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How do biological systems ensure robustness of function despite developmental and

environmental variation? Our sense of hearing boasts exquisite sensitivity, precise

frequency discrimination, and a broad dynamic range. Experiments and modeling

imply, however, that the auditory system achieves this performance for only a narrow

range of parameter values. Although the operation of some systems appears to require

precise control over parameter values, I describe how the function of the ear might

instead be made robust to parameter perturbation.

The sensory hair cells of the cochlea are physiologically vulnerable: small changes

in parameter values could compromise hair cells’ ability to detect stimuli. Most ears,

however, remain highly sensitive despite differences in their physical properties. I

propose that, rather than exerting tight control over parameters, the auditory system

employs a homeostatic mechanism that increases the robustness of its operation to

variation in parameter values.

To slowly adjust the response to sinusoidal stimulation, the homeostatic mech-

anism feeds back to its adaptation process a rectified version of the hair bundle’s

displacement. When homeostasis is enforced, the range of parameter values for which

the sensitivity, tuning sharpness, and dynamic range exceed specified thresholds can

increase by more than an order of magnitude. Certain characteristics of the hair

cell’s behavior might provide a means to determine through experiment whether such

a mechanism operates in the auditory system. This homeostatic strategy consti-

tutes a general principle by which many biological systems might ensure robustness

of function.
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Chapter 1

Hair Bundle Features Essential for Hearing

Our sense of hearing boasts precise frequency discrimination, exquisite sensitivity,

and a broad dynamic range. A trained human listener can distinguish tones that

differ in frequency by only 0.2 %, a difference one thirtieth of that between the

pitches sounded by two neighboring keys on a piano [1]. The softest sounds that

we can detect carry energies of the same magnitude as thermal fluctuations [2–5].

We can, however, also process sounds that convey a trillionfold more power [6]. Hair

cells, the cells in our cochlea that translate mechanical stimuli into electrical messages,

contribute significantly to each of these remarkable features. After briefly introducing

how sounds are processed by the ear, this chapter discusses how the design of the hair

cell’s mechanosensing apparatus, the hair bundle, underlies the sensitivity, frequency

selectivity, and broad dynamic range of signal detection by the ear.

1.1 Sound Processing by the Ear

Sound comprises oscillating pressure waves that alternately compress and rarefy

the medium through which they propagate. The contours of the external ear direct

sound waves toward the tympanic membrane situated at the end of the external

auditory canal. As happens for the diaphragm of a microphone, sound waves that

impinge on the tympanic membrane cause it to vibrate. By setting the malleus,

incus, and stapes into motion, oscillations in the tympanic membrane are carried by

the three ossicles to the oval window of the cochlea (Fig. 1.1A).
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Figure 1.1: The peripheral auditory system (A) The ear is divided into three sec-

tions. The pinna and external auditory canal of the outer ear direct sounds toward

the tympanic membrane. The three ossicles of the middle ear, the malleus, incus,

and stapes, communicate vibrations arriving at the tympanic membrane to the oval

window. The inner ear’s cochlea, an organ that resembles a snail’s shell, translates

fluid-pressure waves generated at the oval window into electrical signals. (B) Cross

section of one turn of the cochlea. The cochlea comprises three coiled tubes, called

scalae, that are separated by Reisner’s membrane and by the basilar membrane. The

scala media is filled with endolymph, a fluid that is rich in potassium. Perilymph,

which resembles the fluid that bathes most neurons, fills the scala vestibuli and scala

tympani. (C) A magnified view of the scala media features the organ of Corti, the

sensory epithelium that sits atop the basilar membrane and houses the hair cells. The

tectorial membrane lies over top of the hair cell bundles. Cochlear hair cells come in

two varieties: Inner hair cells receive the majority of afferent innervation and their

bundles protrude into a groove on the basal surface of the tectorial membrane. Outer

hair cells receive the majority of efferent innervation, have bundles that are physically

coupled to the tectorial membrane, and outnumber inner hair cells threefold. (D) A

scanning electron micrograph of the organ of Corti’s apical surface reveals how the

shapes of the inner and outer hair cell bundles differ. Panels A−C modified from [7],

panel D modified from [8].
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From the Greek kokhĺıas (κoχλιας) meaning screw or snail, the cochlea is a spiral-

shaped organ whose interior is partitioned by Reissner’s membrane and the basilar

membrane into three fluid-filled canals called scalae (Fig. 1.1B). The scala media

contains potassium-rich endolymph and is sandwiched between the scala tympani and

scala vestibuli, which are filled instead with perilymph whose composition resembles

that of the fluid surrounding most neurons [7].

Within the scala media and resting on the basilar membrane resides the organ of

Corti, the sensory epithelium that houses the cochlea’s hair cells (Fig. 1.1C). There

are two varieties of cells in the mammalian cochlea. Inner hair cells synapse onto

several afferent neurons and receive little efferent innervation, while the converse is

true of outer hair cells [9,10]. Consequently, inner hair cells primarily serve to provide

sensory information to the brain and outer hair cells mainly contribute to amplifying

incoming signals, as discussed below [7,11,12]. The shapes of their mechanosensitive

organelles, the hair bundles, also differ: the bundles of inner hair cells are straight,

whereas those of outer hair cells are V-shaped (Fg. 1.1D) [13]. Although it overlies

all of the cochlear hair bundles, the tectorial membrane is physically attached only to

the tips of the outer hair cell bundles, whereas the tips of the inner hair cell bundles

project into a groove on the tectorial membrane’s basal surface [14].

Owing to the pressure difference it generates between the scalae, periodic displace-

ment of the oval window induces vibrations in the basilar membrane that push the

hair cells alternately toward and away from the tectorial membrane. The resulting

shearing motion between the tectorial and basilar membranes deflects the hair bun-

dles in a plane that is nearly orthogonal to the motion of the hair cells’ bodies (Fig.

1.2A). Deflection of the bundles affects the electrical state of the hair cells and this

information is carried across synapses to afferent neurons and onward to the brain.

3
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Figure 1.2: Sound processing by the ear. The tympanic membrane receives sound

waves and passes these vibrations through the three ossicles to the oval window.

Periodic displacement of the oval window generates a fluid pressure wave in the cochlea

that induces vibrations in the basilar membrane. (A) The resulting shearing motion

between the tectorial and basilar membranes leads to deflection of the hair bundles

and, subsequently, effects a change in the hair cells’ membrane potential. Image taken

from [12]. (B) Tonotopic map indicating the locations along the basilar membrane

at which the noted frequencies elicit the largest responses. Frequencies are listed

in hertz, image taken from [15]. (C) Because its response to stimuli of different

frequencies peaks at different locations, the basilar membrane decomposes sounds

into their constitutive frequency components. Ear diagram modified from [16].
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The biophysical properties of the basilar membrane, including its width and stiff-

ness, continuously vary along its length: the basilar membrane is narrow and stiff near

its base but wide and compliant at its apex [17–19]. Owing to changes in hair bun-

dle morphology, it is likely that the preferred stimulation frequency for the hair cells

sitting atop the basilar membrane also systematically decreases from the base to the

apex [14, 20–22]. At a given location along the basilar membrane, the active process

that is activated by hair bundle stimulation is thus designed to amplify vibrations at

only a particular frequency. Together these gradients cause the basilar membrane’s

response to sinusoidal stimuli of a particular frequency to peak at a specific location

along the membrane’s length (Fig. 1.2B). High-frequency tones, for example, excite

traveling waves that peak near the base of the basilar membrane, whereas large re-

sponses near the basilar membrane’s apex are seen for low-frequency stimuli. The

frequency that evokes the largest response at a particular position along the basilar

membrane is termed the characteristic frequency for that location. A tonotopic map

that spans the range of human hearing can thus be ascribed to the basilar membrane,

whose characteristic frequency decreases monotonically from 20 kHz at the base to

20 Hz at the apex.

From Fourier analysis it is well known that any waveform can be mathemati-

cally decomposed into oscillating component functions. Because it separates sinu-

soids whose oscillation frequencies differ, the basilar membrane performs a spectral

decomposition that is similar in spirit to a Fourier transform. A complex sound

containing multiple frequency components is therefore separated into its constituent

components by the basilar membrane, and the membrane’s response to the complex

stimulus comprises peaks at locations that correspond to the frequencies of the in-

dividual components (Fig. 1.2C). The hair cells whose locations coincide with the
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peaks in the basilar membrane’s response receive the greatest stimulation: like chords

on a piano, sounds containing multiple frequency components activate multiple hair

cells.

Signals propagating through the cochlea must pass through an array of frequency

filters, two of which–the basilar membrane and the hair bundle–were introduced in the

preceding discussion. Additional frequency selectivity is likely enforced by numerous

other stages of signal processing in the peripheral auditory system, including the

synaptic release of vesicles by hair cells and the subsequent response of the afferent

neuron [23, 24]. Evidently the central frequencies of these filters are closely aligned:

afferent neurons and the basilar membrane exhibit nearly identical frequency tuning

[25]. How this alignment is orchestrated as the cochlea develops remains an open

question.

Filter misalignment does not appear to impair the cochlea’s frequency resolution.

A simple calculation suggests, rather, that the frequency resolution of hearing in

humans is limited by the number of inner hair cells. Let us assume that, as in mice,

the place-frequency map of the human cochlea is logarithmic [26], which means that if

two positions along the basilar membrane are separated by the same physical distance

as another pair of points, then the multiplicative factor that relates the characteristic

frequencies of the first two positions matches that of the second pair. For example,

if the 20 Hz and 100 Hz places, whose characteristic frequencies differ fivefold, are

physically separated by 5 mm, then the 100 Hz and 500 Hz places will also be 5 mm

apart. Because they occur at regularly spaced intervals along the organ of Corti, the

characteristic frequencies for any pair of adjacent inner hair cells will differ by the

same multiplicative factor κ. Considering that human hearing ranges from 20 Hz to

20 kHz and that the cochlea contains ∼3,500 inner hair cells, κ is estimated by solving
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20κ3,500 = 20, 000, which yields κ ≈ 1.002. This result implies that the characteristic

frequencies between adjacent inner hair cells differ by 0.2 %, a number that agrees

with the frequency resolution measured for trained listeners [1], and thus raises the

possibility that our frequency resolution is limited by the number of inner hair cells.

This simplified exercise might be inaccurate, however, if the place-frequency maps for

humans is not logarithmic as is the case for some mammals [27–29].

Hair cells also reside in our vestibular organs and in the neuromasts of fishes and

aquatic amphibians (Fig. 1.3). As in the cochlea, deflection of the hair bundles in

these organs instigates depolarization of the hair cells and the ensuing electrical sig-

nals are communicated across synapses to afferent neurons; hair cells again translate

mechanical stimuli into electrical messages. That hair cells can employ the same

mechanism to relay information from diverse sensory modalities is made possible by

the varied mechanical features of the organs that house these cells.

Within the utricle and sacculus, the organs that enable us to sense linear accel-

eration in respectively the horizontal and vertical directions, the hair bundles are

physically coupled to an overlying otolithic membrane atop which sit massive cal-

cium carbonate crystals called otoconia (Fig. 1.3A). When our heads accelerate, the

inertia of the otoconia causes their motion to lag behind that of the underlying hair

cells and results in deflection of the hair bundles.

Hair bundles in the semicircular canals and the neuromasts of fishes are embedded

in a gelatinous cupula whose specific gravity matches that of the surrounding fluid

(Fig. 1.3A,B). Fluid flow activates the hair cells in these organs by deflecting the

cupula and the hair bundles contained therein. Rotational acceleration of the head

generates a differential motion between the semicircular canals and the endolymph

that fills them: owing to its inertia, the endolymph lags behind the semicircular canals
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and consequently deflects the cupula. In fishes, fluid flow across the neuromasts may

be generated by the wiggle of nearby prey or by the gulp of an imminently attacking

predator [30,31].

It is of interest to note that because the density of the cupula normally matches

that of the surrounding endolymph, the cupula is neutrally buoyant and is not de-

flected by changing its orientation with respect to the earth’s gravitational field.

However, as is posited by the “buoyancy hypothesis,” ingesting certain fluids, in-

cluding alcohol and heavy water, can induce a temporary gradient in the specific

gravity across the cupula-endolymph boundary because ingested fluids enter these

compartments at different rates [32]. This disruption in neutral buoyancy allows lin-

ear accelerations to deflect the cupula and consequently to be perceived as rotational

accelerations, a phenomenon familiarly known as “the spins.”
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Figure 1.3: Hair cells in the vestibular system and neuromasts. (A) Hair cells resid-

ing in the semicircular canals, utricle, and sacculus are activated by the movements

of overlying structures. Rotations of the head beget differential motions between the

cupula and endolymph within the semicircular canals, which in turn deflect the bun-

dles protruding into the cupula. The otolithic membrane of the utricle and sacculus

is weighted down by otoconia. In response to linear accelerations of the head, the

motion of the macular hair cell bodies leads that of the otolithic membrane. Because

they are coupled to the underside of the otolithic membrane, this motion deflects the

hair bundles. Image modified from [33]. (B) Locations of neuromasts in zebrafish

larvae. (C) Like in the cristae of semicircular canals, the hair bundles in the neuro-

masts of fish are embedded in an overlying cupula and are thus sensitive to fluid flow.

Panels B and C modified from [34].
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1.2 Mechanoelectrical Transduction by Hair Cells

The hair cell derives its name from the hair bundle that protrudes from its apical

surface and resembles a tuft of hairs. The hair bundle comprises a set of stereocilia

organized into rows that are graded by height (Fig. 1.4A). Owing to the tightly

packed actin filaments that fill their interiors, stereocilia approximate rigid rods.

Near their bases, however, stereocilia taper and are more compliant [35]. When the

hair bundle is deflected, each stereocilium pivots about its point of insertion into the

hair cell’s apical surface (Fig. 1.4D) [36].

A proteinaceous tip link runs between each stereocilium and its tallest neighbor

(Figs. 1.4B,C). A dimer of protocadherin-15 embraces a parallel dimer of cadherin-

23 in an ‘extended handshake’ to form this strand [37–41]. Several domains of the

tip link embrace calcium ions and the handshake interaction becomes unstable when

calcium is absent: chelation of calcium by BAPTA ruptures tip links and abolishes

the hair bundle’s ability to detect mechanical stimuli [41,42].

The lower end of every tip link is coupled to two mechanoelectrical transduc-

tion (MET) channels (Fig. 1.4E) [43], making it likely that each of the tip link’s

protocadherin-15 monomers is associated with one MET channel. Because each stere-

ocilium is constrained to rotate about a pivot, deflecting the hair bundle toward its

taller edge engenders a shearing motion between neighboring stereocilia that increases

the tension in every tip link. When the tension becomes great enough, the tip links

pull open the MET channels (Fig. 1.4F ). Once open, these ion channels allow potas-

sium and calcium ions to passively diffuse down their electrochemical gradients into

the stereocilia. The ensuing depolarization of the hair cell completes the transduction

of a mechanical stimulus into an electrical signal.
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Figure 1.4: Hair bundle structure. (A) Scanning electron micrograph of a saccular

hair bundle from the American bullfrog, from [44]. (B) Transmission electron mi-

crograph of a transverse section through a stereocilium from the hair bundle of an

alligator lizard’s basilar papilla. Paracrystalline packing of actin filaments is seen in

stereocilia rather than the hexagonal lattice that occurs in most other actin-containing

tissues. Magnification × 100,000, from [35]. (C,D) Views of the tip link acquired

through transmission electron microscopy (C) and freeze-etch imaging (D) [37, 44].

(E) A schematic diagram of a hair bundle illustrating the pivots about which stere-

ocilia rotate. (F ) An enlarged view of the area enclosed by the gray box in panel

E provides additional details of the bundle’s transduction apparatus. Each tip link

runs obliquely between two neighboring stereocilia. The lower end of the tip link

is somehow coupled to two mechanoelectrical transduction (MET) channels and the

upper end attaches to an insertional plaque that harbors myosin motors in some

species. The scale bars in panels A,C, and D represent 2 µm, 100 nm, and 100 nm,

respectively.
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Approximately half of the MET channels in outer hair cells and 30% in other

hair cells are open when the hair bundle stands in its equilibrium position [45–47].

Deflection of the hair bundle towards its shorter edge therefore allows channels to

close and leads to hyperpolarization of the hair cell. The line that runs from the

shorter to the taller edge and coincides with the bundle’s plane of mirror symmetry

defines the axis of the hair bundle’s sensitivity. Virtually no change is measured in the

hair cell’s membrane potential when its bundle is deflected in a direction orthogonal

to this axis [48].

Mechanical deflection of a hair bundle along its axis of sensitivity adjusts the

amount of current that enters the hair cell through the MET channels. By inserting

a sharp electrode into the hair cell’s apical surface, one can measure the incoming

current while simultaneously changing the bundle’s offset with a glass probe. The

current-displacement relationship obtained in this fashion bears a sigmoidal shape.

Dividing the ordinate by the maximum current yields the channels’ open probability

Po as a function of displacement (Fig. 1.5A). Po can be interpreted as the fraction of

open MET channels or as the probability that any given MET channel is open [49].

Po is readily fit by a first-order Boltzmann function obtained from a two-state

model for channel gating [49–51] and has the form

Po =
1

1 + Ae−(x−y)/δ
. (1.1)

x is the displacement of the hair bundle’s tip along its axis of sensitivity, y is an offset

from the bundle’s equilibrium position, A depends on the energy needed to open a

single channel, and δ gives the length scale over which the channels open. Po = 1/2

when x = y + δ ln[A], and a change in Po from 1/2 − η to 1/2 + η, η ∈ [0, 1/2), is

effected by displacing the bundle’s tip through a distance δ ln[(1 + 2η)2/(1− 2η)2].
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Gating of the MET channels has important consequences for how the bundle

responds to applied forces. A force-displacement relationship can be obtained under

displacement-clamp conditions by measuring what forces need to be delivered through

a flexible probe to command the bundle to undergo a series of defined displacements

[52]. Such experiments reveal the nonlinear relationship between the applied forces

and the bundle’s resulting displacement (Fig. 1.5B).

Unless otherwise stated, the largest relevant displacements shift the bundle’s tip

from its equilibrium position by around 100 nm. Displacements of this size cause

the stereocilia to rotate about their pivots by only a few degrees. In this regime

small-angle approximations approximate the corresponding trigonometric functions

with a high degree of accuracy. It is therefore reasonable to consider displacements

of the hair bundle’s tip as following a straight line rather than as describing an

arc. It is also assumed that hydrodynamic coupling, top connectors, and divalent

counterion interactions between stereocilia ensure that the entire bundle moves as a

single unit [53–57], which allows the position of the bundle to be described by a single

variable x.

Because the tension in the tip links and the rigidity of the stereociliary pivots resist

changes in the hair bundle’s displacement, a fiber must overcome these elastic forces

to move the tip of the bundle a distance x. Invoking the small-angle approximation,

the force needed to bend the stereocilia with collective pivot stiffness ksp is kspx. A

similar expression, kgsx, would also apply for the tip links with collective stiffness kgs

(“gs” here stands for gating springs and accounts for the compliance of elements that

lay in series with the tip links), except that opening a channel diminishes the stretch

in the tip links. Letting D represent the displacement in the hair bundle’s tip that

results when all of the MET channels are open and also accounting for a possible offset
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y from equilibrium, the gating-spring force becomes kgs(x − y − DPo). Lastly, the

terms F0 and kex are included to account for any external sources of constant forces or

elastic loads, which may include the stimulus fiber or overlying accessory structures.

The force applied through a stimulus fiber FSF needed effect a displacement x can

thus be represented as

FSF = (ke + ksp)x+ kgs(x− y −DPo) + F0. (1.2)

To save space, I will let k = ke + ksp hereafter.

The curve described by equation (1.2) accurately describes the experimentally ac-

quired data portrayed in Figure 1.5B and possesses some important features. Owing

to its nonlinear shape, the curve crosses the FSF = 0 line in three places. Conse-

quently, this bundle possesses three equilibrium positions: if the bundle is placed in

any of these positions and left exactly undisturbed, then the bundle will remain there

for all time.1 Two equilibrium positions, marked by cyan circles, are stable, whereas

the central equilibrium position, marked by a red circle, is unstable.

Consider one of the stable equilibrium positions. A force must be applied in the

direction that is parallel to the desired displacement to displace the bundle from one

of these positions, positive forces are needed, for example to effect positive displace-

ments. If the bundle is displaced a small amount and then released, it will return to

one of these stable positions.

The situation is quite different for the unstable equilibrium position: now a nega-

tive force is required to maintain a positive displacement away from equilibrium (and

vice versa), indicating that the bundle has a tendency to vacate this position. Even

the tiniest kick causes the bundle to leave the unstable equilibrium position and not

1More generally, if a force F is applied to the bundle, then the number of equilibrium points is
given by the number of times the force-displacement relation crosses the line FSF = F .
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return. Because it is constantly bombarded by water molecules and subjected to

thermal forces, an actual hair bundle cannot remain near the unstable equilibrium

point without continually applying forces that push the bundle toward this position.

The stability of a given equilibrium point is determined by the sign of the force-

displacement curve’s slope at the point in question: the force-displacement curve

bears a positive slope at stable equilibria and a negative slope at unstable equilibrium

points.2 The slope of the force-displacement relationship also represents the stiffness

of the hair bundle (Fig. 1.5C). Therefore, an unstable equilibrium point can exist

only if a region of negative stiffness is present in the force-displacement relation.

A condition for the existence of negative stiffness, and thus for the existence of the

instability, can be found as follows: Noting the useful relation dPo/dx = Po(1−Po)/δ,

the slope of FSF(x) is given by

dFSF

dx
≡ khb = k − kgs[DPo(1− Po)/δ − 1]. (1.3)

This expression reaches its minimum value at x = y + δ ln[A], which corresponds to

Po = 1/2. Because D/4δ > 1, FSF bears a region of negative slope only if

k < kgs

(
D

4δ
− 1

)
. (1.4)

The negative stiffness region can thus be abrogated by decreasing kgs or D or by

increasing δ or k. These predictions accord with experimental results: rupturing

the tip links, equivalent to setting kgs = 0, and blocking the MET channels with

aminoglycoside antibiotics, akin to setting Po = 0 [58,59], both linearize the bundle’s

force-displacement relation [7, 60, 61].

2Because the force-displacement relation is defined as the force needed to displace the bundle and
not as the force exerted by the bundle, the stated sign convention is opposite to what is normally
employed.
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A simple analogy helps explain how the nonlinear shape of the force-displacement

relationship arises from MET-channel gating. Imagine attaching a spring to a closed

door. Pulling on the spring’s free end initially effects a displacement in the puller’s

hand that is proportional to the applied force. In other words, as is expected for

a Hookean spring, there is a linear relationship between the applied force and the

resulting displacement. This situation resembles that described by the rightmost

part of the black curve in Figure 1.5B: The relationship is linear as the applied force

acts to stretch or bend elastic elements in the hair bundle, namely stereociliary pivots

and tip links.

Returning to our analogy, the force applied to the spring eventually becomes large

enough to pull the door open. At the instant the door swings open, the tension in

the spring abruptly decreases and causes the puller’s hand to lurch forward. Similar

events occur for the bundle in Figure 1.5B when the applied force is just under 7

pN. This force positions the bundle at around -13 nm, which coincides with the peak

of the hump in the force-displacement relation (orange arrow’s tail in Fig. 1.5B).

Increasing the force a tiny bit more opens the MET channels and effects a sudden

decrease in tip-link tension [50]. To regain force balance, the bundle abruptly jumps

forward to ≈ 27 nm (orange arrow’s tip in 1.5B) as this constitutes the only stable

equilibrium position for the applied force (see footnote 1). Beyond this point the

relationship is again linear: further increases in the applied force beget proportionally

larger displacements by stretching the elastic elements.

The displacement in the hair bundle’s position that follows gating of MET channels

merits further discussion. Like a string curving a shaft of wood in a bow, the tension

in the tip links provides the force needed to bend the stereocilia at their pivots

[62]. Analogous to cutting the bow’s string, chelating calcium ruptures tip links and
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eliminates the tension they held. Without this tensile force holding them in place, the

stereocilia are propelled forward by the elastic energy stored in their pivots [42]. A

decrease in tip-link tension can also be realized through MET-channel gating. Only

under certain conditions, however, will all the channels open at once and precipitate

a large hair bundle displacement. When one channel opens the tension that was

previously borne by all of the tip links must now be distributed across one fewer

tip links [62]. Consequently, the tension increases in the tip links coupled to still-

closed channels. If the increase in tension exceeds the threshold for MET-channel

gating, then a cascade of channel openings ensues [62, 63]. If not, then the bundle

does not lurch forward, but its compliance increases until half of the channels open.

By making hair bundles softer over a certain range of displacements, MET-channel

gating introduces into the force-displacement relation a nonlinearity, termed “gating

compliance,” that manifests itself as a region of shallower slope in this relation. For

some bundles the nonlinearity is so extreme that the slope in the shallower region is

negative, which in turn permits cooperative opening and closing of the MET channels.
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Figure 1.5: Mechanoelectrical transduction by hair cells. (A) Channel open prob-

ability as a function of hair bundle displacement. Equation (1.1) fits the data with

δ = 3.5 nm. Because the bundle’s rest position was not given, A and y are not

discernible. Image modified from [49]. (B) The force-displacement relationship mea-

sured for a spontaneously oscillating hair bundle whose motion was suppressed by

coupling the bundle to a stiff fiber (black). Stable equilibria are marked by cyan

circles whereas the red circle denotes an unstable equilibrium position for the black

curve. Overlaid is a simulated force-displacement relation obtained by increasing k

(blue) This curve does not bear a region of negative slope and contains only one

stable equilibrium point (red dot). Image modified from [52]. (C) Slopes of the force-

displacement relations depicted in panel B, corresponding curves are color-matched.

Under certain conditions, negative hair bundle stiffness can arise from MET-channel

gating. The best-fit curves in panels B and C are respectively given by equations

(1.2) and (1.3) with parameter values: A = 2× 106, δ = 5.7 nm, y = 85 nm, D = 45

nm, kgs = 816 µN · m -1, k = 274 µN · m -1, F0 = 26 pN (black), and k = 819 nm

(blue).
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Numerous facets of mechanoelectrical transduction remain unresolved: The molec-

ular identities of the MET channels and the manner in which these proteins couple to

the tip links remain unknown. The transmembrane channel-like proteins TMC1 and

TMC2 are strong candidates for the pore of the channel, though additional accessory

proteins are likely to be involved [64]. Investigations to determine whether the tip

link behaves like a spring were being actively pursued at the time that this thesis

was written–an answer seems imminent. How the MET channels are gated is also an

area of active research. Rather than attributing gating entirely to the conformational

change of a channel or of an attached protein gate, it has been suggested that the

change in the plasma membrane deformation that follows the opening of one MET

channel first encourages opening of the second MET channel and then mediates an

attractive force that causes the two channels to slide toward one another [60, 65].

Critically, the latter model can account for the size of the hair bundle’s displacement

that follows channel gating.

1.3 Adaptation in Hair Cells

In the time immediately following the application of a mechanical force to a hair

bundle, the effected displacement grows from its initial value and the inward current

diminishes (Fig. 1.6) [66–71]. These changes, termed slow adaptation, occur con-

currently and with similar time constants. Slow adaptation is mediated by myosin

motors associated with the insertional plaque that is coupled to the upper end of each

tip link (Fig. 1.5F ). In some hair cells these motors are likely myosin Ic [72–76]. The

motors’ identity remains controversial in mammalian outer hair cells, in which slow

adaptation is limited. Myosin VIIa has been advanced as a candidate, but this protein

might rather serve as an extent spring that limits the extent of adaptation [7,77–80].
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Figure 1.6: Adaptation in the bullfrog’s saccular hair cell. (A) A force step was

applied to the bundle through a flexible glass fiber. (B,C) At the onset of the force

step, the bundle initially responded with a large displacement (B) that coincided

with a large inward current (C). Adaptation in the receptor current was observed in

the following few tens of milliseconds (C). The bundle’s displacement simultaneously

grew to a larger value. When the force step abated, the bundle rapidly moved in the

negative direction but initially fell short of its rest position and the current overshot

its initial value. In the time that followed, however, the current and the bundle’s

displacement diminished at similar rates to reach their initial values. The twitch

indicated by the arrowhead in panel B is a signature of fast adaptation (reviewed

in [7, 79]). Image modified from [68].
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The mechanism of slow adaptation is thought to proceed as follows (Fig. 1.7). In

response to a positive hair bundle deflection, the tensed tip links exert a downward

pull on the insertional plaque and open MET channels that allow an influx of calcium

ions. In vestibular hair cells of frogs and mammals, calcium has been found to promote

slippage of the insertional plaque, likely by weakening myosin’s affinity for actin [70,

81, 82]. The downward pull and incoming calcium ions thus cause the insertional

plaque to slide down the stereocilia. Owing to this motion, tension in the tip links is

relieved, the bundle sags farther in the positive direction, and MET channels close.

The experimental correlates of this process are the concurrent shift in the hair bundle’s

position and adaptation in the receptor current described earlier.

Slow adaptation also operates in the reverse direction. Deflecting the hair bundle

toward its shorter edge slackens the tip links and closes MET channels. Partially

released from calcium’s inhibitory effects, myosin motors then hydrolyze ATP to

climb up the actin filaments until force balance on the insertional plaque is restored.

As tension returns to the tip links, the bundle pivots farther in the negative direction

and reopening MET channels mitigate the hair cell’s hyperpolarization (Fig. 1.6).

By shifting the relationship between the channel open probability Po and the

bundle’s displacement x (eq. 1.1), slow adaptation enables the bundle to be sensitive

to farther deflection in either direction. Effecting a displacement ∆x1 in a bundle

positioned at x = x0 and with offset y = y0 initially changes Po by an amount

∆P i
o =

(
1 + Ae -(x0+∆x1−y0)/δ

)-1 −
(
1 + Ae -(x0−y0)/δ

)-1
.

As adaptation proceeds, the myosin motors act to change the number of open MET

channels and thus effect a horizontal shift ∆y in the Po curve (Fig. 1.7B). The offset

y can therefore be regarded as a dynamical variable that represents the positions of
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the myosin motors. As the number of open channel changes the bundle also slides a

bit farther in the direction of the initial displacement by an amount ∆x2. Some time

later, the change in Po from its unstimulated value has therefore become

∆P f
o =

(
1 + Ae -(x0+∆x1+∆x2−y0−∆y)/δ

)-1 −
(
1 + Ae -(x0−y0)/δ

)-1
,

and the amount that Po has adapted is given by

∆P a
o = ∆P i

o −∆P f
o =

(
1 + Ae -(x0+∆x1−y0)/δ

)-1 −
(
1 + Ae -(x0+∆x1+∆x2−y0−∆y)/δ

)-1
.

If adaptation were perfect, then ∆y = ∆x1 +∆x2, which would in turn yield ∆P f
o = 0

and ∆P a
o = ∆P i

o. In actual hair bundles, adaptation is incomplete, i.e. ∆y <

∆x1 + ∆x2 and ∆P f
o 6= 0. Importantly, this means that a bundle is equipped to

signal both transient and tonic stimuli [7].

Because Po ∈ [0, 1], sinusoidal stimuli, like those encountered by hair bundles

in the cochlea, are rectified by the hair cell. The sigmoidal shape of the Po curve

additionally means that sinusoidal input to the hair bundle engenders asymmetric

oscillations in Po, except in the case that the bundle is initially poised in a position

with exactly half of its channels open. Consequently, the time average of the period-

ically stimulated Po differs from the cell’s resting Po value, a feature that might be

employed by hair cells tasked with detecting the highest frequencies. Alternatively, a

process termed fast adaptation, which effects the reclosure of MET channels on a sub-

millisecond timescale after an abrupt stimulus, might enable hair bundle movements

that are rapid enough to support high-frequency hearing [7, 79].

22



Δx1

ΔPo
i

0 6030-60 -30

0.0

0.2

0.4

0.6

0.8

1.0

Displacement (nm)

C
ha

nn
el

op
en

pr
ob

ab
ilit

y

0 6030-60 -30

0.0

0.2

0.4

0.6

0.8

1.0

Displacement (nm)

C
ha

nn
el

op
en

pr
ob

ab
ilit

y

F(t)

x(t)

I(t)

ΔPo
f

ΔPo
a

Δy

Δx2

A

B

C

F

Figure 1.7: Adaptation mechanism. Applying a positive force (A, left) deflects the

hair bundle toward its taller edge (B, left). By opening MET channels, this initial

displacement ∆x1 changes the channels’ open probability by ∆P i
o, which is evidenced

by a large inward current (C, left). During the sustained force step (A, right), the

increased tip-link tension and influx of calcium ions cause myosin motors to slide

down the actin filaments (B, inset). The consequent slackening of tip-link tension

has two concurrent effects: 1. The bundle tilts an amount ∆x2 farther in the positive

direction (B, right). 2. Owing to the reclosure of some MET channels, the open

probability curve shifts rightward by ∆y, which diminishes the probability by ∆P a
i

(C, right). Consequently, the inward current reaches a steady-state value equal to

Imax∆P f
o . This mechanism is adaptive because it enables the bundle to be sensitive

to farther positive deflections. Because ∆y < ∆x1 + ∆x2, ∆P f
o 6= 0 and adaptation

is incomplete.
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1.4 Behavior of the Hair Bundle

Hair bundles are not merely passive receptors. Thanks to an active process, bun-

dles amplify their responses to stimuli and exhibit a menagerie of behaviors. In

addition to slow adaptation and twitches, the hair bundles of fishes [83], amphib-

ians [61, 68, 84, 85], and reptiles [86] have been observed to oscillate spontaneously

under certain conditions.

Spontaneous hair bundle oscillations arise from the interaction between gating

compliance and adaptation [52, 61]. Block of MET-channel conductance by amino-

glycoside antibiotics or inhibition of the myosin motors by butanedione monoxime

both abolish spontaneous oscillations [61]. This evidence suggests that the motors

provide the energy to drive the hair bundle’s position back and forth across the in-

stability that arises from the bundle’s nonlinear force-displacement relation.

Consider a hair bundle in which the majority of MET channels have just opened in

the absence of an external force, marked as position 1 in Figure 1.8A. This position is

a stable equilibrium. By hastening the detachment of myosin motors from their actin

filament targets, the ensuing influx of calcium ions activates slow adaptation. As the

insertional plaque slips downward, the bundle tilts farther in the positive direction

(sequence of dots proceeding from position 1 to position 2).

The previous section discussed how adaptation effects a horizontal shift ∆y in the

relation between displacement and channel open probability. Because it depends on

Po, the force-displacement relation also undergoes a shift as adaptation progresses.

Specifically, if the bundle has most of its channels open, the curve shifts upward and

to the right, as indicated by the progression of curves from blue to red.

If the extent of adaptation is great enough so that the red force-displacement

relation is realized, the bundle’s position becomes unstable (position 2) and the bundle
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abruptly jerks in the negative direction where it comes to rest at the only remaining

stable equilibrium (position 3). This rapid displacements occurs if the slippage of the

insertional plaque introduces enough slack in the tip links, and does so at the correct

pace, to allow most of the MET channels to reclose in rapid succession.

From position 3, slow adaptation, mediated by myosin motors climbing up the

actin filaments, causes the bundle to sag farther in the negative direction toward

position 4. For the appropriate rate and extent of adaptation, the tension developed

in the tip links can engender a cascade of MET-channel gating, thus evoking a large

positive displacement in the bundle’s position. From the perspective of the force-

displacement relation, this rapid movement results when stability is lost at position

4 and necessitates a leap to the only remaining stable equilibrium at position 1. By

returning to position 1 the bundle has completed a full cycle and is poised to start

again (Fig. 1.8B). In this way hair bundles can support spontaneous oscillations

indefinitely (Fig. 1.8C).

Hair bundles have been found to exhibit a variety of periodic behaviors, including:

sinusoidal oscillations, relaxation oscillations (Fig. 1.8C), multimodal oscillations,

oscillations resembling square waves, and spiking [61, 87–90]. Pseudoperiodic and

chaotic behaviors have also been reported, evidence of rich dynamics at play [91].

The characteristics of a bundle’s oscillation pattern can be altered systematically

by adjusting experimentally accessible parameters. Specifically, the amplitude, fre-

quency, and morphology of bundle oscillations depend on the hair cell’s membrane

potential [88], the concentration of calcium [61, 87] (Fig. 1.9A), and the stiffness

or force experienced by the bundle owing to an external load [61, 87, 89, 90] (Figs.

1.9B,C). Experiments have also confirmed theoretical predictions that spontaneous

oscillations occur for only a limited range of parameter values (Fig. 1.9D) [51,89,92].
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Figure 1.8: Mechanism of hair bundle oscillations. (A) The hair bundle’s trajectory

follows the numbered points in order, · · · 1→ 2→ 3→ 4→ 1 · · · . Slow phases of the

bundle’s motion occur between points 1 and 2 and between 3 and 4 as adaptation acts

to shift the force-displacement relation (blue to red curve between 1 and 2 and red to

blue between 3 and 4). When it reaches a maximum or minimum, the bundle’s posi-

tion on the force-displacement curve becomes unstable, and a rapid jerk ensues from

2 to 3 (red arrow) or from 4 to 1 (blue arrow). (B) Keeping the force-displacement

curve stationary and mapping the path traced by the bundle with respect to this

curve yields the orange trajectory. Double arrows denote the fast phases of the bun-

dle’s motion that result from MET-channel gating, whereas single arrows mark the

slower segments that arise from slow adaptation. (C) The bundle’s measured periodic

motion agrees with the model and resembles relaxation oscillations. The color coding

of the curve matches that of the arrows in panel A. Image adapted from [52].
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Figure 1.9: Oscillations depend on parameter values. (A) Increasing the en-

dolymph’s calcium concentration effects a decrease in amplitude and increase in fre-

quency of the bundle’s oscillations. Image modified from [87]. (B,C) Changes in

amplitude and frequency are also seen as the stiffness (B) or constant force (C) of an

external load is altered. The traces in panel C were obtained from a bundle that was

additionally loaded with a few nanograms of tungsten. (D) Systematically adjust-

ing an external load’s force and stiffness demonstrates that spontaneous oscillations

occur for only a limited range of parameter values, in agreement with theoretical

predictions. Image modified from [90].
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1.5 Features of Signal Detection by Hair Bundles

The impressive feats that characterize our sense of hearing are made possible by

an active process that operates in the cochlea. This fact is made evident by the

precipitous decline in amplification, frequency selectivity, and dynamic range that

occurs as the cochlea’s energy stores are depleted [93]. Without an active process the

passive basilar membrane has no mechanism to overcome the viscous drag exerted

by the surrounding fluid [94]. Several lines of evidence suggest that self-oscillatory

elements residing in the cochlea, namely hair bundles, power the active process.

First, the ears of mammals, birds, reptiles, and amphibians have been found to

emit faint sounds, termed otoacoustic emissions (OAEs), both spontaneously and

after auditory stimuli [95–100]. These emissions reveal that the ears of many species

are actively generating vibrations. Considering that the power needed to generate

an OAE is commensurate with that produced by a few dozen hair cells, it is feasible

that OAEs emanate from spontaneous bundle oscillations [85,101]. Modeling studies

also demonstrate that synchronized groups of oscillating bundles could serve as the

source of the emissions [102,103]. Somatic motility of outer hair cells, an alternating

elongation and contraction of the cell’s body that is thought to amplify the basilar

membrane’s response and is powered by voltage-dependent conformational changes

in the membrane-spanning protein prestin, is not required for OAEs: emissions are

measurable, though fainter, in mice lacking prestin [104–107].

Second, several parallels have been found between the basilar membrane’s response

to acoustic stimuli and a hair bundle’s response to periodic forcing. Specifically,

both amplify their responses to small-amplitude stimuli, the largest responses in both

systems are evoked by applying stimuli at a particular frequency, and both employ a

power-law compression that allows a thousandfold difference in stimulus amplitude to
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be represented by just a tenfold change the system’s response (Fig. 1.10) [108,109].

The following chapters discuss quantitative models that explain how hair bundles

attain exquisite sensitivity, precise frequency selectivity, and a broad dynamic range.

A few brief qualitative comments, however, may help illuminate how these features

would arise naturally in such a system. Because only a small stimulus would be re-

quired to elicit a large response, detectors poised on the brink of self-oscillation would

be highly sensitive to periodic signals. If it is appropriately tuned, slow adaptation

can bring the bundle to the precipice of MET-channel gating. Even a tiny force would

then be sufficient to start a cascade of channel openings and elicit a large shift in the

bundle’s position.

The detector described above would also tend to respond strongly to signals whose

periodicity is compatible with the system’s preferred oscillation frequency. Like that

of a driven harmonic oscillator, the bundle’s preferred oscillation frequency is set by

the stiffnesses of the stereociliary pivots and the gating springs, as well as by the rate

at which the myosin motors drive adaptation.

