased 

autophagy have been explored but do not provide a definitive picture. Thus, I sought to explore 

the role of NAD+ repletion on proteasome activity by supplementing the diets of Drosophila 

with the NAD+ precursors nicotinamide (Nam) and nicotinic acid (Na), at times collectively 

referred to as niacin. Dietary restriction is also explored since it is shown to increase NAD+ 

levels and is the only non-genetic manipulation to reproducibly increase healthspan across 

species.  

Here, I describe a link between cellular metabolism and proteasome activity. Through dietary 

supplementation, I show that both nicotinamide and nicotinic acid can increase proteasome 

activity, proteasome assembly, and protein levels of DmPI31. These findings are corroborated by 

knockdown of Nmnat, a key enzyme in the synthesis of NAD+ metabolism, which also shows 

reduced proteasome activity and DmPI31 expression. These two proteins however are not shown 

to physically interact. Instead, I speculate that the loss of the neuroprotective, Nmnat, results in a 

signaling pathway that lowers the expression of dmPI31 to restrict proteasome activity in 

degenerating neurons.   

 

3.3 Results 

3.3.1 Nicotinamide and nicotinic acid increase proteasome activity and levels of DmPI31 

NAD+ provides a potential link between cellular metabolism and proteasome activity. Both 

dietary restriction and NAD+ repletion via nicotinamide and nicotinic acid have been shown to 

be beneficial for extending lifespan and healthspan across species but few studies have shown 
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how these interventions might impact proteasome regulation. To test whether boosting NAD+ 

levels could improve proteasome activity, I age-matched Drosophila embryos and distributed 

them on diets supplemented with nicotinamide (Nam) or nicotinic Acid (Na) as indicated in 

Figure 3.1a. Both metabolites are NAD+ precursors in the NAD+ salvage pathway (Figure 1.3). 

A cornmeal-molasses based food recipe was developed and supplemented with varied 

concentrations of Nam or Na (Figure 3.1b). Wild-type Oregon-R strains were fed on either Nam 

or Na supplemented food and whole-body lysates were assayed for cleavage of the luminogenic 

peptide Suc-LLVY-aminoluciferin indicative of the chymotrypsin-like activity of the 

proteasome. MG132, a potent proteasome inhibitor, is used as a negative control to determine 

specificity of substrate cleavage for the proteasome. When flies are fed with 10mM Na, 

proteasome activity increases 23% compared to non-supplemented control (Figure 3.2a). Feeding 

with 10mM Nam does not cause a significant increase in activity however increasing the amount 

of Nam to 30mM increases proteasome activity by 25%. High levels of Na increase proteasome 

activity by 18% in this assay which is still significant but high levels of Na consistently show 

less activity which may indicate slight toxicity. All values were normalized as a percentage of 

non-supplemented controls (MG132: 38.06 +/- 7.69 RLU, ***p=1.7x10-6; Na 10mM:123.06 +/- 

8.71 RLU, **p=0.003; Nam 10mM: 102.39 +/- 11.02 RLU, p=0.39; Na 30mM: 118.07 +/- 10.08 

RLU, *p=0.049; Nam 30mM: 125.65 +/- 10.09 RLU, *p=0.013) (Figure 3.2a). To further 

investigate the impact these metabolites have on proteasome activity, western analysis was 

carried out on head lysates from control, w1118, flies fed on varied concentrations of Nam and Na. 

Endogenous levels of DmPI31 were assayed and interestingly DmPI31 protein expression is 

increased with each concentration of either Nam or Na. Strikingly a two-fold increase was 

observed with supplementation of Na 10mM (Figure 3.2b). The 20S proteasome subunit, a7, 
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was also assayed and showed a slight decrease in subunit expression except in the case of Nam 

20mM. Interestingly in dmPI31 mutants, where the whole larval lysate was taken, a7 expression 

is increased compared to tubulin. This is potentially due to an adaptive feedback loop caused by 

loss of DmPI31 or possibly differential a7 levels across tissues. Whole body lysates from males 

fed on control or 10mM Na again show a significant increase in DmPI31 expression indicating 

that NAD+ repletion may regulate DmPI31 in a range of tissues. Many of the experiments to 

follow will use a UAS driven HA tagged DmPI31, thus I also tested whether NAD+ 

supplementation could increase DmPI31 in this context. Using GMR-Gal4 to drive expression of 

HA-PI31 in the eye, head lysates from flies fed a Na dilution series were taken and resolved on 

SDS-PAGE gel to assay for changes in dmPI31 levels. Again, Na increases dmPI31 levels but 

high levels of Na typically show diminished expression most likely due to toxicity (Figure 3.2c). 

However, the increase in DmPI31 seen at Na 40mM could be due to many factors including 

reduced consumption of food by the flies, compensatory gene regulation caused by decreased 

DmPI31, or quenching of an intermediary that typically inhibitions DmPI31 expression.  

In order to better understand the effect of dietary supplementation in vivo, I took advantage 

of the hs-EGFP-Nintra in vivo proteasome sensor. This transgenic line expresses a Notch 

intracellular domain (Nintra) with a PEST degradation signal, that is a known target of the UPS, 

fused to EGFP downstream of the heat-shock promoter. Upon heat shock, EGFP-Nintra signal 

accumulates and at 1 hour reaches peak levels. If proteasomes are functional the signal degrades 

and is only slightly detectable after 4 hours. To test whether Nam or Na could increase in vivo 

proteasome activity, flies expressing a dominant temperature sensitive proteasome mutation in 

the b2 subunit (DTS7) were cross to the sensor to give a baseline level of proteasome 

impairment. Upon heath shock these transgenic flies show stabilization of EGFP-Nintra at 1 hour 
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post eclosion. In parallel flies fed on 30mM nicotinamide were heat shocked and showed less 

accumulation of stable EGFP-Nintra signal (Figure 3.2d). This points to a means by which Nam 

either primes proteasomes prior to heat shock or increases the rate at which proteasome assembly 

and subsequent activity occurs. Either way it is important to consider whether to this is due to 

transcriptional or post-transcriptional changes that occurring during Nam feeding. Since ADP-

ribosylation of dmPI31 is shown to increase 26S proteasome activity, I sought to investigate 

whether dmPI31 is necessary for the increased proteasome activity seen under Na and Nam. I 

tested whether increased proteasome activity is still observed in transgenic flies expressing RNAi 

against dmPI31 and flies expressing HbYX deleted dmPI31 upon feeding with 10mM Na. 

Proteasome activity was measured in lysates using the in vitro method and in both cases feeding 

did not significantly alter proteasome activity (Figure 3.2e). On the other hand, control lines fed 

10mM Na and overexpression of full-length PI31 increased proteasome activity by about 40% 

compared to control. This suggests that dmPI31 is required for the increase in proteasome 

activity upon Na and Nam feeding. Consistent with previous findings, the HbYX motif is 

required for full proteasome activity promoted by full length dmPI31 but the PI31DHbYX still 

confers a modest increase compared to control, which becomes significant upon 10mM Na 

(Compared to Tubulin, MG132: 20.42 +/- 6.15 RLU, ***p=3.03x10-5; Na 10mM: 142.12 +/- 

11.85 RLU, *p=0.012; UAS-PI31: 133.37 +/- 10.48 RLU, *p=0.027; RNAi PI31 108.67 +/- 6.34 

RLU, p=0.281; RNAi PI31 + Na 10mM: 122.11 +/- 24.693 RLU, p=0.422; PI31DHbyX: 

119.967 +/- 12.281 RLU, p= 0.208; PI31DHbYX + Na 10mM : 130.739 +/- 9.033 RLU, 

*p=0.017). This is interesting because the HbYX motif was found to be necessary for TNKS 

binding to dmPI31, meaning that a potential TNKS independent pathway exists that increases 

proteasome activity upon NAD+ repletion. However, one caveat of the in vitro proteasome assay 
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is that it does not differentiate between 20S and 26S proteasome activity. Thus, average 

proteasome activity upon different feeding conditions may not be reflective of shifts that occur in 

20S versus 26S activity.  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 Experimental design for nutrient supplementation  

(a) Schematic of the experimental set up used to supplement different concentrations of NAD+ 

precursors. Flies were allowed to lay eggs on apple juice plates + yeast paste at RT for 22 hours. 

These eggs were discarded and fresh plates were used to collect age matched eggs for 20 hours. 

These eggs were harvest and divided onto standard cornmeal molasses medium supplemented 

with varying concentrations of NAD+ precursors, nicotinic acid and nicotinamide. After eclosion 

flies were allowed to reach sexual maturity and then transferred to fresh medium before being 

subjected to experimental assays.  (b) Chart listing the concentrations of key components in the 

food. Note that 3% yeast was used as the standard concentration. 
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Figure 3.2 Nicotinamide and nicotinic acid increase proteasome activity and dmPI31 

(a) Average luminescence produced by cleavage of peptide recognized by chymotrypsin-like 

activity of the proteasome. Values were normalized to the control in each experiment and 

MG132, a proteasome inhibitor was used as a control for proteasome specific activity. Na 

10mM, Na 30mM, and Nam 30mM increase proteasome activity compared to the control, n=7. 

(b) Western analysis on wildtype lysates from adult flies subject to NAD+ supplemented diets. 

Quantification of DmPI31 normalized to tubulin shows an increase in PI31 with Nam 10mM, 

Nam 30mM and Na 10mM supplementation. Na 30mM did not show a significant increase in 

DmPI31 (c) Western blots from wild type male whole body lysates of flies show an increase in 

DmPI31 levels after supplementation of Na 10mM for 6 days PE compared to control. To 

address the effect of Na on DmPI31 levels more clearly a dilution series was conducted with 

transgenic lines expressing PI31 under the UAS promoter driven by GMR-Gal4 in the eye. Head 

lysates were taken and show that DmPI31 levels increase in a dose dependent manner until Na 

20mM at then increase again at Na 40mM. Supplementation of NAD+ alone did not increase 

proteasome activity when added directly to lysates and does not show increases in PI31 protein 

level. (d) Transgenic flies expressing a truncated Notch ligand, Nintra-GFP, crossed to flies 

expressing mutant proteasome subunit, DTS7, under GMR-Gal4 promoter. 3rd instar larvae fed 

control or 30mM Nam were heat shocked for 30min at 37°C and allow to recover for 1 hour. 

