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Application of Artificial Neural Networks to Assess Student Happiness 
 

Abstract 

The purpose of this study is to develop an analytical assessment approach to identify the 

main factors that affect graduate students’ happiness level. Two methods, Multiple Linear 

Regression (MLR) and Artificial Neural Networks (ANN), were employed for analytical 

modeling. A sample of 118 students at a small non-profit private university constituted the 

survey pool. Various factors including education, school facilities, health, social activities, 

and family were taken into consideration as a result of literature review in happiness 

assessment. A total of 32 inputs and 1 output variables were identified during survey design 

phase. Following survey conduction, data collection, cleaning, and preparation; MLR and 

ANNs were built. ANN models provided better classification performance with over 0.7 R-

square and a smaller standard error of estimate compared to MLR. Major policy areas to 

improve student happiness levels were identified as career services, financial aid, parking 

and dining services.  

Key words: student happiness, data analytics, neural networks, regression, higher education 
policy 

  



1. Introduction 

Student satisfaction is among the key success factors in higher education quality and overall 

performance of educational institutions. Satisfaction is described as “fulfilment of one's 

wishes, expectations, or needs, or the pleasure derived from this”(Oxford University Press, 

2018). The literature suggests that the student happiness is related to satisfaction (DeShields 

W. O. et al., 2005). Therefore, it is essential for an educational institution to provide a physical 

and social atmosphere to its students that foster happiness through satisfying their 

expectations as students. In order to provide such environment, it is necessary to identify 

the factors that affect happiness. Happiness is defined as an emotional state of feeling good 

(Layard, 2005). Since, people may have different understanding about happiness and their 

perception of happiness can differ, it is difficult to judge the level of happiness (Abecia et al., 

2014). More importantly, it is noted that happiness is a feeling that is felt inwardly, which is 

hard to measure. However, the determinants of happiness could be further investigated. 

Assessed as an emotional state, happiness has been associated with various factors of 

professional and daily life in the literature. Some of the factors include wellness, spiritual 

stability, health status, friends and networks, along with individual growth (Abecia et al., 

2014). Furthermore, productivity, salary, success, being energetic, sociable, having more 

fulfilling friendships are correlated with happiness in professional life (Martin, 2014). All in 

all, being in a happy state has substantial positive impacts on individuals’ personal and 

professional lives. The literature is abundant with works which indicate that increased level 

of happiness leads to better physiological and physical perception of self, better dietary 

habits and maintenance of normal body weight, and physically active lifestyles (Stephanie & 

M.Macleod, 2015); while unhappiness could make people perform poorly (Parkins et al., 

2016).    

The level of satisfaction, hence happiness, is an important factor for both individual and 

institutional success in higher education as well. The focus of this research is to investigate 

the determinants of happiness among university students with an integrated analytical 

approach. The integrated analytical framework is developed using a case study and is 

proposed to study the level of happiness. The framework consists of two phases. The first 

phase involves survey design and administration, and the second phase includes 

quantitative data analysis using regression and neural network models to examine the 

factors affecting student happiness. The rest of the paper is organized as follows. Section two 

explains recent studies in literature parallel to the focus of the current study. The 

methodology is explained in section three. Results are provided in section four. Finally, 

conclusions and future directions are provided in section five. 

2. Literature Review 

Happiness is a very broad topic that have been studied from various aspects and in various 

domains including work environment (Diener et al., 1993), society (Graham & Felton, 2006), 

and particularly in  higher education institutions (Abecia et al.,2014). As stated previously, 

satisfaction and happiness are positively correlated, and the terms are used interchangeably 



in the literature (Oxford University Press, 2018). Therefore, studies addressing happiness 

and satisfaction assessment in higher education context have been investigated in this 
section (Lu & Argyle, 1994); (DeShields W. O. et al., 2005).  

Studies on the linkage between student satisfaction and its positive effect on marketing of 

academic institutions show the importance of student satisfaction in higher education. 

Athiyaman (2001) indicates that student satisfaction leads to positive world-of-mouth 

communication, which in turn, influences prospective students’ decision on university 

selection. Ismail et.al. (2011) argues that information about an institution is very important 

in attracting students which is highly depend on their satisfaction. Appleton-Knapp & 

Krentler (2006) state that student satisfaction is a critical factor from marketing perspective.  

Their study shows that meeting student expectations has positive effect on student 

satisfaction.  While the marketing aspect of student satisfaction is important for the survival 

of the academic institution, student satisfaction is also important in improving the 

educational quality of the institution. Student satisfaction highly effect their learning (Guolla, 

1999) and there is a strong positive correlation between student satisfaction and exam 
results (Nyhus, 2015).  

The marketing and educational quality outcomes are critical for academic institutions, thus, 

it is important to identify the predictors of student satisfaction. In one of the recent studies, 

Abecia et al. (2014) conducted a study measuring student happiness at  the University of 

Mindanao, in which 381 students were surveyed on 34 pre-determined sources of happiness. 

Factor analysis was used as the quantitative assessment tool, which consisted of eight 

constructs including competition dimension, lifestyle dimension, intellectual, technology, 

altruism, night life, care dimension and celebrations. Results indicated that the top five 

indicators of happiness were family, health, academics, recognition and extending help to 

others. Furthermore, Howell & Buck (2011) investigated various factors that could influence 

student satisfaction in a business college course. They categorized the factors on service 

aspects in three groups: institution driven, faculty driven, and student driven. They used 

multiple regression analysis to identify the relationship between the factors and student 

satisfaction. Results indicated that four out of eleven factors to be very influential. The 

factors were workload, relevancy of subject, faculty competency, and classroom 

management.  