Finally, the curved shape of the force-displacement relation can engender nonlinear

compression in the hair bundle’s response to stimuli. For the sake of simplicity,

consider a bundle that lacks negative stiffness. Such a bundle will be most compliant

when half of its MET channels are open. Because this position is situated at the

most gradually varying part of the force-displacement relation, only weak stimuli are

needed to effect large hair bundle displacements. As the size of the driving force

increases, however, the bundle’s displacement begins exploring the steeper parts of

the force-displacement relation. Consequently, the amplitude of the bundle’s response

does not increase in proportion to the change in the size of the driving force.
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Figure 1.10: Similarities between the basilar membrane and hair bundles. (A) Gain

(velocity normalized by the pressure delivered to the tympanic membrane) of the

basilar membrane’s response at the 9 kHz place in the cochlea of an anesthetized

chinchilla. The curves show frequency selectivity, high gain around the characteristic

frequency at low sound pressure levels, and much lower gain at high sound pressure

levels. The labels note the sound pressure level in decibels that was employed to

generate each curve. (B) An active hair bundle’s sensitivity (response amplitude

divided by the size of the driving force) also exhibits amplification and frequency

selectivity near the bundle’s natural frequency (filled circles). These features are

absent in a passive bundle (open circles). Data obtained from bullfrog saccular hair

bundles are shown in panels B and D. (C) Multiple examples demonstrating that

the gain in the basilar membrane’s response as a function of the input’s amplitude

exhibits nonlinear compression that follows a negative two-thirds power law. (D)

The same two-thirds power law occurs in the dependence of a bundle’s sensitivity on

stimulus amplitude (red line), though linear regimes are also seen for very small and

very large driving forces (green lines). Panels A and C modified from [108] and B

and D from [109].
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Chapter 2

Mathematical Preliminaries

Biological systems exhibit fantastically diverse behaviors. Describing such a system

often entails formulating a system of differential equations ~̇x(t) = ~F (~x) that cap-

tures how the dynamical variables ~x(t) = {x1(t), . . . , xn(t)} evolve in time1. Tools

from dynamical systems theory grant insight into the mathematical behavior of these

equations and thus help illuminate phenomena observed in the physical systems they

represent. This chapter introduces those tools that are essential for the analyses

undertaken in later chapters. More comprehensive treatments can be found in refer-

ences [110] and [111].

2.1 Equilibrium Points, Limit Cycles, Stability

If left undisturbed, a dynamical system ~x(t) approaches a steady-state behavior.

Example behaviors include trajectories that hurtle away toward infinity and paths

that remain within a bounded region of space. Which of these is possible for ~x(t)

depends on the existence and nature of a special collection of points, curves, or mani-

folds. When they exist, these special points, called equilibrium points, are coordinates

at which the system will reside for all time if not otherwise perturbed.

Consider the system ~̇x(t) = ~F (~x), ~x(t) = {x1(t), . . . , xn(t)}. This expression states

that the rate of change of each dynamical variable xi(t) is governed by the differential

equation2 ẋi(t) = Fi(~x) in which Fi is a function that can depend on time and on

1A diacritical dot over a variable, as in ~̇x, will be used to indicate a time derivative, i.e. d~x/dt,
throughout this text. A variable’s time dependence, i.e. ~x(t), will not always be stated explicitly.

2More generally, the Fi may also depend explicitly on time, as would be the case for systems that
contain driving terms. Systems containing explicit time dependences will possess equilibrium points
only if those dependences decay to zero. Explicit time dependences will therefore be considered
external perturbations of the underlying autonomous system and will be treated separately.
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any of the dynamical variables in the system. From this system can n-dimensional

phase space can be constructed in which each dynamical variable xi(t) is assigned an

axis. The time evolution of ~x(t) can then be represented by trajectories in this phase

space.

The phase-space trajectory of a system situated at an equilibrium point is that

single point. Remaining at an equilibrium point requires that all the dynamical

variables are constant in time, xi(t) = ci ∀i, t. Consequently, the time derivatives of all

the xi must be zero, i.e. ~̇x(t) = 0. This provides a condition for locating equilibrium

points: ~x∗ = {x∗1, . . . , x∗n} is an equilibrium point if ~F (~x∗) = 0. Trajectories close

enough in phase space may be attracted or repelled by ~x∗. If all trajectories within

some distance ε of ~x∗ approach ~x∗, then ~x∗ is a stable equilibrium point and is unstable

otherwise.

The stability of an equilibrium point can be determined through linear stability

analysis. This strategy constructs a linear system of differential equations from the

first-order Taylor expansions of the Fi around an equilibrium point:

ẋi(t) = Fi(~x) ≈ Fi(~x∗) +
n∑
j=1

∂Fi(~x)

∂xj

∣∣∣∣
~x=~x∗

(xj − x∗j). (2.1)

By definition, ~F (~x) = 0 at an equilibrium point, so all the constant terms in Equation

2.1 vanish. Letting Ji,j(~x∗) = ∂Fi(~x)/∂xj|~x=~x∗ , the approximation becomes

ẋi(t) ≈
n∑
j=1

Ji,j(~x∗)(xj − x∗j).

Identifying the Ji,j(~x∗) with the elements of a matrix J(~x∗), called the Jacobian

matrix, reveals that the above equation is one component of the matrix equation
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~̇x(t) ≈ J(~x∗)(~x(t)− ~x∗). Making the substitution ~u(t) = ~x(t)− ~x∗ finally yields

~̇u(t) ≈ J(~x∗)~u(t). (2.2)

The coordinate transformation effected in this last step sets the origin at ~x∗.

Although they are approximate3, the solutions ~u(t) to Equation 2.2 closely resem-

ble the solutions of the original system of equations near the equilibrium point ~x∗. In

contrast to the original system, the solutions ~u(t) are readily obtained:

~u(t) =
n∑
i=1

ci~vie
ξit, (2.3)

where ξi and ~vi are the eigenvalues and eigenvectors4 of J(~x∗), and ci are scalar

constants that are determined by the initial state of the system. If ~u(0) is known,

then ci can be obtained by solving the system of equations ~u(0) =
∑n

i=1 ci~vi. λi and

~vi may be complex-valued. When they are real, the eigenvectors define lines through

the origin along which phase-space trajectories are directly attracted to or repelled

from the equilibrium point.

A condition for the stability of the equilibrium point ~x∗ is apparent from Equation

2.3: The equilibrium point ~x∗ is stable if and only if Re[ξi] < 0 ∀i. When this

condition is satisfied all of the exponential terms in Equation 2.3, and thus all nearby

phase-space trajectories, decay to zero, the location of ~x∗ in the linearized coordinate

system, as t approaches infinity. If even one of the eigenvalues of J(~x∗) has a positive

real part, then there exists at least one nearby phase-space trajectory that is repelled

from ~x∗ and the equilibrium point is consequently unstable.

3Because the models analyzed in this dissertation contain only differentiable functions, it is
assumed that all partial derivatives of the Fi exist.

4It is assumed that J(~x∗) is diagonalizable. Solutions ~u(t) still exist if this assumption is violated
and have the form of exponentials multiplied into polynomials of t.
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Taking this analysis further in systems of two dynamical variables reveals more

interesting properties. In this case the Jacobian matrix is 2 × 2 and analytical ex-

pressions can be found for ξi by identifying the roots of J ’s characteristic polynomial

pJ(ξ):

pJ(ξ) = det[J − ξI2] = ξ2 − (J1,1 + J2,2)ξ + (J1,1J2,2 − J1,2J2,1). (2.4)

I2 is the 2×2 identity matrix. The constant coefficients in Equation 2.4 are well-known

properties of a 2×2 matrix: J1,1+J2,2 =Tr[J ], the trace of J , and (J1,1J2,2−J1,2J2,1) =

det[J ], the determinant of J . These matrix properties can also be expressed in terms

of the eigenvalues of the matrix:

Tr[Jn×n] =
n∑
i=1

ξi, det[Jn×n] =
n∏
i=1

ξi.

The two eigenvalues ξ1,2 of J are then given by finding the roots of pJ(ξ) = ξ2 −

Tr[J ]ξ + det[J ]:

ξ1,2 =
1

2

(
Tr[J ]±

√
(Tr[J ])2 − 4 det[J ]

)
. (2.5)

From Equation 2.5 it is evident that if Tr[J ] > 0 then Re[ξi] > 0 for at least one

eigenvalue. Specifically, the real parts of both eigenvalues are positive if additionally

det[J ] > 0, whereas only one eigenvalue has a positive real part if det[J ] < 0. and in

either case the equilibrium point is unstable. Similarly, if Tr[J ] < 0 and det[J ] < 0,

then one eigenvalue has Re[ξi] > 0 and ~x∗ is again an unstable equilibrium point.

Thus, ~x∗ is a stable equilibrium point only if Tr[J ] < 0 and det[J ] > 0.

Equation 2.5 also reveals that complex-valued eigenvalues occur when det[J ] >

4(Tr[J ])2, i.e. ξ1,2 = ξR ± iξI . In this case, the eigenvectors must have the form

~v1,2 = ~vR ± i~vI and the constants determined by initial conditions are c1,2 = cR ±

icI = |c|e±iφc . Substituting the complex eigenvalues, eigenvectors, and constants into
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Equation 2.3 yields phase-space trajectories that spiral inward or outward depending

on the sign of ξR:

~u(t) = 2|c|eξRt [~vR cos(ξIt+ φc)− ~vI sin(ξIt+ φc)] . (2.6)

Two borderline cases merit mention. If Tr[J ] = 0 and det[J ] > 0, then ξ1,2 = ±iξI

and the system describes closed orbits (circles or ellipses) in phase space. Because

they are neutrally stable, nearby trajectories are neither attracted nor repelled by the

orbits and the origin: if perturbed away from an orbit, the system simply assumes

a new orbit. The second borderline case occurs when det[J ] = 0. In this case one

eigenvalue is zero and a continuous series of equilibrium points occur along a line

passing through the origin that is parallel to the eigenvector associated with the zero

eigenvalue. The equilibrium points are stable if the nonzero eigenvalue is negative

and unstable otherwise. Figure 2.1 summarizes the possible behaviors of a system of

two linear differential equations.
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Figure 2.1: Characterization of linear systems of differential equations. (A) Systems

of two linear differential equations can be completely characterized by two parame-

ters, the trace and the determinant of the system’s Jacobian matrix. This analysis

also applies near equilibrium points ~x∗ of nonlinear systems. The diagrams in each

region of the figure portray phase portraits in which the trajectories of a few example

solutions are shown. Only a few behaviors are possible. The equilibrium point ~x∗ is

stable if Tr[J(~x∗)] < 0 and det[J(~x∗)] > 0. ~x∗ is otherwise unstable, except at the

borderline case det[J(~x∗)] = 0 and Tr[J(~x∗)] < 0 for which a line of stable equilibrium

points is seen (C). Spirals occur if det[J(~x∗)] > (Tr[J(~x∗)])
2/4 (dashed curve), and

they are inward if Tr[J(~x∗)] < 0 and outward if Tr[J(~x∗)] > 0. Neutrally attracting

closed orbits (ellipses) occur in this region if Tr[J(~x∗)] = 0 (B). Lines of unstable

equilibrium points occur when det[J(~x∗)] = 0 and Tr[J(~x∗)] > 0 (double-dashed line).

The phase portrait for this phenomenon resembles that depicted in panel C except

that all of the equilibrium points repel nearby trajectories.
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In nonlinear systems, additional phenomena exist that cannot be characterized

by linear stability analysis. Because trajectories in phase space cannot cross, only

one additional behavior exists in systems of two differential equations: limit cycles

are closed loops in phase space that attract all nearby trajectories (stable) or repel

at least some trajectories (unstable). The following equations constitute one of the

simplest systems in which a limit cycle occurs:

ẋ = µx− ω0y − γx(x2 + y2)

ẏ = ω0x+ µy − γy(x2 + y2). (2.7)

Expressing equations 2.7 in a different form aids in locating the limit cycle. Multi-

plying the ẏ equation by i and adding it to the ẋ equation yields

ẋ+ iẏ = (µ+ iω0)(x+ iy)− γ(x+ iy)(x2 + y2).

Letting z = x+ iy simplifies the expression:

ż = (µ+ iω0)z − γ|z|2z. (2.8)

If a circular limit cycle exists, then the ansatz solution z(t) = r(t)eiθ(t) will satisfy

Equation 2.8:

ṙ��e
iθ + irθ̇��e

iθ = (µ+ iω0)r��e
iθ − γr3

�
�eiθ.

Canceling the exponents on both sides and satisfying the real and imaginary parts of

the equation separately leads to

ṙ = µr − γr3

θ̇ = ω0. (2.9)

Switching to polar coordinates succeeded in uncoupling the system of differential

equations. The θ̇ equation is solved by θ(t) = ω0t + θ0. The ṙ equation has two
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equilibrium solutions, r = 0 and r =
√
µ/γ. Assuming γ > 0 and µ > 0, the system

possesses a limit cycle given by z∗(t) =
√
µ/γei(ω0t+θ0). The steady-state solution

z∗(t) represents a phase-space trajectory that rotates clockwise around the origin at

a constant angular velocity ω0 and at a constant radius
√
µ/γ. A limit cycle thus

arises from the cubic term in the ṙ equatio: limit cycles are an entirely nonlinear

phenomenon and cannot occur in systems of linear differential equations.

Because ṙ > 0 when 0 < r <
√
µ/γ and ṙ < 0 when r >

√
µ/γ, the limit cycle is

stable. Letting µ = γ = 1 and r(0) = r0, the full solution to Equation 2.9 is given by

z(t) = r(t)eiθ(t) =
e(1+iω0)t√
e2t + r -2

0 − 1
. (2.10)

If r0 = 0 then z(t) = 0, if r0 = 1 then z(t) = eiω0t, and if r0 is any other value then

z(t) spirals toward the limit cycle, i.e. limt→∞ z(t) = eiω0t (Fig. 2.2A).

Negating the right-hand sides of equations 2.7 produces a system with an unstable

limit cycle. In polar coordinates this system is described by ṙ = −µr + γr3 and

θ̇ = −ω0. Because ṙ < 0 when 0 < r <
√
µ/γ and ṙ > 0 when r >

√
µ/γ, the limit

cycle z(t) =
√
µ/γe -ω0t repels nearby trajectories and is thus unstable (Fig. 2.2B).

Letting µ = γ = 1 and r(0) = r0, solutions to this system are given by

z(t) = eiω0t
[
1 +

(
r -2

0 − 1
)
e2t
]-1/2

.
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A B

Figure 2.2: Limit cycles. (A) Phase portrait for a stable limit cycle (thick circle).

Trajectories inside and outside the closed path spiral toward the limit cycle. The

trajectories inside the limit cycle are also repelled by an unstable equilibrium point.

(B) In contrast, nearby trajectories are repelled by an unstable limit cycle (dashed

circle). The trajectories inside the cycle are additionally attracted to a stable equilib-

rium point. An unstable limit cycle might also repel trajectories within its bounds,

but attract trajectories that are outside the closed path, or vice versa. A system may

possess multiple limit cycles. For instance, the system ṙ = r(r−1)(r−2)(r−3)(r−4)

θ̇ = ω0 contains nested limit cycles of alternating stability at r = 1, 2, 3, and 4. Of

course, limit cycles need not be nested.
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The limit cycles discussed above are among the simplest: limit cycles need not be

centered around the origin and can trace close paths with highly irregular shapes. It

is thus often necessary to resort to numerical simulations to characterize limit cycles.

Determining whether a system possesses limit cycles can also be a nontrivial endeavor.

Subsequent sections of this chapter discuss analytical tools that are devoted to this

task.

This section closes with a brief discussion of phenomena that can occur in systems

of three or more dynamical variables. Because trajectories in three-dimensional (and

higher) phase spaces have room to spread out, multimodal limit cycles and chaos can

occur. The Rössler system, which contains only a single nonlinearity, provides one of

the simplest systems that supports these phenomena [112]:

ẋ = −y − z

ẏ = x+ ay

ż = b+ z(x− c). (2.11)

For a = b = 0.2 and c = 4 the system exhibits autonomous multimodal oscillations

(Fig. 2.3A,C). Changing c to 5 evokes an aperiodic behavior termed chaos (Fig.

2.3B,D). In both phenomena phase-space trajectories are pulled toward attractors

whose topologies are more complicated than those possible in systems of two dynam-

ical variables. Multimodal oscillations arise from closed-loop limit cycles that have at

least one twist. Trajectories in a chaotic system are pulled toward a strange attractor:

a fractal embedded in a folded manifold that occupies a bounded volume of phase

space.
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C D

A B

Figure 2.3: More complicated attractors. (A,B) Phase-space trajectories projected

onto the xy-plane for the Rössler system when a = b = 0.2 and c = 4 (A) or c = 5

(B). Because phase-space trajectories cannot intersect, the crossings indicate that

the system cannot be fully described by two dynamical variables. Panel A depicts

a multimodal oscillation: the system traces a path that makes four loops before

repeating itself. Aperiod or chaotic behavior is portrayed in panel B. The trajectory

remains within a bounded region but never repeats itself. (C,D) In the full phase

space it is apparent how the trajectories shown in panels A and B can avoid self-

crossings. The attractor in panel C is a closed loop that has been twisted a few

times. Panel D depicts a strange attractor. The fractal nature of this attractor can

be appreciated by cutting perpendicularly through the trajectory: If the system is

allowed to evolve forever, then the phase-space trajectory eventually crosses this cut

an infinite number of times and an infinite number of crossings occurs between every

pair of crossings. Because phase-space trajectories can never touch, the set of crossing

points cannot be continuous.
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2.2 Bifurcations

Many systems of differential equations depend on adjustable parameters. If smoothly

changing a parameter µ effects an abrupt change in the system’s qualitative behavior

at some particular value µc, then the system is said to undergo a bifurcation. In such

a system, µ is called a bifurcation parameter and µc, the value of µ at which the

bifurcation occurs, is termed the critical value of µ.

A phase portrait depicts representative solutions to a system of differential equa-

tions in phase space. The topologies of the phase portraits on either side of a bi-

furcation are inequivalent: passing µ through its critical value causes a topological

change in the system’s phase portrait that alters the system’s qualitative behavior.

Topological changes that constitute bifurcations include switching the stability of an

equilibrium point or limit cycle, altering the number of equilibrium points or limit

cycles, converting a limit cycle into an aperiodic attractor, and a number of other,

more exotic transitions. This section discusses several bifurcations that arise in the

hair bundle models that are introduced in Chapter 4.

Consider the following system of differential equations

ẋ = µ+ x2

ẏ = −y. (2.12)

Equations 2.12 have equilibrium points at ~x∗ = {±√-µ, 0}. These equilibrium points

exist only if µ < 0. Assuming this is true, the Jacobian at ~x∗ is

J({±√-µ, 0}) =

[
±√-µ 0

0 -1

]
. (2.13)

Because this is a diagonal matrix, the eigenvalues of J can be read off its diagonal

entries: ξ1,2 = {±√-µ, -1}. Thus, the equilibrium point at ~x∗ = {−√-µ, 0} is stable,
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whereas ~x∗ = {√-µ, 0} marks an unstable equilibrium point. As µ is increased from

a negative value toward zero the two equilibrium points get closer in phase space.

Exactly at µ = 0 the two equilibrium points coalesce into a saddle node, so called

because the trajectories on one side of the point are attracted to the saddle node

and those on the other side are repelled. If µ becomes even the slightest bit positive,

the equilibrium points vanish entirely. In summary, as the bifurcation parameter µ is

adjusted from negative to positive, the stable and unstable equilibrium points collide

(when µ takes on its critical value µc = 0) and annihilate. Viewed in reverse, as µ is

decreased from a positive value, two equilibrium points suddenly pop into existence

when the system crosses the saddle-node bifurcation.

Another way to see how changing µ precipitates the saddle-node bifurcation is

to graphically visualize the ẋ equation. This parabola has real roots, corresponding

to two equilibrium points, when µ < 0. Increasing the value of µ effects a vertical

shift of the parabola in the positive direction. When µ = 0 the function has a single

root, and when µ > 0 the function no longer has any real roots. Figure 2.4A shows

these changes together with representative phase portraits for each value of µ and

a bifurcation diagram that provides a convenient shorthand for conveying all this

information.

Equations 2.12 constitute the normal form for the saddle-node bifurcation. Saddle-

node bifurcations can occur in other systems. However, in the vicinity of a saddle

node, these other systems will closely resemble the saddle-node normal form when

their respective bifurcation parameters are nearly critical. More precisely, the topolo-

gies (i.e. phase portraits) of all saddle nodes are equivalent. Exactly at a saddle-node

bifurcation, the system reduces to the saddle-node normal form, which represents the

simplest system that permits a saddle-node bifurcation.
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An example of a saddle-node bifurcation was seen in Chapter 1: Slow adapta-

tion shifts the hair bundle’s force-displacement relation, which can cause an unstable

equilibrium position to collide with and annihilate a stable position (Fig. 1.8). For

simplicity, consider adaptation in the positive direction, which shifts the relation

upward. In the force-displacement relation (Eq. 1.2), a local minimum occurs at

xmin = y + δ ln

[
AkgsD(1 + η)

2δ(k + kgs)
− A

]
, η =

√
1− 4δ(k + kgs)

kgsD
.

The well surrounding this minimum constitutes the relevant part of the curve: This

region is bounded on the left by an unstable equilibrium point and on the right by

an equilibrium point that is stable. This part of the relation resembles a parabola.

Taylor expansion of the function around xmin to second order yields

FSF(x) ≈ F0+ky+
kgsD

2
(1+η)+δ(k+kgs) ln

[
AkgsD(1 + η)

2δ(k + kgs)
− A

]
+
k + kgs

2δ
η(x−xmin)2.

Restricting x to values that lie near xmin renders higher-order terms negligible. Col-

lecting constants gives the more wieldy expression

FSF(x) ≈ ky + F0 − C0 + C2(x− xmin)2.

Close to the bifurcation, the locations of the equilibrium points are given by

x∗ ≈ xmin ±
√
C0 − ky − F0

C2

.

From this expression it is apparent that two equilibrium points vanish at y = (C0 −

F0)/k or at F0 = C0−ky, confirming that slow adaptation or applying the appropriate

external force coaxes the system across a saddle-node bifurcation.

The saddle-node bifurcation is a local bifurcation, meaning the topological change

underlying the bifurcation occurs at an equilibrium point. The stability and number
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of equilibrium points can change in a variety of ways. However, if several ways

are topologically equivalent, then they all represent the same local bifurcation and

can be described by the same normal form. The remainder of this section proceeds

by discussing several other important local bifurcations and also includes a brief

discussion of a couple global bifurcations.

A (supercritical) pitchfork bifurcation occurs in the system

ẋ = µx− x3

ẏ = −y. (2.14)

For µ < 0 equations 2.14 possess a single, stable equilibrium point at ~x∗ = {0, 0} (J(~x∗

has ξ1,2 = {µ, -1}). When µ crosses zero, the equilibrium point at ~x∗ = {0, 0} becomes

unstable, and two stable equilibria at ~x∗ = {±√µ, 0} are born. This bifurcation gets

its name from the pitchfork appearance of its bifurcation diagram (Fig. 2.4B).

A pitchfork bifurcation occurs when a function resembling a cubic polynomial be-

comes monotonic. Such a bifurcation occurs when the hair bundle’s force-displacement

relation loses its region of negative stiffness, i.e. when k = kgs(D/4δ − 1).

The normal form for a transcritical bifurcation is given by

ẋ = µx− x2

ẏ = −y. (2.15)

This system possesses equilibrium solutions at ~x∗ = {0, 0}, ξ1,2 = {µ, -1}, and at

~x∗ = {µ, 0}, ξ1,2 = {-µ, -1}. For µ < 0 the equilibrium point at the origin is stable

and the other equilibrium point is unstable. At the bifurcation, ~x∗ = {µ, 0} passes

through the equilibrium point at the origin and the two exchange stability: for µ > 0

the origin is unstable and the other point is a stable equilibrium. Figure 2.4C portrays

the bifurcation diagram for this system.
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Figure 2.4: Three local bifurcations. (A − C) Graphical representations, phase

portraits, and bifurcation diagrams for the saddle-node (A), pitchfork (B), and tran-

scritical (C) normal forms. The curves in a bifurcation diagram indicate the values

of the equilibrium points x∗; because y∗ = 0 throughout, this value is not shown.

Continuous lines mark the locations of stable equilibrium points as a function of the

bifurcation parameter µ, and the locations of unstable equilibrium points are indi-

cated by dashed lines. (A) The parabola ẋ(µ) = µ + x2 (top) is shown for negative

(left), zero (center), and positive µ. The corresponding phase portraits (middle) show

two equilibrium points that collide and annihilate as µ passes through zero. The bifur-

cation diagram for the saddle-node normal form (bottom) contains this information

and also indicates the square-root dependence of x∗ on µ. This latter feature is ap-

proximately true in other systems only near the saddle-node bifurcation. (B) Same

as panel A except for the supercritical pitchfork bifurcation. A subcritical pitchfork

bifurcation occurs instead for the system ẋ = µx+x3, ẏ = −y, which differs from the

supercritical case only in the sign of the cubic term. The bifurcation diagram of the

subcritical pitchfork normal form resembles that of the supercritical pitchfork, except

it is reflected across the line µ = 0 and each curve displays the opposite stability.

(C) In a transcritical bifurcation, two equilibrium points pass through each other and

exchange stability. As is revealed by the normal form ẋ(µ) = µx− x2, this can occur

when the slope of a linear term added to a quadratic term changes sign (top).
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A real eigenvalue changes sign as a system crosses a saddle-node, pitchfork, or

transcritical bifurcation. Thus, exactly at the bifurcation, the system must have a

zero eigenvalue and the determinant of the system’s Jacobian matrix, which is equal

to the product of its eigenvalues, must also be zero. This property, together with the

number of equilibrium points that exist before and after the bifurcation, allows for

the identification of each of these three bifurcations.

If the Jacobian possesses complex eigenvalues, then a change in the sign of the

eigenvalues’ real part constitutes another way to alter the stability of an equilibrium

point. A bifurcation of this kind occurs in the supercritical Hopf normal form:

ż = (µ+ iω0)z − (γR + iγI)|z|2z, γR > 0. (2.16)

Because z(t) = x(t) + iy(t) = r(t)eiθ(t), Equation 2.16 is represents a system of two

differential equations. In Cartesian coordinates the system is described by

ẋ = µx− ω0y − γRx(x2 + y2) + γIy(x2 + y2)

ẏ = ω0x+ µy − γIx(x2 + y2)− γRy(x2 + y2), (2.17)

and in polar coordinates by

ṙ = r(µ− γRr2)

θ̇ = ω0 − γIr2. (2.18)

These equations are nearly identical to those discussed in the previous section (Eqs.

2.7-2.9), except here it is not assumed that the coefficient of the cubic term is real.

The Hopf normal form possesses an equilibrium point at ~x∗ = {0, 0}, at which

point the Jacobian matrix is

J({0, 0}) =

[
µ -ω0

ω0 µ

]
,
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with eigenvalues ξ± = µ± iω0. Thus, ~x∗ = {0, 0} is stable for µ < 0 and unstable for

µ > 0. Because the eigenvalues are complex, trajectories near the equilibrium point

describe spirals.

Analysis in the previous section revealed that a stable limit cycle occurs when µ >

0. For the Hopf normal form the limit cycle is described by z∗(t) =
√
µ/γRe

i(ω0−γIµ/γR)t,

where the subscript asterisk demarcates a steady-state solution. In summary, phase-

space trajectories spiral toward the equilibrium point when µ < 0, but this equilibrium

becomes unstable and a stable limit cycle is born when µ passes through zero and

becomes positive (Fig. 2.5A). A quiescent system can thus begin to oscillate spon-

taneously if it crosses a Hopf bifurcation, a phenomenon that has been observed in

hair bundles.

The amplitude of the limit cycle’s oscillation grows from zero at µ = 0 and follows

a square-root dependence on the bifurcation parameter. This scaling is approximately

true near supercritical Hopf bifurcations in other systems. Very close to the bifurca-

tion the limit cycle’s oscillation frequency5 is approximately equal to the imaginary

part of the eigenvalues Im[ξ±] = ω0.

Rather than rising from nothing, a limit cycle oscillation can also appear abruptly.

Such behavior is seen as a system crosses a subcritical Hopf bifurcation, whose normal

form is given by

ż = (µ+ iω0)z + (γR + iγI)|z|2z − (αR + iαI)|z|4z, αR > 0. (2.19)

Because they primarily affect the system’s angular velocity and not the locations of

limit cycles, γI and αI are set to zero to simplify the discussion. Equations 2.19 are

5When γI 6= 0, the angular velocity of the phase-space trajectories depends on their distance
from the origin. Interestingly, it is possible to kill the rotation exactly at the limit cycle by setting

γI = ω0γR/µ.
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given respectively in Cartesian and polar by

ẋ = µx− ω0y + γRx(x2 + y2)− αRx(x2 + y2)2

ẏ = ω0x+ µy + γRy(x2 + y2)− αRy(x2 + y2)2, (2.20)

and

ṙ = r(µ+ γRr
2 − αRr4)

θ̇ = ω0. (2.21)

As for the supercritical Hopf normal form, the origin is a fixed point that loses sta-

bility when µ becomes positive; the Jacobian matrix is the same as above and the

eigenvalues are again ξ± = µ± iω0. The amplitude of the stable limit cycle, however,

is nonzero at the bifurcation. Setting ṙ = 0 when µ = 0 yields r =
√
γR/αR. In cross-

ing a subcritical Hopf bifurcation, a system rapidly jumps from a stable equilibrium

point to a large-amplitude limit cycle.

A few additional properties of this system merit mention. The ṙ equation reveals

that the system permits both a stable and an unstable limit cycle over a certain range

of µ:

Stable: r =

√
1

2αR

(
γR +

√
γ2
R + 4µαR

)
, − γ2

R

4αR
< µ

Unstable: r =

√
1

2αR

(
γR −

√
γ2
R + 4µαR

)
, − γ2

R

4αR
< µ < 0. (2.22)

At µ = 0 the unstable limit cycle collides with the stable equilibrium point at the

origin and leaves behind an unstable equilibrium point. Because the stable limit

cycle exists for negative values of µ, the system exhibits hysteresis. Starting from

µ < −γ2
R/4αR, the system settles on the stable equilibrium point until µ exceeds zero,

at which point the system jumps to the stable limit cycle. If µ is then decreased, the
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stable limit cycle persists beyond µ = 0 and does not return to the stable equilibrium

until µ < −γ2
R/4αR (Fig. 2.5B).

Owing to the presence of multiple attractors, bistability arises for −γ2
R/4αR <

µ < 0, termed the coexistence region. If a perturbation is large enough to drive the

system across the unstable limit cycle, then the system’s behavior can be switched

from quiescent to self-oscillatory and vice versa.

A second bifurcation occurs in the subcritical Hopf’s normal form. As µ is de-

creased past −γ2
R/4αR the stable and unstable limit cycles collide and annihilate in

a saddle-node of limit cycles bifurcation. Because it does not involve changing the

stability or number of equilibrium points, the saddle-node of limit cycles bifurcation

is a global bifurcation. The homoclinic bifurcation provides another example of a

global bifurcation. This bifurcation occurs when an equilibrium point collides with

and subsequently breaks a limit cycle. Analytical criteria do not always exist for

identifying the critical parameter value that precipitates a global bifurcation. Nu-

merical simulations of a system’s behavior are thus frequently employed to locate

these oft-elusive bifurcations.
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Figure 2.5: Hopf bifurcations. (A) Bifurcation diagram for the supercritical Hopf

normal form. Representative phase portraits for µ < 0 and µ > 0 are shown above

the diagram. The ordinate indicates the steady-state solution’s magnitude. The ori-

gin is a stable equilibrium point when µ < 0 (solid half line). As the bifurcation

parameter passes its critical value µc = 0, the origin becomes unstable (dashed half

line) and a stable limit cycle z∗(t) =
√
µ/γRe

i(ω0−γIµ/γR)t (solid curve) is born. (B)

Representative phase portraits and bifurcation diagram for the subcritical Hopf nor-

mal form. As in the supercritical case, the origin loses stability as µ is increased

through 0 (solid and dashed half lines). However, the stable limit cycle (solid curve)

emerges with a non-zero amplitude and exists for some negative values of µ, specif-

ically for µ > −γ2
R/4αR. This value of µ also coincides with a saddle-node of limit

cycles bifurcation. The unstable limit cycle (gray, dashed curve) that arises from this

bifurcation is annihilated by the stable equilibrium point when µ = 0.
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Both the supercritical and subcritical Hopf bifurcations occur when the Jacobian’s

eigenvalues displays a zero real part. Although this criterion affords the detection of

a Hopf bifurcation, it is therefore insufficient to distinguish between the supercritical

and subcritical varieties. This ambiguity can be resolved by finding the sign of

16ζ ≡ fxxx +fxyy + gxxy + gyyy +
1

ω
[fxy(fxx−fyy)− gxy(gxx + gyy)−fxxgxx +fyy + gyy],

(2.23)

in which f contains the nonlinear terms of the ẋ equation, g contains the nonlinear

terms of the ẏ equation, and the subscripts indicate successive partial differentiation

with respect to the variables listed. The quantity ζ represents, in essence, the coef-

ficient of a system’s cubic term when the system is poised at a Hopf bifurcation. If

ζ < 0, then the Hopf bifurcation is supercritical, whereas ζ > 0 indicates a subcritical

bifurcation.

Applying Equation 2.23 to the subcritical Hopf normal form yields ζ = γR. Evi-

dently, this normal form is subcritical only when γR > 0 and is supercritical otherwise.

Indeed, both the size of the coexistence region and the amplitudes of the limit cycles

contained therein shrink has γR approaches zero. At µ = γR = 0 the subcritical Hopf

bifurcation and the saddle-node of limit cycles meet a supercritical Hopf bifurcation

at a point called a Bautin bifurcation.

Until now, only codimension-1 bifurcations have been discussed. The codimen-

sion of a bifurcation is equal to the number of parameters that need to simultane-

ously achieve their critical values to effect the bifurcation. The Buatin point is a

codimension-2 bifurcation and the criteria for its occurrence are: 1. the real parts

of a pair of complex eigenvalues vanish (µ = 0 in our example), and 2. the system’s

cubic term vanishes6 (ζ = 0).

6More accurately, the first Lyapunov coefficient vanishes, see Appendix A.
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For systems in which multiple bifurcations occur, a graphical representation called

a state diagram aids in visualizing how bifurcations relate to each other. Consider

a system that possesses two bifurcation parameters µ1 and µ2. Assigning each an

axis constructs a parameter space. A state diagram partitions the parameter space

into sectors that contain topologically equivalent phase portraits (Fig. 2.6). Different

sectors are separated by bifurcation curves that indicate the values of the parameters

at which that particular bifurcation occurs.

Another codimension-2 bifurcation encountered in this work is the Bogdanov-

Takens point, whose normal form is given by

ẋ = µ1 + µ2y + y2 − xy

ẏ = x. (2.24)

Equilibrium points for this systems are located at

~x∗ =

{
0,

1

2

(
−µ2 ±

√
µ2

2 − 4µ1

)}
.

If µ1 > µ2
2/4 there are no equilibrium points, but two equilibrium points exist when

µ1 < µ2
2/4, indicating that a saddle-node bifurcation occurs at µ1 = µ2

2/4. For µ1 = 0

the equilibrium points are ~x∗ = {0, 0} and {0, µ2}. The eigenvalues of J({0, 0}) are

ξ1,2 = ±√µ2. These eigenvalues are completely imaginary when µ2 < 0, thus a Hopf

bifurcation occurs for µ1 = 0, µ2 < 0. The limit cycle that arises from the Hopf

bifurcation breaks when it touches a saddle node in a homoclinic bifurcation. The

homoclinic bifurcation is approximately located at µ1 ≈ −6µ2
2/25 [111]. The saddle-

node, Hopf, and homoclinic bifurcations all collide at a Bogdanov-Takens point at

µ1 = µ2 = 0. Only a single equilibrium point, ~x∗ = {0, 0}, exists for these parameter

values and J({0, 0}) has two zero eigenvalues.
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Figure 2.6: Example state diagrams. The axes of a state diagram give the values of

bifurcation parameters. Bifurcation curves divide a state diagram into regions that

contain steady-state behaviors of the system that are topologically equivalent. In

other words, a system’s coordinates in state space dictate the system’s steady-state

behavior. For this reason, bifurcation parameters are also called control parameters:

the values of such parameters set the fate of the system. The qualitative character of

the steady-state behavior can be changed by coaxing the system across a bifurcation.

In two-dimensional state diagrams, codimension-1 bifurcations are represented by

curves and codimension-2 bifurcations are indicated by points. (A) State diagram

near a Bautin point (black square). This codimension-2 bifurcation occurs at the

intersection of a supercritical Hopf (solid, orange line), a subcritical Hopf (red, dashed

line), and a saddle-node of limit cycles bifurcation (solid, blue curve). Representative

phase portraits are shown in each region. (B) A Bogdanov-Takens point (black

diamond) occurs when a homoclinic (purple curve) and a Hopf bifurcation (orange

line) meet at a saddle-node bifurcation (green curve). For convenient viewing, each

region of the state diagram is shaded a different color and labeled by the topology of

the steady-state behavior. The saddle-node of limit cycles (A) and homoclinic (B)

bifurcations are global bifurcations and can often be located only through numerical

simulations. A variety of options often exist when selecting control parameters for a

system. Given its mathematical connection to several bifurcations, the real part of an

eigenvalue is sometimes a suitable choice. In other cases, an experimental observable

that appears as a coefficient in the system might be preferred.
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2.3 Generic Responses Near a Hopf Bifurcation

That adjusting a parameter can engender spontaneous oscillations by a hair bundle

suggests that the bundle is poised near a Hopf bifurcation. If it does in fact govern a

bundle’s dynamics, then a Hopf bifurcation should also account for the experimentally

measured features of a bundle’s response to periodic stimuli. Specifically, the presence

of a Hopf bifurcation must allow signal detection by hair bundles to be sensitive,

frequency selective, and operational over a broad dynamic range.

To evaluate whether it is beneficial for a periodic-signal detector to operate near

a Hopf bifurcation, a sinusoidal stimulus F (t) = F0e
iωDt with driving amplitude F0

and frequency ωD must be added to the Hopf normal form:

ẋ = µx− ω0y − γRx(x2 + y2) + F0e
iωDt

ẏ = ω0x+ µy − γRy(x2 + y2). (2.25)

Because a typical experiment entails delivering forces to a hair bundle, the driving

term is added to only the ẋ equation. The variable x can thus be likened to the

hair bundle’s position and y can be considered a (perhaps unmeasurable) internal

variable. The focus of this thesis centers around what transpires on the side of

the Hopf bifurcation that contains a single, stable equilibrium point, termed the

“stable side” of the bifurcation; the side containing the limit cycle is instead called

the “unstable side”. It is thus assumed that µ < 0 in what follows.

To determine the system’s response to small-amplitude stimuli it is assumed that

the driving term F0e
iωDt is small and thus elicits only small displacements from the

equilibrium point ~x∗ = {0, 0}. In this regime, equations 2.25 closely resemble their

linearized counterparts
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ẋ = µx− ω0y + F0e
iωDt

ẏ = ω0x+ µy. (2.26)

This approximation has the advantage of allowing analytical solutions. Applying a

Fourier transform converts the system of differential equations in to a more tenable

system of algebraic equations:

iωx̃ = µx̃− ω0ỹ + F0δ(ωD − ω)

iωỹ = ω0x̃+ µỹ. (2.27)

The diacritical tildes indicate that the variables are Fourier transformed. The system’s

response in frequency space x̃ is now easily isolated as

x̃(ω) = F0δ(ωD − ω)

[
iω − µ+

ω2
0

iω − µ

]-1
. (2.28)

An inverse Fourier transformation yields the corresponding response in the time do-

main

x(ωD, t) =F0e
iωDt

[
iωD − µ+

ω2
0

iωD − µ

]-1
+ eµt(c1 cos[ω0t] + c2 sin[ω0t])

=
F0e

i(ωDt+φ)
√
ω2
D + µ2√

(ω2
D + µ2)2 − ω2

0(2ω2
d − 2µ2 − ω2

0)
+ eµt(c1 cos[ω0t] + c2 sin[ω0t]),

φ = tan -1

[
ωD(µ2 + ω2

D − ω2
0)

µ(µ2 + ω2
D + ω2

0)

]
. (2.29)

The coefficients c1 and c2 are determined by the initial conditions. Because µ < 0,

the transient response eµt(c1 cos[ω0t]+c2 sin[ω0t]) decays at a rate that is proportional

to the system’s distance from the Hopf bifurcation in parameter space. As the bifur-

cation parameter nears its critical value, more time is needed for the system to reach

steady state.
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The phase difference between the stimulus and the response φ equals zero when

ωd =
√
ω2

0 − µ2, which differs slightly from the system’s resonant frequency (see

Equation 2.32 below). When stimulated at the resonance frequency and when µ� 1,

φ ≈ (µ/ω0)[1− (11/6)(µ/ω0)2 +O(µ4)].

The sensitivity χ of a system’s response to forcing is defined as the amplitude of

the system’s output divided by the amplitude of the driving force:

χ ≡ |x|
|F |

. (2.30)

The same driving force elicits a larger response in a system that is more sensitive.

The sensitivity of the linearized Hopf normal form is given by

χ(ωD, µ) =

√
ω2
D + µ2

(ω2
D + µ2)2 − ω2

0(2ω2
d − 2µ2 − ω2

0)
. (2.31)

By definition, a system’s resonant frequency ωR is the driving frequency that elicits

the greatest response. The Hopf’s linear sensitivity (Eq. 2.31) reaches its maximum

value at

ωR(µ) =

[
ω0

√
4µ2 + ω2

0 − µ2

]1/2
. (2.32)

When driven at its resonant frequency, the system attains the sensitivity

χ(ωD = ωR, µ) = χmax(µ) =
1√

2ω0

√
µ2 + ω2

0 − 2ω2
0

≈ 1

|µ|
+O(µ), (2.33)

in which the approximation is given for µ � 1. Near a Hopf bifurcation a system’s

maximum sensitivity is thus inversely proportional to the system’s distance from the

bifurcation in parameter space.
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The sharpness of a system’s frequency selectivity can be quantified by the quality

factor Q

Q ≡ ωR
∆ω

, (2.34)

in which ∆ω = ω+ − ω− is the range of frequencies over which the system’s response

exceeds 1/
√

2 times its maximum. The boundary frequencies ω± can be obtained by

solving

χ(ω±) =
1√
2
χ(ωR). (2.35)

Sharper frequency selectivity is indicated by larger values of Q.