Control fed larva show accumulation of GFP in eye discs but Nam fed flies show rapid 

degradation of GFP. e) Proteasome activity did not increase between control and Na 10mM fed 

fly lysates from a PI31 RNAi or PI31DHbYX background. On the other hand, control lines fed 

10mM Na and overexpression of full-length PI31 increased proteasome activity by about 40% 

compared to control. Statistical analysis was carried out using a two-tailed, paired, t test 

(Compared to Tubulin, MG132: 20.42 +/- 6.15 RLU, ***p=3.03x10-5; Na 10mM: 142.12 +/- 

11.85 RLU, *p=0.012; UAS-PI31: 133.37 +/- 10.48 RLU, *p=0.027; RNAi PI31 108.67 +/- 6.34 

RLU, p=0.281; RNAi PI31 + Na 10mM: 122.11 +/- 24.693 RLU, p=0.422; PI31DHbyX: 

119.967 +/- 12.281 RLU, p= 0.208; PI31DHbYX + Na 10mM : 130.739 +/- 9.033 RLU, 

*p=0.017).  
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3.3.2 Proteasome activity and DmPI31 levels increase with dietary restriction 

Dietary restriction is thus far the only non-genetic application that has been reported to 

extend lifespan across several species. Dietary restriction (DR) is shown to ameliorate age-

related proteasome decline in some tissues (Dasuri et al., 2009; Li et al., 2008; Zhang et al., 

2007c) as well as increase NAD+ levels (Banerjee et al., 2012)(Lin et al., 2000). However, the 

mechanism by which proteasome activity is altered under DR is yet to be determined. Since, DR 

increases NAD+, I first sought to determine whether DR can also induce an increase in dmPI31 

levels. In this case, DR is defined as yeast restriction from 3% to 0.25% while the composition of 

molasses is unchanged. Drosophila whole body male or head lysates expressing mcherry-

dmPI31 under the PI31 endogenous promoter were fed control or DR food as embryos and 

resolved on SDS-page gel and immunoblotted for dmPI31. Head lysates showed a modest 

increase in dmPI31 expression while whole body lysates showed no change when normalized to 

controls (Figure 3.3d). Interestingly, the increase in dmPI31 is associated with a reduced 

expression of a7 which also occurs in whole body DR fed flies (Figure 3.3d). It is noteworthy to 

add that DR restricted flies are comparably smaller than their control fed counterparts. This may 

point to developmental transcriptional changes that occur during DR that alter the expression of 

core proteasome subunits. Head lysates do not distinguish between dmPI31 in the brain, eye, or 

muscle cells. To differentiate between the tissues in the head, larva brains expressing mCherry-

dmPI31 under the PI31 endogenous promoter were fed on control or DR food. Confocal z-stack 

projections show increased mCherry-dmPI31 under DR than under control fed lines. The 

localization of PI31 does not appear altered and still co-localizes with cells expressing deadpan 

(Dpn), the neuroblast marker (Figure 3.3a-c). Wild-type fly lysates subject to DR food were 

assayed for proteasome activity using the in vitro assay and showed increased proteasome 



 66 

activity in both head and whole-body fractions however only the whole-body lysates showed a 

significant increase in activity (compared to Control whole body: 4202.61 +/- 44.12 RLU, 

MG132:4202.61+/- 44.12 RLU, **p=0.007; DR whole body: 5032.53 +/- 48.54 RLU, 

**p=0.002; Control heads: 2294.74 +/- 152.23 RLU; DR heads: 2505.34 +/- 52.95 RLU, p=0.21)  

(Figure 3.3e). Given, this result it may be that the ratio between a7 and dmPI31 is important for 

increased proteasome activity during DR or that the short term effected of DR is more 

pronounced in tissues outside the head, like muscle or intestine. These results show that 

proteasome activity is regulated under DR and the dmPI31 pathway may participate to regulate 

proteasomes under these conditions in the brain. 
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Figure 3.3 DR increases dmPI31 expression and proteasome activity 

Confocal z-projections of larval brains showing an increase in PI31::mcherry-PI31 upon dietary 

restriction by means of yeast restriction. (a) Control 3rd instar larval brains showing mcherry 

background fluorescence (red) and counter stained with anti-Dpn (green) to mark neuroblasts 

within the CB, OLs. The merged image shows DAPI staining of all nuclei. (b) Control fed 3rd 

instar larval brains expressing mcherry-PI31 under the PI31 endogenous promoter. Z-projections 

show PI31 expression in the CB and VNC that co-expresses with anti-Dpn (green) staining. (c) 

3rd instar larva fed on a DR diet show increased mcherry-PI31 expression compared to control 

fed larva with anti-Dpn (green) again staining neuroblasts. (d) Western blot analysis from adult 

fed flies shows DmPI31 protein levels increase upon rearing on DR food compared to control in 

head lysates but not in whole body. The 20S proteasome subunit, alpha7, show decreased 

expression on DR diet compared to control in both head and wholebody lysates. (e) Lysates from 

adult flies on DR diets showed an increase in proteasome activity. Total protein from either 

whole body males or heads only were extracted and proteasome activity was measured using the 

fluorogenic-peptide hydrolysis at 10min. Values were normalized to amount of tubulin 

determined by western analysis and plotted as relative luminescence unites (RLU). MG132 was 

used as a control for specificity of proteasome activity. Error bars are the result of 3 intendent 

assays. Statistical analysis was carried out using a two-tailed, paired, t test, (compared to Control 

whole body: 4202.61 +/- 44.12 RLU, MG132:4202.61+/- 44.12 RLU, **p=0.007; DR whole 

body: 5032.53 +/- 48.54 RLU, **p=0.002; Control heads: 2294.74 +/- 152.23 RLU; DR heads: 

2505.34 +/- 52.95 RLU, p=0.21).  
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3.3.3 NAD+ repletion increases proteasome assembly 

Given that proteasome activity is shown to increase under Na, Nam, and DR conditions and 

the limitation of the in vitro assay to distinguish between 20S and 26S activity, I examined 

whether subsequent changes in proteasome assembly are a contributing factor. Proteasome 

complexes from wildtype flies that were fed either Nam or Na, were separated in their native 

conformation using gel electrophoresis and blotted for the proteasome subunit, a7 which 

incorporates into 20S and 26S proteasomes. Total protein concentration was measured using the 

BCA assay, normalized, and equal amounts of protein were loaded for each condition. To 

determine whether Na and Nam supplementation could increase proteasome activity specifically 

in the brain, head lysates were collected from wildtype fed flies and subjected to native analysis. 

Blotting the membrane after transfer with the 20S subunit a7 showed that feeding with Nam or 

Na increased overall 26S assembly but Nam at 20mM and Na at 10mM showed the greatest 

increase in 26S proteasome assembly compared to controls (Figure 3.4a). As an internal control, 

26S proteasome complexes were normalized to the amount of 20S and in this case Na 10mM 

showed the greatest increase in 26S/20S ratio. This condition however also resulted in a loss of 

20S amounts which may be due to toxicity (Figure 3.4a’). Considering that NAD+ is also a 

major redox substrate, Na may initially cause an imbalance in the NADH/NAD+ ratio tipping the 

scales toward oxidative stress, which has been shown to cause proteasome disassembly (Livnat-

Levanon et al., 2014). To test whether these proteasomes have increased catalytic activity, I 

performed an in-gel proteasome peptidase assay where cleavage of suc-LLVY-AMC results in 

fluorescence that can resolve the activity contributed to different proteasome species. I show that 

feeding with 20mM Nam and 10mM Na increases 26S activity consistent with increased 

assembly (Figure 3.4a). 20S proteasome activity in-gel can also be assayed with the addition of 
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0.02% SDS, which opens the “gate” of the core particle to allow entry of substrates. Nam 20 and 

Na 10 again show the greatest increase in 20S activity compared to control (Figure 3.4a).  

One possible mechanism by which Nam and Na supplementation increases proteasome 

activity is through TNKS mediated ADP-ribosylation of PI31. Increasing NAD+ increases 

substrate availability for TNKS, which may lead to increased ADP-ribosylation of PI31 and an 

increase in proteasome assembly. Since, dmPI31 mutants live to the larval stage, I tested whether 

feeding mutant larval could increase proteasome assembly. Interestingly, dmPI31 mutants show 

less double capped 26S proteasomes and also show a smaller intermediary form that still 

maintains catalytic activity (Figure 3.4b) but feeding does not change the levels of 26S 

proteasome complexes. 20S proteasome amounts are also not significantly different between 

control and Nam fed lines (Figure 3.4b’) but the 20S proteasomes under control fed larval show 

reduced 20S activity but upon feeding 20S activity is restored. This could point to dmPI31 

having a role in maintaining 20S proteasome stability and upon feeding NAD+ precursors could 

confer enhanced stability. It is reported that NADH, the reduced form of NAD+, can stabilize 

proteasomes independent of ATP (Tsvetkov et al., 2014) thus supplementation with precursors 

could also lead to enhanced stability. Consistent with other results in this study, Na fed PI31 

mutant larva have decrease proteasome amounts and activity suggesting this condition may be 

toxic (Figure 3.4b). Thus, the increase in proteasome assembly seen with NAD+ 

supplementation is dependent on the presence of dmPI31 and could be through a mechanism that 

enhances proteasome stability.  
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Figure 3.4 26S proteasome assembly increases upon NAD+ repletion  

(a) Proteasome complexes from head lysates from male and female flies fed NAD+ precursors 

for 10 days PE were resolve in their native assemblies. Blotting for anti-alpha7, a 20S 

proteasome subunit, labels the 20S CP as well as single capped (RPCP) and double capped 

