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Neural circuit dependence of acute and subacute nociception in C. elegans 

Yifan Xu, Ph.D.

The Rockefeller University 2015

Nociception, the detection and avoidance of harmful cues, is a crucial system in all 

organisms. Animals use nociceptive systems to escape from substances that decrease survival, 

and can also modulate the threshold for avoidance behaviors to weigh the attractive features of 

an environment against its harmful features. To allow regulation, the nociception system of 

mammals incorporates multiple feedback and feedforward loops in its central and peripheral 

pathways. The nociception system of the roundworm Caenorhabditis elegans shares many 

features of the mammalian circuit. Both neural circuits feature a direct path from sensory 

neurons to motor neurons that is connected by a single class of interneuron, bypassing the 

higher processing centers. Both neural circuits also feature higher processing pathways that 

receive information from sensory neurons and provide further input onto the direct pathway.  

While the anatomical wiring of the C. elegans nervous system has been known for 

decades, how sensory neurons access different downstream paths in the circuit is less clear. 

One possible route of differential access of sensory input to downstream neurons is through 

different dynamics of activation. The temporal dimension of neural circuits cannot be deduced 

by anatomical wiring, but must be measured directly. In my thesis, I have characterized and 

manipulated the dynamic properties of a classical nociceptor in C. elegans, the polymodal 

sensory neuron ASH, and asked how these properties instruct downstream circuits and 

behavior.  

I thus first elucidated ASH calcium activation dynamics using simple step responses and 

using a newly developed systems identification approach for C. elegans. Using both long pulses 

and rapidly fluctuating “white noise” sequences of different nociceptive stimuli, I deduced their 

ASH activation profiles and linear temporal filters describing how the neuron summates the 

history of stimulus encounter. This analysis demonstrated that ASH calcium responses to 

natural stimuli include both linear features and multiple nonlinear components. Mutations in G 

protein-coupled sensory signaling disrupt both fast linear filtering and sustained responses to 

nociceptive stimuli. Mutations in a voltage gated calcium channel alter the temporal qualities of 

the ASH response in a pattern suggesting a role of this channel in sensory adaptation. In the 



course of these studies, I discovered several additional classes of sensory neurons that respond 

to nociceptive stimuli with robust calcium responses, even though past studies did not 

demonstrate a role for these neurons in nociceptive behavior.  

To gain experimental control over the dynamic activity that initiates nociceptive signaling, 

I ectopically expressed the pheromone receptors SRG-34 and SRG-36 in ASH and activated 

this system with their endogenous ligand, the ascaroside C3. ASH does not normally detect C3, 

but when it expresses either of these receptors it generates robust calcium responses to C3. 

These calcium signals have distinct temporal dynamics: SRG-34 mediated calcium signals are 

fast rising and fast adapting, while SRG-36 mediated calcium signals increase slowly during 

stimulation with little adaptation. Expression of SRG-34 or SRG-36 in ASH caused animals to 

avoid C3. Remarkably, time-aligned histograms of C3-induced avoidance behavior during 

stimulus onset, presence, and removal closely followed the dynamics of ASH calcium activity at 

these same time points, with a fast onset and adaptation for SRG-34 and a slow, sustained 

avoidance of SRG-36.  

ASH can directly activated the backward command motor neuron AVA or indirectly 

activate AVA through other neuronal pathways, including the intermediate interneuron AIB. 

Selectively silencing the AIB interneuron with the a chemical genetics system using the 

histamine-gated chloride channel resulted in complete loss of nociceptive avoidance behaviors 

induced by slow-ramping SRG-36 receptor in ASH, but had less of an effect on SRG-34 

avoidance. Selectively silencing the AVA backward command interneuron reduced reversals, 

but spared or increased other avoidance behaviors for both SRG-34 and SRG-36. These results 

indicate that downstream interneurons are engaged in different ways, and to different degrees, 

depending on the mechanism of ASH activation.  

I next monitored the activity of AIB and AVA neurons in freely-moving ASH:srg-34 or 

ASH:srg-36 animals responding to C3. In ASH:srg-34 animals, AIB and AVA begin increasing 

activity upon C3 onset. In ASH:srg-36 worms, AIB increased activity before AVA. Together with 

my AIB silencing results, these observations suggest that AIB accumulates signals from ASH 

over time to promote AVA activity. Using a coherent type-1 feed forward loop with a calcium 

slope-determined AND or OR logic, I modeled features of AIB contribution to nociceptive 

behaviors in response to different ASH temporal dynamics. These findings suggest that 

feedforward excitation loops, a motif seen in C. elegans and mammalian nervous systems, can 

result in behaviorally-salient consequences in response to different sensory neuron calcium 

dynamics. 
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INTRODUCTION: The temporal dimension of neural circuits 

 

 Numerous coordinated efforts are underway to assemble complete brain connectomes in 

multiple organisms. The C. elegans connectome has been available for over 25 years, and has 

definitively demonstrated one thing: the anatomical wiring of cell bodies, gap junctions, and 

synapses, by themselves, is far from the complete scaffold through which genes give rise to 

behavior. Superimposed on anatomical wiring are many more dimensions of processing. 

Neuropeptides and neuromodulators can signal across diverse anatomical distances through 

connections invisible to the electron microscope. Synaptic strength between neurons can vary 

independent of the size or number of connections between them, both at baseline and after 

learning.   

Another dimension superimposed on pure anatomical wiring is the temporal dimension 

of stimulus encoding and transmission. Many types of visual, somatosensory, and olfactory 

neurons can track encounters of the same stimulus over time to assess the changing quality of 

the environment. Some sensory neurons, such as olfactory neurons in flies, can encode 

different stimuli with different rates or patterns of activity. Thus, neurons can track changes over 

time (use time as a denominator) or use temporal dynamics to encode stimulus identity (use 

time as a numerator). My thesis will focus on how different temporal dynamics in a single 

sensory neuron draw on different circuit requirements to generate behavioral dynamics.  

 As an animal navigates its natural environment, it must make behavioral decisions on a 

variety of timescales. In some cases, it must make an immediate decision about whether it has 

encountered a dangerous stimulus. A suddenly looming stimulus must trigger immediate flight 

by a fly before its demise by the swatter. A hand encountering a hot stove must draw away from 

it immediately to escape injury. This decision and subsequent action must be rapid to avoid the 

stimulus in a timely manner. The speed of escape is crucial, so detailed information about the 

stimulus can be sacrificed. This “deterministic” circuit, in principle, requires only a sensory relay 

with a specific threshold to trigger a motor output. On the other hand, the same animal must 

also sample the ongoing statistics of its environment to integrate the presence of sub-threshold 

dangers with the presence of favorable cues and its own internal state. For instance, while 

gazelles will normally avoid the scent of their predators, the reward of food or water will entice 

them out of hiding, especially if they are thirsty or hungry. This second decision will typically be 

slower than the first response and will involve multiple layers of processing. At any point, the 

speed requirement of the deterministic state can override the fine calculations of the basal state 
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in favor of escape. Trading accuracy for speed has been demonstrated in many neural circuits, 

including rodent olfactory systems and primate visual-motor pathways (Rinberg et al., 2006; 

Heitz and Schall, 2012). However, other than studies showing that chronic pain patients 

complete tasks with increased speed but decreased accuracy, little work has been done on the 

tradeoff between speed and accuracy in the nociception system (Veldhuijzen et al., 2006). Does 

subthreshold information accumulate in the sensory neuron that triggers deterministic 

behaviors? If the stimulus remains after the initial response is triggered, does the organism treat 

the ongoing stimulus differently from an acute stimulus? How do neural circuits process both 

fast and slow signals simultaneously? 

My thesis will address these questions in the context of C. elegans nociception. In this 

introduction, I will first describe what is known about the mammalian nociception system, from 

peripheral cell types and molecules to the downstream circuits. As examples of temporal 

encoding that provide useful precedent for my work, I will describe fly olfaction and mammalian 

vision. Finally, I will give a direct review of C. elegans nociception and touch responses.  

 

1. Vertebrate nociception: peripheral neural circuits and molecules  

Nociception in vertebrates has many of the same molecular receptors and signal 

transduction pathways as that of C. elegans. Moreover, circuit motifs are also maintained 

anatomically and molecularly from the peripheral to central nervous system.  

 

Anatomy: Mammalian nociceptor classes and their projections 

Nociceptors of the mammalian nervous system reside in the Dorsal Root Ganglion 

(DRG) along the vertebral column. They are characterized by their pseudo-unipolarity, with both 

the peripheral (dendrite) and central (axon) processes branching off a common axonal stalk 

from the cell body (Basbaum et al., 2009). Only the peripheral branch can detect and 

communicate the quality of the environment and local inflammation; only the central branch can 

release Ca2+-dependent neurotransmitters onto spinal cord interneurons. The peripheral branch 

can, however, release molecules into the tissue that it innervates in response to tissue damage. 

The nociceptor can also receive information in the spinal cord, allowing an interplay of central 

and peripheral modulation of pain sensation that depends on mood, internal state, and external 

cues. 

In mammals, there is spatial, anatomical, and molecular segregation of different 

somatosensory modalities. For instance, light, non-painful touch is conveyed through large 
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diameter myelinated Aβ fibers. Medium diameter myelinated Aδ fibers are the first class of 

nociceptors, communicating “fast”, well-localized, pain with their free nerve endings (Meyer et 

al., 2008). A third type of fiber in this system, the thin, unmyelinated C fibers, conveys poorly 

localized “slow” pain and comprises the second nociceptor class. The sensations communicated 

by the two nociceptor classes are “fast” and “slow” due to the ability of electrical cues to be 

conducted more rapidly in larger diameter, myelinated fibers compared to thin, unmyelinated 

ones –thus, signals from Aδ and C fibers are nicknamed “first” and “second” pain, respectively 

(Dubin and Patapoutian, 2010). There are two types of fast-conducting Aδ fibers: Type I has 

high thresholds of activation for mechanical (pin prick), heat, and chemical stimuli, all of which 

lower their thresholds in the settings of maintained stimulation or tissue injury. Type II mediates 

the “first pain” to noxious heat, with a low heat threshold and a high mechanical threshold. 

Among C-fiber nociceptors, one population is sensitive to heat and mechanical stimuli, and a 

second population responds physiologically to both heat and chemicals but only responds to 

mechanical stimulation in the setting of injury and inflammation (Schmidt et al., 1995).  

Due to their anatomy, A-fibers have small receptive fields that transduce location-specific 

pain (Mense et al., 2008); C-fiber branches are broadly distributed and the pain associated with 

them is diffuse and difficult to localize. 

Circuits, direct and indirect  

The indirect and direct circuits of pain sensation begin at the same neurons, but 

differences in connectivity result in differences in the speed and nature of outcomes that they 

control. The direct circuit of the DRG is best exemplified by the “withdraw reflex,” a reflex arc 

that begins when the peripheral branch of a nociceptor is activated by an above-threshold heat 

or mechanical stimulus that is conducted to the axonal branch via action potentials. The 

nociceptor releases the neurotransmitter glutamate onto a spinal cord interneuron that 

immediately activates the motor neuron innervating the area where the sensation occurred. This 

one-relay circuit results in the sudden contraction of flexor muscles and the reciprocal relaxation 

of extensor muscles, drawing the affected body part away from the stimulus in less than a 

second, before the conscious perception of pain has occurred. For instance, humans will 

immediately withdraw a hand from a hot stove and register the pain only after the fact, 

minimizing burn damage.   
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Conscious recognition of the noxious stimulus sensed by DRG neurons does eventually 

occur, through the “indirect circuit” that involves multiple ascending pathways and descending 

feedback pathways between hindbrain, midbrain, and cortical structures. C-fibers of the DRG 

synapse onto interneurons in the superficial laminae I and II of the dorsal spinal cord, while Aδ 

fibers synapse onto interneurons in laminae I and V. These second-order lamina interneurons 

can modify pain signals before relaying them onward, either directly or through additional 

inhibitory and excitatory spinal cord neurons. Laminae I and V of the spinal cord are the major 

output layers, which send ascending information to the brain along two main pathways 

(Basbaum and Jessell, 2000). The spinothalamic tract reaches the thalamus and 

somatosensory cortex for precise sensory-discrimination of the pain experience (location and 

intensity of stimulus). The spinoreticulothalamic tract reaches the brainstem, anterior cingulate 

cortices, and insular cortex to process affective-cognitive aspects of poorly localized pains 

(Basbaum et al., 2009). Additional tertiary regions of processing include the parabrachial nuclei 

and dorsolateral pons, which send fast messages to the amygdala for the emotional aversive 

components of pain, and multiple descending inhibitory and facilitatory pathways from the 

periaqueductal gray and rostral ventral medulla that modulate pain perception according to 

behavior and homeostasis. Human fMRI imaging studies suggest that prefrontal cortex also 

processes pain (Heinricher et al., 2009; Basbaum et al., 2009). 

 

Signal transduction and molecular signatures of nociception  

In both vertebrates and invertebrates, specific signal transduction molecules are 

expressed in different nociceptive regions and mediate sensation of different painful stimuli. 

Among these are vertebrate channels that sense high temperatures (TRPV1), aversive cold 

(TRMP8), and irritating chemicals like wasabi (TRPA1). The TRPV1 channel plays a role in 

multiple nociceptive processes (Caterina et al., 2001). TRPV1 can be directly activated by high 

temperatures (>43 degrees Celsius), or by chemical irritants such as capsaicin. It can be also 

be indirectly activated downstream of a variety of G protein-coupled receptors through the 

PKC/DAG/PIP2 pathways (Solinski et al., 2012). TRPV1 marks a set of neurons that are 

essential for sensation of noxious pain from chemical and heat, as well as other neurons. 

TRPV1 is expressed in all heat-sensitive C-fibers, heat-sensitive Aδ fibers and the “silent” C-

fibers. Not all TRPV1-expressing neurons have equal properties: different C-fiber types show 

different activation dynamics to capsaicin, suggesting modulation of TRPV1 by other C-fiber 
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type-specific molecules. TRPV1 activation in Aδ fibers has different consequences than TRPV1 

activation in C-fibers: Aδ that express TRPV1 respond more rapidly than C-fibers to mediate the 

“first pain” to heat; these fibers are eliminated by repeated capsaicin treatment while C-fibers 

are not (Treede et al., 1995; Campell and LaMotte, 1983; Ringkamp et al., 2001). Nevertheless, 

the sensory transduction events mediated by TRPV1 ultimately result in action potential firing of 

the relevant DRG neurons. Given the prevalence of TRPV1 expression in heat-sensitive, cold-

sensitive, and mechanically sensitive nociceptors, it was initially surprising that a genetic 

deletion of TRPV1 in mice only partially reduced noxious heat sensitivity and did not affect C-

fiber cold or mechanical-responsive at all (Caterina et al., 2000; Davis et al., 2000; Zimmermann 

et al., 2005). This suggests the existence of additional molecular sensors for noxious stimuli. 

Ongoing studies of other sensory transduction molecules are helping to clarify this observation. 

Noxious heat is not the only temperature that activates nociceptor neurons in the DRG. 

Cooling the skin to 15° C activates a set of A and C-fibers with firing rates that increase in a 

graded manner with every decrease in temperature (Carr et al., 2009; Babes et al., 2004; 

Babes, 2009; Bautista et al., 2007). TRPM8, also called the menthol receptor, is activated by 

cooling below 20° C in vitro, and is necessary for behavioral avoidance of moderately 

unpleasant cool temperatures. TRPM8 is in 15% of all somatosensory neurons. While the 

majority of TRPM8 expressing neurons are small-diameter, unmyelinated C-fibers, a small 

subset are lightly-myelinated Aδ fibers with faster signal conductance (Julius, 2013). Less than 

30% of TRPM8-expressing DRG neurons co-express TRPV1 (Julius, 2013). The rest are not co-

labeled, suggesting that cold nociception is both anatomically and functionally distinct from other 

nociception modalities (Kobayashi et al., 2005). Mouse knockouts of TRPM8 have cold-modality 

specific defects (Bautista et al., 2007; Dhaka et al., 2007; Colburn et al., 2007).  

TRPA1 is co-expressed with TRPV1, and is activated by irritating thiol agents such as 

wasabi (Bautista et al., 2005; Kobayashi et al., 2005). TRPA1 is expressed exclusively in 

peptidergic C-fibers that mediate neurogenic inflammation through the secretion of substance P, 

neurokinin A, and CGRP. Through TRPA1 activation, these secreted substances help induce 

pain and hyperalgesia to acute noxious heat and also mediate inflammatory pain syndromes 

from environmental irritants (Bautista et al., 2006). A completely different channel, Piezo2, 

appears to be the main sensor of noxious mechanical stimuli. It is expressed in many neurons 

that also express TRPV1, explaining why nociceptive neurons can be both mechanically-

activated and heat-activated (Coste et al., 2010). 
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For all temperature and mechanical nociception, the constitutively-active potassium 

channel KCNK2 (TREK) and the mechanically-gated, inward rectifying KCNK4 (TRAAK) 

channels may set how easily neurons can be depolarized (Kung et al., 2010). Mice with 

mutations in these potassium channels show increased pain sensitivity (Dubin and Patapoutian, 

2010). Signal transduction in the DRGs also depends upon voltage-gated Na+, Ca+, and K+ 

channels that regulate action potential dynamics. At least 59 such channels are expressed in 

the DRGs, many with alternative splice forms. The voltage-gated sodium channels Nav1.7 and 

1.8 channels are probably the best studied of these channels. Mice with deletions in these 

channels have severe mechanosensory defects (Nassar et al., 2005; Akopian et al., 1999; Rush 

et al., 2007). Humans with loss-of-function mutations in NaV1.7 channels cannot feel pain, 

resulting in extreme tissue damage and eventually death; humans with gain-of-function 

mutations have severe congenital pain syndromes such as erythromelalgia and paroxysmal 

extreme pain disorder with associated extreme burning sensations (Cox et al., 2006; Dib-Hajj et 

al., 2008; Estacion et al., 2008; Fertleman et al., 2006; Yang et al., 2004).  

Voltage-gated calcium channels are implicated in pain disorders as well, and have 

proved to be good drug targets. VGCCs are heteromeric proteins with one pore subunit (the α1 

subunit) and multiple accessory subunits. The P/Q VGCCs are expressed in synaptic terminals 

of DRG neurons ending on laminae II-IV and are implicated in familial hemiplegic migraines 

(deVries et al., 2009). N and T type VGCCs are expressed in C-fibers in pathological settings 

such as diabetic neuropathy or nerve injuries, and the represented α1 subunits, Cav2.2 and 

Cav3.2, increase sensitivity to mechanical and thermal stimuli (Cao et al., 2006; Zamponi et al., 

2009; Messinger et al., 2009). The N-type VGCC is selectively blocked by ω-conotoxin, which is 

administered intrathecally as the drug ziconotide to ameliorate intractable cancer pain (Rauck et 

al., 2009). The VGCC α2δ subunit modulates the activation and inactivation kinetics of VGCCs. 

The α21 and α22 clsses of α2δ subunits are targeted by gabapentin, another drug used to treat 

pain (Davies et al., 2007; Luo et al., 2001). 

 

Modulation of nociception by injury  

After injury from heat, mechanical stimuli, sunburn, or a chemical irritant, the affected 

area will exhibit enhanced pain to normally painful stimuli (hyperalgesia) as well as the 

sensation of pain to normally unpainful stimuli (allodynia). This sensitization is dependent on C-

fibers that decrease their activation thresholds and begin to perceive pain in the immediate zone 

of flare and a secondary zone surrounding it (Sandkhuler, 2009). Part of this sensitization is cell-
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intrinsic, and occurs via a mechanism of neurogenic inflammation called the dorsal root reflex, 

defined as antidromic impulses traveling towards the periphery along primary afferent fibers to 

invade peripheral arborizations. Peripheral or central stimulation of C-fibers thus produces 

plasma extravasation and vasodilation in the peripheral receptor field through release of 

peptides like substance P, CGRP, somatostatin and cytokines into interstitial tissue. The 

subsequent recruitment of immune cells to this area results in accumulation of blood cells, 

edema, and additional liberated enzymes (like kallikreins) that sensitize peripheral terminals and 

activate further second messenger cascades (McMahon et al., 2008; Lin et al., 2007; 

Richardson et al., 2002). This inflammatory reaction then lowers TRPV1 and TRPA1 activation 

threshold in C-fibers through allosteric modulation or a second-messenger signaling pathway so 

that the nerve fiber responds more strongly to all nociceptive stimuli (Julius, 2013).  

One inflammatory molecule, bradykinin, binds bradykinin receptor 2 (BR2) on cell 

membranes to activate the Gs cascade. This cascade results in the phosphorylation of TRPA1 

by protein kinase A to decrease the activation threshold of DRG neurons coexpressing BR2 and 

TRPA1 (Mizumura et al., 2002; Wang et al., 2008). Other mechanisms of pain modulation are 

mechanistically diverse. The accumulation of Na+ channels in injured nerves can increase 

sensitivity. NGF binds the Trk-A nuclear receptor to increase substance P expression, whose 

release enhances TRPV1 and Nav1.8 currents (Cang et al., 2009). TRPA1 is seen in all 

chemically-sensitive C-fibers, and is also activated by endogenous factors produced by 

inflammation; it sensitizes neurons under nitrative and oxidative stress when prostaglandin 

products, nitrooleic acid, hydrogen peroxidase, bradykinin, and hydrogen sulfide are plentiful. 

Mutation of TRPA1 results in decreased tissue injury-evoked sensitization to both thermal and 

mechanical stimuli and protection from asthma inflammation (Bautista et al., 2006; Kwan et al., 

2006; Cazares et al., 2009).  

Neurogenic sensitization can cross modalities. For example, in TRPV1-mediated 

hypersensitivity to mechanical stimuli, Piezo2-mediated mechanosensation may be potentiated 

since Piezo2 is localized in 20% of DRG neurons, most of which are nociceptors that express 

TRPV1 (Coste et al., 2010). TRPM8 can act as an analgesic as well, and counteract the effects 

of heat channels or formalin-induced inflammatory hyperalgesia (Dhaka et al., 2007). 

 

Modulation by non-neuronal cell types 

Modulation does not only occur through action of nerve terminals themselves. The 

“inflammatory soup” consists of many inflammation-promoting compounds and is made by both 
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neurons and non-neural cells in the context of injury or irritation. Peripheral nociceptive nerve 

terminals are surrounded by keratinocytes, mast cells, and Langerhan cells of the epidermis, 

allowing them to monitor a variety of factors secreted in the skin (Lumpkin and Caterina, 2007). 

Immune cells (such as mast cells, basophils, platelets, macrophages, and neutrophils) and skin 

tissue (such as endothelial cells, keratinocytes and fibroblasts) secrete inflammatory factors in 

response to external injury, tumor destruction of normal tissue, or noxious stimulation. These 

factors include TNFα, IL-1β, proteases, ATP, protons, neurotrophins, cytokines and 

chemokines, eicosinoids, lipids, prostaglandins, thromboxanes, keukotrienes, histamine, 

serotonin, and endocannabinoids, and they act on equally diverse receptors and channels 

expressed by nociceptors such as RTKs, K2Ps, GPCRs, TRPs, ASIC/P2X that decrease pain 

thresholds and result in further inflammatory signaling (Ritner et al., 2009). This inflammatory 

response results in hyperalgesia and allodynia and thus has been a significant target of 

painkillers, including the NSAID COX-1/COX-2 cyclooxygenase inhibitors aspirin and ibuprofen 

(Meyer et al., 2008). The temperature sensitive channels TRPV3 and TRPV4 are expressed on 

keratinocytes, so it’s possible that nociceptor activation is amplified by signals that keratinocytes 

release in response to heat (Patapoutian et al., 2009; Lumpkin and Caterina, 2007; Mandadi et 

al., 2009). 

