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Frameup: An Incriminatory Attack on Storj: A Peer to Peer Blockchain
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Xiaolu Zhang®*, Justin GrannisP, Ibrahim Baggili®, Nicole Lang Beebe?

2Information Systems € Cyber Security Department, The University of Texas at San Antonio,
One UTSA Circle, San Antonio, TX, 78249
bCyber Forensics Research & Education Group, Tagliatela College of Engineering, ECECS,
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Abstract

In this work we present a primary account of frameup, an incriminatory attack made possible because of existing
implementations in distributed peer to peer storage. The frameup attack shows that an adversary has the ability to
store unencrypted data on the hard drives of people renting out their hard drive space. This is important to forensic
examiners as it opens the door for possibly framing an innocent victim. Our work employs Storj as an example technology,
due to its popularity and market size. Storj is a blockchain enabled system that allows people to rent out their hard
drive space to other users around the world by employing a cryptocurrency token that is used to pay for the services
rendered. It uses blockchain features like a transaction ledger, public/private key encryption, and cryptographic hash
functions — but this work is not centered around blockchain. Our work discusses two frameup attacks, a preliminary
and an optimized attack, both of which take advantage of Storj’s implementation. Results illustrate that Storj allows
a potential adversary to store incriminating unencrypted files, or parts of files that are viewable on people’s systems
when renting out their unused hard drive space. We offer potential solutions to mitigate our discovered attacks, a
developed tool to review if a person has been a victim of a frameup attack, and a mechanism for showing that the files
were stored on a hard drive without the renter’s knowledge. Our hope is that this work will inspire future security and
forensics research directions in the exploration of distributed peer to peer storage systems that embrace blockchain and
cryptocurrency tokens.

Keywords: Cryptocurrency, Distributed storage attacks, Frameup, Attacks, Security, Cloud storage.

1. Introduction that area, being Storj. Known as the Airbnb of data stor-
age, Storj is a platform that allows individuals to store
their data on rented hard drive space from people’s com-
puters around the world in a secure and distributed man-
ner through a contract-based, blockchain, with an added
Storj cryptocurrency token implementation. People can
pay for rented storage space using the Storj token, and
individuals renting their hard drive space, can in return
receive payment with the Storj token. With billions of dol-
lars being invested in cryptocurrency, Storj has been able
to become an important player, with its Storj coin reaching
a market cap of $347,106,000" in January of 2018.

While, distributed systems enabled by blockchain tech-
nology are vastly expanding, implementations are bound
to have some weaknesses, and thus, an important scientific
inquiry into these systems is critical to the privacy and se-
curity of users. Do these systems open up new attack
vectors to users? If so, what are they? More specifically,
can users store data on computers around the world in an
“Corresponding author. unencrypted manner, potentially framing users that are

Email addresses: Xiaolu.Zhang@utsa.edu (Xiaolu Zhang), renting their hard drive space? Can someone who is rent-
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Users globally have adopted cloud storage such as
Google Drive, Apple’s iCloud Drive, and DropBox, main-
tained and centralized by companies that have created
business models around storing and backing up data. How-
ever, with the rise of blockchain technology, the idea of
distributed systems has become a reality, challenging the
notion of companies storing and having control over peo-
ple’s data.

Blockchain opened the door for the ability to maintain
integrity and consensus of data, which has spurred innova-
tions in cryptocurrency development, health data records,
money lending, social media and other domains. The rise
of platforms such as Etherium, Bitcoin and Litecoin, has
stimulated ideas, and made possible contributions such as
secure distributed file storage, with the major player in
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ing drive space be shown to be innocent if an incriminating
attack is possible?

This brings up the old studied claim of “a trojan made
me do it" by Carney and Rogers (2004), where they ex-
plored if malware could have potentially created or down-
loaded illicit material onto a computer, thus incriminating
a user, and if this could be detected.

Our goal was to examine the efficacy of framing people
using a distributed Storj system, and by creating an ap-
proach to prove that an individual was indeed framed. We
did this by taking a deep under the hood examination of
the Storj platform. Thus, our work makes the following
contributions:

e We provide a primary account for the security inves-
tigation of this technology.

e We inspire future inquiry into other peer-to-peer cloud
storage networks.

e We make forensic practitioners aware of this poten-
tially incriminating attack.

e We offer a deep exploration of the Storj implementa-
tion.

e We show by theory and example two incriminatory at-
tacks that allow for the insecure and clear-text storage
of data on people’s computers connected to the Storj
network. We also discuss the variability of the con-
structed and tested attacks.

e We offer suggestions on how these attacks may be
mitigated.

e We developed a tool for auditing and authenticating
the innocence of allegedly framed victims.

This paper is organized as follows. We first start by
explaining the Storj network in Sec. 2, followed by the
theory for our proposed frameup attack in Sec. 3. We
then present our methodology in Sec. 4 and Sec. 5, fol-
lowed by our attack implementation and results in Sec.
6. We recommend attack countermeasures in Sec. 8, and
conclude our work in Sec. 9. We end the paper with re-
lated work in Sec. 10 as the core of the paper is focused on
the novelty of our constructed attack, its implementation

and testing.

2. Storj network

Storj is an open-source peer-to-peer (P2P) decentral-
ized cloud storage network that embraces architectural
design elements from both centralized and decentralized
networks. From the storage perspective, the network is
considered decentralized, as the file content is segmented
and distributed across multiple peers. However, Storj uses
a centralized server for communication control. The cen-
tralized server handles user authentication and negotiates

and facilitates encrypted file segment storage on peer stor-
age nodes. The Storj network is comprised of several dif-
ferent units shown in Fig. 1, which are the Bridge, Renter
and Farmer.

A renter is a user that wants to ‘rent’ storage space on
the Storj network. Renters use Storj’s Client application
to interact with the network; allowing files to be uploaded
and downloaded to and from the cloud. Whenever a renter
wants to communicate with the network they must first in-
teract with the bridge. After that conversation, the bridge
grants the renter approval to transfer files to and from
farmers.

The bridge is the heart of the network. Every element in
the network interacts with the bridge and all forms of com-
munication are delegated by the bridge, with the exception
of files transfered between renters and farmers. All renters
and farmers gain access to the network through the bridge.
Periodic status checks on the network are also performed
by the bridge by observing all the connected farmers and
renters.

Farmers are users on the network that offer space for
cloud storage. Before they can provide space they must
ask the bridge for permission to join the network. Once
farmers have joined, they can start establishing storage
Contracts between themselves and renters, allowing farm-
ers to offer drive space to renters.

With the major aspects of the network explained, the
communication process between a renter and the rest of
the network can be described. We will now describe the
procedures of uploading and downloading files to and from
the network.

There are several steps involved in the process of a renter
uploading a file to farmers on the P2P storage cloud.
A renter must first establish a storage contract(s) with
farmer(s) before the file can be handled. After the neces-
sary contracts are in place, they are stored on the bridge
and the file is queued for uploading. This queuing starts
with the renter encrypting the file and then segmenting the
file into different pieces called shards. After the shards are
created, they are distributed to the farmer(s) with con-
tract(s). Then, redundant shard copies are created and
distributed as a backup mechanism, to ensure data avail-
ability, in case shards are lost or destroyed by farmer(s), or
the farmer(s) are off-line when the renter wishes to access
their file.

When downloading a file, the renter contacts the bridge
to request the file from a farmer(s). The bridge first checks
if the renter can download the file by verifying if the file can
be reconstructed from available shards. If the file can be
reconstituted, then the bridge tells the farmer(s) to start
sending the shards back to the renter. Once the renter has
all of the shards necessary for restoring the file, the shards
are combined into one file and decrypted. At this point,
the file has been retrieved and is stored on the renter’s
computer with the bridge auditing the transaction.
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In this section, we identify and explain an important se-
curity issue posed by decentralized storage. This issue has
been overlooked to date, as extant research has focused
on centralized storage networks. Decentralized storage in-
volving individual users’ personal computers provides new
vectors adversaries may exploit. We term this attack the
Frameup attack and depict it in Fig. 2.

In this attack, nefarious Storj renters can upload unen-
crypted files to farmers’ computers around the world, po-
tentially consisting of malicious software, contraband ma-
terial, and other content with malicious intent. This is
made possible by a renter disabling the encryption process
prior to file segmentation and shard uploading. This can
result in unencrypted data being stored on farmer com-
puters, which could then be unwittingly executed in the
case of malware, or unknowingly possessed in the case of
contraband. It is important to caveat, however, that a
nefarious renter is not able to target specific farmers with
the frameup attack.