(RP2CP) proteasomes. Upon feeding with NAD+ precursors, 26S proteasome assembly is 

increased compared to control. (a’) Nam 20mM and Na 10mM showed the greatest increase in 

26S assembly compared to controls while Na 10mM and Na 20mM show the greatest increase in 

26S/20S ratio. (a) Using a fluorogenic peptide (LLVY-AMC), the activity of resolved 

proteasomes can be assayed in-gel and activities resulting from single capped versus double 

capped proteasomes determined. 26S proteasomes are more active compared to control in head 

lysates from flies that were fed on Nam 20mM and Na 10mM consistent with these 

concentrations increasing 26S assembly. 20S proteasome activity in-gel can also be assayed with 

the addition of 0.02% SDS, which opens the “gate” of the core particle to allow entry of 

substrates. Nam 20mM and Na 10mM again show the greatest increase in 20S activity compared 

to control. (b) DmPI31 null mutant larva were lysed and proteins resolved in their native 

conformation to assay proteasome complexes after feeding on NAD+ precursors. DmPI31 

mutants show less double capped 26S proteasomes and also show a smaller intermediary form 

that still maintains catalytic activity. (b’) 26S proteasome amounts do not change significantly 

between control and Nam fed lines. (b) In-gel activity assays show 26S proteasome activity does 

not increase upon feeding but Na 10mM shows reduced activity. 20S proteasomes under control 

fed larval lack 20S activity but upon feeding 20S activity is restored, this could be due to 

insufficient gate opening.  
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3.3.4 Mutations in Nmnat, an essential NAD+ synthase, cause defects in proteasome activity  

To validate that NAD+ levels play a role in regulating DmPI31 levels, I genetically 

targeted the NAD+ salvage pathway using mutants for Nmnat, an essential enzyme that catalyzes 

the final step in NAD+ synthesis (Figure 1.3). Nmnat mutants are lethal before the 1st instar 

larval stage so mitotic clones were generated in the eye using an eye specific flippase. These 

clones reveal a marked decrease in DmPI31 levels in both 3rd instar larvae and adult stages, with 

photoreceptor axons beginning to degenerate in adults (Figure 3.5a-b). Published reports have 

indicated that Nmnat mutant photoreceptor clones do not display any developmental defects. 

Instead, aged and light stimulated retina show progressive degeneration that can be significantly 

suppressed in flies that are dark reared (Zhai et al., 2006). Thus, loss of dmPI31 likely proceeds 

axon degeneration and is a possible mechanism by which protein load exceeds protein 

degradation and leads to degeneration. Upon overexpression of Nmnat in the Nmnat mutant 

background, dmPI31 expression levels are rescued (Figure 3.5c) indicating Nmnat levels are 

important for dmPI31 expression. To test whether loss of Nmnat results in defective proteasome 

activity, I again subject fly lysates to the in vitro proteasome activity assay. Using the Tubulin-

Gal4, Tubulin-Gal80 temperature sensitive driver various transgenes were driven in the whole 

body of flies at 25°C.	 RNAi mediated knockdown of PI31, TNKS, and Nmnat decreased 

proteasome activity but neither PI31 nor Nmnat overexpression increased proteasome activity 

compared to control at this temperature.	 The proteasome inhibitor MG132 was used to control 

for proteasome specific activity (Figure 3.6a). These results suggest that loss of Nmnat results in 

decrease proteasome activity which may be due to loss of dmPI31 expression. To test this result, flies 

co-expressing UAS-PI31 and UAS-RNAi-Nmnat in Drosophila eye under the GMR-Gal4 driver 

were dissected and stained for levels of HA-PI31. Consistent with the Nmnat mutant clone results, 

loss of Nmnat leads to decreased dmPI31 expression while photoreceptor axons remain intact (Figure 
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3.6b). To determine whether Nmnat alone is sufficient to increase proteasome activity, I tested 

whether Nmnat overexpression could rescue proteasome impairment caused by mutant proteasome 

subunits DTS5 and DTS7. At high temperatures, these mutants are dominant and inhibit proteasome 

activity leading to a rough eye phenotype (Figure 3.7a), which can be rescued by overexpression of 

dmPI31 (Figure 3.7b). Overexpression of Nmnat suppresses the decreased size of the eye caused by 

DTS5/DTS7 but the external eye morphology remains rough (Figure 3.7c). In addition, feeding 

30mM Na is not sufficient to alter the external rough eye phenotype (Figure 3.7f). Neither RNAi nor 

enzymatically inactive Nmnat suppressed the phenotype (Figure 3.7d,e) suggesting either that NAD+ 

levels are not sufficiently enhanced or that DTS5/DTS7 mutant proteasomes do not require ADP-

riboslyated PI31. Indeed, overexpression of PI31DHbYX in this mutant background rescues the 

DTS5 phenotype (not shown), suggesting that TNKS-mediated ADP-ribosylation is not needed or 

that TNKS can bind PI31 in vivo independent of the HbYX motif.  

To determine whether the loss of PI31 seen with loss of Nmnat is due to a physical interaction, 

I cloned FLAG-tagged NmnatC and HA tagged-dmPI31 and transfected them in human 293 cells. 

Total lysate when blotted for either HA or FLAG showed successful expression of these plasmids 

(Figure 3.8). However, upon IP with HA to pull down PI31 no FLAG antibody was detected in the 

pull down (Figure 3.8) indicating that PI31 and NmnatC do not interact under these conditions. 

However, there are two other major isoforms of Nmnat that should also be tested that differ in the 

splicing of the last 3 exons and have been shown to localize to distinct cellular compartments. 

Isoform PD, which is cytoplasmic is shown to have refolding chaperone-like properties and suppress 

the neurodegeneration caused by polyglutamine expanded ataxin-1 (Ruan et al., 2015).  Since, no 

physical interaction was observed I tested whether loss of NAD+ is contributing to loss of dmPI31 in 

the Nmnat mutant clones. By feeding flies with Nmnat photoreceptor clones either 20mM or 40mM 

nicotinamide, I observe an increase in mean HA-PI31 expression in mutant clones (Figure 3.9a). 
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Several clonal patches were tested for each condition and this increase is shown to be significant and 

dose dependent (Wild-type control fed: 31.32 +/- 2.61 RFU; Nmnat clone control fed: 16.08 +/- 0.92 

RFU, ***p=8.6x10-5; Nmnat clone Nam 20: 19.07 +/- 1.01, *p=0.04; Nmnat clone Nam 40: 20.57 +/- 

1.21 RFU, **p=0.007) (Figure 3.9b). Since, Nmnat mutants still produce a truncated form of the 

protein that has the NMN binding domain in the N-terminus intact it is possible that residual activity 

is still present. However, a functional null allele with the first 4 exons deleted was also tested and 

still caused the loss of dmPI31 expression (not shown). Whether DmPI31 expression can be rescued 

with NAD+ supplementation in these clones has not yet been tested. This future experiment could 

determine whether the loss of DmPI31 is dependent on NAD+ synthesis, shared intermediate binding 

to Nmnat, or a general stress response by affected neurons.  
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Figure 3.5 Nmnat mutants display less dmPI31 in photoreceptor cells  

Mosaic clones of mutant Nmnat1 were generated in the Drosophila larval eye discs and adult 

photoreceptor axons by driving eye specific flippase. (a) HA tagged PI31 was driven in 3rd instar 

larva eye discs under the GMR-Gal4 driver. Nmnat mutant clones, outlined in red, show less 

HA-PI31 expression although Nmnat clones do not show any developmental defects. (b) Adult 

optic lobes with Nmnat1 mutant clones boxed in yellow. These clones display signs of axon 

degeneration at 20 days PE accompanied by less HA-PI31 expression (white). Staining with anti-

chaoptin (green) marks all R7/R8 photoreceptor axons while dsRed marks only wild-type clones. 

(c) Optic lobes with mosaic clones of mutant Nmnat1 in 25 day old flies generated using eyeless-

flippase. HA-PI31 expression can be rescued in Nmnat1 mutant clones, boxed in yellow, by 

overexpression of Nmnat driven by GMR-Gal4.  
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Figure 3.6 Knockdown of Nmnat leads to defects in proteasome activity 

(a) In vitro proteasome activity assay on whole fly lysates from lines expressing indicated 

transgenes under Tubulin-Gal4, Tubulin-Gal80 temperature sensitive driver at 25°C. RNAi 

mediated knockdown of PI31, TNKS, and Nmnat decreased proteasome activity. Neither PI31 

nor Nmnat overexpression increased proteasome activity compared to control. The proteasome 

inhibitor MG132 was used to control for proteasome specific activity. (b) Confocal images of 

optic lobe z-projections from flies UAS- PI31 lines and lines co-expressing UAS-PI31 and UAS-

RNAi-Nmnat under the GMR-Gal4 driver. DmPI31 expression is decreased in Nmnat 

knockdown background while photoreceptor axons remain intact as indicated by anti-24B10 

(red) staining. 
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Figure 3.7 Nmnat is sufficient to suppress eye phenotypes caused by mutant proteasomes 

(a) Eye phenotypes from female flies expressing the temperature sensitive DTS5 and DTS7 

mutations in the proteasome under the GMR-Gal4 driver at 28.6°C. (a) These mutations are 

dominant and inhibit proteasome activity leading to a rough eye phenotype. (b) Overexpression 

of dmPI31 in this background rescues this eye phenotype. (c) Overexpression of Nmnat in this 

background suppresses the eye phenotypes and the size of the eye increases but the morphology 

remains rough. (d) Enzymatically inactive Nmnat.WR and (e) RNAi for Nmnat do not show 

significant difference in eye morphology compared to DTS5/DTS7 background. (f) Feeding 

DTS5/DTS7 flies throughout development on Na 30mM is not sufficient to alter the external 

rough eye phenotype.   
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Figure 3.8 DmPI31 does not show a physical interaction with NmnatC 

Human 293 cells were transfected with either FLAG-tagged NmnatC isoform, HA tagged-

dmPI31, or co-transfected. Total lysate input blotted for HA shows expression of HA-PI31 in 

cells transfected with HA-PI31 alone or co-transfected with NmnatC. Blotting against anti-Flag 

shows expression after transfection of Nmnat in total lysates. Using HA magnetic beads, HA-