Substituting ωR into Equation 2.35 reveals that

ω± =

[
2ω0

√
4µ2 + ω2

0 − µ2 − ω2
0 ± 2ω0

√
3µ2 + ω2

0 − ω0

√
4µ2 + ω2

0

]1/2

. (2.36)

For µ� 1, ωR ≈ ω0 +µ2/2ω0 +O(µ4) and ∆ω = ω+−ω− ≈ 2|µ|[1+(µ/ω0)6 +O(µ8)],

which in turn means that, close to the Hopf bifurcation,

Q =
ωR
∆ω
≈ ω0

2|µ|
+O(µ). (2.37)

A system poised near a Hopf bifurcation thus exhibits frequency selectivity whose

sharpness is inversely proportional to the system’s distance from the bifurcation in

parameter space7.

To evaluate how the Hopf normal form responds to a range of driving amplitudes

it is necessary to reintroduce the system’s nonlinear terms, for these are no longer

negligible when the stimulus amplitude is large:

ż = (µ+ iω0)z − γR|z|2z + F0e
iωDt. (2.38)

7Generally speaking, a bifurcation parameter’s critical value µc need not coincide with zero.
It would thus be more accurate for equations 2.33 and 2.37 to read χmax(µ) ≈ 1/|µ − µc| and
Q ≈ ω0/2|µ− µc|, respectively.
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The ansatz z(t) = rei(ωDt+φ) constitutes a phase-locked solution to this differential

equation. Inserting the solution into Equation 2.38 yields

iωDre
i(ωDt+φ) = (µ+ iω0)rei(ωDt+φ) − γRr3ei(ωDt+φ) + F0e

iωDt

iωDre
iφ = (µ+ iω0)reiφ − γRr3eiφ + F0. (2.39)

Simple rearrangement leads to

F0 = reiφ[µ− γRr2 + i(ω0 − ωD)].

Calculating the squared magnitude of both sides produces a relation between the

amplitude of the driving force F0 and that of the system’s response r [113]:

F 2
0 = γ2

Rr
6 − 2µγRr

4 + r2[µ2 + (ω0 − ωD)2]. (2.40)

This expression is cubic in r2 and is thus exactly solvable, though the algebraic form

of the solution is less than illuminating8. Appropriate limits, however, uncover the

salient features of the system’s response.

For small enough forcing F0, the amplitude of the system’s response r is also small

and thus dominated by the r2 term, so that

r ≈ F0√
µ2 + (ω0 − ωd)2

,
r

F0

= χ ≈ 1√
µ2 + (ω0 − ωd)2

. (2.41)

For small forcing the system’s response is linearly proportional to the stimulus’s

amplitude, and the sensitivity is thus constant. Driving the system at ωD = ω0

yields χ ≈ 1/|µ|, which accords with Equation 2.33.

8The solution to Equation 2.40 is

r =

√
2

3
µ+

(-2)1/3

6
(4µ2Γ -1 − Γ), Γ =

[
2µ3 − 27F 2

0

(
1−

√
3F 2

0 − fµ3/4

)]1/3
.
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For large forcing, or very close to the bifurcation (µ � 1), the system’s response

is dominated by the r6 term that arises from the normal form’s cubic nonlinearity:

r ≈
(
F0

γR

)1/3

,
r

F0

= χ ≈ F
-2/3

0

γ
1/3
R

. (2.42)

Close to the Hopf bifurcation, expressions 2.42 reveal that a thousandfold increase

in the amplitude of the driving force begets only a tenfold increase in the system’s

response. The cubic nonlinearity in the Hopf normal form thus allows the system

to compress a range of stimuli spanning three orders of magnitude into a range of

responses that span only one order of magnitude, a phenomenon termed nonlinear

compression. Consequently, the system’s sensitivity follows a negative two-thirds

power law near the bifurcation.

In summary, near a supercritical Hopf bifurcation a system’s sensitivity to periodic

stimuli is approximately constant for small-amplitude forcing and follow a negative

two-thirds power law for large-amplitude driving (Fig. 2.7B). This enables such a

system to amplify weak stimuli and, through nonlinear compression, to faithfully op-

erate over a broad dynamic range. Because any system poised near a Hopf bifurcation

can be reduced to the Hopf normal form, the sensitivity, frequency selectivity, and

nonlinear compression that characterize the Hopf normal form are generic features of

any system that permits a Hopf bifurcation.
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Figure 2.7: Generic properties near a supercritical Hopf bifurcation. (A) As the

supercritical Hopf normal form nears its bifurcation at µc = 0, the system exhibits

greater peak sensitivity. The peak linear sensitivity increases nearly tenfold for every

tenfold decrement in the system’s distance to the bifurcation in parameter space, thus

approximating the relation χ ∝ |µ−µc| -1. The horizontal red lines span ∆ω for each

sensitivity curve, and decrease in length by a factor of ten for each tenfold reduction in

|µ− µc|. Because the resonance frequency ωR remains nearly constant, Q = ωR/∆ω,

which measures the sharpness of a system’s frequency selectivity, is also inversely

proportional to |µ − µc|. (B) Close to the bifurcation and for large enough stimuli,

the Hopf normal form exhibits nonlinear compression that follows a negative two-

thirds power law, χ ∝ F
-2/3

0 . Compression of this kind permits a system to represent

stimuli spanning three orders of magnitude with responses that span a hundredfold

smaller range. Because the cubic nonlinearity of the Hopf normal form does not

saturate, the negative two-thirds power law extends indefinitely as the driving-force

amplitude grows. The force-displacement relation measured for actual hair bundles

(Eq. 1.2) exhibits a saturating nonlinearity. Nonlinear compression in hair bundles

is therefore operational over only a finite range of stimulus amplitudes. The response

properties discussed in this figure are generic features of systems that operate near

a supercritical Hopf bifurcation and a correlate of each has been measured in hair

bundles (c.f. Fig. 1.10).
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2.4 Hopf Bifurcations in Three Dimensions

The bifurcation that figures most prominently in this work is the (supercritical)

Hopf. This section is therefore devoted to describing an efficient method for locating

Hopf bifurcations in systems of three dynamical variables.

It has already been shown how a Hopf bifurcation arises in a system of two dynam-

ical variables: letting J(~x∗) be the Jacobian matrix evaluated at the equilibrium point

~x∗, a Hopf bifurcation occurs when the eigenvalues of J(~x∗) are completely imaginary,

i.e. ξ± = {±iξI}. Considering that summing the eigenvalues produces the trace of

the associated matrix and that their product yields the matrix determinant, this con-

dition can be recast as Tr[J(~x∗)] = iξI−iξI = 0 and det[J(~x∗)] = (iξI)(-iξI) = ξ2
I > 0.

Let Tn =Tr[J(~x∗)
n]. Making use of the relation det[J(~x∗)] = 1

2
(T 2

1 − T2), the second

condition can also be expressed as T2 < T 2
1 . Together the two conditions are

T1 = 0, T2 < 0. (2.43)

Of course, a stabilizing nonlinearity must also be present for the system to undergo

spontaneous oscillations, which can be confirmed through numerical simulations.

In systems of three or more dynamical variables, a stable equilibrium point ~x∗ also

undergoes a Hopf bifurcation when J(~x∗) has a pair of purely imaginary eigenvalues.

The surest way to locate Hopf bifurcations is to track how all of the eigenvalues of

J(~x∗) change as the values of the chosen parameters are altered. Because formulas do

not exist for the roots of polynomials of degree five and higher, calculating eigenvalues

in systems with five or more dynamical variables usually requires numerical methods.

In systems of three dynamical variables, however, Hopf bifurcations can be found

analytically and the formulae are be fairly simple.
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A system of three dynamical variables possesses a 3× 3 Jacobian matrix. Conse-

quently, the characteristic polynomial pJ(ξ) is a cubic relation:

pJ(ξ) = c1ξ
3 + c2ξ

2 + c3ξ + c4 .

Letting Tn = Tr[J(~x∗)
n], the polynomial’s coefficients are c1 = -1, c2 = T1, c3 =

1
2
(T2−T 2

1 ), and c4 = 1
6
(T 3

1−3T1T2+2T3) = det[J(~x∗)]. Exactly at the Hopf bifurcation,

the real part of a pair of complex conjugate eigenvalues is zero. In other words, at the

bifurcation there is a pair of purely imaginary eigenvalues, {iξI ,−iξI}, that satisfy

pJ(ξ) = 0. Substituting ξ = iξI into the characteristic equation yields

−ic1ξ
3
I − c2ξ

2
I + ic3ξI + c4 = 0 .

The real and imaginary parts of the above equation must be satisfied simultaneously:

−ic1ξ
3
I + ic3ξI = 0

−c2ξ
2
I + c4 = 0

⇒ ξ2
I =

c3

c1

=
c4

c2

.

After substituting the expressions given above for c1, c2, c3, and c4, this equality

becomes:

−T2 − T 2
1

2
=
T 3

1 − 3T1T2 + 2T3

6T1

⇒ T 3
1 = T3.

As a check, let J(~x∗) have eigenvalues ξ1, ξ2, and ξ3, then pJ(ξ) can be written as

pJ(ξ) = c1ξ
3 + c2ξ

2 + c3ξ + c4 = (ξ1 − ξ)(ξ2 − ξ)(ξ3 − ξ)

= −ξ3 + (ξ1 + ξ2 + ξ3)ξ2 − (ξ1ξ2 + ξ1ξ3 + ξ2ξ3)ξ + ξ1ξ2ξ3 = 0.

Equating coefficients reveals c1 = −1, c2 = ξ1 + ξ2 + ξ3, c3 = −(ξ1ξ2 + ξ1ξ3 + ξ2ξ3),

and c4 = ξ1ξ2ξ3, which are well known results from linear algebra.

The condition c3/c1 = c4/c2 is satisfied if ξ3 = −ξ2:

c1 = −1, c2 = ξ1, c3 = ξ2
2 , c4 = −ξ1ξ

2
2 ⇒ c3

c1

= −ξ2
2 =

c4

c2

.
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The condition T3 = T 3
1 therefore characterizes not only curves of Hopf bifurcations,

but also curves along which J(~x∗) has two real eigenvalues that are equal in magnitude

and opposite in sign. To distinguish between these two possibilities, note that when

ξ2 ∈ R, c3 = ξ2
2 = 1

2
(T2−T 2

1 ) > 0, whereas if ξ2 is completely imaginary (i.e. ξ2 = iξI ,

ξI ∈ R), then c3 = (iξI)
2 = −ξ2

I = 1
2
(T2 − T 2

1 ) < 0. Therefore, the conditions to find

curves of Hopf bifurcations are:

T3 = T 3
1 and T2 < T 2

1 . (2.44)

The trace of J(~x∗) and its powers are functions of the system’s parameters. If µ1

and µ2 are bifurcation parameters, then the relation T3(µ1, µ2) = T1(µ1, µ2)3 locates

a curve of Hopf bifurcations in the µ1-µ2 parameter space (provided T2(µ1, µ2) <

T1(µ1, µ2)2 is also satisfied).

Assuming that J(~x∗) is an n×n diagonalizable matrix,

Tmk =

(
n∑
i=1

ξki

)m
.

Conditions 2.44 can then be written:

T3 = T 3
1 : ξ3

1 + ξ3
2 + ξ3

3 = (ξ1 + ξ2 + ξ3)3

T2 < T 2
1 : ξ2

1 + ξ2
2 + ξ2

3 < (ξ1 + ξ2 + ξ3)2.

The first condition enforces that ξ1 = −ξ2. Equality in the second condition is

achieved only if ξ1 = ξ2 = 0. Thus, the criterion T2 = T 2
1 locates a Bogdanov-Takens

point in systems of three dynamical variables. In passing through a Bogdanov-Takens

point along the manifold T 3
1 = T3, the eigenvalues of J(~x∗) undergo the transition

{iξI , -iξI , ξ3} → {0, 0, ξ3} → {ξR, -ξR, ξ3}, ξI , ξR ∈ R.

A saddle-node bifurcation occurs when a real eigenvalue of J(~x∗) becomes zero.

This requires ξ1ξ2ξ3 = det[J(~x∗)] = 1
6
[T 3

1 − 3T1T2 + 2T3] = 0. If the saddle-node
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bifurcation curve meets a Hopf bifurcation curve, this condition can be satisfied in

two ways. Noting that the Hopf bifurcation requires T3 = T 3
1 , the condition becomes

T 3
1 − 3T1T2 + 2T3 = T 3

1 − 3T1T2 + 2T 3
1 = T1(T 2

1 − T2) = 0.

So either T2 = T 2
1 , as occurs at a Bogdanov-Takens point, or T1 = 0. In the latter case,

the eigenvalues of J(~x∗) are {iξI , -iξI , 0}, indicating that this saddle-node bifurcation

affects the stability of the equilibrium point in a direction outside of the manifold

that contains the limit cycle.

Appendix A: Locating a Bautin Bifurcation

Derivations of the results presented in this Appendix can be found in [111]. Consider

a system of n nonlinear differential equations ~̇x = ~F (~x, ~µ) that governs the behavior

of n dynamical variables ~x = {x1(t), . . . , xn(t)} and depends on p parameters ~µ =

{µ1, . . . , µp}. Assume that the appropriate change of variables has been performed

so that an equilibrium point ~x∗ occurs at the origin. The vector function ~F (~x, ~µ) can

be expanded in a Talor series about the equilibrium point ~x∗ = ~0:

~F (~x, ~µ) = J(~µ)~x+
1

2
~B(~x, ~x, ~µ) +

1

6
~C(~x, ~x, ~x, ~µ) +O(||~x||4),

in which J(~µ) is the Jacobian matrix at ~x∗ = 0,

Bj(~x, ~y, α) =
n∑

k,l=1

∂2Fj(~q, ~µ)

∂qk∂ql

∣∣∣∣
~q=0

xkyl, and

Cj(~x, ~y, ~z, ~µ) =
n∑

k,l,m=1

∂3Fj(~q, ~µ)

∂qk∂ql∂qm

∣∣∣∣
~q=0

xkylzm.

Define the inner product between two vectors 〈~v, ~w〉 ≡ ~̄v T ~w, where the bar denotes

complex conjugation as the vectors ~v, ~w ∈ Cn may be complex valued. Let J(~µ)
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have an eigenvector v̂µ corresponding to the eigenvalue ξµ = ξR(~µ) + iξI(~µ), i.e.

J(~µ)v̂µ = ξµv̂µ. Here the diacritical hat indicates that the vector has unit length:

〈v̂µ, v̂µ〉 = 1. Lastly, define the adjoint eigenvector ŵµ ∈ Cn: J(~µ)T ŵµ = ξ̄µŵµ, and

〈ŵµ, v̂µ〉 = 1. The first Lyapunov coefficient is defined to be

`1(~µ) =
Re[Z(~µ)]

ξI(~µ)
− ξR(~µ)

Im[Z(~µ)]

(ξI(~µ))2
,

in which

Z(~µ) = 1
2

[
〈ŵµ, ~C(v̂µ, v̂µ, ¯̂vµ, ~µ)〉+ 2〈ŵµ, ~B(v̂µ, ((ξµ + ξ̄µ)In − J(~µ)) -1 ~B(v̂µ, ¯̂vµ, ~µ), ~µ)〉

+ 〈ŵµ, ~B(¯̂vµ, (2ξµIn − J(~µ)) -1 ~B(v̂µ, v̂µ, ~µ), ~µ)〉
]
,

and In is the n×n identity matrix. If the first Lyapunov coefficient is evaluated along a

curve of Hopf bifurcations, then a Bautin bifurcation occurs when `1(~µ) = 0. In other

words, because ξR(~µ) = 0 at a Hopf bifurcation, it must be true that Re[Z(~µ)] = 0

at the Bautin point.
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Chapter 3

Statement of the Problem

The previous chapter discussed how a Hopf bifurcation could underlie a hair bundle’s

exquisite sensitivity, sharp frequency selectivity, and broad dynamic range. Since

the concept was advanced, however, a major criticism of a Hopf bifurcation in hear-

ing has been the precise parameter tuning necessary to reach the level of perfor-

mance observed in our cochlea [51,114–121]. The auditory system’s ability to detect

sound could be compromised by small changes in parameter values that move the

system away from a Hopf bifurcation. In other words, the system’s function might

not be robust to changes in parameter values. Acoustic trauma or pharmacological

insults, which undoubtedly affect the system’s parameters, can indeed disrupt our

hearing [122,123]. Nonetheless, our hearing ability is less vulnerable than our current

understanding of the auditory system might suggest. The present chapter frames the

problem faced by a system whose function relies on operating near a Hopf bifurca-

tion: how can such a system be robust to parameter-value perturbations? Possible

solutions, old and new, are also introduced.

3.1 High Performance within a Narrow Range

Recent work has shown that individual hair bundles can operate close to a Hopf

bifurcation (1.9) [89, 90]. In accord with experimental predictions, it has also been

demonstrated that a bundle’s peak sensitivity, quality factor, and dynamic range

diminish as experimentally accessible parameters are adjusted in manner that shifts

the bundle’s operating point away from the Hopf bifurcation [89,92,124]. Figure 3.1

presents an example of this phenomenon.
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Figure 3.1: The sensitivity of a hair bundle to sinusoidal stimulation. (A) Tuning

curves for an actual hair bundle from the bullfrog’s sacculus commanded to operate at

stiffness values closer to (orange, 900 µN·m -1) or farther from (purple, 1000 µN·m -1)

the self-oscillation region. The sensitivity of the hair bundle’s response to periodic

forcing was calculated as the bundle’s motion at the driving frequency x̃(ωD) divided

by the amplitude of the stimulus at the driving frequency F̃ (ωD) averaged over repli-

cations. The magnitude of the resulting number was taken as |χ̄(ωD)| =
∣∣∣〈 x̃(ωD)

F̃ (ωD)

〉∣∣∣ .
The control parameter is the bundle’s load stiffness and this bundle traverses a Hopf

bifurcation at 710 µN·m -1 (Appendix B). Error bars represent the standard errors of

the means of four repeated measurements on the same hair bundle. Sinusoidal stim-

uli 10 pN in amplitude were delivered to the hair bundle directly using a glass fiber

(Chapter 6). (B) Sensitivity of a hair bundle model close to (orange, 750 µN·m -1)

or farther from (purple, 900 µN·m -1) a Hopf bifurcation. The inset schematically

depicts the model’s state diagram, whose axes are the size of a constant force applied

to the bundle and the combined stiffness of the bundle and its overlying load; only

positive stiffness values are represented. The Hopf bifurcation curve (cyan) encloses

operating points at which the bundle oscillates spontaneously. These tuning curves

were obtained from Model II without homeostasis (Eqs. 4.3 and 4.4) with the pa-

rameter values listed in Table 4.2, except λx = 25 µN · s ·m -1, λy = 125 µN · s ·m -1,

P ∗o = 0.5, and f = 220 pN. For this set of parameter values, a Hopf bifurcation occurs

at a static deflection, or constant force, of 0 pN and a load stiffness of 248 µN·m -1.

From [124].
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Imagine that we wish to design a system that can detect very soft sounds while

also using only a hundredfold range of response amplitudes to faithfully register tones

whose amplitudes span nearly six orders of magnitude. The first specification is

achieved if the system’s sensitivity surpasses the requisite threshold (Fig. 3.2A), and

a compressive nonlinearity following a one-third power law can satisfy the second

criterion if the compression operates over at least the specified range of stimulus

amplitudes (Fig. 3.2B). By operating close to a Hopf bifurcation a system can

readily attain this level of performance.

However, because such a system’s sensitivity and dynamic range decline steeply

with increasing distance from the bifurcation (≈ µ -1, Eqs. 2.33 and 2.37), the high

performance level will be possible within only a limited range of parameter values.

The range may be so narrow that the parameter-value selection and maintenance

demanded of the system are incommensurate with the level of precision that is pos-

sible for a biological system. In this scenario the system would fail to be robust to

parameter variation, for small parameter-value changes could significantly impair the

system’s ability to detect signals.

The hair bundle is relentlessly bombarded by water molecules and continually sub-

jected to thermal fluctuations in its macromolecular constituents. Owing to stochas-

tic variations during their development, hair bundles exhibit biophysical parameters

that embrace a range of values across members of the same species. Despite numer-

ous sources of parameter-value perturbations, hair bundles exhibit high-performance

signal detection over several decades of continuous operation in the vast majority of

individuals. It is therefore hypothesized that some mechanism ensures the robustness

of the hair bundle’s signal detection.
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Figure 3.2: High performance within a narrow parameter range. (A) Simulated

tuning curves for a hair bundle whose operating point is situated various distances

from the Hopf bifurcation. Darker shades of blue indicate operating points that are

closer to the bifurcation located at µ = 0. A bundle detects a faint sound if the

bundle’s sensitivity exceeds the prescribed threshold (dashed line). In the example

shown, the hypothetical signal can be detected only when |µ| < 0.1. (B) A bundle

has only a limited range of response amplitudes at its disposal, say two orders of

magnitude, to represent stimuli: subthreshold responses do not effect a detectable

change in the hair cell’s membrane potential and responses that exceed the range’s

maximum damage the bundle. By employing a compressive nonlinearity, a bundle

can utilize a limited range of responses to code a much broader range of driving-force

amplitudes. A one-third power law arises naturally near a Hopf bifurcation (Eq.

2.42). Unless the bundle is poised exactly at the Hopf bifurcation (dashed, black line,

µ = 0), the compressive nonlinearity operates over only a finite range of stimulus

amplitudes and the size of this range decreases approximately in proportion to the

system’s distance from the bifurcation. Consequently, the bundle’s dynamic range,

defined as the range of stimulus amplitudes that can be represented, is narrower at

operating points farther from the bifurcation. Each curve is labeled by the number

of orders of magnitude in the span of its dynamic range, which runs from the blue,

dashed line on the right to the point at which the curve crosses threshold. A dynamic

range spanning six orders of magnitude is obtained exactly at the bifurcation, blue

arrow. A bundle might require a dynamic range that covers at least five orders of

magnitude. This specification is achieved in this example only if |µ| < 0.1. High

performance, as measured by either metric, therefore occurs within only a narrow

range of parameter values.
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3.2 Previous Solutions and Caveats

The narrow range of parameter values within which the bundle attains the desired

performance level corresponds to a thin zone in parameter space–termed the high-

performance zone–that abuts the self-oscillation region (Fig. 3.3A). It has previously

been suggested that a parameter-tuning mechanism can dynamically adjust a hair

bundle’s operating point in state space, thus ensuring that the bundle is always poised

within the high-performance zone (Fig. 3.3B,C) [51, 115–120, 125]. A parameter-

value perturbation activates the mechanism and the value of the offending parameter

is tuned back to its set point.

This strategy suffers, however, from a number of difficulties. First, several im-

plementations require the bundle to maintain a representation of the bifurcation’s

location so that the tuning mechanism stops at the appropriate parameter value

[115, 116, 120]. If the tuning mechanism is permitted to cross the Hopf bifurcation

then the ensuing hair bundle oscillations would provide an obvious biological readout

of the bifurcation’s location. Keeping track of critical parameter values becomes more

challenging, however, if the system is required to conduct its tuning entirely on the

stable of the bifurcation. Other authors have resolved this issues by demonstrating

that a system can successfully tune parameters to their critical values without having

knowledge of the bifurcation’s location [118,119].

Second, robustness to parameter variation will be guaranteed only for parameters

that possess a tuning mechanism. The system would then require a separate tuning

mechanism for each bifurcation parameter.

Third, the strategy assumes that the bundle has the ability to adjust the parame-

ters that are responsible for its proximity to the bifurcation. The control parameters
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that set the bundle’s operating point are often not themselves dynamical variables;

technically this is actually never the case (see below).

Finally, the analyses applied to systems that employ this strategy assume that

the tuning dynamics do not appreciably change the state diagram, which is shown

to not be true in general in Chapter 4. The picture shown in Figure 3.3B could be

entirely wrong: conferring dynamics upon control parameter 1 could drastically shift

or reshape the Hopf bifurcation or other features of the state diagram.

On a more technical note, it is an abuse of terms to call a dynamical variable a

control parameter. Because the values of the control parameters dictate a system’s

steady-state behavior, the system need not be at steady state if a control parameter

is dynamic, which contradicts the definition of a control parameter. For a given set

of parameter values and initial conditions the system follows a prescribed trajectory.

A change in a dynamical variable’s value merely reflects the system’s time evolution

along this trajectory and cannot affect the system’s fate–that can be achieved only

by adjusting parameter values or by choosing a different set of initial conditions, both

of which constitute processes that are external to the system.

In other words, a system’s internal dynamics cannot change a system’s operating

point in the state diagram, for it is precisely the location of the operating point that

specifies the behavior to which the system tends as it approaches a steady state. If

the operating point’s location evolves in time then it is unclear which steady-state

behavior the system possesses. “Control parameters” upon which dynamics have

been conferred should be counted among the system’s internal dynamical variables

and not as parameters that determine the system’s steady-state behavior, nor should

they appear on the axes of state diagrams.
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Figure 3.3: Robustness through parameter tuning. (A) State diagram for a hair

bundle that permits a loop of Hopf bifurcations (solid, cyan curve) that in turn

encloses a set of parameter values at which spontaneous oscillations occur. The self-

oscillation region is bordered by a zone of high performance (lightly shaded blue

area between the Hopf bifurcation curve and the dashed, blue curve). The bundle’s

sensitivity, for example, exceeds a specified threshold in this region. Because it lies

outside of the high-performance zone, the purple dot marks an operating point at

which the bundle performs poorly as a signal detector (C, left). (B) To ensure it

maintains a high level of performance, a bundle may be able to dynamically adjust

parameter values (red arrow). By tuning parameters to be near their critical values,

such a strategy would enable a system to maintain its proximity to a Hopf bifurcation

(orange dot). (C) In moving its operating point closer to the Hopf bifurcation, the

bundle would attain a higher level of performance (left to right).
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3.3 Robustness Enhancement by Homeostasis

Rather than tuning parameters to their critical values, I propose that a home-

ostatic mechanism increases the range of parameter values for which a bundle is

sufficiently sensitive to periodic stimuli. This strategy, which I call robustness en-

hancement, in essence broadens the range of the Hopf bifurcation’s influence and

consequently eases the demands on the system to precisely set its control parameter

values (Fig. 3.4). By decreasing the steepness of various performance metrics’ decline

with increasing distance from the bifurcation, this mechanism endows the system with

a means of maintaining effective operation, termed homeostasis of function.

Considering that the high-performance zone envelops the self-oscillation region,

one might heuristically expect that enlarging the latter would effect a concomitant

expansion of the former. The remainder of this section undertakes a general analysis

to validate this hypothesis. Two homeostatic mechanisms employed in disparate

models of hair bundle motility are discussed in detail in the following chapter. In

addition to being biologically plausible, both mechanisms render the bundle’s signal

detection more robust to parameter variation by enlarging the self-oscillation region.

The following calculations suggest that this constitutes a general strategy that can

be applied to any system that depends on a Hopf bifurcation to function effectively.
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Figure 3.4: Robustness enhancement by means of homeostasis. (A) Without home-

ostasis, the bundle is capable of high-performance signal detection within only a

narrow range of parameter values (lightly shaded blue region). Because the bundle’s

sensitivity declines with increasing distance from the Hopf bifurcation (cyan curve),

a small-amplitude stimulus may be detected by a bundle operating at the orange

point but not at the purple point (C, left). (B) When engaged, a homeostatic mech-

anism could broaden the influence of the Hopf bifurcation, thereby expanding the

high-performance zone. Portrayed is a realization of such a strategy that has added

the lightly shaded red region to the high-performance zone, which now contains the

purple operating point (C, right). The boundary of the new high-performance zone

(dashed, red curve) is static: the proposed homeostatic mechanism does not dynami-

cally adjust the positions of contours or operating points in parameter space. Rather,

different realizations of the homeostatic mechanism augments the high-performance

zone by different degrees. (C). The decline in the bundle’s sensitivity with increasing

distance from the bifurcation is rendered less steep by the homeostatic mechanism.

Signal detection is consequently more robust because a high level of performance is

achieved for a broader range of parameter values. Middle panel modified from [124].
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Consider a system that depends on parameters ~µ and permits Hopf bifurcations

along the parametric curve ~µc(θ) = {µc,x(θ), µc,y(θ)} = µc(θ)µ̂c(θ), µc(θ) = |~µc(θ)| =√
µ2
c,x(θ) + µ2

c,y(θ), in parameter space {µx, µy}. Let this curve form a closed loop,

i.e. ~µc(θ−) = ~µc(θ+), and let the signed curvature of ~µc be nonnegative on the interval

θ ∈ [θ−, θ+]:

Curv(θ) =
∂θµc,x∂

2
θµc,y − ∂θµc,y∂2

θµc,x
[(∂θµc,x)2 + (∂θµc,y)2]3/2

≥ 0 ∀ θ ∈ [θ−, θ+].

Designate the inside of the loop as the unstable side of the Hopf bifurcation so that

spontaneous oscillations occur in the system for only a finite range of parameter

values ~µ. Finally, let the system possess a property whose value P has a power-law

dependence on the system’s distance s from the Hopf bifurcation when measured

along a line of constant θ:

P(s) = |(sµ̂c(θ) + ~µc(θ))− ~µc(θ)|ν = |s|ν , s > 0.

This analysis is restricted to the stable side of the bifurcation by requiring s >

0. Requiring that Curv(θ) ≥ 0 ∀ θ ∈ [θ−, θ+] ensures that P is a single-valued

function outside the bifurcation loop. P(s) could, for instance, represent the system’s

sensitivity to sinusoidal stimulation.

Next, inflate the size of the loop by a dilation factor h: ~µc(θ) → h~µc(θ). This

scaling multiplies the area within ~µc(θ) by h2. Assume, however, that the power-law

dependence of P does not change:

P(s) = |(sµ̂c(θ) + h~µc(θ))− h~µc(θ)|ν = |s|ν .

At some point ~µ outside the loop, P takes on the value P = |~µ(θ)−h~µc(θ)|ν . Solving

for ~µ yields contours of constant P values

~µ(P , h, θ) = h~µc(θ) + P1/νµ̂c(θ) = (hµc(θ) + P1/ν)µ̂c(θ), (3.1)
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which can also be written as ~µ(P , h, θ) = (hµc(θ) + s)µ̂c(θ).

Assuming it forms a closed loop, the area contained within ~µ(P , h, θ) can be

found using Stoke’s theorem. Let ~U be a vector field with ~∇× ~U a unit vector field

perpendicular to the surface Σ. Stoke’s theorem then states that

∮
∂Σ

~U · d~r =

∫∫
Σ

~∇× ~U · d~Σ = Σ, (3.2)

in which ∂Σ is the boundary curve of Σ with the normal vector field d~Σ and ~r is a

parameterization of ∂Σ. Stoke’s theorem reveals that the area Σ can be found by

performing a line integral around the boundary of Σ. The curve of interest is

~r = ~µ(P , h, θ) = (hµc(θ) + P1/ν)µ̂c(θ) =

(
h+

P 1/ν

µc(θ)

)
{µc,x(θ), µc,y(θ)}.

The differential tangent-vector field along the curve ~r is then

d~µ =
∂

∂θ
{µx(θ), µy(θ)}dθ =

∂

∂θ

{(
h+

P 1/ν

µc(θ)

)
µc,x(θ),

(
h+

P 1/ν

µc(θ)

)
µc,y(θ), 0

}
dθ,

Various vector fields ~U may be used in the line integral; any whose curl is 1 suffices.

Two simple examples are

~U = {0, µx(θ), 0} or ~U = {−µy(θ), 0, 0}.

The area enclosed by the loop is then given by

Area(P , h) =

∫ θ2

θ1

(
h+

P 1/ν

µc(θ)

)
µc,x(θ)

∂

∂θ

[(
h+

P 1/ν

µc(θ)

)
µc,y(θ)

]
dθ, (3.3)

or by Area(P , h) = −
∫ θ2

θ1

(
h+

P 1/ν

µc(θ)

)
µc,y(θ)

∂

∂θ

[(
h+

P 1/ν

µc(θ)

)
µc,x(θ)

]
dθ, (3.4)
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in which θ1 and θ2 are the values at which the curve crosses itself. Noting that

µc(θ) =
√
µ2
c,x(θ) + µ2

c,y(θ), these integrals become

Area(P , h) =

h2

∫ θ2

θ1

µc,x∂θµc,y dθ + hP1/ν

∫ θ2

θ1

[(2µ2
c,x + µ2

c,y)∂θµc,y − µc,xµc,y∂θµc,x]
µc,x
µ3
c

dθ

+ P2/ν

∫ θ2

θ1

[µc,x∂θµc,y − µc,y∂θµc,x]
µ2
c,y

µ4
c

dθ and (3.5)

Area(P , h) =

− h2

∫ θ2

θ1

µc,y∂θµc,x dθ + hP1/ν

∫ θ2

θ1

[µc,yµc,x∂θµc,y − (2µ2
c,y + µ2

c,x)∂θµc,x]
µc,y
µ3
c

dθ

+ P2/ν

∫ θ2

θ1

[µc,x∂θµc,y − µc,y∂θµc,x]
µ2
c,x

µ4
c

dθ. (3.6)

The integrals multiplying the h2 terms in equations 3.5 and 3.6 give the area con-

tained within the loop of Hopf bifurcations and must therefore be positive. The other

integrals contain µc,x∂θµc,y and -µc,y∂θµc,x multiplied by positive numbers (µ2
c,x or µ2

c,y

divided by powers of µc) and are thus also positive, confirming that dilating the self-

oscillation region generically effects a concomitant expansion of the high-performance

zone, the area contained within a given P contour.

How the size of the high-performance region depends on the dilation factor h can

be found as follows. Each integral in Equation 3.5 evaluates to some positive number

that depends only on the geometry of the bifurcation loop. Replacing each integral

with a constant, with A0 representing the area enclosed by ~µc,

Area(P , h) = A0h
2 + c1P1/νh+ c2P2/ν . (3.7)
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Dilating each dimension of the bifurcation loop by h effects an increase in the area

contained within a constant-P contour by the factor

Area(P , h)

Area(P , 1)
≡ R(P , h) =

A0h
2 + c1P1/νh+ c2P2/ν

A0 + c1P1/ν + c2P2/ν
. (3.8)

The quadratic form of Equation 3.8 is expected: scaling each dimension of a two-

dimensional object by h scales the object’s area by h2.

Appropriate limits reveal thatR(P , h) is always greater than 1, but cannot exceed

h2 (Fig. 3.5A). Assuming P > 1 and h > 1:

lim
ν→0+

R(P , h) = 1 < lim
ν→±∞

R(P , h) =
A0h

2 + c1h+ c2

A0 + c1 + c2

< lim
ν→0−

R(P , h) = h2.

(3.9)

The ν → 0+ and ν → 0− limits are switched if P < 1. Assuming ν < 0 and h > 1:

lim
P→0+

R(P , h) = 1 < R(1, h) =
A0h

2 + c1h+ c2

A0 + c1 + c2

< lim
P→∞

R(P , h) = h2. (3.10)

If instead ν > 0, the P → 0+ and P → ∞ limits are exchanged. If P = 1, R(1, h)

is independent of ν: the range of possible parabolas collapses to the single parabola

given above.

Excluding the area enclosed by the bifurcation loop yields

AreaP(h) = A0h
2 + c1hP1/ν + c2P2/ν − A0h

2 = c1hP1/ν + c2P2/ν . (3.11)

As h increases, this area grows as

AreaP(h)

AreaP(1)
≡ RP(h) =

c1h+ c2P1/ν

c1 + c2P1/ν
, (3.12)

which is linear in the dilation factor h. This dependence is also expected. Imagine

partitioning the annular region between ~µ(P , h, θ) and ~µc(θ) into infinitesimal slices
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within which θ is approximately constant. The area of such a slice dA at a particular

θ will be approximately equal to the width of the slice |~µ(P , h, θ)− h~µc(θ)| times the

infinitesimal arc length passing through the middle of the slices, d~r ≈ dθ [~µ(P , h, θ) +

h~µc(θ)]/2. Substitution yields:

dA ≈ P1/ν(hµc(θ) + P1/ν/2) dθ. (3.13)

The entire area involves integrating out θ, but this does not change the dependence

of dA on h. Thus, AreaP(h) ∝ h.

Taking the same limits as above reveals that RP(h) must lie between 1 and h

(Fig. 3.5B). Assuming P > 1 and h > 1:

lim
ν→0+

RP(h) = 1 < lim
ν→±∞

RP(h) =
c1h+ c2

c1 + c2

< lim
ν→0−

RP(h) = h. (3.14)

The ν → 0+ and ν → 0− limits are switched if P < 1. Assuming ν < 0 and h > 1:

lim
P→0+

RP(h) = 1 < R1(h) =
c1h+ c2

c1 + c2

< lim
P→∞

RP(h) = h. (3.15)

If instead ν > 0, the P → 0+ and P → ∞ limits are again exchanged.

The preceding calculations demonstrate that if dilating the bifurcation loop does

not change the power-law dependence between P and s (i.e. ν does not depend on

h), then the area enclosed by P contours is guaranteed to increase. Relaxing this

requirement, it is possible to find an upper bound on the change in ν that would still

allow the area enclosed by a P contour to expand. Assuming the change is uniform

in θ, ∆ν can be found from Equation 3.11:

AreaP(h, ν + ∆ν) = AreaP(1, ν) ⇒ c1hP1/(ν+∆ν) + c2P2/(ν+∆ν) = c1P1/ν + c2P2/ν .
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Solving for ∆ν

|∆ν| <

∣∣∣∣∣∣ν − ln[P ]

ln
[

1
2c1h

(√
c2

2 + 4c1c2hP1/2ν + 4c2
1hP1/ν − c2

)]
∣∣∣∣∣∣ . (3.16)

If this inequality is satisfied, the area between ~µ(,h, ν + ∆ν, θ) and ~µc(h, θ) expands1.

Two examples confirm the findings of the preceding calculations. First, let ~µc(θ)

describe a circle with radius µc (Figs. 3.5C,D):

~µc(θ) = {µc cos θ, µc sin θ}, |~µc(θ)| = µc,
~µc(θ)

µc
≡ µ̂c(θ) = {cos θ, sin θ}.

Dilating the circle is achieved by multiplying h into ~µc(θ). As before, let the system

possess some property whose value is governed by P = |~µ(θ)−h~µc(θ)|ν . Then ~µ(P) =

h~µc + P1/νµ̂c, and

Area(P , h) = π|~µ(P)|2 = π(hµc + P1/ν)2. (3.17)

Note that the above result is 2π times Equation 3.13: the approximation given for

dA is exact when the bifurcation loop is a circle. For a dilation factor h, the area

contained within a P contour is multiplied by

Area(P , h)

Area(P , 1)
≡ R(P , h) =

(
hµc + P1/ν

µc + P1/ν

)2

, (3.18)

which is Equation 3.8 with A0 = πµ2
c , c1 = 2πµc, and c2 = π. Subtracting the area

enclosed by the bifurcation curve yields

AreaP(h) = π(hµc + P1/ν)2 − πh2µ2
c = π(2hµcP1/ν + P2/ν), (3.19)

1If the area contained within ~µc(h, θ) is included, then the inequality becomes

|∆ν| <

∣∣∣∣∣∣ν − ln[P]

ln
[

1
2c1h

(√
c22 + 4c1c2hP1/2ν + 4c1h(A0 −A0h2 − c1P1/ν)− c2

)]
∣∣∣∣∣∣ ,

which is possible only if h <
√

1 + c2
A0
P1/2ν + c1

A0
P1/ν . In other words, for large enough h the area

is guaranteed to increase.
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and the scaling factor for the remaining annular region is

AreaP(h)

AreaP(1)
≡ RP(h) =

2hµc + P1/ν

2µc + P1/ν
. (3.20)

The limiting values of equations 3.18 and 3.20 are the same as those given for the

general case.

A second example, which resembles more closely the situation in models of hair

bundle motility, is given by (Figs. 3.5E,F ):

~µc(θ) = {µc cos(3θ) cos(θ), µc cos(3θ) sin(θ)}, θ ∈ [-π/6, π/6],

|~µc(θ)| = µc| cos(3θ)|, ~µc(θ)

µc
≡ µ̂c(θ) = sign[cos(3θ)]{cos θ, sin θ}.

On the interval -π/6 ≤ θ ≤ π/6, sign[cos(3θ)] ≥ 0, so this term can be dropped for

now. The dilated loop is h~µc(θ), P = |~µ(θ)− h~µc(θ)|ν , and

~µ(P , θ) = h~µc(θ) + P1/νµ̂c(θ) =
(
hµc cos(3θ) + P1/ν

)
{cos θ, sin θ}.

The infinitesimal tangent vector is then

d~µ =
{
− 3hµc sin(3θ) cos(θ)−

(
hµc cos(3θ) + P1/ν

)
sin(θ),

− 3hµc sin(3θ) sin(θ) +
(
hµc cos(3θ) + P1/ν

)
cos(θ), 0

}
.