While not being able to distinctly target individuals may
limit the scope of the attack to non-targeted victims, tar-
get victimization is achievable. Based upon Storj’s design,
their protocol for selecting a node/farmer for storing a
renter’s shard is deterministic. A farmer is nominated to
store a renter’s shard when they have the lowest latency
and fastest data transfer rate to the renter. An informed
attacker can leverage this design characteristic to increase
the precision of their attack. If the attacker and target are
geographically within the same network or facility, then a
widely distributed attack on the entire cloud is not neces-
sary.

Performing a frameup attack may not always be limited
to a single entity /person/computer. A wide range of mali-
cious activities produce a great amount of harm. Renters
may specify the amount of redundant copies of their file
to be stored on a Storj network. Therefore, investigators
that discover a malicious shard on a farmer may identify
that the shard was mirrored to hundreds or thousands of
other farmers. This situation is achievable and problem-
atic because it may induce forensic examiners to consume
an immense amount of time acquiring and examining all
affected farmers.

4. Methodological overview

To validate the incriminatory frameup attack we needed:
1) a live Storj storage network where all the components
such as farmers, bridge, complex, and renter nodes can
be experimentally monitored; 2) Storj client software with
which we could disable file encryption and upload files to
the Storj network; 3) mock incriminatory files of various
sizes and types (e.g., text files, images, videos, executa-
bles etc.); and 4) digital forensic software to conduct a
forensic analysis of hard drives involved. We successfully
constructed the attack using the following steps:

1. Because not all network components could be mon-
itored and analyzed if we used a Storj maintained
bridge, we built our own local, private Storj network.
However, because we used Storj open-source code?,
we believe the experimental findings on our network
are generalizable to public Storj networks. See Sec. 5
for details.

2. To facilitate farmer storage of clear-text shards, we
first configured the Storj Client to connect to the pri-
vate network and then modified the uploading behav-
ior of the client source code. The modification is de-
scribed in Sec. 5.2.

2https://github.com/storj
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3. Further explained in Sec. 5.4, we then created a clear-
text file data set which included different types of doc-
uments and multimedia files. We then, as described
in Sec. 6.1, uploaded the clear-text files in a range of
sizes to verify if the farmer stored the same content
as the original file being sharded.

4. Based on results obtained in step 3, the frameup at-
tack was optimized. The optimized attack encapsu-
lated the uploaded clear-text files in HTML to better
survive the file sharding process. Further elaboration
is provided in Sec. 6.2.

5. We then verified the attack from the forensic inves-
tigator’s perspective using the widely adopted foren-
sic tool Forensic Toolkit (FTK)?. FTK’s data carving
process enabled us to verify the clear-text shards were
recoverable, and in the case of executable content,
could be encapsulated in such a way as to execute
on the forensic station. The specifics are presented in
Sec. 7.

6. Due to the frameup attack, we presented an approach
that can test if the uploaded shards contain unen-
crypted data. Additionally, we illustrate a strategy
for those who have been framed. The strategy can
show that the victim was under a frameup attack from
a technical perspective. These prevention and inves-
tigation approaches are shared in Sec. 8.

5. Detailed methodology

5.1. Private Storj network

libstorj  192.168.1.120 bridge 192.168.1.117 complex 192.168.1.117
Storj client = complex server
o—— (landlord)
storjshare-daemon 192.168.1.126 port:8081
; farmer 1
port:9000 .
bridge server renter node 1
; farmer2 | port:8080 port:4000
daemon port:9001 renter node 2
port:45015; farmer 3 port:4001
£:9002
por renter node 3
; farmer 4 port:4002
. mongodb server
port:9003 B
port:27071

Figure 3: Components in private Storj network

The experimental environment required a private Storj
network for cloud storage and a nefarious renter’s client
application requesting the storage service. As shown in
Fig. 3, the red block represents the nefarious Storj renter
and client software. We labeled the software project names
at the top left corner of the blocks. For example, in or-
der to build a bridge server we downloaded the project
of ‘bridge’ from Storj Labs’ Github page and customized

3FTK is a commercial forensic tool that was wildly used for foren-
sic investigators and law enforcement agencies.

it. Note that both the components of the private network
and the client application connecting to it were hosted on
Ubuntu 16.04 LTS computers in the same local network.
The bridge and complex were deployed on the same com-
puter. The client and farmers were installed on other local
network computers respectively.

As Fig. 1 depicts, the Storj network needs a centralized
server (bridge), to make contracts for renters and farm-
ers and store essential information such as registration for
renters, node IP address, contract details, meta-data of
shards, etc. In our private network, a bridge (v5.22.2)
server was assigned IP:port 192.168.1.117:8080 instead
of api.storj.io, which is the bridge server for the pub-
lic Storj network. Accordingly, the value of string ‘host’
was replaced with http://192.168.1.117 in the object
‘server’ in the configuration file of the bridge server, which
is the Json file */.storj-bridge/config/develop by de-
fault. We also hosted a MongoDB server on port 27017 to
support the infrastructure for the private bridge.

From a programming point of view, Storj labs is con-
sidered a Complex server and a few renter nodes are nec-
essary components for the Storj network. The Complex
is similar to the landlord of an apartment complex. They
manage renter nodes on the Storj network. The renter
nodes are not the same as renters; they do not request
storage space. Their only purpose is to provide a gateway
for farmers and renters to join the network at anytime.
That is to say, they are always joined to the network to
keep the network alive. In essence, a Complex contains
‘always known’ access points for joining the network. The-
oretically, if the bridge has known enough farmers before
initializing the network, the Complex server or the renter
nodes would not be needed. However, in reality, the bridge
always needs a few nodes to generate the original Storj net-
work for other nodes / farmers to join. What’s more, the
renter nodes can be created by Storj labs or others who
want to initialize a Storj network. The Complex server’s
purpose is for managing them. In our local network, these
components were constructed by configuring the Complex
(v5.6.0) project. We assigned port 8081 to the Complex
server and port 4000 — 4002 to the renter nodes.

To provide farmers with the ability to join the original
Storj network, project ‘storjshare-daemon’ or ‘storjshare-
gui’ was required to be installed. In this case, we choose
storjshare-daemon (v3.5.5), which has a Command Line
Interface (CLI). As the project was installed on computer
192.168.1.126, a valid Ethereum (ETH) wallet address
was fed to the CLI command ‘storjshare-create’ and the
configuration file for each of the four farmers were gener-
ated in the folder ~/.config/storjshare/configs/. The
configuration file for the farmer was named by its node ID,
such as 68336ce3£8b3ad5052c4259bbbde707057ee8cb2.

json.
Afterwards, we  modified the  configuration
files. In particular, ‘bridgeUri’ was assigned to

http://192.168.1.117:8080,
to connect to our private network.

enabling the farmers
Also, ‘seedList’



was populated with the information of the renter
nodes. For instance, storj://192.168.1.117:
4000/337472da3068fa05d415262baf4df5bada8aefdc

is a valid representation for a renter node at port 4000.
Note that a filled ‘seedList’ would help a farmer become
a node of the initialized private network. Additionally,
a ‘daemon’ program that provides remote control on
farmers, usually runs before initializing the farmers. Once
the farmers became nodes, the private Storj network was
established.

In order to provide the uploading and downloading func-
tionality for renters, Storj Labs released the project ‘lib-
storj’ as a client application that was integrated based on
the Storj API. Given that we introduced the modification
of ‘libstorj’ in Sec. 5.2, at this point of time, it should be
noted that the unmodified version of ‘libstorj’ was cloned
to the local network computer at 192.168.1.120.

5.2. Modification on Storj client

To allow the Storj client, ‘libstorj’, to upload a clear-
text file to our private Storj network, the client must be
able to find our private bridge. Thus, as shown in Listing
1, we first modified line 1155 of the main function in file
~/libstorj/src/cli.c, which forwards the client to our
private bridge at 192.168.1.117:8080
if (!storj bridge) {

storj bridge = "http://192.168.1.117:8080/";

}

Listing 1: Setting 192.168.1.117 as bridge

Second, we found three functions related to the
encryption of the uploaded file where function
prepare_frame(..) and create_encrypted_file(..)
were stored respectively on lines 1428 and 1603 in
the file ~/libstorj/src/upload.c; the function
body_shard_send(..) was stored on line 37 in the
file ~/libstorj/src/http.c. All of these functions
called another function ctr_crypt to encrypt files. Since
the function ctr_crypt was implemented in all three en-
cryption functions in a similar manner, we only illustrated
Listing 2, belonging to the function prepare_frame(..)
as an example.