College experience is another factor that has been shown to impact student satisfaction. 

DeShields Jr. et al. (2005) studied 20 categories which may have an impact on students’ 

college experience using Hertzberg’s two-factor theory. The determinants of student 

satisfaction were categorized under three different groups: Faculty, advising staff, and 

classes. The faculty category included the following sub-categories: understandable, 

accessible, professional, helpful, and giving feedback. In advising staff understandable, 

accessible, responsive, helpful, and reliable sub-categories were grouped. It was concluded 

that classes and faculty have strong relation with students’ college experience. Furthermore, 

the impact of college experience on student happiness was examined. Results showed that 



positive experience leads to student happiness which was correlated to higher student 

satisfaction.  

Maceli et al. (2011) investigated gender and its impact on class experience from two different 

perspectives:  whether the gender of the student is influential on satisfaction with class, and 

whether the gender of the instructor has impact on student satisfaction. They also 

considered other factors such as major, instructor age, and class rules. The result showed 

that not only the gender of the students is an indicator of student satisfaction from a course, 

but also is the gender of the instructor.  They also found that instructor and classroom 

atmosphere to be important factors, and that clearly defined expectations and rules in their 

classes lead to student happiness. Shi et. al. (2014) also studied gender and age along with 

faculty and school in student satisfaction, and furthermore, examined the impact of other 

factors such as athletic facility, health center, and cafeteria on student satisfaction.  School 

facilities such as library and laboratories are also identified to have critical impact on both 
student and staff satisfaction (Misanew & Tadesse, 2014; Kärnä & Julin, 2015).  

On the other hand, some factors found to have negligible effect on student happiness. For 

instance, Gruber et al. (2010) stated that factors like attractiveness of the surrounding city, 

number of semesters, school placement, and atmosphere among students do not have impact 

on student satisfaction in higher education. Zarei (2013) indicates that parents’ educational 

degree, religion, and student pocket money do not impact student happiness significantly. 

Abecia et al. (2014) pointed out that video games, nightlife, and barhopping minimally affect 

student happiness. But, it should be noted that the factors found to be negligible in general 

cases may become significant in a specific context. For instance; Hale et. al. (2009) discussed 

that student satisfaction factors in online courses are different from classroom courses. 

Student knowledge about technology in regular courses may not play an important role in 

their satisfaction but in the scope of online courses it has a high impact on their satisfaction 

(Burbuagh et al., 2014). The factors examined in another study were internet self-efficacy, 

self-directed learning, and online communication self-efficacy on student satisfaction, which 
were identified based on the study context: online programs (Kirmizi, 2015). 

A large portion of the literature on finding the determinants of student satisfaction and 

happiness in various education levels heavily focus on student experience and teachers. 

Additionally, other factors that can potentially influence student satisfaction or happiness 

such as family-related issues, health-related issues, and social life could be of consideration. 

In this context, among handful studies that addressed such factors are as follows. Chen et. al., 

(2012) considered social and environmental factors to evaluate satisfaction in nursing 

students. In their study, social factors include faculty and student attitude toward each other 

and environmental factors refer to laboratories, classrooms, clinics, and similar school-

related facilities.  Zarei, (2013) focused on religious, artistic, athletic experiences, and 

cultural factors.  The results of their regression analysis study indicated that cultural and 

leisure activities were the top two factors that had critical impact on student happiness. 

Considering the all of the aforementioned works selected from the literature, two summary 

tables were prepared to group the indicators and research methods used. Table 1 



summarizes the most commonly addressed factors in student satisfaction and happiness 

studies. This information provides the basis of factor selection for our proposed 

measurement model. Table 2 shows the commonly used analysis approaches in these 

studies. Parametric methods including regression, factor analysis, T test, have been the most 

popular methods, and university level assessment was the focus in the majority of the 

literature.  

Table 1. Factors affecting Student Satisfaction  

Source Education Facilities 
Career and 

financial aid 
services 

Campus, dining 
and healthcare 

Social 
life 

Family 

Guolla, (1999) ✓      

Athiyaman (2001) ✓ ✓ ✓  ✓  

Roszkowski and Ricci (2004) ✓      

Naik and Ragothaman (2004) ✓      

Oscar W. et al. (2005) ✓  ✓    

Appleton-Knapp & Krentler, (2006)  ✓      

Petruzzellis et. al., (2006) ✓ ✓ ✓ ✓ ✓  

Hale at. el., (2009) ✓      

Herzog (2009) ✓  ✓    

Gruber et al. , (2010) ✓ ✓ ✓ ✓ ✓  

Howell & Buck (2011) ✓      

Ismail et.al. , (2011) ✓ ✓ ✓    

Maceli et al., (2011) ✓      

Chen et.al., (2012) ✓ ✓  ✓   

Zarei, (2013)    ✓ ✓ ✓ 

Kardan et aL. (2013) ✓      

Abecia et al. (2014) ✓    ✓ ✓ 

Misanew & Tadesse, (2014)  ✓     

Shi et. al., (2014) ✓ ✓  ✓   

Stukalina, (2014) ✓ ✓  ✓   

Kärnä & Julin, (2015)  ✓     

Kırmızı, (2015) ✓      

Nyhus, (2015)  ✓     

Turkyilmaz et al. (2016) ✓  ✓  ✓  



Table 2. Overview of the recent literature 

Source Focus Area Method(s) 