PI31 was pulled down however, no Flag tagged protein was detected to co-IP with HA-PI31, 

suggesting PI31 does not physically interact with NmnatC. However, PI31 is known to be 

cleaved at its C-terminus and NmnatC may be protecting PI31 from this cleavage.  
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Figure 3.9 Nam partially rescues dmPI31 expression in photoreceptor axons 

(a) Mosaic clones of mutant Nmnat1 were generated in the Drosophila adult photoreceptor axons 

by driving eye specific flippase. These flies were put on 20mM or 40mM Nam supplemented 

instant food at 1 day PE and flipped once to new food before dissection at 10 days PE. Nmnat 

mutant clones show less HA-PI31 expression that can be significantly increased upon feeding 

with increasing amounts of Nam. (b) Quantification of HA-PI31 fluorescent signal in wild type 

versus Nmnat mutant clones fed on control or Nam supplemented diets. A significant increase in 

seen upon supplementation of both Nam 20mM and Nam 40mM. (Wild-type control fed: 31.32 

+/- 2.61 RFU; Nmnat clone control fed: 16.08 +/- 0.92 RFU, ***p=8.6x10-5; Nmnat clone Nam 20: 

19.07 +/- 1.01, *p=0.04; Nmnat clone Nam 40: 20.57 +/- 1.21 RFU, **p=0.007) 
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3.4 Discussion 

Both NAD+ levels and proteasome assembly have been shown to decline with age 

((Tonoki et al., 2009; Gomes et al., 2013). This connection suggests a hypothesis whereby loss of 

NAD+ during aging can decrease proteasome activity and lead to the accumulation of abnormal 

proteins seen in aging and age-related disorders. It’s intriguing to think of proteasomes in direct 

communication with the metabolic status of the cell via NAD+ dependent ADP-ribosylation of 

dmPI31. In a means to test this hypothesis, I have found that NAD+ precursors can increase 

proteasome activity, dmPI31 protein levels, and proteasome assembly. The activity of the 

proteasome under NAD+ supplementation is dependent on expression of full length PI31 as 

knockdown of PI31 or overexpression of PI31DHbYX does not cause significant changes 

between fed states. However, attempts to pull down the ADP-ribosylated form of dmPI31 in 

adult flies were not successful. This could be due to technical difficulties but more intriguingly 

may mean that this modification is only abundant during specific developmental time points and 

possibly localized to distinct subcellular locations in discreet amounts ie possibly at the synapse. 

In this way, ADP-ribosylation of DmPI31 could serve as a metabolic switch to regulate 

proteasome activity in different cellular compartments based on the local NAD+ pools available. 

In fact, NAD+ in not able to move between compartments (van Roermund et al., 1995) and 

different NAD+ pools have been shown to behave independently of one another to maintain 

cellular homeostasis after stress (Yang et al., 2007). However, until recently tools to study the 

subcellular distribution of distinct NAD+ pools were lacking or relied on NAD+ consumption by 

PARP1 as a read out (Dölle et al., 2009; Hung et al., 2011; Cambronne et al., 2016; VanLinden 

et al., 2017). These tools can now be adapted to Drosophila and used alongside existing tools to 

measure proteasome activity in vivo to determine the affect of subcellular NAD+ pools on 
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proteasome activity.  

The finding that dietary restriction (DR) is also able to increase proteasome activity in vitro 

and increase DmPI31 expression in the larval brain is in line with DR increasing NAD+ levels. I 

find that proteasome activity is not significantly altered in the brain compared to whole body. 

Similarly, other studies have found that 26S proteasome activity is lower in the brain than liver, 

brain proteasomes display less plasticity, and DR preserves 26S proteasome activity (Dasuri et 

al., 2009). This is intriguing since DR is the only non-genetic way to extend lifespan across 

several species. These results point to a quality control mechanism that is preserved with age 

during increased states of NAD+ to maintain proteostasis. Our findings that the essential 

neuronal maintenance factor, Nmnat, regulates DmPI31 protein levels in vivo, does not interact 

with dmPI31, and does not itself significantly impact proteasome function point to a signaling 

pathway or intermediate binding partner. Indeed, evidence points to a signaling event mediated 

by NAD+ as NAD+ supplementation can increase DmPI31 levels in an Nmnat mutant 

background. The recovery of DmPI31 could also be due to increased health of the axons 

provided by NAD+ in a pathway different than that of Nmnat.   

 NAD+ in addition to being a substrate for NAD+ consuming enzymes also plays a major 

role in redox reactions involved in cellular respiration. Although I find that NAD+ increases 

proteasome activity, DmPI31, and proteasome assembly, I cannot rule out the possibility that 

these effects are mediated through the generation of more ATP. 26S proteasome mediated 

degradation is an ATP dependent process requiring ATP during ubiquitination of substrates, 

substrate unfolding, substrate hydrolysis, and 26S assembly (Majetschak, 2013). However, the 

reduced form of NAD+, NADH has been shown to bind directly to 26S proteasomes via a 

putative NADH binding motif (GxGxxG) and maintain their stability independent of ATP. It is 
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also possible that feeding NAD+ precursors increases NADH in the cell and contributes to 

increased proteasome assembly by maintaining 26S proteasome integrity (Tsvetkov et al., 2014). 

The sum of these findings indicate that 26S proteasomes are metabolically regulated and that 

contexts where NAD+ levels are compromised could lead to insufficient proteasome activity that 

manifests in various phenotypes such as aging and neurodegeneration.   

 

3.5 Materials and Methods 

Fly stocks and recipes for nutrient supplementation 

Oregon-R and w1118 flies were used as controls. Hs-NintraEGFP, DTS5, and DTS7 were given as 

kind gifts by John Belote. All Nmnat stocks were generated by Hugo Bellen’s lab and deposited 

in Bloomington with stock numbers Nmnat.WR (39700), Nmnat (39699), NmnatRNAi (29402). 

Fly food was generated by adding 36g Baker’s dried active yeast, 87.5 g corn meal, and 10g agar 

to 1.2L distilled H20. Mixture was boiled for 10min to allow agar to dissolve and then 83ml of 

molasses was added and mixture was allowed to boil for 10 additional minutes with continuous 

stirring. While stirring food was cooled to 65°C and 8.3mL 30% Tegosept and 0.89mL propionic 

acid were added along with indicated concentration of Na or Nam. Food was aliquoted into 

empty fly vials and allowed to solidify and cool to room temperature before flies were 

distributed onto food. Extra food was stored at 4°C until needed and brought to room 

temperature prior to addition of flies. All lines were grown at 25°C in a 12hr light/dark cycle 

incubator.   

In vitro proteasome activity assay 

Heads or whole-body tissue samples from indicated genotypes were prepared in PIPES lysis 

buffer (50mM PIPES, 1mM MgCl2, 50mM NaCl2, 2mM EGTA, and 2mM fresh ATP) by 
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homogenizing tissue using pellet pestle motor and spinning samples in table top centrifuge for 

20min at 4°C. Supernatant was taken and protein concentration measured with BCA assay 

(Pierce BCA Protein Assay Kit- Thermo Scientific). 50-75ug of protein was mixed at a 1:1 ratio 

with the Proteasome-Glo chymotrypsin reagent (Promega G8621) according to manufacture 

details. MG132 (UBPBio, F1101), a proteasome inhibitor, was incubated with control samples as 

a readout for proteasome specific signal. Reactions were done in triplicate in a 96 well plate and 

read on Spectramax M-2 microplate reader. Statistical analysis was done by averaging 

experimental replicates, normalizing to controls, and taking activity as a percentage of control 

over several assays. Error bars represent 7 separate experiments all normalized to their respective 

controls.  

    

In vivo proteasome activity assay and immunostaining  

To assess the in vivo activity of the proteasome, degradation of EGFP-Nintra was monitored in the 

presence of dominant proteasome subunit mutants. Hs-EGFP-Nintra lines were crossed to UAS-

DTS7 and propagated for a stable line. These lines were fed Na 30mM and late 3rd instar were 

heat shocked by placing larva in an Eppendorf tube in a 37°C water bath for 30min. Larva were 

then placed at 25°C and allowed to recover for 1 hour before dissection and fixation. Tissues 

were mounted with Vectashield plus DAPI and imaged on the confocal microscope. Statistical 

analysis was done by measuring fluorescence intensity in ImageJ and comparing control non fed 

vs fed larva.  

Native gels and in gel peptidase activity 

Head or whole body lysates were homogenized using a pellet pestle motor in native lysis buffer 

(50mM Tris- HCL pH 8.0, 5mM MgCl2, 0.5mM EDTA, and fresh 2mM ATP, 0.2% NP40, 
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Protease inhibitor cocktail (Roche, 11873580001) and phosphatase inhibitor (ThermoFisher 

Scientific 78442). Samples were spun down at 4°C in table top centrifuge at max speed and 

supernatant was taken and measure for protein concentration using BCA assay. Native running 

buffer was prepared as followed and cooled to 4°C (450mM Tris, 450mM Boric acid, 5mM 

EDTA, and 25mM MgCl2, 0.5mM ATP, and 0.5mM DTT). 40ug of samples were loaded 1:1 

with native sample buffer (Bio-Rad, 161-0738) onto 3-8% Criterion XT Tris-Acetate Gels along 

with 3ug purified bovine 19S (A1301), 20S (A1401), and 26S (A1201) as loading controls from 

UBPBio. Electrophoresis was carried out for 1 hour at RT at 50V and then continued at 4°C for 6 

hours at 120V. Protein transfer was done using PVDF 0.45um pore membranes (Millipore) in 

Tris-Glycine buffer without methanol for 3hours at 12V at RT using Genie Electrophoretic 

Transfer apparatus. Afterward, membranes were blocked with 5% milk in PBST (Tween-20) 

overnight at 4°C. Membranes were incubated with primary antibodies anti-alpha7 (1:500) a-

Rpt3(1:500) both from Enzo for 1 hour at RT, washed 3X, and incubated with secondary 

antibody a-mouse-HRP (1:2500), then washed 3X. Membranes were developed using Western 

Lighting ECL blotting reagent (Perkin Elmer) using Kodak Biomax MR film.  