We modified all three of the functions in this case. Once
calling ctr_crypt, the AES256 encryption was performed
on the clear-text data stored in variable read_data, as well
as the encrypted data stored in variable cphr_txt. Since
we intended to upload the clear-text data rather than the
encrypted data, the function memcpy was inserted following
the encryption function in order to replace the encrypted
data back to the clear-text. In other words, although the
Storj client successfully conducted the encryption function,
the data finally uploaded to the Storj network was unen-
crypted.

/ Encrypt data
ctr _crypt(encryption ctx—>ctx, (
nettle cipher func x)aes256 encrypt,
AES_BLOCK_SIZE, encryption_ctx—>
encryption ctr, read bytes,(uint8 t x)
cphr txt, (uint8 t #*)read data);

/ Replace the cypher—text to clear—text
memcpy (cphr txt, read data, AES BLOCK SIZE
*256) ;

Listing 2: Replacing cipher-text with clear-text

Once the client was modified, it was compiled for up-
loading an unencrypted version of a file to the private net-
work.

5.8. Account registration

To upload a file to the Storj network, a user must
have registered an account and password on the bridge.
Along with a valid user account, the system must have
at least one virtual bucket for accommodating the up-
loaded files. The unique ID of the bucket must be pro-
vided for file uploading. For example, in our case, we
created the bucket a01501b963e7b23e€9203d206. Com-
mand storj upload-file a01501b963e7b23e9203d206
<file_name> can be utilized for uploading files to the vir-
tual bucket. Along with that, the Storj client provided
the command storj list-mirrors <file_id> for trac-
ing which farmer stored the shards.

5.4. Storj files and data structures

To test the frameup attack, a number of clear-text files
were needed. However, in order to construct a dataset of
the clear-text files, Storj data structures must be under-
stood.

Storj implements Google’s Level DB for storing shards on
farmers within a file storage system called Kademlia File
Store (KFS). LevelDB contains .log and .1db database files
for storing data, which is where Storj stores the content of
shards on the farmers. The .log file contains the most re-
cent updates/additions to the database. When the .log file
reaches a pre-determined size of 4 MB the file is converted
over to a .1db sorted table, which also has a pre-determined
size of 4 MB.

Within the .log and .1db files, there are ’extra’ bytes in-
serted into the file that are not from the original sharded
file. These extra bytes are intended to be within .log and
.1db files because they are related to the LevelDB file struc-
ture. There are two forms of inserted bytes that appear in
a .log file and two forms in a .ldb. For .log files: a group
of 69-71 bytes appear about every 128KB and a group of
7 bytes every 32 KB. For .1db files: a group of 58-60 bytes
appear at the beginning of the file and a group of 71-73
bytes appear about every 128KB. The 7 byte sequences are
derived from the specifications of Leveldb, as follows. Ev-
ery 32 KB of a .log file is considered a ‘block’. Each ‘block’
consists of a sequence of ‘records’: the crc32c¢ checksum in
little endian of the ‘data’; the length of the data in little
endian, the ‘block’ type, and a sequence of bytes called
‘data’. The 7 bytes are derived from the 4 byte crc32c, 2
byte ‘data’ length, and the 1 byte ‘block’ type. Following
the 7 bytes is a sequence of 32 KB or less from a shard.
If there is a record with a ‘data’ section less than 32KB
in a ‘block’, then it is possible for another record to reside



within said ‘block’. Therefore, it is possible for one .1db or
Jlog file to contain ‘blocks’ from multiple shards/files.

Every 128 KB of a .Idb and .log file is considered a
‘chunk’ of data from a shard. A ‘chunk’ can be less
than 128 KB, which means that .Idb and .log files can
be less than the size of a chunk. Note that a ‘chunk’
may start slightly after the 128 KB mark to offset the
addition of n instances of inserted byte groupings from
earlier ‘chunks’. These ‘chunks’ contain a unique iden-
tifier for the purpose of efficiently finding every chunk
of a shard when a download request, from a renter, has
been made. At the beginning of a chunk in a .log file,
there is a key, which is a group of 69 to 71 bytes of
data containing: the 7-byte grouping, a byte for indicat-
ing the chunk’s number /identifier in the .log file, the 12-
byte sequence ‘0x000000000000000100000001°, a forward
slash followed by the full content’s hash formatted in hex-
adecimal, a space, a 6-byte numerical index, and 1 to 3
bytes that relate to the chunk’s length. At the begin-
ning of a chunk in a .ldb file, there is a 9-byte sequence
‘0x000000000100000000°, followed by a 4-byte sequence,
followed by ‘0x0037’ followed by a 1-3 byte sequence re-
lated to the length of the chunk, a 40-byte key for the
file that the chunk relates, a space, a 6-byte chunk index
identifier, a 2-byte value that indicates the chunk index
identifier in hex format, followed by the 6-byte sequence
‘0x000000000000°.

With this foreknowledge of KF'S in-hand, the clear-text
files used for our test were selected from the GovDocs*
dataset where the entire file could fit within one shard.
A shard has to be 4197472 Bytes (about 4.1 MB), in-
cluding the extra bytes. We collected 20 files of each of
15 widely used file types including: JPG, GIF, PNG for
pictures; AVI, FLV, MOV, MP4, MPG for videos; TXT,
DOC, PDF, XLS for documents and ZIP, GZIP, BZ2 for
compressed files. 300 total files were collected and can be
found at the GitHub repository®.

6. Frameup attack testing and results

This section presents the complete frameup attack pro-
cess in the Storj network. First, we present our preliminary
attack, used to verify the ability to upload non-encrypted
files to farmers. Next, we explain how we continuously op-
timized the attack to increase its range and impact. For
both attacks, we uploaded the clear-text files from the test
file dataset and manually verified whether the shards were
recoverable, visible, and/or executable on farmer nodes.

6.1. Preliminary attack

The preliminary attack is the initial phase of the
frameup attack. In this attack, we intended to determine:
1) if the modified version of the Storj client, designed to

4https://digitalcorpora.org/corpora/files

Figure 4: Original picture Vs. the ‘recognizable’ shard

revert back to the clear-text version of the original file
upon upload; 2) if the content of the clear-text files could
be found in shards; and 3) if the clear-text files could be
opened and viewed on the farmer.

First, we registered and made available two farmer
nodes. We then uploaded clear-text files from the test
dataset to our private Storj network by scripting the com-
mand storj upload-file a01501b963e7b23e9203d206
<file_name> (a01501b963e7b23e9203d206 is the bucket
ID) for each file.  After successful upload notifica-
tion, we accessed the folders ~/.config/storjshare/
shares/68336ce3f8b3ad5052c4259bbbde707057ee8cb2/
sharddata.kfs and ~/.config/storjshare/shares/
d1£5b48e687be49£9472c3eecal0099030cc8aebb/
sharddata.kfs on computer 192.168.1.126 of our
private Storj network for examining the shards, in which
68336ce3f8b3adb5052c4259bbbde707057ee8cb2 and
d1f5b48e687bed9f9472c3eeca0099030ccB8aebb refer to
the node IDs. Within the folders there were hundreds of
sub-folders named as ‘xxx.s’ where ‘xxx’ was a unique
number generated by the farmer. Each of these numeric
folders stored the shard file(s). To verify the preliminary
attack we manually examined the shard files stored by
both of the farmers.

As expected, we found the content of the uploaded files
in clear-text in the shards along with the extra KFS gener-
ated data described previously. Next, we manually tested
how many of the shards qualified for the frameup attack
by being recoverable and viewable. To reduce the work-
load, we identified and leveraged file signatures for most
of the shards. For example, if the first bytes in a shard
were JFIF, the shard would be considered a . jpg file, and
an appropriate graphic file API was used to open the file.
However, as we explained previously, a shard may contain
data from multiple files. Therefore, where shard files did
not begin with a known file signature, we tried different
file extensions before dragging them to an executor®. Note
that we only tested if a shard could be executed or mate-
rially recognized, such as the partially corrupted picture
(shard) shown in Fig. 4, which was still ‘recognizable’ by
investigators.

6In the preliminary attack, we achieved the test on a Windows
7 Enterprise SP1 PC, where Windows Photo Viewer, Windows Me-
dia Player, Windows Notepad v6.1, Microsoft Word 2016, Microsoft
Excel 2016, Adobe Acrobat Reader v17.012 and 7-Zip v16.04 were

Shttps://github.com/jgranl/Storj Test Data/tree/master/Dataset utilized as the executors.
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Table 1: Summary of readable / recognizable shards for the Prelim-
inary Attack

Type | Farmer 68.. | Farmer d1..
JPG | 0/20 0/20
GIF 0/20 0/20
PNG | 0/20 0/20
AVI 14/20 13/20
FLV | 0/20 0/20
MOV | 3/20 3/20
MP4 | 0/20 0/20
MPG | 20/20 20/20
DOC | 0/20 0/20
XLS | 0/20 0/20
PDF | 10/20 10/20
Z1P 0/20 0/20
GZIP | 0/20 0/20
BZ2 0/20 0/20

The majority of the shards were not recognizable. The
extra data added during the sharding process rendered the
files unrecognizable. For instance, the JPG file structure
contained segments with markers identifying its meaning.
If the marker is modified (or shifted) then the meaning
of the segment following the marker may cause the file
to become corrupted. Only a few file types such as AVI,
MPG and PDF produced relatively high executable rates.
The number of the executable shards for different types of
files are listed in Table 1.