Guolla, (1999) University Partial Least Square 
Athiyaman (2001) University Regression 
Roszkowski and Ricci (2004) University Neural Networks 

Naik and Ragothaman (2004) University Neural Networks 
Oscar W. et al. (2005) University Path Analysis 
Appleton-Knapp & Krentler, 
(2006) University ANOVA, t test 
Petruzzellis et. al., (2006) University Chi Square Analysis 
Hale at. el., (2009) University Chi Square, Fisher 

Herzog (2009) University Neural Networks 
Gruber et al. , (2010) University Regression 

Howell & Buck (2011) University 
T tests, Univariate Regression 
Analyses 

Ismail et.al. , (2011) University  Factor Analysis 

Maceli et al., (2011) University t tests, Regression 
Chen et.al., (2012) University Factor Analysis, ANOVA 
Zarei, (2013) University t tests, Regression 

Kardan et aL. (2013) University Neural networks 
Abecia et al. (2014) University Exploratory Factor Analysis 

Misanew & Tadesse, (2014) University Factor Analysis, Regression 
Shi et. al., (2014) University ANOVA, Factorial Experiment 
Stukalina, (2014) University Regression 

Kärnä & Julin, (2015) University Coefficient of Determination 
Kırmızı, (2015) University Regression 

Nyhus, (2015) 
Secondary 
School Regression 

Turkyilmaz et al. (2016) University Neural Networks 

 

The information summarized in Tables 1 and 2 helped organizing the research methodology 

in alignment with the works done so far. Most commonly applied methods were parametric, 

which are typically expected to hold the assumptions of the data to be normal, homogeneous, 

and collected based on independent observations. Even though the third assumption could 

be automatically met if the surveys are independently conducted; the first and second 

assumptions may not be directly met when categorical and/or binary variables are 

generated after results of survey are converted into a quantitative dataset. Parametric 

methods (e.g. regression) typically formulate the relationship(s) between independent and 

dependent variables with linear functions. However, the causal or correlational relationships 

are not always linear and often more complex. In this regard, nonparametric methods are 

used as a robust approach to account for both linear and non-linear relationships; and 

provide statistically improved understanding about the relationships between the input and 

output variables(Brodsky & Darkhovsky, 2000;Shokrzadeh et al., 2014). 



Among the nonlinear statistical modeling and analysis approaches, artificial neural networks 

has been used extensively in data mining, knowledge extraction, and statistical modeling 

applications that focus on a wide variety of areas including education, supply chain 

management (Ko et al., 2010), healthcare (Begg et al., 2006), buildings and construction 

(Tatari and Kucukvar, 2011), sustainability (Zhang, Shang, & Wu, 2009), and transportation 

(Egilmez and McAvoy, 2017).  

Related to the methodological focus of this study, neural networks; there are a few studies 

investigating not directly student happiness but related topics such as student success, 

retention rates, satisfaction, and loyalty. For instance, Herzog, (2009) focused on predicting 

retention and degree completion time and used neural networks to model the relationships 

between the second year retention rates (output) and various input variables including 

student demographics (age, gender, etc.), campus experience, financial aid, academic 

experience, etc. In another study, student achievement in online education systems (e-

learning) was investigated with neural network models (Roszkowski and Ricci, 2004). The 

study used multiple-choice tests’ grades as the main dataset to have neural network models 

learn, and predict the student success. Results of the study indicated that prediction was 

possible at an early stage (the third week) of a 10-week online course. Furthermore, Naik 

and Ragothaman (2004) focused on building neural network models to predict success of 

MBA students. Neural network models classified applicants into successful and marginal 

student categories with high and reliable accuracy. The variables used in the study included 

undergraduate GPA, GMAT scores, undergraduate major, age and other relevant data. 

Kardan et al. (2013) focused on students’ course selection, where neural network models 

were used to understand the factors that affect the course selection in online environment.  

These studies successfully integrated neural networks into college education context, 

however student happiness were not directly addressed. In contrast, in a recent work, 

Turkyilmaz et al., (2016) focused on developing a composite satisfaction index for college 

students by using variables such as institutional image, student expectations, perceived 

quality, perceived value, student satisfaction, and student quality (Türkyılmaz & Özkan, 

2007). In this work, the composite index was developed as a result of survey factors and the 

sole focus was more on the university aspect. Student happiness, and determinants that are 

not directly related with the university were not considered.  

Apart from the aforementioned works, to the best knowledge of authors, neural networks 

have not been used to model student happiness in the literature even though successful 

applications exist in similar problem domains, which were listed in Table 2. In addition to 

filling the gap in theoretical applications of neural networks to understand the determinants 

of overall student happiness; this study extends the topical focus by incorporating not only 

school-related factors; but also, the other factors such as family relationship and financial 

support, cultural and social activities to provide a more comprehensive and deeper 

understanding about the determinants of student happiness at higher education institutions.  

3. Methodology 



The methodology part consists four sections. In the first sub-section, study approach is 

summarized. Secondly, the survey design steps and details are provided. In the third sub-

section, the analytical assessment of survey results, which is performed with multiple linear 

regression (MLR) and artificial neural networks (ANN) models, are explained.  