Glial involvement is also widespread in pain modulation, with microglia physically 

accumulating at injured areas to induce edema and hypersensitivity through release of ATP, 

fractalkine, BDNF, and cytokines. Glial factors can activate receptors in the spinal cord lamina 

as well as the nerve terminals, such as P2-R, CX3CR1, trkB and toll-like receptors.  

 

Pain modulation by circuit mechanisms 

There is significant plasticity in synaptic strength, both homosynaptically and 

heterosynaptically, in the pain circuit. Plasticity can result either from decreased inhibition or 

from increased excitation, and can occur in primary afferents, second-order interneurons, or 

descending facilitory and inhibitory brain pathways. The two best-delineated mechanisms of 

circuit potentiation for pain responses are the loss of tonic inhibition from inhibitory interneurons 

and NMDA receptor-mediated increases in neural excitability.  

GABAergic neurons are widely distributed throughout the dorsal spinal column.  In the 

gate control theory of pain, hyperalgesia can result when loss of tonic inhibition by inhibitory 

interneurons, and thus loss of GABA and glycinergic tone, result in decreased dampening of 

pain signals and the recruitment of normally unresponsive fibers to pathologically sense pain. 
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For example, light-touch conducting Aβ fibers can be pathologically induced to engage the pain 

machinery, resulting in allodynia in the setting of disinhibition (Latremoliere and Woolf, 2009). 

Also, giving the glycine receptor antagonist strychnine to rodents results in nociceptive 

hypersensitivity, a circuit-level process that requires PKCγ neurons in lamina II and projection 

neurons in lamina I (Malan et al., 2002; Miraucourt et al., 2007). Conversely, increased 

excitability can occur when glutamate activates normally-silent postsynaptic lamina I NMDA 

receptors in injury. NMDA activation can strengthen the synapse between DRGs and spinal 

neurons, and will thereby result in hyperalgesia at the level of postsynaptic neurons.  

Circuit modulations in pain can become quite complex, and can cross modalities. One 

example, described as “Thunberg’s illusion”, a hand held against a grill of alternating innocuous 

warm and cool bars will cause the subject to report an intense burning sensation that is absent if 

the same hand is held against the warm or cool bars separately (Craig and Bushnell, 1994). In 

other examples, while emotional qualities of pain are, by definition, not nociceptive, the 

subjective experience of patients on morphine, who can sense pain without feeling any 

aversion, is thought to be a feature of emotional pain modulation. Interestingly, despite the 

cross-modulation of heat and mechanical modalities, agonists of the peptidergic μ-opioid 

receptors result in loss of heat pain aversion while agonists of nonpeptidergic δ-opioid receptors 

result in loss of mechanical pain aversion. The “Reynolds Experiments” from 1969 showed that 

rats experiencing electrical stimulation of the midbrain medullary raphe magnus and 

periaqueductal grey regions did not attempt any escape from a surgical laparotomy (Reynolds, 

1969). This lead to current work suggesting the anti-nociceptive effects of morphine may 

engage this brain region (Hellman and Mason, 2012). 

Much of mammalian pain modulation depends on internal modulatory contexts that have 

yet to be localized. Attention to distractions will often decrease sensation of persistent pain; 

soldiers injured in the line of duty or athletes injured on the field report less pain than those who 

sustain the same injury in a less heroic context; the shock of being eaten by a lion apparently 

results in endogenous opioid secretion that results in euphoria rather than pain; chili-eating 

contests results in heart attacks for some and cause euphoria in others. Requirements for 

hunger and sleep can also greatly influence sensitivity to painful stimuli (Basbaum et al., 2009).  

 

Temporal features of mammalian nociception  

Temporal separation of nociceptive signals in mammals begins with the DRG sensory 

neurons. The “first” and “second” pains transduced by Aδ and C-fibers occur along 
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anatomically-separated tracts with different conduction speeds for the same stimulus, and both 

differ from the even faster conduction of light touch by Aβ fibers. Different types of Aδ fibers 

have intrinsically different coding of stimulation over time. While both respond to both 

mechanical and heat stimuli, class I fibers exhibit prolonged responses, a late peak, and 

sensitization to repeated stimulus exposure, while class II fibers peak quickly before adapting 

and do not respond to repeated stimuli (Table 1.1). This temporal and anatomical segregation of 

parallel stimuli is maintained across synaptic levels (Gasser and Erlanger, 1929). Fast, direct 

sensory-motor connections in the spinal cord (mediated by the fast adapting class II Aδ fibers) 

mediate behaviors that are temporally differentiated from cognitive and emotional aspects of 

pain processing mediated by the brain. Since the kinetics of voltage-gated channels can be 

modulated by their  α2δ subunits, cell activation dynamics can be changed with inflammatory 

potentiation of this subunit or the drug inhibition of this process. 
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Table 1.1: Dorsal Root Ganglion fibers transmit information about diverse pain stimuli to the 

central nervous system with different conductance properties. 

Type 
Myelinatio
n Diameter 

Speed of 
Conductio
n Sensation Dynamics 

      

Aβ Yes 6-12 μM 35-90 m/s Innocuous touch Fastest 

Aδ Yes 1-5 μM 5-40 m/s 

Fast/First/Acute 
Pain, mechanical 
and thermal Fast 

        -
Class I     

-Prolonged response, 
late peak,  
-Sensitization with 
repeated exposure 

       -
Class II     

-Short response, 
fast peak,  
-Adapting to repeated 
exposure 

C No 0.2-1.5 μM 0.5-2 m/s 

Slow/Second/Dull 
Pain, mechanical, 
thermal, chemical Slow 

 

Nociceptor activation requires depolarization of the peripheral terminals above a 

threshold duration and intensity. Nociceptors are considered to be electrically silent until all-or-

none activity occurs upon adequate stimulation; this activity only translates to the sensation of 

pain in situations when the frequency of activity temporally summates with other pre and 

postsynaptic signals from central influences (Woolf and Ma, 2007). However, there is evidence 

of sub-threshold spiking and oscillations in DRGs (Liu et al., 2000; Amir et al., 2002). Increases 

in these events are thought to be a consequence of nerve injury and a possible mechanism of 

subsequent neuropathic pain. It is unclear, however, whatever post-synaptic neurons detect or 

summate such sub-threshold dynamics and allow their propagation to higher processing 

systems or subsequent behavior. While labeled-line stimulus transduction in the mammalian 

DRG system has been extensively studied, little has been done to examine parsing and feature 

extraction of painful stimuli before its conductance into the central nervous system.  
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2. Parallel Pathways in Parsing –Retinal ganglion cells in the visual system 

After sensory inputs are detected, circuits can segregate information into parallel 

processing streams. This process has been examined most intensely in the mammalian visual 

system. The entire visual field is divided into the small receptive fields of rod and cone 

receptors, which effectively detect pixels whose higher features begin to be extracted within the 

retina. Six main cell types in the vertebrate retina are the photoreceptors, horizontal 

interneurons, bipolar interneurons, amacrine interneurons, retinal ganglion cell projection 

neurons (RGCs), and Muller glial cells. The photoreceptors, bipolar neurons, amacrine neurons, 

and retinal ganglion cells can each be be divided into multiple subtypes from structural, genetic, 

and electrophysiological characteristics, for a total of about 100 cell types (Maslund, 2012). 

These cells have cell bodies in three distinct layers and process in two plexiform layers. Each 

plexiform layer can be subdivided into different sublamina that have synaptic connections from 

different cell types. 

Parallel processing in the retina begins with rod and cone photoreceptors specialized for 

dim light versus brighter light and colors, respectively. Rod photoreceptors synapse onto a 

single type of bipolar cell, whereas cones synapse onto around 15 classes of bipolar cells. 

Among cone bipolar neurons, some are activated and some are inhibited by glutamate released 

from photoreceptor terminals. ON and OFF bipolar cells differ in their glutamate receptor 

expression: the AMPA and kainite receptors in OFF cells allow cations into the cell, while the 

mGluR6 metabotropic receptor of ON cells closes the cation channel TRPM1 and 

hyperpolarizes the cell (Morgans et al., 2009; Shen et al., 2009). The G-protein mediated signal 

transduction pathway in ON bipolar cells is slower than the ligand-gated channels in OFF 

bipolar cells, as demonstrated by recordings in tiger salamander retina in response to light 

transients and white noise light patterns (Burkhardt et al., 2007). More diversity subdivides 

these general classes. Two other classic types of ON and OFF bipolar cells, the sustained and 

transient types, differentially express kainite and AMPA glutamate receptors that are slow and 

fast inactivating, respectively (Awatramani and Slaughter, 2000; DeVries, 2000). Within these 

major bipolar cell types are subtypes that exhibit complex mixtures of 

ON/OFF/sustained/transient properties, thought to be mediated by signal transduction 

molecules like RGS proteins, that can act as timers to turn off G-protein activation at specific 

rates (Cao et al., 2012). Bipolar cell activation is then transduced to about 25 retinal ganglion 

cell types. RGCs that receive information from ON bipolar cells have receptive fields that are 

ON-center, but OFF surround. RGCs that receive information from OFF bipolar cells have 
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receptive fields that are OFF-center, but ON surround. The two main types of RGCs, M and P 

types, best signal motion (with fast adapting responses) and presence (with slow sustained 

responses to color and duration), respectively. Using these pathways, feature extraction along 

the tiled spacing of RGCs in the two-dimensional retina result in faithful transmission about 

object colors, the velocity of stimuli, the orientation and size of shapes, and the permanence of 

objects. The diversity of retinal ganglion cell properties is enhanced by regulatory inputs from 

about 50 amacrine cell types. Ultimately, the different RGCs send their axons out of the retina to 

various retinorecipient structures in the brain. Thus, prior to cortical processing, the retina has 

converted light pixels from the visual field into compact features of the visual scene necessary 

for the beginning of perception. 

3. Temporal coding as a proxy for stimulus identity

How is a time-varying signal encoded in the nervous system? In insect 

olfaction, recent system identification approaches have characterized temporal features of both 

sensory and second-order neurons. In these studies, odor plumes have been presented to 

locusts (Geffen et al., 2009) and flies (Nagel and Wilson, 2010; Kim et al, 2011; French et al, 

2011; Su et al., 2011) with a “white-noise” m-sequence stimulus sequence. The m-sequence 

consists of pseudo-random ON/OFF pulses of stimuli that are agnostic to the properties of the 

neuron being recorded. Statistically, the stimulus sequence is spectrally unbiased since the 

finite length m-sequence presented during an experiment has the same sharply peaked 

autocorrelation as a theoretical infinite-length random sequence. The neuron’s response 

dynamics to this sequence is considered the “output” response while the m-sequence used is 

considered the “input” response. A series of linear algebra algorithms can then derive the 

temporal summation properties of the neuron that would generate the “output” from the “input” 

(Dayan and Abbott, 2001; Westwick and Kearney, 2003). Often, this model consists of a linear-

nonlinear (L-N) cascade, in which the input is convolved by a linear temporal filter and followed 

by the application of a static nonlinearity in order to generate the output.  These modeling 

parameters can therefore characterize the time-dependence of neural responses for different 

stimuli as a series of L-N filters.  

In the Drosophila olfactory system, the systems identification approach showed that 

varying odor identity can provoke different temporal response properties in the same neuron, 

and that different neurons respond to the same stimulus with different temporal response 

properties (Nagel and Wilson, 2010). This diversity in temporal responses suggests that in 
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insect olfaction, time-varying processes encode stimulus identity. This property may be related 

to the underlying molecular biology of insect olfaction. Drosophila olfaction on fewer than 100 

broadly-tuned ligand-gated channels that directly depolarize neurons. In olfactory systems 

where many hundreds of ligand-GPCR cascades can detect ligand on a receptor level before 

second messenger systems depolarize the neuron (as is the case in mammals and C. elegans), 

stimulus identity may be encoded by more selective GPCR activation and be less reliant on 

temporal encoding (Kato et al., 2014).  

The use of temporal information for identity coding does not preclude temporal analysis 

of odor stimuli in insects. In locust projection neurons downstream of olfactory neurons, the 

derived L-N filters of response dynamics suggest that the neural population represents odor 

dynamics independent of stimulus identity at this next relay, with activity that reflects the 

temporal dynamics of odor encounter (Geffen et al., 2009). Individual olfactory sensory neurons 

may not present temporal information about odors well, but the complete population of sensory 

neurons conveys dynamic information to subsequent levels. 

  

4. The C. elegans nociception circuit 

 As an animal navigates through its environment, it must sense and respond to a variety 

of cues that are critical for its survival. While it is crucial to find and evaluate the nutritional 

quality of food sources, it is even more crucial to be able to quickly detect dangerous stimuli and 

escape from these aversive cues. As in humans, a deterministic avoidance can allow the 

nematode worm C. elegans to escape above-threshold, high-level nociceptive cues, whereas 

subthreshold noxious stimuli can be integrated with favorable stimuli to allow the worm to 

evaluate its environmental quality. In addition, internal states such as satiety and starvation can 

change the relative weights of positive and negative cues. 

Wild-type hermaphrodite C. elegans have exactly 302 neurons with stereotyped lineage 

and identities (White et al., 1986). They can sense a vast variety of mechanical stimuli, volatile 

odors, and soluble taste cues that signal the presence of nutrients, conspecifics, and physical 

features of the environment (Bargmann and Horvitz, 1993). These sensory neurons signal 

through classical neurotransmitters, neuropeptides, and electrical gap junctions to interneurons, 

and also receive feedback in the form of neuropeptide and neuromodulators. The terminal level 

of interneurons, termed command interneurons, synapse onto motor neurons that synapse on 

muscles to guide behaviors (de Bono and Maricq, 2005; Bargmann, 2006; Goodman, 2006).  
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C. elegans avoid harsh mechanical body touch, light and harsh nose touch, low and high 

temperatures, low and high oxygen levels, carbon dioxide, heavy metals, low and high pH, 

drastic osmolarity changes, heavy metals, and bitter compounds (Tobin and Bargmann, 2004; 

Bargmann, 2006; Hilliard et al., 2004, Hilliard et al., 2006). Many sensory neurons are dedicated 

to the detection of these stimuli. While some of these nociceptors, such as the temperature-

sensitive AFD neurons or the oxygen sensitive URX neurons, appear to be dedicated to one 

modality, many of these nociceptors drive behavior to many sensory modalities. The polymodal 

multidendritic PVD neurons, for instance, tile the body wall and can sense both harsh touch and 

cold temperatures (Way and Chalfie, 1989). The polymodal FLP neurons are similarly 

multidendritic but head-specific, and can drive reversal behavior to gentle nose touch, harsh 

head touch, and heat. The classical C. elegans polymodal nociceptor is the amphid sensory 

neuron ASH, which directly senses both mechanical and chemical cues (Bargmann, 2006; 

Hilliard et al., 2004; Hilliard et al., 2005).  

ASH has ciliated dendrites that are exposed to the external environment, and is capable 

of sensing high-osmolarity solutions, blue/UV light, bitter compounds, heavy metals, toxic 

volatile odorants, aversive nose touch, high and low pH, and detergents (Hilliard et al., 2004; 

Hilliard et al., 2005). Genetic mutations, cell-specific laser ablations, and a variety of behavioral 

assays have been used to demonstrate the requirement of ASH for avoidance of these cues 

(Kaplan and Horvitz, 1993; Bargmann, 2006; Goodman, 2006). Calcium imaging and 

electrophysiology have confirmed the activation of ASH by many of these stimuli (Hilliard et al., 

2005; Schafer, 2006). A summary of known ASH stimuli, and the signal transduction molecules 

in ASH required to mediate escape behavior, are in Table 1.2 and Figure 2.8. Some molecules 

are required in a common ASH signal transduction pathway to detect many stimuli. For 

instance, osm-9 and ocr-2, C. elegans homologs of TRPV1, are required for detection of all ASH 

stimuli except blue light (Colbert et al., 1997; Liu et al., 2010, Tobin et al., 2002). ASH-specific 

rescue of osm-9 under ASH-selective promoters, such as sra-6, osm-10, or gpa-13, results in 

full behavioral rescue of these defects (Hart et al., 1999; Bargmann, 2006). Similarly, the G-

protein alpha subunit encoded by odr-3 is required for many ASH-mediated responses, and in 

some cases acts together with a second Gα subunit encoded by gpa-3 (Roayaie et al., 1998; 

Jansen et al., 2007; Hilliard et al., 2004; Hilliard et al., 2005). Other G-protein regulatory 

molecules, such as the Regulator of G-protein Signaling molecule rgs-3 and the G-protein 

Receptor Kinase grk-2, are also implicated in these pathways (Ferkey et al., 2007; Fukuto et al., 

2004). fat-3, a lipid desaturase that is required for polyunsaturated fatty acid (PUFA) synthesis 
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in ASH, bridges the G-protein cascade of odr-3 and gpa-3 and the TRP activation signal of osm-

9 for a subset of stimuli (Kahn-Kirby et al., 2004).  

Some sensory molecules are required only for modality-specific ASH responses. The 

WD-40 STAND-ATPase protein qui-1, for instance, is required only for sensation of quinine and 

other bitter compounds (Leipe et al., 2004; Hilliard et al., 2004). osm-10, a cytosolic molecule 

with no homology to other known proteins, is specifically required for osmolarity avoidance (Hart 

e al., 1999). tmc-1 appears to be a sodium-activated channel that is specifically required for 

sodium ion sensation (Chatzigeorgiou et al., 2013). dcar-1, the only deorphaned G-protein 

coupled receptor expressed on ASH, detects Dihydrocaffeinic Acid (DHCA), a bitter alkaloid 

(Aoki et al., 2011).  

Activation of ASH with a nociceptive stimulus results in depolarization of the neuron via 

these signal transduction cascades (Goodman et al., 1998; Geffeney et al., 2011). Beginning at 

the cilia, G-protein couple receptor activation is thought to drive the TRP channels osm-9 ocr-2 

open, allowing nonspecific cation entry at depolarization (Bargmann, 2006). Depolarization 

results in activation of the egl-19 voltage gated calcium channels, and further calcium entry 

(Bargmann, 2006; Kato et al., 2014). Since C. elegans neurons have graded potentials rather 

than action potentials, calcium levels are usually correlated with the temporal dynamics of 

neuron activation (Goodman et al., 1998; Kato et al., 2014).  

 

Table 1.2: Summary of known ASH stimuli, receptors, and signal transduction molecules 

that mediate escape behavior 

Function in ASH 
Gene 

Known stimulus 
dependence 

GPCRs 
dcar-1 

DHCA 

 
sra-6 

No known ligand, most 
commonly used ASH promoter 

Gα 
odr-3 

High osmolar glycerol, copper 

 
gpa-3 

quinine 

 
egl-30, goa-1 

 

Gβ 
gpb-2/eat-11 

 

Gγ 
gpc-1 

 

RGS 
rgs-3, egl-10, eat-16  
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Other G protein 
signaling regulators grk-2,  arr-1 

Signal transduction 
mec-10, deg-1, trpa-1 

mechanical stimuli 

tmc-1 
High osmolar NaCl, 

qui-1 
Quinine, SDS 

osm-10 
glycerol 

osm-9, ocr-2 
All ASH activity (except light 
response) 

lite-1 
Light response 

fat-3 
Lipid-dependent signaling 

egl-19 
Voltage-gated calcium channel 

dgk-1, dgk-3, odr-4, odr-
8 

Neurotransmission 
eat-4 

Glutamate vesicle transporter 

egl-3, egl-21 
Neuropeptide processing 

unc-13, unc-18 
Neurotransmitter release 

Perhaps surprisingly, activation of ASH by different stimuli appears to engage different 

synaptic mechanisms for avoidance behavior. ASH is required for initiation of reversals to nose 

touch (Kaplan and Horvitz, 1993) and osmolarity (Hilliard et al., 2002), requiring glutamate for 

both behaviors. However, glutamate receptors necessary for each modality appears to differ. 

For instance, while the GLR-1 AMPA-like ionotropic glutamate receptor is required for reversals 

to nose touch, a deletion of this gene has no effect on reversals generated by high-osmolarity 

stimulus (Maricq et al., 1995; Hart et al., 1995). Further, while osmotic avoidance is reduced in 

worms with defects in either NMDA or non-NMDA receptors, nose touch appears to only require 

non-NMDA glutamate receptor function (Mellem et al., 2002).   

The shortest pathway from ASH to behavior is the “direct” pathway from ASH to the main 

backward command interneuron AVA, comprising about 10% of anatomically defined 

presynaptic junctions from ASH (White et al., 1986). AVA is highly presynaptic and postsynaptic 

to other command interneurons that dictate backward (AVE, AVD) and forward (AVB) 

movement, all of which have pre-synaptic inputs from ASH as well. While the ASH synapses 
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onto AVA have been demonstrated to be excitatory glutamatergic connections (de Bono and 

Maricq, 2005), it is presumed that the ASH synapses onto AVB are inhibitory. In all, command 

neurons comprise about 50% of ASH synaptic output, and coordinate a balance of backward 

and forward locomotion through gap junctions and synapses onto motor neurons (White et al., 

1986). AVA has gap junctions and chemical synapses onto both backward (VA/DA) and forward 

(VB/DB) motor neurons, with a bias toward backward motor neurons. AVB, the forward 

command interneuron, inverts this pattern with predominant gap junctions to forward motor 

neurons. ASH activation results in backward motor neuron activation through AVA to elicit a 

reversal away from the stimulus (de Bono and Maricq, 2005). Wild type worms, upon acute 

encounter of high osmolarity stimuli, will begin to reverse in less than 1 second (Hilliard et al, 

2004). This “direct” circuit motif of a sensory neuron activating motor neurons via one 

interneuron is reminiscent of the “reflexive” circuit mediated by the mammalian pseudounipolar 

dorsal root ganglia (DRG) neurons in the spinal cord (Basbaum and Julius, 2009).  

Like the mammalian pain and nociception circuit, however, ASH also projects to and 

receives input from other neurons that can modulate nociceptive behavior (Hilliard et al., 2005; 

Hilliard et al., 2002; Sambongi et al., 1999). This allows 1) ASH to integrate attractive cues with 

nociceptive cues, 2) ASH to cooperate with neurons that promote non-avoidance behaviors, and 

3) ASH to summate nociceptive inputs with other nociceptive neurons to enhance avoidance 

behavior.  

 

1. ASH can compete with other neurons to promote avoidance behavior.   

ASH-sensed stimuli are often also sensed by other neurons, especially neurons that 

promote the attractive properties of the stimulus. In a situation where ASH promotes stimulus 

avoidance and another neuron promotes stimulus attraction, the competition between the two 

neurons determines the direction of movement. For example, ASEL and ASH compete at high 

pH stimuli to attract and repel animals from the stimulus, respectively. Mutations that double the 

number of ASEL neurons or eliminate ASEL showed that the higher the “dosage” of ASEL 

activity in the worm, the more attracted the worm is to high pH, though ASH will dominate with 

repulsion when the pH is very high. This study shows that ASH responses, especially weak 

signals, can be competitive with cues from other neurons (Murayama and Maruyama, 2013). 

 

 

 



20 

2. ASH can cooperate with other neurons in non avoidance behavior.

ASH participates in the “hub-and-spoke” RMG-centered circuit implicated in social 

versus solitary behavior of npr-1 mutants (Macosko et al., 2009; de Bono et al., 2002). Wild-type 

N2 C. elegans strains expresses the high-activity allele of npr-1 in RMG, which acts to inhibit 

this “hub” interneuron/motor neuron and promote solitary behavior. The low-activity npr-

1(ad609lf) allele does not inhibit RMG, promoting aggregation at borders of bacterial lawns. 