Note that even though we found the content of TXT files
in the shards, it is possible for the data of one TXT file to
be separated between multiple shard files. Hence, while we
conclude TXT files are eligible for the preliminary attack,
we did not count them in Table 1.

While our experimental findings verify that attackers
are able to upload clear-text files to farmers unwittingly,
as Table 1 shows, the attack is only effective from a read-
ability standpoint for a few file types. That is, many file
types cannot withstand the extra bytes added during the
sharding process. Accordingly, we propose an optimized
attack in Sec. 6.2 that can better maintain file content
integrity and usability.

6.2. Optimized attack

Theoretically, even though the files with extra data in-
serted become corrupted, the data is not lost. Rather, the
data is being shifted around. Therefore, if the file is treated
such that there is a logical split at these insertion points
then it is possible to combine these parts into the original
file while ignoring the extra data causing the problem. To
bypass the embedded data in the opening and execution
of the shards, we propose HTML encapsulation.

Specifically, we embed the test file into a HTML file by
converting and encoding the desired file into base64 plain-
text. We pre-calculate where the extra data will be in-
serted and prefabricate a comment statement at the appro-
priate place to convert the extra data into a valid HTML

comment that will be ignored upon opening. Therefore,
the extra data will no longer corrupt the file’s readability.
Further, we store the file content in string variables and use
Javascript to open the file content. This is shown in List-
ing 3. Here, Javascript provides the means to segment the
base64 encoded file into separate string variables. Separa-
tion between two string variables occur near the locations
where extra bytes are inserted during the sharding process.
The text area between two string segments is identified as
‘Byte Injection Space (BIS)’. BIS is a section of text
where we intend to handle the extra data. Therefore, in
this case, it must occur every 0x8000 bytes (32 KB).

In order to include a BIS without affecting the base64
encapsulated data we surrounded a BIS section with the
comment keywords ‘//*” and ‘*/’. By commenting the BIS
almost all injected byte combinations (except for the ex-
tremely rare premature occurrence of ‘*/’ that will end the
BIS early) will be interpreted as meaningless text. Once
the comment section is placed around the BIS, a large
padding section of text, such as a long sequence of ‘#’, is
inserted to provide a large safety net for containing the in-
serted bytes. In addition to the variables str0O and stri,
there are HTML tags and attributes which will be rec-
ognized by the browser once the Javascript code is inter-
preted. Tag ‘<img’ defines an image in an HTML page. Its
attribute ‘src’ must contain the text ‘data:image/<image
format>;base64,’, where ‘image/format’ is the image file
type. This is so the base64 encoded data can be decoded
into the original file format and be displayed on the HTML

page.

<html>
<script language="Javascript">
var str0 = "<img src=\"data:image/png;base64,

iVBORwWOKGgoAAAANSUhEUgAAAMOAAADNCAMAAAAsYgRbAA
AAGXRFWHRTb2Z0d2FyZQ(BBZG9iZSBIJbWFnZVJ1YWRb5ccll
PAAAABJQTFRF3NSmzMewPxIG//ncJEJsldToul jHgAAAAR
BJREFUeNrs2EEKgCAQBVDLuv+V20dENbMY831wKz4Y /VHb
/5RGQONDQONDQONDQONDQONDQONDQONDQONDQONDQONDQO
NDQOPzMWtyaGhoaGhoaGhoaGhoaGhoxtbOQGhoaGhoaGho
aGhoaGhoaMbRLEvv50VTQO0TQ50pyZ01GpM2g0bfmDQaL7
S+0fFC6xv3ZpxJiywakzbvd9r3RWPS9I2+MWkO+k"

/%

#### Byte Injection Space ####

##{[8|1£;-/53853dc1313238a0a508bba3b9f274e3a3fb3

ad4f OOOOOOIL;IL; #H#HHAAAAAAAH

*/

var strl = "bfOHih9Y17UOnTHibrDDQONDQONDQONDQO
NDQONTXbRSL/AK7206GhoaGhoR1L8951vwsNDQONDQ1ND
cOWyHtDTEhDQONDQONTS5MdGhoaGhoaGhoaGhoaGhoaGh
0aGhoaGposzSHAAErMwwQ2HwRQAAAAAEIFTkSuQmCC\">"

document.firstline = str0 + strl + "\n"

</script>

<body>

<script>

document .open ()

document.write (document.firstline)

document.open ()

</script>

</body>

</html>

Listing 3: Base64 encoded image in HTML with string segmentation

The base64 plaintext data encapsulated in HTML will



not be impacted by the added data and the image is dis-
playable on Internet Browsers. However, due to the fact
that not all types of files are displayable on browsers, we
added a feature to handle file types that are not suitable for
display in such a browser. Here, the uploaded shard con-
sists of an HTML file designed to open a file in a browser
that either automatically downloads the target file from
a web server, or prompts the user with a local download
request. We applied this file restoration technique for the
following file types: AVI, FLV, MOV, MPG, DOC, XLS,
PDF, ZIP, GZIP and BZ2. This technique could also be
used to upload files larger than the 4MB shard size limit
imposed thus far.

<!DOCTYPE html>

<html>

<body>

<script>

function base64Img2Blob (code){
// convert Base64 data to Blob data for IE.

var parts = code.split(';base64,');

var contentType = parts[0].split(':"')[1];

var raw = window.atob(parts[1]);

var rawlLength = raw.length;

var ulnt8Array = new Uint8Array(rawLength);

for (var i = 0; i < rawlLength; ++i) {
uIlnt8Array[i] = raw.charCodeAt(i);

}

return new Blob([uInt8Array],{type: contentType

b

}
function detectBrowser () {
//detect which Browser the HTML is executed on.

var userAgent = navigator.userAgent;

if (userAgent.index0f ("Firefox") > -1) { return
"Firefox"; }

if (userAgent.index0f ("Trident") > -1) { return
"IE"; }

if (userAgent.index0f ("Chrome") > -1) { return
"Chrome"; }

¥

var blobObject = new Blob( [base64Img2Blob ("
data:image/png;base64 ,iVBORWOKGgoAAAA...")]);

// base64 data of the uploaded file.

if (detectBrowser() === "IE") { //If executed on
IE

window.navigator.msSaveOrOpenBlob (blobObject,
example.png');
} else { // If executed on Firefox or Chrome
url = window.URL.createObjectURL(blobObject) ;
a = document.createElement('a');
a.download = 'example.png';
a.href = url;
document.body.appendChild (a);
a.click();
}
</script>
</body>
</html>
Listing 4: Javascript code for files embedded into HTML file to be
automatically downloaded on browser

Listing 4 shows an example of the HTML file with
the downloading feature. Since Internet Explore (IE)
does mnot support anchor (<a>) tagged elements’, our

"The HTML <a> element A.K.A “archer element" creates a hy-

code was configured to detect if the browser is IE by
the function detectBrowser(). For the IE browser,
we needed to supply the base64 data to the func-
tion base642Blob() for converting the data to a Blob
object followed by passing the Blob to the function
window.navigator.msSaveOrOpenBlob(..) to utilize
the download feature. For other browsers we created the
<a> element for downloading.

To test the optimized attack, we activated the
other two farmer nodes created during the preparation
phase. The ID / folder name of the farmer nodes
are 5a2f433555261377396036672418f765b51£0de9 and
£33e0bfebeaa263bf2eb08b9d919¢c80ac5c30157. Next,
we converted the clear-text files to their proper HTML
equivalents and uploaded them to the private Storj net-
work.

To test whether the embedded file can be displayed or
downloaded on the browser in this manner, we collected
all the shards on the two farmer nodes and changed the
extension of the shards to “.html’ and attempted to open
them with IE. Our results are shown in Table 2. We see
that the optimized attack is viable for uploading and suc-
cessfully reading all file types, although not in all cases.
On average, more than 55% of the uploaded files can be
located and recovered by executing the shard files. Note
that, different from the preliminary attack, the shards that
are successfully downloaded and displayed in the browser,
not all maintain their full, original integrity.

