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Abstract: It is difficult to achieve accurate distribution of reactive power based on conventional
droop control due to the line impedance mismatch in an islanded microgrid. An adaptive virtual
impendence method based on consensus control of reactive current is proposed in this paper.
A distributed control structure without the central controller has been established. In this structure,
each distributed generation unit (DG) is an independent agent, one-way communication is used
between the adjacent DGs, and the reactive power sharing is equivalent to a problem of reactive power
current consensus. It has been proven that the system is asymptotically stable under the proposed
control strategy. When the adjacent DG’s reactive power is not proportionally distributed, the current
weight error term will generate a virtual impedance correction term through the proportional-integral
controller based on the reactive current consensus control strategy, thus introducing adaptive
virtual impedance to eliminate mismatches in output impedance between DGs. Reactive power
auto-proportional distribution can be achieved without knowing the line impedance. At the same
time, the power control loop is simplified and the virtual impedance compensation angle is employed
to compensate the decreased reference voltage magnitude and varied phase angle due to the
introduction of the virtual impedance, so the stability of the system can be improved. Finally,
the correctness and effectiveness of the proposed strategy are verified by modeling analysis and
microgrid simulations.

Keywords: islanded microgrid; distributed generation (DG); droop control; reactive power sharing;
adaptive virtual impendence; consensus control

1. Introduction

The increasing demand for renewable energy-based power generation systems consisting of
inverters necessitates the design of sophisticated inverter control systems [1–3]. Apart from ensuring
the quality of power output, the inverter control system should be able to coordinate the operation
of multiple distributed generators (DGs) and distribute power to loads according to the capacity
of each power source [4]. Research on energy management, reliability of component, coordination,
and optimization of renewable energy in hybrid microgrids has been conducted [5–9]. The droop
control system, based on the droop characteristic of synchronous generators, offers the benefits of
sparse communication and ‘plug and play’. Therefore, it is widely used in microgrid control [10–12].
While the P-f droop control enables accurate sharing of active power during real-world microgrid
operation, the Q-V droop control exhibits poor performance with regards to reactive power sharing
because it is susceptible to the influence of line impedance.
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In order to improve the power sharing accuracy for any micro-grid in island-mode, the authors
of [13] proposes a P-V control scheme to achieve accurate sharing of active power by adjusting the
droop coefficient. Although accurate power sharing can be achieved by increasing the droop gain,
large droop gain will render the system less stable [14]. References [15,16] introduce the integral
component into the power control loop to eliminate the power steady-state error. Reference [17]
proposes a method that injects additional signals. As this method involves complex signal generation
and processing, it is difficult to implement in a microgrid containing multiple DGs. Reference [18]
proposes a “Q-V dot droop” method, but the reactive power cannot be accurately shared when local
loads are connected. A reactive power disturbance term is introduced into the P-f droop equation,
with the aim of reducing the reactive power sharing error by manipulating the active power [19].
However, this method affects the active power and the stability of the system frequency.

In recent years, “virtual impedance” theory has become widely used to solve the problem of
reactive power distribution. “Virtual impedance” means adding an output impedance adjustment
module outside the closed-loop control of the inverter. The influence of the line impedance and
device difference on the power distribution is suppressed by the virtual impedance, and the problem
of increased volume and cost caused by the addition of the current-sharing inductor is avoided.
Reference [20] proposes a kind of coupled virtual impedance, realizes the power distribution in the
hybrid microgrid and reduces the point of common coupling (PCC) harmonic content by adjusting the
coupled virtual impedance. Similarly, reference [21] uses the virtual impedance to solve the problem
of power allocation and harmonic suppression in droop control. However, this method requires
knowledge of the line impedance in advance. In [22] a new topology structure is proposed to implement
intelligent droop control, thereby improving the power distribution characteristics. In [23–25],
the equivalent output impedance of each micro-source is determined by adjusting the closed-loop
parameters so that the virtual impedance becomes the dominant parameter. Thus, the circulating
current between micro-sources is effectively suppressed, thereby improving the accuracy of power
sharing. However, reference [23–26] ignore the problem of line impedance mismatch. To further
improve the power sharing accuracy, reference [27–29] propose a virtual impedance method based on
the line impedance estimation. The authors of [30] proposes an adaptive virtual impedance method
to achieve adaptive adjustment of virtual impedance by integrating the voltage drop between DGs.
However, as this method adopts a centralized control scheme, it depends heavily on the reliability of
the communication network. In [31,32], secondary control is used to improve the sharing of active
and reactive power. Although accurate results can be achieved, its control strategy is complicated and
based on centralized control, so the system still relies on the reliability of the communication network.
References [33,34] apply multi-agent theory to the adjustment of virtual impedance. This method only
requires communication between adjacent micro-sources and is, therefore, characterized by higher
system reliability. However, the analysis in [33,34] did not discuss how the introduction of virtual
impedance leads to phase angle offset in the outer loop reference voltage.