RMG is gap-junctioned to “spoke” sensory neurons that detect diverse attractive and aversive 

environmental cues such as attractive pheromones (ASK), aversive pheromones (ADL), 

environmental oxygen levels (URX), noxious cues (ASH and IL2), light (IL2), and volatile 

odorants (AWB, ASH). Eliminating “spoke” inputs from ASH and ADL (through cell ablation or 

loss of osm-9, ocr-2, odr-4 or odr-8 genes) in the npr-1 social background results in loss of 

aggregation behavior, suggesting that ASH and ADL induce aggregation through their detection 

of aversive cues (de Bono et al., 2002). The effect of ASH on this behavior requires the intact 

RMG hub. ASH’s role in npr-1 induced aggregation behavior shows that it does not simply 

trigger a “labeled-line” between aversive cues and acute reversal behavior, but instead provides 

input into modulatable behaviors as well.  

3. ASH can cooperate with other neurons in avoidance behavior.

A small jab to the point of the nose leads to a reversal behavior that requires two 

neurons, ASH and FLP (Kaplan and Hovitz, 1993). Ablation of either results in partial defects, 

with a more severe observed if both are ablated. Both are known polymodal nociceptors. The 

FLP neurons, with highly-branched multidendritic arbors surrounding the head, can respond to 

harsh touch and heat applied to the animal’s head, while only detecting gentle touch when it is 

applied directly to the animal’s nose. However, FLP’s many talents do not all derive from 

different signal transduction cascades within the neuron itself. While FLP’s ability to sense harsh 

head touch is cell-autonomous, Chatzigeorgiou and colleagues (2011) showed that its ability to 

detect other modalities requires a gap-junctioned network involving other two other head 

neurons. While cell ablation of these two neurons had little effect on nose-touch behavior, OLQ 

and CEP, whose “spoke” responses must be additively relayed to FLP through the “hub” 

interneuron RIH, were ultimately responsible for FLP’s role in nose touch behavior. The 

“spokes” of this circuit can laterally facilitate and non-linearly amplify FLP activation when they 

are active. Inactivation of either OLQ or CEP activity by genetic mutation that leaves silent cells 

results in an electrical shunt wherein the entire circuit becomes inhibited, while laser inactivation 
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of OLQ or CEP by cell destruction allows the remaining cells to function (Rabinowitch et al., 

2013). This peripheral integration component of nose-touch sensation is then added to the cell-

autonomous nose-touch detection by ASH neurons in downstream command interneurons to 

generate a full behavioral response.  

Two different modalities, nose touch and harsh touch, are both sensed and distributed 

through all hub and spoke neurons. This leads to the question of whether the two modalities can 

be distinguished. Piggott et al. presented evidence showing that these different modalities can 

access different downstream circuits (2011). In this work, the downstream circuit of ASH 

concentrated on the connections between the interneurons AIB, RIM, and AVA (Figure 1.2). AIB 

and RIM have reciprocal synapses and gap junctions, RIM synapses onto and has gap 

junctions with AVA, and AIB synapses onto AVA (White et al., 1986). Using a combination of 

ablation and light-activation/inhibition techniques, nose touch was shown to stimulate reversals 

via a disinhibitory circuit parallel to the ASH direct stimulatory circuit. This model suggested that 

AVA –ASH activation activates AIB, which inhibits RIM through the glutamate-gated chloride 

channel avr-14 to disinhibit backward locomotion. This motif is similar to the dopamine-

dependent disinhibition motor circuit in mammalian basal ganglia, which runs parallel to the 

stimulatory mammalian DRG circuit for motor control (Piggott et al., 2011). In the same study, 

even though it is sensed through the same ASH sensory neuron, an osmotic stimulus activated 

RIM rather than inhibiting it while also directly activating the AVA backward command 

interneuron. Thus, different ASH stimuli can access different components of downstream circuits 

to effect motor outcomes, in direct and indirect ways, suggesting a differential distribution of 

initial sensory information throughout a circuit. A reassembled, integrated decision then directs 

forward or backward movement. This model can allow different modalities to be differently 

modulated, while also allowing a mechanism for preserving stimulus identity.   
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Weaker nociceptive stimuli are modulated by external and internal cues, as shown by 

work conducted on 1-octanol avoidance. Termed the “smell on a stick” assay (Chao et al., 2004; 

Troemel et al., 1995), the forward-moving worm is presented with an eyelash or pipette tip that 

has been dipped into the test solution and the delay time to reversal is scored. This assay can 

be conducted on or off food, and with the presence of exogenous compounds on the agar plate, 

in order to assess the modulation of aversive responses by external cues. When crawling 

without food, C. elegans reverses to 100% octanol (3-5s) with a shorter latency than it reverses 

to 30% octanol (8-10s) (Chao et al., 2004; Wragg et al, 2007). These responses are largely 

ASH-specific, since abolishing ASH responses using signal transduction mutants (osm-9) or 

laser ablation results in significantly lengthened response latencies of (>16s) (Troemel et al., 
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1995; Ezak et al., 2010). Intriguingly, if the worm is presented with the same stimuli in the 

presence of food, both 100% and 30% octanol elicit reversals within 3-5s (Troemel et al., 1995; 

Chao et al., 2004; Fukuto et al., 2004; Wragg et al., 2007). This result began a series of studies 

on the how food modulates the latency of the dilute octanol response time, concentrating 

specifically on neuromodulators that could mimic food or starvation.  

Neurotransmitters and neuromodulators regulate response latencies to 30% octanol both 

by acting directly on ASH and by acting indirectly on other cells (Table 1.3 is in no way 

exhaustive). Serotonin, dopamine, tyramine, and octopamine have all been implicated in this 

role. To highlight some key modulation effects of octanol avoidance assays, exogenous 

serotonin (5-HT) mimics the presence of food (Chao et al., 2004; Wragg et al., 2007; Harris et 

al., 2009; Harris et al., 2011), calibrating all latencies down to 3-5s. Octopamine and tyramine, 

biogenic amines structurally similar to mammalian norepinephrine and epinephrine, counteract 

5-HT by increasing response latencies across all conditions to 8-10s (Mills et al., 2012; Wragg 

et al., 2007; Hapiak et al., 2013; Harris et al., 2010). This modulation can be countered if the 

animal is “pre-adapted” to a biogenic amine for 6 hours prior to the assay, but the adaptation to 

each amine diverges along different pathways (Wragg et al., 2007). Pre-adaptation to tyramine 

increases sensitivity to the presence of all exogenous amines. Pre-adaptation to octopamine 

abolishes the octopamine antagonism of serotonin in a manner that suggests dependence on 

dopamine (DA) (Wragg et al., 2007; Ezak and Ferkey, 2010). Members of the G-protein 

pathway, including receptors (octr-1), Gα proteins (gpa-11), G-protein receptor kinases (grk-2), 

and regulators of G-protein signaling (rgs-3) regulate these avoidance responses, both within 

ASH and in other neurons that modulate ASH (Chao et al., 2004; Mills et al., 2012; Hapiak et al., 

2013; Ezak et al., 2010; Ferkey et al., 2007; Fukuto et al., 2004). Neuropeptides secreted by 

ASH can be reduced by egl-3 neuropeptide processing enzyme mutations; glutamate release by 

ASH can be reduced by eat-4 vesicular glutamate transporter mutations; both eat-4 and egl-3 

affect ASH response latency (Chao et al., 2004; Hart et al., 1999; Kass et al., 2001; Mellem et 

al., 2002). Maintenance of insulin levels and serotonin levels within the organism are also 

crucial for appropriate responses as demonstrated through chemical processing and receptor 

mutants (Harris et al., 2011; Harris et al., 2009). Thus, a delicate balance of multiple signals 

converges on the octanol avoidance behavior to modulate response latencies. 
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Table 1.3: Response time to 100% and 30% 1-octanol by diverse humeral, environmental, 

and genetic cascades (from Chao et al., 2004; Harris et al., 2011; Harris et al., 2010; Harris et 

al., 2009; Wragg et al., 2007; Fukuto et al., 2004, Mills et al., 2012; Hapiak et al., 2013; Ezak et 

al., 2010) 

Octanol 
% 

Food 
Status 

Time to 
Reverse Modulators 

Modulated 
Time Depends on 

Modulated 
Time 

Counteracted 
By 

Modulated 
Time 

         
         

100% 
ON or 
OFF 3 - 5 s 

Octopamine 
(+) 8 - 10 s 

ser-6 (ASI, 
ADL)    

     nlp-6, 7, 9 (ASI)    

 OFF    
Octopamine 
preadaptation 3 - 5 s   

     nlp-3 >10 s   

   Tyramine (+) 8 - 10 s tyra-3 (ASI)    

     
nlp-1, nlp-14, 
nlp-18 (ASI)    

 OFF    
Tyramine 
preadaptation 3 - 5 s   

 ON  

grk-2 (ASH), 
rgs-3, egl-3, 
cat-2 > 12 s     

   eat-4 > 10 s     

   glr-1 > 5 s     
         
         

30% OFF 8 - 10 s 5-HT (+) 3 - 5 s 
gpa-11 (ASH, 
ADL)    

     
gsa-1, egl-30 
(ASH)    

     nlp-3 (ASH)    

     ser-5 (ASH)    

     ser-1 (NSM)    

     
ins-1 (ADF, 
RIC, NSM)    

     Octopamine (+) 8 - 10 s 
gsa-1,egl-30 
(ASH)  
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ser-6 (AWB, 
ASI, ADL, 
AWC, ASER)  

       
nlp-6, 7, 9 
(ASI)  

       
Tyramine 
preadaptation 3 - 5 s 

       
Octopamine 
preadaptation 3 - 5 s 

     Tyramine (+) 8 - 10 s 
nlp1, 14, 18 
(ASI)  

       
Tyramine 
preadaptation 3 - 5 s 

       
Octopamine 
preadaptation 5 - 8 s 

   Dopamine (-) 3- 5 s 
dop-1, 2, 3, cat-
2, dat-1    

 

The web of signal transduction cascades and neurocircuit components maintaining 

avoidance behavior is astounding, but the results can be distilled down to a few trends. Since 

endogenous levels of these neurotransmitters and neuromodulators are known to vary by past 

experience and nutritional state, the basal level of “nociceptive tone” can easily be measured by 

responses to less aversive cues (such as 30% octanol) while highly aversive cues (such as 

100% octanol) may not depend on the endogenous nociceptive tone. Interestingly, modulations 

of responses either lengthen the latency of a 3-5s response to 8-10s or vice versa, suggesting 

that there are two main “aversion states” mediated by ASH. Since many more factors impact the 

response time of dilute octanol compared to concentrated octanol, the shorter, 3-5s aversion 

state appears to be a more “deterministic” state for stronger aversion while the longer 8-10s 

aversion state appears to be more “modulated,” integrating cues throughout the neurocircuit. 

The correlation of a longer time before reversal, sensation of weaker stimuli, and differences in 

modulation between stronger and weaker stimuli hint at a temporal dimension of nociception. 

 The temporal dimension of behavior in C. elegans nociception has been studied mainly 

to assess the strength of the stimulus at invoking behavior. Little progress has been made on 

how (or where) the neurocircuit encodes time. This is partly due to the resolution of initial assays 

that measured the sensitivity of C. elegans to aversive cues. Historically, nociception was 

measured in binary assays. First, the ability to escape a toxic “ring” of stimuli was shown to be 
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an assay for ASH dysfunction (Culotti and Russell, 1978). Those who could not sense the 

stimulus simply ran outside the ring while those who were repelled by the substance stayed in 

the ring. Next, the drop test, generated by Hilliard and colleagues, scored the percentage of 

worms in different mutant backgrounds that reversed to a presentation of soluble repellent 

(2002). In some drop test experiments, the time spend in reversals was counted (Hilliard et al., 

2002). In parallel, the first temporally sensitive assay by Troemel and colleagues (the “smell on 

the stick” assay) counted the exposure time to different repellents that were required before 

worms began to reverse (1999).  

Do C. elegans use a temporal dimension to encode and decode nociceptive, ASH-

encoded stimuli? Do they use time to track the features of the stimulus such as identity and 

strength, or can they code for exposure time itself? Previous studies have implicated a role of 

timing in the sequence of motor responses, and have attempted to look for molecular substrates 

of timing. For example, in the monoamine modulation of touch responses, tyramine was shown 

to orchestrate a sequence of behaviors characterized by a reversal followed by an omega turn, 

characterized by a deep bend of the head towards its own tail. Tyramine released by RIM first 

activates the lgc-55 fast-acting ion channel to coordinate reversals through AVB forward 

command neurons, then effects a slower response through the GPCR ser-2 on the VD motor 

neurons to initiate neck muscle contraction and subsequent turning (Donnelly et al., 2013). 

Executing a sequence of behaviors involves temporal coordination, and suggests that time is an 

essential factor in executing proper escape and can be encoded via different molecular 

pathways or different neurons.  

Another example of temporal tracking investigates how ongoing responses and acute 

responses are differentially encoded. Busch et al. showed that the oxygen-sensing neurons 

URX, AQR and PQR can code both tonic and phasic responses to an oxygen shift using 

intracellular calcium levels to encode environmental oxygen levels (2012). High oxygen levels 

result in baseline maintenance of high intracellular calcium levels associated with high 

neuropeptide release and increased turning behavior. The opposite was found with low 

environmental oxygen. Superimposed on these “tonic” responses to a high or low oxygen 

environment are transient “phasic” spikes in intracellular calcium, neuropeptide, and behavior 

that occur upon sudden shifts in oxygen levels. The slope of the phasic upshift in intracellular 

calcium levels of URX was shown to elicit reversals through the AVA backward command 

interneuron (Busch et al., 2012). Therefore, while the worm can tonically respond to ongoing 

environmental cues with neuropeptides, sudden changes in external cues result in a rise in 
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calcium, with an associated phasic slope increase that superimposes an acute behavioral 

response on top of tonic behavior.  

In another example where timing may be important, the role of ASH in modulating 

solitary and social behavior through the RMG hub-and-spoke circuit motif suggests that there is 

a coincidence detection component in sensory integration. Temporally accurate information 

would therefore be necessary for such summation to occur. Similarly, the octanol avoidance 

assays, with their two reversal initiation timescales, suggests that a “timer” in the worm receives 

information through ASH to keep track of stimulus exposure so that longer exposures to less 

harmful stimuli will still elicit aversion. 

C. elegans neurons’ graded potentials and stereotyped anatomical circuits are the ideal 

system with which to investigate the temporal dimension of nociceptive sensation and behavior. 

Recent advances in microfluidic technology allow precise stimulation of C. elegans so that 

neural activity and behaviors, time-aligned to encounters and exits of stimulus, can be 

measured on timescales as precisely as <1s (Kato et al., 2014; Larsch et al., 2013; Albrecht and 

Bargmann, 2010). Rather than a binary behavior score of whether a worm reversed or not within 

a given time, and rather than having to count the time to begin or complete a reversal, we can 

now elucidate, in a whole population of worms, what percentage of the population is executing 

each behavior at a precise time after initial stimulus encounter or removal. Moreover, in addition 

to reversal states, we can also define forward states, pause states, and omega states of sharp 

curvature (Ramot et al., 2008; Albrecht and Bargmann, 2010). Our resolution of calcium imaging 

has significantly increased as well with the advent of sensitive, fast fluorescent indicators like 

GCaMP3 and GCaMP5, married to the temporally precise presentation and removal of soluble 

stimuli in microfluidic devices (Chronis et al., 2007; Kato et al., 2014; Larsch et al., 2013). 

Presentation and removal of stimuli at faster than 200ms has been shown, along with the ability 

to present “white-noise” stimuli at speeds faster than the fusion rate of neural activity, which can 

be used to extract the intrinsic temporal filters of C. elegans neurons (Kato et al., 2014). Neuron 

silencing has achieved improvement as well –the creation of histamine-gated chloride channels 

allows hyperpolarization of specific neurons during behavior or imaging experiments without the 

confounding factor of developmental rewiring in laser ablation or genetic mutations (Pokala et 

al., 2014). This toolbox allows us to investigate the temporal dimension of C. elegans 

neurocircuits and ask how dynamic information from the sensory neuron is propagated and 

translated into behavior. 
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Perspective: 

Extensive temporal analysis in neuroscience has concentrated on sensory neuron 

dynamics, interneuron dynamics, and behavioral dynamics. Very few studies, however, have 

tracked how different activation dynamics from the same sensory neuron differently engages 

interneuron types to generate behavior. In my thesis, I have specifically looked at the parsing 

and propagation of temporal information from sensory neuron to behavior. I investigated which 

aspects of ASH calcium dynamics were salient for different interneurons, and how intermediate-

level interneurons help activate a command interneuron in a feed forward excitatory circuit. 

Specifically, I found that the intermediate interneuron AIB is a time-dependent accumulator of 

the ASH signals and is required for behavioral responses to slowly ramping ASH signals.  

 

Thesis overview: 

In Chapter 2, I investigate the encoding of stimuli in C. elegans sensory neurons. 

Focusing on the multimodal nociceptor ASH, I first show the complexity of ASH responses to 

long pulse and white-noise sequences of stimulation. Second, I show how non-nociceptive 

neurons can respond to ASH stimuli even though there has been no previous behavior defects 

ascribed to the selective loss of these neurons. Third, using ectopically expressed pheromone 

receptors, I show that ASH can generate calcium responses on different timescales to the same 

stimulus. 

 In Chapter 3, I use the ectopic ASH pheromone activation system to show the faithful 

transformations of sensory neuron calcium time course to the time course of avoidance behavior 

probabilities. Using selective hyperpolarization of interneurons, I then show how a simple circuit 

allows both deterministic and modulatable nociceptive behaviors. 

 Chapter 4 will suggest further experiments and analysis. 
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CHAPTER 2: C. elegans nociceptive neurons exhibit stimulus-specific activation 

dynamics to aversive stimuli 

 
Summary 
 
 To understand how sensory neuron dynamics can instruct downstream circuits to 

generate behavior, neuron-specific temporal control of calcium dynamics in the sensory neuron 

must be achieved. Here, I characterize the calcium response dynamics of the polymodal 

nociceptor ASH to natural aversive stimuli. In addition to conventional long pulse presentations, 

I used a systems identification approach to quantify the rapid temporal component of ASH 

calcium responses. By presenting stimuli in a rapidly fluctuating “white noise” sequence, I 

derived linear temporal filters that describe ASH’s ability to encode the history of encounter for 

each stimulus. ASH responses to naturally aversive stimuli differed by stimuli; glycerol and NaCl 

stimuli generated linear, history-dependent signals, but copper did not. Mutants in the ASH 

sensory G-protein cascade largely eliminated the neuron’s ability to encode the history of 

encounter, while a voltage-gated calcium channel mutant altered the linear filter by eliminating 

the component for adaptation. I discovered that several additional classes of sensory neurons 

robustly generated calcium responses to classical ASH stimuli, despite previous reports 

showing their ablation had no behavioral consequence on stimulus avoidance. This discovery 

makes it difficult to attribute behavioral responses to ASH dynamics alone. To exert external 

control over ASH dynamics, I expressed the ascaroside C3 receptors SRG-34 and SRG-36 

specifically in ASH. ASH:srg-34 mediated fast peaking, fast adapting calcium signals, while 

ASH:srg-36 mediated slow ramping, slow-adapting calcium signals in long pulse presentations. 

The linear temporal filter derived for ASH:srg-36 calcium signals show an accumulation of 

stimulus history on the same scale as the linear temporal filters derived from glycerol and NaCl 

stimuli, while the linear temporal filter derived for ASH:srg-34 calcium signals show a fast 

impulse response with little accumulation of stimulus history. 

 

Introduction 

The time course of sensory neuron activation can greatly affect behavioral outcomes. 

However, the mechanisms enabling this temporal dimension of neural processing have not been 

as well elucidated as those for primary signal detection. The complexity of neural activation to 

natural stimuli increases the challenges of dissecting temporal coding. In polymodal mammalian 

nociceptors, for example, single neuron fibers can respond to multiple stimulus modalities, and 
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multiple neuron fiber types can respond to the same stimulus modality. In a natural world where 

multiple stimuli are simultaneously present, the extraction of information after stimulus encoding 

occurs in multiple anatomic paths that interact in complex ways. Thus, how stimulus dynamics 

influence subsequent behavior may most easily be examined in a simple circuit. The C. elegans 

sensory neuron ASH is a polymodal nociceptor that directs avoidance through multiple 

intermediate interneurons. All the anatomical synapses in these circuits have been identified 

(White et al., 1986), making this system an ideal setting to investigate the temporal dimension of 

a neural circuit.  

In order to study how sensory neuron dynamics are translated into behavior, two 

requirements should be met. First, to generate a clean signal from a single neuron, it must be 

possible to control the activation dynamics of that neuron cell-specifically. In C. elegans, genetic 

control of a defined neuron can be achieved with cell-selective transgenesis, providing an 

approach to influence activation dynamics. Second, the measurement of both the activation 

dynamics of the neuron and the respective behavior output must be at a resolution that is 

sensitive to the diversity of responses. In C. elegans, we have achieved the latter through 

microfluidic stimulus delivery systems that can deliver laminar, square-wave stimulus pulses of 

<200 ms (Chronis et al., 2007; Kato et al., 2014). This timescale compares favorably to the ton 

and toff of the GCaMP3 genetically-encoded fluorescent calcium indicator that is typically used 

for neuronal recording, suggesting that stimulus delivery will not limit accuracy (Hires et al., 

2008; Tian et al., 2009). At the behavioral level, automatic tracking of animals in microfluidic 

environments allows stimulus-aligned histograms of behavior from 25 worms to be 

simultaneously resolved at 500 ms (Albrecht et al., 2011) and behaviors and calcium transients 

of individual animals to be simultaneously resolved at 100 ms (Larsch et al., 2013).  

Reliable and tunable control of ASH activation proved a challenging, but soluble 

problem. In this chapter, I first describe the diversity of ASH calcium responses to natural, 

endogenously-sensed, stimuli. I show that mutations in specific molecules along known ASH 

signaling pathways reveal intrinsic temporal dynamics that are different from wild-type 

responses. I show that ASH calcium responses to different stimuli are similarly distinct, some 

showing different temporal dynamics on to different timescales of stimulation. I show that these 

ASH stimuli also activate other C. elegans sensory neurons in various combinations, making it 

difficult to map behaviors from natural stimuli specifically to ASH. I address these issues by 

ectopically expressing two chemoreceptors in ASH, srg-34 and srg-36. Both of these receptors 

detect the ascaroside pheromone C3, but they respond with different dynamics. Because they 
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are expressed in the same neurons in a common genetic background, differences in behavioral 

responses to C3 in these transgenic animals can be directly ascribed to their signaling 

properties in a single neuron type. I show that these ectopic receptors signal through the known 

signal-transduction genes expressed in ASH to generate dynamically distinct calcium transients. 

The ectopic, cell-specific expression of srg-34 and srg-36 provides a tool to track the temporal 

dimension of neural signaling in C. elegans nociception. 

ASH responds to aversive compounds with stimulus-specific calcium dynamics 

ASH detects aversive mechanical and chemical stimuli including nose-touch, high-

osmolarity solutions, detergents, bitter compounds like quinine, and heavy metals like copper 

(Hilliard et al., 2004). Previous qualitative calcium imaging experiments showed an intracellular 

calcium increase in ASH when the worm’s nose comes in contact with these stimuli (Hilliard et 

al., 2005). Higher temporal-resolution imaging using laminar flow in a microfluidic chip revealed 

a calcium increase to the removal as well as the onset of high-osmolarity glycerol stimuli 

(Chronis et al., 2007).  