3.1. Summary of the Approach 

The survey was designed with a project group, which consisted of two graduate students and 

a faculty mentor. After the approval of IRB, the survey was administered to the graduate 

student population at small non-profit private university across the college of engineering 

and other colleges. After the results were obtained and recorded, statistical and analytical 

assessments were performed. And, the study was concluded with sensitivity analysis. 

3.2. Survey Design 

Literature review, and brain storming and interview sessions with student and faculty 

groups were arranged to list the potential determinants of student happiness. Initially, seven 

main categories were identified: personal, education, facilities, career and financial aid 

services, campus dining and healthcare services, social life, and family (See Figure 1). Later 

on, main categories of student happiness determinants were extended to have sub-

categories prior to creating the questions. Various sub-categories such as classroom and 

technology, group working environment, financial aid, career center services, parking 

facilities, safety, food services, health center service, insurance, social activities, cultural 

events, and some personal factors like family relationship, financial support, etc. were 

identified (See Figure 1 for full list). Based on the main and sub-categories, 33 survey 

questions were prepared. Due to the difficulty in judging the level of happiness (Abecia et al., 

2014), and that there is a positive correlation between student satisfaction and student 
happiness (DeShields W. O. et al., 2005), a five-point Likert scale with 5 indicating extremely 
satisfied and 1 indicating extremely dissatisfied was used for rating in each sub-category. For the 
final question which asks the participants to rate their overall happiness, a five point Likert scale 
with 5=extremely happy and 1=not happy was used. Then, 118 students representing a 

population of 1,800 were interviewed using paper-surveys and survey results were 
converted into a dataset to be used for analytical modeling. The response rate was 100 percent, 
and there were no missing values in responses. The expected margin of error for the survey was 
calculated as 8.8 percent with a 95 percent confidence level.  

3.3. Analytical Modeling: MLR & ANN 

In the analytical modeling part, the results of surveys were analyzed visually, statistically, 

and analytically. While our primary goal was to develop artificial neural network (ANN) 

models, we also generated multiple linear regression (MLR) models. The MLR approach is 

commonly used in similar studies in literature. The purpose of using MLR models in this 

study was to establish a baseline for the ANN model. Data visualization techniques were 

initially used to extract initial interpretations and understanding about the relationships 
among the set of nominal and ordinal input and output variables.  



 

Figure 1. Input factors derived from literature 
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After statistical analysis, to gain better and deeper understanding of the underlying 

relationships between the factors and the overall happiness, analytical models were 

developed. Initially, multiple linear regression (MLR) was utilized with stepwise and 

backward methods in SPSS software. Then, artificial neural network (ANN) models were 

built to predict student happiness and understand its critical determinants. In this context, 

backward MLR starts building models iteratively and removes statistically insignificant 

variables at each iteration until all the input variables are significant in the build model. In 

contrast, as a black-box modeling technique, ANN keeps all the variables and builds the 

neural network architecture while maintain all the variance information from all the input 

variables.  

Multiple (Multivariate) Linear Regression (MLR) is typically used to model the relationship 

between a response variable and two or more explanatory variables. Following is a general 

form of MLR (Eq. 1). 

𝑦 = 𝛽 + ∑ 𝑐𝑖 ∗ 𝑥𝑖 + 𝜀𝑛
𝑖=1                                                                                                                         (1) 

An artificial neural network (ANN) is a specific application of artificial intelligence where the 
input and output relationships are modeled by using appropriate linear or nonlinear 
functions in a multi-layered network structure. ANN modeling mimics the way neurons 
communicate among each other. An ANN model typically consists of three components: 1) 
architecture 2) training or learning algorithm and 3) activation function(s). An illustration 
of a very simple neural network is provided in Figure 2, where Ii represents the input 
neurons and O is the output neuron. H is a hidden layer, and wi represents the weight for the 
ith input.  

 
 

Figure 2. Simple ANN architecture (Egilmez and McAvoy, 2017) 
In the neural network architecture shown in Figure 2, there are three inputs (I1, I2, I3), one 
output (O) and one hidden unit (H), where is a nonlinear activation function used to model 
the information process between inputs and output. Neural networks have been widely used 
in literature in various problem domains including forecasting (Sun & Chang, 2016;  Wang, 
2016); financial efficiency assessment (Sun & Chang, 2016), predictive modeling (Wang, 
2016), quality management (Maleki et al., 2015); operational efficiency assessment 
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(Mousavizadeh et al., 2017); consumer satisfaction assessment (Kar & Singh, 2012), and 
education (Turkyilmaz et al., 2016). 
 
4. Results 

Results are described in four main sections. First, results are presented by each factor 

category. Then, the results of analytical assessment methods (MLR and ANN) are provided. 

In the third section, MLR and ANN methods are compared. The fourth section provides 

sensitivity analysis of the factor (determinants of happiness) with the overall happiness 

output variable. 

4.1. Overview by Major Category 

An overall analysis is conducted on the survey results to illustrate the results of happiness 

assessment by major category. Major categories include personal, education, facilities, career 

and financial aid services, campus, dining and healthcare, family and social life.  The 

distribution of answers based on five-point Likert ratings in each sub-category and the 

response variable is listed in Table 3.  