In this paper, an adaptive virtual impedance control strategy based on reactive current consensus
control is proposed to improve the accuracy of reactive power distribution. In this method, each DG
unit is regarded as an independent agent. This method only requires communication between adjacent
DGs without the need for a central controller. By obtaining the virtual impedance correction value
through the consensus control of reactive current, a virtual impedance is introduced to compensate
for the output impedance mismatch. The power control loop is also streamlined to minimize the
voltage sag of the alternating current (AC) bus without affecting the droop characteristics. Meanwhile,
a virtual impedance compensation angle θv is introduced to compensate for the phase angle offset of
the micro-source reference voltage so as to improve the stability of the system. Finally, the effectiveness
of the proposed method was verified through simulation.
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2. Power Sharing with Droop Control

The micro-source equivalent structure in the microgrid is shown in Figure 1, in which the DG
is connected to the common terminal Vpcc through an equivalent impedance Z. The droop control
in islanded mode enables the DG unit to operate independently without communication. It can be
worked out from Figure 1 that the active and reactive powers injected into the common point by the
DG unit are given by:

Pi =
Vpcc

R2
i + X2

i
[Ri(Ei cos δi −Vpcc) + XiEi sin δi] (1)

Qi =
Vpcc

R2
i + X2

i
[Xi(Ei cos δi −Vpcc)− RiEi sin δi] (2)

where Ei is the output voltage amplitude of the inverter i; Vpcc is the voltage of the coupling node;
δi is the power angle between Ei and Vpcc. In a real-world low-voltage microgrid, the line impedance
is resistive and there exists coupling between active and reactive powers, making it impossible for
the system to distribute power accurately. The control method based on the introduction of virtual
impedance offers a solution to this problem. Usually, the virtual impedance is inductive and treated as
the dominant parameter. Considering that Xi >> Ri and δi is very small:

δi
∼=

XiPi
EiVpcc

(3)

Ei −Vpcc ∼=
XiQi
Vpcc

(4)

The conventional droop control model is defined as the following equations:

ωi = ω0 −miPi (5)

Ei = E0 − niQi (6)

where E0 and ω0 are no-load voltage and frequency, respectively, mi and ni are the active and reactive
droop coefficients of inverter I, respectively.

In [26], the virtual impedance is realized by adjusting the parameters of the double-loop PI
controller. The output voltage is given by [26]:

vo = G(s)vref + Zo(s)io(s) (7)

where G(s) is voltage gain, and Zo(s) is the equivalent output impedance which can be calculated
using Equation (8):

Zo(s) =
Ls2

LCs3 + K Vdc
2 Cs2 + (1 + KKvp

Vdc
2 )s + KKvi

Vdc
2

(8)

It can be seen from Equation (8) that the equivalent output impedance is not only related to
the filter parameters L and C, but also influenced by the PI controller. Using the design parameters
stated in [26] (see Table 1), the equivalent output impedance is inductive, and the influence of the line
impedance can be ignored. The output impedance Bode diagram is shown in Figure 2.
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Table 1. Parameters of droop control.

Vdc/V L/mH C/µF K Kvp Kvi

800 0.6 1500 5 10 100
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It can be seen by analyzing Figure 2, while the output impedance of the inverter can be inductive at
50 Hz, the output impedance can only be about 0.01 mΩ, which limits the range of the line impedance
parameters. That is, only when a relatively small line impedance is chosen, the dominant status of
the output impedance can be ensured. Moreover, changing the double-loop PI controller parameters
can only affect small adjustments to the output impedance, and if consideration is solely given to the
design of the output impedance when choosing PI control parameters, the system stability margin will
inevitably be affected negatively, resulting in reduced stability.