To begin assessing the dynamic range of ASH for natural stimuli, I first evaluated the 

time-course of ASH calcium responses to different concentrations of glycerol. 10-second pulses 

of 1M glycerol with a 10-second inter-stimulus interval induced an immediate increase in ASH 

GCaMP3 fluorescence (ON response) that decreased in peak magnitude and slope to later 

pulses (Figure 2.1.a). A smaller, transient increase in fluorescence occurred upon removal of 

stimulus (OFF response, Figure 2.1.a). Reliable ON responses were observed at glycerol 

concentrations from 125 mM to 4 M above the 290 mM osmolarity of the baseline S basal 

solution, and OFF responses were observed from 250 mM to 4 M added glycerol (Figure 2.2, a-

c). The ON response peaked at 1-2 M glycerol and then fell, while the OFF response continued 

to increase in magnitude to 4M glycerol, the highest concentration that could be delivered to the 

animals (Figure 2.1.c,d.). 
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Establishing a systems identification method to quantify the ASH temporal response 

In order to assess the temporal response properties of ASH in more detail, I next asked 

whether ASH had reliable calcium responses to rapidly fluctuating stimuli. Measuring 

fluorescence dye changes in the stimulus channel of the microfluidic imaging chip, I showed that 

laminar flow of stimuli across the worm’s nose can be accurately switched within 50 msec 

(Figure 2.3.a). GCaMP3 has rapid dynamics (344 ms t1/2 decay time), making it a useable 

measure of subsecond calcium dynamics in the ASH neuron (Sun et al., 2013). Using a 

microfluidic chip, I characterized ASH calcium responses to 1 s flickers of 1M glycerol. Both 1 s 

flickers of 1M glycerol (Figure 2.3.d) and a single long pulse of 500 mM glycerol (Figure 2.3.c) 

resulted in a large transient rise in fluorescence (Figure 2.3.d, inset). Even after the large 

transient rise in calcium had stabilized, 1s flickers of 1M glycerol stimulus continued to direct 

regular calcium oscillations at 0.5 Hz in ASH, delayed by a >180° phase shift relative to each 

stimulus (Figure 2.2.a, inset). I found that while ASH exhibited an inflection change to each 

individual flicker presented at both 500 ms and 1 s intervals, it exhibited a steady, nearly 

uninterrupted fluorescence rise when presented with stimuli switched at 200 ms intervals (not 

shown). This suggests that ASH treats stimuli presented as fast as 500 ms as individual, 

separate stimuli, but either the neuron or GCaMP was close to its limit for tracking the stimulus 

at faster intervals, and could only respond as if being given a single long presentation.  

While system identification is widely used in electrophysiological studies to capture 

quantitative insights, it has not been widely used to quantify neuronal calcium responses since 

calcium was considered a slow readout of neural responses (Clark et al., 2011). However, 

calcium dynamics are a good proxy for neural dynamics in C. elegans since, lacking sodium-

based action potentials, their neurons have graded responses and use voltage-gated calcium 

channels to amplify neuronal inputs and regulate neurotransmitter release (Goodman et al., 

1998; Liu et al., 2009). Thus, to precisely quantify the ASH temporal calcium response to a 

spectrally unbiased stimulus pattern, we employed a system identification approach. Full or zero 

concentration of stimulus was presented to ASH according to a pseudorandom m-sequence 

with a minimum pulse length of 200 ms and characterized by a 9 bit word length (Figure 2.3b). 

Two repeats of the same sequence were presented per trial, recorded at a frame rate of 50 Hz. 

As with faster flicker stimulus presentations, ASH still responded to the m-sequence stimuli with 

calcium fluctuations after the large initial transient had reached a steady-state (Figure 2.3.e). 

The overall shape of the response was stereotyped both within and across individuals (Figure 
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2.3.f), suggesting that a consistent temporal response is generated in ASH by exposure to 1M 

glycerol.  

The calcium response of the neuron was aligned to stimulus concentrations using dye 

added to the stimulus stream, as ASH responses to 1M glycerol with and without dye in the 

stimulus stream were not found to be significantly different. Steady-state responses from the 

second repeat of the m-sequence were used to derive an input-output transformation between 

stimulus and neural response. The transformation required two sequential operations: first, the 

stimulus was passed through a linear filter that describes how the recent history of the stimulus 

contributes to the current value of an intermediate variable x at time t; second, a static non-

linearity converts the x(t) from the first operation into an estimate of the measured fluorescence 

change (Figure 2.3.g; Appendix figure 2.1.a.). This analysis derived a positive-polarity, trial-

averaged linear filter for ASH that peaks at 3.4 s and decays with a t1/2 of 4.3 s (n=13, tpeak= 2.9-

3.6 s, t1/2 = 2.8-6.1 s) (Figure 2.3.h). Modeling this linear filter mathematically using a series of 

ordinary differential equations (ODE) showed that the filter was in fact biphasic, and switches to 

a negative-polarity response after a lag of 15 s (Appendix Figure 2.1.b-d., Figure 2.3.j-k). 

Deconstructing the biphasic filter into its separate positive and negative polarity components 

reveals two timescales of linear processing, a “fast” positive component responsible for the 

majority of the response and a “slow” negative component that caused adaptation over many 

seconds of stimulus presentation (Figure 2.3.k). Further analysis showed that the static 

nonlinearity was nearly identical to the nonlinearity of GCaMP3 with respect to calcium, 

suggesting that the ASH temporal response captured by the model is linear (Appendix Figure 

2.1.f..; Kato et al., 2014). Consistent with the highly stereotyped shape observed in calcium 

responses in response to this 9-bit, 200 ms m-sequence of 1M glycerol, the response predicted 

by the trial-averaged linear filter could account for a high percentage of the variance (VAF of 64-

84%) of each individual trial (Figure 2.3.m.,l.). Further, this linear filter was not specific to this 

particular m-sequence order since the same filter was derived from a second m-sequence using 

a different detailed structure (Figure 2.3.i.). Each of these two derived linear filters from the 

different m-sequence structures was able to predict the response for calcium responses 

generated by the other (Figure 2.3.1). These derived linear filters also predicted significant 

aspects of the 1 s flicker response (Figure 2.3.n.,o.). Further, the derived linear filter using 

fluorescence changes in the ASH axon was similar to that of the cell body, indicating that 

neurotransmitter release likely occurs on this same timescale (Figure 2.3.p.,q.). Therefore, ASH 
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exhibits a robust temporal filter to rapid fluctuations of 1M glycerol stimulus, showing that a 

history of encounter to this stimulus is salient to the neuron. 
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ASH temporally tracks specific stimulus concentrations 

To test whether ASH temporally tracks glycerol across multiple concentrations, I 

presented 125 mM, 250 mM, 500 mM, 2 M, and 4 M steps of glycerol to ASH using the same 9-

bit, 200 ms m-sequence (Figure 2.4). Robust linear filters were derived from ASH responses to 

500 mM or 1 M glycerol concentrations, and 250 mM or 2 M glycerol concentrations resulted in 

similar but less reliable responses (Figure 2.4.b.). All robust linear filters positively integrated 

signals experienced in the past 10 s, placing most weight on signals experienced ~3 s in the 

past (shown by the peak of the linear filter).  
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Stimulus-triggered correlations of ASH reveals nonlinear impulse OFF responses 

The positive polarity of the linear filter does not fully explain the ASH calcium responses 

to 10 s pulses of 1 M glycerol, where a calcium increase was observed to both ON and OFF 

stimulus transitions. The asymmetry of the response to long glycerol pulses suggests that the 

OFF transient, if temporally linear, should contribute a negative polarity component to the 

beginning of the ASH filter. Since this was not observed, I reasoned that the 200 ms stimulus 

might interfere with this component, and used stimulus-triggered averaging (STA) on a slower, 2 
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s pulse length m-sequence to search for additional nonlinear dynamic responses to glycerol 

onset or offset. In this method, I separately aligned all measured calcium responses to the 

sequence of glycerol exposure by instantaneous “trigger” events of stimulus onset or offset, and 

averaged the subsequent population response in order to define separate ON and OFF 

temporal dynamics (Figure 2.5). Stimulus-triggered averaging using responses aligned to the 

onset of stimulus generated a filter similar to the linear filter from the L-N model, with a large 

increase in calcium that lasted around 10 s and peaked around 3 s. Stimulus-triggered 

averaging using responses aligned to the offset of stimulus revealed a biphasic response 

consisting of a transient increase of calcium followed by a large decrease in calcium. The large 

decrease in calcium was maximal at 3 s and lasted 10 s, indicating that it corresponds to the 

previously measured ASH filter. When inverted and superimposed, the ON and OFF stimulus-

triggered ASH responses appear to be inverses of each other (symmetric), except for the initial 

2 s transient of the OFF response (Figure 2.5). Control STAs done on 200 ms, 9-bit 

presentations of glycerol did not reveal this asymmetry between ON and OFF triggers (not 

shown). The impulse response of ASH to glycerol can therefore be divided into two parts of 

opposite polarities: a fast, nonlinear calcium increase to glycerol removal, which can be 

observed only by stimulus triggered averaging after long glycerol exposures, and a larger, linear 

calcium response to glycerol addition that is observed both in stimulus-triggered averages and 

in L-N analysis. Since the fast, nonlinear calcium increase to the removal of long glycerol pulses 

has a very small total area under the calcium curve compared to the slow, linear filter, it may be 

still be present during fast stimulus regimes, but masked by the slow linear filter.  
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ASH responds to other aversive stimuli with heterogeneous dynamics 

Since ASH has been shown to respond to diverse stimuli (Hilliard et al., 2005; 

Chatzigeorgiou et al., 2013; Aoki et al., 2011), I examined ASH calcium dynamics in response to 

10 s pulses of 500 mM NaCl, 100 μM DHCA, 10 mM quinine, and 1-5 mM copper solutions 

(Figure 2.6.a. for NaCl, DHCA, quinine; Appendix Figure 2.5 and 2.6 for copper). Responses to 

10 s pulse stimulation (measured as ΔF/F0) revealed a wide range of ASH response magnitudes 

and variable adaptation across stimulus pulses, as expressed in the peak height and initial 

slope of the 2nd through 6th pulse (Figure 2.6.b., Appendix Figure 2.5, 2.6.a.). Unlike high 

osmolar glycerol, high osmolar NaCl did not increase fluorescence to the removal of stimulus, 

indicating that the OFF response is not a signature of the all high osmolar modalities. DHCA and 

quinine elicited weak calcium signals that adapted quickly between stimuli (Figure 2.6). Copper 

elicited variable ASH responses to sequential pulses: while the first pulse was characterized 

with a positive calcium change to stimulus onset, the proportion of calcium change in response 

to stimulus onset and stimulus removal redistributed in subsequent copper pulses so that the 
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calcium response to the sixth pulse of copper was opposite in polarity to the calcium response 

to the first pulse of copper (Appendix Figure 2.5.a., Appendix Figure 2.6.a.). 

White noise presentation of 9-bit, 200 ms m-sequences generated a linear filter for 

500mM NaCl stimulus that is comparable to the glycerol filter in peak time and length, 

suggesting that ASH processes these two stimuli on similar timescales in rapidly fluctuating 

presentations, despite divergent features in longer pulses shown above (Figure 2.7.a., top 

panel). In other words, the temporal histories of both stimuli are similarly summed by ASH. 

When the presentation regime was slowed down to 2s (7-bit), a robust impulse response of 

negative polarity was seen in the linear filter analysis of the1 mM copper response sequence 

that peaked faster than the pulse length of the presentation, suggesting that while ASH can 

generate robust responses to copper, the neuron may not be summing the temporal history of 

this stimulus encounter (Figure 2.7.a., bottom panel). The copper linear filter more closely 

matches the ASH calcium response to the sixth 10 s copper pulse than the ASH calcium 

response to the first 10 s copper pulse (Appendix Figure 2.5.a., Appendix Figure 2.6.a.; see 

discussion for consequences of this result on the LN model). While DHCA and quinine were 

able to generate robust responses to 10 s pulse stimuli, no robust linear filter could be derived 

from ASH calcium responses from fast or slow white noise presentations of these stimuli even 

though some calcium changes were observed (not shown). This suggests that these 

substances may stimulate ASH in a less predictable, nonlinear manner. Thus, ASH is capable of 

different regimes of robust and non-robust responses, with a positive linear temporal filter that 

summates the history of encountering glycerol and NaCl stimuli, a negative linear filter that 

provides an instantaneous snapshot to copper encounter with little regard for stimulus history, 

and unpredictable nonlinear responses to DHCA and quinine. 
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Signal transduction mutations in ASH can alter or eliminate the fast response to glycerol 

To define the molecular basis of ASH calcium dynamics, I tested known ASH signal 

transduction mutants (Figure 2.8.a) to 10 s pulses (Figure 2.9.a, Figure 2.9.b) or m-sequences 

(Figure 2.10) of 1M glycerol. OSM-9 and OCR-2 are C. elegans channel proteins of the TRPV 

family, and the combination of these two channels is required for all known ASH responses 

(Colbert et al., 1997; Tobin et al., 2002; Kahn-Kirby et al., 2004; Hilliard et al., 2005). Indeed, 

osm-9 ocr-2 double mutants were unable to generate responses to either long pulses or m-

sequences of glycerol (Figure 2.9.a for long pulses, m-sequence not shown). The Gα subunit 

ODR-3 is required for normal ASH activation by 1M glycerol and other repellents (Hilliard et al., 

2005). I observed a small residual response to glycerol pulses in odr-3 mutants that was 

opposite in sign to the normal response –fluorescence increased, rather than decreased, upon 

glycerol addition (Figure 2.9.a.b). Stimulus offset was followed by a small response of opposite 

sign that was slower than the normal off response. Double mutants that lacked the two Gα 

proteins GPA-3 and ODR-3 lacked all responses to glycerol, but gpa-3 single mutants had wild-

type responses (Figure 2.9.a.b), suggesting that gpa-3 normally plays only a small role in 

glycerol detection. These results implicate osm-9, ocr-2, odr-3, and to a lesser extent gpa-3 in 

rapid ASH glycerol responses. 

Other mutants yielded more subtle changes in calcium responses consistent with altered 

regulation of sensory dynamics. A subset will be highlighted in this section while a full ensemble 
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of responses can be found in Appendix Figure 2.11-2.13. The rgs-3 mutant is defective for the 

Regulation of G-protein Signaling molecule, which resets the G-protein cascade by catalyzing 

the GDP to GTP on the Gα subuit in its active state (Ferkey et al., 2007). ASH neurons in rgs-3 

mutants had a greatly reduced ON response and an increased OFF response to 10 s pulses of 

1M glycerol (Figure 2.9.a.b). These responses resembled the ASH responses to 4M glycerol in 

wild-type worms (Appendix Figure 2.2.a). Indeed, decreasing the concentration of glycerol 

presented to rgs-3 mutants resulted in calcium traces comparable to the direction of wild-type 

traces at 1M (Appendix Figure 2.2), suggesting a shift in sensitivity. grk-2 encodes a G-protein 

kinase that desensitizes signaling by phosphorylating G-protein coupled receptors; grk-2 

mutants showed diminished ON responses in the cell body (Figure 2.9.a.b) but were able to 

maintain significant ON and OFF responses in the axon, suggesting specific calcium signaling 

defects in the cell body (Appendix Figure 2.3). The adaptation protein arrestin internalizes 

GPCRs following GRK-2 phosphorylation. Surprisingly, arr-1 mutants showed significant higher 

amplitude signals to 10 s pulses of 1 M glycerol, opposite to the grk-2 phenotype (Figure 

2.9.a.b). The egl-19 voltage-gated calcium channel mutant facilitates calcium entry in response 

to voltage change (Figure 2.8.a). A reduction of function in egl-19 resulted in an altered ON 

response to long pulses of 1M glycerol, in which the initial slope and adaptation across repeated 

pulses were both reduced (Figure 2.9.a.b).  

Among the signal transduction mutants, arr-1, gpa-3, and egl-19 mutants were able to 

track rapidly fluctuating stimuli with robust, temporally summating filters of positive polarity 

(Figure 2.10.a.). Among these robust linear filters, the egl-19(n582) loss of function mutants 

were remarkable in that they had a normal onset, but lacked the second slow phase of negative 

polarity from the LN-ODE model (Figure 2.10.b.). This result implicates voltage-activated 

calcium channels in rapid adaptation to aversive signals. Other than gpa-3 and arr-1, the linear 

temporal filters derived from the G-protein cascade mutants did not generate positive polarity, 

linear filters to 1M glycerol m-sequences that emphasized encounter history. Instead, grk-2 and 

rgs-3 exhibited fast, negative inflections that troughed at <1 s, similar to the linear filter of the 

wild type ASH copper response (Figure 2.10.c.; see discussion). odr-3 similarly exhibited a 

negative polarity fast filter, but which was only weakly predictive of the calcium response 

observed (VAF of linear filter =18.3%, Figure 2.10.c.). Thus, the ability to track the history of 

encountering rapidly fluctuating stimuli require normal regulation of the G-protein cascade in 

ASH. Indeed, cell-specific rescue of the ODR-3 Gα protein under the sra-6 promoter was able to 

regenerate robust, wild-type response dynamics to 10 s pulses and rapidly fluctuating glycerol 
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stimuli (Figure 2.10.d). These results indicate that the positive, history-summating linear 

response of ASH is tied to the G-protein cascade whereas a fast response of negative polarity is 

less dependent on rapid G-protein signaling and can be uncovered with the destruction of the 

positive polarity filter in G-protein mutants. All linear and impulse responses, however, ultimately 

require the TRP channel for calcium signaling. 
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Aversive stimuli activate other sensory neurons besides ASH 

Canonical ASH stimuli are aversive and cause the worm to reverse upon an acute 

encounter (Colbert et al., 1997; Hilliard et al., 2002). Laser ablations of different sensory 

neurons showed that ASH is necessary for many avoidance responses (Kaplan and Horvitz, 

1992). In agreement with this assignment, a tax-2 tax-4 cGMP channel double mutant that lacks 

signals from about half of the sensory neurons, but spares ASH, has no effect on the avoidance 

of most aversive stimuli in low-resolution, binary behavioral assays (Hilliard et al., 2002). 

Natural, ASH-specific stimuli with different dynamics of activation could be the best tool to 

interrogate how the temporal dimension of neural activation instructs behavior. Fortuitously, 

however, I found that the ASI neuron, whose function requires the tax-2 tax-4 channels and is 

not canonically required for aversive behaviors (Hilliard et al., 2002), responds to glycerol, 

quinine, and copper with Ca2+ transients that were opposite in sign to ASH responses (Figure 

2.15.e.f.; 2.11.a.; Appendix Figure 2.6, 2.7). The response of ASI to 1M glycerol began 2 

seconds after stimulus removal and was reduced in magnitude in the unc-13 synaptic 

transmission mutant, suggesting that ASI is postsynaptic to another neuron that detects this 

repellent (Figure 2.11.a). I first asked if ASH was the upstream source of signals to ASI by 

examining the osm-9 mutant, but found that ASI still responded, eliminating ASH as the 

upstream neuron (Appendix Figure 2.4.a). I next tested a che-1 mutant that selectively disrupts 

the development of the ASE neurons (Figure 2.11.a). che-1 mutants were nearly as severely 

defective in ASI responses as unc-13 mutants, indicating that ASE, another tax-2 tax-4 requiring 

neuron, is likely to be a source of synaptic input to ASI (Figure 2.11.d).  
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The left and right ASE neurons respond to low concentrations of salts (0-100mM), and 

are functionally asymmetric. In calcium imaging response, ASEL is activated by salt increases 

and ASER by salt decreases (Suzuki et al., 2008; Ortiz et al., 2009). I found that ASEL and 

ASER are symmetric to response to 10 s pulses of 1M glycerol, with both neurons exhibiting 

calcium increases upon glycerol removal (Figure 2.12.a,b). Both ASE neurons responded to 

glycerol removal more quickly than ASI (Appendix Figure 2.13.e.), but the ASER response 

appeared to peak more quickly (Figure 2.12.a-c.). I tested their dynamic responses in greater 

detail by tracking 9-bit, 200ms white noise presentations of 1M glycerol (Figure 2.12.d.). These 

experiments revealed sharp but slightly different linear filters for ASER and ASEL. The ASER 

filter peaked at 0.5 s, where the ASEL filter peaked at 1 s, with corresponding delays to recovery 

to baseline (Figure 2.12.d).  

To ask whether the temporal filter is intrinsic to ASE cell fates, I tested the lsy-6 loss of 

function (lf) mutation that converts both ASE identities to ASER (Figure 2.12.a,b,c.). I found that 

the left ASE in lsy-6(lf) mutants responded to 10 s glycerol stimuli with a rapid response 

resembling normal ASER, suggesting that the cell fate mutation altered ASE dynamics. Other 

ASE cell fate mutants are also available. While the loss of function of LSY-6 results in the 

conversion of both ASE neurons to ASER, a gain of function transgene of lsy-6 (otIs204) (gf) 

confers the ASEL identity to both ASE neurons. Two other worm strains, otEx3830 and 

otEx3822, expresses the caspase executioner protein in ASER and ASEL respectively, and to 

specifically kill each neuron.  

In order to test whether the ASE contribution to the ASI glycerol response originates from 

ASER, ASEL or both, I examined ASI calcium responses to 1M glycerol in the background of 

lsy-6(lf) (2ASER), lsy-6(gf) (2ASEL), otEx3830 (ASER kill), and otEx3822 (ASEL kill) strains. 

ASI responses to 1M glycerol were significantly diminished in all ASE developmental mutants 

(Figure 2.13.a-c). These results suggest that ASI requires both ASEL and ASER signals to 

generate a full glycerol response. The fact that both ASEL and ASER are required suggests that 

the different intrinsic dynamics seen between ASEL and ASER to 1M glycerol could serve a 

functional role in activating ASI. Alternatively or additionally, other aspects of ASEL and ASER 

cell fate, such as patterns of neuropeptide expression, could be important. 
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ASI responds with robust linear filters to diverse aversive stimuli 

While ASE and ASH neurons can track rapidly fluctuating stimuli with robust temporal 

filters, ASI did not exhibit reliable responses to m-sequences of 1 M glycerol presented at less 

than a 1.5 s minimal pulse length, making the extraction of its temporal response using the 

same white noise stimulus sequence as ASH noisy and imprecise (not shown). I therefore 

characterized stimulus-specific ASI responses using 10 s pulses and stimulus-triggered 

correlations of responses from 7-bit, 2 s pulse length m-sequences. To assess whether ASI 

glycerol responses were concentration specific, I presented 10 s pulses of 125 mM, 250 mM, 

500 mM, 2 M, and 4 M concentrations of glycerol to the cell. ASI exhibited the same dynamic 

trends to each glycerol concentration: immediate inhibition to stimulus onset and delayed 

increase after stimulus offset (Figure 2.14.a). Within this concentration range, the highest 

calcium transients were seen to a concentration of 250 mM-2 M glycerol, similar to the preferred 

concentration range of ASH (Figure 2.14.a). 7-bit, 2 s presentations of glycerol in these 

concentrations showed robust, linear, biphasic history-summating filters that required about 10 s 

of “charging” with stimulus before the neuron began responding (not shown). The ASI temporal 

filter is best summarized in an LN-ODE model of temporal correlations extracted from 2 s m-

sequences to 1 M glycerol: ASI initially showed a decreased fluorescence to glycerol onset that 

peaked at ~4 s, followed by an opposite increase of calcium above baseline that peaked ~15 s 

after initial stimulus onset; this biphasic response returned to baseline 20 s after the glycerol 

onset (Figure 2.14.c).  



