
Rockefeller University
Digital Commons @ RU

Student Theses and Dissertations

2018

Targeting the CD4 Binding Site of HIV
Lotta von Boehmer

Follow this and additional works at: https://digitalcommons.rockefeller.edu/
student_theses_and_dissertations

Part of the Life Sciences Commons

https://digitalcommons.rockefeller.edu?utm_source=digitalcommons.rockefeller.edu%2Fstudent_theses_and_dissertations%2F433&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.rockefeller.edu/student_theses_and_dissertations?utm_source=digitalcommons.rockefeller.edu%2Fstudent_theses_and_dissertations%2F433&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.rockefeller.edu/student_theses_and_dissertations?utm_source=digitalcommons.rockefeller.edu%2Fstudent_theses_and_dissertations%2F433&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.rockefeller.edu/student_theses_and_dissertations?utm_source=digitalcommons.rockefeller.edu%2Fstudent_theses_and_dissertations%2F433&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1016?utm_source=digitalcommons.rockefeller.edu%2Fstudent_theses_and_dissertations%2F433&utm_medium=PDF&utm_campaign=PDFCoverPages


TARGETING THE CD4 BINDING SITE OF HIV 

A Thesis Presented to the Faculty of 

The Rockefeller University 

in Partial Fulfillment of the Requirements for 

the degree of Doctor of Philosophy

 

by 

Lotta von Boehmer 

June 2018 



© Copyright by Lotta von Boehmer 2018 



TARGETING THE CD4 BINDING SITE OF HIV 

Lotta von Boehmer, Ph.D., M.D. 

The Rockefeller University 2018 

The immunologic obstacles to develop a broadly neutralizing antibody (bNAb) 

against HIV by vaccine mandate for methodical testing in order to understand 

and direct the immune response. A mouse model with the predicted human 

heavy chain variable domain of a bNAb precursor or mature version 

introduced into the mouse heavy chain immunoglobulin locus proved to be 

very useful. The immunoglobulin heavy-chain of the predicted germline 

(GLVH) or mature mutated (MuVH) version of 3BNC60 was knocked into the 

JH4 locus in mice. 3BNC60 is a bNAb that targets the CD4 binding site 

(CD4bs) of HIV-11,2 and belongs to the IgHV1-2 class of broadly neutralizing 

CD4bs antibodies3. In the first part of my thesis I will describe the evolution of 

the HIV-1 antibody response in GLVH and MuVH mice upon immunization. 

We immunized the mice with antigens designed to bind to the predicted 

unmutated precursor of 3BNC60 or with BG505 SOSIP trimers that resemble 

the native HIV-1 Env. Immunogens specifically designed to activate B cells 

bearing germline antibodies initiate immune responses, but they do not elicit 

bNAbs. In contrast, native-like Env trimers fail to activate B cells expressing 

germline antibodies but elicit bNAbs by selecting for a restricted group of light 

chains bearing specific somatic mutations that enhance neutralizing activity. 

The data suggest that vaccination to elicit broad anti-HIV-1 antibodies will 

require immunization with a succession of related immunogens. 

Although CD4bs bNAbs are attractive candidates for immunogen design, their 



features, such as a high degree of somatic hypermutation and a short CDRL3 

in combination with our data in 3BNC60 knock-in mice suggest that they 

might be difficult to elicit through vaccination. In the second part I will describe 

IOMA, a new class of CD4-mimetic bNAb derived from the VH1-2 germline 

but with a normal-length CDRL3 and fewer somatic hypermutations than 

other bNAbs of its class. We defined IOMA’s complete epitope, by using 

crystal structures of a natively glycosylated Env trimer. Analysis of the native 

glycan shield on HIV-1 Env allowed us to provide what is, to our knowledge, 

the first full description of the interplay between heterogeneous untrimmed 

high-mannose and complex-type N-glycans within the CD4bs and of a 

natively glycosylated trimer. 



iii	

DEDICATION 

For their unconditional support and love I dedicate this thesis to my parents. 



iv	

ACKNOWLEDGMENTS 

First, I would like to thank my advisor Michel Nussenzweig. Without his clear 

guidance and continuous support the work in this thesis would not have been 

possible. My experience in Michel’s lab has helped me grow and I am truly 

grateful for the mentorship. 

I owe a great deal of thanks to many people: Klara Velinzon and Neena 

Thomas for help with FACS single cell sorting; Anna Gazumyan, Cassie Liu 

and Jovana Golijanin for antibody cloning; Thiago Oliveira for bioinformatics 

analyses. Natalie Freund, Hugo Moquet, Johannes Scheid, Marina Caskey, 

Pia Dosenovic, Florian Klein, Philipp Rommel, Qiao Wang, Yotam Bar-On 

and Joshua Horwitz for discussions and friendship. Pamela Bjoerkman for 

support and the great collaboration on IOMA together with Harry Gristick and 

Anthony West. Davide Robbiani and Mila Jankovic for advice and discussion; 

Zoran Jankovic for laboratory support; Virginia Menendez, Jennifer McQuillan 

and Adriana Barillas-Batarse for administrative assistance; Mukul Mathur, 

Alyssa Luong and Mei-Ki Chan for excellent grant submission support. The 

Nussenzweig lab as a whole has been an immensely enjoyable place to work 

over the last few years, and I have all of the members, past and present, to 

thank for this. Many thanks to the Clinical Scholars Program, in particular 

Barry Coller, Sarah Schlesinger and Michelle Romanik, and the Rockefeller 

Dean’s office for their wonderful support, guidance and advice over the years. 

And finally, Mike Seaman for agreeing to travel from Boston to be the external 

examiner on my thesis committee; Sohail Tavazoie, Sarah Schlesinger and 

Gabriel Victora for continuous support, guidance and service on my thesis 

committee. 



 v

TABLE OF CONTENTS……………………………………………………………v 

LIST OF FIGURES…………………………………………………………………vi 

CHAPTER 1: INTRODUCTION……………………………………………………1 

1.1 HIV-1  

1.2 VACCINES 

1.3 HIV-1 VACCINE CHALLENGE 

1.4 ANTIBODIES DURING HIV-1 INFECTION  

1.5 BROADLY NEUTRALIZING ANTIBODIES 

1.6 VULNERABLE HIV-1 SITES 

1.7 A VACCINE MODEL 

1.8 AN ALTERNATIVE BROADLY NEUTRALIZING ANTIBODY 

CHAPTER 2: IMMUNIZATION FOR HIV-1 BROADLY NEUTRALIZING 

ANTIBODIES………………………………………………………………………...9 

2.1 THE MODEL: 3BNC60 KNOCK-IN MICE 

2.2 IMMUNE RESPONSES IN 3BNC60 GLVH KNOCK-IN MICE 

2.3 IMMUNE RESPONSES IN 3BNC60 MUVH KNOCK-IN MICE 

2.4 SOMATIC MUTATIONS 

CHAPTER 3: AN EASIER ROADMAP………………………………………….30 

3.1 ISOLATION OF IOMA 

3.2 COMPARISON OF IOMA WITH OTHER CD4-MIMETIC bNAbs  

3.3 NATIVELY GLYCOSYLATED ENV TRIMER 

3.4 IOMA INTERACTIONS WITH NATIVELY GLYCOSYLATED ENV 

TRIMER  

CHAPTER 4: DISCUSSION……………………………………………………...48 

CHAPTER 5: METHODS…………………………………………………………56 

CHAPTER 6: REFERENCES…………………………………………………….67 

TABLE OF CONTENTS



vi

LIST OF FIGURES 

Figure 1: Schematic figure of the targeting strategy 

Figure 2:	Characterization of VDJ knock in mice 

Figure 3:	Characterization of B cells in GLVH and MuVH mice 

Figure 4: Serological antibody responses to immunization with germline 
targeting antigens by GLVH Mice 

Figure 5: Antibody responses to immunization with native antigens by GLVH 
mice 

Figure 6: Sorting of immunized GLVH Mice 

Figure 7: Antibody responses to immunization by GLVH mice 

Figure 8: ELISA with cloned antibodies from immunized GLVH mice 

Figure 9: Serological antibody responses to immunization by GLVH mice 

Figure 10: Serological antibody responses to immunization by MuVH mice 

Figure 11: Serological neutralizing activity of immunized MuVH mice 

Figure 12: Antibody responses to immunization by MuVH mice 

Figure 13: ELISA with cloned antibodies from immunized MuVH mice 

Figure 14: Neutralizing activity of monoclonal antibodies from immunized 
MuVH mice 

Figure 15: ELISA with cloned antibodies from immunized MuVH mice 

Figure 16: Light chain somatic mutations in immunized mice 

Figure 17: Somatic hypermutations in heavy – and light chains after 
immunization 

Figure 18: Neutralization activity of VL10-94*01 germline and 17 monoclonal 
antibodies from immunized MuVH mice  

Figure 19: Somatic hypermutations in individual heavy-chains after 
immunization 

Figure 20: Isolation and characterization of IOMA 



vii

Figure 21: Neutralizing activity of R1 serum and IOMA 

Figure 22: Neutralization curves of seleceted CD4bs broadly neutralizing 
antibodies 

Figure 23: Comparison of CD4 and bNAb interaction with Env 

Figure 24: Comparison of CD4 and bNAb interaction with the CD4 binding 
loop on gp120 

Figure 25: IOMA interactions with BG505 

Figure 26: Comparison of CDRL3 in IOMA and other CD4-mimetic bNAb 
structures 

Figure 27: Comparison of the interaction of CDRL3 in IOMA and other CD4-
mimetic bNAb structures 

Figure 28: Comparison of structurally analogous acidic residues within the 
CDRL3s of IOMA and VRC01 

Figure 29: Comparison of the interaction of CDRL3 in IOMA and other CD4-
mimetic bNAb structures: V5-loop shift 

Figure 30: Interactions with the F43CD4 pocket on gp120 

Figure 31: Size exclusion chromatography (SEC) profile of BG505 SOSIP 

Figure 32: Side and top views of the IOMA–10-1074–BG505 SOSIP structure 

Figure 33: IOMA–10-1074–BG505 SOSIP structures with complex-type and 
high-mannose-type glycans 

Figure 34: Comparison of light chains of IOMA and other CD4-mimetic bNAbs 

Figure 35: Comparison of glycosylation deletions on neutralization by IOMA 
and VH1-2-class bNAbs 

Figure 36: Changes in CDRL1 versus germline for CD4-mimetic bNAbs 



1 

CHAPTER 1: INTRODUCTION 

1.1 HIV-1 

78 million people have become infected with HIV-1 since the start of the 

epidemic. In 2015, 36.7 million people lived with HIV-1. Education, 

identification and treatment of infected patients with retroviral drugs have 

been effective at curtailing the epidemic, but declines in the rate of new 

infections have plateaued: every year since 2010, around 1.9 million adults 

have become newly infected with HIV-1. Not only that, but in 2015, 1.1 million 

people died from AIDS-related causes worldwide. One reason that such high 

rates of new infections and AIDS-related deaths continue to occur globally, is 

that only 18.2 million people living with HIV-1 have access to therapy 

(statistics from unaids.org and CDC HIV surveillance report). 

Under status quo interventions, a median of 49 million incident cases are 

predicted globally from 2015 to 2035. With the 2020 introduction of a 50%-

efficacy vaccine gradually scaled up to 70% coverage it was estimated to 

avert 25-31 million of these new infections4-6. The added benefit of prevention 

through vaccination motivates scientists world wide. Despite a concerted 

effort since 25-30 years, testing of candidate vaccines in trials has been 

disappointing7-11, with only one trial showing any degree of vaccine 

efficacy12,13. 

1.2 VACCINES 

As the immune system starts to mature, it is exposed to many pathogenic 

viruses, bacteria, fungi and parasites. Without good nutrition, hygiene and 

comprehensive vaccination, high mortality rates savage infants and young 

children. Infections induce immune responses involving both the innate and 

adaptive immunity with more than 1600 genes orchestrating these immune 
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responses14. The adaptive immune system antibody-tags pathogens for 

further processing, CD4+ T cells suppress or regulate immune responses and 

CD8+ cytotoxic T cells recognize and eliminate infected cells. Such 

responses usually control and eliminate viruses effectively and the person is 

left with protective immunological memory against subsequent infections with 

the same virus. Vaccines imitate this successful process of nature. Edward 

Jenner, an english physician and scientist, wondered if cowpox, a mild 

infection that caused sores on the milkmaids’ hands for a few days, protected 

these maids from smallpox. He was the first to test the theory by exposing a 

young boy to cowpox, then later exposing him to smallpox: the cowpox virus 

did make the boy immune to the similar, but far more deadly smallpox virus. 

With this experiment Jenner pioneered the smallpox vaccine, the world's first 

vaccine. Given in an appropriate formulation and dose before exposure, 

vaccines induce immune responses that mimic the response to natural 

infections and protect recipients from the development of clinically apparent 

disease when they are exposed to them15. 