Table 2: Result summary for the optimized attack

Type | Farmer ba.. | Farmer f3..
JPG | 12/20 13/20
GIF 12/20 11/20
PNG | 13/20 12/20
AVI 8/20 8/20
FLV 11/20 9/20
MOV | 10/20 10/20
MP4 | 11/20 11/20
MPG | 3/20 3/20
DOC | 12/20 13/20
XLS 12/20 12/20
PDF | 12/20 12/20
Z1P 12/20 12/20
GZIP | 13/20 14/20
BZ2 14/20 15/20
Total | 55.36% 55.36%

7. Attack evaluation with FTK

In Sec. 6, we tested the recognizability of the file shards
using both the preliminary attack and the optimized at-

perlink of the files that intended to download on the HTML page.
Using the download attribute user will receive a promote from the
browser for download. Element <a> is not supported by IE but
Chrome and Firefox.



tack. However, manually testing all the evidence is not
standard practice for real-world forensic investigations.
Therefore, in this section, we tested and evaluated the
frameup attack by loading the shards in FTK 6.2.1. Note
that even though FTK provides a variety of features, our
test mostly relies on the data carving feature pertaining
to the recovery of clear-text files or mostly visible partial
clear-text files. Ultimately, we empirically determined: 1)
how many of the clear-text files can be recovered by FTK,
and 2) the difficulty of the process related to the discovery
of clear-text files, within a shard, in real-world investiga-
tions, using FTK.

In FTK, once the ‘data carve’ function is activated in
‘Processing profile’, ideally, it will carve out the supported
type of files from the shards. Out of our dataset, the
supported types of files are JPEG, HTML, PDF, GIF,
PNG and ZIP. Since FTK has a built-in IE browser API,
an investigator can preview the carved clear-text files on
the screen. When compared with the manual test (re-
sult shown in Table. 1), FTK retrieved more clear-text
files from the shards. To be specific, the same 12 DOC, 17
JPG, 11 PDF, 4 GIF, 15 PNG and 10 XLS executable files
were carved out from both of the farmers. Note that the
files were partially corrupted, but in order to be counted
as carved we used the threshold of at least 50 percent or
more visible content to the end user.

On the other hand, when processing the shards created
by the optimized attack, FTK was not able to retrieve any
clear-text files. When we used the built-in IE APT in FTK
to display the file content, Javascript did not run. Thus,
in order to execute the shards for extracting the clear-
text files, the investigator would have to either export the
carved file shards and execute them with a browser exter-
nal to FTK, or the investigator would have to double-click
on the file in the file listing view, which by default, causes
FTK to execute the file via an external browser, thus caus-
ing the Javascript to execute. With this approach, we
gained the same result as the manual test (see Table. 2).
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Figure 5: Preliminary attack vs. optimized attack

In Fig. 5, we demonstrate the results of the FTK test.

Here, the X-axis shows the size range of the clear-text files
(shard files) in our dataset (TXT files are not included)
and the Y-axis is the cumulative percentage of files, up
to that shard size, that are valid for these two attacks.
The green dots represent a farmer under the preliminary
attack. For files of size 500 KB or less, 23.21% of all files
were valid. For files of size 1000 KB or less, 23.93% of all
files were valid. The number of the valid shards becomes
asymptotic when the clear-text files reach to 500 KB. With
that said, the optimized attack did a better job for the
larger clear-text files and it also attained a higher success
rate in general.

In summary, the FTK tests disclosed the following at-
tack advantages and disadvantages:

Preliminary attack:

e Advantage: no extra step for investigators to discover
the clear-text file, as long as a forensic tool like FTK
is used.

e Disadvantage: 1) only works for fairly small sizes of
clear-text files, 2) relies on the data carving feature of
the forensic tool, which may not natively support all
file types of interest, and 3) even though some shards
are valid for the attack their integrity can not be guar-
anteed.

Optimized attack:

e Advantage: 1) works equally well for varying sizes of
clear-text files, and 2) executable code (e.g. malicious
Javascript) can be uploaded to farmers with ensured
integrity.

e Disadvantage: 1) HTML file, as well as the Javascript,
need to be executed in a browser external to the foren-
sic tool to ensure all file effects are realized.

8. Countermeasures

In this section, we focus on the prevention of the
frameup attack where we present two approaches for either
detecting if a farmer node contains any uploaded clear-text
files or proving that the improper files examined from a
framed computer / server were not stored under the aware-
ness of the farmer.

8.1. Attack detection

Storj and other decentralized cloud storage providers
might implement a variety of attack detection techniques
to mitigate the attack risk discussed herein. First, they
might modify farmer client software to include an entropy
test on data to be stored and refuse the storage of data
that fails the entropy test. However, given the high en-
tropy associated with executable, zip, and various graphic
file types, the entropy threshold should be set very high.
This technique might be improved by a sliding-window
based approach to entropy calculation, according to Hall



et al. (2006) and Beebe et al. (2013). In the case of prop-
erly encrypted shards, the entropy of the full shard file
should be relatively equivalent to the entropy of blocks
within the shard. A shard file consisting of blocks with
varied entropy levels may indicate that it is not properly
or fully encrypted, or that it is of a different high entropy
file type, such as those listed above.

Another solution, independent of, or perhaps in con-
junction with the entropy test, would be a signature
based approach to misuse detection. Each shard could be
scanned for common HTML tags or other strings common
to popular applications, including but not limited to Inter-
net browsers. Perhaps farmers could be trained through
Bayesian or other probabilistically based supervised learn-
ing techniques, to detect nefarious content via n-grams and
block-level entropy measures as suggested by Hall et al.
(2006). When such signatures are found and/or content is
classified as nefarious, the farmer can and should reject the
uploaded content and log the action and rationale thereof
on the centralized server.

A third solution would be for Storj to modify its renter
application to not permit a user to disable encryption of
the file prior to the segmentation and uploading of shards.
However, since the code is open-source, a technically adept
adversary could simply re-instate the user ability to disable
encryption.

Note that adding the aforementioned detection ap-
proaches on the farmer side would provide minimal ef-
fort to prevent the attack. However, that way, the de-
tection would only take place after the contract is made,
which means a legal contract would be rejected by farmers
if the attack is detected. Also, before the rejection hap-
pens, all benign shards of the uploaded file will have been
transferred to the farmer, which consumes network traffic.
Therefore, ideally, the entropy / the signature should be
calculated and put in the contract for both sides to verify.
However, it may cause an increase of heavier workloads
on the decentralized system. In its current implementa-
tion, it is difficult to mitigate our presented incriminatory
attack without finding a balance between efficiency and
complexity.

8.2. Forensic analysis on farmer defense

As previously discussed, clients have the ability to
upload unencrypted shards to the network, which may
contain unwanted information for the purpose of fram-
ing farmers. Therefore, devising a method of protect-
ing a farmer is paramount. This section will layout a
method of gathering evidence for defending a farmer,
which requires access to information on both the bridge
and farmer. The high-level perspective of the process
is to: 1) acquire and extract the shard table from the
database in the bridge on the network, 2) generate the
hash of the ‘questionable’ shard on the farmer to verify
the hash stored in the bridge’s database, 3) locate either a
SHARD UPLOADED or MIRROR _SUCCESS entry in
the bridge’s database to further verify the hashes, 4) find
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information about the client that uploaded the ‘question-
able’ shard, and 5) gather information about other farmers
that have a ‘mirrored’ (backup) ‘questionable’ shard. In
our case, the forensic process of defending a farmer will
be described through a tool® we have developed, based on
the implementation of Algorithm 1.

Algorithm 1 Verification Algorithm
bridgeShardHashList < getBridgeShardHashes()
fShardHashes = {} > Farmer shard hash list
for all FarmerLevelDBDatabases do

for each shardData € FarmerShardsInDB do
shardHash + computeShardHash(shardData)
fShardHashes < fShardHashesU shardHash
end for > Above: Insert hash into list
end for
validHashes = {}, invalidHashes = {}
for each shardHash € shardHashes do
if shardHash € bridgeShardHashList then
validHashes < validHashes U shardH ash
else
invalidHashes < invalidHashes U shardHash
end if
end for
printResults(valid Hashes, invalid Hashes)

Starting the defensive process requires the acquisi-
tion of all shard hashes on the Bridge’s database.
This can only be achieved by contacting the owner of
the bridge because the database is not accessible out-
side of the bridge computer. The bridge’s IP address
was used for this purpose and its IP address can be
found under the farmer computer in its configuration
file /.config/storjshare/configs/<farmerid>.json
under the bridgeUri configuration setting. Having the
bridge hashes of shards provides the means of linking meta-
data of a shard on the bridge’s database with shard infor-
mation on the farmer. In this case, the goal is to verify the
integrity of a ‘questionable’ shard. This can be done by
connecting to the database through a MongoDB viewer.

