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Summary

Avian sarcoma virus UR2 is a replication-defective virus that can induce sar­

comas in vivo and transforms chicken embryo fibroblasts in culture to a charac­

teristic, extremely elongated morphology. The genome of UR2 contains a 1.2 kb

transformation-specific sequence, v-ros, which has a homologous counterpart, c­

TOS, in normal chicken cellular DNA. The 5' end of v-ros is fused to the helper

virus UR2AV-related sequencing coding for one of the viral gag proteins, pIg.

The fused pIg and rOB sequences in UR2 code for a polyprotein of 68 kd,

P68gag-ros, which has an associated tyrosine kinase activity. To elucidate the

basis of the functional conservation as well as differences between rOB and other

oncogenes, I sequenced the entire genome of UR2 and compared the predicted

amino acid sequence of P68 with other members of the tyrosine kinase family.

The results show that rOB is 1273 nucleotides in length, including a 65 bp 3'

noncoding stretch. ros is joined at its 5' and 3' ends to the 3' region of p l g, and

the 3' region of gp37, respectively, and replaces the sequences of UR2AV in

between. The deduced amino acid sequence for P68 gives a molecular weight of

61,113 daltons and shows that it is closely related to the oncogene family coding

for tyrosine protein kinases. However, P68 contains two distinctive hydrophobic

regions that are absent in most of the other tyrosine kinases and it has unique

amino acid changes and insertions within the conserved domain of the kinases.

I also determined the sequence of cellular rOB and compared it to viral rOB to

determine the changes between them that may be responsible for their differential

oncogenicity; in addition I have analysed the expression of the cellular gene in

both embryonic and adult chickens. The 1.2 kb v-ros sequence is remarkably

well conserved when compared with the corresponding region of e-ros. The v-ros

sequences are distributed in nine exons of e-ros over a. range of 12 kb of DNA.
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The two differ only by a 9 bp duplication, a single base change not resulting in

an amino acid change, and the divergence of their 3' ends. e-ros and v-ros

abruptly diverge 36 bp upstream of the v-ros termination codon. The open read­

ing frame of e-ros continues after this divergence and may terminate 34 amino

acids downstream, or, more likely, the reading frame is spliced to further 3' cod­

ing sequences using a splice donor site 24 nucleotides downstream of the diver­

gence. The v-ros sequence 3' to the divergence was not found in the 3' e-ros

sequences in the lambda clone or in helper virus-related sequences. Comparison

of the nucleotide sequences of viral and cellular ros suggests the viral ros and

� gag junction in lJR2 was formed by splicing.

A 3.1 kb e-ros transcript has been detected in adult muscle tissue and in kid­

ney from chickens only after long exposure of the Northern filters. It appears

that the e-ros transcript in kidney is preferentially degraded relative to src, and

this may account for the seeming lack of expression in this tissue. In all other

tissues examined, a.nd in several cell lines, e-ros transcripts are not detectable.

Although the exact function of the cellular ros protein is not known, evidence

based on the sequence of the viral and structural genes has enabled us to detect

its structural similarity with the EGF and insulin receptors and postulate that

ros is a mem ber of a family of growth factor receptors.



-viii-

List or Figures

Figure 1. 3

Figure 2. 6

Figure 3. 8

Figure 4. 11

Figure 5. 12

Figure 6. 24

Figure 7. 25

Figure 8. 27

Figure 9. 28

Figure 10. 31

Figure 11. 33

Figure 12. 34a

Figure 13. 35

Figure 14. 37

Figure 15. 39

Figure 16. 42

Figure 17. 43

Figure 18. 44

Figure 19. 47

Figure 20. 49

Figure 21. 51

Figure 22. 55

Figure 23. 57

Figure 24. 58

Figure 25. 60



-ix-

Figure 26. 62

Figure 27. 63

Figure 28. 65

Figure 29. 66

Figure 30. 69

Figure 31. 71

Figure 32. 73

Figure 33. 77



AEV

AMY

ALV

BaEV

bp

CEF

-x-

Abbreviations

avian erythroblastosisvirus

avian myeloblastosis virus

avian leukosis virus

baboon endogenous virus

base pair

chicken em bryo fibroblasts

EDTA ethylenediamine tetraacetic aid

FSV Fujinami sarcoma virus

kb kilobase

kd kilodaltons

LLV lymphoid leukosis virus

LTR long terminal repeat

MMTV mouse mammary tumor virus

PB primer binding site

PR-C Prague C strain of Rous sarcoma virus

RAV Rous associated virus

SDS sodium dodecyl sulfate

SR-A Schmidt-Ruppin A strain of Rous sarcoma virus

TBR tumor-bearing rabbit

UR2 University of Rochester virus isolate number 2

UR2AV UR2 associated virus



one

abl

erbB

les

Igr

Ims

Ips

los

mos

myb

myc

SIS

src

ros

yes

-xi-

Nomenclature Cor oncogenes

virus strain

Abelson m urine leukemia virus

AEV-H

Snyder-Theilen and Gardner-Arnstein FeSV

Garner-Rasheed FeSV

McDonough FeSV

FSV and others

Finkel-Biskis-Jenkins murine sarcoma virus

Molony murine sarcoma virus

AMV

MC29 and others

Simian sarcoma virus

RSV

UR2

Y73, Esh sarcoma virus



Section I. Introduction

Oncogenic viruses provide simplified systems to study tumorigenesis and cell

transformation: introduction of the virus into a normal cell is capable of

transforming the cell to a neoplastic state. Tumor viruses may contain RNA or

DNA as their genomes; however, the DNA tumor viruses are diverse and encom­

pass several classes which differ in genomic structure and methods of replication.

The RNA tumor viruses are more unified in their genomic organization and mode

of replication. These viruses replicate through a double-stranded DNA intermedi­

ate synthesized by an RNA-dependent DNA polymerase which is encoded by one

of the viral genes. The more uniform structure and method of replication of the

RNA tumor viruses reduces the number of variables to be considered when study­

ing the mechanisms involved in cellular transformation by this group of viruses.

RNA tumor viruses induce rapid and reproducible transformation of cells in cul­

ture and tumor formation in vivo, and the product(s) encoded by the viral

genome are responsible for the induction and maintenance of the transformed

phenotype. RNA tumor viruses have been isolated from a wide spectrum of ver­

tebrate species, mostly murine, feline and avian. These isolates share many

structural similarities, yet are capable of causing a wide variety of neoplasms in

their respective hosts.

Taxonomy.

Retroviridae (so named for the RNA-dependent DNA polymerase, or reverse

transcriptase) consists of three subfamilies: the oncogenic RNA-containing viruses
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(or oncoviruses), and two non-oncogenic subfamilies. The non-oncogenic subfami­

lies include the Lentiviruses, which produce disease only after prolonged latency,

and the spumaviruses, or foamy viruses, which chronically infect many mam­

malian species without obvious manifestation of disease.

The viral genome of all three subfamilies is composed of a dimer of linear

positive-sense single stranded RNA molecules linked at their 5' ends. The

genome is replicated through a DNA intermediate via the reverse transcriptase

encoded by one of the viral genes. These viruses are enveloped, with glycoprotein

surface projections.

Four categories of oncovirus have been described by morphological

classification of physical structure in electron micrographs: A-, B-, C-, and D-type

particles. Most oncoviruses have been classified as type C, and can be divided

into two categories: leukosis viruses with low oncogenic potential, and leukemia

and sarcoma viruses with high oncogenic potential. Both kinds of virus have

been isolated from murine, feline, avian and primate species, but this discussion

will be restricted to viruses of avian origin.

Lymphoid leukosis viruses (LL Vs).
Avian leukosis virus (of which the Rous-associated viruses, RAV-l and RAV-

2, and the UR2-associated virus, UR2AV, are examples) does not transform

chicken cells in culture, and induces tumors, mostly lymphomas, in vivo only

after a long latency period of three to four months after infection of chickens.

The disease originates primarily in the bursa. Infected birds may show prolifera­

tion of immature red blood cells, and/or infiltration of neoplastic cells into the

liver or spleen.

The genome is composed of three genes important for viral replication: gag,

pol, and env, as well as the long terminal repeat regions, or LTRs (Fig. 1). The



Fig. 1. Genome of ALV. The upper lines show the terminal regions expanded

as indicated. The precursor protein is shown as a solid bar underneath the

genome, and the molecular weights of the processed proteins are indicated. L,

gag, pol, and env are defined in the text.
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ALV genome is bounded on its 5' end by a cap, and a short sequence, R, which is

repeated at both the 5' and 3' ends of the RNA. The binding site for the initia­

tion of the tRNA primer (PB) for negative-strand DNA synthesis follows the

region denoted U5. The gag gene is 2.1 kb in length and codes for the internal

structural proteins of the virion, which are first synthesized as a 76,000 dalton

precursor (Pr76gag) from the 35S genomic RNA. Pr76 is subsequently cleaved by

proteolysis to several lower molecular weight gag proteins. The genomic order of

these proteins is H2N-p19-plO-p27-pI2-pl5-COOH. The gag gene is preceded by

an untranslated sequence (L) of approximately 250 nucleotides which is part of

the 5' 380 nucleotide leader sequence that is spliced to the subgenomic mRNAs.

The L region may include sequences important for RNA packaging. The pol gene

has a length of 2.7 kb and codes for the reverse transcriptase, which is syn­

thesized as a gag-pol precursor, Pr180, from the 35S genomic RNA (or an as yet

unidentified spliced mRNA). Pr180 is cleaved to produce a 92,000 dalton

polypeptide known as /3 which is subsequently cleaved into the 58,000 dalton a,

and 32,000 dalton p32, proteins. The reverse transcriptase is composed of a and

f3 subunits. A DNA endonuclease activity was found to be associated with p32

and is proposed to be involved in the process of viral DNA integration. The env

gene codes for the glycoproteins coating the surface of the virion. Unlike gag,

which is translated from 35S genomic RNA, env is translated from a 22S

subgenomic mRNA. The primary env product, a 57,000 dalton protein, is

glycosylated to form the precursor, gPr92env which is later cleaved into two

polypeptides, gp85 and gp37. The region immediately preceding U3 contains a

polypurine tract (pp) believed to be important for initiation of positive-strand

DNA synthesis. U3 precedes the 3' terminal repeat region, R, and contains pro­

moter sequences necessary for transcription of the genome. During replication of

the viral RNA to form proviral DNA, U3 and U5 are duplicated to form the LTR
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(consisting of U3-R-U5) which appears at each end of the provirus.

After nonspecific adsorption of the virus to the host cell surface, a penetra­

tion step follows that is dependent on the envelope glycoproteins of the virus and

on specific cell receptors. A cellular tRNA acts as primer by binding near the 5'

end of the genome (PB) and initiating synthesis of (-) strand DNA. Concommi­

tant synthesis of (+) strand DNA yields a double stranded linear provirus. The

reverse transcriptase coded by the pol gene is responsible for the synthesis of the

DNA intermediate. Duplication of the U3 and U5 regions during DNA synthesis

leads to formation of the LTRs. The linear DNA is synthesized in the cytoplasm;

after transport to the nucleus, a population of the linear molecules is converted

to a closed circular form. Recent work by Panganiban and Temin (48) has shown

that the 5 bp terminal inverted repeats at the ends of the LTRs from unin­

tegrated linear DNA, as well as 3-7 adjacent nucleotides, are required for integra­

tion. After integration into the host genome, the provirus will replicate with the

cellular DNA (Fig. 2). Transcription of the proviral template yields RNA that

can be packaged and released by budding as infectious virions after assembly on

the cell membrane. However, integration of the retrovirus DNA is not absolutely

required for retroviral gene expression of the spleen necrosis virus(48).
The leukosis viruses do not contain oncogenic sequences. However, these

viruses may become acutely transforming by transduction of cellular sequences,

now known as proto-oncogenes or cellular oncogenes. These cellular genes

acquired by the retrovirus are called viral oncogenes. Acquisition of the viral

oncogene usually involves the sacrifice of some of the viral replicative genes, so

that the newly-derived acutely transforming virus needs the parental leukosis

virus as "helper" to replicate.
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Fig. 2. Structure of retroviral RNA and proviral DNA. R, terminal

redundancy on genomic RNA; U5 and U3, sequences unique to the 5' and 3' ends

of the genomic RNA; LTR, long terminal repreat.
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Acutely transforming viruses.