For native in-gel activity assays, native gels were run to completion but before transfer were 

washed with Buffer A (50mM Tris-HCl ph 7.5, 150mM NaCl, 5mM MgCl2, 10% glycerol) and 

the incubated with developing buffer (50mM Tris-HCl ph 7.5, 150mM NaCl, 5mM MgCl2, 1mM 

ATP, 100uM Suc-LLVY-AMC) at 30°C for 30min with light shaking. Gel was exposed to 

illumination at 365nm and imaged using iPhone 6. To assay 20S CP activity gel was exposed to 

developing buffer plus the addition of 20% SDS for 30min at 30°C. Visualized again at 365nm 

and then washed with buffer A before transfer proceeded.  
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Western blotting 

Protein samples from either in vitro activity assays or native gel analysis were taken and 20ug of 

protein loaded with 10uL of SDS red loading buffer. Proteins were resolved on 4-20% mini-

protean TGX precast gels and electrophoresis was carried out for 1.5hour at 100V. Transfer was 

done using PVDF membrane 0.45um pore size in Tris-Glycine buffer plus 20% methanol for 

1.5hour at 100V in 4°C. Membranes were blocked in 5% milk and stained with primary 

antibodies, a-tubulin (1:1000) or a-bactin (1:1000) for 1hour, washed 3X, incubated with 

secondary, and developed using ECL Western blotting detection reagent.  

  

Cell culture of S2 cells and HEK293 cells 

S2 cells were grown at RT in sterile conditions using Schneider’s cell medium with 10% heat 

inactivated FBS, and antibiotics. Cells were split periodically. Before transient transfection cells 

were split to 70% confluency and lipofectamine and recombinant DNA of GST-PI31 given as a 

gift by Yetis Gultekin, were allowed to incubate and form complexes for 30min at RT. In the 

meantime, S2 cells were put in serum free low antibiotic and transfection reagent was added 

dropwise all over petri dish with cells. This was incubated for 4 hours at which point cells were 

incubated with fresh media. 

 

Nmnat and dmPI31 co-immunoprecipitation  

TOPO cloning was used to generate plasmids and transfect them into HEK 293 cells. Cationic 

lipid reagent (20 µl of Lipofectamine 2000; Invitrogen) was diluted in serum-free media (Opti-

MEM; Invitrogen) for transfection in HEK293 cells (100 mm dish). Following a 5 hr incubation, 

the medium was replaced with Dulbecco’s modified Eagle’s medium (Invitrogen) supplemented 
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with 10% fetal bovine serum (FBS). Transfected cells were harvested in PBS 48 hr following the 

addition of serum-containing media. The cells were then lysed by repeated freeze/thaw cycles in 

600 µl of lysis buffer (20 mM HEPES-KOH [pH 7.6], 200 mM KCl, 0.5mM EDTA, 10% 

glycerol, 1% Triton X-100 and protease inhibitor cocktail [Complete; Roche]) that contained 

RNase A (50 µg/ml; Sigma-Aldrich). Cell debris was pelleted by centrifugation, and the protein 

concentration in the supernatant was determined with the Bio-Rad assay. Primers for NmnatC 

isoform that were used are as follows F-ATGATTGTGAAAATCAGCTGGC and R- 

CTAAAGTTGCACTTGGGAAATC with Flag tag GACTACAAAGACGATGACGACAAG.  

HA- PI31 plasmid was a gift from Yetis Gultekin.  

 

Brain dissections and immunofluorescence   

GMR Gal4, eyFLP;sco/scyo;FRT82B dsRED lines were crossed with either FRT82B Nmnat1 

(24886) or FRT82B NmnatD4790-1 (39698) and mitotic clones were generated in the photoreceptor 

axons and PE flies were fed C, 20mM Nam, or 40mM Nam supplemented instant Drosophila 

medium plus yeast for 10 days. Adult brains where dissected and fixed in 4% PFA for 40min and 

blocked in 2% BSA. Primary antibody a-mouse HA (1:1000, Sigma) was used for incubation at 

4°C overnight, tissues were washed 3X in PBST, and secondary Donkey anti-mouse FITC 

(1:500) was added and incubated for 4 hours at 4°C. Tissues were washed 3X and mounted in 

Vectashield plus DAPI before being imaged on Zeiss confocal microscope at 63X.   
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 4. DmPI31 increases proteasome activity to suppress degeneration in a 

Drosophila model for Spinocerebellar Ataxia-Type 1 (SCA1)  

 

4.1 Summary 

Neurodegenerative diseases such as Alzheimer’s, Parkinson’s, Huntington’s, and Spinocerebellar 

ataxias (SCAs) share a characteristic feature, the accumulation of ubiquitin-conjugated proteins 

into aggregates. This suggests that the affected neurons initiated clearance of abnormal proteins 

by tagging with ubiquitin, but proteasome-mediated degradation subsequently failed. In this 

chapter, I explore the impact of upregulating proteasomes via the DmPI31 pathway on 

neurodegeneration in the poly-glutamine disease, Spinocerebellar Ataxia Type-1(SCA1). Using a 

Drosophila model for SCA1 that expresses human ataxin-1 with an extended 82 glutamine 

repeat (hAtx-1[82Q]), I demonstrate that poly-ubiquitinated proteins do indeed accumulate in 

this model and that DmPI31 and NAD+ repletion are sufficient to suppress this accumulation. 

Additionally, DmPI31 alleviates degenerative phenotypes associated with overexpression of 

hAtx-1[82Q] in the eye. Lastly, I explore the possibility that dmPI31 rescues these phenotypes 

by altering the localization of proteasomes. These studies suggest that dmPI31 may be a 

therapeutically promising target for the treatment of neurodegenerative diseases.   

 

4.2 Rationale 

The autosomal dominant poly-glutamine disease, Spinocerebellar ataxia type-1(SCA1), is the 

result of an abnormal CAG trinucleotide repeat of 39 or more in the ATXN1 gene. ATXN1 is 

conserved across several species including humans, mice, and Drosophila but its exact function 
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is unknown. It is clear however, that the mutant ataxin-1 protein accumulates into nuclear 

inclusions along with Hsp70, ubiquitin, and proteasomes in SCA1 (Cummings et al., 1998; 

Fernandez-Funez et al., 2000). Furthermore, selective degradation of mutant ataxin-1 requires 

the ubiquitin-proteasome pathway (Fernandez-Funez et al., 2000; Lee and Goldberg, 2010; 

Persengiev et al., 2012). Using a short lived enhanced green fluorescent protein (d2EGFP), one 

group showed that mutant ataxin-1(82Q) causes d2EGFP to accumulate as the result of 

proteasome impairment (Park et al., 2005). In Drosophila, proteasome impairment by the 

dominant temperature sensitive Pros26.1 mutation (DTS5), enhances the neurodegeneration 

caused by expanded ataxin-1. However, whether other proteasome subunits and interactors can 

modify SCA1 phenotypes is unknown, since much of the work is focused around ubiquitin-like 

modifiers and chaperones (Ding et al., 2016; Lee and Goldberg, 2010; Nagashima et al., 2011; 

Parfitt et al., 2009). One protein that was found to act as a chaperone and ameliorate SCA1 

induced neurodegeneration in Drosophila is NMNAT. Overexpression of NMNAT or enzyme-

inactive NMNAT (NMNAT-WR) partially suppressed the degenerative phenotypes produced 

hAtx-1[82Q] and are recruited to aggregates in vivo. Still, in cultured cells insoluble aggregates 

accumulate upon treatment with the proteasome inhibitor, MG132. These aggregates still 

accumulate when co-transfected with NMNAT in the presence of MG132, although at lower 

levels (Zhai et al., 2008). This points to NMNAT promoting hAtx-1[82Q] degradation at least 

partially through a proteasome-mediated pathway. 

In the previous chapter, I showed that NMNAT can modulate both proteasome activity and 

DmPI31 levels. Thus, I hypothesized that DmPI31 may also act to partially suppress 

neurodegeneration in SCA1 flies. Here, I describe the suppression of poly-ubiquitinated 

proteins and degenerative phenotypes in SCA1 by overexpression of DmPI31. I investigate 
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whether this suppression is through increased activity of proteasomes, increased degradation of 

hAtx-1[82Q], or localization. The results point toward increased hAtx-1[82q] degradation and 

localalization of proteasomes being key. In addition, I show that NAD+ repletion is also able to 

reduce the accumulation of poly-ubiquitinated proteins and this suggests a possible parallel 

pathway that works in addition to enzymatically inactive NMNAT to reduce SCA1 toxicity.  

 

4.3 Results 

4.3.1 DmPI31 suppresses toxicity induced by human Ataxin-1 

The established model for SCA1 in Drosophila was generated by cloning SCA1 cDNAs 

differing in the length of their poly-glutamine expansion into the Drosophila pUAST vector. 

These cDNAs encode for full length human ataxin-1 with either a 30-glutamine repeat (wild-type 

isoform) or an 82-glutamine expansion (disease relevant isoform). Both transgenic lines result in 

progressive neurodegenerative phenotypes although the severity is diminished and time of onset 

delayed in hAtx-1[30Q]. Moreover, wild-type Drosophila ataxin-1 (dAtx-1) overexpressed under 

UAS control in the retina results in a rough eye phenotype, pointing to the amount of 

accumulated ataxin-1 being significant for disease phenotypes in addition to glutamine repeat 

length (Fernandez-Funez et al., 2000; Zhai et al., 2008).  