In this study, a new virtual impedance ZV,i using direct series connection is designed.
Thus, the system output impedance is given by:

Zi = Zline,i + ZV,i = Zline,i + Z∗V,i + Zadp,i (9)

where Zi is the equivalent output impedance of the micro-source, Zline,i is the line impedance and ZV,i
is the virtual impedance consisting of the static virtual impedance Z∗V,i and the adaptive virtual
impedance Zadp,i.The static virtual impedance always ensures the system impedance is mainly
inductive. The adaptive virtual impedance automatically adjusts the virtual impedance magnitude
according to the equivalent output impedance of the adjacent DG. Hence, accurate reactive power
sharing is achieved by eliminating the output impedance mismatch. This method does not rely on the
adjustment of the double-loop control parameters of the system and, therefore, allows for a greater
range of impedance adjustment compared with the previous method.

3. Reactive Power Sharing Based on Reactive Current Control

In [35], it is noted that in the typical “power-voltage-current” closed-loop droop control, the power
control loop increases the complexity of the system and affects its dynamic characteristics due to the
power calculations required. A method to realize droop control by controlling active and reactive
currents was proposed in [36]. The key merit of this control method is that the system is incapable of
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yielding infinitely impulse current when short circuit occurs (Ei = 0). This paper applies this method
to the design of adaptive virtual impedance.

Active and reactive currents Iai and Iri of equivalent impedance Z can be calculated as:

Iai =
Pi

Vpcc
=

Ri(Ei cos δi −Vpcc) + XiEi sin δi

R2
i + X2

i
(10)

Iri =
Qi

Vpcc
=

Xi(Ei cos δi −Vpcc)− RiEi sin δi

R2
i + X2

i
(11)

Considering that Xi >> Ri, cos δi ≈ 1, sin δi ≈ δi, Equations (3) and (4) can be rewritten as:

δi
∼=

Xi Iai
Ei

(12)

Ei −Vpcc ∼= Xi Iri (13)

The active current and reactive current droop characteristics are defined as:

ωi = ω0 − kmi Iai (14)

Ei = E0 − kni Iri (15)

In order to satisfy the proportional distribution of the load reactive power, the droop coefficient
and reactive power should be designed to be inversely proportional [30]:

kn1Q1 = kn2Q2 = · · · = knnQN (16)

When using reactive current control, the following equation should be satisfied:

kn1 Ir1 = kn2 Ir2 = · · · = knN IrN (17)

Substituting (13) into Equation (15), the reactive current flow from the DGi to load is obtained as:

kni Iri =
E0 −Vpcc

Xi
kni

+ 1
(18)

To satisfy Equation (17), the following equation can be derived from Equation (18):

X1

kn1
=

X2

kn2
= · · · = XN

knN
(19)

As it can be seen in Equation (19) that in order to achieve accurate reactive power distribution,
kni should be proportional to the line reactance Xi. Considering Equation (17), the line reactances must
be designed to be inversely proportional to the reactive current, respectively:

X1 Ir1 = X2 Ir2 = · · · = XN IrN (20)

where Xi
∼= Zi as previously described.

4. Adaptive Virtual Impedance Control Strategy Based on Consensus Control

4.1. Microgrid Communication Topology

If each DG in the microgrid is regarded as a node, and the communication links between the
DGs are equated to edges, the topological model of the entire microgrid can be represented by
a digraph (directed graph). Usually, a digraph G refers to an ordered triplet (V(G), E(G), A(G)),
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where V(G) = (v1, v2, · · · vN) is a set of non-empty nodes, E(G) ⊂ V(G) × V(G) is an edge set
that edges of points with communication associated and A(G) is a correlation function which is
typically an associated adjacency matrix A(G) = [aij] ∈ <N×N . In this paper, the digraph is assumed
to be time-invariant, i.e., A(G) is a constant. The edge from node j to node i is denoted as (vj, vi).
If (vj, vi) ⊂ E(G), then aij = 1 and node j is called a neighbor of node i. The set of all nodes that satisfy
the above condition is denoted as Ni =

{
j
∣∣(vj, vi) ∈ ε

}
. If (vj, vi)E(G), then aij = 0. The Laplacian

matrix is defined as L = D−A, where D is the indegree matrix denoted as D = diag{di} ∈ <N×N ,
di = ∑j∈Ni

aij. Many properties of the digraph are manifested in the above matrix. In this paper,
adjacent nodes in the DG network are treated as follows: Node i can obtain information from node j
but node j cannot obtain information from node i, with both the indegree and outdegree of each node
set to 1, as shown in Figure 3. Therefore, the communication between the DGs is regarded as a one-way
distributed loose communication. Moreover, the network topology in Figure 3 contains a directional
spanning tree. When a communication line is faulty, the system still maintains high reliability and the
sparse network structure reduces the communication cost.