1.3 HIV-1 VACCINE CHALLENGE 

The situation is more complex with HIV-1 infection, the natural immune 

response once primary infection is established, fails to eradicate or control the 

virus in most patients. Multiple reasons explain this failure: HIV-1 targets the 

CD4+ T cells, hindering thereby the orchestration of an effective immune 

response, HIV-1 escapes the adaptive immune system by mutating and 

recombining the targets for specific B and T cell receptors, in particular it 

rapidly mutates Env, the trimeric envelope glycoprotein present in low 

numbers on its surface and the main antibody target, HIV-1 shields itself with 

self-glycans that are attached during particle synthesis in host cells. In 

addition to all of the above, once inside a CD4+ T cell, HIV integrates into the 

host DNA16, hiding from the immune system and entering a latent state for 

years. Combinations of ART were shown to reduce plasma virus levels to 
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below the limit of detection17-19, but it rapidly became clear that the latent 

reservoir of HIV-1 in resting CD4+ T cells is not affected by ART20. The 

initiation of ART in infected individuals as early as 10 days after the onset of 

symptoms of primary HIV-1 infection does not prevent generation of latently 

infected, resting CD4+ T cells21. Studies from non-human primates suggest 

the reservoir is established as early as 24-72 hours after intravenous 

infection22,23, and 36-72 hours after vaginal or rectal infection24,25. Recently, it 

was shown that HIV-infected quiescent CD4+ T cells have a particular gene 

expression signature and that CD32a+ lymphocytes may harbor the elusive 

HIV-1 reservoir, this knowledge may facilitate the targeting and elimination of 

this reservoir26. 

1.4 ANTIBODIES DURING NATURAL HIV-1 INFECTION  

HIV-1 transmission results most commonly from virus exposure at mucosal 

surfaces and induces a vigorous but ineffective immune response27. A single 

virion is responsible for HIV-1 transmission in approximately 80% of 

heterosexuals, in 60% of men who have sex with men and 40% of injection-

drug users28-33. For practical reasons, it has been impossible to characterize 

HIV-1 at the moment of transmission, yet it is this virus the immune system 

must target. The earliest pressure on the virus is driven by the CD8+ T cells34,

resulting in complete turnover of the virus pool within the first few weeks of 

infection35. The development of antibody responses follows a pattern, with 

antibodies directed to the HIV-1 Env glycoprotein 41 (gp41) subunit, and then 

by the development of Env glycoprotein 120 (gp120)-binding antibodies13,36,37. 

For clade B patients, the initial gp120 target is the variable loop 3 (V3). These 

early antibody responses do not neutralize, but they are closely followed by 

weakly tier 1 HIV-1 neutralizing V3 antibodies. IgG antibodies to Gag appear 

around the same time as antibodies directed against the HIV-1 Env and after 

7 weeks antibodies to p31 (integrase) are elicited13,38. A large proportion 
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(~20-25%) of HIV-1-infected patients develop cross-reactive neutralizing 

antibodies but broadly neutralizing antibodies are not routinely made in HIV-1 

infection (1%), and when they are made, they arise late38. 

1.5 BROAD NEUTRALIZING ANTIBODIES 

Longitudinal studies of HIV-1 infected patients have allowed to associate the 

development of neutralization breadth with high viral load39-41 and time since 

infection42. The frequency of bNAbs in individuals taking or not taking ART 

was similar43, although not all individuals taking ART were entirely 

suppressed. With a few exceptions44, bNAbs do not develop until at least 2 

years after HIV-1 infection and common demographic characteristics do not 

appear to influence the development13,41, but multiple studies have 

demonstrated that virus neutralization is a driver of both virus and antibody 

diversity44-48. In summary, multiple factors contribute to the development of 

breadth in HIV-1-infected individuals but it is not entirely clear what is needed 

for bNAb development.  

The first generation of bNAbs to HIV-1 (b12, 2G12, 2F5, and 4E10) were 

isolated by phage display or human hybridoma electrofusion, selected for 

binding to Env peptides or monomeric proteins. They have limited breadth 

and/or potency49-52. High-throughput neutralization assays and standardized 

HIV-1 categorization directed the efforts of bNAb isolation to HIV patients with 

exceptionally potent and broad sera53,54. Antibodies targeting novel epitopes 

and/or possessing greater breadth and potency have been identified by our 

laboratory using antigen labeled, flow cytometry-single cell sorted B cells and 

by others using cultured memory B cells55,1,56-62. These broad HIV-1 

neutralizing antibodies have unusual characteristics, they have a high degree 

of somatic mutations63-67, they have nucleotide insertions and/or deletions, 

they have very long heavy-chain complementarity determining region 3 

(HCDR3) loops and can be autoreactive55,68. No reported bNAb lacks all 



5 

characteristics. Autoreactivity, long HCDR3 loops, and high levels of somatic 

hypermutation is a main pathway for B cells to be deleted by central and 

peripheral tolerance controls69-73. The co-evolution of bNAbs with HIV-1 in the 

host through multiple rounds of HIV-1 escape from antibody pressure47,74-76 

might explain the ability to develop antibodies with these unusual 

characteristics. For vaccine development, these unusual bNAb traits pose 

daunting immunologic obstacles, however, it seems a worthwhile goal since 

passive immunization with bNAbs has been shown to block infections of 

simian immunodeficiency virus and simian-HIV-1 in nonhuman primates and 

passive infusion with bNAbs leads to rapid, although transient, suppression of 

viral load in chronically infected macaques and humans (reviewed in77,78). 

1.6 VULNERABLE HIV-1 SITES 

Occasionally, individual monoclonal antibodies can account for the serum 

activity57,79, but breadth and potency are most frequently attributed to a 

combination of unrelated antibodies that target different sites of vulnerability 

on the Env spike55,61,76,80. The targets of the bNAbs can be divided into the 

following major groups: (1) the N160 glycan-dependent site associated with 

the V1/V2 loops, (2) the N332 glycan-dependent site at the base of the V3 

loop, (3) the membrane-proximal external region (MPER) on gp41 and (4) the 

gp120-gp41 interface and (5) the CD4-binding site (CD4bs). 

 (1) The N160 glycan-V1/V2 site is targeted by the antibodies PG9 and PG16, 

CH01-04, PGT141-145, CAP256.09 and PGDM140056,57,60,74,81,82. Structural 

analyses showed that these antibodies penetrate the glycan shield with an 

exceptionally long anionic CDRH3 that contacts a β-strand on gp120. These 

bNAbs are sensitive to natural glycan heterogeneity, which means a fraction 

of virions may be resistant to neutralization because they contain glycoforms 

that are not recognized by the antibodies, resulting in incomplete 

neutralization curves83. 
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(2) The N332 glycan-V3 loop site is targeted by the PGT121/4-, PGT128-, 

PGT135- and 10-1074 bNAbs57,68,84. These high-mannose patch bNAbs do 

not appear to share particular genetic traits required for binding57,85. By 

comparing structural information generated for different families within this 

class, it was shown that the N332/GDIR epitope is accessed from a variety of 

angles85,86. At least two antibodies of this class block infection by interfering 

with CD4 binding87. 

(3) 10E8 targets the MPER in gp41. This antibody recognizes an α helix, and 

unlike 2F5 and 4E10, which were less-potent first-generation antibodies 

targeting a closely related site, 10E8 is reported not to be auto- or 

phospholipid-reactive88. 

(4) The fourth class of bNAb is highly divergent and targets the gp120-gp41 

interface (8ANC195, PGT151, VRC34, 35O22, and 3BC315). The bNAbs 

have been isolated in rapid succession over the last few years59,89-91, and 

some previously identified bNAbs have been shown to bind to this 

region80,92,93. The members of the class target non-overlapping epitopes and 

many do not compete with one another90.  

(5) The CD4 binding site class of antibodies is the broadest known class so 

far. It consists of two subclasses that effectively neutralize HIV-1 through CD4 

mimicry, those derived from the VH1-2 germline, which include the well-

characterized 3BNC117, 3BNC60 and VRC01 antibodies1,57, and those 

derived from VH1-46, like 8ANC131. The accessibility to the conserved 

CD4bs on gp120 is restricted by surrounding glycans94-99. Although CD4bs 

bNAbs are attractive candidates for immunogen design, their features, such 

as a high degree of somatic hypermutation and a short (five-residue) light 

chain complementarity-determining region 3 (CDRL3) (found in only 1% of 

human light chains) suggest that they might be difficult to elicit through 
vaccination. 



7 

1.7 A VACCINE MODEL 

The immunologic obstacles to develop a bNAb by vaccine mandate for 

methodical testing in order to dissect the immune response. A mouse model 

with the predicted human heavy chain variable domain of a bNAb precursor 

or mature version introduced into the mouse heavy chain immunoglobulin 

locus proved to be very useful. Our laboratory knocked the immunoglobulin 

heavy-chain of the predicted germline (GLVH) or mature mutated (MuVH) 

version of 3BNC60 in mice. 3BNC60 is a bNAb that targets the CD4bs of HIV-

11,2 and belongs to the IgHV1-2 class3. In this mouse the human variable 

bNAb heavy chain domain forms antibodies using the mouse constant region 

and mouse light chains. These mice have a restricted B cell repertoire 

because the heavy chain is fixed. Nevertheless, the repertoire remains 

relatively diverse because the antibody light chain is produced by random VJ 

recombination in developing B cells. Thus, only a small fraction of the B cells 

carry heavy and light chains that combine to produce antibodies able to bind 

to the HIV-1 Env (see below). Immunization of GLVH mice affords the 

opportunity to evaluate antigens for their ability to select B cells expressing 

light chains that show features that could support bNAb evolution. In contrast, 

MuVH mice represent a synthetic intermediate because the human heavy 

chain carries all of the required mutations, but the mouse light chain is 

germline. To track the evolution of the HIV-1 antibody response in GLVH and 

MuVH mice, we immunized them with antigens designed to bind to the 

predicted unmutated precursor of 3BNC60 or with BG505 SOSIP trimers that 

resemble the native HIV-1 Env. 
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features, such as a high degree of somatic hypermutation and a short CDRL3 

suggest that they might be difficult to elicit through vaccination. In the second 

part I will describe IOMA, a new class of CD4-mimetic bNAb derived from the 

VH1-2 germline, but with a normal-length CDRL3 and fewer somatic 

hypermutations than other bNAbs of its class. We defined IOMA’s complete 

epitope, by using crystal structures of a natively glycosylated Env trimer. 

Analysis of the native glycan shield on HIV-1 Env allowed us to provide what 

is, to our knowledge, the first full description of the interplay between 

heterogeneous untrimmed high-mannose and complex-type N-glycans within 

the CD4bs and of a natively glycosylated Env trimer. 

1.8 AN ALTERNATIVE BROADLY NEUTRALIZING ANTIBODY 

Although CD4bs bNAbs are attractive candidates for immunogen design, their 
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CHAPTER 2: IMMUNIZATION FOR HIV-1 BROADLY NEUTRALIZING 

ANTIBODIES 

2.1 THE MODEL: 3BNC60 KNOCK-IN MICE 

Natalia Freund and Alex Gitlin in the laboratory created mouse models 

knocking in the 3BNC60 CD4 binding site antibody previously isolated by 

Johannes Scheid in the laboratory1. To explore the obstacles encountered for 

the induction of bNAbs with HIV vaccination, we immunized the 

immunoglobulin (Ig) heavy-chain knock-in (KI) mice expressing the predicted 

germline (GLVH) or mature mutated (MuVH) version of 3BNC60 heavy chain 

(Figure 1). 

Figure 1: Schematic figure of the targeting strategy used for the generation of 

VDJ KI mice. Targeting vector-encoded arms of homology to the C57Bl6 wild-

type (WT) mouse IgH locus are indicated in green; the neo cassette (ACN) is 

indicated in gray flanked by loxP sites indicated in brown. The promoter and 

the human heavy chain VDJ sequences are indicated in yellow and red, 

respectively. 

GLVH has all of the heavy chain residues reverted, except for the CDRH3. 

CDRH3 harbors the V-D and D-J junctions, where imprecision in the site of 

joining allows exonucleolytic loss as well as palindromic gain of the terminal 

V, D and J germline sequences thus preventing us from predicting the 

germline VDJ with certainty. Both heavy chain knock-in strains showed near 

normal frequencies of immature and recirculating B cells in the bone marrow 
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and of mature B cell populations in the spleen. 

To determine the frequency of naive B cells that bind to Env-based antigens 

in the KI mice, we stained splenocytes with an improved version (eOD-GT8) 

of the previously described immunogen eOD-GT6, an engineered outer 

domain of gp120 designed to bind to both germline and mature versions of 

3BNC60 and other VH1-2-class antibodies (see below and100). The average 

number of naive B cells that bind to eOD-GT8 in GLVH and MuVH mice 

(0.08% and 0.13%, respectively) was similar to that found in wild-type C57Bl6 

mice (0.05%) indicating that these cells are rare and found at frequencies 

similar to those in wild-type C57Bl6 mice (Figure 2A–B).  