56 

The ASH stimuli copper and quinine also elicited ASI responses in 10 s pulses, though 

with different dynamics from glycerol (Figure 2.15.e.f, Appendix Figure 6.a.). 1 mM, 2 mM, and 
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10 mM quinine inhibited ASI in 10 s pulse presentations, and stimulus removal led to ASI 

activation (Figure 2.15.e.f., Appendix Figure 2.6, 2.7). These results demonstrate that, like ASH, 

ASI responds to diverse aversive stimuli. 
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Natural ASH stimuli activate multiple neurons with different dynamics 

In summary, the experiments described above show that while different stimuli activate 

ASH with different dynamics, they also activate other neurons in patterns that differ depending 

on the identity of the stimulus. This is further evidenced by the diversity of ASH and ASI 

responses to copper, quinine, and glycerol in the quinine-specific signal transduction mutant qui-

1 and the synaptic transmission mutant unc-13 (Appendix Figure 8, 9). These results suggest 

that there are complex neuron-to-neuron interactions and within-neuron interactions to aversive 

stimuli. While these results offer intriguing insight into the diverse range of natural sensory 

responses, no comparison of stimulus-driven behavior across these natural aversive stimuli 

could generate a pure comparison of the effects of ASH dynamics on behavior. 

Ectopic receptors can confer diverse dynamics to ASH with cell-specificity 

To create an experimental system for isolating the effects of neuronal dynamics on 

behavior, I focused on heterologous expression of receptor proteins that are not endogenous to 

ASH. In initial experiments, I tested the capsaicin-sensitive TRPV1 channels, but found that 

stimulus delivery and responses were not reliable enough for the planned experiment. 

Channelrhodopsin (ChR2) expression in ASH has been shown to induce ASH calcium increases 

and ASH-related behaviors with blue light stimulation, but this was also suboptimal, because 

ASH has an endogenous blue light response that would confound both imaging and behavior 

experiments. Therefore, as an experimental system, I focused on the expression of C. elegans 

pheromone receptor proteins in ASH, knowing that wild-type ASH neurons did not have Ca2+ 

responses to ascaroside pheromones across a range of concentrations (McGrath et al., 2011).  

Previous work had identified members of the srg family of G-protein coupled 

chemoreceptors as candidate receptors for a class of C. elegans pheromones called 

ascarosides. I confirmed the hypothesis that srg proteins are pheromone receptors by 

demonstrating that three different proteins, SRG-34, SRG-36, and SRG-37, could confer 

sensitivity to the ascaroside C3 on ASH when they are ectopically expressed under the sra-6 

promoter (McGrath et al., 2011) and Figure 2.16. SRG-34 and SRG-36 are endogenously 

expressed in ASI neurons, but no calcium responses to C3 were observed in ASI either 

endogenously or when srg genes were overexpressed with the sra-6 promoter. It is possible that 

ASI lacks a signaling pathway for rapid calcium signaling downstream of pheromone receptors, 

and instead uses slower pathways that regulate gene expression for its main function, the 
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regulation of dauer larva formation. Thus, the expression of srg genes from the sra-6 promoter 

confers calcium responses on ASH, and while it may increase expression of the same genes in 

ASI, does so consistently for all tested genes.   

In characterizing the ectopic ASH responses mediated by these receptors, I found that 

both ASH:srg-34 and ASH:srg-36 responded to 30 s presentations of ascaroside C3 across a 

range in concentration (Figure 2.16.a). srg-34 was about 100x more sensitive than srg-36, which 

detected only concentrations at or above 1 μM. However, the peak response for srg-36 

exceeded the peak response for srg-34, which saturated near 0.33 μM, whereas srg-36 

responses continued to rise up to 10 μM C3 (Figure 2.16). The magnitudes of the peak calcium 

responses driven by srg-34 and srg-36 were comparable to responses to the endogenous ASH 

stimulus, 500mM glycerol. At 1 μM C3, both srg-34 and srg-36 elicited robust ASH responses; 

however, these responses had different dynamics in both a 10 s and 30 s stimulus pulse. The 

srg-34 response rose rapidly, peaked within 1 s, and then fell, whereas the srg-36 responses 

rose continuously for the entire 10 s or 30 s and did not decay during the pulse (Figure 2.16.a., 

Figure 2.17.a.). Moreover, the srg-34 response maintained a steeper initial slope than the srg-36 

response until the 10 μM concentration (Figure 2.16.a., quantified in b.). These dynamics were 

recapitulated in the linear filter derived from rapidly fluctuating presentations of 1 μM C3. The 

srg-34 linear filter peaked at < 2 s and fell rapidly, whereas the srg-36 linear filter resembled the 

linear filter derived from 1 M glycerol, peaking around 3 s and integrating over 12 s (Figure 

2.20.a). Indeed, while both C3 responses can be described with linear filters, the long ASH:srg-

36 filter can account for much more stimulus history than the short ASH:srg-34 filter.  
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To assess whether the srg-34 and srg-36 calcium transients in ASH used the same 

signal transduction pathway as endogenously aversive stimuli, I looked their responses to 1 μM 

C3 in the G-protein cascade and TRP mutants. Consistent with native aversive stimuli, both srg-

34 and srg-36 calcium transients were eliminated in the TRP mutants osm-9 and ocr-2 (not 

shown). Calcium transients elicited by srg-34 and srg-36 diverged in their dependence on the G-

protein cascade. ASH neurons expressing srg-34 or srg-36 were still able to respond to 1 μM 
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C3 in odr-3 mutants but the peak height of the srg-36 response was lower than in wild-type 

worms, suggesting that srg-36 requires the odr-3 Gα mediated signaling cascade to generate a 

full response while srg-34 does not (Figure 2.18). In the gpa-3 background, srg-34-mediated 

calcium transients were slightly reduced compared to the wild type background and srg-36-

mediated calcium transients were eliminated, suggesting that srg-36 is more dependent on gpa-

3 to generate a response (Figure 2.18.a.,e.). In a double mutant background for both major Gα 

proteins of odr-3 and gpa-3, all responses were eliminated or nearly so (Figure 2.18.a-e), 

indicating that these two G proteins cumulatively account for all responses to srg-34 and srg-36 

in ASH.  

Gain of function odr-3 mutants and the rgs-3 mutant actually significantly increased the 

total calcium response of ASH:srg-34, suggesting the existence of an inhibitory component to G-

protein signaling (Figure 2.19). Therefore, similar to glycerol-mediated ASH calcium transients, 

the G-protein cascade is implicated in generating proper dynamics of ASH responses in 

response to activation of srg-34 or srg-36. However, no simple matching of G proteins to 

temporal dynamics emerged from this analysis; instead, there appears to be a receptor-

dependent requirement for different G proteins, and temporal dynamics appear to result from 

specific receptor-G protein interactions. 

White noise stimulation by 1 μM C3 of ASH expressing either srg-34 or srg-36 was used 

to characterize their fast signaling dynamics (Figure 2.20). The srg-36 generated linear filter 

resembled the time course of the endogenous 1 M gly and 500 mM NaCl linear filters (Figure 

2.20), suggesting that this receptor mediates ASH responses that accumulate the history of 

stimulus encounters along a similar timescale.  srg-34 mediated ASH responses were fast 

adapting, and they could only be studied when the C3 pulse length within the m-sequence was 

increased from 200 ms to 2s. The m-sequence analysis yielded a consistent linear filter for srg-

34 that peaked around 1 s, although the adaptation caused the linear filter to overestimate the 

first half of the response while underestimating the second half of the response. The fact that 

the filter peaked more quickly than the stimulus pulse length used to generate it suggests that 

ASH responds to srg-34 in an impulse scale, and accumulates very little information about the 

history of C3 encounters. 

In summary, the dynamic differences between ASH responses elicited by ASH:srg-34 

and ASH:srg-36 make these receptors candidates for interrogating how ASH-specific dynamic 

responses can interact with a neural circuit to direct behavior. 
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Intracellular calcium recapitulates cell voltage and stimulus-triggered depolarization 

In C. elegans, genetically encoded calcium indicators are a standard proxy to measure 

neuronal activation. However, other than a few electrophysiological studies, the approximation 

between stimulus-elicited intracellular calcium entry and membrane voltage has not been 

verified. The complex dynamics of calcium responses in ASH to both natural and ectopic 

stimulation may either be induced by membrane voltage changes or be secondary to calcium 

regulation. To assess whether calcium dynamics match membrane voltage dynamics to ASH 

stimulation, I expressed the macCitrine genetically-encoded fluorescent indicator in ASH (Gong 

et al., 2014). The macCitrine indicator is FRET based and requires activation with all-trans 

retinal. Therefore, fluorescence measured in macCitrine-expressing neurons without retinal 

exposure serves as a control for true signals. When the neuronal membrane is depolarized by 

stimulus presentation, the fluorescence of macCitrine is quenched, opposite to the direction of 

calcium-mediated GCaMP fluorescence. macCitrine fluorescence in ASH neurons exposed to 

10 s pulses of 1M glycerol showed both ON and OFF signals consistent with depolarization 

(Figure 2.21.a.). Similarly, srg-34 and srg-36 expression in ASH resulted in signals consistent 

with depolarization of the membrane in response to 1 μM C3 (Figure 2.21.a). These results 

suggest that the calcium signals observed here in ASH correlate with depolarization of the 

neuron. 

The initial dynamics of the calcium responses elicited by each srg receptor were also 

reflected in the depolarization kinetics mediated with macCitrine. srg-34 mediated depolarization 

was rapid and peaked within 1 s, whereas srg-36 mediated depolarization ramped slowly and 

peaked at stimulus removal (Figure 2.21). No fluorescence change was observed in worms 

without all-trans retinal exposure (Figure 2.21.a.). These results demonstrate that ASH calcium 

activation dynamics are correlated with membrane voltage. 
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Discussion 

Diversity of ASH responses 

In order to probe how temporally different nociceptive cues instruct a small neural circuit 

to generate avoidance behavior, temporally divergent stimulation of a single, nociceptive neuron 

should be used. ASH, the classic polymodal nociceptor in C. elegans, is responsible for 

mediating avoidance behaviors to mechanical and chemical stimuli. Without ASH, responses to 

bitter compounds, heavy metals, nose touch, and high osmolarity stimuli are diminished. In 

published calcium imaging experiments, ASH was previously shown to exhibit positive-polarity 

calcium responses to these stimuli that were dependent on a subset of G-protein cascade 

molecules (Hilliard et al., 2005; Ferkey et al., 2007). In a temporally sensitive imaging assay in a 

microfluidic chip, a small positive polarity response was also observed to stimulus removal 

(Chronis et al., 2007). Using 10 s pulses of stimuli as well as a rapid fluctuating white-noise 

stimulus presentation protocol, I found that ASH calcium responses showed far more diversity 

than previously demonstrated to different aversive stimuli and in different mutant backgrounds. 

Divergent responses to the same stimulus to stimulations at different timescales were also 

observed.  

Specifically, linear filters generated from white-noise stimulation of ASH with 1 M glycerol 

revealed a dominant wild-type response to 1 M glycerol that shows positive polarity calcium 

increases to stimulus onset that peaked at 3 s and lasted around 10 s (Figure 2.4.; Kato et al., 

2014). This linear filter thus accumulates the history of stimulus encounter by emphasizing 

events 3 s in the past and “remembering” 10 s of past encounters. Despite the fact that 10 s 

pulses of 500 mM NaCl stimulates different calcium dynamics from ASH as 10 s pulses of 1 M 

glycerol, the derived linear filter to both of these stimuli are essentially identical, suggesting that 

the ASH neuron, when generating a filter of stimulus history, attends to the same features in 

both stimuli.  

An ordinary differential equation model of this linear filter predicts that this broad, positive 

temporal filter is biphasic and can be further broken down into a slightly shorter filter of positive 

polarity representing stimulus-triggered activation of ASH and a long, negative polarity filter 

representing adaptation. A loss of function mutation in the voltage-gated calcium channel, EGL-

19, results in ablation of this latter component, showing in both ASH calcium traces (Figure 

2.10.b.) and in behavior (not shown here; Kato et al., 2014) that the stimulus-evoked response 

lasts longer and does not adapt. This positive polarity ASH response filter is sensitive to 

disruption of the G-protein cascade –specifically, mutation of the ODR-3 G-alpha protein 
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obliterates this response filter to glycerol and the specific rescue of ODR-3 in ASH rescues the 

glycerol response both to rapidly fluctuating stimuli and to long 10 s pulses of stimuli.  

One important limit of this work is that the ASH response to many repellents is not linear, 

and therefore violates assumptions of the LN model.  A significant nonlinearity is that ASH 

responds positively both to addition and to removal of some repellents, including glycerol and 

copper.  The LN model fuses these two elements, capturing the rapid off response in a small, 

initially negative component that peaks in the first ~1s, and the slower on response in the slower 

positive component of the filter that peaks around 6s. Mutation of some proteins in the G protein 

cascade, such as RGS-3 and GRK-2, emphasize the short, negative-polarity impulse response 

to 1 M glycerol that represents the off response. The off response is robust, but while its 

magnitude is affected by total stimulus exposure, its dynamics are not sensitive to short-term 

stimulus history. White-noise stimulation with glycerol generates ASH responses that are 

dominated by the positive polarity, stimulus-integrating filter, but white noise stimulation of ASH 

with copper are dominated by the negative polarity linear response filter, as are the GRK-2 and 

RGS-3 mutant responses.  

Canonical ASH stimuli also stimulate non-nociceptive neurons 

The nociceptive ASH is capable of exhibiting diverse temporal responses to different 

aversive stimuli. While it may be ideal to use these natural stimuli to investigate how ASH 

utilizes different temporal cues to instruct downstream interneurons, I found that these stimuli do 

not specifically activate ASH despite previous reports that ASH ablation significantly diminishes 

avoidance behaviors in response to encountering these stimuli. ASH, ASI, and ASE respond to 

1 M glycerol on different timescales (Figure 2.12-2.13). ASEL and ASER responses to 1 M gly 

proved to be temporally asymmetric, with both neurons required to further stimulate ASI activity 

in response to 1 M glycerol. ASI also responds to two other “canonical” ASH stimuli, quinine and 

copper, without known behavioral consequence (Appendix Figures 2.6 and 2.7). With the 

sensory neuron ASE thus acting as an interneuron for glycerol stimulus to ASI and with both 

ASE and ASI neurons contributing to the same interneuron circuits as ASH, it would be difficult 

to assesss how the ASH nociceptor alone can instruct downstream interneurons to generate 

subsequent avoidance behaviors using temporally divergent cues. 
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Ectopic pheromone receptors allow cell-specific activation of the ASH nociceptor 

We turned to the ectopic expression of the pheromone receptors srg-34 and srg-36 in 

ASH in order to better control cell-specific ASH calcium dynamics. Both of these receptors 

responded to the same concentration range of the ascaroside C3, but they responded with 

different dynamics. In long 10 s or 30 s stimulations, ASH neurons expressing srg-34 showed a 

fast peaking, fast adapting calcium signal at most concentrations. ASH neurons expressing srg-

36 responded to C3 with a slow, ramping calcium signal that did not adapt throughout C3 

exposure.  Temporal differences were also evident in the response to white noise stimuli:  the 

linear filter for srg-36 peaked around 3s after stimulus presentation, whereas the linear filter for 

srg-34 peaked in a second.  

History accumulating linear filters vs. impulse linear filters 

ASH linear temporal filters appear to fall into two timescales: a positive polarity filter that 

accumulates stimulus history for 10 s and most heavily emphasizes the past 3 s, and a short, 

fast, impulse stimulus that does not accumulate stimulus history. It is possible that these 

different filter timescales are salient to different members of the downstream interneuron circuit, 

or that they serve different roles in nociceptive signaling. Fast activating, fast adapting 

responses that do not measure the history of stimulus encounter may instruct a deterministic, 

reflexive circuit, for instance, in which not avoiding the stimulus could result in immediate 

damage. A slower signal that accumulates a long history of stimulus encounter may instead be 

salient for cues that require more temporal summation so that the stimulus can be ignored until 

it reaches a certain threshold. It is also possible that ASH tracks non-aversive aspects of certain 

signals in addition to its nociceptive duties. 
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CHAPTER 3: Temporal dynamics of nociception and avoidance behavior 

Summary 

The polymodal nociceptor ASH synapses directly onto the backward command 

interneuron AVA to evoke reversal behaviors. ASH can also indirectly stimulate AVA through the 

intermediate level interneuron AIB. I investigated whether different calcium dynamics evoked in 

ASH can differently access each of these pathways. Time-aligned behavior histograms to onset, 

presence, and removal of the ascaroside C3 showed that the probability of avoidance behaviors 

in populations expressing ASH:srg-36 or ASH:srg-34 reflected their respective calcium 

activation time course in ASH. However, this seemingly simple transformation from sensory 

neuron activity to behavior was differently dependent on AVA and AIB. The slow, ramping 

calcium signal of ASH:srg-36 to 1 μM C3 did not stimulate avoidance behaviors when AIB was 

silenced, whereas ASH:srg-34 triggered normal avoidance behaviors under this condition, For 

both receptors, silencing AVA led to a decrease in reversal behaviors, but a compensatory 

increase in other avoidance behaviors such as pausing. Calcium levels of AVA and AIB were 

measured in freely moving ASH:srg-36 or ASH:srg-34 worms stimulated by 1 μM C3. In 

ASH:srg-34 worms, both neurons initiated calcium increases aligned with each other and 

aligned with the onset of stimulus. In ASH:srg-36 worms, however, AIB initiated calcium 

increases prior to AVA activity. This result suggests that AIB may act as an accumulator of ASH 

signals that aids in the activation of AVA by slowly increasing aversive signals. A type-1 feed 

forward loop that uses AND logic in low ASH calcium slopes and OR logic in high ASH calcium 

slopes was able to model how AIB contributes to the ASH activation of AVA. Feedforward 

excitatory loops are a motif found in both mammalian and C. elegans neural circuits. My findings 

demonstrate that different temporal dynamics of activation in the same nociceptor neuron can 

instruct this circuit motif with behaviorally salient consequences. 

Introduction 

A primary purpose of the nervous system is to respond to salient sensory cues with 

survival-promoting behavior. Towards this goal, nociception systems throughout the animal 

kingdom promote avoidance of harmful substances. Indeed, certain nociception circuit motifs 

are conserved between C. elegans and mammals.  In one such motif, a sensory neuron 

synapses onto an interneuron that synapses onto motor neurons that drive muscle contraction. 

In mammals, this motif occurs in the spinal cord, where the paraspinal Dorsal Root Ganglion 
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(DRG) sensory neurons that sense peripheral noxious stimuli terminate on spinal interneurons 

(Figure 1.1).  The spinal interneurons activate motor neurons that control the body region from 

which the sensory signal originated. In C. elegans, polymodal noxious cues are sensed by the 

ASH sensory neurons, whose main postsynaptic output, the command interneuron AVA, 

activates motor neurons that promote backward movement (Figure 3.1, de Bono and Maricq, 

2005). Some molecules are shared by these disparate avoidance circuits. The ASH neuron 

requires the osm-9 and ocr-2 TRPV channels for activation by noxious stimuli; these channels 

are C. elegans homologues of the mammalian capsaicin receptor TRPV1, which is expressed in 

subsets of DRG fibers (Julius, 2013).  The endpoint of avoidance behavior is also congruous. In 

humans, the terminal behavior of this circuit is the withdrawal reflex, which can, for example 

drive contraction of muscle fibers to remove a hand from a hot stove before there is conscious 

awareness of the burn. Similarly, the headlong encounter of harmful stimuli during forward 

movement will cause the worm to suddenly stop, withdraw itself with a reversal, and swing its 

head to meet its tail (the omega turn). This stereotyped “pirouette” behavior ultimately results in 

forward movement opposite to the initial trajectory (Hilliard et al., 2002).   

Previous work suggests that the C. elegans avoidance circuit is a hardwired, labeled line 

linked to activation of ASH. Wild-type C. elegans are insensitive to the red chili pepper 

compound capsaicin. However, ectopically expressing the mammalian capsaicin receptor, 

TRPV1, in ASH confers capsaicin sensitivity to C. elegans so that they execute stereotyped 

avoidance behavior upon capsaicin encounter (Tobin et al., 2002). This result suggests that 

activation of ASH is sufficient to generate a reversal behavior resembling a normal ASH-

triggered reversal. While this inflexible response seems appropriate in the context of avoiding 

dangerous stimuli, other results suggest alternative regimes for ASH-directed behaviors. ASH 

synapses onto many “intermediate layer” interneurons in the nerve ring and is regulated by 

incoming synaptic connections, gap junctions, biogenic amines, and neuropeptides from other 

sensory neurons and interneurons before ultimately terminating onto command interneurons 

(Figure 3.1). In this “indirect” network, both “ascending” and “descending” connections are 

present, with interneuron classes and sensory neuron classes projecting back and forth in every 

combination. Sensory neurons in this network transmit responses to temperature, pheromones, 

volatile and soluble chemicals, mechanical cues, and food quality. The convergence of these 

inputs onto intermediate interneurons suggests that information entering the circuit is integrated, 

possibly to generate statistical probabilities of certain basal behaviors (Gray et al., 2005; de 

Bono et al., 2002).  
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Downstream of ASH, both direct and indirect synaptic pathways lead to AVA backward 

command interneurons (Figure 3.1). This organization suggests the possibility of parallel 

processing of ASH signals. In the shortest pathway, nociceptive cues can promote deterministic 

avoidance behavior directly by synapses from ASH to AVA. Simultaneously, nociceptive cues 

can provide indirect input to the command interneuron circuit through intermediate neural 

circuits that integrate nociceptive cues with other external and internal cues to generate more 

nuanced behavior incorporating ongoing environmental quality. The existence of parallel 

nociceptive pathways has been suggested in nose-touch avoidance, an ASH-triggered behavior, 

where a disinhibition circuit engaged by the intermediate layer interneuron RIM acts in parallel to 

a stimulatory circuit commanded by AVA to trigger reversals (Piggott et al., 2011).  Moreover, 

there is evidence that ASH activation can be modulated by external and internal cues. The 

latency to reversal in ASH-dependent avoidance of weak octanol stimuli is either 3 s or 8 s, 

depending on food presence, serotonin levels, and adrenergic neurotransmitter secretion (Mills 

et al., 2007).  This example of temporally-resolved avoidance behavior provides added 

information compared to a qualitative response (“to reverse or not to reverse”).  