Energies 2018, 11, x FOR PEER REVIEW  6 of 16 

 

denoted as { | ( , ) }i j iN j v v ε= ∈ . If ( , ) ( )j iv v G⊄ E , then 0ija = . The Laplacian matrix is defined as 
−L = D A , where D is the indegree matrix denoted as diag{ } N N

id ×= ∈ℜD , 
ii j N ijd a∈= ∑ . Many 

properties of the digraph are manifested in the above matrix. In this paper, adjacent nodes in the DG 
network are treated as follows: Node i can obtain information from node j but node j cannot obtain 
information from node i, with both the indegree and outdegree of each node set to 1, as shown in 
Figure 3. Therefore, the communication between the DGs is regarded as a one-way distributed loose 
communication. Moreover, the network topology in Figure 3 contains a directional spanning tree. 
When a communication line is faulty, the system still maintains high reliability and the sparse 
network structure reduces the communication cost. 

 
Figure 3. DG communication topology. 

4.2. Consensus Control 

According to the consensus control strategy, in order to control the reactive current, the ni rik I  
term of each DG should be assigned the same value as shown in Equation (17). Thus, the reactive 
power distribution based on consensus control of the reactive current can be transformed into the 
synchronization problem of the first-order linear multi-agent system [37]. Linearization of Equation 
(17) can be formulated as: 

1 1 2 2 rin r n r nN rN Ik I k I k I u= = = =  

  (21) 

According to the consensus control theory, 
riIu  is an adjoint control term. If the term is not 0, 

there is a reactive power deviation between the local and its neighbors: 

ri r ni riI nI k Iu C e= −  (22) 

where 
rnIC  is the coupling gain and 

ni rik Ie  is the reactive current weight error between local and 

adjacent DG units: 

( )
ni ri i j

i

k I ij n ri n rj
j N

e a k I k I
=

= −∑
 

(23) 

where aij is an adjacency matrix element that reflects the connection of DGs. Then the matrix form of 
the consensus control system can be expressed as: 

=
rn r Ik I u  (24) 

r n rnI k IC= −
rIu e  (25) 

n rk I = n re Lk I  (26) 

where the above variables are defined as 1 1 2 2=[  ,  ,... ]T
n r n r nN rNk I k I k In rk I    , 

1 2
[ , , ... ]

r r rN

T
I I Iu u u=

rIu , 

1 1 1 1
[ , , ... ]

n r n r n r nN rN

T
k I k I k I k Ie e e=e , 1 1 2 2[ , , ... ]T

n r n r nN rNk I k I k I=n rk I .
 

The stability of the proposed control system is proven below. In this paper a simple quadratic 
Lyapunov function is used to show the stability of the system. However, [38] indicates that for some 
applications using a non-quadratic Lyapunov function can also lead to a better performance. 

Constructing Lyapunov energy function as: 

DGn

DG1

DG3

DG2

Figure 3. DG communication topology.

4.2. Consensus Control

According to the consensus control strategy, in order to control the reactive current, the kni Iri
term of each DG should be assigned the same value as shown in Equation (17). Thus, the reactive
power distribution based on consensus control of the reactive current can be transformed into the
synchronization problem of the first-order linear multi-agent system [37]. Linearization of Equation (17)
can be formulated as:

kn1
.
Ir1 = kn2

.
Ir2 = · · · = knN

.
IrN = uIri (21)

According to the consensus control theory, uIri is an adjoint control term. If the term is not 0,
there is a reactive power deviation between the local and its neighbors:

uIri = −CnIr ekni Iri
(22)

where CnIr is the coupling gain and ekni Iri
is the reactive current weight error between local and adjacent