Figure 2A: Representative FACS plots show binding of eOD-GT8 and eOD-

GT8 CD4bs knock-out (KO) proteins by mature naive B cells in naive wild-

type C57Bl6 (WT), GLVH, and MuVH mice. B: Graph shows frequency of 

eOD-GT8-binding B cells in naive WT, GLVH, and MuVH mice. Each dot 

represents one mouse. Lines indicate mean of the group. 

To examine the naïve and memory antibody repertoire in these mice I initially 

used published protocols for mouse plasma cell sequencing101, which proved 

to be very inefficient (4% amplification) for the analysis of naïve and memory 
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B cells. After designing a protocol, amplification efficiency reached 60-90%102, 

which allowed us to isolate single cells by flow cytometry and sequence their 

Ig genes. As expected, the heavy chain was always the product of the 

respective knock-in allele and the mouse light chain sequences were less 

diverse than in wild-type C57Bl6 B cells (51/59, 24/44 and 33/63 unique 

sequences for wild-type C57Bl6, GLVH and MuVH respectively; Figure 3A). 

Consistent with the rare occurrence of antigen-binding cells in the naive 

knock-in mice (Figure 2A and B), none of the mouse light chains showed the 

5-residue CDRL3 signature typical of authentic 3BNC60 or of other VH1-2-

class antibodies (Figure 3B). 

Figure 3A:	 Pie charts show heavy- (HC) and light-chain (LC) sequences 

cloned from purified single-cell sorted B cells from naive mice. The number in 

the center of the pie chart is the number of sequences analyzed, each colored 

slice represents one clone (identical V gene and CDRL3), and its size is 

proportional to the size of the clone. White indicates unique sequences. B: 

CDRL3 aa lengths from LCs in (A). 

B	

A 
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2.2 IMMUNE RESPONSES IN 3BNC60 GLVH KNOCK-IN MICE 

Like most other potent bNAbs, reversion of the somatic mutations in the 

3BNC60 antibody to the predicted germline antibody results in complete loss 

of affinity and neutralizing activity for all recombinant HIV-1 Env proteins and 

viruses tested1,68,100,103-105. To determine whether naive GLVH B cells can be 

stimulated with antigens that are specifically engineered to activate cells 

expressing germline VH1-2-class antibodies, we immunized these mice and 

wild-type C57Bl6 controls with eOD-GT8 60mers or with multimerized 

426c.TM4ΔV1-3 (106 and see methods). 426c.TM4ΔV1-3 is a 426c env -

derived construct that was optimized to be recognized by most inferred 

germline VH1-2-class antibodies. Immunization produced a robust antibody 

response in wild-type C57Bl6 and GLVH mice after one or two immunizations 

(Figure 4A and B).  

Figure 4A: Graphs show ELISA results of serum (1/900 dilution) for individual 

mice against eOD-GT8 (blue) and eOD-GT8 CD4bs knock-out (KO, red) from 

wild-type C57Bl6 (WT) and GLVH mice. Naive serum (0) and serum after 

one, two, or three (1, 2 or 3) immunizations with eOD-GT8 60-mer. B: Graphs 

show ELISA results of serum (1/900 dilution) for individual mice against 

426c.TM4ΔV1-3 (blue) or 426c.TM4ΔV1-3 CD4bs knock-out (KO, red) from 

wild-type C57Bl6 (WT) and GLVH mice. Naive serum (0) and serum after one 

(1) immunization with multimerized 426c.TM4ΔV1-3. 
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ELISA, sera from the eOD-GT8 60mer-immunized mice showed some 

preference for the wild-type vs. a control eOD-GT8 CD4bs knock-out protein 

(Figure 4A). Finally, none of the sera from the eOD-GT8 60mer-immunized 

mice showed cross-reactivity to a native-like BG505 SOSIP87,107 or a YU2 

gp140 foldon trimer (YU2 gp140-F)108 (Figure 5). 

Figure 5: Graphs show ELISA results of serum (1/300 dilution) for individual 

mice against BG505 SOSIP and YU2gp140-F in naive mice (0) or after three 

(3) immunizations with eOD-GT8 60-mer. 

eOD-GT8-binding IgG+ B cells are rare in GLVH naive mice but increase to 

5.8% on average after immunization. A fraction of these cells appeared to 

express CD4bs-specific antibodies as measured by flow cytometry. To further 

characterize the B cell responses to eOD-GT8 60mers in GLVH mice, we 

sorted single cells that bound to eOD-GT8, but not eOD-GT8 CD4bs knock-

out, and cloned their antibody genes with a protocol I developed for high 

throughput cloning of mouse antibodies102(Figure 6).  

Although the response was not restricted to the CD4bs, as determined by 
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Figure 6: Gating strategy for single cell sorting of eOD-GT8 CD4bs-specific 

memory B cells in eOD-GT8 60-mer-immunized GLVH mice. 

After sorting eOD-GT8 CD4bs-specific memory B cells 71 light and 55 heavy 

chain sequences were obtained from 4 mice. As expected, all of the heavy 

chains were GLVH. The 71 light chains include 8 clones ranging in size from 

2–13 clonal members, one of which appeared in more than one mouse. In 

addition, there were 13 cells that carried unique sequences (Figure 7A, C). 

The CDR3 length of the light chains was similar to the lengths in wild-type 

C57Bl6 mice, with only one of the expanded clones showing the 5 residue 

CDRL3 signature typical of 3BNC60 and related antibodies (Figure 7B, D). 
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Figure 7A: Heavy- (HC) and light-chain (LC) sequences from single antigen-

binding B cells isolated from four eOD-GT8 60-mer-immunized GLVH mice. 

Pie charts as in Figure 1A. A clone is defined by identical V gene and similar 

CDRL3. B: CDRL3 aa lengths from LCs in (A). C: Heavy- (HC) and light-chain 

(LC) sequences of sorted B cells from individual eOD-GT8 60-mer-immunized 

GLVH mice (M# 1, 2, 3 and 4), organized in clones. The number in the center 

of each pie chart is the number of sequences analyzed; each clone is 

represented by one slice and its size is proportional to the size of the clone; 

colors indicate clones (identical V gene and similar CDRL3) and white 

indicates unique sequences. D: CDRL3 aa lengths of cloned LC sequences in 

(C). 

A B 

C 

D D 
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eOD-GT8 but not eOD-GT8 CD4bs knock-out by FACS, 7 were CD4bs 

specific as measured by ELISA (Figure 8).  

Figure 8: Graph shows ELISA results for monoclonal antibodies (5 μg/ml) 

cloned from eOD-GT8 60-mer-immunized GLVH mice against eOD-GT8 

(blue) and eOD-GT8 CD4bs knock-out (KO, red). 

However, none of the 17 monoclonal antibodies analyzed, neutralized any of 

the tier 1 and 2 viruses tested2. We conclude that the eOD-GT8 60mer, an 

antigen designed to activate B cells expressing germline 3BNC60 antibody, 

elicits B cell responses in mice that carry germline knock-in antibody heavy 

chains including B cells expressing antibody light chains with 5-residue 

CDRL3s, but these antibodies do not neutralize HIV-1. 

To determine whether GLVH B cells can respond to a more native appearing 

HIV-1 antigen in vivo, we immunized these mice and wild-type C57Bl6 mice 

with BG505 SOSIP87,107 or YU2 SOSIP108. Wild-type C57Bl6 mice developed 

detectable antibody responses as measured by ELISA. In contrast, GLVH 

mice failed to respond to these antigens (Figure 9). We conclude that naive B 

cells expressing GLVH paired with a heterogeneous group of mouse light 

chains fail to mount significant immune responses to BG505 SOSIP or YU2 

SOSIP. 

Out of 20 antibodies cloned from B cells expressing antibodies that bound to 
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Figure 9: Graphs show ELISA results of serum (1/300 dilution) for individual 

mice against BG505 SOSIP or YU2 SOSIP in wild-type C57Bl6 (WT) and 

GLVH mice after immunization with BG505 SOSIP or YU2 SOSIP, 

respectively. Naive serum (0) and serum after two (2) or three (3) 

immunizations. 

2.3 IMMUNE RESPONSES IN 3BNC60 MuVH KNOCK-IN MICE 

Serum from naive MuVH mice has no detectable HIV-1 Env-binding activity in 

ELISA or neutralizing activity in TZM-bl assays2. To determine whether anti-

HIV-1 antibodies can be elicited in these mice they were immunized three 

times, with eOD-GT8 60mers or BG505 SOSIP. The eOD-GT8 60mer 

immunization produced strong serologic responses in MuVH mice but the 

sera were not cross-reactive against other HIV-1 proteins such as 2cc-core 

(an engineered gp120109) or YU2 gp140-F108, and a fraction of the mice 

showed CD4bs specificity as measured by ELISA on eOD-GT8 and eOD-GT8 

CD4bs knock-out (Figure 10A). MuVH mice also developed strong serologic 

responses to BG505 SOSIP, but in contrast to eOD-GT8 immunization, there 

was serologic cross-reactivity to 2cc core, as well as YU2 gp140-F. Moreover, 

a significant fraction of the response was CD4bs specific as determined by 

ELISA against YU2 gp140-F and a YU2 gp140-F CD4bs knock-out mutant 

protein (Figure 10B). 
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Figure 10A: Graphs show ELISA results of serum (1/300 dilution) for 

individual mice against eOD-GT8 (blue) and eOD-GT8 CD4bs knock-out (KO, 

red), 2cc core, and YU2 gp140-F. Naive serum (0) and serum after three (3) 

immunizations with eOD-GT8 60-mer. B: As in (A) but after BG505 SOSIP-

immunization. ELISA against BG505 SOSIP, 2cc core, and YU2 gp140-F 

(blue) and YU2 gp140-F CD4bs knock-out (KO, red). Lines indicate mean of 

the group and the colors of the lines correlate to the colors of the dots. 

To determine whether MuVH mice develop HIV-1 neutralizing responses we 

assayed mouse serum on a panel of 9 HIV-1 viruses (8 tier 2, and 1 tier 1) in 

TZMbl-assays110. We found that the eOD-GT8 60mer-immunized MuVH mice 

only showed modest levels of activity mainly against tier 2 Clade D (T247-23) 

and A (62357.14.D3.3489) viruses that lack glycosylation at position 276 

(Genebank entry ACD63071 and ABY50658.1, respectively) (Figure 11). In 

contrast, all seven out of ten BG505 SOSIP-immunized MuVH mice that 

showed a robust response to BG505 SOSIP in ELISA, developed strong 

neutralizing responses against the autologous Clade A virus. In addition, high 

levels of neutralization were also evident against T247-23, and 

62357.14.D3.3489, and more modest levels of neutralization were seen 

against three other clade A tier 2 viruses. Finally, four of the seven also 

A 

B 
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showed a low level of neutralizing activity against the clade B tier 2 strain 

YU2.DG (Figure 11). Thus, BG505 SOSIP trimers elicit potent responses with 

some cross-clade breadth in MuVH mice but eOD-GT8 60mer does not. 

Figure 11: Neutralizing activity in TZM-bl assays of serum from individual 

naive, eOD-GT8 60-mer- or BG505 SOSIP-immunized mice (M) against a 

panel of HIV-1 viruses. Numbers indicate the reciprocal dilution of serum at 

the median inhibitory concentration (IC50): red, >1,000; orange, 100-1000; 

yellow, 50-100, and white, not neutralized at any dilution tested. Gray 

indicates background activities against the control MuLV virus. 

eOD-GT8-binding IgG+ B cells cannot be detected in naive MuVH mice but 

increase to 15% and 30% after immunization with eOD-GT8 60mers or 

BG505 SOSIP, respectively2. Thus, both antigens were able to induce clonal 

expansion of antigen-specific memory B cells. To characterize the antibodies 

that develop in the MuVH mice, we isolated and cloned the antibodies from 

antigen-specific memory B cells. As expected, all of the heavy chains 

obtained carried the MuVH knock-in sequence. A total of 138 and 269 light 
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chains were cloned from mice immunized with eOD-GT8 60mers and BG505 

SOSIP, respectively (Figure 12). The antibodies obtained from eOD-GT8 

60mer-immunized mice represent 15 independent clones ranging in size from 

2-24 members, 4 of the clones appeared independently in both sequenced 

eOD-GT8 60mer-immunized mice. In addition there were 13 cells that carried 

unique sequences (Figure 12A). In contrast to the antibodies obtained from 

eOD-GT8 60mer-immunized GLVH mice, the light chains from MuVH 

immunized mice were highly biased to express 5 aa-residue CDRL3s (Figure 

12B). Moreover, the fourth residue in the CDRL3 was highly selected for an 

E, which is an important residue in the 3BNC60 antibody and other VH1-2-

class antibodies. It forms a contact with the backbone of the V5 loop of HIV-1 

Env1,79,98 (Figure 12).  
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Figure 12A: Pie charts show heavy- (HC) and light-chain (LC) sequences 

cloned from two eOD-GT8 60-mer-immunized (M#7 and 9) and three BG505 

SOSIP-immunized (M#16, 17, and 18) MuVH mice. VL gene usage and 

CDRL3 sequences are shown for each clone; colors correspond to colors in 

pie charts. The same color indicates clones shared by different mice. A clone 

is defined by identical V gene and similar CDRL3. B: CDRL3 aa lengths of the 

LCs in (A). 