Finally, ~U = {0, µx, 0} = {0, (hµc cos(3θ) + P1/ν) cos(θ), 0} serves as the vector field

in the line integrals. Because ~µ(P , θ) does not form a closed loop on the interval

-π/6 ≤ θ ≤ π/6, the path can be closed a few different ways. One option is to extend

the interval of integration to θ ∈ [- cos -1[−P1/ν/hµc]/3, cos -1[−P1/ν/hµc]/3], where it

is assumed that µc > 1, h > 1, χ > 1, and ν < 0, or that µc > 1, h > 1, ν > 0,

and χ < 1 to ensure cos -1[−P1/ν/hµc] is real-valued. In this case, the area contained
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within a P contour is

Area(P , h) =

∫ cos -1

[
-P

1/ν

hµc

]
/3

- cos -1
[
-P

1/ν

hµc

]
/3

[
(hµc cos(3θ) + P1/ν)2 cos2(θ)

− (hµc cos(3θ) + P1/ν) cos(θ)3hµc sin(3θ) sin(θ)
]
dθ, (3.21)

Area(P , h) =
1

6

(µ2
ch

2 + 2P2/ν) sec -1

[
− µch

P1/ν

]
+ 3P1/νµch

√
1−

(
P1/ν

µch

)2
 . (3.22)

Assuming P1/ν/µch is small,

Area(P , h) ≈ 1

12

[
πµ2

ch
2 + 2P1/νµch+ 6P1/ν + 2πP2/ν

]
, (3.23)

R(P , h) ≈ πµ2
ch

2 + 2P1/νµch+ 6P1/ν + 2πP2/ν

πµ2
c + 2P1/νµc + 6P1/ν + 2πP2/ν

. (3.24)

The area contained withing the bifurcation curve is equal to πh2µ2
c/12:

AreaP(h) ≈ 1

6

[
P1/νµch+ 3P1/ν + πP2/ν

]
, (3.25)

RP(h) ≈ µch+ 3 + πP1/ν

µc + 3 + πP1/ν
. (3.26)

Another way to close the loop is to perform integral 3.21 over the interval -π/6 ≤

θ ≤ π/6, then integrate down the ray θ = π/6 to the origin, and finally from the

origin along the ray θ = −π/6 to join the beginning of the path. Along the rays,

~µ(r,±π/6) = {r, r tan[±π/6]} = {r,±r/
√

3}, d~µ(r,±π/6) = {1,±1/
√

3, 0}, ~U =

{0, r, 0}, and r ∈ [±
√

3P1/ν/2, 0]. The desired area is thus:

83



Area(P , h) =

∫ π/6

-π/6

[
(hµc cos(3θ) + P1/ν)2 cos2(θ)

− (hµc cos(3θ) + P1/ν) cos(θ)3hµc sin(3θ) sin(θ)
]
dθ

+

∫ 0

√
3P1/ν/2

r√
3
dr −

∫ -
√

3P1/ν/2

0

r√
3
dr,

Area(P , h) =
1

12

[
πµ2

ch
2 + 8P1/νµch+ 2πP2/ν

]
, and (3.27)

R(P , h) =
πµ2

ch
2 + 8P1/νµch+ 2πP2/ν

πµ2
c + 8P1/νµc + 2πP2/ν

. (3.28)

Finally,

AreaP(h) =
1

6

[
4P1/νµch+ πP2/ν

]
and RP(h) =

4µch+ πP1/ν

4µc + πP1/ν
. (3.29)

It is not immediately apparent whether one method for closing the loop should be

favored over the other. The second method is slightly more computationally intensive

and excludes significant portions of the state diagram, but yields a more tractable,

closed-form solution. In extending the P contours the first method requires a violation

of the assumption P = sν : points in the state diagram outside -π/6 ≤ θ ≤ π/6 do

not reside on lines of constant θ that intersect the bifurcation curve. This difficulty

might, however, be an artifact of how the problem was framed: in other systems there

might exist a natural way to extend contours to form closed loops.

The analyses in this section were restricted to power-law dependences. The stated

results, however, should hold for any monotonic function. Namely, the area of a region

that resides between some property’s contour and a curve of Hopf bifurcations should

increase in proportion to the multiplicative factor that scales the area enclosed by
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the bifurcation curve. This effect arises entirely from geometry and is universal;

different geometries merely determine the details of the proportionality constant.

Some geometries will allow for a more efficient expansion of the high-performance

zone. For example, a greater dilation of the high-performance zone is seen in the

circular geometry than in the loop geometry for any dilation factor h > 1.

If the dependence of the bundle’s sensitivity on the system’s distance from the

bifurcation is unaffected by dilating the self-oscillation region, then expanding this

region guarantees that the area contained by the sensitivity contours also increases,

and in turn renders the bundle’s sensitivity more robust to parameter-value variations.

If the relation is affected, gains in robustness can still be achieved if the change in

the power law is not too great (Eq. 3.16). On the other hand, changes in the correct

direction, i.e. ν becoming less negative when P > 1, could engender additional

robustness enhancement, possibly above the calculated upper limit (Eqs. 3.14), or

even supralinear improvements.
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Figure 3.5: Heuristic solution. (A) The ratio R(P , h) of the areas contained by

the P = 10 contour before and after the Hopf bifurcation curve was scaled by a

dilation factor h. A power-law dependence with exponent ν is assumed between P
and the system’s distance from the bifurcation curve. Red shades indicate ν < 0 and

blue shades indicate ν > 0. When h > 1, the upper limit is h2 (black, dashed line,

ν → 0−), and the lower bound is 1 (white, dashed line, ν → 0+). The orange, dashed

line marks R(P , h) in the limit that ν → ±∞, which coincides with R(P = 1, h). A

particular realization of the general case is shown. The specific location of the orange,

dashed line is determined by the geometry of the bifurcation curve and by the value

of P . If instead P < 1, the red shades indicate ν > 0 and the blue shades indicate

ν < 0, but the orange, dashed curve still marks R(P , h) in the limit that ν → ±∞.

(B) Same as panel A except for RP(h), in which the area enclosed by the bifurcation

curve is excluded. (C,D) P contours around a circular Hopf bifurcation curve before

(C) and after (D) the curve has been dilated by a factor of two. The area enclosed by

a given contour is larger after dilating the bifurcation curve. (E,F ) Same as panels

C and D except for a different geometry. The green, dashed lines mark θ = ±π/6.

In panels C − F the bifurcation curve is shown in cyan and each contour is labeled

by its P value.
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Appendix B: Experimental Localization of a Hopf

Bifurcation

Hartigans’ dip statistic may be employed to experimentally identify the stiffness value

at which an actual hair bundle exhibits a supercritical Hopf bifurcation [89, 90, 126].

The position distribution for a quiescent bundle is unimodal, whereas a spontaneously

oscillating bundle yields a multimodal distribution. Larger values of the dip statistic

arise from multimodal distributions; unimodal distributions possess smaller values.

The transition from unimodal to multimodal, which occurs when the dip statistic

reaches a statistically significant value, signals a bifurcation. Setting the p-value

threshold at 0.01 yields statistically significant dip values, and thus indicates sponta-

neous oscillations, for stiffnesses less than 710 µN·m -1 (Fig, 3.6).
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Figure 3.6: Experimental localization of a supercritical Hopf bifurcation in an actual

hair bundle. (A) To the left of the dashed line at 710 µN·m -1 the hair bundle oscillates

spontaneously. (B) The dependence of a hair bundle’s root-mean-square magnitude

of oscillation on load stiffness. In qualitative agreement with the behavior expected

in the vicinity of a supercritical Hopf bifurcation, the bundle’s movement rises as

its operating point is poised deeper within the oscillatory region. Each data point

represents the average over a 10 s interval. Error bars stem from 1000 bootstrap

repetitions. From [124].
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Chapter 4

Two Models of Hair Bundle Dynamics

Previous studies have shown that two features of a hair bundle, a nonlinear region

of negative stiffness in the bundle’s force-displacement relationship and an active

adaptation process, are sufficient to capture many aspects of hair bundle dynamics,

including spontaneous oscillation [92]. Negative stiffness is a passive consequence

of channel gating, whereas adaptation pumps mechanical energy into the system to

amplify the hair bundle’s response to stimulation.

To determine general principles associated with homeostasis of function, I intro-

duce homeostatic mechanisms into two existing models of hair bundle motility. Model

I possesses the simplest realizations of the hair bundle’s two essential features and

exhibits dynamics that qualitatively agree with those of experimentally observed hair

bundles [92]. The simplicity of Model I allows me to determine which elements of

the model are sufficient to achieve robustness enhancement. Model II incorporates

quantitative biophysical properties of the hair bundle [51]. Adding homeostasis to

Model II allows me to determine which effects of homeostasis are generalizable from

Model I and to quantify the impact of homeostasis. Analyzing how these models

differ in structure further facilitates an understanding of homeostatic mechanisms.
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4.1 A Phenomenological Model

Model I without homeostasis is given by [92] (Appendix C):

ẋ = a(x− y)− (x− y)3 − kx+ Fc + F (t) , (4.1)

ẏ = α(bx− y) . (4.2)

Here x is the hair bundle’s displacement, k = ke + ksp is the combined stiffness of an

external load ke and of the bundle ksp, a is a stiffness arising from channel gating,

Fc is a constant force applied to the bundle, and F (t) is an external force that varies

in time [92]. The diacritical dots represent temporal derivatives. Because inertial

forces are considered negligible, second-order time derivatives do not appear in the

equations.

Equation 4.2 describes the dynamics of adaptation y, which produces a force on

the bundle. The coefficient b determines how strongly adaptation depends on bundle

displacement, whereas the rate of the adaptation is set by α.

The bundle’s instantaneous force-displacement relation is given by F (x) = kx −

ax+x3+const. This expression bears the label “instantaneous” because it is obtained

over a time scale that is too short to allow appreciable changes in the adaptation force.

Owing to the cubic term, negative stiffness appears in the bundle’s instantaneous

force-displacement relation when k < a.

It has previously been shown that the mechanical load experienced by a hair

bundle sets the bundle’s operating point and thus determines its biological function

as a step detector, an oscillator, or a sinusoidal-signal detector [89, 90, 92]. The

parameters k and Fc were additionally found to control the bundle’s sensitivity to

periodic stimulation [89, 90, 92]. In light of the experimental accessibility, k and Fc

are chosen as the system’s bifurcation parameters in both Modles I and II.
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4.2 A Biophysically Motivated Model

Model II without homeostasis is given by [51] (Appendix C):

λxẋ = −kgs(x− y −DPo)− kx+ Fc + F (t) , (4.3)

λyẏ = kgs(x− y −DPo)− kes(y − yes)− f(1− SPo) , (4.4)

Po =
1

1 + Ae−(x−y)/δ
, (4.5)

in which x, k, Fc, and F (t) bear the same meanings as in Model I. kgs is the collective

stiffness of the gating springs that connect mechanotransduction channels to bundle

displacement. D is the displacement of the hair bundle’s tip that results when a

channel opens, and Po is the probability that a channel is open. The open probability

is described by a Boltzmann function, Equation 4.5, derived from a two-state channel

model: if ∆G is the difference in energy between the two states, kB Boltzmann’s

constant, T temperature, and N the number of stereocilia in the hair bundle, then

A ≡ exp([∆G + (kgsD)2/(2N)]/kBT ) and δ ≡ NkBT/(Dkgs) [51]. A controls the

sigmoid’s horizontal position and δ controls its width. Channel gating introduces

into the system nonlinearity, the first essential ingredient, through the sigmoidal

shape of Po: negative stiffness appears in the bundle’s force-displacement relation

when k < kgs(D/4δ − 1) (Eq. 1.4).

The second vital ingredient, adaptation, is powered by a Ca2+ gradient and myosin

motors that exert forces f to open the channels. The position of the motors serves

as the adaptation variable y (Eq. 4.4). The influx of Ca2+ through open channels

inhibits the motors, resulting in channel reclosure. This arrangement constitutes an

adaptation mechanism, for it allows the hair bundle to remain sensitive to farther

deflection. An increase in x tends to increase y, which in turn tends to diminish the
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difference x− y. As x− y decreases, the size of the channel-gating term decreases, as

does Po, corresponding to lessening of tip-link tension and closing of MET channels,

respectively. Further, the 1− SPo term enforces the partial inhibition of the myosin

motors by calcium: Po increases as x increases, which in turn reduces the effect of

the myosin motors through the shrinking 1− SPo coefficient of f . S determines the

strength of Ca2+ inhibition. To account for the fact that adaptation is incomplete,

an extent spring with stiffness kes and equilibrium length yes is included [127].

Because the entire system is submerged in fluid, the hair bundle and the insertional

plaque experience the drag forces λxẋ and λyẏ, each with its respective drag coefficient

λx and λy. Slow adaptation occurs on a slower time scale than channel dynamics and

is readily apparent only in mechanical deflections lasting approximately 10 ms or

longer [7]. To account for this difference in time scales, λy is set to a value larger

than λx. When the bundle is stationary ẋ = 0, and, identifying F (t) as FSF, the force

applied to the bundle by the stimulus fiber (Eq. 1.2) is recovered.

4.3 The Hopf Depends on Parameter Values

Linear stability analysis was employed to locate curves of Hopf bifurcations in

each model (Section 2.4). Letting Tn = Tr[J(~a∗)
n], in which J(~a∗) is the system’s

Jacobian matrix evaluated at the equilibrium point ~a∗, a Hopf bifurcation occurs in

a system of two dynamical variables when T1 = 0 and T2 < 0 (Eq. 2.43). For Model

I without homeostasis, a curve of Hopf bifurcations is given by [92]

Fc,H±(k) = ±

[
(k − a(1− b))

(
a− α− k
3(1− b)2

)1/2

+ (1− b)3

(
a− α− k
3(1− b)2

)3/2
]
, (4.6)
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when

k >
α

b
(1− b). (4.7)

Adjusting the adaptation rate α changes the size of the oscillatory region (Fig. 4.1A).

Fc,H±(k) crosses the Fc = 0 axis at k = (1− b)(2a+ α)/(2 + b) and at k = a− α.

The area enclosed by Fc,H±(k) between these intersection points is

Areai(α, b) = 2

∫ a−α

(1−b)(2a+α)/(2+b)

Fc,H+(k) dk

=
8(ab− α)5/2

5|1− b|(2 + b)3/2
. (4.8)

The above expression reveals that the Hopf bifurcation curve forms a closed loop when

α < ab; when α = ab the endpoints of the integration interval coincide, and when α >

ab the real parts of Fc,H±(k) intersect the Fc = 0 axis only at k = (1−b)(2a+α)/(2+b).

Equation (4.8) quantifies how changing the adaptation rate α or strength b affects

the size of the oscillatory region (Fig. 4.1A,B).

As long as the underdamped region does not become too small (Section 4.5), the

area enclosed by a contour of constant peak sensitivity increases monotonically as the

oscillatory region grows (Fig. 4.2A). Define the dilation factor h as the square root

of ratio of the area enclosed by the Hopf bifurcation curve when α < 1 to that when

α = 1. In accord with the results presented in Section 3.3, the area between the Hopf

bifurcation curve and a peak sensitivity contour grows nearly in proportion to h (Fig.

4.2B). The divergence from linearity arises from the sensitivity contours running into

the boundary of the underdamped region. In this situation, the contour is made into a

closed loop by integrating along the boundary of the underdamped region between the

two points that it intersects the sensitivity contour. As was discussed in Section 3.3,

closing the loop in this way excludes parts of parameter space that could otherwise
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be enveloped by sensitivity contours. Because contours of lower sensitivity values

are farther from the Hopf bifurcation, a greater length of the underdamped region’s

boundary is needed to complete the loop and thus a greater area of parameter space

is excluded.

For Model II without homeostasis, and letting

kH(P ∗o ) =
1

δλy
(P ∗o (1− P ∗o )(Dkgs(λx + λy)− fSλx)− δkesλx − δkgs(λx + λy)) , (4.9)

a Hopf bifurcation occurs when

Fc,H(P ∗o ) =
1

δ
ln

[
AP ∗o

1− P ∗o

](
kgs − kH(P ∗o )

(
1 +

kgs

kes

))

+ kH(P ∗o )

(
kgs

kes

DP ∗o − yes +
f

kes

(1− SP ∗o )

)
− kgsDP

∗
o , (4.10)

so long as

λx[(1− P ∗o )P ∗o (fS −Dkgs) + δ(kes + kgs)]
2

< λykgs(D(1− P ∗o )P ∗o − δ)[(1− P ∗o )P ∗o (fS −Dkgs) + δkgs]. (4.11)

In the above equations, P ∗o is the steady-state channel open probability. Given a

point {k, Fc} in the state diagram and values for all the other parameters, P ∗o can be

found by solving the following equation numerically:

Fc =
1

δ
ln

[
AP ∗o

1− P ∗o

](
kgs − k

(
1 +

kgs

kes

))
+k

(
kgs

kes

DP ∗o − yes +
f

kes

(1− SP ∗o )

)
−kgsDP

∗
o .

(4.12)

Alternatively, P ∗o at the Hopf bifurcation can be found from equation (4.9):

P ∗o,H±(k) =
1

2

[
1±

√
(Dkgs − 4δ)(λx + λy)− fSλx − 4δ(kesλx + λyk)

Dkgs(λx + λy)− fSλx

]
. (4.13)
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Using P ∗o,H±(k), it is possible to express the Hopf bifurcation curve in terms of the

two functions

Fc,H1(k) =
1

δ
ln

[
AP ∗o,H+(k)

1− P ∗o,H+(k)

](
kgs − k

(
1 +

kgs

kes

))

+ k

(
kgs

kes

DP ∗o,H+(k)− yes +
f

kes

(1− SP ∗o,H+(k))

)
− kgsDP

∗
o,H+(k), (4.14)

Fc,H2(k) =
1

δ
ln

[
AP ∗o,H−(k)

1− P ∗o,H−(k)

](
kgs − k

(
1 +

kgs

kes

))

+ k

(
kgs

kes

DP ∗o,H−(k)− yes +
f

kes

(1− SP ∗o,H−(k))

)
− kgsDP

∗
o,H−(k). (4.15)

Adjusting the adaptation-motor strength f changes the location and size of the self-

oscillation region (Fig. 4.1C).

The functions Fc,H1(k) and Fc,H2(k) intersect at two values of k. One value, which

bounds the region of spontaneous oscillations on the right, is

kR =
kgs(λx + λy)(D − 4δ)− λx(fS + 4kesδ)

4δλy
. (4.16)

The second value, kL, which bounds the region of spontaneous oscillations on the left,

can be found numerically. The area enclosed by the Hopf bifurcation loop can then

be calculated numerically from the integral

Areaii(f, S) =

∫ kR

kL

[Fc,H1(k, f, S)− Fc,H2(k, f, S)] dk. (4.17)

Note that Fc,H1(k, f, S) ≥ Fc,H2(k, f, S) on the interval k ∈ [kL, kR]. Changing the

adaptation-motor strength f or efficacy of Ca2+ inhibition S affects the size and

location of the oscillatory region (Fig. 4.1D).

95



As the size of the oscillatory region grows, the area enclosed by a curve of constant

peak sensitivity increases (Fig. 4.2D), as long as the underdamped region does not

become too small (Section 4.5). The divergence from linearity is greater than in

Model I (Fig. 4.2), reflecting a narrower space between the Hopf bifurcation and the

boundary of the underdamped region.

Changing any of the models’ parameter values affects the size and position of the

self-oscillation region (Appendix D, Fig. 4.8). However, a hair bundle may not have

the ability to control some of these parameters, such as the number of stereocilia. Be-

cause experimental manipulations have been shown to affect adaptation [79,87,128],

homeostatic feedback is applied to the models’ adaptation mechanisms. Specifically,

the models are modified to account for the dynamics of the rate of adaptation α in

Model I and of the strength of the myosin motors f in Model II, as is described in

the next section.
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Figure 4.1: Hopf bifurcation curves without homeostasis. (A) Hopf bifurcation

curves in the state diagram of Model I for various values of the adaptation rate α.

(B) Area enclosed by the Hopf bifurcation loop as a function of adaptation strength

b and adaptation rate α. Darker shades of red indicate larger areas and each contour

is labeled with its area. The blue line marks where α = ab. In the white region of

the plot, for which α > ab, the Hopf bifurcation curve does not encircle a bounded

region of state space. (C) Hopf bifurcation curves in Model II for various values of

the adaptation-force strength f . (D) Area enclosed by the Hopf bifurcation loop as

a function of motor strength f and of the strength of Ca2+ mediated inhibition S.

Darker shades of red indicate larger areas and each contour is labeled with its area in

units of µN2·km -1. The Hopf bifurcation curve does not enclose a bounded region for

values located in the white region of the plot. As f increases from 80 pN the area of

the oscillatory region initially increases to a maximum and then decreases for large

enough values of f . All parameter values are listed in Tables 4.1 and 4.2. From [124].
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Figure 4.2: Comparison between the general case and the models. (A) Area con-

tained within peak-sensitivity contours relative to that contained in contours when

α = 1 (Rχ(h)), as a function of the peak sensitivity and of the dilation factor of

the oscillatory region h = [Areai(α, b)/Areai(1, b)]
1/2 in Model I. α ranges from 1.0,

at a normalized area of 1, to 0.5 at the maximum normalized area shown. Darker

shades of blue indicate larger areal ratios. (B) Areal ratios (dots) for χ = 100

(red), 10 (purple) and 3 (blue). Straight lines whose slopes match that of the

dots for small dilation factors are shown for comparison. The black, dashed line

marks Rχ(h) = h. (C) Areal ratios for h = 5.8 (green dots) and 3.2 (purple dots).

(D) Area contained within peak-sensitivity contours relative to that contained in

the contours when f = 250 pN (Rχ(h)), as a function of the peak sensitivity and

h = [Areaii(f, S)/Areaii(250pN, S)]1/2. f ranges from 250 pN at a normalized area of

1 to 180 pN at the maximum normalized area shown. The calculations in panels A

and D exclude the area of the self-oscillation region and were performed numerically.

These panels are modified from [124]. Dilating the self-oscillation region effects a

more efficient expansion of the high-performance zone in Model I than in Model II.

(E,F ) Same as panels B and C except for Model II and h = 4.3 (green) and 2.5

(purple). The lines and dashed curves in panels B, C, E, and F were obtained from

the general case (Eq. 3.12), except the curves in C and F were scaled by a constant.
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4.4 Homeostatic Mechanisms

The goal is to render the hair bundle’s ability to detect periodic stimuli more

robust to changes in control parameters. To achieve this objective, I accounted for

the dynamics of α and f :

Model I: ταα̇ = α0 − α− βαx2 , (4.18)

Model II: τf ḟ = f0 − f − βff0Po . (4.19)

Equations 4.18 and 4.19 are termed homeostatic mechanisms because, as I will show

in Chapter 5, their inclusion imparts homeostasis of function to the models.

The timescale of the homeostatic mechanism in Model I is set by τα and α0 gives

the value to which α would decay in the absence of homeostasis. Homeostasis is

inactive when βα = 0 and active when βα > 0. Information about the hair bundle’s

oscillation amplitude is captured by squaring the bundle’s displacement, imparting

to the homeostasis equation a means of determining whether the bundle is receiving

sinusoidal stimulation.

Equation 4.19 describes the dynamics of the myosin motor force f in Model II.

The form of Equation 4.19 parallels that of Equation 4.18: τf sets the timescale of the

homeostatic process, f decays to f0 in the absence of homeostasis, and βf determines

how strongly the current state of the system affects the homeostatic mechanism.

Homeostasis is inactive when βf = 0 and operational when βf > 0. In contrast

to Equation 4.18, Equation 4.19 employs a saturating nonlinearity: the bundle’s

oscillation amplitude is measured by the sigmoidal function Po. Equation 4.19 has a

physical interpretation: the motor force f is set by the average Ca2+-concentration

gradient across the hair cell’s plasma membrane, which is adjusted by the ion’s influx

through the channels. Because homeostasis depends on the transduction current, βf
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could depend on the Ca2+-concentration gradient and the membrane potential.

To minimize its effects on the dynamical response of the bundle to sinusoidal

stimulation, both homeostatic mechanisms operate slowly. The homeostatic mecha-

nisms in both models employ a nonlinear term to rectify time-dependent changes in

the hair bundle’s position. Thanks to this rectification, the terms in the homeostasis

equations measuring the current state of the system are non-zero when averaged over

time, even for inputs whose time averages are zero. In this way, the homeostasis equa-

tions can detect whether the bundle is being stimulated. In contrast, if rectification

was absent from the homeostasis equations, for example if x2 were replaced with x,

then sinusoidal driving of the hair bundle would average to zero and the homeostatic

mechanisms, on average, would not engage to adjust α or f .

Linear-stability analysis was again employed to locate curves of Hopf bifurcations

in parameter space. Model I with homeostasis is given by:

ẋ = a(x− y)− (x− y)3 − kx+ Fc + F (t) , (4.20)

ẏ = α(bx− y) , (4.21)

ταα̇ = α0 − α− βαx2. (4.22)

The conditions T3 = T 3
1 and T2 < T 2

1 (Eqs. 2.44) locate Hopf bifurcations in systems

of three dynamical variables. In Model I, when the steady-state adaptation rate α∗

exceeds zero, the system’s equilibrium points are given by

y∗ = b x∗ (4.23)

α∗ = α0 − βαx2
∗ (4.24)

Fc = kx∗ − a(1− b)x∗ + (1− b)3x3
∗. (4.25)

At these fixed points, a Hopf bifurcation occurs when
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Fc,H±(k) = ±

[
(k − a(1− b))

(
a− α0 − k

3(1− b)2 − βα

)1/2

+ (1− b)3

(
a− α0 − k

3(1− b)2 − βα

)3/2
]
,

(4.26)

and when

k >
3α0(1− b)3 − aβα(1− b)

3b(1− b)2 − βα
. (4.27)

Note that setting βα = 0 reproduces Eqs. (4.6) and (4.7). Adjusting the homeosta-

sis strength βα shifts the position and size of the Hopf bifurcation curve; βα = 0

corresponds to inactive homeostasis (Fig. 4.3A).

The values of the parameters a, b, α0, τα, and βα need to be determined, a choice

guided by the effect that each parameter has on the self-oscillation region. The Hopf

bifurcation curve, Fc,H(k), crosses Fc = 0 at

[k0] =

{
(1− b)3(2a+ α0)− a(1− b)βα

2− 3b+ b3 − βα
, a− α0

}
.

The area of the region of spontaneous oscillation is then

Area I(b, βα) = 2

∫ [k0]2

[k0]1

Fc,H+(k) dk

=
8

15
|3(1− b)2 − βα|

(ab− α0)5/2

(2− 3b+ b3 − βα)3/2
. (4.28)

The above expression is valid only if b > α0/a and βα < α0(2 + b)(1 − b)2/(ab). If

b = α0/a, then [k0]1 = [k0]2 and a Hopf bifurcation loop does not exist at smaller

values of b. At βα = α0(2 + b)(1− b)2/(ab), [k0]1 collides with two Bogdanov-Takens

points, and the Hopf bifurcation does not form a closed loop when βα > α0(2 +

b)(1−b)2/(ab). Dividing Area I(b, βα) by Area I(b, 0), the area of the oscillatory region
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when the homeostatic mechanism is inactive, yields the expansion factor, or relative

increase in area effected by setting the homeostasis parameter to βα:

Area I(b, βα)

Area I(b, 0)
=
|3(1− b)2 − βα|(2− 3b+ b3)3/2

3(1− b)2(2− 3b+ b3 − βα)3/2
. (4.29)

The expansion factor, which corresponds to h2 from Section 3.3, depends on only the

parameters b and βα and is independent of a, α0, and τα. Therefore, a was set to

3.5 [92], α0 was set to 1 for simplicity, and τα was set to 1000 to ensure separation

between the timescale governing the homeostatic mechanism and the other timescales

present in the system: homeostasis was assumed to be a relatively slow process.

The expansion factor depends on the parameters b and βα, the adaptation strength

and homeostasis strength, respectively (Fig. 4.3B). The value of b was set to 0.35

and that of βα to 3/4. This choice of values for b and βα yields an expansion factor

exceeding three. Although even greater expansion factors are possible, the values

selected render the increase in area robust to variations in b or βα. However, the

specified parameter values do not optimize the expansion factor or its robustness to

changes in parameter values. Optimization is avoided in this work to illustrate that

a biological system would not need to exert tight control over parameter values to

achieve its performance specifications. A summary of the parameter values used in

Model I is given in Table 4.1.

Table 4.1: Parameter Values in Model I

a 3.5 b 0.35 τα 103

α0 1 ∗ βα 0.75
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Model II with homeostasis is given by:

λxẋ = −kgs(x− y −DPo)− kx+ Fc + F (t) , (4.30)

λyẏ = kgs(x− y −DPo)− kes(y − yes)− f(1− SPo) , (4.31)

τf ḟ = f0 − f − βfPo , (4.32)

Po =
1

1 + Ae−(x−y)/δ
, (4.33)

and equilibrium points are found from



f∗ = f0 − βfP ∗o

kesy∗ = kgs

(
1

δ
ln

[
AP ∗o

1− P ∗o

]
−DP ∗o

)
+ kesyes − (f0 − βfP ∗o )(1− SP ∗o )

kx∗ = Fc − kgs

(
1

δ
ln

[
AP ∗o

1− P ∗o

]
−DP ∗o

)
,

x∗ = y∗ +
1

δ
ln

[
AP ∗o

1− P ∗o

]
,

⇒ Fc =
1

δ
ln

[
AP ∗o

1− P ∗o

](
kgs − k

(
1 +

kgs

kes

))

+ k

(
kgs

kes

DP ∗o − yes +
1

kes

(f0 − βfP ∗o )(1− SP ∗o )

)
− kgsDP

∗
o (4.34)

Given a point {k, Fc} in state space and values for all the other parameters, equation

(4.34) can be solved numerically for P ∗o , and f∗ = f0 − βfP ∗o then follows.

A Hopf bifurcation occurs for Model II when

Fc,H(P ∗o ) =
1

δ
ln

[
AP ∗o

1− P ∗o

](
kgs − kH(P ∗o )

(
1 +

kgs

kes

))

+ kH(P ∗o )

(
kgs

kes

DP ∗o − yes +
1

kes

(f0 − βfP ∗o )(1− SP ∗o )

)
− kgsDP

∗
o . (4.35)

The expressions for kH(P ∗o ) and the T2 < T 2
1 condition are given in Appendix F (Eqs.

5.15 and 5.16). Setting βf = 0 reproduces the parametric curve
(
kH(P ∗o ), Fc,H(P ∗o )

)
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found in the absence of homeostasis. Changing the homeostasis strength βf shifts the

position and size of the Hopf bifurcation curve (Fig. 4.3C).

Values for the parameters kgs, kes, δ, D, N , A, T , ∆G, and yes were taken from

[92] or [51] and are based on biophysical measurements or estimates of hair bundle

parameter values in sacculi of American bullfrogs. The value for S was chosen to

ensure the existence of a region of spontaneous oscillation for a broad range of myosin-

motor strengths f (Fig. 4.1E). Values for λx and λy were chosen to ensure that the

maximum frequency of spontaneous oscillations was less than 200 Hz. Choices for

the remaining parameters, f0 and βf , are described below.

When βf 6= 0 it is not possible to express the parametric curve
(
kH(P ∗o ), Fc,H(Po∗)

)
in terms of a set of elementary functions. Therefore, the parametric equations, kH(P ∗o )

and Fc,H(Po∗), and Stokes’s theorem were used to calculate the area enclosed by the

Hopf bifurcation loop for various values of f0 and βf . Let ~U be a vector field with

~∇× ~U a unit vector field perpendicular to the surface Σ. Stoke’s theorem states that

∮
∂Σ

~U · d~r =

∫∫
Σ

~∇× ~U · d~Σ = Σ,

in which ∂Σ is the boundary curve of Σ with the normal vector field d~Σ and ~r is a

parameterization of ∂Σ. The Hopf bifurcation curve is given by:

~r =
(
kH(P ∗o , f0, βf ), Fc,H(P ∗o , f0, βf ), 0

)
,

in which P ∗o is a variable and f0 and βf are parameters. The differential tangent-vector

field along the curve ~r is then

d~r =
∂

∂P ∗o

(
kH(P ∗o , f0, βf ), Fc,H(P ∗o , f0, βf ), 0

)
dP ∗o ,
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meaning the area of a surface Σ can be found by line integration around the boundary

of Σ. Two options for the vector field ~U are

~U =
(

0, kH(P ∗o , f0, βf ), 0
)

or ~U =
(
− Fc,H(P ∗o , f0, βf ), 0, 0

)
.

The area enclosed by the Hopf bifurcation loop is then given by

Area II(f0, βf ) =

∫ [P ∗o ]2

[P ∗o ]1

kH(P ∗o , f0, βf )
∂

∂P ∗o
Fc,H(P ∗o , f0, βf ) dP

∗
o , (4.36)

or Area II(f0, βf ) = −
∫ [P ∗o ]2

[P ∗o ]1

Fc,H(P ∗o , f0, βf )
∂

∂P ∗o
kH(P ∗o , f0, βf ) dP

∗
o , (4.37)

in which [P ∗o ]1 and [P ∗o ]2 are the values of the parameter P ∗o where the Hopf bifurcation

curve crosses itself. These values are found numerically. Three fixed points exist at

this intersection, two of which, corresponding to [P ∗o ]1 and [P ∗o ]2, are stable. As P ∗o

is increased from [P ∗o ]1, the bundle crosses a saddle-node bifurcation (Section 4.5),

beyond which the fixed point associated with [P ∗o ]1 persists whereas that associated

with [P ∗o ]2 vanishes. As P ∗o is increased further toward [P ∗o ]2, the remaining stable

fixed point shifts continuously toward the fixed point originally associated with [P ∗o ]2.

When P ∗o nears [P ∗o ]2, the bundle again crosses a saddle-node bifurcation, at which

point the fixed point originally associated with [P ∗o ]1 materializes. Integrating along

the Hopf bifurcation curve from [P ∗o ]1 to [P ∗o ]2 tracks the bundle’s position as it

transitions smoothly from the [P ∗o ]1 fixed point to the [P ∗o ]2 fixed point.

The expansion factor of the self-oscillation region,

Area II(f0, βf )

Area II(f0, 0)
, (4.38)

depends on the homeostasis strength βf and on the adaptation-motor strength f0 in

the absence of homeostasis (Fig. 4.3D). The value of f0 was chosen to be 220 pN
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and βf was set to 110 pN. This choice of parameter values results in a more than

tenfold expansion factor while striking a balance with the robustness of this expansion

factor to changes in f0 or βf . Once again, the parameter values were not optimized;

other choices would yield a larger expansion factor as well as render this increase

more robust to changes in f0 and βf . Unless otherwise stated, Table 4.2 gives the

parameter values used in Model II.

Table 4.2: Parameter Values in Model II

kgs 816 µN·m -1 kes 150 µN·m -1

λx 500 nN·s·m -1 λy 2500 nN·s·m -1

∗ δ 5.16 nm D 49 nm
† A 2.53 S 0.5

N 50 T 295 K

∆G 10 kBT kB 1.4× 10 -23 J·K-1

yes 0 m τf 0.2 s
‡ βf 110 pN f0 220 pN

∗ δ = NkBT/(Dkgs)
† A = exp[(∆G+ kgsD

2)/(2NkBT )]
‡ βf = 0 when homeostasis is off

The shapes of the Hopf bifurcation curves exhibited by the system when home-

ostasis is active (Fig. 4.3) differ from those when homeostasis is absent (Fig. 4.1),

thus invalidating the assumption that conferring dynamics upon a parameter does not

appreciably change the system’s state diagram, even when the timescale of those dy-

namics greatly exceeds the timescales of every other process described by the system.

Figure 4.4 provides an explanation for the particular shapes of the Hopf bifurcation

curves when homeostasis is active.
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Figure 4.3: Hopf bifurcation curves with homeostasis. (A) Hopf bifurcation curves

in the state diagram of Model I for various values of homeostatic strength βα. (B)

Expansion factor, Eq. (4.29), as a function of the strength of adaptation b and

homeostasis strength βα. Darker shades of red indicate larger expansion factors. The

× symbol marks the chosen values of b = 0.35 and βα = 0.75. The blue curves bound

the set of values at which a closed Hopf bifurcation loop exists. (C) Hopf bifurcation

curves in the state diagram of Model II for various values of βf . (D) Expansion factor,

Eq. (4.38), as a function of the baseline motor strength f0 and homeostasis strength

βf . Darker shades of red indicate larger expansion factors. The region encircled by a

Hopf bifurcation curve is bounded at all values shown. The chosen values for f0 = 220

pN and βf = 110 pN are marked by the × symbol. Parameter values are listed in

Tables 4.1 and 4.2. From [124].
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Figure 4.4: Shape of the Hopf bifurcation curves with homeostasis. (A) Segments

of the Hopf bifurcation curves without homeostasis for Model I are shown for various

values of α (cyan) as are segments of curves along which x∗ is constant (orange),

with darker shades indicating smaller values of both α and x∗. Each point on the

Hopf bifurcation curve when homeostasis is active (dashed, red curve) occurs at the

intersection of a cyan curve with an x∗ contour (red dots). If, for example, x∗ = 1/2,

then α∗ = α0 − βα/4 and this point on the bifurcation curve when homeostasis is

active coincides with the point displaying the same x∗ value on the curve without

homeostasis only if the static parameter α is set to α0 − βα/2. (B) Similarly, the

point corresponding to a particular P ∗o value on the Hopf bifurcation curve in Model

II when homeostasis is active (dashed, red curve) occurs at the intersection (red point)

of that P ∗o contour (orange) and the Hopf bifurcation curve exhibited by the system in

the absence of homeostasis when the static parameter f is set to f0− βff0P
∗
o (cyan).

Darker shades of orange indicate smaller values of P ∗o , whereas darker shades of cyan

denote larger values of f .
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4.5 State Diagram Boundaries

All calculations in Chapter 5 were performed within the underdamped region of the

state diagram, the set of operating points at which the bundle exhibits ringing in

response to small force steps. Outside the underdamped region the bundle exhibits

little amplification of periodic stimuli. The boundary of the underdamped region

occurs when the discriminant of the Jacobian’s characteristic polynomial is equal to

zero, whereupon the system is critically damped. This condition can be expressed as

−T 6
1 + 9T 4

1 T2 − 21T 2
1 T

2
2 − 8T 3

1 T3 + 36T1T2T3 + 3T 3
2 − 18T 2

3 = 0. (4.39)

The boundary of the underdamped region in Model I is given by

kU±(x∗) = a+ α0 − x2
∗[3(1− b)2 + βα]± 2

√
b[a− 3(1− b)2x2

∗][α0 − x2
∗βα], (4.40)

Fc,U±(x∗) = [kU±(x∗)− a(1− b)]x∗ + (1− b)3x3
∗. (4.41)

Figure 4.5 depicts the underdamped region for the homeostasis off (βα = 0) and on

(βα = 3/4) conditions.

For Model II, when homeostasis is inactive, the boundary of the underdamped

region is given by

kU±(P ∗o ) =
1

λyδ

[
kgs[D(1− P ∗o )P ∗o − δ](λy − λx) + λx[f0(1− P ∗o )P ∗o S + kesδ]

± 2
√
kgs[D(1− P ∗o )P ∗o − δ][(1− P ∗o )P ∗o (f0S −Dkgs) + kgsδ]λyλx

]
,

(4.42)

Fc,U± =
1

δ
ln

[
AP ∗o

1− P ∗o

](
kgs − kU±(P ∗o )

(
1 +

kgs

kes

))

+ kU±(P ∗o )

(
kgs

kes

DP ∗o − yes +
f

kes

(1− SP ∗o )

)
− kgsDP

∗
o . (4.43)
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When homeostasis is active, the expression for kU±(P ∗o ) is very large, and is therefore

omitted to conserve space. Curves bounding the underdamped region are shown in

Figure 4.6.

Regions of the state diagram in which multiple stable manifolds coexist were ex-

cluded from the compressive-range calculations. Sinusoidal forcing in these regions

causes the bundle to jump back and forth between stable manifolds so that the am-

plitude of the bundle’s motion is not well-defined.

The bundle is bistable in a region where two stable fixed points coexist. This

bistable region is bordered by a curve of saddle node bifurcations, which occur when

det[J(~a∗)] = 0. Equations for these bifurcation curves are given below. The bistable

region allows the Hopf bifurcation curve to form a closed loop (Fig. 4.7). The

bistable region is divided into lower and upper parts by the line Fc = 0 in Model I

and by P ∗o = 1/2 in Model II. The sensitivity and quality factor for the lower half

of the bistable region were calculated at the equilibrium position corresponding to

lesser deflection, whereas the equilibrium position corresponding to greater bundle

deflection was employed in the upper half of the bistable region.

A stable fixed point coexists with a stable limit cycle within a region, termed the

coexistence region, wedged between a saddle node of limit cycles (SNLC) bifurcation

curve and a subcritical Hopf bifurcation curve. These two curves collide with each

other and a supercritical Hopf bifurcation curve at a Bautin point. A coexistence

region is present in Model II whether homeostasis is on or off. In Model I, however,

a coexistence region exists when βα = 0 but is absent when βα = 3/4 (Figs. 4.5

and 4.6). Bautin points for both models were found as described in Appendix A and

SNLC-bifurcation curves were calculated numerically. Finally, when homeostasis is

active in Model I, a region exists in which the bundle exhibits multimodal oscillations
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in response to periodic forcing (Fig. 5.6B).

The condition det[J(~a∗)] = 0 identifies both saddle node and transcitical bifurca-

tions. In Model I, curves along which these bifurcations occur are given by

Fc,SN(k) = ±

[
(k − a(1− b))

(
a(1− b)− k

3(1− b)3

)1/2

+ (1− b)3

(
a(1− b)− k

3(1− b)3

)3/2
]
,

(4.44)

Fc,TC(k) = ±
√
α0

βα

[
k − a(1− b) + (1− b)3α

2
0

β2
α

]
, when βα 6= 0. (4.45)

At Fc,SN(k) the number of x∗ solutions abruptly changes from 1 to 3, whereas at

Fc,TC(k) two equilibrium points pass through each other and exchange stability. When

βα < 3(1− b)2α0/a the Hopf bifurcation curve terminates when it intersects Fc,SN(k)

at the Bogdanov-Takens points

(
kBT, Fc,BT

)
=

{
3α0(1− b)3 − aβα(1− b)

3b(1− b)2 − βα
,±2(1− b)3

(
ab− α0

3b(1− b)2 − βα

)3/2
}
.