Here, my goal was to determine whether overexpression of DmPI31 is sufficient to lessen 

the burden of ataxin-1 accumulation in SCA1 through increased proteasome activity. Using the 

Gal4/UAS system, I drove expression of four different ataxin-1 transgenes in the Drosophila 

retina under the glass multimer reporter (GMR). Consistent with previous reports, I show that 

overexpression of dAtx-1 results in a rough eye phenotype that is rescued with overexpression of 

NMNAT (Figure 4.1a) (Zhai et al., 2008). Overexpressing both full-length DmPI31 and C-
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terminal truncated dmPI31DHbYX rescued the small and rough eye phenotype caused by dAtx-

1(Figure 4.1a) in a manner comparable to NMNAT. Similarly, both DmPI31 and 

DmPI31DHbYX were able to rescue the rough eye phenotype caused by overexpression of hAtx-

1[30Q] (Figure 4.1b). Two transgenic lines for hAtx-1[82Q] with different chromosomal 

insertions were used to test whether DmPI31 was sufficient to rescue the severe eye phenotypes 

caused by the expanded human isoform. Both lines cause a severe degenerative phenotype but 

hAtx-1[82Q] on the 3rd chromosome gives a more severe phenotype than the insertion on the X 

chromosome. However, DmPI31 and DmPI31DHbYX are able to improve the external retinal 

phenotypes in both cases comparable to overexpression of NMNAT. It is of note that 

PI31DHbYX contributes to an enhanced suppression compared to full length DmPI31. This may 

be due to lower expression levels of the truncated form since another DmPI31 insertion (10a) 

that is expressed at low levels shows even further suppression (Figure 4.1d). The HbYX domain 

at the C-terminal end of DmPI31 is thought to operate by allowing DmPI31 to dock onto 20S 

proteasomes in a manner similar to the HbYX motifs used by proteasome activators (Smith et al., 

2007b; Kusmierczyk et al., 2011). This motif was also shown to be essential for full 26S 

activation conferred by DmPI31 and be necessary for TNKS and 19S assembly chaperone 

binding to DmPI31 (Bader et al., 2011; Cho-Park and Steller, 2013). So, how does the HbYX 

deleted DmPI31 lead to more suppression rather than an enhancement of the retinal phenotype? 

To better understand this phenotype, I tested knockdown of TNKS in the hAtx-1[82Q] 

background. Using a UAS driven RNAi for TNKS, the phenotype of the retinae is aggravated 

with many more necrotic spots consistent with reports that TNKS knockdown enhances 

proteasome inhibition. Surprisingly, RNAi of PI31 suppresses toxicity of SCA1 counter to its 

role as a proteasome activator. This may be due to incomplete knockdown of PI31 and/or a stress 
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response that results in more proteasome activity when proteasomes are inhibited (Meiners et al., 

2003). However, rescue of SCA1 retinal phenotype may be dependent on fine-tuned levels of 

DmPI31 which may explain why knockdown and an insertion with less expression are able to 

enhance suppression. Knockdown of two other proteasome subunits a6 and a7 cause 

enhancement of the SCA1 phenotype (not shown). Together, these data show that proteasome 

activity is indeed essential for suppressing the toxicity of SCA1 and that the dmPI31/TNKS 

pathway positively mediates suppression.   

To further validate these findings, I prepared cryostat sections of Drosophila heads for 

immunofluorescence detection of retinal structures. 10um slices of whole heads were taken and 

stained for anti-chaoptin (24b10) to mark photoreceptors, anti-HA, and DAPI to label DNA in 

nuclei. Consistent with published data, SCA1 causes severe retinal degeneration see in the 

internal structure resulting in collapse of the retina and short disorganized photoreceptor staining 

(Figure 4.2b). Overexpressing DmPI31 in this background does not rescue retinal collapse but 

organization of photoreceptors is slightly improved (Figure 4.2c). In these sections 

overexpressed DmPI31 is seen to localize primarily in the retina and lamina in distinct puncta 

but also shows some expression in the R7 and R8 photoreceptor axons. Similar to the 

improvement in eternal eye morphology DmPI31DHbYX shows a slight improvement in retinal 

collapse with photoreceptor organization appearing more organized compared to hAtx-1[82Q] 

(Figure 4.2d). To better assay degeneration in the eye, I prepared whole mount retinal dissections 

and visualized photoreceptors by staining with rhodopsin-1 or armadillo, the Drosophila 

homolog of bcatenin, and phalloidin, to label F-actin rich rhabdomeres. Preliminary results of 

confocal z-stack projections show that overexpression of hAtx-1[82Q] causes rhadomeres to 

degenerate as early as 4 days post eclosion. Staining with phalloidin shows rhabodmere 
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disorganization and loss while anti-armadillo, which stains cell membranes, reveals the extent of 

disorganization. Bristle cells and pigment cells are cluster together, membranes are not 

continuous, and many cells appear to have burst (Figure 4.3a). Overexpression of DmPI31 

rescued some of the disorganization and rhabdomere loss as indicated by phalloidin staining. 

Staining with armadillo still revealed disruptions in membrane structure and pigment cell 

degeneration however, overall membrane structure was improved (Figure 4.3b). Thus, taken 

together these results indicate that although some degeneration is still present, overexpression of 

dmPI31 in the Ataxin-1[82Q] mutant background can suppress disruptions in rhabodmere 

organization. The physiological consequences of this improvement are still being explored.  
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Figure 4.1.DmPI31 overexpression partially suppresses degenerative phenotypes in a 

Drosophila model for SCA1 

Eye exterior morphology (a-d) of flies overexpressing (a) wild-type Drosophila Atx-1, (b) wild-

type human ataxin-1 with a 30Q repeat, (c) 82Q expanded mutant human ataxin-1 on the 3rd 

chromosomes and (d) 82Q human ataxin-1 on the X chromosome. In each case, dmPI31 

overexpression suppresses the phenotypes along with dmPI31DHbYX comparable to 

overexpression of NMNAT. Interestingly, (c) RNAi for TNKS show enhanced toxicity while 

RNAi for PI31 appears to suppress toxicity. (d) Lowered expression of full length dmPI31 also 

enhances suppression of mutant eye phenotype cause by hAtx-1[82Q] which may point to 

compensatory mechanisms being responsible for the eye phenotypes that result from RNAi for 

dmPI31. 
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Figure 4.2. Retinal sections reveal partial suppression of ataxin-1 internal eye degeneration 

by dmPI31 

(a-d) 10um frozen sections from Drosophila retina were stained with chaoptin (red) and (a)RH-1 

or (b-d) anti-HA. Vertical sections show marked degeneration of rhabdomeres in lines 

overexpressing (b) hAtx-1[82] that can be partially suppressed with overexpression of (c) full 

length HA-dmPI31, which results in more organized rhabdomeres. HA staining shows dmPI31 

localizes highly in the retina, lamina, and R7/R8 photoreceptor axons. (d) Overexpression of 

HA-PI31DHbYX shows even more suppression with some rhabdomere length returning and 

improved organization. Images are taken at 63X or 20X where indicated.   
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Figure 4.3 DmPI31 suppresses photoreceptor degeneration and improves retinal 

organization  

(a-b) 4-day old whole mount retina were stained for phalloidin (purple) and anti-armadillo 

(green) to mark rhabdomeres and cell membranes respectively. (a) In hAtx-1[82Q] retina, 

ommatidial organization is severely affected and rhabdomeres are shown to degenerate as in 

indicated by lack of phalloidin staining.  Bristle and pigment cells also cluster and many cells 

show a “burst” phenotype (see white arrow). (b) Overexpression of dmPI31 results in an 

improvement in the organization of the retina as indicated by phalloidin staining. However, 

armadillo staining shows pigment and bristle cells are still unorganized and degenerate as well as 

the persistence of the “burst” phenotype seen with expanded ataxin alone.  
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4.3.2 DmPI31 increases degradation of polyubiquitinated proteins in a Drosophila model 

for SCA1  

To determine whether proteasome activity is enhanced in SCA1 flies expressing dmPI31, I 

first assayed whether polyubiquitinated proteins faithfully accumulate in the SCA1 mutant 

background. To do this, whole mount brains were dissected and stained for conjugated ubiquitin 

(anti-FK2) as a readout of proteasome activity. In SCA1 mutants, FK2 accumulates compared to 

GMRGal4 control indicating a defect in proteasome mediated degradation consistent with other 

reports (Figure 4.4a,b). Co-expression with either dmPI31 or dmPI31DHbYX reduced FK2 

staining to near control levels (Figure 4.3c,d). ImageJ was used to quantify the fluorescence 

intensity relative to the area for each genotype and the reduction in FK2 staining in the dmPI31 

and dmPI31DHbYX background are shown to be significant (Figure 4.4e). The majority of FK2 

accumulates in the cells of the medulla cortex but can also be seen in the R7 and R8 

photoreceptor axons.   