4.1.1. Student demographics 

In this category, the following factors were included: gender, enrollment, age, nationality, 

GPA, employment and financial aid status. Figure 3 provides a graphical summary of 

distribution of answers in each sub-category. Results indicated that, two thirds of the 

students were male. Vast majority of the students were enrolled full time, international 

students, and with a GPA above 3.00. Almost two-thirds of the students were between 21 

and 24 years of age.  One-thirds of the students were working full time while about 10 

percent were working part-time, the remaining were not employed. Majority of the students 
receive full or partial financial aid. 

4.1.2. Education 

The education-related questions were about the university’s reputation, relationship with 

people, educational workload (e.g. homework project, etc.), instructors, and lectures. 

Summary of the responses is shown in Table 3. The weighted scores for education category 
were between 3.92 and 4.19 indicating that the students were fairly satisfied.



 

Figure 3.  Student Demographics 
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Table 3. Survey Results 

Category 
Please rate your level of 
satisfaction in each of the following 
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E
xt
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R
at
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g 

1: Academic reputation of the 
institution 

14 86 13 2 2 3.92 

2: Classmates’ friendliness 42 65 5 4 2 4.19 

3: Educational workload  16 68 21 10 0 3.78 

4: Instructors 39 63 13 3 0 4.17 

5: Lectures 32 56 26 4 0 3.98 

6: Classrooms and technology 
services 

30 56 22 10 0 3.90 

7: Campus library 46 49 13 9 1 4.10 

8: Group study places 21 58 26 10 3 3.71 

9: Career center 17 57 32 9 2 3.67 

10: Campus jobs 16 25 38 30 8 3.09 

11: Financial aid services 16 50 29 11 11 3.42 

12: Parking  10 29 29 23 27 2.76 

13: Campus safety  30 69 16 3 0 4.07 

14: Dining services: Food taste  16 44 40 13 5 3.45 

15: Dining services: Food variety 17 48 39 8 6 3.53 

16: Dining services: Overall 
experience  

20 49 34 10 4 3.61 

17: Health insurance 13 64 35 1 4 3.69 

18: Health services 21 66 30 0 0 3.92 

19: Campus cleanliness and 
outlook 

45 53 12 7 0 4.16 

20:  Intercultural events 24 61 24 9 0 3.85 

21: Sports activities  13 62 34 7 1 3.68 

22: Sports facilities 24 64 19 10 1 3.85 

23: Outdoor activities 14 53 37 10 3 3.56 

24: Financial support from family 23 48 29 13 5 3.60 

25: Relationship with your family 87 23 6 0 1 4.67 
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Overall 
Happiness 

 23 62 24 8 1 3.83 

 

4.1.3. Facilities 

The facilities-related questions addressed classroom technology experience, library 
services, and available spaces to conduct group study.   Similar to education-related factors, 
the weighted scores for facility-related factors were above 3.5. 

4.1.4. Career and financial aid services 

Although the factors related to career and financial aid services received lower weighted 

scores than the previous two categories, the results were still above 3.0, sufficient enough 

not to mark these factors as problem areas.  

4.1.5. Campus, dining, & healthcare 

In this section, campus, dining, and healthcare-related questions were asked to the 

participants. The questions addressed parking, safety, dining, health insurance, health center 

and the general campus look. Results shown in Table 3 indicate that in all the categories 

students were satisfied except parking availability.  

4.1.6. Social life 

The topics of questions with respect to the social life category included quality of cultural 

events, variety of sports, sports facilities and outdoor activities. All of the weighted scores 

were higher than 3.5 indicating high student satisfaction for the social life category items.  

4.1.7. Family 
In this section, the family-related questions were asked to the participants. The two factors 
surveyed were the monetary support received from family (pocket money) and relationship 
with family. Results showed that the students were not only satisfied with family related 
matters, but also were extremely satisfied with their relationship with family as this factor 
received the highest score in the survey.  

4.1.8. Overall Analysis of Survey Results 

The distribution of answers in each sub-category and the response variable, overall 

happiness, are illustrated in Figure 4. For instance, in education area, there were five 

questions asked and approximately 58% of the students gave a “satisfied” answer on 

average, and 24% said “extremely satisfied”. Results indicate that the highest dissatisfaction 

levels were observed in career and financial aid services category. Especially, campus jobs, 
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and career aid were selected as the main sources of dissatisfaction in this category. On the 
other hand, the highest level of satisfaction was achieved in the family section. Secondly, over 
80% of the students were satisfied with the factors in the education category, and over 70% 
was satisfied with the facilities. Thirdly, among all sub-categories, parking was the only area 
that received more than 40% dissatisfaction. After parking, campus jobs was the secondary 
area with the highest dissatisfaction with over 30%.  Financial aid was found to be the third 
highest dissatisfaction source with almost 20%. In terms of extremely satisfied and satisfied 
categories combined, sub-categories with the highest percent shares were found to be 
relationship with family (94%), classmates (91%), professor attitudes (86%), university 
reputation (85%), and campus safety (84%). 

Figure 4. Average distribution of responses by Main Category 

4.2. The Analytical Approach: MLR and ANN models 

The analytical approach aims to quantify, thus helps to understand, the relationships 
between the categories that affect student happiness and the response variable (the level of 
overall happiness). The method selected for this study was ANN because ANN is a robust 
predictive and classification modeling technique that allows modeling both linear and 
nonlinear relationships between factor (input) and response (output) variables. However, 
two models were constructed: Multiple-Linear Regression (MLR) and Artificial Neural 
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Networks (ANN) model. MLR is used as the benchmark method for ANN as previously used 

by similar studies including (Çodur & Tortum, 2015; Egilmez & McAvoy, 2017; Kaytez, 
Taplamacioglu, Cam, & Hardalac, 2015; Şahin, Kaya, & Uyar, 2013). 