When assayed by ELISA, the majority of these antibodies were CD4bs 

specific to eOD-GT8, and a fraction was cross-reactive to YU2 gp140-F 

(Figure 13).  
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Figure 13:	Graphs show ELISA results for individual monoclonal antibodies 

with the indicated CDRL3s cloned from eOD-GT8 60-mer-immunized MuVH 

mice against eOD-GT8 (blue) and eOD-GT8 CD4bs knock-out (KO, red) (at 

0.55 μg/ml) or against YU2 gp140-F (at 5 μg/ml). 

However, despite CD4bs specificity, only two viruses (T247-2 and 

62357.14.D3.3489, which lack glycosylation at amino acid position 276) were 

neutralized by the monoclonal antibodies tested (Figure 14).  
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Figure 14: Neutralizing activity of a set of representative eOD-GT8 60-mer- or 

BG505 SOSIP-elicited monoclonal antibodies against 7 HIV-1 tier 2 viruses (1 

= MuLV control, 2 = BG505/T 332N, 3 = T247-23, 4 = 62357.14.D3.3489, 5 = 

Q842.d12, 6 = 3365.V2.c30, 7 = YU2.DG, and 8 = 0815.v3.c3) compared to 

the serum of the mouse they were cloned from. Colors for monoclonal 

antibodies indicate concentration of monoclonal antibody at the median 

inhibitory concentration (IC50): orange, 0.1 to 1 μg/ml; yellow, 1 to 10 μg/ml; 

green, 10-25 or 50 μg/ml and white, not neutralized at any concentration 

tested. Lowest dilution tested for serum was 1:50, highest concentration 

tested for monoclonal antibodies were between 10 and 50 μg/ml. X indicates 

sample not tested.  

Thus, eOD-GT8 60mer-immunization of MuVH mice is highly selective for a 

subset of mouse light chains with short CDRL3s that allow binding to the 

CD4bs of eOD-GT8, but this is not sufficient to produce broad neutralizing 

activity against tier 2 viruses. 

Antibodies cloned from BG505 SOSIP-immunized MuVH mice were far more 

clonally restricted than those obtained after eOD-GT8 60mer immunization. 
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Light chains were cloned from 269 cells from 3 separate mice, and again, in 

all cases analyzed the heavy chain was from the knock-in. In contrast to eOD-

GT8 60mer, BG505 SOSIP-immunization was dominated by only six highly 

expanded clones, one of which arose independently in all three mice (Figure 

12). Similar to eOD-GT8 60mer-immunization, the B cell clones expanded by 

BG505 SOSIP-immunization were highly biased to express light chains with 5 

aa-residue CDRL3s that carry the E at the fourth position of CDRL3 (Figure 

12). When tested by ELISA, all but 4 of the 20 antibodies elicited by BG505 

SOSIP were CD4bs specific on eOD-GT8 and a fraction of these were cross-

reactive to YU2 gp140-F (Figure 15).  

Figure 15: Graphs show ELISA results for individual monoclonal antibodies 

with the indicated CDRL3s cloned from BG505 SOSIP-immunized MuVH 

mice against eOD-GT8 (blue) and eOD-GT8 CD4bs knock-out (KO, red) (at 

0.55 μg/ml) or against YU2 gp140-F (at 5 μg/ml). 

Finally, some of these monoclonal antibodies showed neutralizing activity 

against several tier 2 viruses (Figure 14). We conclude that in contrast to 

eOD-GT8-, BG505 SOSIP-immunization elicits neutralizing antibodies against 

a diverse group of tier 2 viruses in MuVH mice. 
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2.4 SOMATIC MUTATIONS 

Only the antibodies arising from BG505 SOSIP-immunization neutralized 

clade A and B tier 2 viruses (Figure 14). To gain further insight into this 

phenomenon we analyzed the monoclonal antibodies and somatic mutations 

that arose during the immunization. 

The total number of light chain mutations arising as a result of immunization 

by the eOD-GT8 60mer or BG505 SOSIP was similar in both strains of mice, 

irrespective of whether the knock-in heavy chain was germline or mature 

(Figure 16A). In addition, both immunogens selected for B cells bearing the 

same VL germline gene (VL10-94*01) carrying similar number of somatic 

mutations and nearly identical CDRL3s in MuVH mice (Figure 12A, 16B). 

Thus, the nature of the immunogen did not influence the rate of somatic 

mutations in the light chains. 

Figure 16A: Graph shows number of light-chain (LC) somatic hypermutations 

in individual sequences obtained after eOD-GT8 60-mer or BG505 SOSIP 

immunization in GLVH or MuVH mice. B: LC somatic hypermutations in VL10-

94∗01 in individual sequences obtained after eOD-GT8 60-mer or BG505 

SOSIP immunization in MuVH mice. Y axes on graphs indicate nucleotide 

mutations/1,000 bp. Red lines in all graphs indicate the mean of the group. 

A B 
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Figure 17A: Light chain somatic mutation analysis of VL10-94 sequences in 

eOD-GT8 60-mer- (top) and BG505 SOSIP- (bottom) immunized MuVH mice. 

Amino acid (aa) positions of the framework 1-3 (FWR1-3, gray background) 

and complementarity determining regions (white background) are indicated. 

B: Somatic mutation analysis of the germline (top) and mature (middle and 

bottom) sequences after immunization with eOD-GT8 60-mer (top and 

middle) or BG505 SOSIP (bottom). 

For example, Q90H was found in the 2nd position of CDRL3 of nearly all 

members of the VL10-94 clone obtained independently from three MuVH 

mice immunized with BG505 SOSIP but rarely in the VL10-94 clone that 

arose after immunization with eOD-GT8 60mers (Figure 17). While others 

such as the E mutation found in the 4th residue of CDRL3 was selected by 

both immunogens. Thus immunization with BG505 SOSIP and eOD-GT8 

60mers led to differential selection of somatically mutated light chains. 
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To determine whether light chain mutations might be responsible for 

increasing neutralizing activity after BG505 SOSIP immunization, we 

produced an antibody that carries the MuVH and the predicted germline light 

chain of VL10-94*01 (GL in Figure 18). When this antibody was compared to 

BG505 SOSIP-derived monoclonal antibodies (mAbs), the reverted antibody 

showed only modest activity. The reverted antibody was similar to the eOD-

GT8 60mer-derived VL10-94*01 mAbs indicating that only BG505 SOSIP-

immunization selects for light chain somatic mutations that increase 

neutralizing antibody activity in MuVH mice (Figure 18). Moreover, the Q90H 

found in the CDRL3 of nearly all VL10-94-expressing clones derived from 

BG505 SOSIP-immunized MuVH mice was sufficient to increase neutralizing 

activity (Figure 18). Additional mutations that further enhanced or interfered 

with neutralizing activity appeared randomly (Figure 18). Finally, there was no 

evidence for selection of specific mutations in the heavy chain in MuVH B 

cells as seen by the absence of significant clonal expansion of any particular 

mutation (Figure 17B). 
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Figure 18: VL10-94∗01 germline (GL) and 17 monoclonal antibodies from 

immunized MuVH mice sorted by neutralization strength. Neutralization data 

for each antibody tested against virus 1 = T247-23, 2 = 62357.14.D3.3489, 3 

= BG505/T332N, 4 = 3365.v2.c30, 5 = YU2.DG, 6 = 0815.v3.c3, 7 = 

HxBC2.DG, and 8 = MuLV. Colors for monoclonal antibodies indicate 

concentration of monoclonal antibody at the median inhibitory concentration 

(IC50): red, <0.1 μg/ml; orange, 0.1 to 1 μg/ml; yellow, 1 to 10 μg/ml; green, 

10-25 or 50 μg/ml and white, not neutralized at any concentration tested. X 

indicates sample not tested. Position of aa mutations in the LCs compared to 

germline is highlighted in red. 

In contrast to the light chains, mutations in the knock-in VDJ-HC sequence 

were significantly higher in GLVH than in MuVH B cells (Figure 19A) even 

when comparing Peyer’s Patch germinal center B cells in unimmunized mice 

that are not responding to injected antigens (Figure 19B). However, the 

mutation rate in the germline intron downstream of JH4, which is contiguous 

to the VDJ-HC, was similar in the two mouse strains (Figure 19C). We 

conclude that the somatic mutation machinery is equally active in the two 

knock-in B cell types, but the highly mutated MuVH is less susceptible to 

further mutations than its unmutated GLVH counterpart.		
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Figure 19A:	 Somatic hypermutations in individual heavy-chain (HC) 

sequences obtained after eOD-GT8 60-mer or BG505 SOSIP immunization in 

GLVH or MuVH mice. Data in (A) are pooled from 9 mice. B: Somatic 

hypermutations in individual germinal center B cell HC sequences obtained 

from naive GLVH or MuVH mice. C: Somatic hypermutations in individual 

germinal center B cell JH4 intron sequences obtained from naive GLVH or 

MuVH mice. Data in B and C are pooled from two independent experiments 

with two to three mice each. 60-80 clones were sequenced for GLVH or 

MuVH germinal center B cells HC and JH4. Y axes on graphs indicate 

nucleotide mutations/1,000 bp. Read lines in all graphs indicate the mean of 

the group.  

A B C 
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CHAPTER 3: AN EASIER ROADMAP 

We succeeded in inducing broad tier 2 neutralizing antibodies in Ig KI mice, 

but our study established that the protein based vaccination regimen will need 

at least two proteins and many obstacles still have to be overcome to achieve 

this result in humans. That is why we sought to identify a broad neutralizing 

antibody with properties that might be easier to induce by vaccination. In this 

chapter I will describe IOMA, a new broadly neutralizing antibody. IOMA 

constitutes a new class of CD4-mimetic bNAb derived from the VH1-2 

germline, with a normal-length CDRL3 and fewer somatic hypermutations 

than the other VH1-2-CD4bs-class bNAbs. We defined IOMA's complete 

epitope by using crystal structures of a fully and natively glycosylated Env 

trimer. Besides IOMA being an intriguing vaccine design template, we 

analysed the native glycan shield on Env providing what is, to our knowledge, 

the first full description of the heterogeneous untrimmed high-mannose and 

complex-type N-glycans on Env. 

3.1 ISOLATION OF IOMA 

I isolated IOMA by single memory B-cell sorting55 from an HIV-1/Hepatitis C 

co-infected ART-treated patient (R1) from Germany. R1 started ART four 

months after initial diagnosis. ART treatment was paused twice for 2.5 years 

at 17 months and 7 years after treatment initiation, and for 3 months ~11 

years after initiation. 17 years after diagnosis a leukapheresis was performed 

from which IOMA was isolated. 

IOMA was part of the second largest clone using gp140-foldon or BG505-

SOSIP as baits (Figure 20). 
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Figure 20: Pie chart showing IgG HC clones of single-cell-sorted HIV-1-

antigen-specific memory B cells from patient R1. The number in the center is 

the number of sequences considered: each colored slice represents one 

clone, and the slice size is proportional to the number of clonal sequences.  

IOMA accounts for most of the neutralizing activity in this patient's serum, as 

demonstrated by a comparison of neutralization activities of serum IgG and 

purified IOMA (Figure 21).  

Figure 21: Comparison of neutralizing activity of subject-R1 serum IgG and 

IOMA, an antibody cloned from the second-largest clone of the IgG+ sorted 

memory B cells. 

Unlike other CD4bs bNAbs, IOMA has relatively few somatic hypermutations 

(22 heavy chain and 15 light chain amino acid changes from the germline, as 

compared with 41 and 25 changes for VRC01), yet IOMA neutralized ~50% of 

tested strains with a mean half-maximal inhibitory concentration (IC50) of 2.3 

μg/mL and a breadth and potency superior to those of CD4bs bNAbs with 
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similar somatic hypermutation rates (for example, b12) but inferior to those of 

CD4bs bNAbs with more somatic hypermutations1,45 (Figure 22).  

Figure 22: Neutralization coverage curves for selected CD4bs bNAbs. The 

number of somatic hypermutations (including indels) at the level of amino 

acids (aa) and nucleotides (nucl) are indicated for VH and VL gene segments. 

CH235 is an earlier member of the lineage that produced CH235.1245. 

As mentioned before, IOMA is an interesting target for structural studies 

because it combines features of VH1-2-class bNAbs with a second related 

but distinct set of CD4-mimetic CD4bs bNAbs derived from the VH1-46 

germline gene segment99. Like VH1-46, but unlike VH1-2 bNAbs, IOMA 

includes a normal-length (eight residue) CDRL3. 

3.2 COMPARISON OF IOMA WITH OTHER CD4-MIMETIC bNAbs 

Although the Env binding orientation of IOMA differed somewhat from the 

orientations of both VH1-2-class and VH1-46-class bNAbs, the IOMA-BG505 

SOSIP interaction shared CD4-mimetic features of both bNAb classes, 

including the R71HC-D368gp120 interaction and CDRH2 mimicking the C″ 

strand of CD497,99 (Figure 23). 
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Figure 23: Interactions of Env residue D368gp120 with residue R71HC of 

IOMA and indicated bNAbs. Interactions of Env with CD4 residue R59CD4.  