(4.46)

When βα > 3(1− b)2α0/a the Bogdanov-Takens points occur at

(
kBT, Fc,BT

)
=

{
a− 3

α0

βα
(1− b)2,±

[
ab

√
α0

βα
−
(
α0

βα

)3/2

(b3 − 3b+ 1)

]}
, (4.47)

where the Hopf bifurcation curve intersects with Fc,TC(k). Additional bifurcations are

accessible when α is zero or negative, conditions that are unphysical. These additional

bifurcations are discussed in Appendix E.

The Hopf frequency is

ωH =

√
[3(1− b)2α0 + (k − a)βα][3(1− b)2(bk − α0(1− b)) + βα(k − a(1− b))]

(3(1− b)2 − βα)2
.

(4.48)
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ωH = 0 if k = kBT. When βα < 3α0b(1− b)2/(2α0 − ab), ωH increases monotonically

from 0 at k = kBT to
√
α0(α0 − ab) at k = a−α0. Otherwise, ωH achieves a maximum

value of

ωH,max =
b

2

√
[aβα − 3α0(1− b)2]2

βα[βα − 3(1− b)2]
(4.49)

at k =
a(2− b)β2

α − 3(1− b)2(ab+ (2− b)α0)βα + 9α0b(1− b)4

2β2
α − 6b(1− b)2βα

,

which is the largest value of k at which a Hopf bifurcation occurs. Detailed state

diagrams for Model I are shown in Figure 4.5. Determining all global bifurcations is

beyond the scope of this work.

In Model II, a saddle node bifurcation curve is described by

kSN(P ∗o ) =
keskgs[DP

∗
o (1− P ∗o )− δ]

P ∗o (1− P ∗o )[f0S + βf − 2P ∗o Sβf −Dkgs] + δ(kes + kgs)
, (4.50)

Fc,SN(P ∗o ) =
1

δ
ln

[
AP ∗o

1− P ∗o

](
kgs − kSN(P ∗o )

(
1 +

kgs

kes

))

+ kSN(P ∗o )

(
kgs

kes

DP ∗o − yes +
1

kes

(f0 − βfP ∗o )(1− SP ∗o )

)
− kgsDP

∗
o .

(4.51)

Bogdanov-Takens points can be found for Model II numerically either from the T2 =

T 2
1 condition or by equating the components of

(
kH(P ∗o ), Fc,H(P ∗o )

)
with those of(

kSN(P ∗o ), Fc,SN(P ∗o )
)
.

An analytical expression exists for the Hopf frequency in Model II, but is omitted

here to conserve space. Using the parameter values given in Table 4.2, ωH reaches a

maximum value of 136 Hz when homeostasis is inactive (βf = 0) and 169 Hz when

homeostasis is active. These maximum values occur when P ∗o ≈ 1/2 in both cases,

which corresponds to the point
(
kH(1/2), Fc,H(1/2)

)
in state space. Detailed state

diagrams for Model II are shown in Figure 4.6.
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Figure 4.5: Detailed state diagrams for Model I. State diagrams when homeostasis

is either inactive (A,B) or active (C,D). In all panels, the blue dashed curves bound

the underdamped region, Hopf bifurcation curves are colored cyan, and saddle-node

bifurcation curves are magenta. (A,C) The entire underdamped region is shown.

The brown traces depict the hair bundle’s response to a force step when the bundle

is poised at the operating point marked by brown asterisks. At these operating

points the bundle does not exhibit any ringing in response to a force step. (B,D)

Magnified view of the region enclosed by the box in panel A (B) or in panel C (D).

Bogdanov-Takens points are marked by black squares. When homeostasis is inactive,

the bundle’s state diagram possesses a saddle node bifurcation of limit cycles (SNLC

bifurcation) curve found numerically, shown in gray, and Bautin points (Appendix

A) indicated by black circles. When the homeostasis-strength parameter is set to

βα = 3/4, the model’s state diagram lacks Bautin points and SNLC bifurcations, but

possesses transcritical bifurcations that are colored green in panels C and D. The red

traces, obtained at the operating points marked by red asterisks, depict ringing in the

hair bundle’s response to a force step. Spontaneous oscillations occur at operating

points within the Hopf bifurcation curve (orange asterisks and traces). From [124].
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Figure 4.6: Detailed state diagrams for Model II. State diagrams when homeostasis

is either inactive (A,B) or active (C,D). In all panels, the blue dashed curves bound

the underdamped region, Hopf bifurcation curves are colored cyan, and saddle-node

bifurcation curves are magenta. (A,C) The entire underdamped region is shown.

The brown traces depict the hair bundle’s response to a force step when the bundle is

poised at the operating point marked by brown asterisks. At these operating points

the bundle does not exhibit any ringing in response to a force step. Red traces,

obtained at the operating points marked by the red asterisks, depict ringing in the hair

bundle’s response to a force step. Simulating the behavior of a bundle poised at the

operating points marked with an orange asterisk yields the orange traces, confirming

that the model exhibits spontaneous oscillations at operating points within the Hopf

bifurcation curve. (B,D) Magnified view of the region enclosed by the box in panel A

(B) or in panel C (D). Bogdanov-Takens points are marked by black squares, Bautin

points by black circles, and SNLC-bifurcation curves are colored gray. From [124].
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Figure 4.7: Equilibrium-point manifolds. (A) Level curves of the x∗ manifold for

Model I are shown. Owing to the cubic dependence of Equation 4.25 on x∗, there is a

region in parameter space in which x∗ is multivalued. Specifically, within the region

bounded by saddle-node bifurcation curves (magenta), x∗ can take on three values for

any given coordinate {k, Fc}. Two of these values represent stable equilibrium points,

whereas the third is an unstable equilibrium. (B) Projection of panel A onto the k-Fc

plane. The level curves are lighter for larger values of x∗. The two branches of the

saddle-node bifurcation meet at a cusp bifurcation (black dot). Three level curves in-

tersect at any point within the region bounded by the saddle-node bifurcation curves.

A single equilibrium point cannot undergo a double Hopf bifurcation in a system of

three dynamical variables, for this bifurcation requires two pairs of imaginary values

and can therefore occur only in systems with four or more variables. The Hopf bifur-

cation curve therefore cannot cross itself in the part of parameter space that contains

only one equilibrium point. The cubic nonlinearity is thus essential in permitting the

Hopf bifurcation curve to form a closed loop. (C,D) Level curves of the P ∗o manifold

for Model II and their projection onto the k-Fc plane. The more complicated non-

linearity employed in Model II resembles a cubic function and permits closure of the

Hopf bifurcation loop. A curve of Hopf bifurcations is colored cyan in every panel.
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Appendix C: Model Modifications

This Appendix describes the modifications made to the models developed in [92]

and [51] to generate Models I and II without homeostasis. Model I was closely based

on the system

mẍ = −γẋ− kx+ a(x− f)− (x− f)3 + Fc, (4.52)

τ ḟ = bx− f, (4.53)

in which m gives the mass of an overlying load, γ is the total damping experienced

by the loaded bundle, τ sets the time scale of adaptation, and all other parameters

and variables are defined as in the main text of this paper. Except in Section 5.7, it

is assumed that the hair bundle is not loaded with a mass and that the mass of the

bundle itself is negligible (m = 0). Additionally, γ is scaled to unity and the “rate of

adaptation” is defined as α = 1/τ .

The following model of hair bundle dynamics was presented in reference [51]:

λẊ = −Kgs(X −Xa −DPo)−Kspx+ Fext + η,

λaẊa = Kgs(X −Xa −DPo)− γNafp(C) + ηa,

τ Ċ = C0 − C + CMPo + δc.

First, the noise terms η, ηa, and δc are neglected and several variables and parameters

are renamed: X → x, λ → λx, Xa → y, λa → λy, Fext → Fc Kgs → kgs, Ksp → ksp,

Na → Nm, f → fm, and γ → g. The system now reads

λxẋ = −kgs(x− y −DPo)− kspx+ Fc, (4.54)

λyẏ = kgs(x− y −DPo)− gNmfmp(C), (4.55)

τCĊ = C0 − C + CMPo. (4.56)

The term gNmfmp(C) in Equation 4.55 describes the average force of all the myosin

motors at stall: Nm is the number of myosin motors, fm is the force generated by
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a single motor, g = 0.14 is the geometrical gain of the stereociliary shear motion,

and p(C) ≈ p0 + p1C, to linear order, is the probability that a motor binds an actin

filament. Equation 4.56 describes the dynamics of the intracellular calcium concen-

tration C: When MET channels are closed the intracellular calcium concentration

decays to C0, CM � C0 is the largest possible calcium concentration at the motors,

and τC sets the time scale of calcium dynamics.

Several additional modifications were made to this model. First, the changes in

C are assumed to be very rapid, so that τCĊ ≈ 0 and C ≈ C0 + CMPo. Then

gNmfmp(C) ≈ gNmfmp0 + gNmfmp1(C0 + CMPo).

The authors define fmax = Nmfmp0 and S = −CMp1/p0, which leads to

gNmfmp(C) ≈ gfmax

(
1 + C0

p1

p0

− SPo
)

= gfmax

(
1− S C0

CM
− SPo

)
.

Because C0 � CM , the SC0/CM term is negligible and, defining f = gfmax, the

expression gNmfmp(C) ≈ f(1 − SPo) results. With these modifications Equation

4.56 drops out and Equation 4.55 becomes λyẏ = kgs(x − y − DPo) − f(1 − SPo).

An elastic-element term −kes(y − yes) is added to Equation 4.55 to account for the

fact that the adaptation provided by the myosin motors is incomplete [127]. A final

modification was made to Equation 4.54. In addition to providing a constant offset

force Fc, an external load also subjects the bundle to an external stiffness through

the term −kex.
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Appendix D: Dependence of the Hopf Bifurcation

Curve on Other Parameters
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Figure 4.8: Dependence of the Hopf bifurcation curve on other parameters. (A−F )

The size and position of the Hopf bifurcation curve in Models I and II are affected by

changing any of the system’s parameter values. The effect of adjusting α in Model I

and f in Model II is discussed in Figure 4.1. Shown are Hopf bifurcation curves for

various values of the channel-gating stiffness a (A) or adaptation strength b (B) in

Model I and for the strength of Ca2+-mediated inhibition of myosin motors S (C),

gating-spring stiffness kgs (D), number of stereocilia N (E), and gating swing D (F )

in Model II. Each loop encloses the bundle’s self-oscillation region, which is entirely

absent for some parameter values.
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Appendix E: Additional Bifurcations in Model I

When α∗ in Model I is allowed to be zero, additional fixed points exist:


α∗ = 0

x∗ = ±
√
α0/βα

Fc = ±k
√
α0/βα − a(±

√
α0/βα − y∗) + (±

√
α0/βα − y∗)3.

These fixed points give rise to two transcritical-bifurcation curves and four saddle

node-bifurcation curves:

Fc,TC±(k) = ±
√
α0

βα

[
k − a(1− b) +

α0

βα
(1− b)3

]
, (4.57)

Fc,SN+(k) = ±2
(a

3

)3/2

+

√
α0

βα
, (4.58)

Fc,SN−(k) = ±2
(a

3

)3/2

−
√
α0

βα
. (4.59)

The expressions Fc,TC+(k) and Fc,SN+(k) are associated with the equilibrium point

in which x∗ =
√
α0/βα, and Fc,TC−(k) and Fc,SN−(k) with x∗ = −

√
α0/βα. The

following Hopf bifurcation curves also occur:

kH+(y∗) =− 3
α0

βα
− 1

2τα
+ a− 3y2

∗ + 6y∗

√
α0

βα

+
1

2βα

√
2α0

[
3y2
∗(2 + b) + ab+

3bα0

βα

]
− 2y∗

√
α0

βα

[
3α0(1 + 2b)− aβα + 3y2

∗βα

]
(4.60)

Fc,H(y∗) =kH+(y∗)
√
α0/βα − a(

√
α0/βα − y∗) + (

√
α0/βα − y∗)3, (4.61)
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when α∗ = 0, x∗ =
√
α0/βα, and b

√
α0/βα ≤ y∗ ≤

√
a/3 +

√
α0/βα, and

kH−(y∗) =− 3
α0

βα
− 1

2τα
+ a− 3y2

∗ − 6y∗

√
α0

βα

+
1

2βα

√
2α0

[
3y2
∗(2 + b)− ab+

3bα0

βα

]
+ 2y∗

√
α0

βα

[
3α0(1 + 2b)− aβα + 3y2

∗βα

]
(4.62)

Fc,H(y∗) =− kH−(y∗)
√
α0/βα + a(

√
α0/βα + y∗)− (

√
α0/βα + y∗)

3, (4.63)

when α∗ = 0, x∗ = −
√
α0/βα, and −

√
a/3−

√
α0/βα ≤ y∗ ≤ −b

√
α0/βα.

The fixed points in Model I are given by the following three equations:

Fc = ky∗/b− ay∗(1/b− 1) + y∗(1/b− 1)3,

Fc = k
√
α0/βα − a(

√
α0/βα − y∗) + (

√
α0/βα − y∗)3,

Fc = −k
√
α0/βα + a

√
α0/βα + y∗)− (

√
α0/βα + y∗)

3.

Because the manifolds above are represented by cubic equations, each can contribute

between one and three fixed points. Any region of the state diagram therefore contains

between three and nine fixed points. The number of stable fixed points in each part of

the state diagram is shown in Figure 4.9 together with the local bifurcations present

in Model I.
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Figure 4.9: Local bifurcations and stable fixed points in Model I, when α∗ = 0. (A)

Homeostasis is active. (B) A magnified view of the area enclosed by the gray box

in panel A. In both panels Hopf bifurcation curves are colored orange, saddle node

bifurcation curves are red, and transcritical-bifurcation curves are green. The color

with which each part of state space is shaded indicates the number of stable fixed

points that reside there. From [124].
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Chapter 5

Robustness Enhancement by Homeostasis

I evaluated the effects of the homeostatic mechanism on three measures: sensitivity,

quality factor, and compressive range. Rendering each of these properties more robust

to parameter variations achieves the goal of enhancing the robustness of the system’s

overall performance as a periodic-signal detector.

5.1 Sensitivity

The sensitivity |χ̃(ω)| of a system driven by a sinusoidal driving force F (t) =

F0 cos(ωt) is defined as the amplitude |x̃(ω)| of the system’s phase-locked response at

the driving frequency ω divided by the amplitude of the driving force F0: |χ̃(ω)| =

|x̃(ω)|/F0. A tilde above a variable indicates the Fourier transform of that quantity.

Larger sensitivity values indicate a lower input threshold for signal detection.

The sensitivity |χ0(ω)| for weak stimulation is maximized when the system is

driven at its resonant frequency ωR. The hair bundle’s peak sensitivity, |χ0(ωR)|, was

calculated for operating points on the quiescent side of the Hopf bifurcation in the

underdamped region of the state diagram (Section 4.5).

In Model I, the peak sensitivity of the linearized system is

∣∣χ0(ωR)
∣∣ =

∣∣∣∣ α∗ + iωR
α∗â b+ (α∗ + iωR)(k − â+ iωR)

∣∣∣∣, or

∣∣χ0(ωR)
∣∣ =

√
α2
∗ + ω2

R

ω4
R + ω2

R[k2 + α2
∗ − 2â(k + α∗b) + â2] + α2

∗[k − â(1− b)]2
, (5.1)
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in which α∗ = α0 − βαx2
∗, â = a− 3(1− b)2x2

∗, and the resonant frequency ωR is

ωR =

√
−α2
∗ +

√
â b[â(b− 2) + 2(k + α∗)]α2

∗ . (5.2)

For quiescent bundles, the sensitivity is larger for operating points near the Hopf

bifurcation. The peak sensitivity inside the region of spontaneous oscillation in the

state diagram exceeds that in the quiescent region.

A hair bundle can detect a stimulus if the bundle’s response exceeds a threshold

value. A curve of constant sensitivity encloses a region in the state diagram within

which the bundle’s sensitivity exceeds some specified threshold. The larger this region,

the more robust is signal detection to changes in the values of control parameters.

Homeostasis dilates the area contained within each curve of constant peak sensitivity

(Figs. 5.1A,B and 5.8A) and effects more gradual changes in sensitivity along lines

of constant k (Fig. 5.1C) or Fc (Fig. 5.1D). Homeostasis through the adaptation

rate α thus renders the hair bundle’s sensitivity more robust to changes in the control

parameters.

The peak sensitivity of the linearized system for Model II is given by

∣∣χ0(ωR)
∣∣ =

∣∣∣∣∣ β̂f + (kesδ + k̂gsδ + f∗Ŝ + iωRδλy)(1 + iωRτf )

(k + k̂gs + iωRλx)[β̂f + (f∗Ŝ + δ[kes + k̂gs + iωRλy])ζ̂]− k̂gs[β̂f + (k̂gsδ + f∗Ŝ)ζ̂]

∣∣∣∣∣,
(5.3)

in which f∗ = f0−βfP ∗o , k̂gs = kgs[1−DP ∗o (1−P ∗o )/δ], β̂f = βf (1−P ∗o )(1−P ∗o S)P ∗o ,

Ŝ = SP ∗o (1 − P ∗o ), and ζ̂ = 1 + iωRτf . An analytical expression exists for ωR but is

omitted to conserve space.

Curves of constant peak sensitivity in Model II’s state diagram reveal that engag-

ing the homeostatic mechanism augments the areas contained within each contour
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(Figs. 5.1E,F and 5.8D). Moreover, when evaluated along a line of constant stiffness

(Fig. 5.1G) or force (Fig. 5.1H), the peak sensitivity changes more slowly when

homeostasis is operational than when it is inactive. When homeostasis is active, the

bundle can accommodate larger perturbations in the values of control parameters

while still maintaining its ability to detect small signals. Although Model II takes

into account the dynamics of the active force f rather than the rate of adaptation α,

these results echo those found for Model I.

Model I possesses a state diagram that is symmetric about the line Fc = 0. Be-

cause of the symmetric dependence of Equation 4.18 on the bundle’s displacement,

the symmetry is unaffected by the homeostatic mechanism (Fig. 4.4A). Homeostasis

consequently changes the size but not the orientation of the contours. Model II lacks

symmetry owing to an asymmetry inherent to hair bundle physiology, namely the sig-

moidal relation of the channel open probability to hair bundle displacement. Because

Eq. 4.19 is not symmetric with respect to displacement, engaging the homeostatic

mechanism in Model II dilates, reshapes, and reorients the oscillatory region (Fig.

4.4B).
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Figure 5.1: Homeostasis increases the robustness of a hair bundle’s sensitivity.

(A,B) Sensitivity as a function of constant force Fc and stiffness k for Model I when

homeostasis is off (A) or on (B). Darker shades of red indicate larger values of the

peak sensitivity χ0(ωR). Contours are labeled by their respective peak sensitivity

values. The Hopf bifurcation curve is colored cyan and the blue curve marks the

boundary of the underdamped region. Homeostasis enhances the robustness of the

hair bundle’s sensitivity to small-amplitude sinusoidal signals by expanding the areas

enclosed by the sensitivity contours. (C,D) The peak sensitivities along a horizontal

(C) or vertical (D) slice through the state diagram when homeostasis is inactive (blue)

or active (red). The red and blue curves correspond to slices though the reference

operating points indicated in panel A and B respectively (apices of white triangles).

The peak sensitivity is larger and changes more slowly along these transects when

homeostasis is active. (E-H) The results for Model II are portrayed as for panels

A-D. The contour labels in panels E and F bear units of km·N -1. All parameter

values are listed in Tables 4.1 and 3.2. Additional bifurcation lines that occur in these

regions of the state diagram are not shown (Appendix E). From [124].
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5.2 Frequency Selectivity

I next examined how the hair bundle’s frequency selectivity is affected by the

homeostatic mechanisms. The quality factor Q is defined as the system’s resonant

frequency ωR divided by the frequency bandwidth ∆ω = ω+ − ω− over which the

oscillation’s power exceeds half the maximum at resonance: Q ≡ ωR/(ω+ − ω−), in

which ω± is found by solving
∣∣χ0(ω±)

∣∣ =
∣∣χ0(ωR)

∣∣/√2 for ω± (Appendix F, Eq. 5.14).

Large values of Q indicate that a system is sharply tuned. Quality factors as large as

30 have been measured in the mammalian cochlea [129].

I delineate the quality factor contours within the quiescent, underdamped region

of the hair bundle’s state diagram. Frequency tuning is sharper at operating points

that are closer to the self-oscillation region (Figure 5.2), and sharper still inside the

oscillatory region. Endowing Model I with its homeostatic mechanism renders Q

more robust to changes in the values of the control parameters. When the homeostatic

mechanism is engaged, Q contours enclose larger areas in the state diagram than when

homeostasis is off (Figures 5.2A,B). Homeostasis also reduces the rate of change of

Q along lines of constant stiffness or force (Figures 5.2C,D).

For Model II the homeostatic mechanism enlarges the regions contained within

Q contours (Figures 5.2E,F ) and diminishes the steepness of Q’s dependence on

each control parameter (Figures 5.2G,H). The precision needed in selecting the hair

bundle’s operating point to ensure sharp frequency selectivity is therefore reduced by

each of the two distinct homeostatic mechanisms employed in Model I and Model II.
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Figure 5.2: Homeostasis increases the robustness of a bundle’s frequency selectivity.

(A,B) Contours of the quality factor Q are shown in the state diagram of Model I

for homeostasis off (A) and homeostasis on (B). Each contour is labeled with its

respective value of Q and darker shades of purple indicate larger Q values. (C,D)

The quality factor along horizontal (C) or vertical (D) slices that pass through the

reference operating points indicated in panels A and B (white triangle apices) when

homeostasis is off (blue) or on (red). (E−H) The results for Model II are portrayed as

for panels A−D. In each contour plot the Hopf bifurcation curve is colored cyan and

the blue curve marks the boundary of the underdamped region of the state diagram.

All parameter values are listed in Tables 4.1 and 4.2 and the alignment of the curves in

panels C, D, G, and H is as described in Figure 5.1. Additional bifurcation lines that

occur in these regions of the state diagram are not shown (Appendix E). From [124].
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5.3 Response Time Trade-Off

The quality factor Q increases monotonically with the length of time that a system

requires to reach its steady state: sharper frequency selectivity is obtained at the

expense of a slowed response onset. By rendering Q more robust, the homeostatic

mechanism in either model reduces the set of operating points at which the bundle can

respond quickly to stimuli. Frequency discrimination is improved at the expense of

temporal resolution. Owing to greater robustness enhancement, homeostasis causes

larger proportional increases in response times in Model II than in Model I. The

following analysis reveals, however, that sharper frequency selectivity can be obtained

at a slightly lower cost in relaxation time for Model II than for Model I.

For small perturbations, the timescales of a system’s response are given by the

real parts of the negative reciprocals of the Jacobian matrix’s eigenvalues. In Model

I, the eigenvalues are ξα = −1/τα and

ξ± =
1

2

[
a− k − α0 + x2

∗(βα − 3(1− b)2)

±
√(

k − a+ α0 + x2
∗[3(1− b)2 − βα]

)2 − 4[k − a(1− b) + 3(1− b)3x2
∗](α0 − x2

∗βα)
]
.

(5.4)

The relevant timescales are therefore τα and

τ = 2
[
k − a+ α0 + x2

∗(3(1− b)2 − βα)
]-1
. (5.5)

τα is relevant only when βα 6= 0 because stimulating the bundle does not engage the

homeostatic mechanism when βα = 0.

By a similar calculation, τ for Model II when homeostasis is off is given by

τ =
2δλxλy

f0(1− P ∗o )P ∗o Sλx + (kes + kgs)δλx + (k + kgs)δλy −Dkgs(1− P ∗o )P ∗o (λx + λy)
.

(5.6)
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As for Model I, τf is irrelevant when homeostasis is inactive.

At operating points far from the Hopf bifurcation, the timescales τα and τf sub-

stantially exceed τ and determine the relaxation time when the bundle’s displacement

x is greatly perturbed (Fig. 5.9). Small perturbations, however, do not engender large

changes in the homeostatic variables α or f .

In both models, τ specifies the approximate time required for the amplitude of

the bundle’s response to a small perturbation to decay by a factor of 1/e. Homeosta-

sis increases the set of operating points at which τ exceeds a threshold (Fig. 5.3).

Therefore, the cost of enhancing the robustness of the bundle’s frequency selectivity

is a slowed reaction stimuli. This cost is proportionally smaller in Model II than in

Model I.
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Figure 5.3: Homeostasis increases the time needed to reach a steady state. (A,B)

The time τ for the bundle’s response to a small perturbation to decay to 1/e times

the initial amplitude of the response in Model I when homeostasis is off (A) or on (B).

Darker shades of red indicate larger τ values. Contours are labeled by their respective

τ values. The Hopf bifurcation curve is colored cyan and the blue curve marks the

boundary of the underdamped region. Enhanced robustness of signal detection is

achieved through homeostasis by sacrificing how quickly the system can respond to

stimuli, as evidenced by the expanded areas enclosed by the τ contours. (C,D)

Ratios of τ (red) and quality factor Q (blue) values along horizontal (C) or vertical

(D) slices through the reference operating points indicated in panels A and B (apices

of the white triangles). The selected slices are the same as in Figure 5.2. The τ ratio

is similar to the Q ratio, illustrating that the enhanced frequency selectivity attained

through homeostasis coincides with a slower approach to steady state. (E−H) Same

description as panels A − D but for Model II. The τ ratio is less than the Q ratio

for Model II, whereas for Model I the τ ratio can exceed the Q ratio, demonstrating

that enhanced frequency selectivity can be attained for Model II at a proportionally

lower cost in reaction time than for Model I. The contour labels in panels E and F

bear units of ms. All parameter values are listed in Tables 4.1 and 4.2. From [124].
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5.4 Compressive Range

A hair bundle can detect signals over a finite range of amplitudes, defined as the

bundle’s dynamic range. If the amplitude |x̃(ω)| of a system’s response to stimula-

tion is proportional to |F̃ (ω)|, then the system’s dynamic range must be restricted by

the range of permissible response amplitudes. A broader dynamic range can be at-

tained if the system’s response amplitude grows more slowly with stimulus amplitude,

compressing a wide range of inputs into a narrower range of outputs.

A system that operates at a Hopf bifurcation exhibits nonlinear compression that

obeys the one-third power law |x̃(ω)| ∼ |F̃ (ω)|1/3 [113]. Such a system represents six

orders of stimulus magnitude with only two orders of magnitude in the amplitude of

the response. Near the bifurcation, nonlinear compression occurs for a limited range of

stimulus amplitudes, termed the compressive range (Figure 5.4). This range is defined

to be the span, in logarithmic units, of stimulus amplitudes over which the amplitude

of the response grows according to |x̃(ω)| ∼ |F̃ (ω)|ν , in which the exponent ν falls in

the interval (0, 1/2]. This condition restricts our analysis to strong compression and

avoids numerical complications that are described below.
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Figure 5.4: Increasing the compressive range broadens a bundle’s dynamic range.

The responses of Model II, absent homeostasis, to periodic stimulation at the resonant

frequency are shown for operating points closer to (red) and farther from (blue) the

self-oscillation region. The response |x̃| ∼ |F̃ |ν , in which ν is the slope of the curves

in the doubly logarithmic plot. Thin portions of the curves possess slopes between

1/2 and 1, whereas thick portions bear slopes between 0 and 1/2. For comparison,

the relations |x̃| ∼ |F̃ | (dashed magenta line) and |x̃| ∼ |F̃ |1/3 (dashed gray line) are

shown. The horizontal span of the thick part of each curve defines that operating

point’s compressive range. Points on the curves above the area shaded green exceed

some particular threshold in sensitivity. The dynamic range of the red curve equals

the width of the green rectangle; the dynamic range of the blue curve is smaller by

one order of magnitude (purple double arrow). This difference stems from the red

curve’s larger compressive range (orange double arrow). Extending the dynamic range

renders the bundle more sensitive to low-amplitude stimuli (black double arrow).

From [124].
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Calculating the compressive range required simulation of each model’s response

to sinusoidal stimulation spanning a large range of amplitudes at many control-

parameter values. The driving term F0 cos[ωR(k, Fc) t], in which F0 is the driving

amplitude and the driving frequency is the bundle’s resonance frequency ωR(k, Fc) at

the control parameter values {k, Fc}, was added to Equation 4.20 or 4.30 of the main

text. Mathematica’s NDSolve function was then used to numerically solve equations

4.20 - 4.22 or 4.30 - 4.33 of the main text. A maximum step size of 10 -3 in Model

I or of 0.25 µs in Model II was used to ensure faithful reproduction of the nonlinear

response; smaller step sizes yielded the same results. Each simulation was allowed to

reach steady state, then a lengthy time segment of the simulation was analyzed: in

Model I the length of the analyzed segment was 8.5 million steps and in Model II it

was 4 million steps or 1 s. These segments contained at least 50 stimulus cycles, and

generally many more.

After the Fast Fourier transform had been applied to the resulting time series, the

peak of the transform’s absolute value at the driving frequency was found. The height

of this peak divided by the magnitude of the driving force yielded the bundle’s sensi-

tivity at that operating point and stimulus amplitude. This procedure was repeated

for a set of stimulus amplitudes spanning the ranges depicted in Figure 5.5. The

stimulus amplitudes were logarithmically spaced: each was smaller than the next by

a factor of
√

10, except in the regime where the bundle’s response transitioned from

linear to nonlinear, for which the spacing factor was 101/64.

A curve of sensitivity versus stimulus amplitude, termed a compression curve, was

interpolated through splines in doubly logarithmic space from the sensitivity values

calculated at each operating point. The bundle’s compressive range at this operating

point was finally extracted from the bundle’s compression curve, as described below.
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Spline interpolation over the compressive-range values calculated on a grid of points

in a state diagram yielded the plots shown in Figure 5.6.

Compressive range is defined to be the range of driving-force amplitudes over

which the slope of the sensitivity compression curve is between -1 and -1/2 (Fig.

5.5). Model I employs two nonsaturating nonlinearities: Equation 4.20 bears a cubic

term and Equation 4.22 is quadratic in the bundle’s displacement. A consequence of

the first nonlinearity is the absence of an intrinsic upper bound on the hair bundle’s

compressive range. A value of 1 was chosen so that the compressive range in Model

I was comparable to that of Model II. The second nonlinearity results in unbounded

responses to very large forces when homeostasis is active. When x is large, α becomes

negative. If α < 0 and y > bx, y grows exponentially quickly, which in turn causes x to

grow rapidly. Choosing the maximum driving force amplitude to be 1 ensures that the

unphysical situation of α < 0 is avoided. Both of these issues are resolved in Model II

by employing the saturating nonlinearity Po, which more closely approximates reality.
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Figure 5.5: Sensitivity as a function of the amplitude of driving in Model I when

homeostasis is either off (A) or on (C), and in Model II in the absence (E) or pres-

ence (G) of the homeostatic mechanism. From red to blue, the compression curves

were generated at operating points located progressively farther from the oscillatory

region. The bundle’s response is linearly related to the stimulus amplitude when the

compression curves are flat, whereas a negative slope indicates nonlinear compres-

sion. Compression curves are thicker when their slopes lie in the interval (-1,-1/2],

or χ(F ) ∼ F ε, in which -1 < ε ≤ -1/2 (ε = ν − 1). The slope of each compression

curve in panels A, C, E, and G is shown in panels B, D, F , and H, respectively. The

dashed black lines in panels B, D, F , and H marks a slope of -1/2 and a slope of

-2/3 is indicated by the dashed gray lines. (A-D) Curves obtained at Fc = 0. (E-H)

The curves in panels E-F were generated at operating points that fell on the line in

which P ∗o = 0.35 and P ∗o = 0.5 in panels G-H. Curves of the same color correspond to

operating points whose Jacobian matrices possess complex eigenvalues with the same

real parts. The upper bound on the stimulus amplitude was 1 for all compressive

range calculations in Model I. From [124].
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Curves of constant compressive range for each model show that operating points

close to the Hopf bifurcations in the state diagrams possess a broad compressive

range (Figure 5.6). The homeostatic mechanism employed in Model I expands the

range of parameter values over which the compressive range exceeds a threshold.

Furthermore, the compressive range changes more slowly in size at most values of

stiffness or constant force. For Model II the compressive-range contours encompass

larger regions when homeostasis is active than when homeostasis is inactive (Figure

5.6E,F ), and the slope of the bundle’s compressive range as a function of either

stiffness or force is significantly less steep when homeostasis is operational (Figure

5.6G,H). Both homeostatic mechanisms succeed in rendering the bundle’s dynamic

range more robust to changes in the control parameters.

The saddle-node bifurcations, saddle-node bifurcations of limit cycles, and multi-

modal response boundaries shown in Figure 5.6 were excluded from Figures 5.1 are

5.2 for the sake of clarity; in these three figures, the diagrams contain the same set

of bifurcations. The Hopf bifurcation curve comprises supercritical and subcritical

parts (SI Appendix 8). The advantages and disadvantages of poising a bundle near

the supercritical or subcritical portions of the Hopf bifurcation curve are discussed

elsewhere [90].
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Figure 5.6: Homeostasis increases the robustness of a hair bundle’s dynamic range.

(A) Contour plot showing curves of constant compressive range for Model I when

homeostasis is off. (A,B) Compressive range is shown as a function of the stiffness

(abscissa) and constant force (ordinate). The contour labels indicate the size of the

compressive range in orders of magnitude of the periodic forcing amplitude; see Figure

5.4 for examples. Darker shades of green indicate broader compressive ranges. The

purple curve is a line of saddle-node bifurcations; saddle-node bifurcations of limit

cycles are colored red. (B) A contour plot of compressive range when homeostasis is

on. Multimodal oscillations occur in response to sinusoidal forcing within the region

on the left-hand side of the magenta curves. The purple curve is a line of saddle-node

bifurcations. The apices of the white triangles indicate the reference operating points

through which horizontal and vertical slices were taken to generate the curves for

panels C and D, respectively. (E-H) Compressive range for Model II when home-

ostasis is inactive (E) or active (F ). Panels G and H show the compressive range of

the bundle along either a horizontal (G) or vertical (H) slice through the apices of

the white triangles in panels E and F . The Hopf bifurcation curve is colored cyan in

each contour plot, and the blue curve marks the boundary of the underdamped region

of the state diagrams. At each operating point, sinusoidal stimuli were delivered at

the bundle’s resonant frequency, which varied as a function of stiffness and constant

force. The stimulus frequency was not changed to match possible shifts in the peak

frequency as the forcing amplitude increases. The compressive range was not calcu-

lated within the white regions of state space. “Compression” signifies the compressive

range in panels C, D, G, and H. Additional information about the excluded regions

can be found in Section 4.5. All parameter values are listed in Tables 4.1 and 4.2,

and the alignment of the curves in panels C, D, G, and H is as described in Figure

5.1. Additional bifurcation lines that occur in these regions of the state diagram are

not shown (Appendix E). From [124].
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Figure 5.6: Homeostasis increases the robustness of a hair bundle’s dynamic range.
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5.5 Quantification of Robustness Enhancement

To quantify the degree of robustness enhancement, I calculated the areas contained

within contours of peak sensitivity, sharp tuning, and compressive range. The ratio

of the areas in the “homeostasis on” state diagram to those of the “homeostasis off”

state diagram yielded a measure of robustness enhancement termed the areal ratio.

The areal ratios for peak sensitivity, frequency tuning, and compressive range always

exceed one and become greater for contours closer to the self-oscillation region (Fig.

5.7). The size of this effect can be increased by changing the values of the parameters

that control homeostasis (Figs. 5.8A,D). Both homeostatic strategies thus render

the hair bundle’s ability to detect signals more robust to parameter variation, with

the greatest enhancement occurring for operating points located close to the line of

Hopf bifurcations.

It is unclear whether the self-oscillation region of the state diagram is utilized by

hair bundles responsible for detecting sinusoidal signals. Including the area of self-

oscillation mildly affects the enhancement for Model I: areal ratios are slightly greater

than or comparable to values found when the self-oscillation region is excluded. In

Model II, however, including the regions of spontaneous oscillation yields much larger

areal ratios, particularly for greater values of peak sensitivity, tuning sharpness, and

compressive range (Fig. 5.7). When the self-oscillation regions are included, the areal

ratios for both models approach the factor by which homeostasis dilates the size of

the oscillatory region for large values of sensitivity, tuning sharpness, and compressive

range. At small values of these measures, the oscillatory region makes only a small

contribution to the area enclosed by the contours and therefore does not significantly

affect the areal ratios.
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Figure 5.7: Quantification of robustness enhancement. (A-F ) Ratios of areas en-

closed by contours in the homeostasis on state diagram to areas bounded by contours

in the homeostasis off state diagram. The oscillatory region of the state diagram was

either included (darker) or excluded (lighter). (A-C) Areal ratios for Model I: (A)

peak sensitivity, (B) quality factor, and (C) compressive range. (D-F ) Areal ratios

for Model II: (D) peak sensitivity, (E) quality factor, and (F ) compressive range.

The entire areas enclosed by some contours are not shown in Figures 5.1, 5.2, and

5.6, but are included in our calculation of areal ratios. From [124].
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Numerical calculations suggest that |χ(ωR)| is inversely proportion to the distance

in parameter space between the system’s operating point and the Hopf bifurcation

along a line of constant x∗ in Model I or of constant P ∗o in Model II1 Because this

power-law dependence does not appear to be affected by the presence of the home-

ostatic mechanisms, it is unsurprising that dilating the self-oscillation region effects

a concomitant expansion of the area contained withing sensitivity contours. Two

phenomena did, however, prove surprising.

First, the homeostatic mechanisms were more efficient in expanding the sensitivity

contours than simply adjusting the value of α in Model I or f in Model two in

the absence of homeostasis. In others words, for the same dilation factor, the areal

ratios obtained through the homeostatic mechanisms exceeded those acquired through

adjusting parameter values. This effect can be seen by comparing figures 5.8B,E to

figures 4.2B,E; the data points in the former approximate lines with greater slopes.

The areal ratios for Model II also adhere more closely to a linear relation when

robustness enhancement is effected through the homeostatic mechanism (Figs. 4.2E

and 5.8E). The result may be related to how the homeostatic mechanism reshapes

the boundary of the underdamped region.

Second, the areal ratios obtained for Model I exceeded the upper limit found in

Section 3.3. That the self-oscillation region is not uniformly scaled by the homeostatic

mechanism might account for this finding.

1In Model I the line x∗ = 0 corresponds to Fc = 0. Taylor expansion along this line is tractable
and reveals that |χ(ωR)| ∝ 1/(k−a+α0), where a−α0 is the k-axis intercept of the Hopf bifurcation
curve.
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Figure 5.8: Comparison between the general case and the models with homeostasis.

(A) Peak-sensitivity areal ratios as a function of the peak sensitivity and of the

oscillatory region’s dilation factor h. Darker shades of blue indicate larger areal

ratios. βα ranges from 0 at a dilation factor of 1 to 0.75 at the maximum dilation

factor shown. (B) Areal ratios for χ = 100 (red), 10 (purple), and 3 (blue). The dots

portray the numerically calculated results and straight lines are shown for comparison.

The black, dashed line marks Rχ(h) = h. (C) Areal ratios for h = 1.8 (green dots)

and 1.2 (purple dots). (D-F ) Same description as panels A-C, except for Model

II. βf ranges from 0 at a dilation factor of 1 to 110 pN at the maximum dilation

factor shown. In panel F , h = 3.5 (green dots) or 2.0 (purple dots). The areal ratio

calculations in panels A and D exclude the area of the self-oscillation region and were

modified from [124].
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5.6 Transient Responses

I have shown that robustness enhancement can be effected through homeostatic

mechanisms. However, it remains to be determined whether actual hair bundles em-

ploy such a strategy. Obtaining direct evidence that homeostatic mechanisms improve

the robustness of a bundle’s responsiveness is complicated by the challenging nature

of experimentally mapping the bundle’s state diagram and by uncertainty about the

homeostatic mechanism’s identity. I therefore describe additional consequences of

homeostasis that are more amenable to experimental testing. Because homeostasis

produces systems whose behavior is governed by an additional timescale, identifying

hair bundle behaviors that betray the presence of such a timescale would provide

support for the presence of homeostasis.

One approach is to ask how a bundle poised to operate within the quiescent,

underdamped region of the state diagram responds to force steps (Figure 5.9). A

positive step is applied to shift the bundle from various initial operating points to the

same reference operating point. An operating point at which the bundle possesses a

peak sensitivity of 40 km·N -1 is chosen as the reference operating point in both the

homeostasis “off” and “on” cases. The relaxation time for small stimuli at the refer-

ence operating point is consequently similar with and without homeostasis. However,

engaging the homeostatic mechanism alters the bundle’s response to large stimuli. At

the onset of each force step the bundle exhibits ringing whose magnitude and duration

are similar for all initial operating points when homeostasis is inactive (Figure 5.9B).

When homeostasis is turned on, the ringing behavior diminishes in amplitude and

vanishes more quickly for initial operating points farther from the reference operating

point. Homeostasis alters the relaxation dynamics associated with force steps.
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A second stimulation protocol adds sinusoidal forcing to the force steps described

above. The stimulus frequency is chosen to match the resonant frequency at the

reference point. When homeostasis is turned off, the bundle’s oscillation amplitude

quickly reaches a steady state and the response time is not strongly affected by

changing the initial operating point (Figure 5.9C). In contrast, when homeostasis

is active the bundle requires more time to reach a steady state and this time delay

grows systematically as the distance between the reference and initial operating points

increases. Homeostasis retards the steady-state response to periodic stimuli.