Quantification of specific behaviors time-aligned to stimulus encounter can be used to 

evaluate elements of dynamic ASH-driven behaviors. Automated worm tracking of animals 

crawling in microfluidic devices enables an analysis of stimulus-aligned, population-scale 

behavioral time courses in response to attractive and repulsive stimuli (Albrecht and Bargmann, 

2011). The behaviors observed in these devices are composed of at least four distinct states 

(forward, pause, reverse, and omega turn) (Albrecht and Bargmann, 2011). Behavioral tracking 

in microfluidic devices can be combined with calcium imaging of GCaMP-expressing sensory 

neurons or interneurons at a rate of 10 Hz (Larsch et al., 2013). These technological 

developments make it possible to correlate stimulus onset and removal with sensory neuron 

activity, interneuron activity, and subsequent behavior.  
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In the previous chapter, I demonstrated that the ectopic, cell-specific expression of 

ascaroside receptors srg-34 and srg-36 can generate receptor-specific calcium dynamics in 

ASH neurons. Do these ASH activation dynamics instruct different behavioral outcomes? What 

is their dependence on direct versus indirect anatomical circuits? Using microfluidic behavioral 

devices, calcium imaging, and selective neuronal silencing, I here investigate the role of ASH 

activation dynamics in direct and indirect nociception circuits. In this chapter, I show that 

expressing srg-34 or srg-36 chemoreceptors in ASH confers avoidance dynamics to the 

ascaroside C3 that are comparable to their respective ASH calcium dynamics. A population of 

worms expressing srg-34 in ASH rapidly increases avoidance behaviors to stimulus onset and 

rapidly adapts prior to stimulus offset, while a population of worms expressing srg-36 in ASH 

slowly increases avoidance behaviors during stimulus exposure and stops only after the 

stimulus is removed. The slow ramp of avoidance behaviors is seen in the srg-36-expressing 

population and in individual worms. Moreover, the correlation between calcium dynamics of the 

sensory neuron and the dynamics of C3 avoidance behavior is consistent over a 10-fold 
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concentration range of C3. Using chemically-induced cell-specific hyperpolarization, I show that 

fast srg-34-mediated ASH behavior dynamics require only AVA to generate correct motor 

patterns, but slow-ramping srg-36-mediated ASH behavior dynamics require the intermediate-

layer interneuron AIB to generate avoidance. ASH calcium signals are therefore not faithfully 

transmitted to the command motor neuron in a single pathway; instead, the behavior generated 

by ASH activation is transmitted from the sensory neuron through direct and indirect pathways 

to the command interneurons. 

Tracking avoidance behaviors in microfluidic devices 

C. elegans animals crawling among the posts of a microfluidic device experience 

different spatial constraints compared to the same animals crawling in an agar plate (Figure 

3.2.a). Upon entering the device, animals exhibit high reversal frequencies that decrease until a 

stable baseline is reached about 20 min after entry (Albrecht and Bargmann, 2011). Therefore, 

stimulus presentation and behavior tracking are typically started 20-25 min after worms enter 

the microfluidic device to bypass this initial adaptation to the microfluidic environment (Albrecht 

and Bargmann, 2011).   

Recordings of behaviors from a population of 25-30 worms per arena were analyzed for 

behavior in response to noxious stimuli sensed by ASH, with behaviors time-aligned to stimulus 

presentation times. The velocity of near-laminar fluid flow across an arena is determined by the 

height difference between the source and the sink of fluid and accounted for in onset-offset 

stimulus aligned analysis (Figure 3.2.b). All worms in an arena were tracked and classified into 

5 behavioral states -- forward motion, pause, reversal-alone, and the two components of a 

coupled reversal-omega series, pirouette reversal and pirouette forward (Figure 3.2.c). Forward 

moving worms were simultaneously tracked for locomotion speed (Figure 3.2.g; Albrecht et al., 

2011; Ramot et al., 2008). In response to aversive stimuli, wild-type worms first pause, then 

either continue forward movement or follow the pause with a reversal. If, after the reversal, the 

worm continues moving forward in the same direction as before, the behavioral state is scored 

as a pure reversal. If the reversal is instead followed by an omega turn and the worm therefore 

heads forward in the opposite direction as before, the behavioral state is scored as a pirouette. 

This is similar to the behavioral sequence observed with drop tests of aversive stimulus on agar 

plates (Albrecht et al., 2011; Hilliard et al., 2002). Pausing, reversals, and pirouette behaviors 
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are considered avoidance behaviors, with forward motion considered the non-aversive state. 

Behavior raster plots of individually tracked worms at each time point were aligned by stimulus 



93 

encounter (Figure 3.2.d). Time-binned histograms of population behavior raster plots from each 

stimulation expressed the probability of each behavior among the population of tracked worms 

at any given time (Figure 3.2.e, f). The combined probability of all five behaviors is 1 at all times. 

Aligning behavior histograms with stimulus-onset and stimulus-offset times generated the 

population time course probability of each behavior in response to the phasic changes of 

stimulus onset and offset as well as to the tonic states of stimulus presence and absence 

(Figure 3.2.e,f). Behaviors were resolved as the total amount of avoidance behaviors at each 

time point (stacked, Figure 3.2.e) or as the split probability of each individual behavior 

(unstacked, Figure 3.2.f). 

Population behavioral dynamics of srg-34 and srg-36 mediated C3 avoidance match their 

respective ASH calcium dynamics 

My first experiment was to ask how receptor-mediated calcium dynamics in sensory 

neurons compared to the behavioral responses to the same stimulus. Since C3 is an 

endogenously-sensed chemical ascaroside pheromone, I first presented 1 μM C3 to a 

population of wild-type worms crawling in a microfluidic device with no ectopic receptor 

expression in ASH. Wild-type C. elegans exhibited an increase in avoidance behavior upon the 

removal, but not the onset, of the ascaroside C3 (Figure 3.3.a). This behavior suggests that 

wild-type animals find C3 attractive. 

C3 sensitivity in a different assay, dauer larva formation, had previously been attributed 

to the srbc-64 and srbc-66 C3 receptors in the ASK neurons (Kim et al., 2009). To ask if the 

endogenous behavioral response was also ASK-dependent, we ablated the ASK neurons using 

cell-specific caspase expression. Upon ASK ablation, the “attractive” quality of 1 μM C3, as 

expressed by reversals upon its removal, was eliminated (Figure 3.3.b.). This result indicates 

that ASK is required for wild-type behavioral response to C3 at this concentration. 

We next presented 1 μM C3 to transgenic animals expressing either srg-34 or srg-36 in 

ASH. In both cases, addition of 1 μM C3 elicited pauses, reversals, and pirouettes consistent 

with avoidance behavior, the opposite behavior to the wild-type response (Figure 3.1.c,e). In 

addition, the endogenous aversion to C3 removal was eliminated, suggesting that the ectopic 

receptors in ASH override endogenous ASK signaling, Expression of a caspase in ASK neurons 

of animals expressing ASH srg-34 and srg-36 transgenes preserved the avoidance behaviors 

observed with the transgene alone (Figure 3.3.d.f.). Because the ASH transgenes appeared to 
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take precedence over endogenous ASK signaling, I conducted remaining experiments in with-

type animals with intact ASK neurons for the sake of convenience. 

The ASH:srg-34 and ASH:srg-36 strains showed C3 avoidance with dynamics 

remarkably similar to dynamics of the ASH calcium response across a range of concentrations - 

0.3 μM, 1 μM, and 3 μM C3 (Figure 3.4). When tracking the behavior in populations of 30 

worms expressing srg-34 in ASH, 1 μM C3 elicited avoidance behaviors that peaked with a 

latency of ~8 s after stimulus onset (Figure 3.4.k) but had adapted to 24% of peak height by the 

end of 30 s stimulation despite persistent C3 presence. srg-34 induced ASH calcium time 

courses were similar across a ten-fold concentration range (Figure 2.18.a; Figure 3.4.a-c, blue 

traces), showing rapidly peaking, fast adapting ASH calcium signals (Figure 3.4. d-f). Similarly, 

matching srg-36-mediated ASH calcium responses, populations of worms expressing srg-36 in 

ASH increased their avoidance behaviors gradually and maintained 44% of their peak response 

at the end of 30 s (Figure 3.4.h, n). Unlike srg-34 mediated ASH calcium responses, srg-36 

mediated ASH calcium responses increased in a dose-dependent manner in this concentration 

range (Figure 2.18.a; Figure 3.4.a-c, red traces). 0.3 μM C3 elicited very little avoidance 

response above baseline (Figure 3.4.g, m), 1 μM C3 elicited a slow-ramping, slow adapting 

response, and stimulation with 3 μM C3 resulted in a higher initial slope in aversion increase 

that maintained 80% of peak aversion at the end of the 30 s stimulation (Figure 3.4.j.n.). 

Importantly, even at 3 μM C3, when the total aversion behavior mediated by srg-36 during 

stimulus presence was comparable to that of srg-34 mediated aversion behaviors (Figure 

3.4.m), the initial slope of both the ASH calcium response and associated avoidance dynamics 

never exceeded the initial slopes elicited by srg-34 at any C3 concentration (Figure 3.4.j). 
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Neural circuit dependence of srg-34- versus srg-36- directed nociception 

To investigate how pertinent interneurons contribute to ASH-directed nociceptive 

behavior, I inactivated key interneurons prior to each experiment using a chemical genetic 

system. C. elegans do not have endogenous histamine receptors and exhibit no behavioral 

changes to histamine (Chase and Koelle, 2007; Alkema et al., 2005; Pokala et al., 2013). 

Expressing the Drosophila histamine-gated chloride channel (HisCl) in specific neurons using 

cell-selective promoters hyperpolarizes the neurons when histamine is present, allowing 
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reversible inactivation over a time scale of minutes in a dose-dependent manner (Pokala et al., 

2013). 

AVA, the backward command interneuron, strongly promotes reversals upon optogenetic 

activation, and is required for all known sustained reversal behaviors (Piggott et al., 2011; Gray 

et al., 2005; Chalfie et al., 1985). AIB is an intermediate layer interneuron that strongly 

modulates spontaneous reversal probability (Gray et al., 2005). AIB is both postsynaptic to ASH 

and presynaptic to AVA (White et al., 1986). Transgenes in which HisCl was expressed in AVA 

or AIB were used to silence these two neurons in strains expressing srg-34 or srg-36 in ASH, 

and these double transgenic strains were examined for effects of histamine-induced interneuron 

silencing on ASH-directed behavior.  

AVA silenced populations exhibited significantly less reversals and pirouettes in 

response to 1 μM C3 than AVA intact populations in both the ASH:srg-34 and the ASH:srg-36 

strains (Figure 3.5.a-d, middle column, Figure 3.5.e, black bars = reversals, red bars = 

pirouettes; Table 3.1.b).  This was balanced by a significant increase in pause states observed 

across these C3 receptor-concentration conditions (Figure 3.5.e., gray bars; Table 3.1.b) so that 

the total avoidance behavior remained unchanged or increased across 30 s of ASH stimulation 

(Figure 3.5.e., white bars; Table 3.1.b). Reversal behavior appeared to be slowed, as there was 

an increase in both the time to peak and the fraction of behavior that remained at the end of 30 

s (Figure 3.5.g-h; Table 3.1.b). Animals with silenced AVA neurons are known to generate 

omega turns in the absence of a prior reversal (Pokala et al., 2013), but the tracking software 

used here would not be able to recognize this behavior pattern; further analysis will be needed 

to examine the residual behaviors of AVA-silenced animals in more detail.  For the purpose of 

this discussion, the main conclusion is that AVA is needed for avoidance behaviors that include 

reversals, but is not needed for avoidance behaviors mediated by pausing.  

Worms with silenced AIB interneurons had a different set of behavioral changes to C3 

(Figure 3.5.a-d, right column; Figure 3.3.f. Table 3.1.a.). AIB is known to have an important role 

in generating omega turns (Gray e al., 2005; Pokala et al., 2013), and indeed, AIB silencing 

resulted in significantly reduced pirouette state probabilities in ASH:srg-34 worms in response to 

30 s of either 1 μM C3 and 3 μM C3 (Figure 3.5.f., red bars 1-4; Table 3.1.a.). The increased 

probabilities of both pause (Figure 3.5.f., gray bars 1-4) and reversal (Figure 3.5.f., black bars 1-

4) states in these conditions did not compensate for the pirouette reduction, so that the there

was a 22% decrease in total avoidance behaviors to 1 μM C3 by worms expressing ASH:srg-34 

and a 35% decrease to 3 μM C3 (Figure 3.5.f., Table 3.1.a.; Student’s T-test, *P<0.05). This 
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result suggests that ASH:srg-34 worms without AIB activity show significantly increased forward 

state probability during C3 stimulation compared to the same population of worms with intact 

AIB. Despite these changes to total avoidance behavior, the dynamics of the ASH:srg-34 

induced population avoidance response were similar with and without intact AIB neurons. In 

response to 1 μM C3 or 3 μM C3, worms with and without intact AIB reached the peak of their 

avoidance probability at the same time (Figure 3.5.i, bars 1-4. Average time to peak for 1 μM 

C3: ASH:srg-4=6.3 s; AIB:HisCl ASH:srg-34=8.9 s; n.s. by Student’s t-test, P>0.05. Average 

time to peak for 3 μM C3: ASH:srg-34=6.9 s; AIB:HisCl ASH:srg-34=7.1 s; n.s. by Student’s t-

test, P>0.05.). The adaptation for 30 s of stimulation was also comparable across all conditions 

(Figure 3.5.j, Fraction of peak response after 30s with 1 μM C3: ASH:srg-34=0.14; AIB:HisCl 

ASH:srg-34=0.24; n.s. by Student’s t-test, P>0.05. Average time to peak for 3 μM C3: ASH:srg-

34=0.19; AIB:HisCl ASH:srg-34=0.14; n.s. by Student’s t-test, P>0.05).   

After AIB silencing, ASH:srg-36 mediated C3 avoidance exhibited changes in both 

behavior probability and dynamics. In the most striking result, 1 μM C3 ceased to elicit any 

avoidance in ASH:srg-36 populations. This occurred due to a decrease in all aversion behaviors 

after AIB silencing, including pauses, reversals, and pirouettes (Figure 3.5.f., all colors, bars 5 

and 6; Table 3.1.a.). Raising the concentration of stimulus to 3 μM C3 increased srg-36 

mediated aversion in intact worms so that the total aversion behavior during stimulus presence 

was comparable to the avoidance regime mediated by srg-34 (Figure 3.5.f.; n.s., p>0.05 

between 1 μM C3 avoidance by ASH:srg-34 and 3 μM C3 avoidance by ASH:srg-36). This 

reflects the ASH calcium response, which shows significantly higher total calcium response over 

30 s to 3 μM C3 stimulation of srg-36 than srg-34 (Figure 2.16.b.).  However, while the initial 

slope of aversion behavior increased, it was still significantly lower than that mediated by srg-34 

(Figure 3.4.j.; ****P<0.0001), resembling the slope of their respective calcium measurements in 

ASH (Figure  2.16.b). Thus, raising the stimulus concentration to 3 μM C3 could help 

differentiate whether initial slope of ASH calcium activity and avoidance response or the total 

ASH calcium activity and avoidance response was relevant for maintaining C3 avoidance in the 

context of AIB silencing. In response to 3 μM C3, ASH:srg-36 worms with hyperpolarized AIB 

interneurons expressed similar trends to ASH:srg-34 worms: probabilities of pausing states and 

reversal states increased to partially compensate for decreased pirouette probability so that, 

though the total avoidance behavior decreased, some residual behavior was maintained. 

Interestingly, most of the residual avoidance behavior occurred early in the 30 s stimulation by 3 

μM C3 so that the response adapted to 39% of the peak value in AIB silenced populations while 



99 

AIB-intact populations maintained 67% of its peak value at the end of 30 s (Figure 3.5.j, bar 7 

and 8; ****P<0.0001; Table 3.1.a.). This hints that AIB may contribute to both the detection of 

slowly ramping signals and the maintenance of avoidance responses to prolonged calcium 

signals from ASH. 
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AIB is more important for maintaining avoidance at later time points 

To distinguish whether the slope or total magnitude of the calcium response is more 

important for avoidance behaviors, I varied the concentrations of C3 presented to the ASH: srg-

34 strain.  At C3 levels of 33 nM, calcium levels in ASH:srg-34 rise with a significantly higher 

slope but a significantly lower peak and total calcium response than that observed in ASH:srg-

36 exposed to 1 μM C3.  At still lower C3 levels of 10 nM, the ASH:srg-34 calcium response has 

a lower slope as well as a lower peak and total calcium response than that observed in 

ASH:srg-36 exposed to 1 μM C3 (Figure 3.6.f.). At 0.5 nM C3, GCaMP3 did not give a 

detectable calcium response in ASH:srg-34. 

An initial sharp increase of ASH:srg-34 mediated avoidance behaviors was observed at 

all concentrations tested, even at 0.5 nM C3 when ASH calcium changes were not detected 

(Figure 3.6.d.). Though the peak of magnitude of avoidance behavior diminished at lower C3 

concentrations, the peak it remained sharply aligned to stimulus onset. This suggests that ASH 

can drive avoidance at a stimulus level below the detection threshold of our GCaMP3 calcium 

indicator when activated by srg-34. 

I next compared ASH:srg-34 low-concentration behavior responses to ASH:srg-36 1 μM 

C3 behavior responses in AIB intact and silenced populations (Figure 3.6.d.).  At 33 nM C3, 

avoidance was largely maintained in AIB silenced populations of ASH:srg-34 expressing worms 

(Figure 3.6.d.).  However, there was a significant decrease in behavior after 10 s of stimulation 

in AIB silenced worms when the C3 concentration was lowered to 10 nM (Figure 3.6.d.). A 

regression of behavior against the initial slope of measured ASH calcium activity suggested a 

stronger requirement for AIB in cases where the initial calcium slope was low for both srg-34 

and srg-36 (Figure 3.6.e).  This effect was greatest for the later time points in the behavioral 

response (Figure 3.6.e). No correlation was observed between the AIB requirement and the 

peak calcium height or total calcium amount measured in ASH. The greater requirement for AIB 

at later time points suggests that AIB has a role in maintaining behavior over time (Figure 

3.6.e.).  
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Fast and slow ASH calcium dynamics differently access AVA and AIB interneurons in 

freely moving worms 

The results described above suggests that AIB is required for generating avoidance 

behavior to low, ramping signals from ASH as well as for maintenance of avoidance behavior 

over longer times of tonic ASH signaling. Since AVA activity alone could not compensate for the 

lack of AIB, my data also suggest that different features of ASH responses instruct different 

downstream interneurons. To see how AIB and AVA respond to ASH activation, I first attempted 

calcium imaging of these neurons in the trapped microfluidic device to 1 μM C3 with ASH:srg-34 

or ASH:srg-36. Unfortunately, AVA and AIB neurons have a high level of spontaneous activity 

and relatively little stimulus-induced activity in our standard microfluidic device (not shown). This 

suggests that the aversive environment of the trapped chip may provide an unfavorable 

environment to investigate interneuron responses to aversive stimuli.   

Therefore, to observe the activity of this circuit for ASH-mediated behaviors, I performed 

simultaneous GCaMP imaging and behavioral tracking of freely-moving worms responding to 

C3 in a microfluidic device (Larsch et al., 2013). I measured calcium changes in AVA or AIB in 

single worms with ASH:srg-34, with ASH:srg-36, or with no ectopic transgene expression, in 

response to a temporal pulse of 1 μM C3. Acquiring images of the freely-moving worm at 10 Hz 

allowed consistent automated tracking of GCaMP-indicated neural activity with less than 10% of 

frames requiring additional manual tracking (Sagi Levy). Behavior segmentation was generated 

by hand for each video. While forward movement, pauses, reversals and pirouettes were 

tracked, only pirouette events were used for initial analysis. 30 total pulses of 1 μM C3 were 

presented for 30 s to each worm. Three types of time-course analyses were conducted: 1. 

Stimulus-aligned behavior time course, 2. Stimulus-aligned AVA or AIB neural activity, and 3. 

Neural activation aligned by initiation of pirouette behavior. These three parameters allowed us 

to visualize how interneuron activity relates to stimulation and to behavior.  

The analyses were conducted as follows. 1. To generate a stimulus-triggered time 

course of pirouette probabilities, raw, stimulus-aligned behavior raster plots depicting pirouette 

events were generated for each worm to each pulse, with the onset of each stimulus at t=0 

(Figure 3.7.a,b,c, right column). The mean probability of conducting a pirouette behavior was 

generated for each time point using these raster plots, resulting in a time course of pirouette 

behavior probability in response to stimulus for each worm (Figure 3.7.a.,b.,c. left column). 2. To 

generate a stimulus-triggered time course of AVA or AIB fluorescence levels, the percent 

fluorescence change (ΔF/F0) measured in the freely moving worms was time-aligned with the 
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onset of C3 stimulus at t=0 for all 30 C3 presentations for each worm. The average fluorescence 

of the neuron across all 30 C3 presentations was calculated per worm in each frame to generate 

a time course of neural activity for that worm (Figure 3.7.d, left and middle columns). The time 

course of average neural fluorescence was normalized from 0 to 1 for each worm and averaged 

together to generate a population time course of neural activation for worms expressing 

ASH:srg-34 or worms without ectopic receptor expression (Figure 3.7.d. right column). Due to 

the variability of interneuron responses seen in AVA neurons in the ASH:srg-36 background, 

only individual averages for each worm are shown for ASH:srg-36 interneuron activity data 

(Figure 3.7.e.). 3) AVA or AIB fluorescence levels measured in the freely moving worms were 

time-aligned to every initiation of a pirouette behavior at t=0 for each worm. The average neural 

fluorescence level was calculated per worm and normalized between 0 and 1 (Figure 3.7.f., left 

and middle columns). Further averaging the time course of neural activity from all worms 

generated a population time course of neural activity (Figure 3.7.f., right column) that shows the 

average activity of the AVA and AIB neurons before and during pirouette initiation.  

I first examined whether individual time courses of avoidance behavior to 1 μM C3 

reflected the population time course of avoidance behaviors seen in the previously described 

large microfluidic arenas.   When presented with 1 μM C3, worms expressing ASH:srg-34 

increased reversals significantly, a behavior that aligned with odor onset (Figure 3.7.a.). Indeed, 

raster plots for each worm shows that every worm began a pirouette within 10 s of stimulus 

onset in >90% of trials (Figure 3.7.a., second column). This suggests that the ASH:srg-34 

mediated behavior is fairly deterministic. Further, this was observed both in worms expressing 

AVA:GCaMP5 and AIB:GCaMP3, suggesting that the calcium indicator itself is not interfering 

with the initial stimulus dynamics. Similarly, wild-type worms that do not express an ectopic C3 

receptor in ASH responded with a robust decrease in pirouette probability at stimulus onset and 

an increase of pirouette probability at stimulus removal (Figure 3.7.c.), resembling the ASK-

intact population wild-type responses in Figure 3.1.  

All three AIB:GCaMP3, ASH:srg-36 expressing worms responded to C3 with a slow 

ramping increase of pirouette probability over the course of 30 s (Figure 3.7.b., red dot). The 

peak probability of pirouette activity was lower in magnitude compared to ASH:srg-34 responses 

(0.79 vs. 0.45, ***P<0.001), and the latency to peak was 16.0 s compared to the 7.0 s measured 

in ASH:srg-34 responses (**P<0.01). A lower peak of avoidance probability and an increase of 

the time to peak activity compared to ASH:srg-34 responses were also characteristics of 
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ASH:srg-36 mediated behaviors to 1 μM C3 in the population experiments described in Figures 

3.3-3.5. 

On the contrary, pirouette probability dynamics in response to 1 μM C3 were variable in 

AVA:GCaMP5 worms expressing ASH:srg-36 (Figure 3.7.b., black dot). Out of the three worms 

tested, two worms showed a ramping increase of pirouette probability during C3 stimulation, 

while a third resembled wild-type worms with a decrease in pirouette probability to stimulus 

onset and an increase in pirouette probability to stimulus removal. Further experiments will be 

required to determine whether this is an effect of the indicator strain, a rare occurrence in all 

strains, or something else; in any case, these three worms were not averaged for analysis. 

When neural activity was time-aligned to C3 onset, AVA and AIB GCaMP fluorescence 

rose immediately at stimulus onset in ASH:srg-34 expressing worms (Figure 3.7.d. upper row). 

This was reflected in individual averages of neural activity in each worm, as well as in the 

population average (Figure 3.7.d, top row). Thus for srg-34, ASH activity, sensory input, and 

avoidance behaviors were well-correlated. 