How does DmPI31 mediated clearance of ubiquitinated proteins in SCA1? It could be that 

enhanced assembly of 26S proteasomes mediates clearance of toxic hAtx-1[82]. This does not 

give a simple explanation for the increased rescue seen when overexpressing PI31DHbYX, since 

TNKS and 19S assembly chaperone binding require the HbYX domain (Cho-Park and Steller, 

2013). To determine the extent of hAtx-1[82Q] clearance, head lysates were resolved on SDS-

PAGE gel and subject to western blot analysis. Anti-atxain 1 antibody showed a slight 

accumulation compared to no expression control in fly lysates overexpressing the human 

expanded protein (Figure 4.5a). The band that is seen in control is likely due to the antibody 

recognizing endogenous Drosophila ataxin-1. In lysates that overexpress PI31, ataxin-1 levels 

are modestly reduced which can account for the lower levels of poly-ub proteins that are seen in 
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vivo. However, PI31DHbYX which showed a stronger suppression of FK2 did not show 

reductions in Atx-1 levels. The a7 subunit of the proteasome does not show a change in 

expression levels between expanded ataxin-1 alone or with the PI31 transgenes (Figure 4.5a). To 

address whether proteasome assembly is affected, I turned to native gel analysis to determine 

whether changes in proteasome assembly could account for the rescue. Preliminary results show 

no significant difference in proteasome assembly in head lysates from 25 day old flies (Figure 

4.5b). The amount of proteasome activity assayed by in gel activity showed no difference 

between hAtx-1[82Q] and those line crossed with PI31 or PI31DHbYX. However, double capped 

proteasomes are not detectable at this protein concentration and thus a more concentrated protein 

sample may distinguish between different amounts of assembly.   
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Figure 4.4 DmPI31 relieves the accumulation of polyubiquitinated proteins in SCA1 

(a-d) Whole mount adult brains were assayed for the accumulation of ubiquitin conjugated 

proteins by staining with FK2 antibody and imaging by confocal microscopy. (a) Control lines 

show slight accumulation of FK2 and HA autofluorescent signal with (b) marked accumulation 

of FK2 in the hAtx-1[82Q] overexpression background. (c) Co-expression of HA-PI31 or (d) 

HA-PI31DHbYX significantly reduces the accumulation of FK2. (c) HA-PI31 is highly 

expressed in the R7/R8 photoreceptor axons while HA-PI31DHbYX is not expressed at high 

levels. (e) Quantification of FK2 signal in z-projections of the optic lobe. Bars represent the 

corrected total fluorescence and statistical analysis was carried out on a total of 5 heads. (GMR 

Gal4 : 79348. 8 +/- 6181.3 ; hAtx-1[82Q] :111488.3 +/- 6781.5, p=0.042; PI31 hAtx-1[82Q] : 

90821.60 +/-6919.3,*p=0.064; PI31DHbYX hAtx-1[82Q]: 63164.7 +/- 1891, **p=0.0019). 

Significance was carried out with a two-tailed, paired, t test.  
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Figure 4.5 DmPI31 overexpression causes Atx-1 degradation but not increased proteasome 

assembly  

(a) Western blot analysis from hAtx-1[82Q] fly head lysates show slight accumulation of atxain-

1 antibody compared to no expression control at 105kDa. The band that is seen in the control is 

likely due to the antibody recognizing endogenous Drosophila ataxin-1. In lysates that 

overexpress PI31, ataxin-1 levels are modestly reduced but PI31DHbYX did not reduce Atx-1 

levels. Wild-type human ataxin-1[30Q] also shows accumulation but overexpression of dmPI31 

alone shows ataxin-1 levels similar to control. The alpha7 subunit of the proteasome does not 

show a change in expression levels between expanded ataxin alone or with the dmPI31 

transgenes. (b) Native gel analysis of head lysates from 25 day old flies. Blotting with alpha7 or 

Rpt3 did not show marked differences between proteasome assembly in any of the cases that 

result in partial suppression of SCA1 phenotypes.  
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4.3.3 PI31 may alter localization of proteasomes in neurodegenerative models   

The suppression of neurodegenerative phenotypes may also depend upon the localization of 

mutant proteins, chaperones, and proteasomes. For instant, the neuroprotective ability of Nmnat 

in the SCA1 model was found to be the result of different splice variants that translate into 

proteins with different localization. The cytoplasmic isoform of Nmnat was found to confer 

neuroprotection and is the major splice variant under stress conditions in neurons (Ruan et al., 

2015). PI31 may also alter local proteasome activity and contribute to the suppression of SCA1 

phenotypes. In SCA1, it was observed that the GFP tagged alpha2 subunit of the proteasome 

displays altered localization compared to controls (Figure 4.6). In controls, a2 appears in puncta 

localized near the giant glial cells of the medulla (Figure 4.6a). However, in hAtx-1[82Q] very 

few puncta remain possibly pointing to a shift to a more diffuse distribution (Figure 4.6b). 

Previous western analysis on these flies did not show a difference between another alpha subunit 

a7 thus leading to the interpretation of localization being altered.  

In a Drosophila model for Parkinson’s disease (PD), the missense mutations found in a-

synuclein (A53T, A30P, E46K) that lead to early onset familial PD, lead to similar symptoms in 

the fly. These include loss of climbing ability, progressive loss of dopaminergic neurons and the 

formation of inclusion bodies (Feany and Bender, 2000). Unpublished data from Dolor Ferres 

Marco, a former postdoc in the Steller lab, shows that the progressive loss of climbing ability of 

A53T lines can be recused by overexpression of PI31DHbYX but not by full length PI31 (Figure 

4.7a). PI31 itself is shown to be essential to maintain climbing ability with age consistent with 

previous finding that loss of PI31 results in decreased lifespan (Figure 4.7a orange line). To 

determine the cause of this difference between full length and HbYX deleted PI31, I looked at 

the localization of both in an A53T a-synuclein background. Expression of all transgenes was 
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driven by the pan neuronal driver nervana2. Interestingly, these transgenes show different 

localization in the optic lobe of flies. While full length PI31 is expressed at high levels and 

mostly nuclear, HbYX deleted PI31 expression is mostly cytoplasmic, similar to the 

neuroprotective form of Nmnat (Figure 4.7b-c). More studies within the affected dopaminergic 

neurons of this model will need to be tested but these preliminary results point to these two 

different transgenes being expressed in different locals which may explain the differences in 

neuroprotection seen in PD and SCA1 models. Preliminary results to assay the localization of 

PI31 in SCA1 and degradation of hAtx-1[82Q] show that overexpression of full length PI31 is 

sufficient to lower total hAtx-1[82Q] accumulation (Figure 4.8). This was expected since 

western blot analysis verified decreased expression of hAtx-1[82Q]. However, whether 

PI31DHbYX truncated will result in the altered expression of expanded ataxin-1 is yet to be 

determined. Western blot results show that hAtx-1[82Q] does not decrease in a PI31DHbYX 

background so determining the localization of both proteins may give clues to how PI31DHbYX 

confers more protection.  
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Figure 4.6 Expanded Atx-1 causes a shift in proteasome localization  

(a-b) Whole mount brains expressing the GFP tagged alpha2 subunit of the proteasome under its 

endogenous promoter were fixed, stained for FK2, and imaged on a confocal microscope. (a) In 

the control optic lobe, alpha2-GFP is highly expressed in distinct cells within the medulla as 

puncta. FK2 (red) does not show substantial staining. (b) Upon overexpression of hAtx-1[82Q] 

in these lines, FK2 (red) shows marked accumulation in both retina and R7/R8 photoreceptor 

axons. Here, alpha2-GFP also becomes localized to the medulla cortex and expression is more 

diffuse.  
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Figure 4.7 Overexpression of dmPI31DHbYX rescues climbing ability in a Drosophila PD 

model and shifts localization of PI31 to the cytoplasm  

(a) Climbing assay of Drosophila Parkinson’s disease model expressing the A53T a-synuclein 

mutation. These flies (teal) show progressive loss of climbing ability that is rescued with co-

expression of PI31DHbYX (light blue). Co-expression with full length PI31 (yellow) did not 

rescue the climbing ability and RNAi of PI31 (grey) enhances loss of climbing ability. (b) 

Overexpression of full length dmPI31 in the A53T mutant background shows PI31(red) localized 

primarily in the nucleus while (c) overexpression of PI31DHbYX shifts localization to the 

cytoplasm. GFP marks cells highly expressing nervana-Gal4 driver. 
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Figure 4.8 Overexpression of DmPI31 in vivo reduces Atx-1 accumulation and shows 

nuclear localization of Atx-1 puncta  

(a) Overexpression of dmPI31 alone shows PI31 highly expressed to the giant glial cells in the 

medulla. This staining overlaps with the nervana2 Gal4 driven expression of GFP. (b) Lines 

expressing hAtx-1[82Q] alone show marked accumulation of Atx-1 signal that can be suppressed 

with (c) co-expression of dmPI31.  
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4.4 Discussion 

Spinocerebellar Ataxia Type-1 is a neurodegenerative polyglutamine disease that is 

characterized by the accumulation of mutant ataxin-1 into nuclear inclusions positive for 

UPS components and chaperones. The pathogenesis of disease has also been show to display 

aberrant proteasome function (Cummings et al., 1998; Park et al., 2005). Here, it is shown 

that dmPI31, an essential proteasome regulator, suppresses degenerative phenotypes 

associated with the disease. Overexpression of DmPI31 increases the degradation of 

polyubiquitinated proteins but the exact mechanisms by through which it acts to suppress 

degeneration remains to be shown. Interestingly, the truncated PI31DHbYX shows greater 

suppression of degenerative phenotypes leading to questions how DmPI31 acts to regulate 

the UPS in this context. This is especially relevant since both mutant and wild-type ataxin-1 

are ubiquitinated at similar rates in vitro but the mutant protein remains highly resistant to 

degradation (Cummings et al., 1999). To determine what may contribute to these difference, 

preliminary results show that proteasome assembly is not significantly impacted while 

pointing toward local proteasome activity as being important. DmPI31 and the HbYX deleted 

protein have different subcellular localizations in a model for Parkinson’s disease but their 

localization in the SCA1 model remain to be resolved. Still, these results show that driving 

DmPI31 expression suppresses the accumulation of ataxin-1 in vivo. Further studies are 

needed to determine how PI31DHbYX acts on these puncta and whether cytoplasmic or 

nuclear proteasome activity is more critical.  

Also, whether or not this suppression is due to a functional NAD+ salvage pathway 

remains to be shown. Previous reports show that overexpression of Nmnat, an essential 

NAD+ salvage enzyme, was sufficient to suppress degeneration in SCA1. In addition, the 
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enzymatically inactive form also offered mild suppression (Zhai et al., 2008). The yeast 

homologs of NMNAT, NMA1 and NMA2, were also able to suppress proteotoxicity in 

neurodegenerative models of disease but interestingly other components of the NAD+ 

salvage pathway such as QNS1, PNC1, and NPT1 also protected. Disruption of NPT1 in an 

NMA1 or NMA2 overexpression background still suppressed toxicity caused by 103Q 

suggesting a functional salvage pathway is not needed. However, these results don’t negate 

the presence of compensatory pathways for NAD+ biosynthesis or the idea of parallel 

pathways mediating both chaperone and UPS activity as essential. The preliminary results 

that were gathered here showed a slight decrease in polyubiquitinated proteins in flies fed for 

5 days on 20mM Na but whether or not this suppression relies on DmPI31 remains to be 

determined. Also, whether further clearance can be achieved in flies overexpressing DmPI31 

and under NAD+ repletion may implicate modification of DmPI31 as essential for increased 

proteasome activity under stress. To test this, DmPI31DHbYX transgenic lines can be subject 

to NAD+ repletion and the amount of cleared polyubiquitinated proteins compared to full 

length DmPI31.    