Since we controlled the bridge, we accessed the database
by using the mongodb viewer Robo 3T 1.1.1 on the bridge
computer, where the database was stored under the direc-
tory /var/lib/mongodb. Refer to Appendix A for sam-
ple metadata from a farmer’s configuration and log files
and the bridge’s database. This application makes it pos-
sible to extract all the JSON information regarding to
shards that have been transfered through the network.
The JSON information of shards on the database con-
tains hashes of each shard’s contents. Once access to the
Bridge’s database is obtained, then the shards table from
the database can be extracted to a file in JSON format.
Once extracted to a file, the developed tool will read the
contents of the file and load the database hashes for further

8https://github.com/unhcfreg/Frameup
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processing. Listing 5 shows the beginning of an extracted
shard record from the shard table in JSON format and it
contains the hash value for a shard.

/* 1 %/
{
noign
llhash n
"40£f892fc2c2abbb5fac320d6154da6b8919246db1",
"meta" : [
{
"nodeID"
"5a2f433555261377396036672418f765b51£f0de9 ",
: { "downloadCount" : 0 }

: ObjectId("5a09d54£2d579c7aleal087e"),

"meta"
}
1,

Listing 5: Snippit of the Bridge’s shard table from the database

Extracting the contents of the questionable shard is
required to generate the hash of the shard on the
farmer’s side and verify that it has not been modi-
fied or generated by the farmer. This was achieved
by using plyvel, a python library that can interact
with LevelDB database files/directories. The developed
tool will traverse the LevelDB directories, which contain
shards, on the farmer’s share files/directories. An ex-
ample directory structure may look like the following:
/shares/<farmernodeid>/sharddata.kfs/*. For every
shard found in the database, the extraction process will
be executed to gather the contents of the shard.

Hashing the contents of the shard follows the extraction
process and is uniquely labeled in a dictionary within the
developed tool. A hash of shard is generated by taking
the SHA256 checksum of its content followed by taking the
RIPEMD160 checksum of the binary hexidecimal output
from the SHA256 checksum. Once all of the shards have
been hashed from the farmer the tool will determine if
the shards have been tampered with. Verifying a shard’s
integrity from the farmer is conducted by checking if the
calculated shard hash exists in the shard table of the bridge
database. The tool then finishes by displaying all of the
hashes that have been verified from both the farmer shards
and the bridge database along with displaying unverified
hashes from the farmer.

Besides for verifying the shard hashes, a bridge’s
database contains other valuable information that can be
used to further support the defense of a farmer. There are
16 collections in the database, where the exchangereports
and mirrors collections hold relevant information pertain-
ing to a farmer’s defense. Each collection consists of mul-
tiple keys where each key is made up of multiple fields.
Along with that, each key in a collection contains the same
number of fields. Knowing the database structure, the pro-
cess of verifying the shard metadata and the farmer can
be executed. There are three main goals to verifying a
key to defend a farmer: 1) the shard hash in the key and
the farmer, 2) the farmer’s ID in the key and the farmer
and 3) the exchangeResultMessage field to match either
SHARD UPLOADED or MIRROR_SUCCESS.
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Other tables in the database contain shard hashes,
which can be used to provide additional support when ver-
ifying calculated shard hashes on a farmer. Furthermore,
this also shows that the farmer was meant to receive the
shard. Verifying the hashes was performed by matching
the hash of the shard from the farmer to a dataHash field
in a key of the exchangereports collection of the bridge’s
database. Confirming the hashes shows that the farmer
has not modified the shard data. Next, the farmer’s ID
was verified by matching either the reporterld or farmerld
fields, in the same key where the hash was verified, to the
ID contained in the farmer’s configuration file. Lastly, the
exchangeResultMessage field, in the same key, was verified
to be UPLOAD _SUCCESS, which means that the farmer
has received that shard successfully. By verifying the ez-
changeResultMessage and either one of the reporterld or
farmerld fields proves that the shard was uploaded to them
from a client. Note that if the exchangeResultMessage field
held the value MIRROR_SUCCESS then the shard came
from another farmer as a backup ‘mirror’. After verifying
all three of the goals the farmer has been defended since
the shard was uploaded to the farmer and the farmer has
not modified the data.

Gathering as much information as possible about the
shard owner is crucial for the purpose of preventing fur-
ther distribution of ‘questionable’ shards on the network.
Information about the client that uploaded the ‘question-
able’ shard was discovered by finding the key in the ez-
changereports collection that 1) has the same dataHash
field value as the key that verified the ‘questionable’ shard
and 2) has the value of SHARD UPLOADED in the ez-
changeResultMessage field (Note that the key may be the
same). The key that satisfies this criteria contains the
client’s ID in the clientID field and the created field holds
the timestamp of when the shard was uploaded to the net-
work. After identifying the client’s ID we viewed the users
collection in the bridge’s database and found the key that
matches the identified client’s ID. The user’s key contains
multiple fields that provide information about: the ID of
a user, the user’s hashed password, bytes downloaded in
the last month, day, and hour, bytes uploaded in the last
month, day, and hour, the time the user was created, and
the uuid. This information may be helpful for identifying
the owner of this client ID and prevent further harm on
the network.

Shards are typically ‘mirrored’ multiple times on the
storj network for backup purposes, which means that a
‘questionable’ shard may end up on more than one farmer.
It is important that these shards are removed from each
farmer; otherwise these files may end up on a farmer that
might distribute the data even more and further harm-
ing the network. By using the knowledge gained from the
previous steps, we were able to find other farmers, that
contain the ‘questionable’ shard, by checking the mirrors
collection on the bridge’s database. Each key in the mir-
rors collection contains two important fields: the shard-
Hash and contact fields. The shardHash field is used for



finding mirrors of the ‘questionable’ shard and the contact
field is for discovering the farmer ID that contains a ‘mir-
rored’ ‘questionable’ shard. Using this led us to discover a
key that contained another farmer ID which has ‘mirrored’
the ‘questionable’ shard. Taking the discovered farmer ID,
we viewed the contacts collection in the bridge’s database
and matched the ID to a key. Once the key was identified,
the address field displayed the IP address of the discovered
farmer and now they can be contacted about the ‘question-
able’ shard. Further metadata samples are shown in Table
A.3 of Appendix A which contains information from the
conducted tests on our private network.

9. Conclusion & future work

Our work showed that we are indeed able to send un-
encrypted shards to people’s computers that are acting as
renters on the Storj network. The implications of the work
goes to show that the privacy of data being stored may be
compromised when it is finally stored.

However, our work opens the potential for future work.
Our work motivates the exploration of forensic carving
techniques that may take into account, shard variability,
which may become a potential issue in future iterations
of this attack. It also motivates the examination of se-
cure architectural choices by peer to peer cloud storage
services. Furthermore, future work should attempt to im-
plement techniques for unencrypted shard validation by
the renters, as well as a client validation scheme that only
allows unmodified clients to join the Storj network.

10. Related work

The proceeding sections review various works relevant to
the security and forensic analysis of cloud storage. These
works catalyzed the desire and interest for analyzing the
security of storj.

10.1. Cloud storage security

Research in vulnerability analysis of cloud computing
has been increasing over the past few years; producing a
greater understanding of how to identify and categorize
their security and privacy flaws. The work by Grobauer
et al. (2011) has accomplished this by defining four in-
dicators of cloud-specific vulnerabilities, introducing a
security-specific cloud reference architecture, and provid-
ing examples of cloud-specific vulnerabilities for each ar-
chitecture component. Furthermore, various critical secu-
rity challenges linked to cloud security have been outlined
(Ren et al., 2012). Encouraging researchers to further ex-
plore the public cloud’s challenging security issues.

Through their work, it is possible to highlight the lag-
ging security issues involving cloud security. A perfect
example of this is shown through the work done by Xiao
and Xiao (2013), where they procured defensive strategies
and suggestions to mitigate the challenging issues of cloud
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vulnerabilities through the approach of separating them
into groups.

Additional research encompassing cloud computing se-
curity obstacles produced various new concepts and
methodologies for improving security in the cloud. One
idea is that existing security and privacy solutions must
be critically reevaluated with regard to their appropriate-
ness for clouds (Takabi et al., 2010). Another suggested
solution, from the work by Chen and Zhao (2012), is that
the separation of sensitive data from non-sensitive data is
of utmost importance followed by encryption of sensitive
information.