Rous sarcoma virus, isolated in 1910 by Peyton Rous, was the first retrovirus

later found to contain a genetic sequence essential for neoplastic transformation

that was independent of the genes necessary for viral replication. The transform­

ing sequence of RSV, known as src, is inserted in nondefective strains of the virus

between env and the LTR, and the resulting virus retains all the replicative func­

tions (Fig. 3). (In Fig. 3, all viruses shown are presented as the proviral DNA

intermediate.) In some isolates of RSV, e.g. the Bryan high-titer strain, src has

replaced env and the virus then requires an associated leukosis virus to provide

replicative functions in trans. Although the nondefective strains of RSV were at

one time considered to be prototypical of the sarcoma viruses, they have turned

out to be exceptional among all known acutely transforming retroviruses in that

acquisition of the src sequences has not been at the expense of some of the viral

replicative genes. The ere gene product is translated from a subgenomic mRNA

and encodes a 60,000 dalton phosphoprotein, pp60src. With the help of src dele­

tion and temperature-sensitive mutants, coupled with transfection of src DNA, it

was demonstrated that both in vitro cell transformation and in vivo tumorigeni­

city of RSV require a functional src product. pp60src is phosphorylated on serine

and tyrosine, and has been shown to have tyrosine kinase activity. Phosphotyro­

sine is extremely rare in normal cells, but cells transformed by RSV have a 10-

fold elevated level of phosphotyrosine (58). It is believed that transformation by

RSV is dependent on the tyrosine kinase activity of pp60src.
In 1976, Dominic Stehelin experimentally demonstrated the presence of cellu­

lar sequences in chicken related to viral src (66). Later studies showed that src­

related sequences are present in fish, birds, mammals, and even Drosophila, indi­

cating these sequences have been highly conserved during evolution, The gene

product of the ere cellular homologue was identified in normal chicken cells as a
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LTR LTR

UR2AV DD--------�-----------+------�CD
pol000 env

UR2
�009 rOI 6errY

FSV

Y73 ·.Y.·.·,II�/...INII CD
yes �env

[[]' �� ----------�----------�ANuWu�uMANuWu�.���SR-RSV t- .h'h'h'h'Wn"'�
pol env sre

0L- �2 �4 6� �8 IOkb

Fig. 3. Genomic structure a representative member of each class of

avian sarcoma virus. UR2AV, the UR2-assoclated virus, Is shown to compare

the structure of an avian leukosis virus with the ASVs. All viruses are shown as

the proviral DNA form. UR2, University of Rochester viral isolate number 2;

FSV, Fujinaml sarcoma virus; Y73, Yamaguchi-73; and SR-RSV, Schmidt-Ruppln

strain of Rous sarcoma virus. ros, Ips, yes, and STC (denoted by jagged line) are

the transforming genes of UR2, FSV, Y73, and RSV, respectively.
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cells as a 60,000 dalton phosphoprotein which also has tyrosine kinase activity;

the viral and cellular proteins are highly homologous.

RSV and its derivatives were thought to be the only avian sarcoma viruses

until 1980, when the Fujinami sarcoma virus was shown to contain a transform­

ing gene distinct from src (24, 33). This was originally shown by partial sequence

analysis of FSV RNA by oligonucleotide fingerprinting. The transforming

sequence of FSV is now known as Ips. Several viruses which have independently

transduced portions of the cellular Ips gene have been isolated and include FSV,

PRClI, PRCIV, 16L, and URI. It appears that [es, the transforming sequence of

the Snyder-Theilen and Gardner-Arnstein strains of feline sarcoma virus, is the

feline homologue of avian Ips (59).

Acquisition of Ips by FSV has led to the loss of the 3' region of gag and the

entire pol and env genes (Fig. 3). FSV encodes a 140,000 dalton gag-fusion pro­

duct that also has an associated tyrosine kinase activity.

A third class of avian sarcoma virus is comprised of viral isolates that have

acquired the transforming sequence known as yes, and includes the Yamaguchi 73

(Y73) and Esh sarcoma virus (ESV) strains. Y73 encodes a 90,000 dalton phos­

phoprotein, P90, which, like FSV P140, has 5' gag sequences fused to the amino­

terminus of the specific sequence.

The fourth and most recently characterized class of avian sarcoma virus IS

the UR2 virus, so called because it is the University of Rochester avian sarcoma

virus isolate number two. UR2 was originally isolated with its associated helper

virus, UR2AV, in 1963 from a fibrosarcoma of a 9 month old White Rock chicken

(4). UR2 has lost most of both the gag and env genes and all of the pol gene dur­

ing acquisition of ros (Fig. 3). UR2 is able to induce sarcomas in chickens and

efficiently transform chicken embryo fibroblasts (CEF) in culture (4). CEF

transformed by UR2 are characterized by an extremely elongated morphology (4).
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Fig. 4 shows the characteristic UR2 transformed morphology, relative to the

refractile, rounded morphology of cells transformed by two strains of RSV,

Schmidt-Ruppin and B77. Previous analysis of the UR2 RNA genome showed

that it shares with its associated helper virus, UR2AV, about 2.1 kb of 5' and 3'

sequences and contains at the middle of the genome about 1.2 kb of ros-specific

sequence (82). Studies of the ros sequence by hybridization and oligonucleotide

fingerprinting have shown that it is distinct from the transforming genes of other

known ASVs and acute leukemia viruses (61, 82). The normal cellular DNA

homologue of viral-res has been detected in chickens, quail and ducks (61). How­

ever, the expression of e-ros in various tissues and organs of 10- to 14-day old

chickens is very low (less than 1 copy per cell), except in the kidney (2.5 copies

per cell) (61).
The UR2-infected cells produced only 24S genomic RNA (82) which was

shown to encode for a 68,000 dalton gag-ros fusion protein, P68, that was associ­

ated with a tyrosine-specific protein kinase activity (17) (Fig. 5). The enzymatic

properties of P68 are distinct from other ASV protein kinases, i.e., Rous sarcoma

virus (RSV) p60, Fujinami sarcoma virus (FSV) P140, and Y73 ASV P90, in

cation preference, pH optimum, and phosphate donors (17). Similar to other

ASV-transformed cells, organization of microfilament bundles in UR2-transformed

CEF is significantly decreased compared to uninfected cells (2). A common

feature of most of the acutely transforming viruses exemplified by three classes of

avian sarcoma virus shown in Fig. 3 is that the acquired cellular sequences are

fused to viral sequences, in these cases, gag, to form a fusion polypeptide. All

virus isolates described thus far in the literature which have acquired either Ips,

yes, or ros are replication-defective.

In addition to the sarcoma viruses, it was shown that certain avian leukosis

viruses, for example, AMV (avian myeloblastosis virus), AEV (avian erythroblas-



I

Fig. 4. Transformation of CEF in culture by ASV. CEF, uninfected

chicken embryo fibroblasts; B-77 and SR-RSV, CEF transformed by the Bratisla­

va or Schmidt-Ruppin strains of RSV; UR2, CEF transformed by UR2.
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UR2

24 S
RNA

P68

Fig. 5. Production of P6sgag-ro8 from UR2 proviral DNA. The

integrated provirus is transcribed into 24S RNA, which is translated to yield P68.

�gag, ros, and � env are defined in the text.
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tosis virus), and MC29, have also acquired cellular proto-oncogene sequences that

permit the rapid induction of leukemias in vivo and the transformation of specific

hematopoietic cells in vitro. These acute leukemia viruses are defective for repli­

cation as well, due to the loss of viral replicative sequences during transduction of

the proto-oncogene.

Scope 01 this thesis.

Clearly, ros is a member of the retroviral oncogene family coding for

tyrosine-specific protein kinases, despite differences in nucleotide sequences among

these genes. In order to understand the basis for similarities and differences in

the transforming functions of ros and other oncogenes, a detailed analysis of the

genetic structure of UR2 and ros sequence is necessary.

I have molecularly cloned the full-length genomes of UR2 and UR2AV. Both

were shown to be biologically active. Cross-hybridization among ros and three

other ASV transforming genes (src of RSV, Ips of FSV, and yes of Y73 ASV),
showed that ros shared some sequence homology with Ips, and little or no homol­

ogy with src and yes. I have also sequenced the entire genome of UR2 and com­

pared the predicted amino acid sequence of PBS with other members of the

tyrosine-specific protein kinase family. This work will be detailed in Section III.

The strong evolutionary conservation of most viral oncogenes and the fact

that several of the cellular oncogenes are expressed in both embryonic and adult

tissues suggests they play an important role in growth and/or differentiation of

normal cells. Intensive characterization of known oncogenes has in a few cases

enabled us to infer their function in the normal cell; for example, sis, an oncogene

transduced by a simian retrovirus, appears to code for part of the platelet-derived

growth factor. erbB, an oncogene of avian erythroblastosis virus, appears to

represent part of the EGF receptor. In the majority of cases, however, little is
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known about the normal function of the cellular proto-oncogene, and what

changes during or after acquisition of the oncogene by the virus confer transform­

ing ability to these genes. It is possible that transformation by retroviruses is

dependent on the sustained and abundant expression of the oncogene, or that

mutation of the viral oncogene during transduction by the virus in some way

effects transformation.

To address these fundamental questions, I have analysed the structure and

expression of the chicken cellular homologue of viral ros. The cellular and viral

ros genes appear to have been highly conserved during transduction of the

specific sequence by the virus and subsequent passages of the virus in culture. In

addition, the cellular ros locus is under very tight developmental control. This

work is described in Section IV.
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Section ll. Materials and Methods

Cells and viruses.

The preparation of CEF, UR2, and the subgroup A UR2-associated virus

(UR2AV) followed the published procedure (4, 82). A methylcholanthrene­

transformed quail cell line, QT6 (42), was cultured similarly to CEF.

Isolation of closed circular proviral DNA.

A pilot experiment was performed to determine conditions for maximal yield

of unintegrated circular proviral DNA for cloning. QT6 or CEF cells were seeded

at 5 x 106 cells per dish and infected with 5 ml of UR2(UR2AV) containing

medium from transformed CEF cultures in the presence of 17 ug per ml DEAE­

dextran. Medium was replaced 5 h later. 6 10 ern dishes each (approximately 5 x

10
7

cells) of UR2(UR2AV)-infected QT6 or CEF were harvested at 24, 48 and 72

hour timepoints. At each timepoint, total cellular DNA was isolated by the Hirt

procedure (25), and 20 ug of the Hirt supernatant DNA containing unintegrated

provirus was electrophoresed through a 0.8% agarose gel, blotted to nitrocellulose

paper, and probed with 32p cDNA made from 24S UR2 RNA. The highest yield

of proviral DNA was obtained from UR2(UR2AV)-infected QT6 cells harvested

24 h after infection. Therefore, QT6 cells were seeded as described above and

infected with UR2(UR2AV) at a multiplicity of one in the presence of DEAE­

dextran and were harvested 24 h postinfection. After Hirt precipitation, the

DNA in the supernatant was extracted with phenol-chloroform and concentrated

by ethanol precipitation. The DNA was further purified by treatment with

RNase A, additional phenol-chloroform extraction, and ethanol precipitation. To

enrich for closed circular DNA, the DNA was then extracted with acid-phenol as
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described by Zasloff (86). A yield of 960 ug of DNA was obtained from a total of

95 8.5-cm dishes after acid-phenol extraction and were applied to a Bio Rad A5m

(100-200 mesh) gel column to remove small (less than 1 kb), contaminating linear

DNA fragments. The column was washed and the DNA was eluted with a buffer

containing 20 mM Tris-HCI (pH 7.2), 0.1 N NaCI, and 5 mM EDTA. A total of

20 ug of closed, circular DNA were recovered in the peak fractions.

Molecular cloning and subcloning of UR2 and UR2A V DNAs.

One ug each of EcoRI- or BstI-cut UR2 and UR2AV closed circular proviral

DNAs were ligated to two ug of AgtWESAB (32) EcoRI or BstI arms, respectively.

One ug of the ligation mix was packaged in vitro into lambda phage particles (32,

62). Lambda arms were purified from the internal fragment by sucrose gradient

centrifugation (36). The recom binant phages were titered on E. coli ED8654 (44).

Packaging efficiencies of 2.6 x 105 and 8 x 103 plaque forming units (pfu) per ug

of DNA were obtained for the BstI and EcoRI cut and ligated DNAs, respectively.

Screening of the recom binant phages with 32P-Iabelled cDNA made from 24S

UR2 RNA was according to the procedure of Benton and Davis (6).

Subcloning of the EcoRI insert from the UR2-lambda recombinant phage

clone into pBR322 was according to Bolivar et. al. (8). The UR2 plasmid clone

was called pUR2. Similarly, a 850 bp EcoRI - Pvull v-ros specific DNA fragment

was cloned using the 2293 bp Pvull - EcoRI fragment of pBR322 DNA. This

clone was called p rosl.

A recombinant clone containing cellular sequences homologous to v-ros was

previously isolated by Masaburni Shibuya in our laboratory from a library com­

posed of AluI- and HaeIII-partially digested chicken genomic DNA cloned in

Charon 4A with EcoRI linkers (15). The three EcoRI fragments comprising AC­

ros were freed from the lamda vector DNA and subcloned into the EcoRI site of
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pBR322. E. coli C600 cells (3) were used for all transformations.

Transfection of cloned UR2 and UR2A V DNAs .

The UR2 and UR2AV DNAs were freed from the vector DNAs by restriction

enzyme digestion and were purified by agarose gel electrophoresis. They were

transfected without prior ligation onto CEF using the calcium phosphate method

(22) with the following modifications. One ug each of UR2 and UR2AV DNA

were mixed with with salmon sperm DNA to a total of 20 ug and added to 500 ul

of 20 mM HEPES (pH 7.0), 137 mM NaCI, 5 mM KCI, 0.59 mM Na2HPO4'

One-tenth volume of 1.25 M CaCl2 was added and the mixture was allowed to sit

at room temperature for 15 minutes. The solution was then added to cells in 5

ml of growth medium and the culture was incubated at 37°C. The cells were

seeded one day before at 7 x 105 cells per 6 ern plate. Medium was changed five

hours after the addition of viral DNAs. The cells were transferred to 8.5 em

dishes as they became confluent and overlayed with soft agar medium the next

day to enhance the growth of transformed cells. Virus production was assayed

by determining the presence of reverse transcriptase activity in the supernatants

of transfected cells (80).