VH1-2-class bNAbs are distinguished from VH1-46-like bNAbs by their five-

residue CDRL3s, W50HC (VH1-2 germline encoded), and CDRH3-encoded 

residue W100BHC3. IOMA contains a W50HC, but, in contrast to VH1-2-class 

bNAbs, this residue does not contact gp120 (Figure 23 and 24). IOMA also 

includes a counterpart of the signature CDRH3 W100BHC residue in VH1-2-

class bNAbs. In VH1-2-class bNAbs, this tryptophan (Kabat numbering 100B; 

usually located four residues before the CDRH3 C terminus) is the most 

conserved antigen-facing residue within the CDRH3, and its side chain indole 

nitrogen hydrogen-bonds with a side chain oxygen of N279gp120 (Figure 

25B).  

Figure 24: Interactions of the CD4-binding loop in gp120 with CDRH2 of 

IOMA and indicated bNAbs and with the C” strand of CD4. Black dashed lines 

indicate potential hydrogen bonds; red dashed lines indicate potential 

hydrogen bonds with non-ideal geometry. 

The IOMA HC includes a tryptophan five residues from the C-terminal end of 

CDRH3 (Kabat numbering 100F). IOMA's W100FHC preserved the 

interactions observed for VH1-2-class W100BHC with 

N279gp120/N280gp120 (Figure 25B). 
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Figure 25A: Shift in IOMA's FWRH2 β-strand. To accommodate IOMA's 

normal-length CDRL3, there is a shift relative to VRC01 in IOMA's FWRH2 β-

strand; thus, IOMA residue W50HC does not interact with gp120. B: 

Interactions of W100BHC (W100FHC in IOMA) with N279gp120/N280gp120 

in indicated bNAbs and CD4. 

VH1-46-like bNAbs use their normal-length CDRL3s in place of a W100BHC 

residue to interact with N279gp120/N280gp120 (Figure 25B). IOMA is unique 

in having both an N279gp120/N280gp120-W100FHC interaction and a 

normal-length CDRL3, a combination made possible because its CDRL3 is 

displaced from gp120 loop D and toward the V5 loop (Figure 26). We further 

addressed the question of how IOMA recognizes Env with a normal-length 

CDRL3 together with signature VH1-2-class residues by comparing Env 

interactions with IOMA, VH1-2-class, and VH1-46-class bNAbs. In VH1-46-

class bNAbs, the longer CDRL3 interacts with N279gp120/D279gp120 

(Figure 25B), and the C-terminal portion of CDRH3 is farther from loop D.  

A 

B 
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Figure 26: CDRL3 comparisons in CD4-mimetic antibody–Env complexes 

(aligned on the gp120s from the IOMA–10-1074–BG505 SOSIP(shown in 

gray) and the VRC01–gp120 (PDB 3NGB) and 8ANC131–gp120 (PDB 

4RWY) structures). CDRL3s are light blue (IOMA), bright green (VRC01), and 

orange (8ANC131). The black arrow shows displacement of the eight-residue 

IOMA CDRL3 relative to the five-residue VRC01 CDRL3 away from 

W100FHC-IOMA and toward the gp120 V5 loop. The red arrow shows 

displacement of the CDRH3 in VH1-46-derived 8ANC131-like bNAbs (brown) 

relative to VRC01 class (dark green) and IOMA (dark blue) bNAbs. 

In VH1-2-class bNAbs, E96LC (within a five-residue CDRL3) hydrogen-bonds 

with N280gp120 (Figure 27) and makes a backbone contact to G459gp120 

(Figure 28). 

Figure 27: Interactions of CDRL3s with N279gp120/N280gp120. Blue = 

IOMA, green = VH1-2, brown = VH1-46 and yellow = CD4. 

IOMA's eight-residue CDRL3 also includes a negatively charged residue, 

D93HC, that interacts with R456gp120 and N280gp120 (Figure 24 and 28).  
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Figure 28: Comparison of structurally analogous acidic residues within the 

CDRL3s of IOMA (D93LC) and VRC01 (E96LC). Left, interface between 

gp120 (gray) and IOMA (HC, dark blue; LC, light blue), demonstrating 

interactions between IOMA D93LC and gp120 residues R456gp120, 

G459gp120, and N280gp120. Right, interface between gp120 (gray) and 

VRC01 (HC, dark green; LC, light green) demonstrating interactions between 

VRC01 E96LC and residues G459gp120 and N280gp120. 

However, IOMA's longer CDRL3 is accommodated by a shift in BG505's 

gp120 V5 loop, relative to its position in gp120s complexed with VH1-2-class 

bNAbs, that allows IOMA's CDRL3 to penetrate the groove between the V5 

and D loops (Figure 27 and 29).  

Figure 29: V5-loop shift. To accommodate IOMA's normal-length CDRL3, 

there is a shift in BG505's V5 loop in the IOMA-10-1074-BG505 SOSIP 

structure compared with V5 loops in complex structures of gp120s bound to 

VRC01 and 8ANC131. 
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IOMA's D93LC-R456gp120 interaction is not found in VH1-2-class bNAbs, 

wherein N58HC interacts with the backbone of R456gp120. In IOMA, the 

VH1-2 germline residue N58HC is mutated to K58HC, which interacts with the 

backbone of N280gp120, a similar interaction to that in 8ANC131 (Figure 27). 

The hydrophobic gp120 pocket, which normally accommodates F43CD4111 

and has been targeted by engineered substitutions of G54HC in VH1-2-class 

bNAbs96, is filled by R54HC (Figure 30), as seen in a gp120-complex 

structure with 1B2530, a VH1-46-derived bNAb99. 

Figure 30:	 Interactions with the F43CD4 pocket on gp120. Blue = IOMA, 

green = VH1-2, brown = VH1-46 and yellow = CD4. 

3.3 NATIVELY GLYCOSYLATED ENV TRIMER 

HIV-1 Env is among the most heavily glycosylated proteins ever 

characterized112. It includes glycans, constituting up to 50% of its mass, 

attached to 30 ± 3 potential N-linked glycosylation sites (PNGSs) per gp120–

gp41 protomer. Viral glycans are generally nonimmunogenic because they 

are assembled by the host-cell machinery; thus, carbohydrates decorating the 

surface of Env constitute a 'glycan shield' that reduces access to underlying 

protein epitopes111. Structural studies of bNAbs bound to Env trimers have 

revealed mechanisms by which bNAbs targeting various epitopes penetrate 

the glycan shield to either accommodate or include N-glycans in their 

epitopes92-94,113-116. The structure of the HIV-1 Env glycan shield itself, 

however, remains incompletely characterized. Previous trimer crystal 

structures have included Env produced in cells that attached only high-

mannose-type N-glycans93,94,113-115, which, with two exceptions93,94, were 
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enzymatically trimmed to reduce glycans to single N-acetylglucosamines 

(GlcNAcs) at accessible PNGSs.  

Because of steric constraints that limit the activities of endoplasmic reticulum 

and Golgi carbohydrate-processing enzymes, the HIV-1 Env glycoprotein 

includes regions of underprocessed N-glycans in oligomannose forms 

(Man5–9GlcNAc2), particularly in the intrinsic mannose patch on gp120, 

which forms portions of the epitopes for many characterized HIV-1 bNAbs117. 

Although oligomannose glycans dominate parts of HIV-1 Env, such as the 

N332gp120 glycan–associated region on gp120, processed complex-type N-

glycans predominate at N-linked glycosylation sites on gp41 and gp41-

proximal regions of gp120118 and are thought to protect the host receptor 

(CD4)-binding site (CD4bs) and the V3 loop of gp120119. The IOMA and 10-

1074 complexed crystals Harry Gristick developed in Pamela Bjoerkman’s 

laboratory were obtained from natively glycosylated BG505 SOSIP produced 

in human cells that attached both complex-type and high-mannose N-glycans. 

He solved independent structures of the IOMA–10-1074–BG505 SOSIP 

complex by using BG505 SOSIP protein prepared from different size-

exclusion chromatography (SEC) fractions (Figure 31) at resolutions of 3.5 Å 

and 3.9 Å.  
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Figure 31: Size exclusion chromatography (SEC) profile showing migration of 

the BG505 SOSIP used for incubation with IOMA and 10-1074 Fabs to 

generate samples for crystallization. Inset shows SDS-PAGE analysis under 

non-reducing conditions of SEC fractions. SEC fractions 7-8 (blue) (larger 

apparent molecular mass; likely more glycosylated) were used for the 3.9Å 

IOMA–10-1074–BG505 SOSIP structure and fractions 11-12 (smaller 

apparent molecular mass; likely less glycosylated) were used for the 3.5Å 

IOMA–10-1074–BG505 SOSIP structure. 

The IOMA–10-1074–BG505 SOSIP structures revealed an Env trimer bound 

to three 10-1074 and three IOMA Fabs (Figure 32).  
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Figure 32: Side and top views of the IOMA–10-1074–BG505 SOSIP structure. 

Fabs are shown as ribbons, BG505 SOSIP is shown in surface 

representation, and glycans are shown as cyan spheres. Inset, packing in 

IOMA–10-1074–BG505 SOSIP crystals, demonstrating that the lattice is 

formed through interactions between neighboring Fabs. 

19 N-glycans (one GlcNAc up to complex-type tetra-antennary) were visible 

per gp120–gp41 protomer, forming arrays of glycans extending ~30 Å from 

the trimer surface (Figure 33A-C). We observed N-glycan differences in the 

Env portions of the 3.5-Å- and 3.9-Å-resolution structures (Figure 33A).  
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Figure 33A: Top, BG505 SOSIP portion of IOMA–10-1074–BG505 SOSIP 

structure with complex-type (magenta) and high-mannose-type (cyan) N-

glycans shown as spheres on the 3.9-Å- and 3.5-Å-resolution structures. 

Middle and bottom, BG505 SOSIP with 2Fo − Fc electron density contoured 

at 0.8σ for ordered glycans from model-phased (middle) or composite 

annealed omit (bottom) maps for the 3.9-Å- and 3.5-Å-resolution structures. 

B: Comparison of glycosylation in Env structures (side view). PGT121INT 

refers to the 3H + 3L intermediate that arose during maturation of PGT121115. 

Ordered N-glycans are shown as magenta (complex type) and blue (high 

mannose) spheres. C: First and third panels, surface area accessible to a 1.4-

Å probe (red) shown on natively glycosylated BG505 SOSIP (3.9-Å-resolution 

structure; complex-type and high-mannose glycans are cyan spheres). 

Regions of gp120 and gp41 that are not surface accessible are shown in 

wheat and pink, respectively. Binding sites for IOMA (blue) and 10-1074 

(green) are highlighted. Second and fourth panels, glycans displayed on the 

BG505 SOSIP surface, with sequence conservation among 116 HIV-1 strains 

color-coded from white (low sequence identity) to purple (high sequence 

identity). Arrow points to N241gp120 (yellow sphere in first panel), a PNGS in 

97% of HIV-1 strains but not in BG505 SOSIP. The dotted ovals in the first 

two panels indicate an N241gp120-adjacent region of low sequence 

conservation that also lacks glycan density (same region shown on two 

adjacent protomers in each panel), which may represent an antibody-

vulnerable glycan hole that would be targeted by strain-specific antibodies. 
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We interpreted glycans in the 3.9-Å and 3.5-Å IOMA–10-1074–BG505 SOSIP 

structures, although glycan heterogeneity complicated modeling, we were 

often able to assign glycans at individual PNGSs as complex type or high 

mannose. The 3.9-Å structure sometimes showed more density for individual 

BG505 SOSIP N-glycans than the 3.5-Å structure, a result consistent with the 

apparently greater degree of glycosylation suggested by the SEC and SDS–

PAGE characteristics of the BG505 SOSIP protein in crystals used for the 

lower-resolution structure. We assigned glycans as complex type if there was 

density for a core fucose and/or on the basis of mass spectroscopy 

assignments118,120. A core fucose was sometimes visible in one structure but 

not the other. We therefore interpreted glycans at some individual PNGSs as 

having different compositions in the two structures; such heterogeneity is 

consistent with the multiple glycoforms at single PNGSs identified in 

preparations of BG505 SOSIP protein118. 

Although there are caveats regarding the modeling and the N-glycan 

coordinates121, the crystal structures revealed a relatively high-resolution view 

of a native glycan-shield structure that could be used for assessments of the 

roles of complex-type N-glycans in antibody recognition and HIV-1 Env 

function. 

By comparison with the 4.2-Å cryo-EM structure of a natively/fully 

glycosylated Env116, we observed a more extensively glycosylated trimer. 

Particularly the V3 loop, the CD4bs, the apex and gp120-gp41-interface 

regions of the BG505 SOSIP trimer showed clusters of complex-type N-

glycans not observed in fully (but not natively) glycosylated Env crystal 

structures94 (Figure 33B).  