A total of thirty-two input variables and 1 response variable were used to model the 

relationship between the factors effecting happiness and the outcome (level of happiness). 

The response variable, the level of overall happiness, is a categorical variable, with categories 

Extremely Satisfied, Satisfied, Neither, Dissatisfied, Extremely Dissatisfied. The categorical 

values were converted into numbered categories between 1 and 5 with 1 being “not at all”. 

Then models were constructed using SPSS and Statistica. The following sections provide 
results of both MLR and ANN models. 

4.2.1. Multiple Linear Regression (MLR) 

Twenty-eight multiple linear regression models were developed by using backward 

approach in SPSS. The model summary statistics are shown in Table 4. The best MLR model 
had an adjusted R-square of 0.477 and standard error of estimate (SEE) of 0.630.   

Table 4. Summary of Models Developed with Backward MLR 

Model 
 

R R 
Square 

Adjusted 
R Square 

Std. 
Error of 

the 
Estimate 

Change Statistics Durbin-
Watson R 

Square 
Change 

F 
Change 

df1 df2 Sig. F 
Change 

1 .770a .593 .344 .705 .593 2.383 33 54 .002   

2 .770b .593 .356 .698 .000 .000 1 54 .987   

3 .770c .593 .367 .692 .000 .016 1 55 .901   

4 .770d .593 .378 .686 .000 .012 1 56 .913   

5 .770e .593 .389 .680 .000 .024 1 57 .876   

6 .769f .592 .398 .675 -.001 .076 1 58 .784   

7 .769g .591 .407 .670 -.001 .183 1 59 .671   

8 .767h .589 .414 .666 -.002 .251 1 60 .618   

9 .766i .587 .420 .663 -.002 .315 1 61 .576   

10 .765j .585 .427 .659 -.002 .321 1 62 .573   

11 .764k .583 .434 .655 -.001 .225 1 63 .637   

12 .762l .581 .439 .652 -.002 .352 1 64 .555   

13 .761m .579 .444 .649 -.002 .381 1 65 .539   

14 .758n .575 .448 .647 -.004 .628 1 66 .431   

15 .756o .571 .451 .645 -.004 .572 1 67 .452   

16 .754p .568 .455 .642 -.003 .478 1 68 .492   

17 .751q .565 .459 .640 -.003 .532 1 69 .468   

18 .749r .561 .462 .638 -.004 .604 1 70 .440   

19 .746s .557 .465 .637 -.004 .584 1 71 .447   
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20 .743t .552 .466 .636 -.005 .887 1 72 .349   

21 .740u .547 .468 .635 -.004 .718 1 73 .400   

22 .739v .546 .473 .632 -.001 .235 1 74 .630   

23 .735w .540 .473 .632 -.006 .999 1 75 .321   

24 .732x .536 .475 .630 -.004 .710 1 76 .402   

25 .729y .531 .477 .630 -.005 .793 1 77 .376   

26 .724z .524 .476 .630 -.006 1.075 1 78 .303   

27 .717aa .514 .472 .632 -.010 1.652 1 79 .202   

28 .706ab .498 .461 .639 -.016 2.700 1 80 .104 2.047 

 

MLR results indicated nationality (x1), career service (x2), campus safety (x3), sports (x4) 

and family relationship (x5), were the top five input variables effect student happiness. 
Results provided in Table 5 shows the details of the MLR model, including r, R and the 

standard error of estimate. 

Following is the mathematical notation of the final MLR model. 

𝑦 = −1.24 + 0.38𝑥1 + 0.24𝑥2 + 0.24𝑥3 + 0.41𝑥4 + 0.21𝑥5 +  𝜀          (2) 

where β is the intercept term, ci  (for i=1...n) are the regression coefficients, y is the response 

variable, xi (for i=1...n) are the independent predictor variables and 𝜀 is the residual error. 

Table 5. MLR Model Coefficients 
 

  Unstandardize
d Coefficients 

Standa
rdized 

Coeffici
ents 

t Sig. 95.0% 
Confidence 

Interval for B 

Correlations Collinearity 
Statistics 

B Std. Error Beta Lower 
Bound 

Upper 
Bound 

Zero-
order 

Partial Part Tolerance VIF 

             

(Constant) -1.24 .74   -1.68 .09 -2.72 .23           

-Gender .23 .15 .12 1.54 .12 -.06 .54 .24 .17 .12 .89 1.11 

-Nationality .38 .18 .18 2.06 .04 .01 .76 -.07 .22 .16 .72 1.38 

-GPA -.11 .11 -.08 -1.03 .30 -.34 .10 -.04 -.11 -.08 .85 1.17 

-Career 
Services 

.24 .09 .25 2.49 .01 .050 .44 .50 .27 .19 .57 1.72 

-Campus 
Safety 

.24 .11 .19 2.15 .03 .019 .48 .37 .23 .16 .70 1.41 

-Campus 
Cleanliness 

.13 .09 .13 1.41 .16 -.05 .32 .42 .15 .10 .66 1.49 

-Sports .41 .09 .36 4.18 .00 .21 .60 .52 .42 .32 .79 1.25 

-Pocket 
Money 

.08 .08 .10 1.04 .30 -.08 .26 .34 .11 .08 .62 1.58 

-Family 
Relationship  

.21 .11 .18 1.92 .05 -.00 .44 .14 .21 .15 .67 1.48 
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4.2.2. Artificial Neural Networks (ANN) 