Protein analysis.

UR2/UR2AV transfected cells grown III 6 crn dishes were labeled with 500

uCi per plate of [35S]-methionine for 5 h. Extraction of cold or 35S-labeled cellu-

lar proteins, irnmunoprecipitation, protein kinase assay and sodium-dodecyl sul-

fate (SDS)-polyacrylamide gel (5 to 15%) electrophoresis followed the described

methods (16). Anti-gag serum and sera from RSV-infected tumor bearing rabbit

(TBR) were kindly provided by Ricardo Feldman.
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Rl\/A isolation, bloitinq and hybridization.

Total cellular poly(A}-containing RNAs from UR2AV and CR2/UR2AV DNA

transfected cells were isolated according to the described procedures (81, 83).

The RNAs were denatured with glyoxal, separated on 1 % agarose gels,

transferred to nitrocellulose paper (81, 83), and hybridized to a 5' probe contain­

ing the "leader" sequence (see below), and to a probe derived from the 850 bp

ros-specific DNA described above. Conditions for hybridization and washing of

the filters have been described previously (81).

Polyadenylic acid-containing RNAs were isolated from brain, eye, stomach

and intestine, heart, and liver of 12, 14, 16, 18, and 20 day chicken embryos and

2 day and 7 day old chicks; from lung tissue of 18 and 20 day embryos and 2 day

and 7 day old chicks; from extraembryonal membranes at all embryonic

timepoints described above; from kidney of 20 day embryos and 2, 4, 7, 10, 14,

21, 28, and 56 day old chickens; and from muscle tissue of all embryonic and

adult timepoints described above. Tissues were removed from freshly-killed birds

and frozen by immersion in liquid nitrogen, and were stored at _700 C. Alterna­

tively, the tissue was immediately suspended in a solution containing 5 M guani­

dine thiocyanate, 25 mM Tris-hydrochloride (pH 7.0), 10 mM dithiothreitol, 1 %

sarkosyl, and 5 mM EDTA and homogenized at high speed in a Waring blender

for two 3D-second pulses. Unbroken tissue debris was removed by low speed cen­

trifugation. The clear homogenate was layered on top of a solution containing

5.7 M CsCI and 0.1 M EDTA (pH 7.0) and centrifuged at 26,000 rpm for 18 hr.

The RNA pellets were resuspended in 10 mM Tris-hydrochloride (pH 7.2), 10 mM

NaCI, 1 mM EDTA, and 0.05% SDS, extracted with phenol-chloroform and

ethanol precipitated. PolY(A}-positive RNAs were twice selected and electro­

phoresed as described above. The Northern blots were hybridized to the 850 bp

ros-specific DNA and to a 3' src-specific probe (described below).
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Preparation of
32P-labeled DNA probes.

24S lTR2 and 35S UR2AV RNA was isolated from purified virus as described

previously (79, 80), twice poly(A}-selected and used separately as templates in the

in vitro reverse transcriptase reaction. The 200 ul reaction mixture contained 50

mM Tris-HCI (pH 8.0), 40 mM KCl, 4 mM MgC12, 2 mM DTT, 200 uM each

dATP, dGTP and TTP, 60 ug of calf thymus DNA primers (72), 20 ug

Actinomycin D, 300 uCi (3000 Ci/mmole) [ 32p]_dCTP, 150 units avian myelob­

lastosis virus reverse transcriptase (provided by J. Beard, Life Sciences, St.

Petersburg, Florida, through the courtesy of J. Gruber, the Resource Program,

National Cancer Institute), and 0.3 ug of template. The reaction mixture was

incubated at 37
0

C for 2 h, and the reaction was quenched by the addition of a

solution containing 0.5 M LiCI, 10 mM Tris-Hel (pH 7.2), 10 mM EDTA. and

0.2% SDS. After ethanol precipitation, the sample was base-hydrolyzed with 0.2

N NaOH containing 1 mM EDTA at 100
0

C for one hour, neutralized, and passed

through a Sephadex G-50 column. The DNA from the void volume fractions

were precipitated in ethanol.

Probe containing 80-90% ros-specific sequences was made by annealing

cDNAUR2 to total chicken embryo fibroblast RNA and to viral RNA isolated

from cells infected with UR2AV to remove cDNAs unrelated to ros using the pro­

cedure described by Shibuya et. al. (62).

Preparation of the following probes specific to various regions of the genome

of the Schmidt-Ruppin strain of RSV was as described (83). The 5' probe is a

500 bp long fragment spanning the EcoRI site within the U3 region of the left­

hand long terminal repeat (LTR) to the BamHI site in the 5' gag region; the 5'

gag probe is 1.3 kb and spans the two Bam HI sites within the gag region; and

the 3' gag probe spans the second BamHI site in gag to the downstream EcoRI

site and is 400 bp in length. pol and pol-env probes were prepared from pSR2
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(13). The pol probe is 1.45 kb and spans the HindIII to BglII site in pol; the pol­

env probe is 1.8 kb, extends from the BglII site in pol to the EcoRI site in env,

and covers the 3' portion of pol plus more than 1 kb of env sequence. The c

probe covers the 450 bp extending from the Pvull to the EcoRI site in the U3

region of Schmidt-Ruppin B.

A probe specific to 3' v-fp« was derived from pBRF04, a plasmid containing a

400 bp BamHI DNA fragment from FSV Ips (62). The 3' v-yes probe used was

the 1.1 kb Pstl fragment from Y73 (29), and the 3' v-src probe used was a 900 bp

Pvull fragment from pTT107 (68). Two ros-specific probes were used: one was

the 850 bp EcoRI - PvuII fragment which covers the 3' two-thirds of ros, and the

other was an internal ros sequence, the 300 bp A val D fragment (Fig. 14).

Restriction mapping.

Two approaches were employed. In the first approach, end-labeled DNAs

were used for mapping. UR2 DNA isolated from EcoRI cleaved pUR2 was

labeled at its 5' end with 32p using T4 polynucleotide kinase (BRL) after diges­

tion with bacterial alkaline phosphatase (BRL). UR2AV DNA from one of the

recom binant clones was isolated from its lambda vector by digesting with Sst!.

The 3' protruding Sst! ends were labeled using 3'-dATP ([ 32P]-cordycepin 5' tri­

phosphate, NEN) and terminal transferase (NEN) according to the conditions

provided by the manufacturer. The end-labeled DNAs were digested with a

single-cut enzyme to generate two fragments of unequal size, each containing a

single 32P-Iabeled end. These fragments were subjected to various restriction

enzyme digestions, aliquots containing 104 cpm DNA were removed 3 min, 6 min,

10 min, and 60 min after initiation of the reaction and stopped by addition of

EDTA to 10 mM followed by heating at 650 C for 3 minutes. About 5000 cpm of

each restricted, end-labeled fragment were electrophoresed through 5%
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acrylamide and 1.4% agarose gels using 32P-Iabeled HindIII-digested lam bda

DNA and Hinjl-digested pBR322 DNA as markers. The gels were dried on DE81

paper (Whatman) and exposed for 8 to 12 hours with an intensifying screen

(Cronex). In this manner, the order of restrictions sites from the labeled end

could be precisely mapped.

In the second approach, cold UR2 and UR2AV DNAs were digested with the

same set of enzymes used for partial mapping, electrophoresed through 0.8%

agarose gels and blotted onto nitrocellulose (65). The approximate gene boun­

daries were determined by hybridizing the blots with 2 - 5 x 105 cpm of the

gene-specific probes mentioned above. Hybridization and washing conditions

have been described elsewhere (61).

Enzymes were purchased from NEB or BRL.

Hybridization of v-ros to 3'-specific v-onc probes.

UR2 DNA was digested with enzymes that cut within ros, generating 5'- and

3'-ros specific fragments, which were blotted and hybridized to 2 x 106 cpm of

probe under low (35% formamide, 5X SSC) or moderate (50% formamide, 3X

SSC) stringency at 370 C for 2 days (IX SSC equals 0.15 M NaCI and 0.015 M

Na citrate ). Washing conditions for moderate stringency hybridizations were

similar to those described before (61); for low stringency conditions, blots were

washed 3 times for 20 min each in 300 ml of 26 mM Tris-HCI (pH 7.4), 2X ssc, 1

mM EDTA and 0.1% SDS at 550 C followed by a similar wash at 600 C. For

sequential hybridization, the previous probe was eluted at 680 C in 40 ml of 50%

formamide, IX SSC, 50 mM Tris-HCI (pH 7.4), 1 mM EDTA and 0.1% SDS.

The blot was exposed to an X-ray film overnight to determine the extent of elu-

tion.
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Heteroduplex mapping.

In collaboration with Ming-Ta Hsu at this University, heteroduplex mapping

of the e-ros clone with pUR2 was performed and visualized by electron micros­

copy.

DNA sequencing.

plJR2 was used for nucleotide sequencing of the UR2 genome. The DNA

sequence was determined by the methods of Maxam and Gilbert (39) and Sanger

(55). For dideoxy sequencing, DNA fragments from pUR2 (Fig. 14) were sub­

cloned into the EcoRI site of M13mp8 (41) with EcoRI linkers (Fig. 16). M13mp8

recom binant clones of both polarities were sequenced at least twice by the

dideoxy method.

The DNA sequence of the introrr/exon boundaries and exons in )..c-ros as well

as the 1.4 kb of 3' noncoding sequence in the recombinant clone was determined

by the method of Sanger (55). DNA fragments (Fig. 23) from the c-ros clone

were gap-filled and blunt-end ligated into the SmaI site of M13mp8 (41) (Fig. 23).

Hydrophilicity analysis.

The hydrophilicity profile of the 4�amino acid TOS region of P68gag-ros was

determined by using the computer program of Hopp and Woods (26) with the

hydrophilicity values for each amino acid determined by Levitt (35).
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Section ID. Results

(v-ros)

Restriction enzyme analysis of circular UR2 and UR2A V DNAs.

In general, although the total yield of DNA from UR2(UR2AV)-infected CEF

was greater at all three timepoints than the DNA yield from infected QT6 cells,

Southern hybridization analysis revealed a higher proportion of UR2 and UR2AV

proviral DNAs from infected QT6 cells (Fig. 6). The DNA does not migrate as

discrete bands. This may be due to the presence of degraded viral DN.As, which

would be detected by the hybridization probe. Contaminating cellular DNA and

protein might not have been completely excluded by the Hirt procedure and

might also have contributed to the anamolous pattern of migration. Maximal

yield of material hybridizing to the viral-specific probe was obtained 24 hours

postinfection from UR2(UR2AV)-infected QT6 cells. Linear UR2AV proviral

DNA migrates at approximately 8 kb, and the circular form of the UR2AV pro­

virus migrates more rapidly at 4.3 kb. The ratio of linear to circular DNA is 1:1.

However, UR2 linear and circular molecules are not clearly seen, indicating a

higher ratio of L'R2AV to UR2 molecules.

DNA from all timepoints was pooled and further enriched for circular DNA

by acid-phenol extraction. Approximately 25% of DNA recovered from the aque­

ous phase was analysed by Southern hybridization with a probe representative of

the UR2 genome, cDNAUR2' which includes UR2AV-derived sequences (Fig. 7A),
or to a ros-specific probe (Fig. 7B). Probe containing sequences common to UR2

and UR2AV detected the UR2AV circular DNA doublets containing one or two

LTRs migrating at 4.3kb as well as the corresponding two species of UR2 circular

DNA migrating at 2 kb. There is no evidence of the linear forms, which would

migrate at 8 kb for UR2AV and 3.5 kb for UR2, indicating a

�



Fig. 6. Isolation of proviral UR2 and UR2AV DNA. UR2(UR2AV)­
infected chicken embryo fibroblasts (CEF) or QT6 cells were harvested 24, 48 or

72 hours post infection. Proviral DNA was isolated from the Hirt supernatant,

and 20ug from each timepoint was electrophoresed through a 0.8% agarose gel,

blotted onto nitrocellulose paper and probed with [32p]cDNA made from 248

UR2 RNA.
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Fig. 7. Enrichment for circular proviral DNA. Proviral DNA from the

timepoints in Fig. 6 were pooled and extracted with acid phenol. 25% of the

recovered aqueous phase was loaded onto a 0.8% agarose gel, blotted onto nitro­

cellulose, and probed with cDNAUR2 (A) or cDNAros (B).
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high degree of enrichment for the circular

form after acid-phenol extraction.