In a final paradigm, force steps are delivered to a spontaneously oscillating hair

bundle. In this protocol the bundle’s initial operating point is the common reference

point and the final operating point is varied. The bundle’s amplitude of spontaneous

oscillation at the reference operating point is chosen to be the same for the homeostasis

“off” and “on” cases. Negative force steps are applied to shift the bundle’s operating

point closer to the edge of the oscillatory region. When homeostasis is inactive,

spontaneous oscillations appear almost immediately after the onset and offset of the

force step, regardless of the step’s size (Figure 5.9D). In contrast, when homeostasis

is active, the return of spontaneous oscillations is delayed. The delay lengthens as

the size of the force step increases. Once again, homeostasis introduces a lag in the

bundle’s dynamics.
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Figure 5.9: Hair bundle behaviors associated with homeostasis. (A) A schematic

diagram showing the locations of the operating points and directions of the force steps

used; labels indicate to which panel(s) each arrow applies. The Hopf bifurcation curve

is colored purple when homeostasis is off (left) and orange when homeostasis is on

(right). (B) The response to positive force steps for a bundle poised in the quiescent,

underdamped region of the state diagram. Traces are labeled by the initial operating

point’s peak sensitivity in km·N -1. All force steps brought the bundle to the same

reference operating point (tip of B,C arrow in A), which possesses a peak sensitivity

of 40 km·N -1. The peak sensitivity at the reference point is a maximum as a function

of the constant force. The stimulation protocols for the largest and smallest steps are

shown schematically above the traces. When homeostasis is off, the ringing after the

onset of the force step is not appreciably affected by the initial operating point (left).

When homeostasis is on, the size and duration of the ringing diminish as the distance

between the initial and reference operating points increases (right). (C) Schematic

protocol of the force steps with a superimposed sinusoidal driving force delivered to a

bundle. The frequency of the sinusoidal component is equal to the bundle’s resonant

frequency at the reference operating point (tip of B,C arrow in A) and the sinusoid’s

amplitude is 0.01 pN. The bundle’s initial operating points and the size of the force

steps are the same as in B. Representative traces are shown when homeostasis is

off (left) or on (right). When homeostasis is off the bundle quickly reaches a steady

state after the onset of the force step (left). When homeostasis is on, a greater

interval is needed for the bundle to reach a steady state (right). (D) Response to

negative force steps for a bundle poised in the self-oscillation region. Lighter shades

of blue indicate larger step sizes. The schematic diagrams above the traces show the

stimulation protocols for the largest and smallest force steps. The initial operating

points for this protocol are chosen so that the bundle’s oscillation amplitude is 17 nm

in the absence or presence of homeostasis. The bundle’s oscillation amplitude reaches

a maximum as a function of the constant force at the initial operating points. The

bundle’s operating point is contained within the self-oscillation region throughout the

entire protocol (D arrow in A). When homeostasis is off spontaneous oscillations are

not interrupted by the force steps (left). When homeostasis is active a delay precedes

the return of spontaneous oscillations at the onset and offset of the force step, and

this delay lengthens as the size of the force step increases (right). All simulations are

generated using Model II with parameter values listed in Table 4.2. From [124].
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Figure 5.9: Hair bundle behaviors associated with homeostasis.
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5.7 Robustness Enhancement by Mass Loading

The models of hair bundle motility employed in this work have so far neglected

mass. When a hair bundle operates in isolation, its mass is indeed quite small. Within

the organs where they function, however, many hair bundles are subjected to a mass

load from an overlying accessory structure: the tectorial membrane rests on top of the

hair bundles of outer hair cells, massive otoconia and an otolithic membrane weigh

down bundles in the utricle and sacculus, and the ampullary cupulae lend substantial

inertia to the bundles embedded within.

It was previously shown that the self-oscillation region in Model I is made larger

by introducing mass into the equations [92]. Mass-loading could therefore constitute

another means to achieve robustness of function. To this end, I introduce mass into

Model II and subsequently analyze how this addition affects sensitivity contours.

Accounting for a mass load m in Model II without homeostasis yields the following

system of differential equations

mv̇ = −λxv − kgs(x− y −DPo)− kx+ Fc + F (t) , (5.7)

ẋ = v , (5.8)

λyẏ = kgs(x− y −DPo)− kes(y − yes)− f(1− SPo) , (5.9)

Po =
1

1 + Ae−(x−y)/δ
, (5.10)

in which v is the bundle’s velocity. The conditions T 3
1 = T3 and T2 < T 2

1 (Eq. 2.44)

reveal that a Hopf bifurcation occurs in this system when

Fc,H(P ∗o ) =
1

δ
ln

[
AP ∗o

1− P ∗o

](
kgs − kH(P ∗o )

(
1 +

kgs

kes

))

+ kH(P ∗o )

(
kgs

kes

DP ∗o − yes +
f

kes

(1− SP ∗o )

)
− kgsDP

∗
o , (5.11)
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kH(P ∗o ) =
1

δ2λxλ2
y

[
kgs(DP̂ − δ)

(
mfSP̂ (2λx + λy) + λxδ[2mkes + λy(λx + λy)]

)
+mk2

gs(λx + λy)(DP̂ − δ)2 − λx[fSP̂ + kesδ][mfSP̂ + δ(mkes + λxλy)]
]
,

(5.12)

P̂ = P ∗o (1− P ∗o ), as long as

λx[P̂ (fS −Dkgs) + δ(kge + kgs)]
2 < λykgs(DP̂ − δ)[P̂ (fS −Dkgs) + δkgs]. (5.13)

Both kH(P ∗o ) and Fc,H(P ∗o ) bear a linear dependence on m.

In accord with previous theoretical results, increasing the mass m effects a dilation

of the self-oscillation region (Fig. 5.10A). The dilation factor h, defined as the

square root of ratio the self-oscillation region’s area with and without mass, grows in

proportion to m (Fig. 5.10C).

The dilation of the self-oscillation region is accompanied by an expansion of the

sensitivity contours (Fig. 5.10D). The expansion is unexpectedly large–supralinear,

in fact–and significantly exceeds that resulting from adjusting other parameter values

(c.f. Figs. 4.2 and 5.8). It is unclear why mass-loading effects such an enormous

enlargement of the sensitivity contours, though two phenomena merit mention. One

micrgram, which corresponds to a dilation factor of 1.5, appears to mark an important

transition. For mass loads smaller than 1 µg the areal ratio grows more quickly for

larger sensitivity values, as predicted by the analysis of Section 3.3 and as occurs

when other parameter values are altered. For larger mass loads, however, the largest

areal ratios are seen for the contours corresponding to the smallest sensitivity values.

Additionally, for mass loads just over 1 µg the border of the underdamped region

becomes discontinuous and the region normally contained within extends indefinitely;

this might permit the very large expansion of the sensitivity contours.
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A number of experimentally testable predictions arise from this theoretical anal-

ysis. Because imparting a mass load to a hair bundle is predicted to expand the bun-

dle’s self-oscillation region, it is predicted that mass-loading will enlarge the range of

parameter values over which spontaneous oscillations can occur. Consequently, the

bundle’s sensitivity is also expected to exceed some specified threshold for a greater

range of parameter values when the bundle is loaded. Lastly, it is anticipated that

mass-loading can engender spontaneous oscillations by a previously quiescent bundle,

even if that bundle lacks negative stiffness (Figs. 5.10A and B). State-diagram map-

ping experiments, such as those employed in references [89] and [90], are well-suited

for testing these predictions.

The results portrayed in Figure 5.10 suggest that a large mass load might be

required to appreciably dilate the self-oscillation region; 1 µg is substantially more

massive than the few tens of nanograms that the tectorial membrane is thought

to impart to an outer hair cell. However, large values of λ and λa were employed

throughout this thesis to slow the bundle’s oscillation frequency and consequently

ease the computational demands of simulating the bundle’s response to sinusoidal

stimulation. If λ and λa are both reduced by a factor of five, only 50 nanograms of

mass are needed to achieve a dilation factor of three.

These results also bear on another important and unresolved issue in the field.

Spontaneous oscillations have not yet been detected in mammalian hair bundles.

Technical difficulties may stand in the way: mammalian hair cells appear to be more

fragile than their amphibian and reptilian counterparts, and a viable two-chamber

preparation for cochlear hair cells is still lacking.

Discrepancies in biophysical properties might also provide an explanation for the

absence of oscillation by mammalian hair bundles. Hair cells near the base of the
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mammalian cochlea possess bundles that are nearly tenfold as stiff as those found

in the bullfrog’s sacculus [71, 86]. Mammalian bundles are therefore expected to

be poised far from the self-oscillation region. That the force-displacement relation

measured in such bundles lacks a region of negative stiffness, but nevertheless displays

nonlinearity, supports this hypothesis [71]. Because negative stiffness is considered an

essential ingredient for generating spontaneous oscillations, it is predicted that these

bundles are quiescent.

This discussion has thus far neglected mass. To access an individual cochlear hair

bundle one must remove the overlying tectorial membrane, which also frees the bun-

dle from a significant inertial load. The preceding theoretical analysis suggests that

a mass load can effect a sizable increase a bundle’s self-oscillation region. The few

tens of nanograms of mass imparted to bundles by the tectorial membrane [130] could

therefore substantially reduce the distance in parameter space between a Hopf bifur-

cation and a cochlear hair bundle’s operating point. Indeed, spontaneous otoacous-

tic emissions are stronger and more numerous in mice lacking otoancorin, a protein

that affects the stiffness-to-mass ratio of the tectorial membrane by mediating this

structure’s attachment to the spiral limbus [131]. Considering that spontaneous otoa-

coustic emissions must arise from a vibration within the cochlea, this finding suggests

that reducing the stiffness imparted by the tectorial membrane while maintaining its

mass permits cochlear hair bundles to oscillate spontaneously. It is entirely plausible

that the cochlea has evolved to employ mass-loading to ensure the robust operation

of its hair bundles.

Because a bundle’s spontaneous force-displacement relation does not depend on

mass (Eq. 5.7 with v̇ = v = 0), mass-loading is predicted to engender spontaneous

oscillations by hair bundles in the absence of negative stiffness. This suggests that
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the ingredients required to generate spontaneous oscillations should be amended as

follows. When a mass load is negligible, spontaneous oscillations can arise in bundles

that possess negative stiffness and adaptation. For significant mass loads, it is instead

sufficient for a bundle to exhibit adaptation and increased compliance over a range of

bundle displacements (Figs. 5.10A and B). Oscillation of course ensures when both

conditions are met.
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Figure 5.10: (A) Hopf bifurcation curves for mass loads of increasing size. Con-

tours are labeled by the size of the mass (µg) loaded onto the bundle. Larger masses

broaden the range of operating points at which the bundle oscillates spontaneously.

The dashed line indicates the maximum load stiffness for which the bundle’s force-
displacement relation exhibits a region of negative stiffness. (B) Force-displacement

relations for a hair bundle poised at each of the color-matched operating points in

panel A. The operating point’s stiffness (µN·m -1) labels each curve. Only the lower

two curves, corresponding to operating points situated to the left of the dashed line

in panel A, possess regions of negative slope. That the operating point corresponding

to the 1300 µN·m -1 curve falls within the 1 µg contour suggests that spontaneous os-

cillations can occur without negative stiffness when the bundle is loaded with a mass.

(C) The dilation factor h for area of the self-oscillation region grows in proportion to

the size of the mass load. (D) Areal ratios are displayed as a function of the dilation

factor h and of the peak sensitivity χ corresponding to the contour of interest. (E)

Expanded view of the portion of panel D that likely corresponds to physiologically

relevant mass loads; a 100 ng mass load effected the largest dilation factor shown.

Mass-loading effects an unexpectedly large increase in the areas between the Hopf

bifurcation curve and the peak sensitivity contours (c.f. Figs. 4.2 and 5.8). The

denominator of the areal ratios portrayed in panel D is given by the areas contained

within the 50 ng sensitivity contours and by the areas contained within the 4 ng

sensitivity contours for panel E.
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Chapter 6

Preliminary Experimental Results

This chapter contains the results of several preliminary experiments. Although my

findings have been encouraging thus far, stronger evidence must be obtained through

additional experiments.

6.1 Methods

The sacculus is a sensory organ that is responsible for communicating information

about head position and vertical linear acceleration to the central nervous system.

The sacculus comprises a sensory epithelium, in which hair cells reside, and an overly-

ing load of calcium carbonate particles, or otoconia, lying atop an otolithic membrane.

Because the tips of the hair bundles are embedded in the otolithic membrane, shifting

the mass of crystals deflects the bundles (Fig. 1.3).

My approach is to use sacculi extracted from adult American bullfrogs, Rana

catesbiana. This model system offers a number of technical advantages over hair cells

from the inner-ear organs of mammals. The shape and position of the sacculus within

the otic capsule makes extraction of the organ easier than that of the cochlea. The

geometry of the saccular macula provides a large number of readily accessible bundles

in a small area, and in appropriate physiological conditions the cells of this sensory

epithelium remain viable for several hours [132], thus allowing an experimenter to

perform many trials with the same specimen. So far these latter features have not

been realized for the mammalian cochlea.
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After removing the otoconia from a sacculus, I mount the isolated sensory epithe-

lium in a two-compartment chamber (Fig. 6.1). In this configuration, hair bundles

protrude upward from the apical surface of the sensory epithelium and into an open-

top upper chamber whereas the basal surface of the sensory epithelium has access to

the lower chamber. To simulate in vivo conditions during stimulation experiments

I fill the lower chamber with oxygenated artificial perilymph (114 mM Na+, 2 mM

K+, 2 mM Ca2+, 118 mM Cl−, 5 mM Hepes, and 3 mM D-glucose) and the upper

chamber with oxygenated artificial endolymph (2 mM Na+, 118 mM K+, 250 µM

Ca2+, 118 mM Cl−, 5 mM Hepes, and 3 mM D-glucose). Both solutions have an

osmotic strength of 230 mOsmol·kg -1 and are titrated to a pH of 7.3. To finish the

tissue preparation, I subject the apical surface of the sensory epithelium to 67 mg·L -1

of type XXIV protease (Sigma) at room temperature for 35 minutes. This enzyme

solution frees the tips of the hair bundles from the overlying otolithic membrane and

allows careful removal of this membrane with an eyelash.

I then visualize the preparation with differential-interference-contrast (DIC) optics

in an upright microscope (60× water-immersion objective lens, 0.9 numerical aper-

ture, BX51W, Olympus). Real-time images of the tissue are fed to a charge-coupled-

device camera and a video processor (Argus-20, Hamamatsu Photonics), whereupon

digital background subtraction aids in our ability to see hair bundle oscillations. This

DIC microscopy allows me to confirm the viability of the sample, indicated by the

presence of spontaneous oscillations [61] and the absence of tissue defects, and helps

guide my approach to a hair bundle with a flexible glass probe.

To generate the probes I first use an electrode puller (P-2000, Sutter Instruments)

to thin 1.2 mm diameter borosilicate capillaries and then make a 90◦ bend in each

probe within 100 µm of its end with a 120 V solenoid apparatus. Next, probes are
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sputter coated (Hummer 6.2, Anatech) with gold-palladium to make them less trans-

parent. The power spectrum of each probe’s thermal fluctuations while submerged in

water is fit to a Lorentzian model; through the fluctuation-dissipation theorem, this

allows calculation of the probe’s stiffness and drag coefficient. Immediately before

stimulation experiments, I soak the probes for 15 minutes in 200 µg·L -1 concanavalin

A (Sigma), a lectin that encourages attachment of the probe to hair bundles.

Once coupled to a hair bundle, the probe serves two purposes. First, light from

a 900 mW diode with a wavelength of 630 nm (UHP-Mic-LED-630, Prizmatix) is

directed through the tissue. The shadow cast by the tip of the probe is magnified

1,350×, projected onto a dual photodiode, and then tracked as an indication of the

position of the tip of the attached hair bundle. Second, the base of the probe is

mounted to a piezoelectric actuator (PA 4/12, Piezosystem Jena GmbH) that is

controlled by a mechanical-load clamp [89, 90]. This system allows me to command

the stiffness of the bundle to a specified value while delivering a variety of force stimuli,

including a constant offset force, force pulses, force ramps, and sinusoidal forces. In

other words, I can use this clamp to poise a hair bundle at a desired operating

point in the bundle’s state diagram (ksp vs. Fc space) and then deliver virtually any

mechanical stimuli at this operating point. Finally, traces of the probe’s position

generated during hair bundle-stimulation experiments are saved and later analyzed

using Matlab (R2015a, MathWorks). Additional details for the tissue preparation,

stimulus apparatus, and data acquisition system employed in this work can be found

in references [89,90,133].

All analytical calculations and simulations described in this work were performed

using Mathematica (version 10.1, Wolfram).
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Sacculus Saccular macula
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Figure 6.1: Tissue preparation. (A) Part of an inner ear extracted from a bullfrog.

Visible are a semicircular canal and the sacculus. In this view the sensory epithelium

of the sacculus is facing into the page and resting atop a mass of white otoconia. (B)

Image portraying an isolated sacculus after the otoconial mass has been removed. The

saccular nerve and saccular macula, which constitute the sensory epithelium of the

sacculus (region enclosed by the dashed line) are visible. Compared to panel A, the

sacculus has been flipped over in this view so that its sensory epithelium faces out of

the page. (C) The tissue is mounted over a hole in a plastic cover slip. Peering through

the hole, as in the image shown, permits a clear view of the otolithic membrane,

distinguished by white speckles that represent residual otoconia embedded in its apical

surface. Access to the hair bundles is obtained through this hole after the otolithic

membrane has been removed. The exposed bundles are bathed in artificial endolymph

and artificial perilymph fills the space underneath the coverslip. Cyanoacrylate glue

applied around the tissue’s perimeter secures the tissue to the cover slip and ensures

a tight seal between the compartments of the two-chamber preparation. For mass-

loading experiments, tungsten particles are placed near the hole’s rim with a pipette.

All images were captured by a cellular phone’s camera (Samsung) through a dissecting

microscope.
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6.2 Responses to Force Pulses

Preliminary confirmation of the theoretically predicted responses to stimuli was

sought by delivering force steps to individual hair bundles (Fig. 6.2). In accord with

the findings of Section 5.6, force steps momentarily abolish spontaneous oscillations,

and this delay lengthens as larger steps are applied to the bundle. Although consistent

with the presence of a homeostatic mechanism, this result is nonspecific, for this

phenomenon could arise from any dynamical process that adds a slow time scale

to the system. Additionally, repetitions of this experiment are needed to verify the

validity of the results.
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Figure 6.2: Hair bundle responses to force steps. Two-second force steps of various

amplitudes were applied to a spontaneously oscillating hair bundle. After an initial

delay at the onset of the step, spontaneous oscillations resume. This delay lengthens

as the step size increases, which resembles the simulated responses for Model II when

homeostasis is active (Fig. 5.9). The existence of three or more time scales in the

bundle’s dynamics likely underlies this behavior. Oscillations were entirely suppressed

by a 200 pN force step.
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6.3 Mass Loading

Tungsten particles were employed to impart mass loads to hair bundles. Because

tungsten is 19.3 times as dense as water, small particles can deliver sizable masses:

more than a nanogram of mass is contained within a tungsten particle that is five

microns in diameter, an amount that is predicted to effect an appreciable change in

the areas contained with bundle’s sensitivity contours. Tungsten particles are also

opaque, making them readily observable through DIC microscopy and allowing their

shadows to be projected onto a dual photodiode.

Two methods were employed to deliver tungsten particles to hair bundles. In both

approaches, 0.5 µL of tungsten particles solubilized in DMSO were soaked for 30 min

in 200 µg·L -1 concanavalin A. In a first strategy, the particles were then pipetted

directly onto the tissue. Consequently, many bundles sustained significant damage

when impacted by a tungsten particle.

A more targeted approach is also possible. Because the plastic cover slip is trans-

parent, the opaque tungsten particles are readily identifiable at the rim of the hole

over which the tissue is affixed. The particles’ concanavalin A coating allows them

to adhere to a probe that has not been soaked in the lectin. In this way, a mass

of tungsten of my choosing can be carried by the probe to any accessible bundle.

The concanavalin A has a greater affinity for the hair bundle then for the probe, so

that tungsten particles carefully placed on a bundle can detach from the transporting

probe. A second probe coated in the lectin can then be coupled to the bundle and

deliver stimuli (Figs. 6.3A,B).

Placing a tungsten particle on a spontaneously oscillating bundle demonstrated

that oscillations can continue after mass-loading (Fig. 6.3C). Figures 6.4 and 6.5 ad-
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ditionally show that mass-loading can engender spontaneous oscillations by quiescent

bundles in the absence of negative stiffness and can effect larg-amplitude oscillations

that are sustained over a greater range of parameter values. Mass-loading also led

to an unexpected increase in the spontaneous oscillation frequency in the example

shown (Figs. 6.5A,B). As is the case for a simple harmonic oscillator, increasing the

mass was expected to decrease the oscillation frequency. These results suggest that

robustness enhancement could be realized through mass loading.

Repetitions of these experiments are needed to verify the validity of these results.

Owing to minute movements of the preparation and relaxation of the tissue, shadows

projected onto the dual photodiode can become lightly out of focus over time. This

decline in contrast artificially diminishes the amplitudes of spontaneous oscillations.

To better quantify how mass-loading affects the oscillation amplitude, a calibration

pulse should be included in every future record of hair bundle motion.
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Figure 6.3: Mass-loading experiment. (A) A mechanical load clamp enables ex-

perimental adjustment of the constant force and stiffness applied to a bundle by an

external load [89, 90]. To verify its predicted effect, a mass can be physically placed

on an individual bundle. (B) Micrograph depicting a bundle loaded with a mass of

tungsten. (C) Kymogram showing spontaneous oscillations of a mass-loaded bundle,

demonstrating that the mass-loading process leaves intact the processes needed to

generate spontaneous oscillations.
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Figure 6.4: Mass loading engenders spontaneous oscillation by quiescent bundles.

(A) Position traces for two bundles before (blue) and after (red) loading with tungsten

masses of a few nanograms. (B) Force-displacement relations for the two cells in panel

A following mass loading. These cells oscillated spontaneously despite the absence of

a region of negative slope in their force-displacement relations. Unpublished results

obtained by Dr. Joshua Salvi.
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Figure 6.5: Mass loading enhances the robustness of spontaneous oscillations.

(A,B) Position traces of a bundle commanded to operate at a load stiffness of 60

µN·m -1 (A) or 100 µN·m -1 (B) and at various constant forces before (left) and after

(right) mass loading with a tungsten particle. (C) Root-mean-square (RMS) ampli-

tude of spontaneous bundle oscillation as a function of constant force before (left) and

after (right) mass loading at load stiffness values of 60 µN·m -1 (blue) and 100 µN·m -1

(red). Darker shading corresponds to larger amplitude oscillations in all panels.
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Chapter 7

Discussion

Any biological system must contend with a host of constraints. Failing to operate

within these constraints hinders the system’s ability to function. In this work I have

demonstrated how a hair bundle could employ homeostatic mechanisms to ease such

constraints. Two homeostasis strategies, accounting for the dynamics of the adapta-

tion rate or of the adaptation motor’s strength, enhance the robustness of the hair

bundle’s sensitivity, frequency selectivity, and dynamic range to changes in parame-

ter values. That these disparate homeostasis strategies produce qualitatively similar

results suggests that enhancing robustness through homeostasis is a general princi-

ple. I conjecture that a homeostatic mechanism renders the bundle’s signal-detection

function more robust to changes in all parameter values and that equipping other

systems with homeostasis would yield similar effects. The values of the parameters in

the homeostasis equations could well have evolved to preserve the robustness of the

bundle’s function to changes in these parameter values (Section 4.4).

Although the two models that I investigate differ in a number of ways, their com-

mon features underlie the generality of the results. In the absence of homeostasis, the

models possess topologically similar state diagrams, each characterized by a region of

spontaneous oscillation bounded by a line of Hopf bifurcations. Moreover, each model

involves a homeostatic mechanism that decreases the value of a target variable in re-

sponse to an increasing measured variable. I show that these elements are sufficient

to ensure robustness of function for an active periodic-signal detector. Together with

a state diagram containing the aforementioned properties, a homeostatic mechanism
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with this structure may constitute the minimal features needed to enhance a system’s

robustness of function.

For each control parameter that I evaluated, homeostasis renders the bundle’s

signal-detection ability more robust. The robustness enhancement is related to the

factor by which the homeostatic mechanism dilates the size of the oscillatory region

(Sections 4.3 and 5.5). The analyses undertaken in Sections 3.3 and 5.7 additionally

suggest that expanding the self-oscillation region universally effects a concomitant

increase in the areas contained by contours for various measures of a system’s perfor-

mance. Identifying a homeostatic mechanism that enlarges the self-oscillation region

likely constitutes a general strategy for enhancing the robustness of an oscillator’s

function to changes in parameter values.

The forms of the homeostatic mechanisms are biologically plausible. Each em-

ploys information about the current state of the hair bundle; the homeostatic equa-

tion measures the bundle’s oscillation amplitude through the mechanotransduction

current. This information is rectified by a nonlinearity of the homeostatic process,

which ensures that the process responds when the bundle is stimulated by a sinusoidal

force. I show in Model I that a quadratic nonlinearity is sufficient to provide rectifi-

cation, whereas Model II enacts rectification by employing a biophysically motivated

nonlinearity, namely a Boltzmann function. Because the homeostatic mechanisms

require few assumptions, either could be realized through several biological processes.

For example, both homeostatic mechanisms could be effected through myosin-motor

inhibition mediated by a Ca2+-activated second messenger [134] or through regulation

of Ca2+ buffers [45, 135] or pumps [135,136].

The homeostatic mechanism operates on a timescale that greatly exceeds both the

channels’ relaxation time of a few milliseconds and the adaptation time constant of
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tens of milliseconds [68,137]. This timescale separation ensures that the homeostatic

mechanism does not perturb the system’s ability to detect periodic signals. When

driven at the resonant frequency, the period of the bundle’s oscillation was shorter

than 20 in Model I or 20 ms in Model II for the vast majority of operating points in

the underdamped region. I chose τα = 103 and τf = 200 ms so that these timescales

exceeded those of bundle oscillation, in accord with the timescales of the potential

homeostatic mechanisms mentioned in the preceding paragraph.

Temporal resolution is sacrificed to attain robustness of function in two ways.

First, by extending the range of parameter values over which the bundle exhibits

sharply tuned frequency selectivity, the homeostatic mechanism also broadens the

set of operating points at which the bundle’s response is slow. This tradeoff poses a

disadvantage only if a signal detector must strongly favor temporal resolution over fre-

quency selectivity. Second, the bundle’s transient responses to sinusoidal stimulation

reveal that the homeostatic mechanism engenders delays on the order of hundreds of

milliseconds (Fig. 5.9). That these delays are long reflects our decision to use param-

eter values that accord with measurements and estimates in saccular hair cells of the

bullfrog. These cells are tuned to frequencies of a few tens of hertz, so their sensory

function does not demand that they respond quickly to sinusoidal stimuli. Were I

to use instead parameter values drawn from measurements in mammalian hair cells

that are tuned to higher frequencies, the delays would be shorter and the homeostatic

mechanism would not degrade the cells’ temporal resolution below that required for

higher-frequency hearing. There is some evidence, however, that homeostatic feed-

back within our cochlea is quite slow (see below).

Our models resemble a model that neglects adaptation but accounts for somatic

motility, the change in length of an outer hair cell in response to a change in membrane
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potential [121]. Feedback provided by somatic motility can engender spontaneous

oscillations in cochlear models, yielding state diagrams similar to those discussed

here. Enhancement of robustness through a homeostatic mechanism is not specific to

models endowed with adaptation, but instead represents a principle that applies to

models employing many forms of feedback.

Two types of hair cells are present within the mammalian cochlea: inner hair cells

provide input to the brain, whereas outer hair cells amplify the vibrational response of

the cochlea [138,139]. Feedback to the outer hair cells from efferent fibers originating

in the medial olivocochlear nucleus could constitute a homeostatic mechanism similar

to those that I describe [139]. Stimulation of efferents innervating outer hair cells

alters the cochlea’s mechanical response to acoustic stimulation, diminishing both

sensitivity and dynamic range [138,140]. There is also evidence that efferent stimula-

tion reduces the cochlea’s frequency selectivity [141,142]. Moreover, feedback through

efferents occurs in about 100 ms for fast effects and in tens of seconds for slow ef-

fects, timescales that are long compared to the response time of a few milliseconds for

cochlear mechanics [108,140]. Because our models require only a resonant amplifier to

which a homeostatic mechanism is added, they suggest how modulating efferent tone

could enhance the robustness of cochlear function: If efferent neurons display a basal

level of activity, then robustness enhancement could be realized through diminished

efferent tone.

Noise diminishes a hair bundle’s sensitivity, frequency selectivity, and dynamic

range [143]. Through the feedback that it exerts, homeostasis propagates stochastic

fluctuations of the bundle’s position into the adaptation process. Accounting for noise

may therefore decrease the degree of robustness enhancement. For sufficiently weak

noise, the homeostatic mechanism should nonetheless improve the robustness of a

167



bundle’s function to parameter variation.

Because bifurcations may be blurred or shifted by noise, it can be challenging

to precisely locate them in noisy systems [144]. In experiments, this difficulty is

addressed by employing a statistical test to delineate the boundary of a bundle’s

self-oscillation regime (Appendix B). Near the boundary, I predict that a hair bundle

takes longer to relax after a constant force step when homeostasis is present than

when it is absent.

Multiple timescales have been observed in the dynamics of hair bundle motion

[87,145]. However, delays in a bundle’s return to spontaneous oscillation were reported

to depend on the duration rather than on the magnitude of the force steps, possibly

because large force steps were employed [145]. Here I have shown that a homeostatic

mechanism introduces an additional timescale whose signatures might be observed

in the bundle’s transient response (Figure 5.9). Noise may make it difficult to see

in experiments the bundle’s predicted transient responses to sinusoidal stimulation

applied during force steps. The sizes of the force steps and amplitude of sinusoidal

forcing can be adjusted, however, to maximize the predicted effects; it is hoped that

a sufficiently large stimulus will evoke a behavior that is not obscured by noise.

Alternatively, the long relaxation times owing to homeostasis might be evident only

in the average over many stimulus trials. Evaluating transient responses in hair

bundles or in cochlear vibrations evoked by the stimulation protocols described in

this paper might provide evidence for a homeostatic mechanism in hearing.

Owing to homeostatic feedback, bursting oscillations arise in our models for low

values of the stiffness . At these operating points the timescale for homeostatic

feedback is similar to the hair bundle’s period of spontaneous oscillation. Although

these bursting oscillations can be entrained by sinusoidal forcing [87], the utility of
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multimodal responses in hearing remains uncertain.

In this work I sought to achieve homeostasis of function, namely of a system’s

sensitivity, sharpness of tuning, and dynamic range. This strategy constitutes a con-

ceptual departure from existing approaches that instead seek homeostasis of param-

eter values. Previous models have relied on a strong assumption: that the system’s

behavior is not significantly altered by conferring dynamics on a control parame-

ter [51, 115–120, 125]. I show that this assumption does not hold in general: intro-

ducing homeostasis changes a system’s state diagram and its dynamics. Further, our

method does not require that the system maintain a representation of the set-point

values to which parameters must be tuned.

The approach described in this work is general and likely applicable to any system

whose function depends on oscillatory elements. A few examples drawn from biology

include circadian clocks [146, 147], beating cardiomyocytes [148], and insulin-glucose

oscillations [149]. The functions of these systems depend on their ability to detect and

entrain to periodic stimuli. Homeostatic mechanisms may ensure that the function

of these systems is robust to developmental and environmental variation.
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Appendix G: Additional Completed Works

During my graduate training I engaged in a number of projects outside of the labo-

ratory that explored my interest in human rights and a potential clinical interest in

radiation oncology. This Appendix contains two manuscripts resulting from this work.

The first, titled “Medical students’ attitudes toward torture, revisited” describes the

results of a survey of Weill Cornell medical students conducted by the Weill Cor-

nell Center for Human Rights. This article appeared in the December 2017 issue of

the Health and Human Rights Journal [150]. The second article, tentatively titled

“Enhancement of external-internal correlation by phase-shift detection and correction

based on concurrent external bellows and internal navigator signals,” is currently un-

der review at the International Journal of Radiation Oncology·Biology·Physics. This

work investigates the phase difference between two components of respiratory mo-

tion and its correction allows surrogates to more faithfully represent the motions of

tumors.
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Medical Students’ Attitudes toward Torture, Revisited

krista dubin, andrew r. milewski, joseph shin, and thomas p. kalman

Abstract

This paper reports the findings of a survey of medical students’ attitudes toward torture and discusses 

variables that may correlate with those attitudes. In late 2016, 483 enrolled medical and MD–PhD 

students at the Weill Cornell Medical College received an anonymous, institutional review board-

approved survey that included questions about torture and its effectiveness, demographic questions, 

inquiries about personal experiences of harassment or discrimination, and questions regarding 

engagement in human rights activities. Some questions were drawn from a 2008 University of Illinois 

survey of medical students’ attitudes toward torture, the only prior such survey at a US medical 

university. Of the 483 students who were contacted, 121 (25%) returned completed questionnaires, with 

responses indicating strong opposition to torture and skepticism about its usefulness. Respondents 

expressed greater opposition to torture in this survey than those who participated in the 2008 survey. 

Respondents’ involvement in Weill Cornell’s human rights program was associated with significantly 

stronger opposition to torture, while personal experiences of harassment were associated with a trend 

toward weaker opposition to torture. Respondents’ answers closely approximate the clearly stated ethics 

of the profession, suggesting that human rights education during medical school may contribute to the 

development of proper values in young physicians even before they proceed into practice.
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Introduction

Physicians are subject to broadly accepted stan-
dards governing ethical and professional conduct. 
The condemnation of physicians’ direct or indirect 
participation in torture is one example. This is 
asserted by the World Medical Association, Amer-
ican Medical Association, American Psychological 
Association, World Psychiatric Association, Amer-
ican College of Physicians, American Psychiatric 
Association, and innumerable countries’ medical 
societies.1 However, as Steven Miles reminds us, 
many medical personnel continue to participate in 
and condone torture: “Many torture survivors re-
port that clinicians monitored their mistreatment. 
The presence of a physician during torture com-
pounds the victim’s suffering by emphasizing that 
even the humanity of medicine is turned against 
the prisoner.”2 This paper explores the knowledge 
and attitudes of medical and MD–PhD students at 
one institution on matters relevant to the practice 
of torture and physician complicity with torture. 

Many physicians and medical personnel 
who participate in torture do so as they succumb 
to conflicts between professional ethics and the 
demands of their work, superiors, and peers. The 
authorization of torture during the Bush adminis-
tration by government authorities (Departments of 
State, Defense, and Justice) enabled its legitimization 
through the military chain of command. In military 
settings, many may fear retaliation or disciplinary 
consequences should they fail to follow orders. From 
a psychosocial perspective, Myles Balfe identifies 
factors that may contribute to a physician’s partici-
pation in torture, such as the passionate assumption 
of the need to defend the United States from grave 
danger.3 Balfe further notes that the capacity for 
rationalization (such as euphemistically referring to 
torture as “enhanced interrogation procedures”) and 
cognitive distortions (such as the belief that without 
medical supervision, greater harm might ensue) are 
clear factors. Additionally, the splitting of roles such 
that responsibility can be diffused among many 
participants, each believing that their individual 
contribution to torture was minor or insignificant, 
creates an environment that enables medical person-
nel’s participation in torture.

The present study explores future US phy-
sicians’ attitudes toward the permissibility and 
utility of torture, as well as their beliefs about phy-
sicians’ participation in torture. A previous survey 
of medical students’ attitudes toward torture, con-
ducted in 2008 at the University of Illinois College 
of Medicine-Chicago (UIC), provided a precedent 
for our project.4 That six-question survey of 336 
medical students across the four years of study re-
vealed a level of support for torture that the authors 
reported as distressing, given medical associations’ 
widespread condemnation of physicians’ participa-
tion in torture. Specifically, the authors found that 
35% of their sample would condone torture under 
certain circumstances; 24% agreed with the use of 
torture if a chance to elicit life-saving information 
existed; and 22% agreed that it was permissible for 
physicians to treat individuals so that torture could 
be initiated or continued. These and other findings 
led the authors to recommend the implementation 
of medical school curricular assessments to address 
ignorance or attitudes among students that are at 
odds with the universally and clearly stated ethics 
of the profession.

International surveys of medical students’ 
attitudes toward torture or the mistreatment of 
prisoners have generally revealed a somewhat 
greater tolerance for such practices among medical 
students than in the UIC survey. For example, in 
a study conducted in Mauritius, 37.4% of surveyed 
medical students were in favor of beating individ-
uals in police custody to obtain information, and 
in a study of New Delhi medical students, nearly 
30% of respondents indicated approval of this prac-
tice.5 Taken together, these studies demonstrate the 
importance of assessing medical students’ attitudes 
toward such a major human rights issue.

The UIC survey has not, to our knowledge, 
been repeated at any other medical university in the 
eight years since it was administered. In addition 
to replicating the prior study, our project attempts 
to delineate personal and demographic factors that 
may be associated with attitudes toward torture. 
Clearly a question of great political, ethical, and 
medical sensitivity, this topic invites medical train-
ing institutions to examine curricula and human 



k. dubin, a. r. milewski, j. shin, and t. p. kalman / papers, 265-277

   D E C E M B E R  2 0 1 7    V O L U M E  1 9    N U M B E R  2   Health and Human Rights Journal 267

rights educational efforts. It is important that med-
ical students have solid grounding on matters such 
as torture and the obligations of the profession be-
fore they begin to practice independently in society.

Subjects and methods

The Institutional Review Board of the Weill Cornell 
Medical College in New York City approved this 
study. All enrolled four-year medical and MD–PhD 
students (483 total) received an email in November 
2016, shortly after the conclusion of the national 
elections, containing links to a 28-item question-
naire (see Appendix). Their participation in the 
survey was anonymous and completely voluntary. 
Appropriate encryption procedures were employed 
to ensure that the identification of participant/
non-participant status was impossible. Institutional 
review board-approved consent was obtained from 
all participants through encrypted procedures, and 
participants could access the survey only after first 
providing their consent.

The survey instrument contained 10 items 
addressing specific torture activities, justifications 
for torture, and ways that physicians might par-
ticipate in torture. Five of these items matched 
questions from the 2008 UIC study. To identify 
factors that might influence students’ attitudes, the 
survey also included demographic inquiries relat-
ed to age, gender, ethnicity, religious affiliation, 
sexual orientation, and stage of medical school 
training; questions examining individual and fam-
ily histories of exposure to trauma, harassment, or 
discrimination; and items surveying respondents’ 
participation in student human rights activities at 
Weill Cornell, their familiarity with certain human 
rights statistics, and their opinions about human 
rights curricula in medical school. Participation 
in the survey was initiated by 146 students, but 19 
were excluded because they did not complete any 
sections. Responses from six more participants 
were discarded, either because those respondents 
failed to complete the 10 torture-specific items or 
because they neglected to indicate their gender or 
age. The final sample size was thus 121 respondents.

We employed two methods to identify associa-

tions between participants’ attitudes toward torture 
and their responses to the non-torture questions. 
In the first strategy, we used an aggregate metric, 
termed the “attitude toward torture scale” (ATS), 
to compare pools of participants grouped by their 
responses to individual non-torture questions. To 
calculate the ATS, we created a standardized scale 
of 0–4 for each of the 10 torture-specific items. 
Higher scores on this scale correspond to greater 
support for torture; “strongly agree,” for example, 
was coded as a 4 if this response indicated the 
strongest support for torture (questions 1.1a-c, 1.2-
1.5), whereas “strongly agree” was coded as a 0 if it 
instead corresponded to the greatest opposition to 
torture (questions 1.6-1.8). An individual’s ATS was 
then calculated by summing that person’s scores on 
these 10 questions. The ATS therefore ranged from 
0 to 40, with a neutral position represented by 20. 
We performed Mann-Whitney U tests to compute 
p-values for the differences found between mean 
ATS values of paired subgroups. We employed 
the Bonferroni method to account for multiple 
hypothesis testing; differences in mean ATS values 
were considered statistically significant if their as-
sociated p-values fell below 0.05/N, in which N is 
the number of hypotheses tested. The ATS metric 
was developed solely for this study and has not been 
validated elsewhere.

Considering the 10 torture-specific items and 
ATS as dependent variables, the second method 
entailed creating a statistical model for each de-
pendent variable as follows. We performed ordinal 
regressions between the dependent variable and 
each independent variable using the polr function 
of the MASS package in R. The false discovery 
rate was controlled at a level of 0.1 using the Ben-
jamini-Hochberg method to account for testing 
multiple hypotheses. Those independent variables 
that did not survive the multiple hypothesis correc-
tion were then excluded. A final ordinal regression 
was performed on the dependent variable and all 
the remaining significant independent variables to 
arrive at a multivariate model for the dependent 
variable. Multivariate models were not computed 
for torture questions 1.6 and 1.7, as these questions 
were not found to have significant dependences on 
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any of the independent variables. Lastly, to inves-
tigate associations between individuals’ attitudes 
toward various facets of torture, we calculated the 
Pearson correlation coefficient (r) for each pair of 
torture-specific questions.

Results

Of the 483 students who received the survey, 25.1% 
responded (Table 1). The lowest response rates were 
seen from the third-year medical school class and 
from MD–PhD students engaged in the PhD phase 
of their training. More females than males (75:46) 
completed the survey (the entire student body an-
nually approximates a 50:50 male:female ratio).

The questionnaire began with ten items sur-
veying respondents’ attitudes toward torture, five of 
which were based on questions from the 2008 UIC 
study. Using a five-point Likert scale, participants 
were asked to indicate their agreement or disagree-
ment with each statement. For ease of comparison 

between the studies at UIC and the Weill Cornell 
Medical College (WCM), the “strongly disagree” 
and “disagree” responses were pooled together, as 
were the “strongly agree” and “agree” responses.