DG units:
ekni Iri

= ∑
j=Ni

aij(kni Iri − knj Irj) (23)

where aij is an adjacency matrix element that reflects the connection of DGs. Then the matrix form of
the consensus control system can be expressed as:

kn
.
Ir = uIr (24)

uIr = −CnIr ekn Ir (25)

ekn Ir = LknIr (26)

where the above variables are defined as kn
.
Ir = [kn1

.
Ir1 , kn2

.
Ir2 , · · · knN

.
IrN ]

T ,
uIr = [uIr1 , uIr2 , · · · uIrN ]

T , ekn Ir = [ekn1 Ir1 , ekn1 Ir1 , · · · eknN IrN ]
T , knIr = [kn1 Ir1, kn2 Ir2, · · · knN IrN ]

T .
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The stability of the proposed control system is proven below. In this paper a simple quadratic
Lyapunov function is used to show the stability of the system. However, [38] indicates that for some
applications using a non-quadratic Lyapunov function can also lead to a better performance.

Constructing Lyapunov energy function as:

Vkn Ir =
1
2

eT
kn Ir

Pekn Ir (27)

where P = PT, P is a positive definite matrix. The following equation can be obtained from
Equation (27):

.
Vkn Ir = eT

kn Ir
P

.
ekn Ir = eT

kn Ir
PLkn

.
Ir (28)

Combining the equations above, the following equation can be obtained:
.

Vkn Ir = eT
kn Ir

P
.
ekn Ir = eT

kn Ir
PLuIr (29)

Defining H ≡ L, Substituting Equation (25) into (29), and the following equation is described as:
.

Vkn Ir = −CnIr e
T
kn Ir

PHekn Ir = −
1
2

CnIr e
T
kn Ir

(PH + HTP)ekn Ir (30)

This paper considers the configuration of four different rated power DG units. Letting P = diag{1, 1,
1, 1}, then the Laplacian of the communication topology is:

L = D−A =


1 −1 0 0
0 1 −1 0
0 0 1 −1
−1 0 0 1

 (31)

Then:

PH + HTP =


2 −1 0 −1
−1 2 −1 0
0 −1 2 −1
−1 0 −1 2

 (32)

The matrix PH + HTP is positive definite, so
.

Vkn Ir < 0, using Lyapunov’s second law, the system
is determined to be asymptotically stable.

4.3. Method of Realizing Virtual Impedance

From Figure 4, the following equation can be obtained:

LV,i = L∗V,i + kL · δIr,i (33)

RV,i = kR · δIr,i (34)

where ZV,i = RV,i + jωiLV,i is the equivalent virtual impedance, kL and kR are the proportional gains
(which are used to adjust the value of the adaptive virtual impedance), L∗V,i represents the static virtual
inductance and the reactive current error term ekni Iri

is processed by the proportional integral controller
(PI) to yield the virtual impedance correction term δIr,i.

When the reactive power output from DGs are out of proportion, the current error term will be
generated according to Equation (23). After the error term is processed by the proportional integral
controller, the virtual impedance correction term will be generated and the adaptive virtual impedance
of the system will be adjusted accordingly. In this paper, Section 3 indicates that the magnitude of the
system impedance should be adjusted so that it is inversely proportional to the reactive load shared.
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As previously discussed, since the equivalent output impedance Zo(s) of the micro-source
mentioned in [26] is only 0.01 mΩ, the adjustment range is limited. In this paper, the static virtual
impedance Z∗V(s) is connected in series and Z∗V(s) >> Zo(s). In this case, the equivalent virtual
impedance of the micro-source becomes the dominant parameter. Thus, by adjusting the value of
the adaptive virtual impedance Zadp(s), the magnitude of the output impedance can be changed to
achieve proportional sharing of reactive power.

After the introduction of the virtual impedance, the equivalent circuit of the DG is shown
in Figure 5.
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Figure 5. Equivalent circuit of DG.

Taking the virtual impedance ZV(s) = Zadp(s) + Z∗V(s) to be inductive, the expression for the
micro-source equivalent virtual impedance is shown in Equation (35), where the gain and phase angle
of the transfer function G(s) at the fundamental frequency are 1 and 0, respectively. The droop control
parameters are shown in Table 2 and the Bode plot of the micro-source equivalent output impedance is
shown in Figure 6.