Unintegrated viral DNA isolated from UR2(lJR2AV)-infected QT6 cells was

subjected to digestion by various restriction enzymes to determine which endonu­

cleases cleaved at a single site and thus would be suitable for cloning. Fig. 8

shows the results of such analysis. They indicate that KpnI, BstJ, and XhoI each

cleaves both UR2 and UR2AV DNAs at a single site. The linearized UR2AV

DNA doublet bands at 8.0 kb and the linearized UR2 doublet at 3.5 kb. These

sizes compare well with previous estimates by electrophoretic analysis of UR2 and

UR2AV viral RNAs (82). BamHI cleaves UR2AV DNA several times, and UR2

DNA once. The HindIII pattern indicates at least one recognition site in both

UR2 and UR2AV; however, the presence of partially-digested DNA obscures

further analysis. Ball does not cut either UR2 or UR2AV DNA. The doublet

migrating at 9.5 kb after Ball digestion most likely represents randomly nicked

circles, and could also be seen after incubation of the circular proviral DNA in

restriction enzyme buffer with no enzyme added.

To remove the small, contaminating linear DNAs (most likely representing

degraded viral DNAs) visible in each lane, the large preparation of proviral DNA

for cloning was further purified by chromatography through an A5m gel column

after acid-phenol extraction. The restriction patterns of EcoRI and BstI diges­

tions of the purified circular DNAs are shown in Fig. 9. BstJ cuts UR2 and

UR2AV DNAs each only once, and the linearized viral DNA containing either one

or two copies of the LTR run at positions corresponding to about 3.5 kb for UR2

and 8.0 kb for UR2AV. EcoRI cleaved UR2 DNA once, liberating the linearized

UR2 DNA, but cut UR2AV DNA three times, releasing several subgenomic frag­

ments. The majority of the acid phenol- and column-purified viral DNAs

appeared to be of the circular forms. However, the majority of the DNA prepara­

tion was of cellular origin, because the viral DNA could be detected only by



Fig. 8. Restriction enzyme analysis of circular UR2 and UR2AV DNAs.

20 ug of partially-purified proviral circular DNA was digested with the indicated

enzyme, electrophoresed through a 0.8% agarose gel, blotted onto nitrocellulose

and probed with cDNAUR2.
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Fig. 9. Restriction enzyme analysis of isolated circular UR2 and

UR2AV DNAs. 5 ug of material containing unintegrated proviral DNA were

restricted with either SstI or EcoRI, and 2 ug of each digest were loaded per well,

electrophoresed through a 0.8% agarose gel, blotted onto nitrocellulose papers,

and probed with [32p)cDNA made from 248 UR2 RNA.
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hybridization to the cDNA probe, and not by ethidium bromide staining of the 2

ug of DNA loaded per well in the agarose gel.

Molecular cloninq of UR2 and UR2A V DNAs.

Remaining DNA from the EcoRI and SstJ digests described above were used

for cloning, using purified )...gtWES)"'B EcoRI and SstI arms. cDNA probe made

from 24S UR2 RNA was used for the screening. Eight full length helper viral

DNA clones were obtained using the SstJ site for the cloning. Eleven )...UR2AV

recombinant phages, each containing more than one UR2AV EcoRI fragment,

and a )...UR2 clone were isolated using the EcoRI site for cloning. About 0.15%

(12 clones out of 8000 plaques screened) of the recombinant phages contained

viral sequences using EcoRI arms of the lambda DNA for the cloning.

The number of UR2AV clones isolated was roughly tenfold the number of

UR2 clones. This can be expected from the ratio of UR2AV to UR2 DNA as

shown in Figs. 7, 8 and 9. This probably reflected the ratio of the helper to the

UR2 virus in the stock used for the infection of the QT6 cells. This has been

previously observed in several UR2(UR2AV) virus stocks (4). Additionally, the

packaging efficiency of the lambda vector for fragments the size of the UR2

genome IS quite low. Each UR2 and UR2AV lambda recombinant phage clone

was purified by 3 to 4 cycles of single plaque isolation.

To confirm the identity of the UR2 clone, the viral DNA insert was hybri­

dized with probes specific to various regions of the RSV genome according to the

procedure of Southern (65). As expected, the UR2 DNA hybridized only to the

5', 5' gag, and c probes in addition to the cDNA made from UR2 genomic RNA,

but not to pol and pol-enu probes. It has been previously determined (82) that

the pol gene is deleted and the gag and env genes are truncated in the UR2

genome. Because the size of the insert from this recombinant clone, 3.4 kb, is
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equivalent to that determined for the UR2 genomic RNA (82), it is most likely

that this clone contains a full-length copy of the UR2 genome. However, this

clone contained, in �ddition to the 3.4 kb UR2 insert, a tandemly linked 3.7 kb

DNA fragment of non-viral sequence. Therefore, the 3.4 kb UR2 DNA was

purified and subcloned into the EcoRI site of pBR322. All further studies of the

UR2 genome were done with this recombinant plasmid clone, called pUR2.

Transfection assays of UR2 and UR2A V DNAs.

Insert DNAs isolated from plJR2 and from one of the UR2AV lambda clones,

4B2, were introduced together onto CEF. The transfected cells displayed typical

UR2 transformed elongated morphology and produced UR2(UR2AV) pseudotype

virus about two weeks after transfection. This demonstrated that both UR2 and

UR2AV clones tested were biologically active. In addition, 5 independently iso­

lated UR2AV-Iambda clones (A2I, Dl, IC-l, 4-1, 14-1) were cut with SstI to free

the insert from the lambda DNAs, and were introduced similarly onto CEF.

Assays for reverse transcriptase activity in the culture fluid of transfected cells 10

days post transfection were positive for all but clone 1 C-l. The map of the

UR2AV DNA insert of clone lC-I was identical to that of 14-1, which was biolog­

ically active, except that the lC-l insert was missing a portion of the SstI - Hin­

dIll right-hand region (see Fig. 13 for the restriction sites). This region contains

the LTR and deletion of this segment might account for the loss of biological

activity.

To confirm that the transformation was induced by UR2, total poly(A)­

containing cellular RNA was isolated from the transfected cells, and analysed by

RNA blotting and hybridization. Fig. 10 shows that the transfected cells display
a subgenomic and genomic RNA pattern identical to that of UR2(UR2AV)­
infected CEF. Hybridization of the RNAs to the 5' probe detected 358 genomic
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Fig. 10. RNAs of UR2 and UR2AV DNA transfected CEF. 10 ug of

poly(A)-containing RNAs isolated by SDS-proteinase K extraction of UR2 and

UR2AV transfected cells were denatured with 1 M glyoxal and fractionated on

1 % agarose gels. The RNAs were transferred to nitrocellulose paper and hybri­

dized with a 5' leader or ros-specific probe. RNAs isolated from UR2(UR2AV)­
infected cells were used as controls. 32P-Iabeled HindIII cut lambda DNA was

denatured and run is parallel for molecular weight markers.
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RNA and 22S subgenomic envelope mRNA of UR2AV, as well as the 24S

genomic UR2 RNA. Cells transfected with UR2AV alone produced only 35S and

22S RNAs. A ree-specific probe hybridized only with the 24S UR2 RNA. The

RNA patterns of all UR2AV-transfected cells were identical; however, as expected

from the reverse transcriptase assay, no viral RNAs were detected in clone lC-l­

transfected CEF.

Viral specific proteins were also analyzed. CEF transformed by the molecular

clones were labeled with [35S]-methionine, and cell lysates were precipitated with

RSV-infected tumor-bearing rabbit (TBR) or anti-gag sera (Fig. 11). DNA­

transfected and virus-infected cells gave essentially similar patterns with the

same antisera, which precipitated the gag-r08 fusion product, P68. Recognition

of P68 by TBR serum was apparently via the gag peptide in P68. The appear­

ance of P68 as a doublet in virus-infected cells has been observed previously (17),
and apparently reflects the existance of a variant in the UR2 stock. The V8

digestion pattern of the two species are identical (Ellen Garber, unpublished), and

only a single species is seen after a kinase assay. In addition, only a single species

migrating at 68 kd is detected after metabolic labeling or kinase assay of proteins

extracted from CEF transformed by the molecular clone. For assaying the kinase

activity, cold cell lysates prepared from UR2/UR2AV-transfected CEF were

immunoprecipitated with TBR or anti-gag serum and incubated in vitro with

h32p]_ATP. Fig. 12 shows the results of this assay, which indicates that P68

was associated with protein kinase activity. The much lower level of P68 kinase

activity in the transfected cell lanes compared with that in virus-infected cells

was due to the fact that only about 20% of the transfected cells were

transformed at the time of the experiment, as opposed to complete transforma­

tion in the virus-infected culture. The radioactivity in the control TBR lane is

due to phosphorylation of IgG by a contaminating kinase in the antiserum (Ellen



Fig. 11. 35S labeling of proteins from UR2 and UR2AV DNA transfect­

ed cells. Cell lysat es prepared from cR2 and CR2AV transfected CEF that had

been labeled for 5 h with 500 uCi per 6 cm plate of [35jS-methionine were immu-

noprecipitated with TBR or anti-gag serum. The immune complexes were sub­

jected to electrophoresis on an SDS 5-15% polyacrylamide gradient gel. 35S_
labeled proteins from cell lysates of uninfected and L'R2(CR2AV)-infected CEF

were analysed in parallel.
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Fig. 12. Protein kinase assay of UR2 and UR2AV DNA transfected cell

extracts. Cell lysates from CEF transformed by the molecular clones were pre­

cipitated with TBR or anti-gag serum and incubated in vitro with [132p]ATP.
The phosphorylated proteins were analysed on an SDS 8.5% polyacrylamide gel.

Cell lysates prepared from uninfected and UR2(UR2AV)-infected CEF were treat­

ed similarly and used as controls.
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Garber, unpublished). The non-P68 bands seen In the virus-infected culture In

Fig. 12 were most likely due to incomplete washing of the immunocomplex. It

was observed before that IgG could be phosphorylated by P68, in particular when

TBR serum was used in the immunoprecipitation (17).
The above studies show that molecularly cloned UR2 and UR2AV DNA are

biologically active and indistinguishable in effect on CEF from their respective

parental viruses.

Although UR2 DNA could readily induce transformation of CEF when

cotransfected with UR2AV, so far I have not been able to transform a rat cell

line, 3Y1, with UR2 DNA. Under similar conditions, 3Yl cells could be

transformed by either SR-A or FSV DNA (38, 62, L.-H. Wang, unpublished data).

The reason for the failure of UR2 DNA to transform 3Yl rat cells is not clear. It

is possible the promoter sequence in UR2 DNA might not be efficiently recognized

in the rat cells, or that a second oncogene may be required for ros to induce com-

plete transformation of rat cells (31).

Restriction maps of UR2 and UR2A V DNAs.

Restriction maps of UR2 and UR2AV were constructed by two methods. In

the first approach, 32P-end-Iabeled DNA was partially digested with restriction

enzymes and analysed by gel electrophoresis. In the second approach, restriction

enzyme-digested, unlabeled DNA was hybridized with gene-specific probes to

determine the physical order and the genetic content of the DNA fragments. The

results of such mapping for UR2AV and UR2 DNAs are shown in Fig. 13.

The UR2AV DNA containing two LTRs is 8.0 kb and several of its restric­

tions sites are similar to those of Rous-associated virus-2 (RAV-2) (51). The

Kpnl, Sstl, and BamHI sites in RAV-2 are conserved in UR2AV. A HindIIl site in

RAV-2 is also conserved in UR2AV, although UR2AV contains two extra HindIIl
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Fig. 13. Restriction map of cloned UR2AV DNA. UR2AV proviral DNA

was purified from clone 14-1, and restriction enzyme sites were determined. S,

SstI; B, BamHI; E, EcoRI; X, XbaI; K, Kpnl. The genetic structure was deter­

mined by hybridization of UR2AV restriction fragments to probes specific for

various regions of the RSV genome. The UR2 DNA was included here for corn-

parison to show the helper virus-related and TOS sequences.
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sites in the env region. Similarly, UR2AV shares with RAV-2 two EcoRI sites,

yet has an additional EcoRI site in the middle of the UR2AV genome. It does

not contain an EcoRI site in the LTR, as does RAV-2.

By comparing the restriction maps of UR2AV and UR2 DNAs, the gag-ros

and ros-en» borders may be determined. Construction of a detailed map of UR2

(Fig. 14) allowed a more precise definition of the gene borders than those deter­

mined before (82). UR2 DNA has a single EcoRI site. There is no corresponding

EcoRI site in UR2AV DNA, suggesting that this site is located within the ros­

specific sequence. The gag-ros boundary appears to be located very close to the

Hadl site immediately upstream from the right-hand EcoRI site, because the 460

bp Hadl B fragment hybridized strongly to a UR2 representative probe and

weakly to a UR2AV representative probe and the 5' gag probe (data not shown).

The Pvull B fragment appeared to contain only ros sequence since it hybridized

only to the UR2, but not the UR2AV, cDNA probe. The ros-en» boundary was

mapped between the Pvull site and the second A val site from the left, because

the Aval B fragment hybridized to both the UR2 and UR2AV cDNA probes (data
not shown). Since the A val B fragment could not hybridize with gag, pol, and c

probes, I inferred that the sequence present in this DNA that was hybridizable

with UR2AV cDNA must be the env sequence. The mapping is consistent with

the previous finding that two highly conserved env-specific oligonucleotides, spots

11 and 12a, located at 96 and 594 nucleotides, respectively, upstream from the

termination codon of gp37 of the SR-A genome, were present in the UR2 genomic

RNA (82). Given the estimates of these borders, ros is about 1.2 kb in length.