44 

3.4 IOMA INTERACTIONS WITH NATIVELY GLYCOSYLATED ENV 

TRIMER 

The accessibility to the conserved CD4bs on gp120 is restricted by 

surrounding glycans that have, to date, been visualized involving Env proteins 

including only high-mannose N-glycans94-99. The IOMA Fab is framed on both 

sides by Env N197gp120 and N276gp120 glycans, interpreted as complex-

type biantennary and tetra-antennary, respectively, in the 3.9-Å structure, with 

minor interactions with a high-mannose glycan at N363gp120. IOMA 

accommodates the N276gp120 glycan with a short α-helix in CDRL1 instead 

of the extended loop in other CD4-mimetic bNAbs (Figure 34A-B). 

Figure 34A: LC of IOMA showing α-helical CDRL1 and N276gp120 glycan 

from the IOMA–10-1074–BG505 SOSIP structure. B: LC of VRC01 from a 

VRC01–gp120 structure (PDB 3NGB). The N276gp120 glycan was 

disordered in this structure. C: LC of 8ANC131 from an 8ANC131–gp120 

structure (PDB 4RWY). The N276gp120 glycan was disordered in this 

structure. D: LC from 45-46m2 (an engineered VRC01-class bNAb13) from a 

45-46m2–gp120 structure (PDB 4JKP). The N276gp120 glycan was partially 

ordered in this structure. Glycans are shown as sticks; color-coded as shown 

in key.  

The need for CDRL1 to accommodate the glycan attached to N276gp120 is a 

barrier to the development of VH1-2-class bNAbs97,99 that is typically 

overcome by CDRL1 deletions or by somatic hypermutations introducing 
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multiple glycine residues98. The VL2-23-derived CDRL1 of IOMA has no 

indels and is two or three residues longer than the CDRL1 of the common 

VH1-2-class LCs KV1-33 and KV3-20, and IOMA's CDRL1 acquired only one 

additional glycine residue during somatic hypermutation (G29LC). The short 

α-helix in IOMA's CDRL1 is a CDRL1 conformation not observed in available 

structures of VH1-2-class or VH1-46-class bNAbs (Figure 34). However, this 

helical conformation (designated L1-14-02 in refs.122,123) is common in the 

CDRL1s of antibodies derived from human germline VL2-23 and the closely 

related VL2-14 and VL2-8 germlines. For example, gp41-targeting bNAbs 

3BC176 and 3BC315, which share germline VH and VL genes with IOMA, 

have CDRL1 loops in the same helical conformation as in IOMA (PDB 5AWN 

and 5CCK)92. VL2-14-derived bNAbs PG9, PG16, and 35O22 (PDB 3U4E, 

4DQO, and 4TVP)114,124,125 also include α-helical CDRL1s. Although VH1-2-

class bNAb VRC-PG20 derives from VL2-14, its CDRL1 has a six-residue 

deletion and does not have a helical conformation98. 

In contrast with observed interactions in structures of VH1-2-class bNAb–Env 

complexes95-99, IOMA interacts extensively with the Env N276gp120 and 

N197gp120 glycans. To compare how IOMA and other VH1-2-derived bNAbs 

accommodate these glycans, we evaluated the neutralization potencies of 

IOMA and VH1-2-class bNAbs against HIV-1YU2 pseudoviruses with 

N197gp120 or N276gp120 glycan deletions (Figure 35).  
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Figure 35: Comparison of glycosylation deletions on neutralization by IOMA 

and VH1-2-class bNAbs (VRC01 and NIH45-46). In vitro neutralization 

assays were conducted with HIV-1YU2 pseudoviruses that included all 

glycans (listed as YU2), had introduced mutations to remove the N276gp120 

glycan (YU2 N276K), the N197gp120 glycan (YU2 N197K), or included all 

glycans in a high mannose form (YU2 Kif). Removal of glycans or conversion 

to high-mannose-only glycans had no effect (PNGS N197gp120) or increased 

IOMA’s neutralization potency by ~4-fold (PNGS N276gp120 and high-

mannose-only glycans). For VH1-2-class bNAbs, the same changes 

produced ~20-fold increased potency (PNGS N197gp120), ~4-11–fold 

increased potency (PNGS N276gp120), or ~2-fold increased potency (high-

mannose-only glycans). 

The results suggested that glycosylation at N197gp120 (98% conserved) is 

accommodated better by IOMA than by the VH1-2-class bNAbs VRC01 or 

NIH45-46, with both IOMA and the VH1-2-class bNAbs showing a slight 

preference for removal of the N276gp120 glycan (95% conserved). IOMA's 

similar ability to that of VRC01 for accommodating the N276gp120 glycan, 

one of the primary roadblocks in the development of VH1-2-class bNAbs45,98, 
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required relatively small changes from its germline CDRL1 sequence. This 

aspect may favor the development of IOMA-like bNAbs and relate to IOMA's 

distinct Env-binding orientation and α-helical CDRL1 (Figure 36). 

Figure 36: Changes in CDRL1 versus germline for CD4-mimetic bNAbs. The 

mechanism by which each CDRL1 accommodates the N276gp120 glycan is 

highlighted in yellow. The reduced breadth and potency of DRVIA7 compared 

with other VRC01-class bNAbs appears to be due to its LC32. 
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CHAPTER 4: DISCUSSION 

4.1 Immunization studies in the 3BNC60 knock in mouse model 

To elicit a 3BNC60 antibody through vaccination, the immune system needs 

to mobilize B cells that express an IGHV1-2 heavy chain and a light chain 

with the 5-aa CDRL3. Light chains with 5-aa CDRL3 are rare in mice and 

humans, making the frequency of 3BNC60 precursors limited. In addition, 

3BNC60 bears a high level of somatic hypermutations and although not all 

mutations are neutralization relevant, there is currently no way of directing 

mutations to a specific location, which means more mutations need to be 

inserted than the required neutralization relevant mutations. We evaluated the 

vaccination for 3BNC60 antibodies in our heavy chain 3BNC60 KI mice. The 

B cells in these mice have a reduced repertoire diversity because the heavy 

chain is fixed to express the 3BNC60 variable domain, but the light chains are 

recombining randomly. Importantly, the resulting naïve B cell repertoire does 

not contain more HIV-1 immunogen binding naïve B cells than wildtype mice. 

Immunization of mice bearing the predicted germline antibodies in their B 

cells could not be activated by native appearing HIV antigens but only 

responded to antigens specifically designed to bind to 3BNC60-like precursor 

antibodies. This result is consistent with the observation that the germline 

version of 3BNC60 and related antibodies fail to bind to nearly all tested 

recombinant HIV-1 Env antigens and supports the idea that specifically 

designed antigens are required to elicit B cells bearing these 

antibodies100,103,104. Through immunization with such a designed germline-

targeting antigen (eOD-GT8 60-mer) we specifically seek to expand and 

further diversify rare clones of B cells that can serve as precursors of 

3BNC60. Although rare in the pre-immune repertoire, GLVH B cells 

expressing antibodies with short CDRL3s were slightly enriched after 

immunization with the eOD-GT8 60-mer, providing proof of concept for 
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selection of germline precursors of this class of antibodies by germline 

targeting antigens.  

In the mice bearing the MuVH KI heavy variable domain, both the engineered 

eOD GT8 and the native-like BG505 SOSIP trimer elicited antigen-specific B 

cell responses. Both types of antigens selected rare MuVH B cells expressing 

light chains with short CDRL3s and both induced similar levels of somatic 

hypermutation. Nevertheless, only immunization with BG505 SOSIP 

produced a significant neutralizing response. The response to the 

immunogens differed in two important ways. First, the repertoire of light 

chains that was selected to undergo clonal expansion by the native trimer 

was far more restricted than for the eOD-GT8 60-mer. This restriction is likely 

to be related to the glycan at position 276 that enforces the relatively narrow 

geometry of the recessed CD4 binding pocket in the trimer87,111,126. Under 

physiologic conditions, this cavity accommodates the single terminal Ig-like 

domain in CD4. Significant alterations must be made for the bulkier paired 

heavy- and light-chain Ig domains in 3BNC60 and related antibodies to 

access the CD4bs127. Many of these alterations are already present in the 

heavy chain of MuVH B cells, facilitating extensive contacts with gp120127. 

Nevertheless, the steric restrictions imposed by the glycan at 276 in BG505 

SOSIP limit the number of light chains that can be recruited into the immune 

response against the trimer. In contrast, eOD-GT8 was designed to be more 

open and is missing the glycan at position 276. eOD-GT8 recruits a more 

diverse light chain repertoire than BG505 SOSIP immunization but the sets 

are overlapping in mice bearing the MuVH. Still none of the cloned antibodies 

from the eOD-GT8 immunized mice had significant breadth against tier 2 

viruses in TZM-bl assays. The second difference between the two 

immunogens was in their ability to select for light chain mutations that 

enhance breadth and potency. In particular, the Q90H mutation that is 

selected in the BG505 SOSIP immunized mice in the CDRL3 of the VL10-94 

light chains may aid in rigidifying the light chain contacts to the CD4bs. 
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Structural modeling of the VL10-94 light chain indicates that the histidine side 

chain, unlike the glutamine side chain, can adopt a commonly observed, low-

energy conformation that also makes stabilizing interactions within the light 

chain. The planar packing with Y91, the close proximity to the N276 glycan, a 

hydrogen bond with CDRL1, and a potential for interacting with a gp120-

bridging water molecule may help preconfigure the antibody for engagement 

of the CD4bs. The modeling and neutralization data indicate that the mutation 

could cause structural changes that influence binding to gp120 and may be 

necessary for the activity of the BG505 SOSIP elicited antibodies. 

As mentioned above, achieving the right combination of aa substitutions for 

neutralization by random mutagenesis is a low probability event. Finding that 

the mature, fully mutated 3BNC60 VH suffers fewer mutations after 

immunization than the predicted germline 3BNC60 despite equal rates of 

somatic mutation in the light chains and in the JH4 intron suggests that the 

sequence of the VH is an important determinant of its susceptibility to 

hypermutation. Consistent with this idea, the fully mutated 3BNC60 VH has 

many fewer AID target sites than the predicted germline VH128-130. 

RGYW/WRCY are preferred targets for somatic hypermutation: 9 out of 12 

RGYW and 7 out of 8 WRCY motifs found in GLVH sequence are missing in 

MuVH. 

4.2 Immunization for VRC01-like antibodies 

The VRC01 antibody, like 3BNC60, utilizes the IGHV1-2*02 heavy chain and 

has a short 5-aa CDRL3. The germline triggering immunogen we used, eOD-

GT8, was also evaluated in a VRC01 KI mouse model131. In this model, the 

predicted germline VRC01 heavy chain was integrated into the mouse JH 

locus and as in the 3BNC60 model, the mouse LCs recombine randomly. 

CD4bs specific B cells after immunization with eOD-GT8 mainly had 

antibodies bearing a short, 5-aa CDRL3 mouse light chain. Similar to our 
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findings, these antibodies bound specifically to the CD4bs, but exhibited no 

neutralization activity. These results confirm that eOD-GT8 is an effective 

priming antigen. This group then evaluated a bridging immunogen between 

the eOD-GT8 and the native BG505 SOSIP. That immunogen, 

BG505coreGT3, contains fewer mutations than eOD-GT8 making its CD4bs 

more native-like and it binds mature VRC01-class antibodies with >1000-fold 

higher affinity than the germline reverted counterparts. Thus, boost 

immunization with BG505coreGT3 would promote the maturation of VRC01-

like precursor antibodies. Using eOD-GT8, this intermediate immunogen and 

native Env trimers sequentially, the KI mice elicited CD4bs-specific antibodies 

that were composed of the VRC01 heavy chain and mouse LCs with 5-aa 

CDR L3. These antibodies acquired mutations corresponding to those found 

in VRC01-class broadly neutralizing antibodies. The elicited antibodies were 

able to neutralize tier 2 HIV-1 isolates with the N276 mutation and weakly 

neutralize the native form of this viral isolate that has the intact N276 

glycosylation site. Other viral isolates with intact N276 glycosylation site 

remained refractory to neutralization by these and other cloned antibodies. 

Thus, these boosting regimens matured VRC01-like antibodies to an 

intermediate stage, validating the strategy of sequential immunization as an 

effective approach to mature VRC01-like antibodies. 

Further critical questions have been addressed using the eOD-GT8 germline 

triggering immunogen: Do the targeted bnAb precursors exist in humans? 

What is the frequency and variation of germline-targeting immunogen–

specific bnAb precursors? Can the germline-targeting immunogen bind the 

targeted human bnAb precursors in competition with other B cells in the 

divers human B cell repertoire? The results from epitope-specific B cell 

sorting from peripheral blood from healthy, HIV-seronegative donors, indicate 

that VRC01-class precursor B cells are relatively common in humans: At least 

2’700 to 31’000 eOD-GT8–reactive VRC01-class naïve B cells are likely 

present in nearly all vaccine recipients. The data also suggest that eOD-GT8 

has promise to produce VRC01-class memory even given competition from 
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non-VRC01-class B cells, as eOD-GT8 exhibited a high degree of CD4bs 

immunofocusing and VRC01-class precursors had an affinity advantage 

(factor of ≥3) over non-VRC01-class CD4bs epitope-binding precursors138.  