In this study, thirty-two input variables and the student happiness, as the output variable, 
were used to build the ANN model. Seventy percent of the data was used for training and the 
remaining thirty percent was equally divided between validation (15 percent) and test (15 
percent) data as commonly performed in the literature (Tatari and Kucukvar, 2011). The 
ANN model randomly selected data and assigned them to use for testing, validation and 
training. To train the networks developed and identify the weights and activation functions 
on the neural network nodes, training data was used. Validation step was to help minimizing 
the over-fitting; finally, 15 percent of data randomly selected to test to confirm the predictive 
power of the network. STATISTICA® software was used for ANN modeling and analysis. Five 
activation functions (logistic sigmoid, hyperbolic, tangent, negative exponential and 
identity) were used to model linear and nonlinear relationships between the variables and 
the output. Automated Neural Network search was conducted and a total of 1000 networks 
were trained, validated, and tested. The results of the automated ANN experiment are 
provided in Table 6, where the top 5 networks are provided with their performance metrics. 
The ANN architecture is given in Figure 5.  
 

Table 6. Results of Automated ANN Experiment (Top 5 Neural Networks) 
 

Parameter ANN-1 ANN-2 (Best) ANN-3 ANN-4 ANN-5 

Network name MLP 149-12-1 MLP 149-8-1 MLP 149-16-1 MLP 149-8-1 MLP 149-13-1 

Training R-square 0.98 0.97 0.96 0.97 0.95 

Test R-square 0.52 0.70 0.49 0.65 0.64 

Validation R-square 0.53 0.47 0.52 0.46 0.43 

Training SEE 0.01 0.01 0.02 0.019 0.03 

Test SEE 0.37 0.26 0.40 0.29 0.29 

Validation SEE 0.39 0.39 0.37 0.41 0.505 

Training algorithm BFGS 13 BFGS 12 BFGS 12 BFGS 12 BFGS 9 

Error function SOS SOS SOS SOS SOS 

Hidden activation Exponential Exponential Exponential Exponential Identity 

Output activation Logistic Logistic Logistic Logistic Sine 
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Figure 5. Architecture of the best ANN network (ANN-2)  

Automated ANN experimentation resulted in five candidate ANN models. While all models 
have high training R-square, the second model has the least standard error estimate (SEE) 
and highest test R-square.  Models with test R-square values that are greater than 0.7 
generally indicate quite powerful classification and prediction performance (Tatari and 
Kucukvar 2011). Therefore, ANN Model-2 is selected for further analysis. The ANN Model-2, 
shown in Figure 5, consists of 32 input neurons, 8 hidden neurons in a single hidden layer 
and one output neuron (the level of happiness).  

 
Figure 6 shows the classification performance of the best ANN model. The actual data are 

represented on the x-axis, whereas predicted (model’s output) data are plotted on y-axis. 

According to Figure 6, majority of the data points (x, y), were scattered around the diagonal 

line which indicates high classification power. The standardized residual graph is given in 

Figure 7. In a typical standardized residual graph, a good model’s residuals typically tend to 

range around the horizontal 0 line, the more points close to zero line indicates less 

classification or prediction error.  The graph in Figure 7 indicates that majority of the 

residuals were stacked around the 0 horizontal line, which indicates also a sound 
classification performance.  
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Figure 6. ANN’s Classification Performance (Target vs. Output) 

 

Figure 7. Residual Plot of ANN Model 
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4.3. Benchmarking ANN with MLR 

This section compares the performance of the proposed ANN model with MLR. In statistics, 
the coefficient of determination (R2) and the standard error of estimate (SEE) are two 
important factors which indicate the strength of the models and are used for model 
comparisons (Tatari and Kucukvar, 2011). R2 provides a quantitative understanding about 
of the proportion of variability in the output explained by the inputs as a result of a statistical 
model. Standard error of estimate (SEE) is used to evaluate the accuracy of the model and 
quantifies the deviation of the predicted values from the actual values.   
 
Table 7 shows R2 and SEE statistics for ANN and MLR models. As the data suggests, ANN 
model provides a stronger model with R2 of 0.70; which shows that nearly 71 % of the 
variation is being explained with the ANN model. ANN model also was found to have 
significantly lower SEE (97.5% less than MLR), which is an indicator of a more reliable 
model. 

Table 7. Comparison of ANN and MLR 
  

ANN (The Best Model) MLR (The best model) 