These findings hint at a pathway with the ability to suppress the pathogenesis of SCA1 

that may also translate to improving proteotoxicity in other polyglutamine diseases. The 

exact mechanism by which toxicity is suppressed with overexpression of DmPI31 remains to 

be determined. It is intriguing, however, to envision a means by which neurons may be able 

to localize proteasome activity by differential modification of the proteasome regulator, 

DmPI31. 

 

 



 109 

4.5 Materials and Methods 

Fly stocks and culturing 

Drosophila SCA1 models for hAtx-1[82Q] on the X (39740) and 3rd chromosomes (33818) were 

obtained from Bloomington along with UAS-Atx-1 (39741). All other lines used in this chapter 

are previously described in other sections.  

 

Crytostat sections of Drosophila heads  

Frozen sections were taken according to the following protocol (Helfrich-Förster, 2007).Working 

quickly, whole heads from indicated genotypes are removed from body and proboscis is 

removed. These heads are placed in 4% PFA overnight at 4°C and washed 3X the next day in 

PBST. Heads are then subject to a sucrose gradient 5%, 10%, 25% sucrose. Heads were allowed 

to sink and then transferred to OCT medium in a cryostat chuck that was then quickly frozen by 

dipping into a dry ice/ethanol bath. Section were kept at -80°C until reading to section at which 

time 10um sections were taken. Ribbons of sections were placed on glass slides and fixed for an 

additional 10min in 4% PFA, washed 3X, blocked with 2% BSA, and immunostained with 

primary antibody on top of glass slides with plastic coverslips. Primary antibodies a-chaoptin 

(1:100, 24b10 DSHB), a-RH1 (1:100, 4C5 DSHB), Donkey a-rabbit-HA (1:1000). Images were 

taken on confocal microscope.   

 

Whole mount retinal dissections and immunostaining 

Protocol from (Hsiao et al., 2012) was followed for the dissection of whole mount retinae. 

Briefly, retinae were carefully removed from adult heads and placed in 4% PFA for 40min on 

ice. At this point it is crucial to remove the lamina very carefully and wash retina 3X in PBST. 
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Primary antibody staining is done in PCR tubes to reduce volume. The following antibodies were 

used a-armadillo (1:100, N27A1 DSHB) and Alexa Fluor 647 Phallodin from CST (1:500). 

Washed 3X and incubated with secondary antibody a-mouse FITC (1:500) before another wash 

and mounting by preparing ‘bridges’ so that retina are not folded while imaging.   

 

Whole mount brain dissections and immunostaining  

Whole mount brain dissections are done in the same manner as in Chapter 2. Here however, FK2 

antibody was used at (1:500) and a-HA rabbit (1:500). Alpha2GFP brains were also dissected 

and stained for FK2. Images were quantified using ImageJ by measuring the corrected 

fluorescence intensity. Human ataxin-1 antibody was obtained from Cell Signaling (2177S) and 

used at dilution (1:200).  

 

Western blots 

Head only lysates were homogenized in lysis buffer (20 mM HEPES-KOH [pH 7.6], 200 mM 

KCl, 0.5mM EDTA, 10% glycerol, 1% Triton X-100 and protease inhibitor cocktail [Complete; 

Roche]) and spun in a microcentrifuge for 15min at 4°C. Protein concentration was measured 

using BCA assay and normalized. 45ug protein was added along with 1X SDS sample buffer and 

proteins were resolved for 1.5hour at 100V in 4-20% precast gels. Transfer was done at 4°C for 

1.2 hours at 100V using PVDF membranes and tris-glycine buffer plus 20% methanol. After 

transfer, membrane was blocked and primary antibodies were incubated each for 1 hour. The 

same membrane was stripped and blocked between each antibody. Anti-Ataxin-1 (1:500), a-

alpha7 (1:500), a-PI31 generated in the lab by Yetis Gultekin (1:2500), and a-tubulin (1:2500) 

were used.  
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Native gels 

Preliminary native gel analysis was run on heads collected from the indicated genotypes in the 

same fashion as in Chapter 3.  
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 5. Future Perspectives  

5.1 Insights into the in vivo function of DmPI31  

Several in vivo functions of DmPI31 in Drosophila neurons were uncovered in this study 

including maintenance of AZs, motor neuron morphology, and photoreceptor axons. However, 

results from this study imply that DmPI31 also has developmental roles in maintaining 

proteasome activity to regulate degradation of cell cycle components. Yet, the cause of lethality 

of dmPI31 mutants remains to be uncovered. The expansion of Dpn positive cells within the 

larval brain point to serious defects in cell cycle control that could lead to apoptosis and a simple 

way to test this hypothesis is by TUNEL assay since cleaved DCP-1 showed a slight 

accumulation. However, the post mitotic effects of loss of DmPI31 remain of major interest as it 

still remains to be seen whether the primary mechanism by which DmPI31 acts to regulate 

proteasome activity is through increased assembly. Global changes in proteasome assembly from 

whole head lysates show increased assembly upon NAD+ repletion that was dependent on 

DmPI31 but ADP-ribosylated DmPI31 was not detected in adult flies. However, these 

modification may be small compared to the global changes and may not reflect the amount of 

proteasome regulation going on at particular locales, such as at the synapse. Thus, looking into 

DmPI31 localization may provide critical insight into its major function as a proteasome 

regulator. Indeed, ongoing studies in our lab point to DmPI31 being a direct transporter of 

proteasomes to distal parts of the axon. However, how this movement is regulated, what prompts 

the movement of proteasomes, and whether movement relies on ADP-ribosylation is still 

unclear.  

In addition, an understanding of how DmPI31 itself is regulated will provide key insights 

into when this protein may be active. From the data presented in this thesis it is clear that 
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DmPI31 can be regulated by nutritional status but whether this occurs as a result of post-

translational modification or transcriptional regulation was not resolved. Uncovering 

transcription factors that may act on DmPI31 could provide insight into when this protein is 

active. Whether PI31 binding to the proteasome is also still unknown. How can this protein with 

an intact HbYX motif bind to 20S and still activate 26S? It is possible that modification of 

DmPI31 results in cleavage of the C-terminal end of this protein to relieve 20S inhibition in vivo 

but the N-terminal end maintains interaction with 26S and aids in its stability. Cleavage of 

DmPI31 C-terminus is under active investigation in our lab and previously reported to be 

involved in its stability (Bader et al., 2011).  

 

5.2 Changes in NAD+ metabolism with age and declining proteostasis  

Both NAD+ levels and proteasome assembly have been shown to decline with age which 

makes for an intriguing hypothesis about why many neurodegenerative diseases are late-onset. A 

decline in NAD+ could lead to a steady decline in proteostasis with age leading to 

neurodegeneration. Indeed, these studies give attention to this hypothesis, as I show that NAD+ 

leads to increased proteasome activity. Others have shown that boosting NAD+ levels can 

suppress neurodegeneration and here I have shown that NAD+ repletion can suppress the 

accumulation of polyubiquitinated proteins. However, the direct mechanism of these 

observations remains to be uncovered. NAD+ is involved in a variety of cellular processes 

including the production of ATP, thus it is possible that maintenance of neurons by proteasome 

activity is an indirect effect of more ATP production. Whether this increase proteasome activity 

by NAD+ is dependent on ADP-ribosylated PI31 is currently being explored, but small amounts 
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the of ADP-ribosylated form only in distinct compartment may prove uncovering a mechanism 

challenging.  

Although Nmnat can rescue neurodegeneration independent of its NAD+ synthase 

activity, it does not rule out that increased NAD+ does not further suppress phenotypes. Thus it 

would be interesting to see whether overexpression of Nmnat in combination with 

overexpression of DmPI31 or upon NAD+ repletion can further suppress the phenotypes caused 

in the Drosophila SCA1 model. Parallel pathways are likely to exist that mediate neuronal health 

via maintenance of proteostasis since loss of proteostasis is detrimental.  

Parallel pathways, NAD+ supplements, neuronal health via maintenance of proteostasis 

 

5.3 DmPI31-mediated proteasome regulation in maintaining neuronal health  

The cumulative results of these studies show that DmPI31, an essential proteasome regulator, has 

the ability to directly affect proteasome activity in vivo. The role of DmPI31 and the reported and 

implied post-translational modifications that it undergoes make it an excellent candidate for 

small molecule compounds that could regulate proteasome activity under certain conditions. 

Bortezomib, a proteasome inhibitor, inactivates proteasomes globally and thus results in the 

unwanted side effect of peripheral neuropathy. However, targeting PI31 may bypass these effects 

depending upon the post-translation modification that is targeted.  

It is becoming apparent that DmPI31 may play an essential role is proteasome localization 

from my work and other work in the lab. What is interesting is that neurons may use DmPI31 to 

move proteasomes to required compartments in addition to them functioning to properly 

assemble proteasomes. The location of endogenous DmPI31 in photoreceptor axons implies that 

a mechanism exists to transport proteasomes to these distant compartments. Once their 
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destination is reached, subcellular NAD+ pools could act to increase proteasome assembly at 

these distinct locations, and this mechanism could function to maintain synapses and promote 

neuronal health. New tools that are being developed will allow for identification of subcellular 

NAD+ pools in vivo which will guide our understanding of where ADP-ribosylation of DmPI31 

is likely having the most benefit. The whole story about how DmPI31 acts on proteasome 

activity is still to be clear up but ultimately will lead to a better understanding of how 

proteostasis is maintained throughout the aging processes in neurons and will open the field up to 

explore 26S proteasome regulation even further.     
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