Z′V(s) = G(s)ZV(s) + Zo(s) =
LV LCs4 + K Vdc

2 LVCs3 + (L + LV + KKvp
Vdc
2 LV)s2 + KKviLV

Vdc
2 s

LCs3 + K Vdc
2 Cs2 + (1 + KKvp

Vdc
2 )s + KKvi

Vdc
2

(35)

It can be determined by analyzing Figure 6 that the design method proposed in this paper
ensures that the virtual impedance is inductive when the fundamental frequency is 50 Hz. Meanwhile,
the magnitude of the virtual impedance reaches 0.252 Ω. Thus, a larger impedance adjustment range
is available, compared with that offered by the design method proposed in [26].

Table 2. Parameters of the droop control.

LV/mH Vdc/V L/mH C/µF K Kvp Kvi

0.8 800 0.6 1500 5 10 100
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5. Reference Voltage Phase Shift Compensation Using Virtual Impedance Angle

The voltage drop Vvi_d and Vvi_q caused by the introduction of virtual impedance in synchronous
reference frame can be expressed as (36) and (37)

Vvi_d = IdiRV,i − IqiωLV,i (36)

Vvi_q = IqiRV,i + IdiωLV,i (37)

where Idi and Iqi are active and reactive currents respectively. The new voltage reference is calculated
by the following equation

Vdnewref = Vdref −Vvi_d (38)

Vqnewref = Vqref −Vvi_q (39)

where Vdref and Vqref are the initial reference voltage signals, so the change in control loop voltage in
the dq-coordinate system as a result of introducing virtual impedance is depicted in Figure 7:
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From Figure 7 one can calculate the virtual angle added by the virtual impendence, which is
between Vdqnewref and Vdqref. Equation (40) describes the relation between Vdqnewref and Vdqref.[

Vdnewref
Vqnewref

]
=

[
cos θv − sin θv

sin θv cos θv

]
·
[

Vdref
Vqref

]
(40)

After developing Equation (40) θv can be calculated using Equation (41) from reference [39].

θv = arcsin(
Vqref −Vqnewref

Vdref + Vqref
) (41)

The change in the angle at different virtual impedances is shown in Figure 8.Energies 2018, 11, x FOR PEER REVIEW  10 of 16 
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It can be determined from Figures 7 and 8 that the introduction of the virtual impedance changes
not only the amplitude of the reference voltage, but also its phase angle. In order to compensate for
the deviation in the reference voltage phase angle caused by the adaptive virtual impedance, a virtual
impedance angle is proposed, as shown in Figure 9:
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Figure 9. Voltage reference generator block.

The phase shift due to the introduction of the virtual impedance is eliminated by introducing θv

into the voltage reference loop. Note that ωi is the angular frequency of DG, obtained by the active
power control loop, while Vref is provided directly.

As discussed in Section 4.2, the virtual impedance correction term is obtained through consensus
control of the reactive current to eliminate the output impedance mismatch and, thus, achieve
proportional sharing of reactive power. There is no need to obtain reactive power information
throughout the whole process. Therefore, this paper has simplified the power control by removing the
reactive power control loop and keeping the original active power control loop. Reference [35] points
out that, after this streamlining, the voltage droop characteristic is still maintained. The overall control
topology is depicted in Figure 10.
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6. Simulation Results

The microgrid shown in Figure 11 was modelled in MATLAB R2014b/Simulink (MATLAB
R2014b, MathWorks, Natick, MA, USA) to verify the effectiveness of the proposed control method.
The microgrid contains four DGs and the line impedance between the DGs is set to resistive-inductive.
The specific DG parameters, voltage and current double loop controller parameters, load parameters,
and line impedance parameters are shown in Table 3.
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Table 3. System parameters.