R2 0.707 0.531 
SEE 0.016 0.630 

 
4.4. Sensitivity Analysis 

Global sensitivity analyses provide quantitative understanding about the relative 
importance of the variables used in a neural network. The relative importance is assessed 
through submitting the dataset (test data) to the network repeatedly, while each variable is 
replaced with its mean value (calculated from training sample), and the resulting network 
error is recorded (Statistica, 2017).  The global sensitivity analysis approach is based on 
missing value substitution procedure. In this procedure, each input variable is taken out of 
the neural network architecture to identify the relative contribution that is obtained by 
comparing the cases before and after exclusion of the variable (Egilmez et al., 2016). The test 
sample is used to calculate the sensitivity of an input variable; thus, the network error is 
determined. Moreover, the observed values of variable are replaced with the values 
estimated by the missing value procedure and the network error is calculated again. Then, 
the sensitivity is determined by calculating the ratio of the error with missing value 
substitution to the original error (Statistica, 2017). Sensitivity analysis for the ANN model 
constructed for this study indicates the degree of importance of input variables (factors) 
which are identified based on their influence on the student happiness, the output. The 
tornado diagram shown in Figure 8 presents the ranges of sensitivity scores for each main 
category. The average sensitivity scores of all factors (sub-categories) are presented in Table 
8. The top three most sensitive sub-categories were found to be Nationality (1.36), Career 
center (1.29), and Sports activities (1.25), and the least three sensitive sub-categories were 
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found to be Places for group working (1), Overall dining services (1), and Educational 
workload (0.99) 

 
 

Figure 8. Overall Sensitivity Results 

5. Conclusions and Future Work 

In this paper, the determinants of student happiness is studied with an integrated analytical 

framework that consists of survey, data collection, linear and nonlinear analytical modeling 

and analysis. A small non-profit private university was selected to implement the proposed 

analytical framework. During the survey design, thirty-two categories (determinants of 

happiness) were identified as input variables and the output variable was identified as the 

perceived overall happiness. After survey administration, the results were recorded into a 

dataset, which was followed up with data cleaning and data preparation steps. In the further 

stage of the project, ANN model was developed to understand the relationship between the 

factors that affect student happiness (inputs) and the response variable, overall happiness. 

In addition, an MLR model was developed to establish a benchmark in evaluating the 
performance of the ANN approach.  

The initial descriptive and graphical analysis of survey results indicated that parking, career 

services, especially campus jobs and financial aid are critical determinants, which lead to the 

highest levels of dissatisfaction. On the other hand, university reputation, facilities, 

professors, and classmates, and family relationship categories were identified with the 

highest level of satisfaction. Later in the second phase, the satisfaction levels in all of the 

input categories (determinants) were further studied to understand their potential impact 
on the overall happiness. 
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Table 8. Detailed Sensitivity Results 

Main Category 
Avg. 

Sensitivity Sub-Category 
Sensitivit

y  

Gender 1.23 

Age 1.00 

Nationality 1.36 

Enrollment 1.00 

GPA 1.06 

Employment status 1.05 

Financial aid 1.04 

Academic reputation 1.10 

Classmates 1.10 

Educational workload 0.99 

Professors 1.02 

Lecture quality 1.19 

University technology 1.12 

Main campus library 1.07 

Places for group working 1.00 

Career center 1.29 

Campus jobs 1.06 

Financial aid services 1.05 

Parking availability 1.11 

Campus Safety 1.19 

Dining: Food taste 1.09 

Dining: Food variety 1.01 

Overall dining services 1.00 

Health services 1.08 

Health insurance 1.05 

Campus cleanness 1.10 

Intercultural events 1.01 

Sports activities 1.25 

Sports facilities 1.02 

Outdoor activities 1.14 

Family relationship 1.10 

Financial support from 
family 

1.11 
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In the second stage, analytical assessment results indicated that the percent variability in 

student happiness response variable explained by the input variables was 53% with MLR 

and 71% with ANN. Due to its lower standard error of estimate (SEE: 0.016) and higher R-

square (71%), ANN approach was selected and used as the main approach for the analytical 

assessment. One thousand ANN models were developed and top 5 neural networks were 

picked based on error rate and r-square values, and analyzed in detail. The best ANN 

network consisted of 8 hidden layers with exponential activation functions and logistic 

activation function with the output (due to being a categorical output). ANN outperformed 

MLR due to nonlinear characteristics of the data and having categorical input and output 

variables. Finally, sensitivity analysis was conducted, which showed that all factor areas tend 

to have similar sensitivity relationship with the output, indicating that all areas of policy 
making needs to be addressed adequately and effectively to raise the student happiness. 

This paper contributed to the literature significantly in four ways. First of all, it was found 

that focusing on factors such as family support, family relationships, and critical 

demographics in addition to school or education related categories provided more insights 

about the happiness determinants. Secondly, this study used the largest pool of indicators 

(32) to study and investigate the determinants of happiness in higher education. Thirdly, the 

proposed analytical approach critically helped identifying nonlinear relationships between 

determinants and overall happiness, which was also supported higher r-square and lower 

SEE. Fourthly, the global sensitivity analysis also provided meaningful insights, which was 

not possible with the classical regression-based approaches. Use of artificial intelligence, 

especially neural networks, could be of importance and beneficial for problems where 

categorical and binary variables exist, nonlinear relationships cannot be captured by 

parametric methods.  

Further investigation of current work, could typically include other nonparametric methods 

such as decision trees, or alternative assessment approaches such as Exploratory Factor 

Analysis (EFA) to compare the performance of current models and increase the accuracy of 

predicting happiness. In addition, other close-by institutions could be also studied in parallel 

to make benchmarking among different institutions, and to build stronger models with 

larger training datasets. s more insights for future work. Lastly, the current research could 

be advanced by integrating subject expert weightings on the input variables prior to 

modeling, which could derive interesting results to compare with the current findings. 

Appendix 

IRB certification of the research project was obtained from the IRB Committee of the 

corresponding author’s institution prior to survey design and data collection. Additionally, 
the research team members obtained IRB certification prior to the start of research project. 
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