From the results of the restriction enzyme analysis, I concluded that the 002

genome is 3.4 kb in length, containing in the middle about 1.2 kb of transforming
sequence, ros. UR2 shares with UR2AV 0.8 kb of 5' leader and �gag and 1.4 kb

of 3' � env and c sequences.
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Fig. 14. Restriction map of cloned UR2 DNA. The 3.4 kb UR2 DNA

insert was isolated from pUR2 and restriction sites were determined as described

in Materials and Methods and the Results sections. The numbers in the boxes

indicate the length in bp of the individual restriction fragments. The sizes of res­

triction fragments AvaI E, AvaI F, Bgffi B, NC'tD and HindIII Care 160 bp, 120

bp, 125 bp, 125 bp, 60 bp, and 67 bp, respectively.
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Homology between e-ros and other transforming genes.

Previous comparison of the ros sequence with those of src, Ips, and yes by

liquid hybridization between viral RNAs and cDNAs specific to individual v-onc

sequences detected no significant homology between ros and the rest of the ASV

transforming genes (61). However, it is possible that the homology may be res­

tricted to a small region of ros and thus can not be easily detected by hybridiza­

tion between total viral RNA and the cDNA probe representing the entire

domain of a v-onc gene. To test this possibility, we undertook the approach of

subdividing the ros sequence by digestion with enzymes known to cut within ros

and hybridizing the individual fragments with probes prepared from other v-onc

Di'\As. Probes derived from the 3' regions of src, [ps and yes were used since

these regions were shown to contain the sequences conserved among those

transforming genes (29, 60, 62). The results are shown in F][.:. 15. No significant

hybridization was detected between v-ros and v-yes even under conditions of low

stringency (35% formamide, 5X SSe), although the v-yes probe cross-hybridized

with the 3.1 kb EcoRI fragment of SR-A (from pTTI07) containing the entire v­

src sequence as well as with the 0.75 kb PstI 3'-src specific fragment (from

psrcB). The high degree of amino acid sequence homology within the C-terminal

half of ppBOsrc and pp90Yes has been shown previously (9, 29). Hybridization of

this v-yes probe to UR2 DNA fragments containing gag and env sequences and to

UR2AV DNA is apparent in Fig. 15A. This was due to contamination of the

yes-specific probe with helper virus-related sequences of Y73, since the 1.1 kb 3'

v-yes fragment was slightly contaminated with the 1.4 kb gag-5' yes fragment

and the 1.5 kb fragment containing the env and LTR region of Y73 (29). The

1300 bp NruI·B fragment (Fig. 14) hybridized to this 3' yes probe, apparently due

to the env sequences present in this DNA. Neither of the res-specific fragments

(HincH Band PvuTI B) hybridized with the 3'-yes probe.



Fig. 15. Homology between v-ros and 3' v-onc regions. UR2 DNA insert

was digested with restriction enzymes cleaving within r08 to yield 5'- and 3' ros­

specific fragments. pTTI07 and psre6 sre-containing plasm ids (see text) and the

pBRF04 Ips-containing plasmid DNA were cut with the appropriate enzyme to

free the one insert. The amount of each DNA added per well was adjusted to

yield approximately 50 ng of each one DNA fragment containing the putative re­

gion of homology. The DNAs were fractionated on 1% agarose gels and

transferred to nitrocellulose filters. The probes used in each hybridization were:

(A) 1.1 kb PstI fragment from >..-Y73; (B) 0.9 kb PvuII fragment from pTTI07,

(C) 0.75 kb PvuII - EeoRI from pUR2, (D) 0.4 kb BamHI insert from pBRF04,

and (E) 0.3 kb AvaI - EeoRI fragment of pUR2.
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As shown in Fig. l5B, no hybridization between v-src and v-ros sequences

could be detected, although intense hybridization of the v-src probe to pTTI07

EcoRI and psrc6 Psti was seen. The upper band of the doublet in the psrc6 lane

represented the partially digested, linearized psrc6; the lower band, which hybri­

dized with much less intensity, was the pBR322 vector. The insert src DNA used

as probe might not have been completely purified from the pBR322 vector after

one cycle of gel purification. The EcoRI-PvuII ros-specific probe hybridized to

the expected ros-containing but not to the src-containing DNAs (Fig. l5C).

However, under low as well as under moderate (50% formamide, 3X SSC)

stringency, the 400 bp probe representative of the 3' conserved region of v-Ips

(the BamHI insert from pBRF04, 62) hybridized significantly to v-ros (Fig. 15D).
Aval cleaves UR2 into 6 fragments (Fig. 14), four of which contain portions of

the entire v-ros: the 460 bp A val C fragment covers the gag-ros junction includ­

ing approximately 300 bp of 5' v-ros; the 160 bp Aval E and the 300 bp AvaI D

fragments contain only internal v-ros sequences; and the 550 bp AvaI B fragment

contains approximately 450 bp of 3' ros plus env sequences. Only the 300 bp

A val D fragement hybridized with the v-fp» probe. Conversely, a probe made

from the AvaI D fragment hybridized to the 400 bp 3' v-fps DNA fragment (Fig.
15D and 15E). BgllI cleaves UR2 DNA into the 125 bp B fragment that covers

the 5' portion of the Aval D fragment, and the 3275 bp A fragment containing
the rest of the genome (Fig. 14). The v-fps probe hybridized only to the 3275 bp

BgllI A fragment (Fig. l5D), indicating that the sequences homologous to v-fps

were contained within a 175 bp ros sequence between the BglII and AvaI sites.

However, the possibility that failure to detect the BglII B fragment might be due

to the inefficiency of DNA transfer cannot be excluded.

The location of Ips-related sequence within v-ros is reminiscent of that of v­

abl (52) among the transforming genes coding for tyrosine protein kinases. We
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checked the homology between v-ros and v-abl. Using a probe derived from the

5' 1.2 kb of v-abl DNA (54), no significant hybridization could be detected (data

not shown).

Nucleotide sequence of the UR2 genome.

The sequencing strategy of pUR2 is shown in Fig. 16. Since pUR2 was

derived from a UR2 circular DNA molecule cut with EcoRI, the UR2 genome in

this clone is permuted with respect to the EcoRI site in ros (Fig. 16). However,

the complete UR2 genomic sequence (shown in lower case letters) is presented in

Fig. 17 as colinear to the viral RNA genome which begins at the predicted cap

site (nucleotide 1) and ends at the polyadenylation site (nucleotide 3165). The

gag-ros fusion protein P68 begins with the initiator amino acid methionine of pI9

at nucleotides 380-382. The ros-specific sequence is fused to gag at nucleotide

position 831. The coding sequence of the transforming protein P68 ends with an

ochre stop codon at nucleotides 2036-2038. The v-ros non-coding region contin­

ues down to nucleotide 2103, and the �gp37 envelope sequence resumes after­

wards. The UR2 LTR is 326 bp long.

Previous restriction enzyme analysis of UR2 DNA showed that UR2 shares

with its helper virus, UR2AV, 0.8 kb of 5' and 1.4 kb of 3' sequences (46). Since

I have not sequenced UR2AV, I compared the UR2 sequence with those of PR-C

RSV (57) in the regions of gag and env in order to determine possible sites of

recom bination between UR2AV and cellular ros in the generation of UR2. As can

be seen in Fig. 18, the UR2 sequence diverges from that of PR-C RSV down­

stream from nucleotide 830 in the 5' region of ros and converges after nucleotide

2103 in the 3' ros region. I concluded that the 5' and 3' recombination sites

between UR2AV and e-ros must be at or very close to nucleotides 831 and 2103

in the p19 and gp37 regions, respectively. The total length of ros is 1273



Fig. 16. Rest.r ict.ion enzyme cleavage map and nucleotide sequencing

strategy of the UR2 genome. The transforming sequence, ros, of the permut­

ed lJR2 molecular clone, pUR2, is defined by the heavy line. The arrows indicate

the direction and approximate extent of sequence determined by either the

Maxam-Gilbert (39) or Sanger (55) method. Abbreviations for the restriction en­

zymes are as follows: A, AvaI; B, BamHI; E, EeoRI; H, HindIII; Ha, HaelI; N,

Netl; P, PvuII; S, SstJ.
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Fig. 17. Complete nucleotide sequence of the UR2 genome and deduced

amino acid sequence of P6S and �gp37. The nucleotide sequence from the

predicted cap site (nucleotide 1) to the polyadenylation site (nucleotide 3165) in

UR2 DNA is shown by the lower case letters. Each amino acid is represented by

a capital letter shown under the second nucleotide of the triplet codon. The R,

U5 and U3 regions of the LTR, the primer binding site (PBS), the polypurine

tract (pp tract), the polylA) signal (PA), and the TATA box are indicated by

heavy lines underneath these sequences. The dashed line under amino acid nos. 8

through 36 of the T08 region indicates the hydrophobic region of the T08 polypep­

tide presumed to be important in membrane association. Nucleotide number is

given at the end of each row of sequence, and every ten nucleotides are marked

by a period over the tenth nucleotide. The one letter symbols for the amino

acids are used: A, ala; C, cys; D, asp; E, glu; F, phe; G, gly; H, his; I, ile; K, lys;

L, leu; M, met; N, asn; P, pro; Q, gln; R, arg; S, ser; T, thr; V, val; W, trp; Y,

tyro
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Fig. 18. Junctions or ros and UR2AV-derived sequences. The numbers

refer to the nucleotide positions of UR2 sequence shown in Fig. 17 and to the

published PR-C RSV sequence (57).
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nucleotides.

Extensive homology was found between the UR2 sequences outside ros and

the corresponding sequences of other avian viruses. Within the 5' 380 bp noncod­

ing sequence of VR2, there are 22, 30 and 19 scattered single base changes rela­

tive to RAV-2 (7), Y73 (29), and PR-C (57), respectively. These changes include

one deletion at nucleotide 371. This change (A in UR2 replaces TG in PR-C)

occurs immediately upstream from the initiation site for translation. It has been

suggested (7) that this upstream region is important for efficient mRNA transla­

tion; we do not know whether this change in any way affects the translation of

VR2 genomic RNA. Sequences within the binding site for the tRNA primer (PBS)
are completely identical to other avian viruses.

The pIg amino acid sequence of VR2 differs from that of PR-C and Y73 by

three and two amino acids, respectively. It is not clear whether these amino acid

changes affect any of the pI9 antigenic determinants; however, P68 could still be

efficiently precipitated by the anti-gag serum apparently by the remaining p19

peptide (see Fig. 21). The gp37 sequence of UR2 is well conserved relative to

PR-C, Y73 and RAV-2 except for the carboxy-terminal region. The termination

codons of gp37 in VR2 (at nucleotides 2627-2629), Y73 and RAV-2 occur 10 bp

further downstream than that in PR-C, and there is considerable divergence in

this region, especially in the stretch spanning the 13 carboxy-terminal amino

acids of gp37 in UR2.

In the V3 region, 18 to 31 base changes were found when compared with

other avian viruses including RAV-2, Y73, PR-C RSV and SR-A RSV (67). 12 of

these changes are in positions unique to UR2, and 8 of these occur in the 3' third

of V3. In addition, there are stretches of deletions and insertions. In particular,
a stretch of 17 bp in the middle of V3 (nucleotides 3023 to 3040 in VR2) is

marked by variable deletions in Y73, PR-RSV and SR-RSV, but not in RAV-2
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and UR2. These changes in UR2 apparently have no pronounced effect on the

efficiency of transcription since UR2 RNA is produced in comparable amounts in

UR2-infected cells relative to the amounts of viral RNAs produced in other ASV

transformed cells (46, 82, unpublished data). The universal signal sequences for

transcription and processing of mRNAs are conserved in all viruses. Sequences in

the inverted repeat regions found at both ends of the LTR, and in the polypurine

tract, are also conserved in UR2. In addition, a region corresponding to the

sequence suggested to be involved in RNA packaging is also present in UR2 (64).

An additional HindIII site 67 bp upstream from the HindIIT site 3' to ros

detected previously by restriction enzyme mapping was discovered after sequenc­

ing the entire 3' region of the UR2 genome (Fig. 17).

Structural domains and reading frames in the UR2 genome.

The location of open reading frames in the region spanning nucleotides 380-

3000 of UR2 is shown in Fig. 19. A long open reading frame in frame 2, begin­

ning with an AUG codon at nucleotide 380 and ending in an ochre stop codon at

nucleotide 2036, encodes the UR2 transforming protein P68. The other open

frame in frame 2 represents the Agp37 sequence. The next largest sequence with

an open reading frame is the 111 amino acid stretch in frame 1; all other open

frames are less than 40 amino acids in length. All the deduced amino acid

sequences of these reading frames except Agp37 begin with an initiator

methionine. It is unlikely that those open reading frames other than the one cod­

ing for P68 are translated because subgenomic mRNAs have not been detected in

UR2-transformed cells (82).

The size of the ros coding region is 1205 bases. A non-coding sequence of 65

bp follows the ochre stop codon of ros and contains four termination codons ,

three of which are immediately adjacent to each other.