Security risks in the correctness of users’ data across a
distributed cloud has been a major issue. The work by
Wang et al. (2012) proposes a solution to the dilemma
through their coined scheme: homomorphic token with
distributed verification of erasure-coded data.

Other models, such as the Provable Data Protection
(PDP) model, are proposed as solutions for the problem of
efficiently proving the integrity and validity of data stored
at untrusted servers (Erway et al., 2015). Proofs of re-
trievability (POR) was compared with PDP and they con-
cluded that PDP is the scheme of choice if cloud perfor-
mance is paramount. However, they continue with stating
that POR schemes should be employed in environments
where data stored in the cloud is highly-sensitive.

There is great concern over the validity and integrity
of data stored on the cloud, especially with sensitive infor-
mation. Fortunately, unique methods have been developed
for mitigating this highly discussed issue. A new efficient
variation of the provable data possession (PDP) scheme
has been developed and it is called cooperative provable
data possession (CPDP) (Zhu et al., 2012). Their new
scheme is shown to resist various kinds of attacks even if
it is deployed as a public audit service in clouds; effectively
preserving the integrity of data in the cloud.

Another proposed method for data integrity verifica-
tion is an identity-based Remote data integrity check-
ing (ID-based RDIC) scheme to verify that the owner’s
data is stored correctly (Yu et al., 2017). In order to
achieve this, they implemented a key-homomorphic cryp-
tographic primitive with a security model including secu-
rity against a malicious cloud server and zero knowledge
privacy against a third party verifier. Similarly, an efficient
public auditing solution, discussed by Yang et al. (2016),
shows that they can preserve identity privacy while main-
taining identity traceability for cloud data sharing. This
concept uses a group manager to help members generate
authenticators to protect the identity privacy along with
two lists for tracing members who performed modifications
on each block.

Using managers as authenticators brings up a similar
idea of using third parties as a valid solution for security
issues in cloud storage. Implementing a security platform
that exists within the cloud storage system will eliminate
the security purposes of a third party. File assured dele-
tion (FADE) is a security overlay developed by Tang et al.



(2012) that makes deleted files unrecoverable. FADE op-
erates by using cryptographic keys as a way of achieving
access control and assured deletion. Their security overlay
was shown to work with Amazon S3 along with present-
ing FADE’s performance-security trade-off. On the other
hand, a Trusted Third Party (TTP) is presented as a way
to ensure the authentication, integrity, and confidentiality
of involved data and communications (Zissis and Lekkas,
2012). Through their proposed TTP using Public Key In-
frastructure it was shown to address the identified threats
in cloud computing as a solution.

With all of the proposed solutions shown thus far, there
still have been exploits that have been discovered in cloud
storage services. Online slack space is a cloud storage at-
tack vector that is described in (Mulazzani et al., 2011).
This occurs when a cloud storage service is exploited by
hiding files in the cloud with unlimited storage space. At-
tackers with the ability to store unlimited amount of data
have easy access to store and/or distribute malicious files
to other users of the cloud service.

10.2. Cloud forensics

As cloud computing advances so does the challenge of
cloud forensics. Results of Ruan et al. (2013), a survey pa-
per about cloud forensics problems, show that cloud foren-
sics poses significant challenges to digital forensics, and a
set of procedures for cloud investigations is needed. Fur-
thermore, the lack of international collaboration and the
legal and jurisdictional issues limit access to cloud evidence
(Ruan et al., 2011; Zawoad and Hasan, 2013; Damshenas
et al., 2012). Through examining the complexity of foren-
sic analysis of cloud computing, Taylor et al. (2011) con-
cludes that the analyst will require a solid understanding
of many different technologies and applications. Possible
solutions on different phases of digital forensics is proposed
in Pichan et al. (2015), producing the result that one of
the main challenges is the identification, acquisition, and
preservation of data in a cloud environment. The above
surveys highlight the difficulties encompassing cloud foren-
sics in a high level perspective and pave the way for exam-
ining more specific forms of cloud computing.

One such form of cloud computing is the centralized
cloud storage architecture. Chung et al. (2012) studied
digital forensic investigations of cloud storage services on
PCs and mobile devices concluding that it is necessary and
possible to investigate cloud storage services for operating
systems other than Windows, such as macOS, iOS, and
Android. In addition to investigating for operating sys-
tems, data can be acquired from various centralized cloud
service providers. Quick and Choo (2013) focused on data
collection on three popular public cloud storage products,
Dropbox, Google Drive, and Microsoft SkyDrive. The re-
sults showed that the downloaded files were identical to
the original files. Some of the time stamps of the original
files were preserved in the downloaded files, and some were
not. Having a framework to follow or tools at your disposal
greatly improves a forensic examiners’ ability to acquire
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evidence from the cloud without compromising the data.
Secure-Logging-as-a-Service (SecLaas) is a framework that
provides logs collected from the open source cloud platform
OpenStack to forensic investigators (Zawoad et al., 2013).
This framework is beneficial because it protects the in-
tegrity of the logs that are crucial evidence in the forensic
investigation. Along with that, Federici (2014) presented a
tool called Cloud Data Imager, which provides a read only
access to files and metadata from Dropbox, Google Drive
and MS storage facilities. Another tool called FROST, is
an acquisition tool set for the OpenStack cloud platform
(Dykstra and Sherman, 2013). This tool was shown to
provide trustworthy forensic acquisition of virtual disks,
API logs, and guest firewall logs.

Through the use of a framework, forensic investigators
can efficiently and safely acquire evidence from cloud net-
works. Cloud networks are complex, making the difficulty
of gathering information all the more challenging. The
work by Martini and Choo (2012) brings attention to crim-
inal exploitation of cloud computing and examines foren-
sic frameworks to identify the required changes to conduct
successful cloud computing investigations. It proposes an
integrated conceptual digital forensic framework, with an
emphasis on differences between collection and preserva-
tion of forensic data. File storage services, including Drop-
box, were analyzed and security improvements were pro-
posed (Mulazzani et al., 2011). From the proposal, it was
indicated that cloud storage operators should employ data
possession proofs on clients.

On the other side of the spectrum of cloud computing
is decentralized cloud networks. Decentralized cloud ser-
vices present a major forensic challenge in the form of data
being widely distributed over many systems, further in-
creasing the difficulty of acquiring information from the
cloud. Alenezi et al. (2017) presents their analysis on dig-
ital investigations in cloud environments, including both
centralized and decentralized clouds. Their result provides
a proposal for a framework of technical, legal, and orga-
nization factors for digital forensic readiness. Along with
that, a traditional digital investigation on a decentralized
cloud environment was examined and a suggestion of new
solutions and methodologies on decentralized cloud envi-
ronments was proposed (Birk and Wegener, 2011). A form
of decentralized cloud networks is a P2P network in which
the work by Liberatore et al. (2010) analyzed two P2P
protocols, Gnutella and BitTorrent, and discussed specific
interests of forensic investigators. The paper provided
principles and techniques for networking investigations,
and presented RoundUp, a tool that follows the suggested
principles for Gnutella investigations. Research was also
performed on BitTorrent Sync for determining the data
remnants from the use of the P2P cloud storage (Teing
et al., 2017). Their findings showed that artifacts involv-
ing installation, uninstallation, log-in log-off and file syn-
chronization, which are valuable to investigators, can be
recovered. The Ares P2P network was forensically ana-
lyzed by Kolenbrander et al. (2016) with regards to the



distribution of Child Abuse Material (CAM). The paper
describes some of the artifacts found on a computer that
used Ares for CAM.

10.8. File identification

Identifying files on cloud storage networks is a topic
closly related to our findings. The ability to determine
a file will mitigate unwanted files and uncover files that
may be crucial to a forensic investigation. An online cloud
anomaly detection approach was introduced to detect ma-
licious data (Watson et al., 2016). The described approach
detected malware with over 90% accuracy, and showed
that it was successful in detecting anomalies. In addi-
tion, Li et al. (2005) present the concept of determining
file types by applying n-gram analysis where they showed
that this technique was successfully used to efficiently de-
termine file types, which can be critical to a forensic in-
vestigation. Another proposal is a new string search pro-
cess to improve information retrieval (Beebe and Dietrich,
2007). The described process was designed to more ef-
fectively and efficiently search for strings. Furthermore,
Garfinkel et al. (2010) explores the use of purpose-built
functions and cryptographic hashes of small data blocks for
improving the identification and detection of data within
files. An algorithm was developed and made it possible
to accurately recognize a fragment of a JPEG or MPEG
file. Through the use of a multi-tier decision problem that
quickly validates or discards byte strings, it was found to
be the best method for quickly and accurately carving files
based upon their content (Garfinkel, 2007).