Switching to the slower srg-36 response, the variability observed in ASH:srg-36 

mediated behaviors was reflected in the interneuron activity averages for each individual (Figure 

3.7.e.). The average response of AIB activity in individual worms was consistent, (Figure 3.7.e, 

red traces, left and middle column), and was matched to the pirouette probability of the 

respective worms over the 30 s time course (Figure 3.7.e., right column, red dot). At a single 

animal level, it was evident that neuronal activity correlated more closely with the behavioral 

response than with the sensory input.  AVA interneuron activity over the 30 s time course 

aligned with the respective pirouette probability in each individual (Figure 3.7.e., right column, 

black dot), but the AVA activity time course across the three worms was as variable as the 

behavior time course shown in Figure 3.7.b. (Figure 3.7.e., left and middle column, black 

traces).  

In wild-type worms that showed consistent decreased pirouettes to C3 onset and 

increased pirouettes to C3 removal, AVA and AIB both showed an immediate rise to C3 removal 

in individual and population fluorescence averages (Figure 3.7.d., bottom row).  In this case, 

AVA and AIB appear to correlate with reversals, and anticorrelate with the presence of C3. 

These results suggest that the AIB and AVA neurons correlate more closely with 

behavioral state than with sensory input.  Since neural activity and behaviors appear correlated 

in all conditions, we used behavior-aligned interneuron activity to better assess how the time 

course of interneuron activity predict behaviors mediated in each receptor condition (Figure 
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3.7.f). AVA, the backward command neuron, began to rise in fluorescence around 5 s before all 

pirouette initiations in ASH:srg-34 (Figure 3.7.f. top row, black trace), ASH:srg-36 (Figure 3.7.f., 

middle row, black trace), and wild-type (Figure 3.7.f., bottom row, black trace) C3-evoked 

behaviors.  However, while ASH:srg-34 and wild-type mediated C3 responses showed identical 

rise times between AVA and AIB, there was a clear lag of ~3 s in AVA rise after AIB rise in 

ASH:srg-36 mediated activity. This lag was consistent in all individual worms (Figure 3.7.f., 

middle row) as well as in the population average (Figure 3.7.f, right row). Thus, in ASH:srg-36 

worms, while AVA was still correlated with the initiation of pirouette behaviors, AIB appeared to 

start rising in activity before AVA, possibly aiding ASH to activate AVA.  
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Discussion 

ASH:srg-34 and ASH:srg-36 promote behavioral dynamics to 1 μM C3 and 3 μM C3 that 

are similar to the calcium transients observed in ASH to these stimuli-receptor combinations. 

ASH can influence behavior by synapsing directly onto the backward command interneuron 

AVA to generate reversals and pirouettes. ASH can also promote behavior indirectly by 

synapsing onto the intermediate neuron AIB, which in turn synapses onto AVA. By silencing 

each neuron in turn using the chemical genetics reagent HisCl, I have investigated how the 

direct and indirect pathways differently contribute to nociceptive behavior that is specifically 

instructed by ASH. AVA, the backward command interneuron, promotes reversals, but animals 

unable to reverse to ASH:srg-34 or ASH:srg-36 mediated C3 avoidance due to hyperpolarization 

of AVA are still able to maintain their total avoidance response through pausing. AIB, previously 

suggested to play a role in promoting omega turns (Gray et al., 2005), cannot do so efficiently 

when hyperpolarized, and these worms therefore continue reversing or moving back into 

forward states instead of completing pirouettes. Thus, silencing AVA and AIB had different 

motor consequences. Since a significant increase in pausing was found in AVA silenced 

populations and a significant increase in both pausing and reversals was found in AIB silenced 

populations, it appears that hyperpolarizing an interneuron results in a redistribution of wild type 

behaviors among achievable avoidance behaviors. However, while this redistribution was 

enough to compensate in AVA silenced worms so that the total behavior observed was 

unchanged, silencing AIB resulted instead in significantly decreased total avoidance behaviors 

across all conditions tested. 

While both ASH:srg-34 and ASH:srg-36 worms with silenced AVA neurons were able to 

produce avoidance behaviors to 1 μM C3 and 3 μM C3, worms with silenced AIB neurons had 

altered sensory-to-motor processing. The slow, ramping ASH:srg-36 response to 1 μM C3 

depended on AIB completely to produce any avoidance behaviors at 1 μM C3 –no 

compensatory increase in pausing or reversals were observed. Increasing the stimulation to 3 

μM C3 rescued some avoidance behaviors in ASH:srg-36, but they adapted during the 30 s 

stimulation, in contrast to the response in worms with intact AIB interneurons (Figure 3.5.f). In 

worms with intact interneurons, the ASH:srg-36 response to 3 μM C3 had comparable total 

avoidance to that of ASH:srg-34 during stimulation, but had lower initial response slopes in both 

behavior and ASH calcium signals. AIB may thus accumulate signals over time for slow 

responses, and transduce accumulated ASH signals to AVA to enhance motor output. AIB is not 

required to generate avoidance to fast ASH responses, as seen across all ASH:srg-34 mediated 
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responses and in the residual fast peaking, fast adapting response observed in response to 

ASH:srg-36 at 3 μM C3.  

Interneuron imaging in freely moving worms contributes additional evidence that AIB can 

act as a signal accumulator (Figure 3.7). In both individual trial averages and population trial 

averages, AIB:GCaMP3 and AVA:GCaMP5 start to increase fluorescence activity in the 

ASH:srg-34 worms simultaneously at C3 onset, ~5 s before the initiation of pirouette behavior 

(Figure 3.6). However, in srg-36-mediated ASH responses, while AVA calcium activity begins to 

increase on average about ~5 s before the initiation of pirouette behavior, AIB calcium activity 

begins to increase about 3 s before AVA (Figure 3.6.f.). This delay may be the signature of AIB 

accumulating weak ASH input over time before generating enough evidence to instruct AVA to 

initiate avoidance behavior. 

Modeling AIB contribution as a coherent type-1 feed forward loop with slope-determined 

AND or OR logic 

The temporal delay described above is characteristic of a coherent type-1 feed forward 

loop (FFL1) with AND logic (Alon, 2007; Figure 3.8.f.). Originally described as the most common 

circuit motif in transcriptional networks, it was also suggested to be a common neural circuit 

motif in the C. elegans wiring diagram, based on its anatomy (Alon, 2007). Based on this model, 

the simple ASH, AIB, and AVA avoidance circuit consists of ASH directly activating AVA, or 

indirectly activating AVA by activating AIB. The circuit is coherent since all “edges” consists of 

positive relationships so that both the direct and indirect pathways result in the same end 

behavior (avoidance). In an AND logic FFL1, both ASH AND AIB activity are required to activate 

AVA, which in turn instructs avoidance; thus, if a temporal delay exists between ASH activation 

and the activation of AIB by ASH, AVA will not become active until this delay is over. ASH:srg-

36 mediated, 1 μM C3 stimulated interneuron activity exhibited a ~3 s delay between AIB and 

AVA calcium responses when aligned to pirouette behavior initiation. Thus, AIB began 

increasing activity around 3 s before AVA initiated activity in this scenario. Since this behavior 

was completely AIB dependent, with no residual avoidance in AIB silenced populations, this C3 

receptor-concentration condition appears to operate entirely through a FFL1 with AND logic.  

However, AIB is not required to generate avoidance behaviors in ASH:srg-34, 1 μM C3 

or ASH:srg-36, 3 μM C3 receptor-concentration conditions. This was reinforced by the result of 

AVA and AIB imaging in freely moving worms under the ASH:srg-34, 1 μM C3 condition, in 

which AVA and AIB activations were aligned to both the onset of stimulus and to each other. 
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This suggests that ASH was able to activate AVA without additional AIB input. If ASH can 

instantaneously activate AIB, the AND logic circuit essentially becomes an OR logic circuit. 

Modeling the simple ASH, AIB, AVA circuit as a type 1 FFL1 circuit with OR logic (Figure 3.8.i), 

ASH alone can activate AVA to initiate avoidance behaviors (conversely, AIB alone may be 

enough to activate AVA signals without ASH). However, an opposite temporal delay occurs 

when a signal ends in an OR logic circuit –both neurons must stop signaling before the output 

behavior can terminate (Alon, 2007), i.e. if either ASH or AIB remain active, AVA can continue to 

generate avoidance behaviors. Interestingly, a decrease in the ability to maintain avoidance 

behaviors at later time points was observed across many C3 receptor-concentration conditions 

(Figure 3.6.e.), suggesting that AIB may delay the termination of avoidance behaviors in 

scenarios where it may not be required to initiate avoidance behavior.     

To investigate these possibilities, I generated a rudimentary model to use ASH calcium 

responses to explain characteristics of avoidance behavior dynamics in various C3 receptor-

concentration conditions with and without AIB silencing (Figure 3.8). I first used experimentally 

generated behavior time courses from AIB intact (Figure 3.8.a.) and AIB silenced (Figure 3.8.b.) 

populations to derive the “residual” behavior after AIB silencing (Figure 3.8.c.). Using 

experimentally generated ASH calcium traces (Figure 3.8.d.), I calculated the derivative of each 

trace (Figure 3.8.e.) since the slope of the ASH response was shown to be important for AIB 

dependence from prior analysis (Figure 3.6).  Setting a slope of 0.01 ΔF/F0 as the cut off 

between a type-1 FFL with AND (slope <0.01 ΔF/F0) or OR (slope >0.01 ΔF/F0) logic, I 

conducted the following models of AIB input, assuming that AIB is an accumulator of ASH 

activity. In type-1 FFL1 AND logic circuit models (Figure 3.8.f.), I integrated the entire ASH slope 

function since input from AIB is required for AVA activation (Figure 3.8.g.). In type-1 FFL1 OR 

logic circuit models (Figure 3.8.i.), I integrated the ASH slope function only after the slope 

peaked (Figure 3.8.j.) so that ASH is initially allowed to activate AVA without AIB input as it is 

itself sharply activated by C3. Subtracting the model AIB contribution (Figure 3.8.g and Figure 

3.8.j.) from each respective experimentally derived intact avoidance behavior in Figure 3.8.a. 

generates models of avoidance behavior time courses after AIB silencing (Figure 3.8.h.).  

Results from this slope-determined AND or OR logic type-1 FFL model (Figure 3.8.h.) 

recapitulates many features observed in changes to the behavioral time course after 

experimental AIB silencing (Figure 3.8.b.). First, because the shape of the ASH:srg-36, 1 μM C3 

behavior response (Figure 3.8.a.) was so similar to its respective ASH activation dynamics 

(Figure 3.8.d.), in the AND logic circuit AIB silencing eliminated the entire avoidance response 
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(Figure 3.8.h.), in agreement with experimental data (Figure 3.8.b.). Since the ASH:srg-34, 10 

nM C3 response (Figure 3.8, 1st column) had a large initial avoidance response to stimulus 

onset (Figure 3.8.a.), subtracting the integrated slow calcium slope function only eliminated the 

later avoidance behaviors, leaving a residual sharp increase of avoidance behavior at stimulus 

onset (Figure 3.8.h.) that resembles the experimental data in AIB silenced populations (Figure 

3.8.b.). Because the slope of neural activity is negative (Figure 3.8.e.) for a significant portion of 

the ASH:srg-34, 1 μM C3 and ASH:srg-34, 3 μM C3 conditions (right two columns), subtracting 

the integration of the calcium slope after the peak of calcium slope results in the most 

subtraction near the peak of behavior, with more intact behavior towards the end of stimulation 

(Figure 3.8.h); this was also characteristic of the experimental data for these conditions (Figure 

3.8.b). The model for ASH:srg-34, 33 nM C3 was least predictive of the measured result (Figure 

3.8, third column).  The behaviors in this data set were noisy, however, and repeating the 

experiment might add clarity (Figure 3.8.a-b). It is possible that other interneurons can add 

additional nodes to this model that are currently unaccounted for. 

There are clearly aspects of behavior that are not explained by this model. First, we do 

not account for the original behavior in AIB intact worms. For instance, the sharp initial peak of 

ASH:srg-34 mediated responses persist even when no ASH calcium signals can be observed 

(0.5 nM C3), and do not reflect the observed low-slope calcium signals at a low (10 nM) C3 

concentration (Figure 3.6.d.). These may be explained by voltage changes that do not require 

calcium amplification or by calcium signals that are high enough to activate downstream 

interneurons of ASH but are too low to be detected by the GCaMP3 fluorescent calcium 

indicator. In any case, the low calcium slope measured to ASH:srg-34, 10 nM C3 was able to 

trigger immediate, non-AIB dependent avoidance behaviors while a slightly higher calcium slope 

with much higher calcium peak and total evoked calcium in ASH (ASH:srg-36, 1 μM C3) was 

only able to trigger ramping behavior increases that were entirely AIB dependent. This suggests 

that ASH:srg-34 and ASH:srg-36 mediated behaviors result from different ASH activation 

regimes. They also interact with different G proteins (Figure 2.18 and Figure 2.19). Whether the 

resulting behavior difference occurs through access to different calcium stores, different 

neurotransmitter pools, or different signaling cascades remains to be elucidated. 
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Consequences of a modulatable feed forward excitatory circuit in nociception 

In response to 1 μM C3, ASH:srg-34 and ASH:srg-36 appear to induce two different 

classes of ASH activity, which respectively instruct different classes of aversion behavior with 

different neural circuit dependences. ASH:srg-34 has a fast ASH calcium rise and fast 

adaptation, it instructs correspondingly fast behavior dynamics and does not require AIB to drive 

avoidance behaviors. This cluster of results suggests that direct chemical synapses from ASH 

to AVA are enough to drive aversion in the context of fast, strong sensory inputs. ASH:srg-36 

has a slower ASH calcium response, no adaptation, and accordingly slower behavioral 

dynamics. The timing of aversive behavior after stimulus onset is more variable than the timing 

of ASH:srg-34 responses. AIB is critical for ASH:srg-36 to elicit behavior, and animals in which 

AIB is hyperpolarized behave as if they do not sense 1 μM C3.  

The existence of two classes of ASH responses has previously been suggested based 

on differences in requirements for downstream glutamate receptors (Hart et al., 1995, Maricq et 

al., 1995).  Further evidence is provided by the modulatable timing of response initiation to low 

octanol concentrations, which show that worms reliably move from a rapid to a slow avoidance 

regime based on external and internal modulating factors (Chao et al., 2004; Harris et al., 2009; 

Wragg et al., 2007). Since AIB is an intermediate-level interneuron with many other sensory and 

interneuron inputs, its position could allows signal integration across many internally and 

externally generated stimuli. It may act as a coincidence detector, allowing many nociceptive 

signals to summate so that an environment of many weakly aversive stimuli can bring AIB, and 

thus AVA, into an active state. Conversely, it may allow weakly nociceptive signals in ASH to 

compete with internal and external attractive signals that converge on AIB.  

A simple circuit that can measure slow and fast changes in the environment, integrate 

them with other external and internal cues, and accumulate information over time is well-suited 

to signal nociceptive cues. It allows nociceptive cues to act in a deterministic manner when 

survival is immediately challenged, but also allows the circuit to “decide” whether weaker 

nociceptive cues outweigh the attractive cues in the environment. This flexible circuit thus has 

many survival benefits but can be disrupted.  If the nociceptive tone, for instance, is disturbed 

through genetic mutations or injury, weaker nociceptive cues may be perceived to be 

deterministic or stronger cues to be ignorable, resulting in imprecise behaviors. 
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CHAPTER 4: Discussion and Future Directions 

My thesis work focused on how the temporal dynamics of nociceptor activation instructs 

downstream interneurons to initiate avoidance behavior.  

In Chapter 2, I describe two main types of calcium dynamics observed in ASH in 

response to naturally aversive stimuli, either measured with long stimulus pulses or derived as 

linear temporal filters from imaging responses to white noise stimuli. Temporal filters to glycerol 

and NaCl were slowly ramping, summing stimulus history for the past 10 s while most highly 

weighing the previous 3 s of exposure. Temporal filters to copper peaked within the first two 

seconds of stimulation before sharply returning to baseline. I showed that the srg-34 and srg-36 

receptors both respond to 1 μM C3, but with different calcium dynamics. srg-36 is slowly 

ramping, generating a linear filter to m-sequence presentations of stimulus that is comparable to 

the slow, broad filter found in endogenous ASH glycerol responses, while srg-34 was fast 

peaking and fast adapting in response to both long stimulus pulses and in its m-sequence 

derived linear filter.  

In Chapter 3, I described the relationship between neural signaling and avoidance 

behaviors.  I discovered that ASH:srg-36 behavioral responses to 1 μM C3 depend on the 

intermediate level interneuron AIB, which may accumulate such signals before activating AVA in 

an indirect pathway for avoidance behavior.  ASH:srg-34 did not require temporal summation by 

AIB and could still generate avoidance behaviors in response to nociceptive stimuli even when 

AIB was silenced. This suggests that srg-34 can drive AVA directly from ASH. How different 

ASH calcium signals can be perceived by different downstream interneurons remains to be 

elucidated; I suggest some possibilities below 

On the sensory neuron side, ASH:srg-36 and ASH:srg-34 may access different calcium 

sources within ASH to generate their respective calcium signals. Calcium-induced calcium 

release using either the inositol tris-phophate receptor or the ryanodine receptor has been 

implicated in mediating ASH-driven aversive responses to 1-octanol (Zahratka et al., 2014). 

Using calcium imaging, this study showed a change in calcium dynamics with a loss of function 

mutation in either of these regulators of intracellular calcium stores. This study also found that 

voltage changes to neuromodulatory cues such as serotonin may not necessarily change 

voltage amplitude and calcium amplitude in the same direction. Thus, there are some calcium-

independent aspects of avoidance behavior that can be mediated by ASH. At the extremely low 
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C3 concentration of 10 nM, srg-34 was still able to mediate a fast and high peak of avoidance 

behavior despite a low slope and low peak in calcium (Figure 3.4), but the later maintenance of 

avoidance behavior was significantly diminished. It is possible that the SRG-34 receptor may 

intrinsically be less dependent on calcium amplification of voltage signals to generate behavior 

than SRG-36.  Looking at changes to srg-34 and srg-36 mediated ASH responses in the egl-19 

voltage-gated calcium channel, unc-68 (ryanodine receptor), and itr-1 (inositol triphosphate 

receptor) mutant backgrounds may help to elucidate whether SRG-34 and SRG-36 are 

accessing different intracellular calcium stores to generate their respective calcium dynamics. 

Since adding serotonin increased the nociceptive tone in ASH for 1-octanol responses, it is also 

possible to add serotonin into my calcium imaging or behavior experiments to see how SRG-34 

and SRG-36 responses are modulated.  

The ability of ASH:srg-34 and ASH:srg-36 to differently engage AVA and AIB could 

result from these receptors triggering release of different neurotransmitter or neuropeptide pools 

within ASH. To investigate this, eat-4 vesicle glutamate transporter mutants, egl-3 proprotein 

convertase mutants or egl-21 carboxypeptidase mutants (both involved in neuropeptide 

processing) can be assessed to see if signaling from either receptor is more glutamate or 

neuropeptide dependent. On the interneuron side, different glutamate receptor or neuropeptide 

receptor mutants could be checked for changes in behavioral dynamics to C3 avoidance.  

AVA is not the only command interneuron in the C.elegans circuit to which ASH has 

access; AIB is not the only intermediate layer interneuron that could affect ASH behaviors. 

Investigating the role of other interneurons postsynaptic of ASH by silencing them with the HisCl 

system could add additional nodes to our simple circuit. The forward command interneuron, 

AVB, for instance, is postsynaptic to AVA, AIB, and ASH and may contribute to the circuit by 

either reinforcing the AVA response by terminating its own activation in the presence of 

deterministic signals or pull against AVA activity if attractive stimuli are also present in 

conjunction with a weaker signal from ASH.  

While I have demonstrated the ability of ASH to instruct downstream interneurons 

differentially through different calcium dynamics, I have done so with ectopic receptors. This is 

because the endogenous response to natural stimuli in ASH is complex and because these 

stimuli are not specific to ASH. However, in the tax-4 tax-2 genetic background, both ASE and 

ASI are silenced while leaving ASH signals intact. It could be interesting to see if ASH behavior 

responses to endogenous stimuli are more predictable in this background under AIB intact or 
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silenced conditions. Similarly, I would like to use my Type 1 FFL model to see which aspects of 

the ASH endogenous behaviors can be predicted and which can not be explained by this model. 

Feed forward excitatory loops like our simple circuit in C. elegans have their counterparts 

in the mammalian nociception system. Specifically, Aδ and C fiber synapse onto both the 

ascending projection cells in lamina I of the spinal cord dorsal horn as well as to the 

intermediate layer vertical cell spinal cord interneurons in lamina II of the dorsal horn. Vertical 

cells then in turn synapse positively onto the same projection cells (Braz et al., 2014). This feed 

forward excitatory motif generates a “back-up” excitatory drive for nociceptive signals that result 

in significant loss of pain perception in mammals without this system. This is not the only 

example of feed forward excitation in the complex mammalian pain circuit, suggesting that this 

motif is not only critical for accurate pain perception, it may also be a major point of error in 

chronic pain states. 
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METHODS 

Nematode Growth 

Strains were grown and maintained under standard conditions at 22-23 °C on nematode 

growth medium (NGM) 2% agar plates as described in Brenner (1974). All animals used for 

hehavioral assays were grown on plates seeded with dense E. coli OP50 lawns. 

Molecular Biology and Transgenes 

Extrachromosomal transgenes 

The gene of interest was cloned into a pSM vector (S. McCarroll, PhD thesis) expressing 

a cell-selective promoter. Transgenes were made by injection of DNA plasmid clones into the 

gonads of young adult hermaphrodites together with a fluorescent coinjection marker (Mello and 

Fire, 1995). To control for variation between transgenes, between two and five independent 

lines from each injection were characterized. 

Microfluidic Device Design and Fabrication 

Monolayer microfluidic devices were devised using soft lithography (Albrecht et al., 

2011). Silicon mold masters were fabricated by using conventional photolithographic techniques 

to pattern a 70-μM layer of SUB 2050 photoresist (Microchem) on 4-inch wafers (Silicon uest). 

Photomasks were printed at 5080 dpi (Pageworks). We cast ~5-mm-thick polydimethylsiloxane 

(PDMS) devices (Sylgard 184 A and B, 1:10 by weight; Dow Corning) and cored inlet and outlet 

holes with a 1-mm (for metal posts) or 1.5-mm dermal punch (for Hamilton Valve tubing) 

(Accuderm). Devices were cleaned in ethanol after fabrication to remove residual PDMS 

monomers, rinsed in water, and baked at least 30 min at 55 °C to evaporate residual ethanol. 

Devices were reversibly sealed against a hydrophobic 25x50 mm glass slide, prepared by 

exposure to (tridecafluoro-1,1,2,2-tetrahydrooctyl)-1-trichlorosilane (United Chemical 

Technologies) vapor for 1 h under vacuum. A support glass slide with diamond-coated bit-drilled 

inlet and outlet holes was placed on the PDMS device on the non-featured side and clamped 

with a stage adapter (P-2; Warner Instruments) modified with longer screws and rubber washers 

to even clamping pressure. 

Odor pulses were delivered by using a microfluidic device designed with a shifting-flow 

strategy that prevents pressure or flow rate discontinuities detectable by the animal (Chronis et 

al., 2007). One of two stimulus streams was directed into the arena by using a computer-
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controlled three-way valve (Lee company) that switched the flow position of a “control” fluid 

stream while the other stimulus stream bypassed the arena directly to the outflow. Arenas were 

composed of either one square arena or two arenas of half that area, modified from the one-

arena device by adding a second animal loading port and a physical barrier parallel to fluid flow 

(Larsch et al., 2013). The two-arena device allowed direct comparison of two populations. 