Fig. 19. Location of sequences with open reading frames within the

UR2 genome. Considering the predicted cap site as nucleotide 1 of the se­

quence presented in Fig. 17, the genome was translated in all three frames. Only

the region spanning nucleotides 380-3000 is shown here.
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As deduced from the DNA sequence, P68 contains 552 amino acids, of which

150 are encoded by gag and 402 are encoded by r08. The transforming protein

has an apparent' molecular weight of 68 kd as estimated from SDS­

polyacrylamide gel electrophoresis (17), but the predicted molecular weight of the

deduced amino acid sequence is 61,113 daltons. It is unlikely that this

discrepancy is due to glycosylation of the protein, because in vitro translation of

the genomic 24S UR2 RNA yielded a protein product of 68 kd (17). Unusual

amino acid composition such as a high percentage of cysteine or proline could

cause extensive folding and change the relative mobility of the protein in SDS­

polyacrylamide gels (20, 78). The amino acid composition of P68gag-ros shows

that proline comprises only 5.2% and cysteine 2.35% of the protein, so this prob­

ably does not account for the 6.8 kd higher apparent molecular weight. It is pos­

sible that phosphorylation of specific amino acid residues in vivo may alter the

migration of the protein.

The hydrophilicity profile of the r08 domain of the fused protein P68gag-ros

(Fig. 20) revealed one amino- and one carboxy-terminal hydrophobic regions

(shaded area in Fig. 20). The amino-terminal hydrophobic region is 29 amino

acids long (underlined in Fig. 17) and is characterized by a stretch of 13 consecu­

tive hydrophobic amino acids, and is flanked by an acidic residue (aspartic acid)

immediately upstream and a basic residue (arginine) two amino acis downstream

of this sequence. The carboxy-terminal hydrophobic region (from amino acids

448 to 456, Fig. 21) contains nine hydrophobic amino acids flanked by an aspartic

acid and a glutamic acid at N- and C-termini, respectively. With the exceptions

of the r08 and abl (54) proteins, this hydrophobic region is interrupted by serine

in all other tyrosine kinase oncogene products (Fig. 21). P68 in UR2-transformed

CEF remained associated with the plasma membrane during cellular fractionation

even under conditions of high salt (300 mM) (E. Garber et. aI., personal



- 49-

'"'

.:5
�

�
i

...., --1 I I
c:::

I1\
1

II

1\1

�
'I

ii� i: Ii� II,
I

Ji
:1

l
I'

n !" I �1,\
>- I , '

II ,i\ � I I'
- l 1\ ,

I
I! I'

V J I'
\ I ! \

, I

I � 1\ I \ : � ; I �!.s: I I I I

�i \ I I
' I'o, I' ; � I ! I�0 'II , 1\'! � j

I ,(' ,Ii I.... II' Ii /: j' �II" I
""0 �11. i : I 1/: r I , \

I I, j,>-
C

' ! 111\.'1 t
'

J: .4 t' 1/,; I I I

r
I

'

i 1,1, •

�r�!l II I : :\1,:1
4 /// \ : r

i' i

IJli l1 tl/ //�

l'l'l
/'

\1 "
·

I' ,) i;

V�[ ['
�

�Ii ), I,� � / I) �-I I
� �

_1
' l/ , �

- -j If! VI
� fl!)j \ 11 :1

l �
I,
�

-2 I

0 1[10 20J 30J 4C

Amino Acid

Fig. 20. Hydrophilicity analysis of the deduced amino acid sequence of

r08. Positive values on the Y axis denote hydrophilic stretches of amino acids,

and negative values denote hydrophobicity. The two cross-hatched areas indicate

the extensively hydrophobic regions of r08.



- 50-

communication). The amino-terminal hydrophobic region is long enough to span

the membrane, and we speculate that this region may be responsible for the asso­

ciation of P68 with the plasma membrane.

Comparison of P6#ag-ros with other protein kineses.

The region of the deduced amino acid sequence of P68 was compared to the

analogous domains of the proteins encoded by the viral oncogenes src (11, 12,

69), yes (29), [ps (60), Jms (23), erb B (87), Jgr (45) and abl (54) as well as the

catalytic subunit of the cyclic AMP-dependent bovine protein kinase (5, 63) (Fig.

21). Certain highly conserved regions are immediately apparent. The lysine resi­

due which is the proposed ATP-binding site of BPK is conserved in ros (amino

acid no. 283), and so is the characteristic sequence Leu-Gly-X-Gly-X-Phe-Gly-X­

Val 15 to 20 residues upstream from the binding site (5). This region is highly

conserved in all the kinases under comparison and is likely to be an important

structural domain. Two other highly conserved regions include a 26 residue

stretch 28 amino acids upstream from the putative phosphotyrosine acceptor site

(amino acid no. 419, marked with an asterisk), and the 28 amino acid stretch 6

amino acids downstream from this site (found in row. 5-7 in Fig. 21). Among the

kinase related oncogenes, Jgr and raJ (not shown in Fig. 21) lack demonstrable

kinase activity (37, 45) although they share regions of conserved amino acid

sequences. It is interesting to note that the circled amino acids of ros, which

denote amino acids different from the rest of the tyrosine protein kinases, occur

at the N-terminal regions of both of the two highly conserved sequences. Further­

more, ros contains a unique 6 amino acid insertion (amino acid no. 391-396)
within the highly conserved region, in addition to two other insertions at posi­

tions 344 to 346 and 352 to 353.

I have aligned the tyrosine residue at amino acid no. 419 of ros with the



Fig. 21. Comparison of the amino acid sequences within the conserved

region of protein k inases encoded by ros and other oncogenes and the

catalytic subunit of the bovine protein kinase gene. The 3' no. 246

through 513 amino acids of P68gag-ros have been aligned to show homology with

the other protein kinases. They are: abl (Abelson murine leukemia virus, 54); Ips

(Fujinami sarcoma virus, 60); src (SR-A Rous sarcoma virus, 11, 12, 69); yes (Y73
sarcoma virus, 29); erbB (avian erythroblastosis virus AEV-H, 87); Igr (Gardner­
Rasheed feline sarcoma virus, 45); [ms (McDonough strain of feline sarcoma virus,

23); and BPK (catalytic subunit of the cyclic AMP-dependent protein kinase from

bovine cardiac muscle, 63). Amino acid number is given preceding each row of se­

quence. The putative phosphotyrosine acceptor site of v-ros (amino acid no. 419)
is marked with an asterisk. Regions of conserved amino acids among the proteins

are boxed. Amino acids of ros at positions 365, 370 and 426 are circled to show

the unique differences from the rest of the tyrosine protein kinases.
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known tyrosine phosphoacceptors of the other protein kinases. The region sur­

rounding the tyrosine phosphoacceptor site appears to be somewhat conserved,

although its essentiality is not clear, in several tyrosine protein kinases (Y73 P90,

PR-CII PI05, p60src and ST-FeSV P85) in that the phosphotyrosine is located

seven residues to the carboxy-terminal side of a basic amino acid (arginine or

lysine) and either four residues to the carboxy-terminal side of or adjacent to a

glutamic acid residue (50). However, the likely phosphoacceptor tyrosine residue

at position 419 of roe is four residues and two residues to the carboxy-terminal

side of a lysine and an aspartic acid, respectively. No tyrosine-containing pep­

tides in the deduced amino acid sequence of P68 concur with the above proposed

consensus sequence. This implies that there is some degree of flexibility with

respect to primary amino acid sequence at the phosphotyrosine acceptor site.

Although P68gag-ros is phosphorylated on serine residues in vivo (17), I cannot

speculate which residues in particular are possible phosphorylation sites.

The N-terminal 95 amino acids of r08 upstream from the region compared in

Fig. 21 vary greatly from the corresponding domains of other protein kinases, and

are characterized by a long stretch of hydrophobic sequence mentioned above.

Previous hybridization of roe DNA to Ips, src, yes and abl DNAs detected

significant homology only to Ips (46). However, there is greater amino acid

homology among r08, abl and src than between r08 and Ips. This is due to

degeneracy of the triplet code. The longest stretch of nucleotide homology

between r08 and Ips has been localized to the region upstream of the tyrosine

phosphoacceptor site, where the sequences are identical for 40 nucleotides, with

the exception of a single base change at the 18th position within this sequence.

It is evident from the deduced amino acid sequence that P68 is a member of

the tyrosine protein kinase family. Aside from the unique amino acid changes
and insertions within the conserved domain of the protein kinases compared here,
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P68 contains two distinctive highly hydrophobic regions, III particular in the 5'

region of ros. Any combination of these changes could be responsible for modu­

lating the P68 activity and for the specific interactions between P68 and its cellu­

lar targets that lead to the unique elongated transformed CEF morphology.
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Section IV. Results

[e-ros]

Heteroduplez and restriction mapping of e-ros.

A recombinant DNA clone containing sequences homologous to v-ros was iso­

lated from a library composed of partially-digested chicken genomic DNA cloned

into Charon 4A with EcoRI linkers by Masabumi Shibuya in our laboratory. v­

ros is permuted at the EcoRI site in pUR2, and an uninterrupted ros sequence

was desired for heteroduplex mapping with the lambda e-ros clone. Therefore,

the EcoRI insert from pUR2 was freed from the vector, ligated, cut with HindIll

and subcloned into the HindIII site of pBR322. Heteroduplex mapping of the

lambda e-ros DNA with the HindIII insert DNA, done in collaboration with

Ming-Ta Hsu at this University, showed that the v-ros homologous sequences in

e-ros are distributed in eight exons, ranging in size from .11 to .19 kb, and are

interrupted by seven introns, ranging in size from .3 to 3."8 kb (Fig. 22). The

polarity of e-ros was oriented by the unequal length of the the 5' 1.3 kb and 3'

0.9 kb UR2 sequences not in the complex. The size of the exons and introns were

calculated as the average values from the measurement of 30 heteroduplexed

molecules (data not shown).
When CEF DNA was analysed by digestion with various restriction enzymes

and subsequent hybridization of the restriction fragments with probes 150-250 bp

in length derived from various regions of v-ros, the cellular ros gene appeared to

be distributed over 11.7 kb, which was in good agreement with the results from

electron microscopy. Analysis of the lambda recombinant clone, using the same

restriction enzymes and hybridization probes as for CEF DNA, agreed fairly well

with the results from heteroduplex mapping and CEF analysis. The presence of



Fig. 22. Heteroduplex mapping of pUR2 with Xc-ros DNA. The EeoRI

insert of pUR2 was freed from the vector, ligated, digested with HindIII, recloned

into the HindIII site of pBR322 and cut with SstI to provide a non-permuted v­

ros gene. Heteroduplex mapping was done in collaboration with Ming-Ta Hsu at

this Institute.



UR251

3'



- 56 -

partially-digested DNA after restriction enzyme digestions of CEF DNAs

obscured a complete analysis of the e-ros DNA, but analysis of the lambda e-ros

clone by 32p end-labeling and partial restriction enzyme digestion, and by South­

ern blotting analysis using the same v-ros DNA probes mentioned above, enabled

me to construct a restriction map to orient the e-ros clone relative to v-ros and

to determine the approximate introri/exon boundaries (Fig. 23).

Sequencing of cellular ros.

The e-ros insert from the lambda clone contains two EcoRI sites (Fig. 23),

and can be digested with EcoRI into 5' 5.2 kb, internal 9.7 kb, and 3' 1.7 kb

fragments. These EcoRI DNA fragments were subcloned into pBR322. Each

fragment prepared from the pBR322 clones was further divided into several res­

triction fragments and subcloned into an MI3 phage vector for Sanger dideoxy

sequencing (Fig. 23). I am currently sequencing the region I believe to contain

the 65 bp exon 4.

Fig. 24 details the differences found between viral and cellular ros. In exon

one, there is a 9 bp insertion in v-ros which adds 3 hydrophobic amino acid resi­

dues (specifically serine, leucine and threonine) to the carboxy end of the amino­

terminal hydrophobic region of viral ros. Therefore, v-ros contains a stretch of

29 and e-ros a stretch of 26 hydrophobic residues. The sequence inserted in v­

roe, GCTTGACTA, is a direct repeat of the immediately preceding 9 bases. The

26 amino acid hydrophobic stretch in c- ros is still of sufficient length to span the

plasma membrane.

Additionally, a single base pair change has been noted in exon nine: C in c­

ros has been changed to an A in v-ros; however, the amino acid, arginine, is con­

served.

The 3' ends of viral and cellular ros diverge before the termination codons



Fig. 23. Restriction enzyme cleavage map and nucleotide sequencing

strategy of Xc-ros. Exons are denoted by the black boxes. The arrows indicate

the direction and extent of sequencing determined by the Sanger method (55).

Abbreviations for the restriction enzymes are as follows: A, Aecl; B, BamHI; C,

ClaI; H, HindIII; Ha, HaeIII; Hi, Hinjl; N, Neol; P, PstI; Pv, PvuII; R, EeoRI; RV,

EeoRV; S, SstI; St, Stul.
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Fig. 24. Sequence of v-ros homologous sequences in e-ros. Exon boun­

daries are denoted below the sequence in addition to any changes occurring in v­

ros. Ellipses under the exon 4 sequence indicate it has not yet been sequenced.