Another method of identifying files is through the use
of entropy. By utilizing entropy it is possible to deter-
mine whether or not a file is in clear-text or encrypted /
compressed. If a file is encrypted then the data is secure.
However, if a file is in clear-text then the file’s content can
be seen and / or may contain illegal content. An exam-
ple of entropy being used for identifying files was by Lyda
and Hamrock (2007) where they applied entropy analysis
to discover encrypted and packed malware samples. The
study found that entropy analysis allowed for the rapid
and efficient identification of encrypted and packed mal-
ware. Along with that, pattern recognition techniques for
fast detection of packed and encrypted malicious executa-
bles was implemented (Perdisci et al., 2008). The results
showed that their pattern recognition system efficiently
and accurately identified packed vs. non-packed executa-
bles, so that only packed executables would be sent to a
universal unpacker, saving processing time.
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Appendix A. Metadata summary

This appendix provides a table with a subset of meta-
data gathered from a farmer server and the bridge server
on our private network. The metadata shown for the
bridge contains a handful of collections from its database
and the metadata for the farmer contains its configuration
information along with log information from Storj commu-
nication messages. The ‘Relation’ column on all the tables
is used to correlate values to one another. For example,
if there is a row with one or more relations, then there
will be at least one other row, from the tables, for each in-
dicated relation. Additionally, relations spread across all
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tables. Data shown below is from a test we conducted on
the network.

Table A.3 contains information from four collections on
the bridge’s database. The ‘contacts’ collection provides
helpful information in regards to farmers on the Storj net-
work. Fields such as _id and address provide a unique
identifier and the public IP address for the farmer. Fur-
thermore, the id field has a relation, A, to another entry.
In this case, the matching entry is the farmerID field in the
‘exchangereports’ collection in table A.3. The ‘exchangere-
ports’ collection contains information about data transfers
of shards on the network. Information such as the hash of
a shard, email address of a client user, ID of a farmer, ex-
change time, and the exchange message can be extracted
and provide great insight as to what, where, and when a
shard is being transfered. The value of the hash is helpful
for correlating other entries in collections and for verifying
the data integrity of shards on a farmer. Within the ‘mir-
rors’ collection, the hash of the shard, the starting storage
time of the shard, the source shard’s renter ID (can be a
client or farmer), the destination shard’s farmer ID, and
the data size of the shard can be found. This collection
can aid a forensic examiner by verifying shard hashes and
determining other farmers that have shards with the same
hash. Under the ‘users’ collection, user information can be
found. An email address, hashed password, byte transfer
rates, and user creation time are maintained within this
table.

Configuration information about a farmer is shown in
table A.4. The table contains the file location for the con-
figuration file. A configuration file will contain helpful in-
formation such as the IP address of the bridge, a seedList
that contains IP addresses for ‘always known’ renters on
the network (to gain access to the Storj network), and port
information. Having the bridge IP address is extremely
valuable and this is how an analyst can acquire the IP
address from a farmer.

Lastly, table A.5 contains communication messages be-
tween the farmer who owns the log file and another farmer
or the bridge. The table contains the location for the mes-
sage log file. Various message types are shown in the ta-
ble and messages for the client shard uploading process is
provided along with the client shard downloading process.
The client shard uploading and downloading process has
the starting message of ‘received valid message from’ and
an ending message of ‘Shard ... completed hash’. The
intermediate messages are slightly different but are under-
stood based upon the message name. Most of the entries
in the table contain information regarding the hash value
of the transfered shard and the farmer IP address of the
originating message. In this case, we will focus on the ‘re-
ceived valid message from’ and ‘handling storage ... mes-
sages. The valuable data from a ‘received valid message
from’ entry are the farmer’s ID and IP address. On the
other hand, the ‘handling storage ...” message contains the
shard hash and the requesting farmer ID.



Table A.3: Shard metadata contained on the bridge server

Bridge Server Metadata

Collections Fields in key Field value Relation
contacts _id "5a2f433555261377396036672418f765b51f0de9" A
lastSeen ISODate("2017-12-24T20:52:19.1927Z")
port 9001 C

address x.x.x.x (Blinded for security)
exchangereports _id ObjectId("5a400e26a30a597ecb68elda™)
dataHash "3ebf21a993b723e638a283035d2dc572f16b9f56" F
reporterld "storj-test@trash-mail.com" G
farmerld "5a2f433555261377396036672418{765b51f0de9" A
clientId "storj-test@trash-mail.com" G
exchangeStart ISODate("2017-12-24T20:29:25.977Z") I
exchangeEnd ISODate("2017-12-24T20:29:25.996Z") J
exchangeResultCode 1000
exchangeResultMessage "SHARD UPLOADED" L
created ISODate("2017-12-24T20:29:26.004Z") M
mirrors _id ObjectId("5a400e259cf6997ef41{5420")
shardHash ""3ebf21a993b723e638a283035d2dc572f16b9f56" F
contact "f33e0bfe6eaa263bf2eb08b9d919c80ac5c30157"
store_end 1521923364847.0
store_begin 1514147364847.0
renter id ""337472da3068fa05d415262baf4df5bada8aefdc" R
payment_storage_ price 0
payment download price 0
payment destination "0x4780cA5a6E8cA5a950390f2bb9e7Fal1822A46b9"
farmer id "f33e0bfe6eaa263bf2eb08b9d919c¢80ac5c30157"
data_ size 64
data_hash "3ebf21a993b723e638a283035d2dc572f16b9f56" F
audit__count 4
isEstablished true
users _id "storj-test@trash-mail.com"
hashPass "5cf2..." (Blinded for security)
referralPartner null
bytesDownloaded (3 values)
lastMonthBytes 0
lastDayBytes 0
lastHourBytes 0
bytesUploaded (3 values)
lastMonthBytes 4194368
lastDayBytes 64
lastHourBytes 64
isFreeTier true
activated true
created ISODate("2017-09-03T18:31:55.4547Z")
pendingHashPass null
uuid "7d18d510-1e80-4c9f-991e-d0e486c76601"
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Table A.4: Shard metadata contained on the a farmer server’s config

Farmer Server Metedata

File: /home/storjtest/.config/storjshare/configs/5a2f433555261377396036672418f765b51f0de9.json

Configuration setting Setting value Relation
paymentAddress "0x4780cA5a6E8cA5a950390f2bb9e7Fal1822A46b9"
bridgeURI "http://192.168.1.117:6382"
seedList (3 elements)
"storj://192.168.1.117:4000/337472da3068fa05d415262baf4df5bada8aefdc” R
"storj://192.168.1.117:4001 /b2e1173bf733acaact79b{73a5a65bc5a912d923" T
"storj://192.168.1.117:4002 /b78c3ad6007e316e38a2bab0d567a617{6b98fe6"
rpcPort 9001 C
tunnelGatewayRange (2 elements)
min 4001 U
max 4003
Table A.5: Shard metadata contained within a farmer server’s log file
Farmer Server Metedata
File: /home/storjtest/.config/storjshare/shares/<farmernodeid>/contracts.db/<*.log||*.1db>
Log message Message Timestamp Relation
received "address":"x.x.x.x" (blinded for security) 2017-12-24T20:29:25.5537Z
valid "port":4000
message "nodelD":"337472da3068fa05d415262baf4df5bada8aefdc" R
from "lastSeen":1514147194758
Offer 2017-12-24'T20:29:25.590Z
accepted
handling 337472da3068fa05d415262baf4df5bada8aefdc 2017-12-24T20:29:25.849Z R
storage hash
consignment 3ebf21a993b723e638a283035d2dc572f16b9f56 F
request
from
authorizing 337472da3068fa05d415262baf4df5badalaefdc 2017-12-24T20:29:25.867Z 1, J, R
upload data
channel for
Shard 3ebf212993b723e638a283035d2dc572f16b9f56 2017-12-24T20:29:25.987Z F, 1, J, L,
upload M
complete
hash
received "address":"x.x.x.x" (blinded for security) 2017-12-24T20:29:26.1487Z
valid "port":4001 U
message "nodelD":"b2e1173bf733aeaacf79bf73a5a65bc5a912d923" T
from "lastSeen":1514147204800
handling b2e1173bf733aeaacf79b{f73abab5bcba912d923 2017-12-24T20:29:26.151Z T
storage hash
retrieve 3ebf21a993b723e638a283035d2dc572f16b9f56 F
request
from
authorizing b2e1173bf733aeaacf79bf73ab5a65bc5a912d923 2017-12-24T20:29:26.152Z T
download
data
channel for
Shard 3ebf21a993b723e638a283035d2dc572f16b9f56 2017-12-24T20:29:26.278Z F
download
completed
hash
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