Parameter

Rated voltage 220 V

No-load frequency 50.5 Hz

Line impendences

Zl1 0.8 mΩ, 4.3 mH
Zl2 0.6 mΩ, 4.3 mH
Zl3 0.5 mΩ, 3 mH
Zl4 0.4 mΩ, 2 mH

Load

LD1: 1.5 kW, 1.5 kVar
LD2: 3 kW, 3 kVar
LD3: 4 kW, 4 kVar
LD4: 4 kW, 4 kVar

LOAD5: 12.5 kW, 12.5 kVar

Control parameters

Droop coefficient
m1/1.5 = m2/3 = m3/4 = m4/4 = 1 × 10−5

n1/1.5 = n2/3 = n3/4 = n4/4 = (2/3) × 10−4

kn1/1.5 = kn2/3 = kn3/4 = kn4/4 = 2/30

PI parameter DP = 0.01 DI = 5

Coupling gain CIr 7.5

Static virtual inductance 0.5 × 10−3 H

Gain of adaptive virtual impedance kR = 1.5 × 10−4, kL = 0.02

The simulation was designed to verify the effectiveness of the proposed control strategy with
respect to reactive power sharing and voltage control. Four inverters with rated capacities in the ratio
of 1.5:3:4:4 were used in the simulation. Between 0 and 1 s of the simulation period, each system
operates with a local load. After 1 s, the loads were added. Figure 12 shows the simulation results of
the conventional droop control strategy and the control strategy based on consensus control of the
reactive current. It can be found that between 1 and 2 s the active power is proportionally shared under
both control strategies (as shown in Figure 12a,b). However, due to the mismatch of the line impedance,
the reactive power sharing of the conventional droop control strategy is relatively poor (as shown
in Figure 12c). In contrast, the proposed control strategy allows the equivalent output impedance of
each micro-source to be effectively matched, thereby enabling the proportional sharing of reactive
power in the ratio of 1.5:3:4:4 (as shown in Figure 12d). The system frequency will eventually converge
and the frequency waveform obtained by the control strategy proposed in this paper is smoother
(as shown in Figure 12e–f). In the simulation, the load switching is performed in 1 s. During the
switching process, the virtual impedance will automatically change with the load distribution (as
shown in Figure 12g–h). It can be seen, finally, that the virtual reactance dominates the system, which
satisfies the P-f, Q-V droop control requirements.
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To verify the effectiveness of introducing the virtual impedance compensation angle θv, the output
power of the first inverter is taken as an example, as shown in Figure 13. Since the virtual impedance
compensation angle eliminates the phase angle difference of the reference voltage, the power
waveform is smoother and more stable compared with the situation when the compensation angle is
not introduced.
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The voltage sag at the microgrid AC bus is shown in Figure 14. As the conventional droop control
is deviation-based, voltage sags may occur, especially when a virtual impedance is added. Compared
with the control method based on direct introduction of virtual impedance, the bus voltage sag caused
by the adaptive virtual impedance control method proposed in this paper is low.
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A simulation was carried out to verify the reliability of the system under the reactive current
consensus control strategy when communication failure occurs. In the simulation, the communication
link between DGs 1 and 2 fails. Despite the failed communication link, the system is able to maintain
the ratio of 1.5:3:4:4 in the sharing of reactive power while active power is controlled (as shown
in Figure 15a,b). Therefore, when one communication link fails, the proposed control strategy
still outperforms the conventional droop control method with regards to reactive power sharing.
Even when communication fails, the adaptive virtual impedance based on reactive current consistency
proposed in this paper still automatically changes with the load distribution during the load switching
process (as shown in Figure 15c,d) and, ultimately, virtual reactance remains a dominant role in
the system.
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7. Conclusions

In this paper, reactive power sharing within an isolated microgrid using virtual impedance has
been investigated.

The microgrid system adopts a distributed control structure without a central controller, in
which each DG acts as an independent agent and adjacent DGs engage in one-way communication.
The reactive power sharing is achieved through consensus control of the reactive current. In addition,
the microgrid system proves to be asymptotically stable under this control strategy.

The virtual impedance correction term is obtained by the consensus control strategy of reactive
current. Together with the static virtual impedance, the adaptive virtual impedance is introduced
to eliminate the output impedance mismatch between adjacent micro-sources, thereby achieving
proportional reactive power sharing without knowing specific line impedance parameters. Moreover,
it has been proved that the proposed method can perform well even when a communication link fails.

The virtual impedance compensation angle θv is introduced to compensate for phase angle offset
in the micro-source reference voltage caused by the introduction of virtual impedance, thus, the stability
of the system can be enhanced. The power control loop is simplified without affecting the original
droop characteristics, thereby reducing system complexity and limiting the voltage sag.
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