A larger proportion of those surveyed in the 
present study expressed opposition to torture than 
in the 2008 UIC study (Figure 1). The most striking 
difference was seen in response to the statement “It 
is permissible for interrogators to use psychological 
intimidation (e.g. mock executions, sexual humil-
iation, religious humiliation, threatening loved 
ones)”; here, 93% of WCM respondents disagreed, 
compared to 30% of those surveyed at UIC (Figure 
1A). In addition, 63% of WCM respondents dis-
agreed that “the use of torture can be justified if the 
information obtained will save lives,” compared to 
51% of UIC respondents (Figure 1B). The item “It is 
permissible for physicians to treat individuals to 
verify their health so torture could begin or contin-
ue” garnered a disagreement rate of 83% at WCM 
and 58% at UIC (Figure 1C). Furthermore, 83% of 

A      It is permissible for in-
terrogators to use psycho-
logical intimidation.

B      The use of torture can 
be justified if the informa-
tion obtained will save lives.

C      It is permissible for phy-
sicians to treat persons so 
torture can start or continue.
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D      The use of torture 
should be prohibited as a 
matter of state policy.

E      The use of torture to 
elicit information is immoral 
and intrinsically wrong.

Figure 1. Comparison between survey results from the 2008 study at the University of Illinois College of Medicine–
Chicago (UIC) and from the present study at the Weill Cornell Medical College (WCM)

Year† Number of respondents Response rate
1st 35 34.7%
2nd 37 40.2%
3rd 14 12.8%
4th 24 22.4%
MD–PhD 11 14.9%
Total 121 25.1%
†Medical school year or MD–PhD students in PhD training

Gender

Female 75

Male 46

Age (yrs)

Mean 25.4

Range 21–38

Table 1. Respondent demographics
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WCM respondents agreed that “the use of torture 
should be prohibited as a matter of state policy,” 
compared to 64% of UIC respondents (Figure 1D). 
Finally, for the statement “The use of torture to elic-
it information is immoral and intrinsically wrong,” 
the 86% agreement rate among WCM respondents 
exceeded the rate of 63% reported for UIC respon-
dents (Figure 1E). WCM respondents’ answers to 
these two final questions were strongly correlated (r 
= 0.84). Interestingly, the rate of neutral responses 

was lower among WCM respondents than among 
UIC students in all but one item: “The use of torture 
can be justified if the information obtained will 
save lives.”

Our study sought to expand upon the 2008 
UIC survey in several ways. First, because torture 
comes in different forms, we asked participants 
whether it is permissible for interrogators to 
employ “psychological intimidation (e.g. mock ex-
ecutions, sexual humiliation, religious humiliation, 
threatening loved ones),” “deprivation or exposure 
to environmental extremes (e.g. exposure to extreme 
heat/cold/noise, sensory deprivation, sleep depriva-
tion, starvation, or forced feedings),” or “physical 
distress or injury (e.g. forced positions, asphyxiation, 
beating, electrocution).” More than 90% of WCM 
respondents disagreed that any of these three in-
terrogation classes are permissible (Figure 2A). 
Approximately 8% of WCM students felt neutral or 
agreed that psychological intimidation and depri-
vation or exposure to environmental extremes are 
permissible interrogation strategies. Interestingly, 
WCM students were most opposed (97.5%) to inter-
rogators employing tactics that would cause physical 
distress or injury. Respondents’ answers to these 
three questions were strongly correlated (r > 0.7).

Believing that information elicited through 
torture is reliable will influence individuals’ views 
on the justification of torture. Therefore, our survey 
also asked participants whether they agreed that 
“torture is an effective means of obtaining infor-
mation”; more than 80% of students disagreed with 
this statement (Figure 2B). A similar percentage of 
respondents also disagreed with the premise that 
“torture can be justified to gain important infor-
mation” (Figure 2C). Only 60%, however, disagreed 
with the statement that “torture can be justified if 
the information obtained will save lives” (Figure 
1F), with 27.6% responding with a neutral answer. 
Participants who disagreed that torture is justified 
if it yields important information were also likely to 
disagree that life-saving information justifies tor-
ture (r = 0.75). Their responses to these two items, 
however, correlated less well with their belief in the 
effectiveness of torture as a means of obtaining in-
formation (r = 0.57 and 0.49, respectively).

Figure 2. Medical students’ attitudes toward torture
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Third, the 2008 questionnaire explored 
whether those surveyed believed it was acceptable 
for physicians to participate in torture. Taking 
this one step further, our study looked at whether 
respondents felt that physicians’ participation in 
torture should warrant punishment. In this regard, 
75% of WCM participants agreed that “health 
professionals who are found to have designed, com-
mitted, or otherwise facilitated torture should face 
disciplinary or legal action” (Figure 2D).

Finally, in an effort to identify factors that 
may inform individuals’ beliefs about torture, our 
survey contained a number of additional questions 
(Appendix). Several items specifically addressed 
human rights issues, including whether respon-
dents had participated in the existing programs 
at the medical college. Students involved with the 
Weill Cornell human rights program (item 5.3 of the 
survey) had significantly (p < 10-4) lower mean ATS 
values (see “Subjects and methods” section), indi-
cating greater opposition to torture than those who 
had not participated (Figure 3 and Table 2). Partic-
ipants were also asked about individual or familial 
experiences of harassment or discrimination (item 
4.3). A trend toward stronger pro-torture attitudes, 
as measured by mean ATS values, was seen among 
individuals who had experienced discrimination 
or harassment (p = 0.0046), but this trend did not 
reach statistical significance after applying a Bon-

ferroni correction for multiple hypothesis testing 
(Figure 3 and Table 2). Strong correlations were 
seen between ATS values and responses to all of the 
torture-specific questions, with the strongest being 
for the item “The use of torture can be justified in 
order to gain important information” (r = 0.85).

Our multivariate regression analyses identified 
several additional factors that strongly predicted re-
spondents’ attitudes toward certain torture-specific 
items. Responses to the statement “Medical schools’ 
curricula should include mandatory Human Rights 
coursework” (item 5.1) provided the strongest pre-
dictor for when individuals would express weaker 
opposition to torture. Those who disagreed with 
this statement were many times more likely to 
support the use of torture to obtain important in-
formation (odds ratio (OR) 42.14, 95% confidence 
interval (CI) {3.8,1059}) or life-saving information 
(OR 58.63, 95% CI {3.89,1752}), as well as the use 
of interrogation techniques that result in physical 
distress or injury (OR 18.22, 95% CI {2.22,183.7}). 
Conversely, those who agreed with mandatory hu-
man rights coursework were less likely to support 
the use of psychological intimidation (OR 0.27, 
95% {0.09,0.79}), and those who strongly agreed 
were less likely to support the use of deprivation 
or exposure to environmental extremes compared 
to those who disagreed, felt neutral, or did not an-
swer the question (OR 0.17, 95% CI {0.05,0.5}). The 
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Figure 3. A comparison of attitude-toward-torture scale values (error bars indicate standard error of the mean, and 
the asterisk denotes p <10-4)
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conclusions we can draw are limited, however, as 
only four individuals disagreed that medical school 
curricula should include mandatory human rights 
coursework.

Interestingly, students who were trained by 
the Weill Cornell Center for Human Rights to 
perform forensic evaluations of asylum seekers 
(item 5.3) were less likely to agree that obtaining 
life-saving information justifies the use of torture 
(OR 0.4, 95% CI {0.20,0.78}) or that it is permissible 
for physicians to treat individuals so that torture 
can begin or continue (OR 0.28, 95% CI {0.13,0.61}). 
We also found that the importance of an individu-
al’s belief system and experiences of harassment or 
gender-based discrimination yielded predictors of 
that person’s attitude toward certain torture-specif-
ic items (data available upon request). Other factors, 
including ethnicity and age, were not found to be 
significant predictors for responses to individual 
torture questions (additional information available 
upon request).

Discussion

As part of their education, medical students would 
benefit from understanding that participation in 
torture may take active and passive forms.6 Help-
ing design torture programs that leave no physical 
evidence, such as those designed by James Mitchell 
and John Jessen for the US Department of Defense, 
would be considered active participation.7 Pas-
sive physician participation can include ignoring 
torture when it occurs, deliberately failing to di-
agnose injuries caused by torture, and covering up 
occurrences through non-documentation or the al-
teration of medical records. When doctors condone 

and participate in torture, a demoralizing impact 
is felt both by victims and by staff—and given the 
respected authority of physicians, a strong message 
of support for torture may be inferred. The same 
can be said of physicians’ participation in certain 
activities in correctional institutions, where hu-
man rights abuses often occur and where a doctor’s 
behavior and attitude may convey tolerance for 
insensitive, inhumane conduct.8 Given the parallels 
between torture and correctional medicine abus-
es, both topics should be central to any medical 
school’s human rights curriculum.

Our results support the implementation of 
human rights educational programs in medical 
school curricula. However, beyond the one item in 
our survey that asked about support for disciplinary 
or legal action for physicians who have participated 
in torture (Figure 2D), we have not addressed an 
important aspect of the issue: professional account-
ability. The settlement, in August 2017, of a lawsuit 
brought by the American Civil Liberties Union (on 
behalf of three men who were kidnapped by the CIA 
in 2002 and tortured according to a protocol de-
signed by psychologists Mitchell and Jessen) sends 
a clear message: health care personnel who violate 
professional codes of conduct may indeed be held 
accountable for their actions. The two psychologists 
had been paid millions by the CIA to design and 
implement an “enhanced interrogation program” 
to deal with post-9/11 terrorism suspects.9 Whether 
a physician contributes actively to the conduct of 
torture, in the manner of Mitchell and Jessen, or 
passively, as might a prison MD who fails to con-
travene a course of solitary confinement, awareness 
that their actions or inaction will be scrutinized 
may help combat misbehavior.

Table 2. Mean attitude-toward-torture scale values

Condition Number of respondents Mean ATS ± SEM†
All 121 6.43 ± 0.61
WCCHR eventa 51 3.71 ± 0.62
No WCCHR eventb 70 8.41 ± 0.88
Harassedc 69 7.80 ± 0.91
Not harassedd 52 4.62 ± 0.68
† SEM = standard error of the mean. a Attended a human rights event hosted by the Weill Cornell Center for Human Rights (WCCHR).
b Did not attend or left this question blank. c Respondent or family member experienced harassment (bullying/cyberbullying, stalking, 
intimidation, threats, etc.). d Was not harassed, was unsure, or left this question blank.
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A recent global survey by the International 
Committee of the Red Cross reported that 46% of 
Americans approved of torture to obtain informa-
tion from enemy combatants, with only slightly 
more than half indicating that torture was “wrong.” 
Only Israelis, Palestinians, and Nigerians matched 
Americans in their endorsement of torture. By 
comparison, over 80% of Afghans and Colombians 
surveyed disapproved of torture.10 The results of our 
survey of medical students at one American uni-
versity reflect strongly divergent attitudes toward 
torture compared to this global survey.

Conclusive findings from our survey are 
limited by several factors. Our study, like the 2008 
survey, was conducted at a single institution. The 
number of respondents (121) is relatively small, 
although our response rate of 25.1% is comparable 
to other survey response rates of physicians and 
medical students: 24% of medical students and 
18.9% of medical residents completed the 2012 
Canadian National Physician Survey, and 27% 
of medical students responded to Australia’s 2013 
National Mental Health Survey of Doctors and 
Medical Students.11 The more robust response rates 
of first- and second-year students (34.7% and 40.2%, 
respectively) suggest that the pre-clinical years, 
before students disperse to disparate locations with 
different schedules, might be a more optimal time 
for surveying students. 

The response rate of our study may have been 
affected by the very subject matter, torture being 
an uncomfortable topic for many. Questions about 
personal or familial experiences of discrimination, 
harassment, being a victim of a crime, or experi-
encing sexual or physical abuse may similarly have 
been too off-putting for some students. 

Responses to some of our survey items may 
have been influenced by our detailing specific tor-
ture methods that were not made explicit in the UIC 
questionnaire (Figure 1A). Similarly, we attempted 
to ascertain whether respondents believed that 
torture is an effective way to obtain information, 
a question that was not included in the UIC study.

Although temporal, geographic, and compo-
sitional differences limit comparisons of responses 
to similar and identical questions between the 2008 

UIC survey and our own, some limited observations 
seem merited. A trend toward stronger anti-torture 
attitudes was seen among students in 2016 (Figure 
1). Why might such a trend be taking place? Gen-
eral contributing factors might include formal and 
informal human rights educational initiatives that 
have arisen in the intervening years; continued 
writing about Abu Ghraib and the role of medical 
personnel; the ongoing horrific human rights crises 
in Syria and in other countries; increased aware-
ness of all human rights abuses, including torture; 
and the agitating polemics of the most recent pres-
idential campaign, in which torture specifically 
and an atmosphere of hostility toward immigrants 
fleeing oppression generally may have seeped into 
the consciousness of medical students.12

Using the ATS metric, we examined whether 
students’ participation in the school’s student-run 
asylum clinic, the Weill Cornell Center for Human 
Rights, affected their views on torture.13 Founded in 
2010, this voluntary program attracts students in-
terested in human rights activism and trains them 
in providing pro bono medical, mental health, and 
gynecologic evaluations to individuals seeking 
asylum in the United States. Between one-quarter 
and one-third of Weill Cornell students will have 
participated in this program by graduation. In the 
course of these evaluations, students have helped 
examine more than 300 asylum seekers, the ma-
jority of whom are survivors of torture, and have 
absorbed their histories. In our study, students 
who had participated in the human rights program 
had significantly lower (more opposed to torture) 
mean ATS values than students who had not been 
involved (Figure 3 and Table 2).

The medical education experience can be iso-
lating for many students. Human rights education, 
formalized or not, can ameliorate such isolation 
and can enhance a student’s preparedness for his 
or her life as a physician. A 2010 study documented 
deficits in medical students’ knowledge of torture 
that could be remediated through a structured 
curriculum.14 The experiences of Croatian medical 
students during the Croatian War of Independence 
(1991–1995) bears on the value of human rights ex-
periences in medical school. As has been described: 
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Our experience during the five years of the wars…
showed that the best option for the medical 
students was to continue their studies and engage 
very actively in a number of activities where their 
education and medical experience were important 
…Psychologically, intensive engagement in 
extracurricular activities related to their profession 
was of enormous benefit to the students … They 
became a symbol of safety, consolation, and help in 
many complicated situations.15

Of course, torture is only one of many human 
rights issues that physicians will encounter in their 
careers. However, learning about torture equips 
clinicians to attend to victims of other abuses, 
including victims of human trafficking; domes-
tic abuse; child abuse and child labor; bullying; 
religious, political, and ethnic persecution; LGBT 
discrimination; and, as previously mentioned, 
human rights abuses in prisons. Specifically, being 
able to elicit painful and difficult histories, develop-
ing empathy, and recognizing human resilience are 
skills that will serve all physicians in all settings.
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appendix
Medical Students’ Attitudes toward Torture survey

The numbering of the questions discussed in Figures 1 and 2 of the main text correspond to questions in Part 
1 of the original survey as follows:

Main text figure 1A 1B 1C 1D 1E 2A 2B 2C 2D

Survey, Part 1 question 1.a 4 5 6 7 1 2 3 8

Questions 5–7 of the survey were taken verbatim from the UIC study, while questions 1a and 4 are modified 
versions of UIC questions. 

survey

Please complete the following brief, confidential survey. You may skip any questions you do not feel 
comfortable answering.

Part 1 

Please note that once you select ‘Submit’, you cannot return to this section of the survey.

1.	 It is permissible for interrogators to use the following methods:

a.	Psychological intimidation (e.g. mock executions, sexual humiliation, religious humiliation, 
threatening loved ones).

□ Strongly disagree 	 □ Disagree	 □ Neutral	 □ Agree	 □ Strongly agree

b.	Deprivation or exposure to environmental extremes (e.g. exposure to extreme heat/cold/noise, 
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sensory deprivation, sleep deprivation, starvation or forced feedings).	

□ Strongly disagree 	 □ Disagree	 □ Neutral	 □ Agree	 □ Strongly agree

c.	Physical distress or injury (e.g. forced positions, asphyxiation, beating, electrocution).

□ Strongly disagree 	 □ Disagree	 □ Neutral	 □ Agree	 □ Strongly agree

2.	 The use of torture is an effective means of obtaining important information.

□ Strongly disagree 	 □ Disagree	 □ Neutral	 □ Agree	 □ Strongly agree

3.	 The use of torture can be justified in order to gain important information.	

□ Strongly disagree 	 □ Disagree	 □ Neutral	 □ Agree	 □ Strongly agree

4.	 The use of torture can be justified if the information obtained will save lives.	

□ Strongly disagree 	 □ Disagree	 □ Neutral	 □ Agree	 □ Strongly agree

5.	 It is permissible for physicians to treat individuals to verify their health so that torture could begin or 
continue.	

□ Strongly disagree 	 □ Disagree	 □ Neutral	 □ Agree	 □ Strongly agree

6.	 The use of torture should be prohibited as a matter of state policy.	

□ Strongly disagree 	 □ Disagree	 □ Neutral	 □ Agree	 □ Strongly agree

7.	 The use of torture to elicit information is immoral and intrinsically wrong.	

□ Strongly disagree 	 □ Disagree	 □ Neutral	 □ Agree	 □ Strongly agree

8.	 Health professionals who are found to have designed, committed or otherwise facilitated acts of torture 
should face disciplinary or legal action (e.g. loss of one’s professional license).	

□ Strongly disagree 	 □ Disagree	 □ Neutral	 □ Agree	 □ Strongly agree

Part 2 

Please note that once you select ‘Submit’, you cannot return to this section of the survey.

1.	 What is your age? _____

2.	 What is your gender?	

	 □ Male 	 □ Female        □ Transgender       □ Intersex	      □ Other

3.	 What is your home state (abbrev.) in the United States, or country of origin if not the United States?

	  ____________

4.	 What year of medical education are you in?

	 □ 1st year    □ 2nd year     □ 3rd year     □ 4th year     □ MD/PhD (if currently in PhD stage)

Part 3 

Please note that once you select ‘Submit’, you cannot return to this section of the survey.

1.	 What ethnicity do you consider yourself?

	 □ American Indian or Alaskan Native      □ Native Hawaiian or Pacific Islander
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	 □ Non-Hispanic White	 □ African-American	 □ Hispanic/Latino	 □ Middle Eastern		
	 □ Asian	 □ Multiracial	 □ Other

2.	 Do you identify as:

	 □ Heterosexual      □ Lesbian     □ Gay    □ Bisexual     □ Questioning     □ Asexual    □ Not Sure

3.	 Do you identify with any one of the following?

	 □ Christian	 □ Jewish	 □ Muslim	 □ Hindu	 □ Buddhist	 □ Atheist       
	 □ Agnostic      □ Spiritual        □ Other

4.	 How important is this religion or belief system in your daily life?

	 □ Not at all	 □ Slightly important	 □ Important	 □ Very Important      □ No opinion

5.	 Have you served in the military or with affiliated organizations/contractors?	

	 □ Yes	 □ No

6.	 Has a member of your family served in the military or with affiliated organizations/contractors?	

	 □ Yes	 □ No

Part 4 

Please note that once you select ‘Submit’, you cannot return to this section of the survey.

1.	 Have you or a member of your family ever been a victim of a crime that caused physical or emotional 
injury?	

	 □ Yes	 □ No        □ Not sure

2.	 Have you or a member of your immediate family ever experienced physical or sexual abuse?	

	 □ Yes	 □ No        □ Not sure

3.	 Have you or a member of your immediate family ever experienced harassment (including, but not limit-
ed to, bullying/cyber bullying, stalking, intimidation, threats, etc.)?	

	 □ Yes	 □ No        □ Not sure

a.	If you answered “yes” to question 3: Was the perpetrator(s) acting in an official capacity (e.g. security 
personnel, law enforcement, military, etc.)?

	 □ Yes	 □ No        □ Not sure

4.	 Do you believe that you or a member of your immediate family have ever experienced discrimination 
based on the following (select all that apply)?	

	 □ Race	 □ Ethnicity	 □ Nationality        □ Religion
	 □ Sexual orientation       □ Gender       □ Political opinion      □ Membership in a specific group

Part 5  

Please note that once you select ‘Submit’, you cannot return to this section of the survey.

1.	 Please indicate how strongly you agree or disagree with the following statement: Medical schools’ 
curricula should include mandatory Human Rights coursework.	

	 □ Strongly disagree 	 □ Disagree	 □ Neutral	 □ Agree	 □ Strongly agree
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2.	 Have you participated in a *Weill Cornell volunteer/community service activity?	

	 □ Yes		  □ No
*Such as with the Weill Cornell Center for Human Rights (WCCHR), Weill Cornell Community Clinic 
(WCCC), Motivating Action through Community Health Outreach (MAChO), etc.

a.	If you answered “yes” to question 2: Please indicate which activity: ____________

3.	 If you have participated with the Weill Cornell Center for Human Rights (WCCHR), please indicate if 
you attended a WCCHR-sponsored educational event (select all that apply):	

	 □ Student training	 □ WCCHR Elective	 □ SafeZone training	 □ Other

a.	If you answered “student training” to question 3: Please indicate the year you attended the student 

	 training: ____________

b.	If you answered “other” to question 3: Please describe what other WCCHR-sponsored educational 

	 event(s) you have participated in ____________

4.	 Have you participated in human rights training, education or other activities in the past?	

	 □ Yes		  □ No

a.	If you answered “yes” to question 4: Please describe: ____________

5.	 If you have participated with the Weill Cornell Center for Human Rights (WCCHR), how many evalua-
tions have you observed?

	 □ 0	 □ 1	 □ 2 	 □ 3 or more

6.	 How many applications for asylum were submitted in the United States in 2015?	

	 □ < 10,000	 □ 10,000-49,999	 □ 50,000-249,999	 □ >=250,000

7.	 How many survivors of torture are estimated to be residing in the United States?	

	 □ < 10,000	 □ 10,000-49,999	 □ 50,000-249,999	 □ >=250,000
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ABSTRACT 

 

Purpose:  To enhance the correlation between external and internal respiratory motions by 

dynamically determining and correcting the patient-specific phase shift between external and 25 

internal respiratory waveforms acquired concurrently during respiratory-correlated (RC) four-

dimensional magnetic resonance imaging (4DMRI) scans.   

Methods: Internal-navigator and external-bellows waveforms were acquired simultaneously 

during 6 to 15-minute RC-4DMRI scans in ten healthy volunteers under an IRB-approved 

protocol.  The navigator was placed at the right lung-diaphragm interface while the bellows was 30 

placed ~5cm inferior to the sternum.  Three segments of each respiratory waveform, at the 

beginning, middle, and end of a scan, were analyzed.  Three phase-domain methods were 

employed to estimate the phase shift, including analytic signal analysis, phase-space oval fitting, 

and principal component analysis.  A robust strategy for estimating the phase shift was realized by 

combining these methods in a weighted average and by eliminating outliers (>2σ) owing to 35 

breathing irregularities.  Whether phase-shift correction affects the external-internal correlation 

was evaluated.  The cross-correlation between the two waveforms in the time domain provided an 

independent check of the correlation enhancement. 

Results:  Phase-shift correction significantly enhanced the external-internal correlation in all 

volunteers across the entire 6-15min scans. On average, the correlation increased from 0.45±0.28 40 

to 0.85±0.15 for the combined method.  The combined method exhibits a 99.5% success rate and 

reveals that the phase of the external waveform leads that of the internal waveform in all ten 

subjects by 57±17o (1.6±0.5 bins) on average.  Seven volunteers exhibit highly reproducible phase 

shifts over time, evidenced by standard deviations (σ) below 4o, whereas 8o<σ<12o in the 
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remaining three subjects. Regardless, phase-shift correction significantly improved the correlation 45 

in all volunteers.   

Conclusions:  Correcting the phase shift estimated by the phase-domain methods provides a new 

approach for enhancing the correlation between external and internal respiratory motions.  This 

strategy holds promise for improving the accuracy of respiratory-gated radiotherapy. 

50 
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INTRODUCTION 

Despite substantial progress made in the past 2-3 decades, including the advent of fluoroscopic 

motion-monitoring techniques employing implanted fiducial markers (1-5), respiratory-correlated 

(RC) four-dimensional computed tomography (4DCT) (6-9), and, more recently, 4D magnetic 

resonance imaging (4DMRI) (10-14), managing clinical motion remains one of the biggest 55 

challenges in using conventional linear accelerators to treat thoracic and upper abdominal cancers 

(15-17).  Breathing irregularities are common in lung cancer patients and degrade both the quality 

of 4DCT images and the fidelity of tumor delineation (18-21). Because breathing irregularities 

also reduce the correlation between the motions of an external-surface surrogate and a mobile 

tumor, the position of the tumor cannot be reliably inferred from that of the surrogate during 60 

treatment delivery without radiographic verification (22-24).   Three general approaches have been 

advanced to overcome this problem, but none are without caveats: (1) Updating an adaptive, 

correlation-based model with frequent x-ray imaging presents a viable solution (2-4, 25-28), but 

this approach entails the invasive implantation of radio-opaque fiducial markers. (2) Models that 

employ physical principles to predict respiratory motion should be insensitive to breathing 65 

irregularities (29-32), but require a better understanding and more thorough validation of patient-

specific breathing patterns. (3) MR-guided radiotherapy (33, 34) offers real-time 2D cine imaging, 

but demands substantial investment, staff training, and maintenance resources. 

Respiration-induced motions often exhibit nonlinear behaviors, including phase shifts between 

the motions of an external body surface and internal structures, such as lung or liver tumors.  The 70 

phase shift can be substantial (10, 15, 35) and has been advanced as the most critical irregularity 

for external-internal models (36).  Such a phase shift engenders ellipsoidal trajectories in phase 

space: this nonlinear relationship illuminates the cause for the low correlation between the two 
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motion waveforms (1). Because they arise from asynchronized muscle engagement and tissue 

elasticity, phase shifts are known to be patient-specific and location-dependent (13, 15, 32, 35-38).  75 

A better understanding and more thorough characterization of the nonlinear features of organ 

movement are thus essential for building a model that accurately predicts tumor motion (29-31).  

Such a model may find application in respiratory gating, in tumor tracking, and in motion-

compensated treatment delivery.   

In this study, we report the feasibility of determining and correcting patient-specific phase 80 

shifts to enhance the correlation between external and internal respiratory waveforms. Quantitative 

estimates of the phase shift were obtained using three individual methods, including phase-space 

oval fitting (POF), principal component analysis (PCA), and analytic signal analysis (ASA).  A 

fourth method excluded outliers (>2σ) from the individual methods and combined the remaining 

phase-shift estimates in a weighted average. This approach improved the phase-shift calculation’s 85 

robustness to breathing irregularities.  Maximizing the time-domain cross-correlation between the 

motion waveforms and between the diaphragm-motion trajectories extracted from navigator-

triggered and bellows-rebinned 4DMRI images provided two additional strategies to verify the 

results obtained by the phase-domain methods. The respiratory waveforms were acquired 

concurrently by an internal navigator and by external bellows during 4DMRI scans of ten healthy 90 

volunteers under an IRB-approved protocol.  
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METHODS AND MATERIALS 

Simultaneous external and internal waveforms acquired during 4DMRI 

Respiratory-correlated 4DMRI scans that employed T2-weighted fast spin-echo sequences 100 

were acquired using a 3T MR scanner (Ingenia, Philips Healthcare, Amsterdam, Netherland) in 

ten healthy volunteers under an IRB-approved protocol.  During each scan, external bellows 

(496Hz) and internal navigator (20Hz) waveforms were acquired concurrently (13).  The bellows 

was placed inferior to the sternum and the navigator (3x3x6cm3) was placed on the dome of the 

right diaphragm.  The initial timestamps (in milliseconds) in the scanner and bellows log files were 105 

used to synchronize the two waveforms.  A 4DMRI scan lasted 6-15 minutes, during which 2D 

coronal slice images were acquired. The navigator signal was used to prospectively sort these slices 

into 10 respiratory cycle bins using an amplitude-binning method (13).  

Three waveform segments (10-300s) at the beginning, middle, and end of a scan were divided 

into 10 or 12.5-second windows that were used for phase-shift assessment.  Multiple windows 110 

(12.5s) were used in the middle and end segments (Table S1), and each window overlapped with 

5s of the subsequent window.  The navigator signal was continuous except at times when slice 

images were acquired.  The bellows waveform was down-sampled to match the navigator’s 20-

Hertz frame rate, and both waveforms were normalized and centered.  The occurrence of 

ellipsoidal trajectories in phase-space (navigator vs. bellows) confirmed the existence of a phase 115 

shift between the waveforms (1).  Estimates of the phase shift were obtained through phase-space 

oval fitting (POF), principal component analysis (PCA), and analytic signal analysis (ASA) 

methods.  After correcting the calculated phase shift, the resulting correlation between the two 

waveforms was compared with their original correlation and with the maximum value of their 

time-domain cross-correlation (TCC) (Fig. 1). 120 
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Phase-domain methods to assess the phase shift 

Three phase-domain methods were implemented in Mathematica (Version 10.1; Wolfram) and 

also combined to yield a fourth robust and adaptive strategy for estimating the phase shift. 

(1) Phase-Space Oval Fitting (POF):  The phase shift between the bellows 𝒙(𝒕) and navigator 𝒚(𝒕) 125 

waveforms was calculated from the best–fit oval in phase space (Fig. S1A).  In this space, an 

ellipse centered at (0,0) is described by 

(𝒙 𝐜𝐨𝐬 𝜽 + 𝒚 𝐬𝐢𝐧𝜽)𝟐

𝒂𝟐
 +  

(𝒚 𝐜𝐨𝐬 𝜽 − 𝒙 𝐬𝐢𝐧𝜽)𝟐

𝒃𝟐
= 𝟏,                                    (𝟏) 

where 𝒂 and 𝒃 are the major and minor half-axis lengths and 𝜽 is the angle by which the major 

axis is tilted clockwise from the positive 𝒙-axis.  For simplicity, we modeled the waveforms 130 

as two sinusoidal functions 𝒙(𝒕) =  𝒓𝟏 𝐜𝐨𝐬(𝝎𝟏𝒕) and 𝒚(𝒕) =  𝒓𝟐 𝐜𝐨𝐬(𝝎𝟐𝒕 + 𝝓) with phase 

shift 𝝓 and assuming 𝝎𝟏 = 𝝎𝟐 = 𝝎.  The phase shift is given by 

𝝓 = 𝐭𝐚𝐧−𝟏 [
𝒂𝒃 𝐬𝐞𝐜 𝜽

(𝒂𝟐 − 𝒃𝟐) 𝐬𝐢𝐧𝜽
].                                                               (𝟐) 

The residual error RE in phase-space ellipse’s fit of the data points {𝒙𝒋, 𝒚𝒋} is given by 

𝑹𝑬 =
𝟏

𝒏
∑𝐦𝐢𝐧

𝜶𝒋
√(𝒙𝒋 − 𝒓𝟏 𝐜𝐨𝐬(𝜶𝒋))𝟐 + (𝒚𝒋 − 𝒓𝟐 𝐜𝐨𝐬(𝜶𝒋 + 𝝓))𝟐

𝒏

𝒋=𝟏

 .                  (𝟑) 135 

An explanation of how the sign of 𝝓 is determined and detailed deviations of Eqns. 2 and 3, 

are provided in Appendix A1. 

(2) Principal Component Analysis (PCA): A 𝟐 × 𝒏 matrix 𝑨 =  [bellows: 𝒙(𝒕), navigator: 𝒚(𝒕)] 

was constructed from the two concurrent waveforms and the covariance matrix for this dataset 

was formed by the multiplication 𝑨𝑨𝑻/(𝒏 − 𝟏).  The principal components, 𝒑⃗⃗ 𝟏 and 𝒑⃗⃗ 𝟐, were 140 

given by the eigenvectors of the covariance matrix.  The square roots of the eigenvalues, √𝝀𝟏 
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and √𝝀𝟐, represented the standard deviation in the dataset in the directions of the principal 

component vectors.  An ellipse was then constructed with major and minor axes pointing in 

the directions of  𝒑⃗⃗ 𝟏 and  𝒑⃗⃗ 𝟐 and with half lengths 𝒂 = √𝝀𝟏 and 𝒃 = √𝝀𝟐, respectively (Fig. 

S1A).  The tilt angle of the ellipse was given by 𝜽 = 𝐭𝐚𝐧−𝟏[𝒑⃗⃗ 𝟏,𝒚/𝒑⃗⃗ 𝟏,𝒙] and the phase shift 𝝓 145 

by Eq. 2.  See Appendix A2 for additional details. 

(3) Analytic Signal Analysis (ASA): An analytic representation of a real-valued function, called 

the function’s analytic signal, can be constructed as follows: 

𝒇𝑨(𝒕) = 𝒇(𝒕) + 𝒊𝒇𝑯(𝒕), 

where 𝒇(𝒕) is the original function, 𝒇𝑯(𝒕) is the Hilbert transform of 𝒇(𝒕), and 𝒇𝑨(𝒕) is the 150 

analytic signal of 𝒇(𝒕). The discrete Fourier (𝓕) and inverse Fourier (𝓕−𝟏) transforms were 

employed to calculate the Hilbert transforms for the discrete signals: 

𝒇𝑯(𝒕) = 𝓕−𝟏{−𝒊 𝐬𝐢𝐠𝐧(𝝎)𝓕{𝒇(𝒕)}(𝝎)}(𝒕);      𝒔𝒊𝒈𝒏(𝝎) =  {

𝟏,       𝒊𝒇 𝝎 > 𝟏;
𝟎,       𝒊𝒇 𝝎 = 𝟎;
−𝟏,   𝒊𝒇 𝝎 < 𝟏.

 

The instantaneous phase of a signal at time 𝒕𝒌, 𝝋(𝒕𝒌), is found from its analytic signal: 

𝝋(𝒕𝒌) = 𝐭𝐚𝐧−𝟏 [
𝐈𝐦𝒇𝑨(𝒕𝒌)

𝐑𝐞 𝒇𝑨(𝒕𝒌)
] = 𝐭𝐚𝐧−𝟏 [

𝒇𝑯(𝒕𝒌)

𝒇(𝒕𝒌)
] .                                (𝟒) 155 

Then ∆𝝋(𝒕𝒌) = 𝝋𝟏(𝒕𝒌) − 𝝋𝟐(𝒕𝒌) is the instantaneous phase shift between these two signals 

and averaging over a set of data points yields the mean phase shift 𝝓 = 〈𝚫𝝋(𝒕𝒌)〉𝒕𝒌 for the 

interval containing the time points 𝒕𝒌 (Fig. S1B).  

A combined method to calculate a mean phase shift (MPS):  

Breathing irregularities may cause the individual methods to yield unreliable results.  More 160 

reliable estimates can therefore be obtained from a combined method that excludes individual-

method outliers. A moving average was initialized by weighting the phase-shift estimates at time 
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zero by the reciprocal of their 𝑹𝑬 (see Appendix A).  At each successive time point, the phase-

shift was estimated by halving the weighted average of the phase shifts calculated by the individual 

methods at the current time point and adding the result to half of the previous moving average 165 

value.  A moving standard deviation 𝝈 was calculated as the average standard deviation of the 

individual phase shifts found at all the previous time points.  Numerical simulations of noisy 

sinusoids revealed a strong correlation between the RE and the true error in the phase-shift estimate 

(Figs. S1C,D).  This analysis also informed the choice that RE = 0.2 would serve as the maximum 

tolerable threshold (Appendix B).   An outlier was defined to be a phase shift estimated by an 170 

individual method whose value was more than 𝟐𝝈 away from the running average and whose 𝑹𝑬 

for the associated phase-space ellipse exceeded 0.2. 

Time-Domain Cross-Correlation (TCC) method:    

The cross-correlation in the time domain, 𝐓𝐂𝐂(𝝉𝒋), between the two signals was calculated as 

follows: 175 

𝐓𝐂𝐂(𝝉𝒋) =
∑ 𝒔𝑰(𝒕𝒌 + 𝝉𝒋)𝒔𝑬(𝒕𝒌)

𝑵
𝒌=𝟏 − ∑ 𝒔𝑰(𝒕𝒌 + 𝝉𝒋)

𝑵
𝒌=𝟏 ∑ 𝒔𝑬(𝒕𝒊)

𝑵
𝒊=𝟏

√∑ [𝒔𝑰(𝒕𝒌 + 𝝉𝒋) − ∑ 𝒔𝑰(𝒕𝒊 + 𝝉𝒋)
𝑵
𝒊=𝟏 ]

𝟐𝑵
𝒌=𝟏 √∑ [𝒔𝑬(𝒕𝒌) − ∑ 𝒔𝑬(𝒕𝒊)

𝑵
𝒊=𝟏 ]𝟐𝑵

𝒌=𝟏

,         (𝟓) 

where the number of points 𝑵 was a subset of that contained within the time window, 𝒔𝑰 is the 

navigator signal, and 𝒔𝑬 is the bellows signal.  𝐓𝐂𝐂(𝟎) gives the original correlation between the 

external and internal waveforms.  Multiplying the frequency of the bellows or navigator 

waveforms by the value of 𝝉𝒋 that maximizes 𝐓𝐂𝐂(𝝉𝒋) provides another estimate of the phase shift 180 

between the two signals.  The frequency of the waveforms was found in four ways: the frequency 

at which the power spectrum of the 1. bellows or 2. navigator signals achieved their maximum 

value, and the average slope of the 3. bellows’ or 4. navigator’s instantaneous phase. The 

correlation coefficient between each pair of frequency estimates exceeded 0.9, indicating that any 
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of the four estimates works equally well at most time points. When a discrepancy existed between 185 

these estimates, the frequency that maximized the phase-shift corrected correlation, described 

below, was chosen. 

Diaphragm-motion phase shifts between navigator-triggered and bellows-rebinned 4DMRI  

  Following previously reported methods, two binning strategies were employed to produce 

two different 4DMRI images (13).  Sorting the 2D slices into phase bins based on the amplitude 190 

of the internal navigator generated the navigator-triggered 4DMRI image. The bellows-rebinned 

4DMRI image was constructed by instead using the phase of the concurrently acquired external-

bellows signal to sort the 2D slices into phase bins.  Two diaphragm-motion trajectories were then 

obtained by manually tracking the position of the right diaphragm dome’s apex in both 4DMRI 

images through the breathing cycle. The two trajectories are functions of phase-bin number. A 195 

cross-correlation analysis was performed to identify the phase shift that arises between the two 

different 4DMRI images for each subject.   

2.4  1D phase-shift correction for improved external-internal correlation 

To correct the phase shift estimated by the 1D methods within each time window, the navigator 

signal was shifted in time by an amount equal to the calculated phase shift divided by the 200 

waveform’s frequency. The frequency of the waveform was estimated in four ways, as described 

in the previous section. At each time point, the frequency estimate was chosen to maximize the 

correlation between the waveforms following phase-shift correction. By comparing the correlation 

coefficient for the original waveforms to that of the phase-shift corrected waveforms, we assessed 

whether correcting the phase shift enhances the correlation between the internal and external 205 

signals.   



 

  11 

RESULTS 

Patient-specific phase-shifts 

The calculated phase shifts spanned a broad range of 0.5–1.7 radians using the MPS method 

(Table 1). By excluding outliers and averaging the phase shifts obtained by the ASA, POF, and 210 

PCA methods, the MPS method yields a smoother and more robust estimate (Fig. 2A, Fig S2).  

Owing to their different assumptions and varied sensitivity to noise and breathing irregularities, 

each method yields slightly different phase-shift estimates.  However, these phase shifts are 

strongly correlated: Pearson’s correlation coefficient 𝑟 exceeded 0.8 for every pair of methods, 

except 𝑟 = 0.77 for the maximum TCC and ASA methods. 215 

The external bellows signal was found to lead the motion acquired by the internal navigator in 

the ten subjects by all five waveform methods (Table 1, Fig. 2).  The analysis also reveals that an 

individual’s phase shift can be relatively stable over several minutes (Fig. 2B). Changes in the 

phase shift may occur, however, when a volunteer alters his or her breathing pattern. For example, 

asking subjects 4 and 9 to take deep breaths near the end of the scans precipitated a nearly 0.5-220 

radian change in their phase shifts.  

Phase shift determined from tracking points in 4DMRI images 

The phase shift measured between the diaphragm trajectories based on navigator-triggered and 

bellows-rebinned RC-4DMRI images also revealed that the phase of the bellows waveform leads 

that of the navigator signal (Fig. 2C, Table 1). Because it collects into bins images at various times 225 

throughout the scan, this approach can estimate only an average phase shift.  That close agreement 

between the 4D-imaging and 1D-waveform methods was seen for 6 volunteers indicates that the 

phase shift is stable in time for these individuals. The discrepancy observed for the other 4 

volunteers may stem from breathing irregularities and the fact that the 4D image and 1D signal 
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were not acquired exactly at the same time, namely the navigator waveforms were not recorded 230 

during image acquisition.  The 4D-imaging method can accurately estimate the average phase shift 

only if the shapes of the navigator and bellows waveforms are similar and are stable in time. 

Pronounced irregularities in the bellows waveform acquired for volunteer 4 led to a relatively flat 

diaphragm-motion trajectory in the bellows-rebinned 4DMRI image.  Owing to these large 

uncertainties, the cross-correlation analysis yielded an unreliable phase-shift estimate in this 235 

subject (Table 1). 

 

 

Enhanced motion correlation with phase-shift correction 

An improved correlation between the internal navigator and external bellows signals after 240 

phase-shift correction was found for every subject.  On average, the correlation was enhanced from 

0.45±0.28 to 0.85±0.15, and to above 0.9 for five subjects (Table 2, Fig. 3B). The improvement 

appeared to be systematic as an enhanced correlation was found in nearly every time window (Fig. 

S3). Interestingly, an improved correlation was achieved even in the only time window that all 

three methods failed. 245 

The time-domain cross-correlation analysis provided comparable values to those obtained by 

correcting the phase shift (Table 2, Fig. 3B).  The maximum TCC and MPS results are in close 

agreement, except for subjects 4 and 8, the individuals with the largest phase shifts (1.27 and 1.29 

radians) and thus the lowest uncorrected correlations (r=0.19 and 0.09).  Although correcting their 

phase shifts effected the greatest relative correlation enhancement, the maximum TCC results 250 

suggest that further improvement may be possible for these subjects. 