4.3 Immunization for PGT121-like antibodies 

The PGT121 lineage targets the V3 and V1 regions near the apex of the Env 

trimer57,132. Induction of PGT121-class antibodies faces some of the same 

obstacle as those for CD4bs bNAbs: low precursor frequency and high SHM. 

In addition, PGT121 employs a 26-residue HCDR3 to penetrate through a 

glycan layer to interact with the underlying protein surface; such long 

HCDR3s are rare in the human or mouse antibody repertoire, like the short 

CDRL3 in CD4bs bNAbs. SHM frequencies for PGT121-class bnAbs, 

although lower than those of broadly neutralizing CD4bs antibodies, are still 

above average, and their light chains contain indels. Similar to the CD4bs 

bNAbs, the predicted germline reverted PGT121 antibody exhibits no binding 

affinity toward wildtype Env proteins133,134. The BG505 Env protein was 

engineered into a germline PGT121 binder, and proteins, closer to the 

wildtype Env, with fewer mutations and lower binding affinities for the 

germline PGT121, served as intermediate immunogens. The PGT121 

immunogens were tested in two mouse models that express either the 

predicted germline PGT121 antibody, or a chimeric antibody composed of a 

mature PGT121 heavy chain and germline PGT121 light chain. Repeated 

immunization of these KI mice with native trimeric Env proteins failed to elicit 

any detectable antibody response. This was expected, as the germline and 

chimeric antibodies of PGT121 do not interact with native trimeric Env. In 

contrast, a single immunization with the germline-binding immunogen 10MUT 

was sufficient to elicit readily detectable autologous antigen-binding 

antibodies in the serum. Two intermediate protein immunizations followed this 

prime and after the third immunization, binding activity for native Env trimers 

was detectable in serum, leading to the logical step of using native BG505 
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trimer as the fourth boost. Finally, to broaden the immune response, a 

cocktail of native-like BG505 Env trimers with diverse variable loop 

sequences (VLC) was used. The neutralization breadth of the elicited 

antibodies was assessed on a panel of 54 tier 2 viruses and 2 tier 1B viruses. 

Antibodies from the full germline and chimeric PGT121 mice were able to 

neutralize 12 and 23 viruses in the test panel, respectively. Thus, this scheme 

of immunization could induce substantial breadth even starting with a full 

predicted germline antibody133. 

4.4 Immunization of Kymab mice 

Although the heavy chain KI mouse models contain a diverse repertoire of 

antibodies, the frequency of B cells expressing the knocked in heavy chain is 

much higher than that in human antibody repertoire135. To evaluate a priming 

immunogen in a fully polyclonal environment, immunogens were tested in 

Kymab mice, in which the complete human IgH, Igκ, and Igλ variable region 

repertoire was incorporated into the corresponding mouse loci136. 

Remarkably, in spite of the paucity of VRC01-like class B cells in Kymab 

mice, immunization with eOD-GT8 60mer elicited CD4bs-specific antibodies, 

about 1% of which were composed of IGHV1-2 HC and various LCs with 5-aa 

CDRL3s. VRC01-like antibodies were detected in 29% of immunized Kymab 

mice. The mice were immunized only once and no neutralization activity was 

seen. And as expected, SOSIP Envs failed to elicit CD4bs- like bNAbs in the 

Kymab model137.  

In summary, immunization studies, done in various mouse models, have thus 

far provided several important insights. First, engineered immunogens, with 

high-affinity to the predicted germline of a bNAb can expand bNAb 

precursors, even in a polyclonal environment like in the Kymab mice. Second, 

sequential immunization with progressively more native-like Env immunogens 

is an effective way to mature bNAb precursor antibodies. It remains to be 
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seen, if the sequential immunization will lead to broad neutralization in the 

polyclonal environment or if it would induce irrelevant antibody responses, 

which may dominate over the development of bNAbs. 

4.5 IOMA, an alternative CD4bs broad neutralizing antibody – implications for 

vaccine design 

The isolation of IOMA and the IOMA-BG505 SOSIP structure revealed that 

VH1-2-derived CD4-mimetic bNAbs are not limited to five-residue CDRL3s 

and suggests an additional pathway for VH1-2-class bNAbs. A lot of focus is 

put on designing immunogens that bind to inferred VH1-2 germline precursors 

and select VH1-2 B-cells with short CDRL3s. As we have seen in the 

3BNC60 KI mice, it will not be easy to select for these antibody chains due to 

their low frequency (~1% of LCs). The existence of CD4bs bNAbs with more 

favorable features has implications for immunization strategies. Many 

engineered CD4bs precursor antibody triggering immunogens selected B 

cells with longer CDRL3s, like IOMA. Studies using these immunogens 

should examine whether IOMA-like antibodies are elicited. Indeed, isolation of 

naive B cells binding to the VH1-2-class germline-targeting immunogen eOD-

GT8 was found to enrich VH1-2-expressing cells from 4% to 50%, but 70% of 

eOD-GT8-binding/VH1-2-expressing cells do not express an antibody with a 

five-residue CDRL3; some or even most of these may represent B cells with 

IOMA-like antibody receptors138. Although the IOMA pathway may not lead to 

bNAbs with the breadth and potency of VH1-2-like bNAbs, it is possible that 

the IOMA pathway may more readily lead to an effective vaccine response, 

owing to higher frequencies of normal-length CDRL3s compared with the rare 

five-residue CDRL3s required for VH1-2-class bNAbs, and a lower need for 

somatic hypermutations.  
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4.6 Concluding remarks 

Today, the most important diseases that used to kill or incapacitate millions 

are preventable by vaccination. Major efforts have been and are being put in 

vaccine development against HIV. The technological revolution we are 

experiencing currently (like single cell transcriptomics, CRISPR generated 

mice and structural biology), will help in the identification of vaccines against 

infectious agents that remain untargeted. We have used reverse and 

structural vaccinology, combined with synthetic biology to tackle the HIV 

vaccine problem.  
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CHAPTER 5: METHODS 

Mice and Immunizations 

Knockin mice were produced by gene targeting using the human VDJH 

sequences of the mature and germline 3BNC60 heavy chain103. The targeting 

vector was designed with homologous regions flanking the endogenous J 

segments, which results in the deletion of the J segments and thereby 

minimizes rearrangement of the wild-type locus. Mice were immunized once 

every 2 weeks with 10 μg of protein in Alum Imject (Thermo Scientific). Serum 

was collected 2 weeks after each immunization. All experiments were 

performed according to the protocols approved by the IACUC at Rockefeller 

University. 

Protein Production 

eOD-GT8 is an improved version of eOD-GT6100,131. The eOD-GT8 CD4bs 

knockout carries mutations to reintroduce the N276 glycan and also includes 

D368R and N279A. eOD-GT8 60-mer for immunization and monomers for 

ELISA detection were produced as previously described100. The 

426c.TM4ΔV1-3 immunogen (with or without AviTag) is a derivative of the 

426c.NLGS.TMΔV1-3106 with the following additional modifications: D276N, 

S278R, and G471S (HXB2 numbering). The protein was produced as 

previously described106. Multimerized 426c.TM4ΔV1-3 was generated as 

follows: Avi-tagged and biotinylated 426c.TM4ΔV1-3 was mixed with 

streptavidin and biotinylated dextran (Life Technologies) at a 3:1 ratio of Env 

to biotin, with the assumption that the biotin had 77 biotin molecules/dextran. 

Streptavidin (New England Biolabs) was added to achieve a 3:1:1 Env to 

streptavidin to biotin ratio. To generate YU2 SOSIP.664, a gene encoding 

YU2 SOSIP.664 was constructed to include the “SOS” substitutions 
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(A501Cgp120 and T605Cgp41), the “IP” substitution (I559Pgp41), changing 

the gp120-gp41 cleavage site to 6R (REKR to RRRRRR) and introducing a 

stop codon after residue 664gp41 (HXB2 numbering) analogous to mutations 

introduced to generate BG505 SOSIP.664 as described107. YU2 SOSIP.664, 

BG505 SOSIP.664, and B41 SOSIP.664 (referred to as YU2 SOSIP, BG505 

SOSIP, and B41 SOSIP) were produced and purified by the 2G12/SEC 

method as previously described107,139,140. YU2 gp140-F CD4bs knockout is a 

YU2 gp140-foldon (F) HIV-1 Env with A281T and D368K mutations, and 

proteins were produced as previously described141. 

ELISA 

ELISA for eOD-GT8, eOD-GT8 CD4bs knock-out, YU2 gp140-F, YU2 gp140-

F knock-out, YU2 SOSIP, and B41 SOSIP was performed by coating high 

binding 96-well plates (Corning Incorporated) with 200 ng/well of protein. After 

incubation overnight (ON) at 4°C, the plates were washed in wash buffer 

(PBS with 0.05% TWEEN 20 [Sigma]) and incubated in blocking buffer (PBS 

with 2% milk). Serum samples or monoclonal antibodies were added in 

dilutions. Plates were washed and secondary antibody, HRP conjugated anti-

mouse or anti-human IgG (Jackson Immuno Research), was added. Plates 

were developed by the addition of HRP substrate (Life Technologies), and the 

absorbance was measured at 405 nm. ELISA specific for BG505 SOSIP was 

performed using the D7324-capture ELISA as described in107. 

TZM-bl Neutralization Assay 

Serum samples and monoclonal antibodies were tested for neutralization 

against a panel of selected HIV-1 pseudoviruses using a TZM-bl 

neutralization assay as previously described110. 
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IgGs for neutralization assays were expressed in HEK293-6E cells (National 

Research Council of Canada) by transient transfection of equal amounts of 

HC and LC vectors and purified by Protein G–Sepharose 4 Fast Flow 

Chromatography (GE Healthcare) from transfected cell supernatants 

collected after 7 d of culture. Sterile filtration and buffer exchange to PBS 

were performed before testing for neutralizing activity. 

Pseudovirus neutralization was monitored by the reduction of HIV-1 Tat-

induced luciferase reporter gene expression in the presence of a single round 

of pseudovirus infection in TZM-bl cells, as previously described50. 

Neutralization assays were conducted by the Collaboration for AIDS Vaccine 

Discovery (CAVD) core neutralization facility or in house. Data were fit in 

Prism (GraphPad) with nonlinear regression to derive IC50 values. The IC50 

values were derived from independent replicates of manual and robotic 

assays conducted with eight potential inhibitor concentrations tested in 

duplicate or triplicate, and generally agreed within two- to four-fold. Average 

IC50 values reported in the figures and tables are geometric means 

calculated with the formula (∏ai)(1/N); i = 1, 2, ..., N. Geometric means are 

suitable statistics for data sets covering multiple orders of magnitude142, as is 

the case for neutralization data across multiple viral strains. Fold 

improvements were calculated as the ratio of the geometric mean IC50 

values for the reagents being compared. 

B Cell Enrichment 

B cells were enriched from single-cell suspensions of total splenocytes prior 

to flow cytometry staining by magnetic bead separation using anti-CD19 or 

anti-CD43 MicroBeads (Miltenyi Biotec). The separation was performed on 

MACS separation LS columns according to the manufacturer’s instructions. 
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Flow Cytometry 

Single-cell suspensions of total splenocytes, enriched B cells, or BM were 

stained with different combinations of the following antibodies: anti-CD4 APC-

eFluor 780, anti-CD8 APC-eFluor 780, anti-Gr1 APC-eFluor 780, anti-F4/80 

APC-eFluor 780, anti-B220 APC, anti-B220 APC-eFluor 780, anti-B220 FITC, 

anti-CD19 PeCy7, anti-CD38 Alexa Fluor 700, anti-CD93 APC, anti-IgM 

PerCP-eFluor 710, anti-CD21/CD35 eFluor 450 and anti-GL7 eFluor 660 

(eBiosciences), anti-CD23 PE (BioLegend), anti-CD4 PE-CF594, anti-CD8 

PE-CF594, anti-Ly-6G and Ly-6C PE-CF594, anti-IgG1 and CD95 BV421 (BD 

Biosciences). Live dead aqua stain was added to separate dead cells (Life 

Technologies), and eOD-GT8-specific cells were visualized by the addition of 

FITC-conjugated eOD-GT8 and PE-conjugated eOD-GT8 CD4bs knockout. 

BG505 SOSIP-60 and 2cc-specific memory B cells were visualized by the 

addition of biotinylated protein with the addition of streptavidin-conjugated PE 

and APC, respectively (BD Biosicences)102. 