Chemical switch timing was comparable to both arenas in this design. 

Trapped chip imaging 

Experimental design and data acquisition 

Young adult worms were trapped in a custom-designed microfluidic device made of the 

transparent polymer PDMS, where their noses were exposed to liquid streams under laminar 

flow (Chronis et al., 2007). Switching between odor streams was accomplished via two 

alternative laminar side-streams to minimize changes in fluid pressure with odor delivery. 

Movement artifacts were reduced using a cholinergic antagonist, 1mM tetramisole, in the worm-

loading channel. Tetramisole had no apparent effect on chemosensory responses in the 

neurons tested. Wide-field microscopy was used to monitor fluorescence from the cell of interest 

as six sequential 10-s pulses or an m-sequence of stimulus was presented to the worm’s nose. 

Fluorescein (1:250,000 dilution) was added to the stimulus stream to measure accurate 

switching between stimulus and buffer in each trial. Stimulus presentations were automated 

using ValveBank (AutoMate Scientific) and LabJack interfaces to control a solenoid valve 

(LFAA1201610H, The Lee Company) with a pre-generated sequence. Switch time limitations 

were initially evaluated using 100 ms, 200 ms, 500 ms, 1 s, and 2 s flicker presentations ofr 5 

minutes per trial to worms expressing GCaMP3 in ASH under the sra-6 promoter. Protocols 

using S basal buffer as background and either 1 M glycerol (with fluorescein) or S Basal buffer 

(with fluorescein) as the stimulus were used at each timescale to compare ASH calcium activity 

with stimulus onset. Measurement of fluorescein dye in the liquid stream near the worm’s nose 

showed reliable square waves of dye fluorescence at 200 ms switch times. Thus, the m-

sequence pulse length was limited to a minimum of 200ms because of the mechanical limit of 

the microfluidic switch, assessed by tracking fluorescein. Insignificant changes in ASH calcium 

signals were observed when the flickering stimulus switched between S basal and S basal with 

1:250,000 dilution of fluorescein, allowing the use of fluorescein dye as a surrogate for odor 

concentration. Subsequent control experiments indicated that ASH calcium signals were 

insensitive to fluorescein inclusion with odor. For m-sequence stimulation, the dye fluorescence 
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in each frame was used as a surrogate for odor concentration for modeling. Fluorescence 

signals were analyzed after a newly developed bleach-correction algorithm with gain correction 

(Kato et al., 2014). The ASH neuron expressing GCaMP3, specifically, had a near-fusion 

response to 200 ms flow, indicating that the cell or sensor was close to its limit for tracking the 

stimulus. Pseudorandom sequences were 2x repeats of 9-bit word length m-sequence, ie. an m-

sequence length of 29-1=511 pulses. 

Metamorph and a Coolsnap HQ (Photometrics) camera were used to capture stacks of 

TIFF images at 10 frames s-1 during the odor presentation sequence. Custom Metamorph or 

ImageJ programs were used to identify the region of interest encompassing the cell body in all 

frames (Saul Kato). The background intensity and the average fluorescence intensity of the cell 

in each frame were determined by running a journal script based on either a “track objects” 

feature thresholding algorithm (Metamorph) or by tracking the brightest 100 pixels in the TIFF 

stack within a bounding region and subtracting the average intensity of a 16 pixel background 

region adjacent to a corner of the bounding box. (ImageJ). A Matlab (7.0R14, MathWorks) script 

generated cell-response plots using log files generated by Metamorph or ImageJ. The average 

fluorescence of the region of interest was generated by subtracting the recorded value fro the 

average intensity of the background region of a similar area. The average fluorescence in a 3-s 

window (t=1-4s) was set as F0. For figures, the percentage change in fluorescence intensity for 

the region of interest (ΔF/F0) relative to F0 was plotted individually for each trial. A second 

Matlab script was used to plot the average of all trials with standard errors for each time point. 

Data analysis and statistics 

Dynamical model estimation for GCaMP3 response dynamics, including bleach 

correction and model performance evaluation were generated in collaboration with Saul Kato as 

described in Kato et al. (2014) to construct the LN model. 

Multi-worm tetramisole imaging (as described in Larsch et al., 2013) 

Stimulus preparation 

Pheromone dilutions in S-basal buffer were prepared fresh on the day of the experiment 

from 10mM stock of C3 synthesized ascaroside (Rebecca Butcher) dissolved in DMF.  
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Experiments were conducted on an automated microscope on a Zeiss AxioObserver.At 

inverted body with Zeiss Fluar objective lenses (5x/0.25 N.A.) and a Hamamatsu ORCA-

Flash4.0 camera mounted with a 1.0x Zeiss adapter. A custom-built digital timing circuit 

synchronized image capture with illumination pulses of adjustable duration and delay from a 

Lumencor SOLA-LE solid-state lamp. Metamorph 7.7.6 software controlled both image 

streaming (10 frames per s for 1 hr) and stimulus delivery via digital signals (from National 

Instruments NI-DAQmx to an Automate Valvebank 8 II actuator and Lee solenoid valves) and 

via serial commands to a Hamilton MVP eight-way distribution valve. Custom journal scripts 

selected from various preprogrammed reocroding parameter (exposure, binning, stream length, 

trial interval) and stimulation parameters (stimulation valve timing and odor selection valves). 

Fully automated experiments (tested up to 1 hr) required no further user intervention after a 

session had been initiated. 

Two-arena devices were used for multi-worm tetramisole-paralyzed imaging in order to 

compare neural calcium responses between different genotypes or extra-chronosomal array 

expression. Microfluidic arenas were assembled and degassed through a vacuum dessicator for 

at least 20 minutes before loading S-basal buffer through the outlet port. Any air bubbles were 

absorbed into the PDMS within 30 s of fluid input. We connected tubing from the Lee solenoid-

controlled switch buffer, stimulus, and control reservoirs to the arena and initiated gravity-

directed flow. All buffers and stimuli contained 1mM (-)tetramisole hydrochloride (Sigma) to 

paralyze muscles and prevent motion artifacts during imaging. 10-14 worms were injected into 

each arena via syringe attached to loading tubing. Animals were allowed to paralyze for 1 hour 

while buffer flow continuously washed the animals and removed any residual bacteria.  

Cleaning the apparatus after image acquisition required flushing arenas with water and 

soaked them in ethanol for 24 hours to remove any residual stimulus. Water was used to rinse 

off ethanol before drying PDMS with an air-stream and baked at 55 °C for at least 30 min. After 

this cleaning procedure, buffer-to-buffer controls showed no response, and devices could be 

reused. 

Data analysis and statistics 

Movies were analyzed for neural fluorescence using a set of custom ImageJ macros and 

MATLAB scripts. Typically, 80-90% of animals in the device could be tracked. The normalized 

calcium response (ΔF/F0) for each animal was calculated using by dividing background-

corrected integrated neural fluorescence F(t) by baseline fluorescence F0 (mean for the first 5s). 

Equipment and Experimental set-up 
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Normalized traces were averaged across repeated trials for each animal. Population-average 

responses were used to calculate the mean and variance of individual animal responses. 

Statistical comparisons were made by ANOVA using Bonferroni correction for multiple 

comparisons. Data were presented from repeated trials as indicated per experiment. 

Neuronal calcium response dynamics were quantified as the peak fluorescence, peak 

delay time, initial slope, and the area under the response curve for total response time was 

determined for each animal and trial from normalized fluorescence traces smoothed with a 0.3 s 

window. Peak fluorescence was calculated as maximum fluorescence during the stimulus pulse 

(stim) minus maximum fluorescence during the 2-s (20 frames) period before stimulation 

(prestim): max(ΔF/F0)stim-max(ΔF/F0)prestim. Peak delay time was calculated as the time after 

stimulus onset when peak fluorescence occurred. Initial slope was calculated as the slope 

immediately following the inflection point. The area under the curve was calculated by 

integrating the height of fluorescence for every time point during stimulus presentation. 

Variance across repeated trials and across trials was calculated by using the MATLAB 

“var” function on peak calcium fluorescence per neural trace. Dose-response curves were fit 

using the MATTLAB curve-fitting toolbox and function “cfit” to a four-parameter sigmoidal curve 

defined by F’=F’min+(F’max-F’min)/[1+(EC50/C)β] where F’= ΔF/F0 for each trace and C is the odor 

concentration. EC50 represents the odor concentration eliciting a 50% maximal peak response 

and the parameter β represents the dynamic range of the response. 

Free-moving imaging (as described in Larsch et al., 2013) 

Stimulus Preparation, Equipment, and Experimental Setup 

Equipment and experimental set-up were conducted as with Multi-worm tetramisole 

imaging with specific exceptions. First, single-arena devices were used to increase the area of 

exploration and a single worm was loaded to facilitate tracking. Buffers and stimuli contained no 

tetramisole. The worm was allowed to explore the device for 20 minutes (about 30 minutes after 

food removal when local search behavior had subsided) before image acquisition and stimulus 

presentation begins.  

Data analysis and statistics conducted in collaboration with Sagi Levy. 

Neural fluorescence and the fluorescence of a nearby “control” background region on the 

worm body were tracked for each frame using a custom MATLAB script (Sagi Levy). X-Y 

positions of the neuron and the “control” region were also recorded for each frame.  Normalized 
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fluorescence was calculated by subtracting neural fluorescence by “control” fluorescence for 

each frame. Behavior was separately hand-tracked using a custom ImageJ ethogram GUI into 

forward, pause, reverse, forward omega, backward omega, and untrackable states.  

Stimulus-aligned correlations were calculated for the initiating and termination of the 

following events to each other: stimulus presentation, omega behaviors, and changes in neural 

fluorescence.  

Multi-arena chip behavior 

Young adult worms were removed from food and washed, and ~25 animals were 

injected into each of four arenas of a custom-designed PDMS microfluidic device (Albrecht and 

Bargmann 2011; Kato et al., 2014). Each arena contained a structured micropost array 

optimized for crawling locomotion, barriers to prevent animal escape, and inlet channels to 

deliver temporal pulses of stimulus. After 30 min of acclimation to the PDMS environment in 

continuously flowing S-basal buffer, animals were exposed to a sequence of 10 s pulses, 30 s 

pulses, and 1 min pulses controlled by automated three-way switch valves (Lee Corporation) 

actuated by computer using a LabJack U3-hV digital controller, a Valvebank 8 II actuator 

(Automate), and custom MATLAB scripts. In each experiment, pulses of stimuli were given with 

31 minutes, with 2 min of buffer both before and after the sequence. The entire sequence was 

repeated four times. At least two separate experiments on two separate days were done for 

every condition and genotype. Animals were recorded at 2 fps and analyzed using automated 

tracking software. Behaviors were segmented into forward locomotion, pauses, reversals, and 

omega turns, and animals in the forward locomotion state were also analyzed for speed, binned 

by 2s intervals. A stimulus-aligned ethogram of instantaneous behavioral state was assembled 

for each trial and averaged for each condition and genotype. 

Strains 

ASH wild type calcium imaging lines 

CX10979 KyEx2865 [Psra-6::GCaMP3, Pofm-1::GFP] 

CX15304 kyIs602 [Psra-6::GCaMP3, Pofm-1::GFP], outcrossed 12X to N2 

ASH mutant calcium imaging lines 

CX12739 osm-9 (ky10) IV; ocr-2 (ak47) IV; KyEx2865 [Psra-6::GCaMP3, Pofm-1::GFP] 
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CX12740 unc-13 (e51) I; KyEx2865 [Psra-6::GCaMP3, Pofm-1::GFP] 

CX12741 unc-18 (e234) X; KyEx2865 [Psra-6::GCaMP3, Pofm-1::GFP] 

CX12608 egl-3 (n150ts) V; KyEx2865 [Psra-6::GCaMP3, Pofm-1::GFP] 

CX12855 osm-10 (n1602) III; KyEx2865 [Psra-6::GCaMP3, Pofm-1::GFP] 

CX12860 egl-21 (n611) IV; KyEx2865 [Psra-6::GCaMP3, Pofm-1::GFP] 

CX12861 egl-3 (n729) V; KyEx2865 [Psra-6::GCaMP3, Pofm-1::GFP] 

CX13030 tax-2 (p691) I; tax-4 (p678) III; KyEx2865 [Psra-6::GCaMP3, Pofm-1::GFP] 

CX13128 egl-19 (ad695) IV; KyEx2865 [Psra-6::GCaMP3, Pofm-1::GFP] 

CX13129 egl-19 (n582) IV; KyEx2865 [Psra-6::GCaMP3, Pofm-1::GFP] 

CX13131 gpa-3 (pk35) V; KyEx2865 [Psra-6::GCaMP3, Pofm-1::GFP] 

CX13132 gpa-3 (pk35) V; odr-3 (n1605) V; KyEx2865 [Psra-6::GCaMP3, Pofm-1::GFP] 

CX13133 odr-3 (n2150) V; KyEx2865 [Psra-6::GCaMP3, Pofm-1::GFP] 

CX13134 rgs-3 (ok2288) II; KyEx2865 [Psra-6::GCaMP3, Pofm-1::GFP] 

CX13287 odr-3 (ky879) V; KyEx2865 [Psra-6::GCaMP3, Pofm-1::GFP] 

CX13289 odr-3 (n1605) V; KyEx2865 [Psra-6::GCaMP3, Pofm-1::GFP] 

CX13292 tax-6 (p675) IV; KyEx2865 [Psra-6::GCaMP3, Pofm-1::GFP] 

CX13525 arr-1 (ok401) X; KyEx2865 [Psra-6::GCaMP3, Pofm-1::GFP] 

CX13526 dgk-1 (nu199) X; KyEx2865 [Psra-6::GCaMP3, Pofm-1::GFP] 

CX13527 dgk-3 (gk110) III; KyEx2865 [Psra-6::GCaMP3, Pofm-1::GFP] 

CX13528 eat-11 (ad541) I; KyEx2865 [Psra-6::GCaMP3, Pofm-1::GFP] 

CX13529 gpc-1 (pk298); KyEx2865 [Psra-6::GCaMP3, Pofm-1::GFP] 

CX13530 grk-2 (rt97) III; KyEx2865 [Psra-6::GCaMP3, Pofm-1::GFP] 

CX13531 pkc-1 (ok563) V; KyEx2865 [Psra-6::GCaMP3, Pofm-1::GFP] 

CX13532 trpa-1 (ok999) IV; KyEx2865 [Psra-6::GCaMP3, Pofm-1::GFP] 

CX13533 gpb-2 (pk751) I; KyEx2865 [Psra-6::GCaMP3, Pofm-1::GFP] 

CX13619 eat-16 (sa609) I; KyEx2865 [Psra-6::GCaMP3, Pofm-1::GFP] 

CX13620 deg-1 (u38ts) X; KyEx2865 [Psra-6::GCaMP3, Pofm-1::GFP] 

CX13621 mec-10 (e1515) X; KyEx2865 [Psra-6::GCaMP3, Pofm-1::GFP] 

CX13622 egl-10 (n1068) V; KyEx2865 [Psra-6::GCaMP3, Pofm-1::GFP] 

CX13623 egl-30 (n686sd) I; KyEx2865 [Psra-6::GCaMP3, Pofm-1::GFP] 

CX13648 goa-1 (n363) I; KyEx2865 [Psra-6::GCaMP3, Pofm-1::GFP] 

CX13781 qui-1 (ok3571) IV; KyEx2865 [Psra-6::GCaMP3, Pofm-1::GFP] 
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ASI calcium imaging lines 

CX13047 kyEx3743 [Pstr-3::GCaMP3, Pofm-1::GFP] 

CX13617 unc-13 (e51) I; kyEx3743 [Pstr-3::GCaMP3, Pofm-1::GFP] 

CX13782 qui-1 (ok3571) IV; kyEx3743 [Pstr-3::GCaMP3, Pofm-1::GFP] 

CX14120 che-1 (p680) I; kyEx3743 [Pstr-3::GCaMP3, Pofm-1::GFP] 

CX14971 lsy-6 (ot71) V; kyEx3743 [Pstr-3::GCaMP3, Pofm-1::GFP] 

CX14941 ntIs1 [Pgcy-5::GFP]; otEx3830 [Pceh-36::CZ-caspase3(p17); Pgcy-5::caspase3(p12)-

NZ; Pmyo-3::mCherry]; kyEx3743 [Pstr-3::GCaMP3, Pofm-1::GFP] 

CX14935 otIs204 [Pceh-36::lsy-6]; kyEx3743 [Pstr-3::GCaMP3, Pofm-1::GFP] 

CX14991 otIs4 [Pgcy-7::GFP]; otEx3822 [Pceh-36::CZ-caspase3(p17); Pgcy-7::caspase3(p12)-

NZ; Pmyo-3::mCherry]; kyEx3743 [Pstr-3::GCaMP3, Pofm-1::GFP] 

Voltage imaging lines 

CX15967 kyEx5413 [Psra-6::mac::mCitrine; Pofm-1::mCherry] 

CX16115 kyEx5222 [Psra-6::srg-36, Pmyo-2::mCherry]; kyEx5413 [Psra-6::mac::mCitrine; 

Pofm-1::mCherry] 

CX16128 kyEx5220 [Psra-6::srg-34, Pmyo-2::mCherry]; kyEx5413 [Psra-6::mac::mCitrine; 

Pofm-1::mCherry] 

ASE calcium imaging lines 

CX14571 kyEx4732 [Pflp-6::GCaMP3; Pofm-1::GFP] 

CX14957 lsy-6 (ot71) V;  kyEx4732 [Pflp-6::GCaMP3; Pofm-1::GFP] 

Interneuron HisCl lines 

CX14845 kyEx4863 [Prig-3::HisCl1:sl2mCherry] 

CX15457 kyIs620 [Pinx-1::HisCl1::sl2GFP; Pmyo-3:mCherry] 

Interneuron calcium imaging lines 

CX13440 kyEx4018 [Pinx-1::GCaMP3; Punc-122::dsRed] 

CX15380 kyEx5170 [Prig-3::GCaMP5] 

ASH:srg-34 strains 

CX15317 kyEx5029 [Psra-6::srg-34, Pofm-1::dsred] 



128 

CX15319 qrIs2 [Psra-9::caspase]; kyEx5029 [Psra-6::srg-34, Pofm-1::dsred] 

CX15303 kyIs602 [Psra-6::GCaMP3, Pofm-1::GFP], kyEx5029 [Psra-6::srg-34, Pofm-1::dsred] 

CX14336 gpa-3 (pk35) V; odr-3 (n1605) V; KyEx2865 [Psra-6::GCaMP3, Pofm-1::GFP]; 

KyEx4174 [Psra-6::srg-34, Pofm-1::RFP] 

CX14338 odr-3 (n1605) V; KyEx2865 [Psra-6::GCaMP3, Pofm-1::GFP]; KyEx4174 [Psra-6::srg-

34, Pofm-1::RFP] 

CX14337 rgs-3 (ok2288) II; KyEx2865 [Psra-6::GCaMP3, Pofm-1::GFP]; KyEx4174 [Psra-

6::srg-34, Pofm-1::RFP] 

CX15696 egl-19 (n582) IV; kyEx5220 [Psra-6::srg-34, Pmyo-2::mCherry]; kyIs602 [Psra-

6::GCaMP3, Pofm-1::GFP] 

CX15701 egl-19 (ad695) IV; kyEx5220 [Psra-6::srg-34, Pmyo-2::mCherry]; kyIs602 [Psra-

6::GCaMP3, Pofm-1::GFP] 

CX15721 gpa-3 (pk35)V; odr-3 (n1605) V; kyEx5220 [Psra-6::srg-34, Pmyo-2::mCherry]; 

kyIs602 [Psra-6::GCaMP3, Pofm-1::GFP] 

CX15462 kyEx5220 [Psra-6::srg-34, Pmyo-2::mCherry]; kyIs620 [Pinx-1::HisCl1::sl2GFP; 

Pmyo-3:mCherry] 

CX15733 osm-9 (ky10) IV; kyEx5220 [Psra-6::srg-34, Pmyo-2::mCherry]; kyIs602 [Psra-

6::GCaMP3, Pofm-1::GFP] 

CX15546 kyEx5220 [Psra-6::srg-34, Pmyo-2::mCherry]; kyEx4863 [Prig-3::HisCl1:sl2mCherry] 

CX15533 kyEx5220 [Psra-6::srg-34, Pmyo-2::mCherry] 

CX15536 kyEx5220 [Psra-6::srg-34, Pmyo-2::mCherry]; kyIs602 [Psra-6::GCaMP3, Pofm-

1::GFP] 

CX15704 kyEx5220 [Psra-6::srg-34, Pmyo-2::mCherry]; kyEx4018 [Pinx-1::GCaMP3; Punc-

122::dsRed] 

CX15712 kyEx5220 [Psra-6::srg-34, Pmyo-2::mCherry]; kyEx5170 [Prig-3::GCaMP5] 

ASH:srg-36 strains 

CX15302 kyEx5032 [Psra-6::srg-36, Pofm-1::dsred], KyIs602 [Psra-6::GCaMP3, Pofm-1::GFP] 

CX15318 kyEx5032 [Psra-6::srg-36, Pofm-1::dsred] 

CX15320 kyEx5032 [Psra-6::srg-36, Pofm-1::dsred]; qrIs2 [Psra-9::caspase] 

CX14328 gpa-3 (pk35) V; odr-3 (n1605) V; KyEx2865 [Psra-6::GCaMP3, Pofm-1::GFP]; 

KyEx4171 [Psra-6::srg-36, Pofm-1::RFP] 
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CX14330 odr-3 (n1605) V; KyEx2865 [Psra-6::GCaMP3, Pofm-1::GFP]; KyEx4171 [Psra-6::srg-

36, Pofm-1::RFP] 

CX14329 rgs-3 (ok2288) II; KyEx2865 [Psra-6::GCaMP3, Pofm-1::GFP]; KyEx4171 [Psra-

6::srg-36, Pofm-1::RFP] 

CX15464 kyEx5222 [Psra-6::srg-36, Pmyo-2::mCherry]; kyIs620 [Pinx-1::HisCl1::sl2GFP; 

Pmyo-3:mCherry] 

CX15529 kyEx5222 [Psra-6::srg-36, Pmyo-2::mCherry] 

CX15544 kyEx5222 [Psra-6::srg-36, Pmyo-2::mCherry]; kyIs602 [Psra-6::GCaMP3, Pofm-

1::GFP] 

CX15554 kyEx5222 [Psra-6::srg-36, Pmyo-2::mCherry]; kyEx4863 [Prig-3::HisCl1:sl2mCherry] 

CX15706 kyEx5222 [Psra-6::srg-36, Pmyo-2::mCherry]; kyEx4018 [Pinx-1::GCaMP3; Punc-

122::dsRed] 

CX15691 osm-9 (ky10) IV; kyEx5222 [Psra-6::srg-36, Pmyo-2::mCherry]; kyIs602 [Psra-

6::GCaMP3, Pofm-1::GFP] 

CX15700 egl-19 (n582) IV; kyEx5222 [Psra-6::srg-36, Pmyo-2::mCherry]; kyIs602 [Psra-

6::GCaMP3, Pofm-1::GFP] 

CX15741 egl-19 (ad695) IV; kyEx5222 [Psra-6::srg-36, Pmyo-2::mCherry]; kyIs602 [Psra-

6::GCaMP3, Pofm-1::GFP] 

CX16472 gpa-3 (pk35) V; kyEx5222 [Psra-6::srg-36, Pmyo-2::mCherry]; kyIs602 [Psra-

6::GCaMP3, Pofm-1::GFP] 
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