Correcting the phase shift causes the ellipsoidal phase-space trajectory to collapse into a more 

linear shape, which graphically illustrates the improved correlation (Fig. 3C, Supplemental Video).  
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The phase-space representation also grants a view into breathing irregularities: Although the 

positions or orientations of the phase-space trajectories may vary considerably, the phase shift 255 

remains stable. The Mann-Whitney U Test revealed that the difference between the original and 

phase-shift-corrected correlations as well as that between the original correlation and the 

maximum TCC was statistically significant in all volunteers (Fig. 4A).  The phase-shift estimation 

strategy is also robust: the combined method failed in only a single time window and the success 

rate exceeded 95% for each of the individual methods (Table S1, Fig. 4B).  260 

 

 

DISCUSSION 

Based on clinical observations (1, 13, 29), it was reasonable to hypothesize that some patient-

specific respiratory features, including the phase shift, may remain invariant over several minutes 265 

during a single imaging or treatment session. Correcting the persistent patient-specific phase shift 

was therefore expected to improve the correlation between the internal and external respiratory 

motions.   

Subject-specific phase shift in phase, time, and image domains 

In total, six different methods (POF, PCA, ASA, MPS, maximum TCC, and image-based 270 

trajectory), drawn from the phase, time, and image domains, were employed to determine the 

patient-specific phase shift between concurrent external bellows and internal navigator waveforms.  

Unlike the maximum TCC method that operates in the time-domain, assessing phase shifts in the 

phase domain does not require estimates of the breathing frequency.  In the image domain, an 

averaged phase shift can be extracted retrospectively.  The close agreement found for the 275 
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correlation enhancement among these methods suggests an accurate assessment of the phase shift 

and accords with the proposition that the phase shift constitutes the primary cause of the original 

weak correlation.   

Phase shifts, which should depend on the nature of the subject’s breathing pattern (30) and on 

the placement of the external bellows (38, 39), were observed in all 10 subjects.  The 280 

thoracoabdominal movements are initiated by the diaphragm and intercostal muscles. These 

structures therefore bear on the breathing pattern, which refers to the ratio of thoracic to abdominal 

involvement during respiration. Even when placed inferior to the xiphoid of the sternum, the 

bellows may detect the motion of the inferior ribs, resulting in a complex motion pattern.  This 

might explain the large phase shifts found for several volunteers, similar to previous reports (13, 285 

15, 35, 38).  Lastly, the MR navigator echo allows us to monitor respiratory motion for 6-15 

minutes, a timeframe that is similar in length to radiotherapy treatments and much longer than the 

30 to 60-second windows usually employed in fluoroscopic imaging (2, 40).  

The subject-specific phase shift is stable and correctable 

Two periodic waveforms with differing phases will consistently move in opposite directions 290 

at certain times during their cyclical motions.  Such a phase shift was recognized as the most 

critical irregularity for external-internal models (36).  We demonstrated that the phase shift is 

stable in time and that the phase shift—not random irregularities—is the primary cause for the low 

correlation between the internal and external waveforms (0.45±0.28).  Following phase-shift 

correction, the correlation was significantly improved in all volunteers (0.85±0.16). This finding 295 

demonstrates the importance and feasibility of detecting and correcting a dynamic phase shift to 

establish a robust external-internal motion model for respiratory-gated radiotherapy.  
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Obtaining similar correlation enhancements through disparate methods provided solid cross 

verification that the phase shifts were accurately estimated.  Because the PCA method performed 

best (Fig. 4B) and produced results that were nearly identical to those produced by the MPS 300 

method (Table 2), it is possible to simplify the phase-shift estimation strategy to employ this single 

approach.  However, the POF and ASA methods yielded greater correlation improvements than 

the PCA method in several time windows. By incorporating all three estimates, the MPS method 

is thus equipped to attain greater robustness than any individual method.   

The temporal resolution of the phase-shift calculation 305 

The temporal resolution of the phase-shift calculation is approximately equal to the length of 

the time window, which can reasonably be made as small as 5s.  The methods therefore track slow 

changes in the phase shift well, but lag behind abrupt changes by the length of one time window.  

The close agreement between the phase shifts estimated by the phase-domain and time-domain 

methods together with the small number of sharp declines observed in the corrected correlation 310 

suggest, however, that rapid changes in the phase shift occur only rarely and that the temporal 

resolution of the combined method is adequate to track changes in the phase shift. 

In the single time window that all three phase-space methods failed, the phase-space trajectory 

resembles two disparately oriented ovals that, together, cannot be accurately represented by a 

single ellipse.  After subdividing this time window into two parts that each contained only one of 315 

these ovals, the combined method succeeded in estimating phase shifts of approximately 1.45 

radians, values that are similar to phase shifts found for subsequent time windows. The sudden 

reorientation of the phase-space trajectory during this time window may reflect an abrupt change 

in the subject’s breathing pattern or in the baseline position of the diaphragm or epigastrium. 
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Although the phase shift seems unaffected, these changes can result in failure of the phase-shift 320 

estimation strategy. 

The implication of phase-corrected external surrogate for respiratory gating 

In this study of healthy volunteers, the internal motion target is the diaphragm, which can serve 

only as an internal motion surrogate for a lung or liver tumor.  In a future patient study, we can 

explore the feasibility of placing the internal navigator on a sizable tumor to obtain a direct 325 

measurement of the phase shift between the motions of the tumor and bellows.  Alternatively, we 

can employ the super-resolution, time-resolved 4DMRI in a patient study, as it can measure a 

tumor’s motion at a 2-Hertz frame rate (14).  To meet various clinical needs, the dynamic MR 

imaging data can be used to build either a simple phase-shift-corrected respiratory model or a 

sophisticated physics-based perturbation model that incorporates the movement of the entire 330 

torso’s surface through optical imaging (41, 42).  

Recent reports suggest that patients’ breathing irregularities may cause tumor underdosing 

when the internal tumor volume is used to plan the treatment (40). Guidance for managing clinical 

motion is therefore urgently needed.  Further study of the external-internal motion relationship and 

tumor-motion monitoring during treatment will thus be critical for improving the accuracy and 335 

outcomes of existing therapeutic strategies. 
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CONCLUSION 340 

Significantly enhanced correlation between the movement of external and internal structures 

during free breathing has been achieved by correcting a patient-specific phase shift.  Three phase-

domain methods were developed to dynamically estimate the phase shift and a more robust 

technique was realized by combining these individual methods.  The value of the phase shift tends 

to be stable over 6 to 15 minutes, and possibly longer, suggesting that the phase shift can be 345 

determined and corrected immediately prior to treatment and periodically monitored for changes.  

Employing the phase-space technique to boost the external-internal motion correlation thus offers 

a promising strategy for guiding respiratory-gated radiotherapy.  

 

  350 



 

  18 

REFERENCES:  

1. Seppenwoolde Y, Shirato H, Kitamura K, et al. Precise and real-time measurement of 3D 

tumor motion in lung due to breathing and heartbeat, measured during radiotherapy. International 

journal of radiation oncology, biology, physics. 2002;53(4):822-834. 

2. Hoisak JD, Sixel KE, Tirona R, et al. Correlation of lung tumor motion with external 355 

surrogate indicators of respiration. Int J Radiat Oncol Biol Phys. 2004;60(4):1298-1306. 

3. Ozhasoglu C, Murphy MJ. Issues in respiratory motion compensation during external-

beam radiotherapy. International journal of radiation oncology, biology, physics. 

2002;52(5):1389-1399. 

4. Pepin EW, Wu H, Zhang Y, Lord B. Correlation and prediction uncertainties in the 360 

cyberknife synchrony respiratory tracking system. Med Phys. 2011;38(7):4036-4044. 

5. Kupelian P, Willoughby T, Mahadevan A, et al. Multi-institutional clinical experience 

with the Calypso System in localization and continuous, real-time monitoring of the prostate 

gland during external radiotherapy. Int J Radiat Oncol Biol Phys. 2007;67(4):1088-1098. 

6. Low DA, Nystrom M, Kalinin E, et al. A method for the reconstruction of four-365 

dimensional synchronized CT scans acquired during free breathing. Medical physics. 

2003;30(6):1254-1263. 

7. Vedam SS, Keall PJ, Kini VR, et al. Acquiring a four-dimensional computed tomography 

dataset using an external respiratory signal. Physics in medicine and biology. 2003;48(1):45-62. 

8. Ford EC, Mageras GS, Yorke E, Ling CC. Respiration-correlated spiral CT: a method of 370 

measuring respiratory-induced anatomic motion for radiation treatment planning. Medical 

physics. 2003;30(1):88-97. 

9. Sonke JJ, Zijp L, Remeijer P, van Herk M. Respiratory correlated cone beam CT. 

Medical physics. 2005;32(4):1176-1186. 

10. Cai J, Chang Z, Wang Z, et al. Four-dimensional magnetic resonance imaging (4D-MRI) 375 

using image-based respiratory surrogate: a feasibility study. Med Phys. 2011;38(12):6384-6394. 

11. Hu Y, Caruthers SD, Low DA, et al. Respiratory amplitude guided 4-dimensional 

magnetic resonance imaging. Int J Radiat Oncol Biol Phys. 2013;86(1):198-204. 

12. Kauczor HU, Plathow C. Imaging tumour motion for radiotherapy planning using MRI. 

Cancer Imaging. 2006;6:S140-144. 380 

13. Li G, Wei J, Olek D, et al. Direct Comparison of Respiration-Correlated Four-

Dimensional Magnetic Resonance Imaging Reconstructed Using Concurrent Internal Navigator 

and External Bellows. Int J Radiat Oncol Biol Phys. 2017;97(3):596-605. 

14. Li G, Wei J, Kadbi M, et al. Novel Super-Resolution Approach to Time-Resolved 

Volumetric 4-Dimensional Magnetic Resonance Imaging With High Spatiotemporal Resolution 385 

for Multi-Breathing Cycle Motion Assessment. Int J Radiat Oncol Biol Phys. 2017;98(2):454-

462. 

15. Keall PJ, Mageras GS, Balter JM, et al. The management of respiratory motion in 

radiation oncology report of AAPM Task Group 76. Med Phys. 2006;33(10):3874-3900. 

16. Li G, Mageras G, Dong L, Mohan R. Image-guided radiation therapy. In: Khan FM, 390 

Gerbi BJ, editors. Treatment Planning in Radiation Oncology. 4th Edition ed. Philadelphia, PA: 

Lippincott Williams & Wilkins; 2016. p. 229-258. 

17. Kerkmeijer LG, Fuller CD, Verkooijen HM, et al. The MRI-Linear Accelerator 

Consortium: Evidence-Based Clinical Introduction of an Innovation in Radiation Oncology 

Connecting Researchers, Methodology, Data Collection, Quality Assurance, and Technical 395 

Development. Front Oncol. 2016;6:215. 



 

  19 

18. Yamamoto T, Langner U, Loo BW, Jr., et al. Retrospective analysis of artifacts in four-

dimensional CT images of 50 abdominal and thoracic radiotherapy patients. Int J Radiat Oncol 

Biol Phys. 2008;72(4):1250-1258. 

19. Watkins WT, Li R, Lewis J, et al. Patient-specific motion artifacts in 4DCT. Med Phys. 400 

2010;37(6):2855-2861. 

20. Persson GF, Nygaard DE, Af Rosenschold PM, et al. Artifacts in conventional computed 

tomography (CT) and free breathing four-dimensional CT induce uncertainty in gross tumor 

volume determination. Int J Radiat Oncol Biol Phys. 2011;80(5):1573-1580. 

21. Li G, Cohen P, Xie H, et al. A novel four-dimensional radiotherapy planning strategy 405 

from a tumor-tracking beam's eye view. Phys Med Biol. 2012;57(22):7579-7598. 

22. Fayad H, Pan T, Clement JF, Visvikis D. Technical note: Correlation of respiratory 

motion between external patient surface and internal anatomical landmarks. Medical physics. 

2011;38(6):3157-3164. 

23. Korreman SS, Juhler-Nottrup T, Boyer AL. Respiratory gated beam delivery cannot 410 

facilitate margin reduction, unless combined with respiratory correlated image guidance. 

Radiother Oncol. 2008;86(1):61-68. 

24. Ionascu D, Jiang SB, Nishioka S, et al. Internal-external correlation investigations of 

respiratory induced motion of lung tumors. Med Phys. 2007;34(10):3893-3903. 

25. Seppenwoolde Y, Berbeco RI, Nishioka S, et al. Accuracy of tumor motion compensation 415 

algorithm from a robotic respiratory tracking system: a simulation study. Med Phys. 

2007;34(7):2774-2784. 

26. Hoogeman M, Prevost JB, Nuyttens J, et al. Clinical accuracy of the respiratory tumor 

tracking system of the cyberknife: assessment by analysis of log files. Int J Radiat Oncol Biol 

Phys. 2009;74(1):297-303. 420 

27. Malinowski K, McAvoy TJ, George R, et al. Incidence of changes in respiration-induced 

tumor motion and its relationship with respiratory surrogates during individual treatment 

fractions. Int J Radiat Oncol Biol Phys. 2012;82(5):1665-1673. 

28. Nishioka T, Nishioka S, Kawahara M, et al. Synchronous monitoring of external/internal 

respiratory motion: validity of respiration-gated radiotherapy for liver tumors. Jpn J Radiol. 425 

2009;27(7):285-289. 

29. Low DA, Parikh PJ, Lu W, et al. Novel breathing motion model for radiotherapy. Int j 

radiat oncol biol phys. 2005;63(3):921-929. 

30. Yuan A, Wei J, Gaebler CP, et al. A novel respiratory motion perturbation model 

adaptable to patient breathing irregularities. Int J Radiat Oncol Biol Phys. 2016;96(5):1087-1096. 430 

31. Ackerley EJ, Cavan AE, Wilson PL, et al. Application of a spring-dashpot system to 

clinical lung tumor motion data. Med Phys. 2013;40(2):021713. 

32. Seregni M, Cerveri P, Riboldi M, et al. Robustness of external/internal correlation models 

for real-time tumor tracking to breathing motion variations. Phys Med Biol. 2012;57(21):7053-

7074. 435 

33. Li HH, Rodriguez VL, Green OL, et al. Patient-Specific Quality Assurance for the 

Delivery of Co Intensity Modulated Radiation Therapy Subject to a 0.35-T Lateral Magnetic 

Field. Int J Radiat Oncol Biol Phys. 2014. 

34. McPartlin AJ, Li XA, Kershaw LE, et al. MRI-guided prostate adaptive radiotherapy - A 

systematic review. Radiother Oncol. 2016. 440 

35. Mukumoto N, Nakamura M, Sawada A, et al. Accuracy verification of infrared marker-

based dynamic tumor-tracking irradiation using the gimbaled x-ray head of the Vero4DRT 

(MHI-TM2000). Med Phys. 2013;40(4):041706. 



 

  20 

36. Seregni M, Kaderka R, Fattori G, et al. Tumor tracking based on correlation models in 

scanned ion beam therapy: an experimental study. Phys Med Biol. 2013;58(13):4659-4678. 445 

37. Li R, Mok E, Han B, et al. Evaluation of the geometric accuracy of surrogate-based gated 

VMAT using intrafraction kilovoltage x-ray images. Med Phys. 2012;39(5):2686-2693. 

38. Cai J, Chang Z, O'Daniel J, et al. Investigation of sliced body volume (SBV) as 

respiratory surrogate. J Appl Clin Med Phys. 2013;14(1):3987. 

39. Li G, Arora NC, Xie H, et al. Quantitative prediction of respiratory tidal volume based on 450 

the external torso volume change: a potential volumetric surrogate. Phys Med Biol. 

2009;54(7):1963-1978. 

40. Dhont J, Vandemeulebroucke J, Burghelea M, et al. The long- and short-term variability 

of breathing induced tumor motion in lung and liver over the course of a radiotherapy treatment. 

Radiother Oncol. 2017;126:in press. 455 

41. Li G, Huang H, Wei J, et al. Novel spirometry based on optical surface imaging. Med 

Phys. 2015;42(4):1690. 

42. Li G, Wei J, Huang H, et al. Characterization of optical-surface-imaging-based 

spirometry for respiratory surrogating in radiotherapy. Med Phys. 2016;43(3):1348. 

 460 

 

 

 

 

  465 



 

  21 

FIGURES: 

 

 
Figure 1.  Workflow for determining and correcting the phase shift to enhance the correlation 

between the internal and external waveforms.  Three quantitative phase-domain methods were 470 

applied, including phase-space oval fitting (POF), principal component analysis (PCA), and 

analytic signal analysis (ASA).  The correlation between the phase-shift corrected external and 

internal waveforms was compared to the original correlation and to the waveforms’ maximum 

time-domain cross-correlation (TCC). 

 475 
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Figure 2. Volunteer-specific phase shifts determined by six methods. (A) Phase shift over time for 

volunteer 2 calculated every 5s using the analytic signal analysis (purple), phase space oval-fitting 

(red), principal component analysis (green), combined mean phase shift (blue), or maximum time-

domain cross-correlation (magenta) method. (B) Phase shifts over time for 10 volunteers 480 

calculated using the combined method.  The × in the panel for volunteer 4 indicates the single time 

point across all volunteers at which the combined method failed. (C) Representative phase shifts 

estimated from measured diaphragm motions. Trajectories were obtained from navigator-triggered 

(dark-red circles) and bellows-rebinned (dark-blue squares) 4DMRI images before (upper panels) 

and after (lower panels) phase alignment for subjects 3 (left), 8 (middle), and 10 (right). The dark-485 

red arrows indicate the estimated phase shift. 
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Figure 3. Correlation enhancement via phase-shift correction calculated every 5s.  (A) Correlation 

over time between the internal-navigator and external-bellows signals for subject 2 before (orange) 490 

and after phase-shift correction using the ASA (purple), POF (red), PCA (green), MPS (blue) and 

maximum TCC (dashed, magenta) methods. (B) Correlation enhancement over time for all 

subjects using the MPS method (blue). The cross-correlation is also shown for comparison 

(dashed, magenta).  (C) Phase-shift correction causes the phase-space oval (orange) to collapse 

(blue) for subject 2, providing a visual indication of the improved correlation.  The enhanced 495 

correlation is stable (B2) despite breathing irregularities (C, Supplemental Video). 
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Figure 4.  (A) Correlation coefficient averaged across all time points before (orange) and after 

(blue) phase-shift correction, together with the average maximum TCC value (striped, magenta). 

Phase-shift correction yields a statistically-significant enhancement of the correlation in all 500 

subjects (* p<0.05, *** p<0.005, Mann-Whitney U Test).  The error bars represent one standard 

deviation.  (B) Robustness (99.5% success rate) of the combined phase-domain method compared 

to the individual methods.  
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TABLES 

† Analytic signal analysis (ASA); phase-space oval fitting (POF); principal component analysis 520 

(PCA); mean phase shift (MPS); and time-domain cross-correlation (TCC). 
# Averaged over all volunteers’ mean phase shifts. 

* Severe breathing irregularities make the peak of the bellows waveform difficult to discern. 

 

 525 

Table 2. Correlation (mean±standard deviation) before and after phase-shift correction† 

Volunteer Original ASA POF PCA MPS Max TCC 

1 0.76 ± 0.03 0.95 ± 0.01 0.93 ± 0.02 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 

2 0.52 ± 0.07 0.93 ± 0.03 0.92 ± 0.03 0.93 ± 0.03 0.93 ± 0.03 0.91 ± 0.04 

3 0.84 ± 0.03 0.97 ± 0.02 0.92 ± 0.04 0.97 ± 0.02 0.96 ± 0.02 0.97 ± 0.02 

4 0.19 ± 0.16 0.75 ± 0.20 0.80 ± 0.17 0.80 ± 0.19 0.78 ± 0.21 0.93 ± 0.04 

5 0.86 ± 0.03 0.93 ± 0.03 0.88 ± 0.05 0.92 ± 0.03 0.92 ± 0.03 0.95 ± 0.01 

6 0.58 ± 0.10 0.86 ± 0.11 0.86 ± 0.09 0.88 ± 0.08 0.87 ± 0.08 0.85 ± 0.08 

7 0.52 ± 0.09 0.91 ± 0.05 0.89 ± 0.07 0.91 ± 0.06 0.91 ± 0.06 0.92 ± 0.02 

8 0.09 ± 0.08 0.69 ± 0.10 0.69 ± 0.10 0.69 ± 0.10 0.69 ± 0.10 0.74 ± 0.07 

9 0.56 ± 0.14 0.86 ± 0.06 0.83 ± 0.07 0.85 ± 0.07 0.84 ± 0.06 0.85 ± 0.08 

10 0.52 ± 0.18 0.75 ± 0.16 0.81 ± 0.11 0.85 ± 0.07 0.83 ± 0.09 0.85 ± 0.08 

Mean# 0.45 ± 0.28 0.83 ± 0.16 0.84 ± 0.14 0.85 ± 0.14 0.85 ± 0.15 0.90 ± 0.08 

† Analytic signal analysis (ASA); phase-space oval fitting (POF); principal component 

analysis (PCA); mean phase shift (MPS); and time-domain cross-correlation (TCC). 
# Averaged over all 192 time windows 

 

Table 1. Phase shifts (mean±standard deviation in radians) estimated in the phase, 

time, and image domains† 

Volunteer ASA POF PCA MPS Max TCC Image 

1 0.65 ± 0.03 0.83 ± 0.04 0.65 ± 0.02 0.70 ± 0.02 0.68 ± 0.06 0.6 

2 1.03 ± 0.10 1.03 ± 0.08 0.99 ± 0.05 1.02 ± 0.04 0.98 ± 0.07 1.0 

3 0.52 ± 0.06 0.84 ± 0.12 0.59 ± 0.06 0.62 ± 0.05 0.60 ± 0.05 0.5 

4 1.31 ± 0.22 1.47 ± 0.17 1.34 ± 0.19 1.37 ± 0.17 1.27 ± 0.19 --* 

5 0.49 ± 0.09 0.73 ± 0.14 0.59 ± 0.10 0.62 ± 0.05 0.48 ± 0.07 0.3 

6 0.91 ± 0.20 1.05 ± 0.10 0.87 ± 0.11 0.97 ± 0.06 0.67 ± 0.17 0.8 

7 1.05 ± 0.17 1.13 ± 0.06 1.08 ± 0.11 1.08 ± 0.07 0.97 ± 0.18 0.4 

8 1.50 ± 0.32 1.54 ± 0.06 1.63 ± 0.10 1.56 ± 0.06 1.29 ± 0.42 1.6 

9 0.84 ± 0.25 1.12 ± 0.15 0.97 ± 0.19 0.96 ± 0.20 0.86 ± 0.21 0.7 

10 1.05 ± 0.15 1.11 ± 0.26 0.89 ± 0.19 1.01 ± 0.14 0.72 ± 0.13 1.0 

Mean# 0.93 ± 0.33 1.08 ± 0.26 0.96 ± 0.33 0.99 ± 0.30 0.85 ± 0.27 0.77 
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APPENDIX A: Phase-space methods for determining phase shifts 

A1 Phase-Space Oval Fitting (POF):  The phase shift between the two concurrent waveforms was 

found from the oval that best fits the data in a 2D phase space [bellows: 𝒙(𝒕) and navigator: 

𝒚(𝒕)] (Fig. S1A). In this space, an ellipse centered at (0,0) is described by 530 

𝒄𝟏𝒙
𝟐 + 𝒄𝟐𝒙𝒚 + 𝒄𝟑𝒚

𝟐 = 
(𝒙 𝐜𝐨𝐬 𝜽 + 𝒚𝐬𝐢𝐧 𝜽)𝟐

𝒂𝟐
 +  

(𝒚 𝐜𝐨𝐬 𝜽 − 𝒙𝐬𝐢𝐧 𝜽)𝟐

𝒃𝟐
= 𝟏,       (𝟏 𝒐𝒓 𝑨𝟏) 

where 𝒂 and 𝒃 are the major and minor half-axis lengths and 𝜽 is the angle by which the major 

axis is tilted clockwise from the positive 𝒙-axis.  Equating the coefficients of the 𝒙𝟐, 𝒙𝒚, and 

𝒚𝟐 terms in Eq. A1 yields: 

𝜽 =  
𝟏

𝟐
𝐭𝐚𝐧−𝟏 (

𝒄𝟐

𝒄𝟏−𝒄𝟑
) , 𝒂 = √

𝐜𝐨𝐬(𝟐𝜽) 𝐬𝐢𝐧𝟐(𝜽)

𝒄𝟏 𝐜𝐨𝐬(𝟐𝜽)−𝐜𝐨𝐬𝟐(𝜽)((𝒄𝟏+𝒄𝟑) 𝐜𝐨𝐬𝟐(𝜽)−𝒄𝟏)
,   𝒃 = √

𝐜𝐨𝐬(𝟐𝜽)

(𝒄𝟏+𝒄𝟑) 𝐜𝐨𝐬𝟐(𝜽)−𝒄𝟏
   535 

The linear least squares method was used to fit the ellipse to the data to obtain the 

coefficients {𝒄𝟏, 𝒄𝟐, 𝒄𝟑}: 

[

𝒙𝟏
𝟐 𝒙𝟏𝒚𝟏 𝒚𝟏

𝟐

𝒙𝟐
𝟐 𝒙𝟐𝒚𝟐 𝒚𝟐

𝟐

𝒙𝟑
𝟐 𝒙𝟑𝒚𝟑 𝒚𝟑

𝟐

] [

𝒄𝟏

𝒄𝟐

𝒄𝟑

] =  [
𝟏
𝟏
𝟏
]    →   𝑴𝒄⃗ = 𝒗⃗⃗    →    𝒄⃗ ≈ (𝑴𝑴𝑻)−𝟏𝑴𝑻𝒗⃗⃗ .               (𝑨𝟐) 

For simplicity, we modeled the waveforms as two sinusoidal functions 𝒙(𝒕) =  𝒓𝟏 𝐜𝐨𝐬(𝝎𝟏𝒕) 

and 𝒚(𝒕) =  𝒓𝟐 𝐜𝐨𝐬(𝝎𝟐𝒕 + 𝝓) with phase shift 𝝓 and assuming 𝝎𝟏 = 𝝎𝟐 = 𝝎.  The 540 

trajectory {𝒓𝟏𝐜𝐨𝐬(𝜶) , 𝒓𝟐 𝐜𝐨𝐬(𝜶 + 𝝓)},  in which 𝝓 ≠ 𝟎 is the phase shift between the two 

signals, describes an ellipse in phase space. The distance from this ellipse to the phase-space 

origin at some value 𝜶 = 𝝎𝒕 is given by: 

𝒓𝟏
𝟐 𝐜𝐨𝐬𝟐(𝜶) + 𝒓𝟐

𝟐 𝐜𝐨𝐬𝟐(𝜶 + 𝝓)                                                                                                                 

=
𝟏

𝟒
[𝒓𝟏

𝟐(𝒆𝟐𝒊𝜶 + 𝟐 + 𝒆−𝟐𝒊𝜶) + 𝒓𝟐
𝟐(𝒆𝟐𝒊(𝜶+𝝓) + 𝟐 + 𝒆−𝟐𝒊(𝜶+𝝓))]                           (𝑨𝟑) 545 

This expression takes its extreme values at: 
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𝜶𝒌 =
𝟏

𝟒𝒊
𝐥𝐧 [

𝒓𝟏
𝟐 + 𝒓𝟐

𝟐𝒆−𝟐𝒊𝝓

𝒓𝟏
𝟐 + 𝒓𝟐

𝟐𝒆𝟐𝒊𝝓
] −

𝝅

𝟐
𝒌,   𝒌 ∈ ℤ .                                              (𝑨𝟒) 

At 𝜶𝟎, when 𝒌 = 𝟎, the distance from the ellipse to the origin in phase space is maximized, 

while at 𝜶𝟏 the distance is minimized. At these two points on the ellipse we have: 

𝟏).  𝒓𝟏 𝐜𝐨𝐬(𝜶𝟎) = 𝒂 𝐜𝐨𝐬(𝜽),        2). 𝒓𝟐 𝐜𝐨𝐬(𝜶𝟎 + 𝝓) = 𝒂𝐬𝐢𝐧(𝜽),      550 

𝟑).  𝒓𝟏 𝐜𝐨𝐬(𝜶𝟎 − 𝝅 𝟐⁄ ) = −𝒃𝐬𝐢𝐧(𝜽),   4). 𝒓𝟐 𝐜𝐨𝐬(𝜶𝟎 + 𝝓 − 𝝅/𝟐) = 𝒃 𝐜𝐨𝐬(𝜽),   

where 𝒂 and 𝒃 are half the length of the major and minor axes of the ellipse, respectively, and 

𝜽 is the clockwise tilt of the ellipse with respect to the positive 𝒙-axis. Solving this system of 

equations yields the phase shift between the two waveforms as well as the amplitude of each: 

𝝓 = 𝐭𝐚𝐧−𝟏 [
𝒂𝒃 𝐬𝐞𝐜𝜽

(𝒂𝟐−𝒃𝟐) 𝐬𝐢𝐧 𝜽
],  𝒓𝟏 = 𝐬𝐢𝐧𝜽√𝒂𝟐 + 𝒃𝟐 𝐜𝐨𝐭𝟐 𝜽,  𝒓𝟐 = 𝐜𝐨𝐬 𝜽√𝒂𝟐 + 𝒃𝟐 𝐭𝐚𝐧𝟐 𝜽.  (𝑨𝟓) 555 

Any given phase-space ellipse corresponds to two possible phase shifts: clockwise traversal 

around the ellipse occurs if the phase of the bellows leads that of the navigator, whereas the 

converse is true for counter-clockwise trajectories. The temporal order of the points in phase 

space was therefore employed to orient the ellipse. Finally, the residual error (RE) in the best-

fit ellipse was quantified by calculating the average distance between a data point and the best-560 

fit ellipse. Let 𝒅𝒋(𝜶𝒋) give the distance from the data point {𝒙𝒋, 𝒚𝒋} to the point on the ellipse 

{𝒓𝟏 𝐜𝐨𝐬(𝜶𝒋) , 𝒓𝟐 𝐜𝐨𝐬(𝜶𝒋 + 𝝓)}. Then the residual error is: 

𝟏

𝒏
∑𝐦𝐢𝐧

𝜶𝒋

𝒅𝒋(𝜶𝒋)

𝒏

𝒋=𝟏

=
𝟏

𝒏
∑𝐦𝐢𝐧

𝜶𝒋
√(𝒙𝒋 − 𝒓𝟏 𝐜𝐨𝐬(𝜶𝒋))𝟐 + (𝒚𝒋 − 𝒓𝟐 𝐜𝐨𝐬(𝜶𝒋 + 𝝓))𝟐

𝒏

𝒋=𝟏

 .   (𝑨𝟔) 

In the above expression, 𝒏 is the number of data points in the window and is given by the 

duration of the window times the 20-Hertz sampling frequency. The minimization with respect 565 

to 𝜶𝒋 is accomplished by differentiating 𝒅𝒋 with respect to 𝜶𝒋 and setting the result equal to 0. 

Rearranging and letting 𝒛𝒋 = 𝒆𝒊𝜶𝒋 produces the following quartic: 
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𝒛𝒋
𝟒(𝒓𝟏

𝟐 + 𝒓𝟐
𝟐𝒆𝟐𝒊𝝓) − 𝟐𝒛𝒋

𝟑(𝒓𝟏𝒙𝒋 + 𝒓𝟐𝒚𝒋𝒆
𝒊𝝓) + 𝟐𝒛𝒋(𝒓𝟏𝒙𝒋 + 𝒓𝟐𝒚𝒋𝒆

−𝒊𝝓) − (𝒓𝟏
𝟐 + 𝒓𝟐

𝟐𝒆−𝟐𝒊𝝓) = 𝟎. 

(𝑨𝟕) 

This equation has four solutions, call them {𝒛𝒋
∗}, and the argument of each, 𝜶𝒋

∗ = 𝐚𝐫𝐠 𝒛𝒋
∗ =570 

−𝒊 𝐥𝐧 𝒛𝒋
∗, must be plugged into 𝒅𝒋(𝜶𝒋) to determine which minimizes the distance between the 

data point {𝒙𝒋, 𝒚𝒋} and the best-fit ellipse. 

A2 Principal Component Analysis (PCA): A 𝟐 × 𝒏 matrix 𝑨 =  [bellows: 𝒙(𝒕), navigator: 𝒚(𝒕)] 

was constructed from the two concurrent waveforms and the covariance matrix for this dataset 

was formed by the multiplication 𝑨𝑨𝑻/(𝒏 − 𝟏).  The principal components, 𝒑⃗⃗ 𝟏 and 𝒑⃗⃗ 𝟐, were 575 

given by the eigenvectors of the covariance matrix.  The square roots of the eigenvalues, √𝝀𝟏 

and √𝝀𝟐, represented the standard deviation in the dataset in the directions of the principal 

component vectors.  An ellipse was then constructed with major and minor axes pointing in 

the directions of  𝒑⃗⃗ 𝟏 and  𝒑⃗⃗ 𝟐 and with half lengths 𝒂 = √𝝀𝟏 and  𝒃 = √𝝀𝟐, respectively (Fig. 

S1A).  The tilt angle of the ellipse was given by 𝜽 = 𝐭𝐚𝐧−𝟏[𝒑⃗⃗ 𝟏,𝒚/𝒑⃗⃗ 𝟏,𝒙] and the phase shift 𝝓 580 

by Eq. A5. As above, the temporal order of the data points in phase space sets the sense of the 

ellipse’s orientation.  

Because √𝝀𝟏 and √𝝀𝟐 give only the relative sizes of 𝒂 and 𝒃 and not their absolute values, 

a scaling factor 𝒇 was introduced into the 𝑹𝑬 calculation to resize the calculated ellipse to 

match the dimensions of the data. The 𝑹𝑬 can be expressed as  585 

𝑹𝑬 = 𝐦𝐢𝐧
𝒇

[
𝟏

𝒏
∑𝐦𝐢𝐧

𝜶𝒋

√[𝒙𝒋 − 𝒇𝒓𝟏 𝐜𝐨𝐬(𝜶𝒋)]
𝟐
+ [𝒚𝒋 − 𝒇𝒓𝟐 𝐜𝐨𝐬(𝜶𝒋 + 𝝓)]

𝟐
𝒏

𝒋=𝟏

] ,          (𝑨𝟖) 

where minimizations were performed over the parameters 𝒇 and 𝜶𝒋. 
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APPENDIX B: Numerical simulation and analysis of the phase-shift calculation methods 

Gaussian noise was added to the amplitudes and phases of two cosine waves that possessed 590 

equal oscillation frequencies and amplitudes but differed in phase by one radian. For high to 

moderate signal-to-noise-ratio (SNR) values, the analytic signal analysis (ASA), phase-space oval 

fitting (POF), and principal component analysis (PCA) methods yielded accurate estimates of the 

phase shift (Fig. S1C). At lower SNR levels the ASA method becomes least reliable while the 

PCA method remains the most robust.  Because it requires that the data points are ordered in time, 595 

the ASA method is expected to be more sensitive to noise than the other two methods.  As the 

simulated noise level approaches zero, the error in the ASA and POF methods’ estimates decreases 

linearly, whereas the PCA method’s estimate levels off, approaching a small lower bound (<3%).  

Because the density of data points in phase space is greater at the poles of the ellipse, the PCA 

method slightly underestimates the magnitude of the oval’s minor axis relative to that of the major 600 

axis, which in turn introduces a small error into the phase-shift estimate. 

Numerical simulations reveal strong correlations between the error in the phase-shift estimate 

and the fit residual for the phase-space ellipses constructed using each method: 𝑟 = 0.74, 0.96, and 

0.86 for the ASA, POF, and PCA methods, respectively (Fig. S1D). Based on these correlations, 

the ellipse-fit residuals were used to estimate a method’s accuracy.  The best-fit curves in doubly 605 

logarithmic space demonstrate that setting an upper bound of 0.2 on the ellipse-fit residual limits 

the phase-shift error to approximately 30% (Fig. S1D). Residual values beyond this threshold were 

therefore chosen to indicate a method’s failure when applied to data obtained from the volunteers. 

Because the waveforms obtained from the ten volunteers contain multiple frequency components, 

residual values for ovals that are fit to these data sets will reach 0.2 at higher SNRs than for simple 610 

sinusoidal waves.  The threshold residual value of 0.2 therefore limits the error in any method’s 

estimation of the phase shift more conservatively than is suggested by the simulation results.  



 

  30 

SUPPLEMENT 

 

Table S1. 4DMRI scan durations and analysis parameters 

Volunteer 

index 

Gender Scan length 

min′ sec′′ 

# of time windows† 

(early, middle, late) 

Total time 

analyzed (s) 

# of method failures 

(ASA,POF,PCA,MPS)$ 

1 ♀ 6′ 33′′ 1,1,4 38.4 0,0,0,0 

2 ♂ 6′ 51′′ 1,3,9 74.3 0,0,0,0 

3 ♂ 9′ 23′′ 1,7,16 130.7 0,3,0,0 

4 ♂ 14′ 44′′ 1,3,61 340.8 3,4,1,1 

5 ♀ 8′ 51′′ 1,2,3 38.4 0,0,0,0 

6 ♀ 5′ 20′′ 1,2,17 110.2 1,0,0,0 

7 ♂ 8′ 10′′ 1,4,7 69.2 0,0,0,0 

8 ♀ 6′ 33′′ 1,8,4 74.3 0,0,0,0 

9 ♂ 9′ 43′′ 1,11,5 94.8 0,2,0,0 

10 ♀ 11′ 04′′ 1,7,8 89.7 0,0,0,0 

†  There are 192 time windows in total and each contains 10 or 12.5 seconds. 
$ Analytic signal analysis (ASA); phase-space oval fitting (POF); principal component analysis 

(PCA); mean phase shift following the elimination of individual method outliers (MPS) 

 

 615 
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Figure S1. Methods for estimating the phase shift between the external bellows and internal 620 

navigator signals. (A) Representative ellipse and principal components found for volunteer 2 

through the phase-space oval-fitting (POF) and principal component analysis (PCA) methods, 

respectively. (B) Representative instantaneous phases of and the phase shift between (inset) the 

internal and external waveforms calculated for volunteer 2 using the analytic signal analysis (ASA) 

method. (C) Dependence of the phase-shift estimation methods on the signal-to-noise ratio for 625 

simulated waveforms. As the Gaussian noise level increases relative to the amplitude of the 

simulated waveforms, the methods’ accuracy in estimating the 1-radian phase shift between the 

two sinusoids diminishes. Each point represents the average of 50 trials and error bars indicate one 

standard deviation. (D) Numerical simulations also reveal that the ASA (purple), POF (green), and 

PCA (red) methods are less accurate when the phase-space ellipses constructed from each bear a 630 

large mean residual (RE). Residuals were averaged over the simulated data points in a trial. Each 

dot represents a single trial and every cloud of dots corresponds to one of the signal-to-noise levels 

depicted in panel C. The curves that best fit the ASA, POF, and PCA points in doubly logarithmic 

space are 2.60 + 4.35𝑥, 0.71 + 1.72𝑥, and 20.38 × 101.81𝑥 − 1.57, respectively. The 

intersection of the three curves approximately occurs at a residual of 0.2 and a phase-shift error of 635 

30%. A mean residual of 0.2 or greater was chosen to indicate a method’s failure when applied to 

the data sets obtained from human volunteers. 
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Figure S2. Phase shifts estimated by the analytic signal analysis (ASA, purple), phase-space oval 640 

fitting (POF, green), principal component analysis (PCA, red), combined (MPS, blue), and 

maximum time-domain cross-correlation (TCC, magenta) methods. The × symbols indicate time 

points at which a method failed; these phase-shift estimates were excluded from the combined 

method calculation.  The ○ symbols indicate time points at which the standard deviation among 

the four frequency estimates exceeded 0.05Hz. The frequency estimate that maximized the phase-645 

shift-corrected correlation was employed at each time point. The volunteer’s index labels the top-

right corner of each panel. The phase of the external bellows was found to lead that of the internal 

navigator at all time points in every volunteer. 
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Figure S3. Correlation enhancement following phase-shift correction using the analytic signal 650 

analysis (ASA, purple), phase-space oval fitting (POF, green), principal component analysis (PCA, 

red), and combined (MPS, blue) phase-shift estimates. The original correlation between the 

uncorrected waveforms (orange) and the maximum time-domain cross-correlation (TCC, dashed 

magenta) are shown for comparison in each panel. The × symbols indicate time points at which a 

method failed. The volunteer’s index labels the bottom-left corner of each panel. The gray boxes 655 

mark the 2, 5, and 1 points at which correcting the phase shift calculated by the ASA, POF, and 

MPS methods, respectively, failed to enhance the correlation. The correlation was enhanced in all 

time windows for the PCA method. 
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 660 

 

Supplemental Video. Correcting the phase shift estimated by the MPS method effects a collapse 

of the original phase-space ellipse (orange) into a more linear trajectory (blue). The red dot tracks 

the progression of time and the blue dot in the lower panel gives the estimated phase shift for the 

dataset shown at the same time in the upper panel. Each frame of the movie represents 0.5s of real 665 

time, which constitutes the amount of time by which the 12.5-second time window was shifted to 

generate each point in the phase-shift curve (the window was instead shifted by 5s for every other 

figure). At 𝑡 = 379s the phase-space trajectory is moderately irregular and, as evidenced by the 

greater uniformity and overlap of the ovals, becomes more regular in the ensuing 40s. During this 

time, the estimated phase shift remains nearly constant, illustrating the stability of this measure 670 

and the robustness of the estimation strategy to breathing irregularities. 
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