B Cell Sorting 

Staining and single-cell sorting of naive and memory B cells was performed 

as follows: for naive mice, CD4-, CD8-, Gr-1-, F4/80-, B220+, and IgM+ B 

cells were sorted. For immunized mice, CD4-, CD8-, Gr-1-, F4/80-, B220+, 

CD38-, IgM-, IgG+, eOD-GT8 CD4bs knockout and eOD-GT8+ or CD4-, 

CD8-, Gr-1-, F4/80-, B220+, CD38-, IgM-, IgG+, BG505 SOSIP+, and 2cc+ 

memory B cells were single-cell sorted into 96-well plates using a FACSAria 

III sorter (Becton Dickinson). The cells were lysed with 4 μl lysis buffer 

containing RNASin (Promega) 40 U/μl (0,3 μl), DPBS (Dulbecco) 10× (0.2 μl), 

DTT (Invitrogen) 100 mM (0.4 μl), and nuclease-free water (3.1 μl). The 

sorted plates were stored at −80°C until further procecessing. Sequencing 

and cloning primers are listed in Table S6. Antibodies were cloned using a 
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modified sequence and ligation-independent cloning (SLIC) approach as 

described in102. Antibodies were produced in HEK293-6E cells as described 

in102. Bulk sorted GC B cells were amplified with the following primers: pF: 

GGGATGGTCATGTATCATCCTTTTTCTAGTAGC and p279: 

TCCTAGGAACCAACTTAAGAGT. 

gp140YU2 and 2cc-core were used for sorting experiments with R1 and were 

produced as previously described1. Purified total B cells were stained with 

combinations of anti-human CD19 (FITC human CD19 (BD, 340864)), IgG 

(APC human IgG (BD, 550931)) antibodies and PE-labeled gp140YU2 or 2cc-

core. Antigen-specific IgG+ memory B cells were single-cell-sorted on a BD 

Aria cytometer into 96-well PCR plates containing 4 μL/well of lysis buffer. 

Plates were immediately frozen on dry ice before storage at −80 °C. For each 

cell, cDNA was generated by two-step reverse transcription with random 

primers. The sequences of the VH and VL domains were amplified by nested 

PCR, with a combination of previously described primers1,102,143. Sequence 

analysis was performed to identify Ig gene usage, HC and LC CDR3s, and 

the number of VH-VL somatic hypermutations (IgBLAST, 

http://www.ncbi.nlm.nih.gov/igblast/ and IMGT, http://www.imgt.org/). For 

cloning by PCR, the primers contained 15–20 base pairs of 5′ and 3′ 

homology to restriction-digested expression vectors to allow for cloning by 

homologous recombination into DH5α102. 

Structural Modeling 

To create a structural model of one of the antibodies elicited in the MuVH 

mouse by BG505 SOSIP, we integrated information from HIV bNAb 

structures and mouse light-chain structures. The antibody 3BNC117 has very 

high sequence similarity to 3BNC60 (ten mutations in heavy chain and three 

mutations in light chain1) and has a co-crystal structure available (PDB: 

4JPV). We made an initial model of 3BNC60 by running 50 ROSETTA-
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Fixbb144 simulations to model the mutations from the 3BNC117 structure. The 

elicited antibodies contain a mutated mouse light chain from the VL10-94∗01 

germline gene; here, we focused on the Q90H mutation. To model the light 

chain, we used an unrelated crystal structure of a mouse VL10-94∗01 

antibody (PDB: 1EMT). We superimposed the mouse antibody to the 3BNC60 

model and created a hybrid of 3BNC60-mature heavy chain and VL10-94∗01 

light chain to mimic what was elicited in MuVH. The 1EMT structure did not 

contain a five aa CDRL3, so we aligned the light chain from 3BNC117 and 

grafted the five amino CDRL3 onto our model. The final model was obtained 

by adding an interfacial water molecule (as found in the structurally similar 

VRC-CH31 light chain; PDB: 4LSP) and by running 100 ROSETTA-Relax 

simulations to allow for slight movements of the backbone. 

Statistical Analysis 

Statistical differences were analyzed by the Mann-Whitney test. GraphPad 

Prism software was used for analysis, and data were considered significant at 

∗p ≤ 0.05, ∗∗p ≤ 0.01, and ∗∗∗p ≤ 0.001. 

Patient samples 

Subject R1 is an HIV-1-infected individual who started antiretroviral therapy 

(ART) four months after initial diagnosis. ART treatment was paused twice for 

2.5 years at 17 months and 7 years after treatment initiation, and for 3 months 

approximately 11 years after initiation. A serum sample was collected under 

informed written consent and in accordance with the University of Cologne 

Institutional Review Board (09–281). The serum sample was heat-inactivated 

for 1 h at 56 °C, and the IgG fraction was purified with Protein G–Sepharose 4 

Fast Flow (GE Healthcare). Sterile filtration and buffer exchange to PBS was 
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performed before testing for neutralizing activity. IgG was screened for 

neutralizing activity against a panel of tier 1, tier 1B, and tier 2 viruses 

representing eight different clades or interclade recombinants. A 

leukapheresis sample (17 years after initial HIV-1 diagnosis) was obtained 

under informed consent and under approval of the Rockefeller University 

Institutional Review Board (MNU-0628). The sample was processed within 2 

h of collection. Serum and plasma samples were stored, and PBMCs were 

isolated by density gradient centrifugation. The absolute number of peripheral 

blood mononuclear cells was determined with an automated cell counter (Vi-

Cell XR; Beckman Coulter), and cells were cryopreserved in FBS/10% 

DMSO. 

Protein production and purification for crystallography 

Fabs from the IOMA and 10-1074 bNAbs (in which the 10-1074 Fab included 

a C263SLC substitution145) were expressed and purified as described in 

previous studies5. Briefly, Fabs were expressed by transient transfection in 

HEK293-6E cells (obtained from the National Research Council of Canada; 

tested for mycoplasma) with expression vectors containing genes encoding 

the LC and a C-terminally histidine-tagged Fab portion of the HC. Histidine-

tagged Fabs were purified with Ni2+–NTA affinity chromatography (GE 

Healthcare) and SEC with a Superdex 200 16/60 column (GE Healthcare). 

A gene encoding BG505 SOSIP.664, a soluble clade A gp140 trimer107, was 

constructed to include 'SOS' substitutions (A501Cgp120 and T605Cgp41), 

the 'IP' substitution (I559Pgp41), the N-linked glycan sequence at residue 

332gp120 (T332Ngp120), an enhanced gp120–gp41 cleavage site (REKR to 

RRRRRR), and a stop codon after residue 664gp41 (Env numbering 

according to HX nomenclature). Protein was expressed in HEK293-6E cells 

(National Research Council of Canada) by transient transfection of plasmids 
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encoding BG505 SOSIP and soluble furin at a ratio of 4:1, as previously 

described5, except that the cells were not treated with kifunensine. BG505 

SOSIP protein was isolated from cell supernatants with a 2G12 

immunoaffinity column made by covalently coupling 2G12 IgG monomer to an 

NHS-activated Sepharose column (GE Healthcare). After elution with 3 M 

MgCl2 and immediate buffer exchange into Tris-buffered saline, pH 8.0 

(TBS), trimers were purified with Superdex 200 16/60 SEC (GE Healthcare). 

The trimer fractions were pooled and repurified with the same column. Twelve 

1.0-mL fractions were collected, which were pooled in groups of two and then 

stored separately. Selected fractions were combined with IOMA and 10-1074 

Fabs, thus resulting in two crystal structures: a 3.9-Å-resolution structure from 

BG505 fractions 7 and 8, and a 3.5-Å-resolution structure from BG505 

fractions 11 and 12. 

Crystallization 

Samples for crystallization were produced by incubation of BG505 SOSIP 

with a 1:1:1 molar ratio of IOMA and 10-1074 Fabs for ~16 h at room 

temperature. The resulting complex was concentrated to 5–10 mg/ml with a 

30-kDa concentrator (Amicon). Crystal trials were carried out with the sitting-

drop vapor-diffusion method at room temperature by equilibration of equal 

volumes of the protein complex solution and reservoir solution with a TTP 

LabTech Mosquito robot and commercially purchased kits (Hampton 

Research). Crystals of IOMA–BG505–10-1074 complex (one BG505 

protomer per asymmetric unit) were obtained by combining 0.2 μL of protein 

sample with 0.2 μL of 200 mM ammonium citrate tribasic, pH 7.0, 100 mM 

imidazole, pH 7.0, and 20% PEG MME 2000 at 20 °C. Crystals were 

cryoprotected in mother liquor supplemented with 20% glycerol and incubated 

for at least 10 min before being flash frozen in liquid nitrogen. 



64 

Crystallographic data collection, structure determination, and refinement 

All structures were solved with data sets collected at 100 K and 1-Å resolution 

on Beamline 12-2 at the Stanford Synchrotron Radiation Lightsource (SSRL) 

with a Pilatus 6M pixel detector (Dectris). Data sets were indexed, integrated 

with MOSFLM53, and then merged with AIMLESS in the CCP4 software 

package54. A 3.9-Å-resolution structure of IOMA–10-1074–BG505 was 

solved with four data sets collected from crystals prepared with early fractions 

from the BG505 SEC purification, and a 3.5-Å-resolution structure was solved 

with 14 data sets collected from crystals prepared with later BG505 fractions. 

The 3.9-Å-resolution structure was solved by molecular replacement with a 

monomeric gp120–gp41 from BG505 SOSIP (PDB 4TVP), one copy of 10-

1074 Fab (PDB 4FQ2), and one copy of a chimeric Fab (PDB 4TNN for the 

LC and PDB 4XVS for the HC) identified as a suitable model for IOMA by the 

FFAS server146. Coordinates were refined with PHENIX v1.10.1-2155 (ref.147) 

with group B factor and TLS restraints. The presence of ~10% twinning was 

corrected for by refining with the twin operator k,h,–l for space group R3:H. 

Manual rebuilding was performed with Coot56. The 3.5-Å-resolution structure 

was solved with a refined model from the 3.9-Å-resolution structure. In both 

models, >90~ of the residues were in the favored region of the 

Ramachandran plot, whereas <1~≃ were in the disallowed regions. 

Glycans were interpreted in both structures with 2Fo − Fc maps calculated 

with model phases and with composite annealed omit maps calculated with 

phases in which the model was omitted to reduce model bias147. Glycans 

were refined with PDB CArbohydrate REsidue check (pdbcare) 

(http://www.glycosciences.de/tools/pdb-care/), CArbohydrate Ramachandran 

Plot (carp) (http://www.glycosciences.de/tools/carp/), and Privateer148. In 

general, the glycans identified crystallographically at individual PNGSs on 

BG505 SOSIP.664 were found within the mixture of glycans assigned at 

these positions with mass spectroscopy118. However, the N-linked glycan 
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attached to N156gp120 was modeled as complex type in our structures but 

has been identified as high mannose (primarily Man9GlcNAc2) in mass 

spectrometry analyses of BG505 SOSIP.664 (ref.118). When we modeled a 

high-mannose glycan at this site and carried out refinement as described 

above, we found a slight increase (0.1%) in Rfree and electron density in 

addition to that accounted for by the high-mannose residues, including 

density for a core fucose. We also modeled the N-linked glycan attached to 

N392gp120 as containing a core fucose, but it has been identified as a 

Man9GlcNAc2/Man8GlcNAc2 mixture in BG505 SOSIP.664 mass 

spectroscopy studies118. When the core fucose was removed from the 

N392gp120 glycan coordinates, a subsequent refinement showed a minor 

increase in Rfree, and electron density for the fucose was preserved. 

Buried surface areas were determined with PDBePISA57 and a 1.4-Å probe. 

Superimposition calculations were performed, and molecular representations 

were generated with PyMOL (http://www.pymol.org/) or UCSF Chimera149. 

PDBeFold59 was used to perform pairwise Cα alignments. The following 

distance and geometry criteria were used for assigning putative hydrogen 

bonds: a distance of <3.5 Å and an A-D-H angle of >90°. The maximum 

distance allowed for a van der Waals interaction of 4.0 Å. Hydrogen-bond and 

van der Waals interaction assignments should be considered tentative, owing 

to the relatively low resolutions of the structures. 

Antibody approach-angle comparisons 

The angles of approach for selected CD4bs bNAbs were compared as 

follows: the structure of CD4 in complex with HxBc2 gp120 (PDB 1GC1) was 

used as a reference structure for comparisons of angles of approach of Fab 

recognition of gp120s. The center of mass of the CD4 D1 domain was placed 

at the origin, and its principal axes of inertia were aligned with the Cartesian 
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axes with AMORE from the CCP4 suite150. The remainder of the PDB 1GC1 

complex was then aligned with the centered CD4 D1 domain. To compare 

with other complexes, each Fab–gp120 complex was aligned with the 1GC1 

gp120 chain with LSQMAN60. The transformation matrix between the aligned 

Fab–gp120 VH domain and the CD4 D1 domain was then calculated by 

LSQMANN 

Accession codes 

Coordinates and structure factors for BG505 SOSIP.664 in complex with 

IOMA and 10-1074 Fabs have been deposited in the Protein Data Bank under 

accession codes PDB 5T3Z (3.5-Å resolution) and PDB 5T3X (3.9-Å 

resolution). IOMA HC and LC gene sequences have been deposited in 

GenBank under accession codes KX610770 and KX610771, respectively). 
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