10 20 30 40 50 60

ATACTGTGAC CTCTCCAGAT ATCACTGCTA TTGTTGCTGT GATTGGAGCA GTTGTACTGG

L exon 1

.70 80 90 100 110 120

GCTTGACTAT AATCATACTG TTTGGTTTT:t:ATGGCACCA AAGATGGAAA TCCAGAAAAC
»<;

GCTTGACTA
exon 1 exon 2

130 140 150 160 170 180

CAGCCTCAAC TGGGCAGATT GTGCTTGTCA AGGAAGATAA AGAATTAGCT CAACTTAGGG

190 200 210 220 230 240

GAATGGCTGA GACAGTGGGA TTAGCCAATG CTTGTTATGC TGTCAGCACT CTTCCTTCTC
J.

exon 2 exon 3

250 260 270 280 290 300

AAGCAGAGAT TGAGTCATTG CCAGCTTTTC CTCGGGACAA ACTGAACTTA CACAAGTTGT

310 320 330 340 350 360

TAGGAAGTGG AGCATTTGGA GAGGTGTATG AAGGGACTGC ATTAGATATC CTGGCAGATG

370 380 390 400 410 420

GAAGTGGAGA ATCCAGAGTA GCAGTCAAGA CTTTGAAGAG AGGTGCAACA GACCAAGAGA

.1.........................................
exon3 exon 4

430 440 450 460 470 480

AGAGTGAATT CTTGAAGGAG GCACACTTAA TGAGTAAATT TGATCATCCC CACATTCTGA
...........................................J.

exon 4 exon 5

490 500 510 520 530 540

AGCTACTTGG AGTGTGTCTG TTAAATGAAC CTCAGTACCT TATACTGGAG CTGATGGAAG

550 560 570 580 590 600

GAGGAGATCT GCTTAGCTAT TTACGAGGAG CCAGAAAGCA AAAGTTCCAG AGTCCCTTAC

exon 5
.L

exon 6

610 620 630 640 650 660

TGACATl'GAC TGATCTCTTG GATATATGCT TGGATATTTG CAAAGGTTGT GTCTATTTAG

670 680 690 700 710 720
AGAAAATGCG TTTCATACAC AGGGACCTGG CTGCTCGCAA CTGCCTTGTG TCTGAGAAGC

exon 6 J.
exon 7

730 740 750 760 770 780
AATATGGGAG CTGCTCCCGA GTGGTAAAGA TTGGTGATTT TGGACTTGCC AGAGATATCT

790 800 810 820 830 840
ATAAAAATGA TTACTACAGG AAAAGAGGA::; AAGGCCTACT CCCTGTCAGA TGGATGGCTC

850 860 870 B80 B90 900
CTGAAAGCCT CATTGATGGC GTCTTTACAA ATCACTCTGA TGTTTGGGCT TTTGGAGTCT

exon 7 J_
exon 8

910 920 930 940 950 950
TAGTGTGGGA AACATTAACT TTGGGTCAAC AGCCATATCC GGGTCTCTCC AATATAGAAG

970 980 990 1000 1010 1020
TTTTACACCA TGTACGATCA GGAGGAAGGC TGGAATCTCC GAATAACTGT CCTGATGACA

1030 1040 1050 1060 1070 1080
TACGTGATTT AATGACACGA TGCTGGGCCC AAGATCCTCA CAACAGACCT ACTTTCTTTT
L

exon 9 0
1090 1100 1110 1120 1130 1140

ATATTCAGCA CAAACTGCAA GAGATAAGGC ACTCTCCACT GTGCTTCAGC TACTTCCTTG

1150 1160 1170 1180 1190 1200
GAGACAAAGA GTCAGTGGCT GGTTCATCAA CCAAGCTTTT GAGGGTAAGC CTGGGCAGTG

Ldivergence .....

1210 1220 1230 1240 1250 1260
CTGTCCCCAC AGCTTTTGCC CAAACCTGCA ACAGTGTAAA CGTAGAATCA CAAAATGGCT

1270 1280
TAGGTTGGAA GGGACCTTAA
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of both genes (Fig. 25). In UR2, as described above, the stop codon of viral ros is

followed by a noncoding region of 65 bp that includes four more in frame termi­

nation codons. However, e-ros and v-ros abruptly diverge 36 bp or 12 codons

upstream of the v-ros stop codon. e-ros continues for 102 bp or 34 amino acids

before reaching a termination codon (Fig. 25A). However, there is a splice donor

sequence, AGG-GTAAGC (dashed box in Fig. 25A) 21 bp (or 7 amino acids) after

the divergence, and a splice acceptor, CTTCAATTTCCCCATTAG-C, approxi­

mately 525 nucleotides from the GT dinucleotide of the donor site. If these sites

are used for splicing, then c-ros would continue for an additional 9 amino acids

before termination (Fig. 25B). There are two additional possible splice donor

sites just upstream of the possible splice acceptor; however, no other possible

splice acceptor consensus sequences were found. The 3' 1.4 kb downstream of the

divergence in c-ros does not contain an AAUAAA sequence; although the variant

poly(A) signal AGTAAA, found in MTV and BaEV (71, 74), is found in a single

copy, the consensus sequence YGTGTTYY (40) was not found downstream. No

other sequences corresponding to the two other known variant poly(A) signals,

AVUAAA and AAUAUA (1, 35, 73), were found. The 3' 500 bp of the c-ros

clone is marked by stretches of As and Ts.

There is no homology between the 3' divergent region of v-ros and the 1.4 kb

3' noncoding sequences in the C-TOS clone, nor is there any apparent homology

between the v-ros divergent region and any viral or chicken genes sequenced to

date. Hybridization of a probe containing only the v-ros divergent sequence to

CEF DNA is under progress to determine whether this region might be part of e­

ros sequences found further downstream, or whether it might have arisen from

another locus in the chicken genome.

These results suggest the c-ros protein differs from v-ros for the 12 carboxy­
terminal amino acids of V-T08, although it is unclear how much larger the
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Fig. 25. Comparison or the 3' ends or viral and cellular r08. A. Deduced

amino acid sequence of 3' e-ros if ochre stop codon (boxed) is used. Potential

splice donor is shown in dashed box. B. Deduced amino acid sequence of 3' e-ros

if splice donor (upper case letters) is used, showing potential splicing to the

acceptor signal (upper case letters) approximately 525 bp downstream.
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carboxy-terminus of e-ros may be. Several oncogenes, including src, myc, myb,

and [os, differ from their viral counterparts in the C-terminal region.

In UR2, the 5' end of v-ros is fused to the 3' coding region for pIg, and P68

uses the UR2 promoter and the initiator methionine of gag. The beginning of v­

ros corresponds to a consensus splice acceptor sequence in e-ros (Fig. 26). 340 bp

upstream of this splice acceptor has been sequenced, and there are stop codons

both in and out of frame relative to v-ros. In addition, there do not appear to be

any promoter sequences, indicating there exists an additional upstream exon (or

exons) in c- ros. Preliminary sequencing of the corresponding region of the

UR2AV molecular clone 14-1 reveals a splice donor signal (Fig. 26). This suggests

that the viral ros and �gag junction in UR2 was formed by splicing.

Fig. 27 shows the splice acceptor, the size of the exon, and the splice donor

for each known exon of e-ros. The exons range in size from 65 to 204 bp. The

sizes of the exons and introns even within the conserved kinase domain do not

appear to be conserved when compared with those of c-fps and c-src (27, 70).

Expression of cellular ros.

To study the expression of c-ros, I extracted polY(A)-containing RNA from

chicken and quail embryo fibroblasts as well as from HeLa, 3Y1, 3T3, and QT6

cell lines (human, rat, mouse and quail origin, respectively). The RNA was dena­

tured by treatment with glyoxal, and 20 ug of each RNA species was analysed by

Northern blotting using using a ros-specific probe (Pvull B fragment, Fig. 14)
under conditions of low stringency (35% formamide, 5X SSC). No res-specific

transcripts were detected; however, hybridization with a src-specific probe

showed strongly hybridizing bands corresponding to expected c-src transcripts
from CEF, QEF, and QT6, and fainter bands from 3Y1 and 3T3 cells not

expressed, or expressed at an
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v-ros

UR2
...­

CCACACCTAAAACCGTTG atact

c-ros

...­
TCCCCTTCTATTTAACAG atact

(c) NCAG-G
TnTacceptor consensus

UR2AV
�
TTG gtacat

donor consensus

Fig. 26. Comparison of the 5' regions of the junctions of viral and cellu-

lar rose The consensus splice signals are shown, as well as the corresponding

region from UR2Av.
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Fig. 27. Exon size, splice acceptor and splice donor signals in c- rose
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extremely low level (less than one copy per cell) in those cells. However, the pos­

sibility that the e-ros transcript is very unstable cannot be excluded since I have

been looking at steady-state RNA. Nevertheless, previous analysis using liquid

hybridization and unselected total cellular RNA did not detect e-ros transcripts

in most tissues examined from two week old chickens (61).
I also examined several tissues from chicken at different embryonic and adult

developmental stages to determine the pattern of cellular ros expression in

chicken. Twice poly(A)-selected RNA was isolated from brain, eye, muscle, gut,

heart, liver, and lung, and from extraembryonal membranes, from 12, 14, 16, 18,

and 20 day old chick embryos (lung tissue was not isolated from 12, 14, or 16 day

embryos), and from 2 day and 7 day old chicks. In addition, kidney mRNA was

isolated from 4 and 7 day old chicks. The RNAs were hybridized with a src­

specific probe (Fig. 28) or a ros-specific probe (Fig. 28). Fig. 28 depicts only the

12 and 14 day embryo and 2 day and 7 day chick timepoints. Hybridization with

the src-specific probe as a positive control showed transcripts of the expected size

in the appropriate tissues: a 4 kb transcript was seen in all tissues where src is

expressed except for muscle, where the multiple forms of smaller RNAs were seen

as previously observed by Iijima and Wang (unpublished data). These src tran­

scripts can be detected after a 17-20 hour exposure of the blot with an intensify­

ing screen. However, even after a 96 hour exposure, no obvious evidence of ros

expression is seen after hybridization of the Northern filters to the res-specific

probe.

A faint signal was detected in kidney tissue at the 7 day timepoint; even

fainter was a possible band in adult muscle tissue. To verify these results,

poly(A)-selected mRNA was isolated from kidney at 20 day embryo and 3, 7, 10,

and 14 day old chicks (Fig. 29). A 3.1 kb transcript from muscle was detectable

in 7 day old chick and gave its strongest signal at 10 days. This transcript was



Fig. 28. Expression of C-TOS. Twice poly(A)-selected mR�A from the tissue

indicated was denatured with glyoxal, electrophoresed through a 1 % agarose gel,

blotted onto nitrocellulose and hybridized with a src-specific or a res-specific

probe.
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Fig. 29. Expression of e-ros. Twice poly(A)-selected mRNA from kidney and

muscle tissues from chicken was denatured with glyoxal and subjected to electro­

phoresis througha 1 % agarose gel and transferred to nitrocellulose. Hybridization

was with a ros-specific probe.
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not detectable in 20 day embryo or 14 day chick, suggesting the C-TOB gene IS

activated only briefly in this tissue. Muscle mRNA from chickens one month or

older appears negative for TOB expression (data not shown). A similar sized tran­

script can be found in kidney from 20 day embryo to 14 day old chicks, although

this signal was not seen in mRNA isolated from chickens one month and older.

The TOB mRNA in kidney appears to be more degraged than the correspond­

ing BTC mRNA, and I cannot exclude the possibility that the cellular TOB message

is preferentially degraded in this tissue. It is possible that lack of detectable

transcripts in kidney with the ros-specific probe may not reflect a very low level

of transcription but rather a greater instability of the message. These results are

preliminary; however, it is apparent that in the tissues screened, the cellular TaB

locus is under very stringent control, most likely due to repression of transcrip­

tion.
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Section V. Discussion

Avian sarcoma virus UR2 is a replication-defective virus that can induce sar­

comas in vivo and transforms chicken embryo fibroblasts in culture to a charac­

teristic, extremely elongated morphology (4). The genome of UR2 contains a 1.2

kb transformation-specific sequence, v-ros, which has a homologous counterpart,

c-ros, in normal chicken cellular DNA (61). UR2 was presumably generated by

recom bination between UR2AV and e-ros at the expense of certain replicative

sequences in UR2AV. As a result, ros was fused to the 5' region of the UR2AV

sequence which codes for part of the viral structural protein pIg (82). The fused

pIg and ros sequences in UR2 code for a polyprotein of 68 kd, called P68, which

was found to be associated with a tyrosine-specific protein kinase activity (17).

P68 has similar biochemical properties to the protein kinases encoded by several

other oncogenic viruses, and this functional conservation implies that ros must be

closely related to the tyrosine protein kinase-encoding oncogene family. However,

P68 differs from the kinases encoded by FSV, ASV Y73 and RSV in many enzy­

matic properties. To elucidate the basis of the functional conservation as well as

the differences between ros and other oncogenes, I sequenced the entire genome of

UR2 and compared the predicted amino acid sequence of P68 with other

mem bers of the tyrosine protein kinase family.

The results show that ros is 1273 nucleotides in length, including a 65 bp 3'

noncoding stretch. The deduced amino acid sequence for the UR2 transforming

protein P68 gives a molecular weight of 61,113 daltons and shows that it is

closely related to the oncogene family coding for tyrosine protein kinases. How­

ever, P68 contains two distinctive hydrophobic regions that are absent in most of

the other tyrosine kinases and it has unique amino acid changes and insertions

within the conserved domain of the kinases. Fig. 30 summarizes the structural
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P6S909-ros

y

N-Il-------a..lc::::t-H-----yo,-.-----...&.I-----,LJIH,--..,..-__,I-c

....--- conserved domain ------

�---- Agog------�,---------------------------ros-------------------------

Fig. 30. Structural domains of P68gag-ros. A portion of the pIg region of

gag is fused to r08 at the amino terminus. The amino- and carboxy-terminal

hydrophobic regions (H) are marked with small boxes. The possible phosphotyro­
sine acceptor site (Y) is indicated within the conserved kinase domain of ros.
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domains of P6Sgag-ros.

The cellular homologues of the retroviral transforming genes, called cellular

oncogenes or proto-oncogenes, have been highly conserved during the course of

evolution. Several of the cellular oncogenes are expressed in a tissue-specific

manner, and in many cases the sizes of these transcripts have been maintained

across widely divergent species. It is currently believed these genes play an

important role in cellular growth and/or differentiation, and appear to have an

oncogenic potential that can be manifested after transduction by a retrovirus.

The process of conversion from a normal proto-oncogene to a transforming

oncogene can involve either mutation of the gene or deregulation of the gene, or

both. I have determined the sequence of cellular ros and compared it to that of

viral ros to determine the changes between them that may be responsible for

t heir differential oncogenicity. In addition, I have analysed the expression of the

cellular gene in both em bryonic and adult chickens in an attempt to understand

the normal function of cellular ros.

Conservation of the viral and cellular ros genes.

Viral oncogenes and their corresponding cellular homologues are closely

related. In fact, excluding the 3' divergence, the 1.2 kb v-ros sequence is remark­

ably well conserved when compared with the corresponding region of e-ros. The

v-ros sequences are distributed in nine exons of e-ros over a range of 12 kb of

DNA (Fig. 31). e-ros and v-ros differ only by a 9 bp duplication, a single base

change not resulting in an amino acid change, and the divergence of their 3' ends

(see Fig. 24). The viral reverse transcriptase has been shown to have a high fre­

quency of mismatch (21) and it has been speculated that the scattered nucleotide

changes between viral and cellular oncogenes are a consequence of faulty reverse

transcription during replication (30). UR2 was molecularly cloned from virus



Fig. 31. Derivation of e-ros exon sequences from v-ros. Numbers above

and below the exons (solid black boxes) denote the corresponding nucleotide in

v-ros.



�-vQ.
-

..0
-

� �
-{

\



- 72 -

that had been through a limited number of passages since its isolation from the

original tumor. The striking degree of conservation between viral and cellular ros

may result from limited opportunity for the reverse transcriptase to induce muta­

tions in the viral gene. A similar degree of conservation between viral and cellu­

lar oncogenes for which sequences are known has been observed in ASV PR-CII

where v-fps differs from c-fps by only 4 out of 1700 nucleotides; there are no

amino acid changes (27).

Possible mechanism of transduction of e-ros.

Comparison of the nucleotide sequences of viral and cellular ros suggests the

viral ros and �gag junction in UR2 was formed by splicing (Fig. 32). This is

consistent with insertion of the provirus upstream from the region of e-ros

corresponding to the beginning of v-ros, followed by transcription of the hybrid

DNA and splicing of the transcribed RNA to join �gag to the ros sequence.

Since the beginning of v- ros corresponds to an excellent splice acceptor site in c­

ros, it is more logical to assume the �gag-ros junction has been formed by splic­

ing. However, the possibility exists that the junction was formed by fortuitous

recombination at that position between the virus and C-TOS either at the DNA

level or through an RNA intermediate. Although the UR2AV sequence at the

junction corresponds to a potential splice donor site, this site could be generated

by joining the viral sequence to C-TOS through recombination at the DNA level.

C-TOS and v-ros abruptly diverge 36 bp upstream of the v-ros termination

codon. The open reading frame of e-ros continues after this divergence and may

terminate 34 amino acids downstream, or, more likely,the reading frame is spliced

to further 3' coding sequences using an excellent splice-donor consensus site 27

amino acids downstream of the divergence. The v-ros sequence 5' to the diver­

gence was not found in the 3' C-TOS sequences in the lambda clone or in helper
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UR2AV (-ROS

------_.
flgog

( 1 ) (2 )U3 RU5

11----------

Fig. 32. Mechanism for the generation of the 5' v-ros junction with

UR2AV. e-ros exons are denoted as open boxes. The splice is indicated by the

"v" joining UR2AV and c-ros.
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virus-related sequences. It may represent further downstream sequences In e-ros

that were joined to the upstream r08 sequence via an abnormal splicing of the

virus-c-ros hybrid R�A, or via a recombinational event at the DNA level that

deleted the e-ros sequence in between. This sequence may also represent another

locus fused to V-TOS by a recombinational event subsequent to the transduction of

e-ros. Several viral oncogenes and their cellular counterparts are discontinuous at

their 3' ends. The carboxy-termini of viral and cellular 108 differ due to a 104 bp

deletion in the 3' v-fos sequence (77). The 3' end of v-myb is contained within c­

myb, which continues in frame a short distance before termination, or which, like

C-TOS. may use a splice-donor signal that lies just upstream of the stop codon to

extend the coding sequence (30). The carboxy-terminal 12 amino acids of viral

src are derived from chicken genomic sequences found 1 kb downstream of the c­

src termination codon (49). The interposing sequence in c-ere contains a poor

splice donor consensus, and this sequence may be fused to the 3' end of viral 8TC

by an infrequent splicing event, a DNA:D�A recombination (70), or an

R�A:n!,\A recombination during the process of reverse transcription (49). This

sit uation is analagous to that of c-ros, although the origin of the 3' v-ros diver­

gent sequence is not yet clear.

The exact mechanism of transduction of an oncogene by a retrovirus remains

to be further explored, but the accumulating evidence, including the transduction

of c-ros, suggests that it involves nonhomologous recombination between the

virus and the cellular gene, occurring in one or multiple steps at the DNA level.

followed by splicing of the viral-c-onc RNA transcript. The final junctions may

not reflect the original site of recombination. Formation of the 3' viral-c-ros

junct.ion would involve a second recom binat ion between UR2AV and the viral-c­

ros hybrid RNA at the step of reverse transcription.

Although capture of c-ros by UR2AV has resulted in few changes �ithin the
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transduced region of the cellular gene, it is possible that truncation of the 5'

sequences and/or alteration of the 3' end may have activated the transforming

potential of e-ros. Additionally, fusion of �p19 to e-ros could affect the confor­

mation of the resulting viral protein. Prywes et. al. (53) have shown that the pI5

region of gag in Abelson m urine leukemia virus is required to stabilize the

transforming protein in lymphoid cells. However, fusion to gag sequences is

dispensable for transformation; although the myc transforming protein of MC29

is a gag-fusion product, myc is independently expressed in MH2. In addition,

� gag is not necessary for transformation by v-fps (18). It is entirely possible,

however, that transformation by v-ros is a consequence of the 5' and/or 3' altera­

tions to the cellular gene.

Expression of e-ros.

Many of the cellular oncogenes are expressed during prenatal and early post­

natal development and show patterns of stage and tissue specificity unique for

each gene. However, c-mos (the cellular counterpart of the viral transforming

gene of Molony murine sarcoma virus) transcripts have yet to be identified in

normal tissues or cell lines although induction of c-mos has been reported in neo­

plastic cells resulting from a genomic rearrangement that substituted an LTR ele­

ment for 5' mos sequences (for review see Muller and Verma, 43). e-mos

sequences are capable of transforming Nlli-3T3 cells when linked to a viral LTR.

These observations lend credence to the hypothesis that transformation by the

viral gene is a result of its heightened expression. A 3.1 kb e-ros transcript has

been detected in adult muscle tissue and in kidney from chickens only after long

exposure of the Northern filters. It appears that the e-ros transcript in kidney is

preferentially degraded relative to src, and this may account for the seeming lack

of expression in this tissue. However, in all other tissues, and in several cell lines,
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e-ros transcripts are not detectable. Therefore, it is entirely possible that the

high level of expression of viral ros in infected cells may be a causitive factor in

effecting transformation. Alternatively, the increased stability of the viral mes­

sage may be responsible for its neoplastic effects.

Function of cellular ros in normal cells.

The transcript detected for e-ros is 3.1 kb, and the portion of c-ros trans­

duced by UR2AV is 1.2 kb of coding sequence. There is insufficient data to specu­

late how the remaining 1.9 kb of the transcribed sequences would distribute

among the 5' and 3' ends of the gene.

Comparison of the deduced amino acid sequence of viral and cellular ros indi­

cates structural and possibly functional similarities with both the EGF and insu­

lin receptors. The transmembrane and cytoplasmic domains of the EGF receptor

appear to have been transduced by a retrovirus to form v-erbB (14, 75). The v­

fms protein product (of McDonough feline sarcoma virus), like v-erbB, is

glycosylated, membrane associated (presumably through the hydrophobic

domains of the proteins), and shares striking homology with the family of tyro­

sine protein kinases (23, 56). Recent reports (19, 56) have shown tyrosine kinase

activity to be associated with the v-erbB and v-fms protein products.

P68 has been shown to be an integral membrane protein (Ellen Garber,

unpublished), presumably due to the 29 amino acid amino-terminal hydrophobic

stretch; the protein is not glycosylated (Ellen Garber, unpublished). v-ros shares

greater homology in the conserved kinase domain with the insulin receptor than

any of the other tyrosine protein kinase-encoding oncogenes (76). Comparison of

the structural domains of the EGF and insulin receptors with v-erbB, v-fms, and

the region of cellular ros sequenced thus far leads to the tentative conclusion that

the protein product of e-ros is a member of a family of growth factor receptors



Fig. 33. Family of growth factor receptors. Cysteine-rich residues found in

the extracellular domains of the proteins are shown by hatched boxes. A heavier

solid line shows the region of the protein spanning the mem brane. The

transmem brane domain is 25 residues in length.
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(Fig. 33).
The transmembrane domain in e-ros and v-fms is 26 residues in length com­

pared to 23 for the 'EGF and insulin receptors. On the cytoplasmic side of the

mem brane, the insulin and EGF receptors have 3 basic amino acids (Arg-Lys-Arg

and Arg-Arg-Arg, respectively). v-fms is marked by Lys-Tyr-Lys-Gln-Lys and c­

ros by Gln-Arg-Trp-Lys, both of which are highly basic sequences of the kind

expected to occur at the cytoplasmic junction of the membrane domain. The

insulin and EGF receptors contain a Pro-Ser flanking the extracellular side of the

membrane; in e-ros, a Ser-Pro sequence is present. The tyrosine kinase domains

of v-fms and the EGF and insulin receptors are located 50 amino acids down­

stream of the transmembrane domain; in ros, the kinase domain begins 68 resi­

dues downstream.

The 5' domain of e-ros has not been characterized. In the EGF and isulin

receptors, the transmembrane domain is located within the middle of the protein,

and the 5' extracellular domain is marked by cysteine-rich regions. It would be

interesting to see whether this is true for cellular rose

The EGF receptor is not oncogenic, yet v-erbB has transforming ability.

Their sequences are highly conserved except for the missing 5' extracellular

domain in v-erbB, and replacement of some of the 3' cellular sequences with a

few amino acids of viral env. Perhaps truncation of the gene activates its

oncogenic potential, and this might be analagous to v-ros, which has only 7

amino acid residues upstream of the transmembrane domain before fusion with

viral gag sequences.

P6S is a gag-fusion product. It is not known whether the gag moiety is essen­

tial for transformation by rose It is conceivable that replacement of the extracel­

lular domain of the e-ros protein by ap19 (and perhaps alteration of the

carboxy-terminus) may dramatically alter the receptor's specificity of interaction



- 79-

with the growth factor.

P68 has been proposed to be capable of phosphorylating phosphatidylinositol
to phosphatidylinositol-4-phosphate (4a), resulting in an increase in diacylgly­

cerol. Diacylglycerol activates C kinase, and activation of this protein may be

linked to mitogenesis. C kinase has been strongly implicated in a receptor­

mediated cell-signalling cascade. If v-ros is an altered receptor, it is possible that

its oncogenic potential results from an acquired ability to phosphorylate, and

thus activate, components of this cascade. However, recent results from our

laboratory (Sumio Sugano and Hidesaburo Hanafusa, Mol. Cell BioI., in press)

suggests that lipid kinase activity is not intrinsic to P68, and that the previously

described phosphatidylinositol kinase activity is due to contaminating cellular

kinases.

Although the exact function of the cellular r08 protein is not known, evidence

based on the sequence of the viral and cellular genes has enabled us to detect its

structural similarity with the EGF and insulin receptors and postulate that r08 is

a member of a family of growth factor receptors.
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