
Masthead Logo
University of New Haven

Digital Commons @ New Haven
Electrical & Computer Engineering and Computer
Science Faculty Publications

Electrical & Computer Engineering and Computer
Science

4-2019

On Efficiency of Artifact Lookup Strategies in
Digital Forensics
Lorenz Liebler
CRISP, Center for Research in Security and Privacy

Patrick Schmitt
Technische Universität Darmstadt

Harald Baier
Hochschule Darmstadt

Frank Breitinger
University of New Haven, fbreitinger@newhaven.edu

Follow this and additional works at: https://digitalcommons.newhaven.edu/
electricalcomputerengineering-facpubs

Part of the Computer Engineering Commons, Electrical and Computer Engineering Commons,
Forensic Science and Technology Commons, and the Information Security Commons

Comments
© 2019 The Author(s). Published by Elsevier Ltd on behalf of DFRWS. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/)

Publisher Citation
Liebler, L., Schmitt, P., Baier, H., & Breitinger, F. (2019). On efficiency of artifact lookup strategies in digital forensics. Digital
Investigation, 28, S116-S125.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digital Commons @ New Haven

https://core.ac.uk/display/214330994?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.newhaven.edu?utm_source=digitalcommons.newhaven.edu%2Felectricalcomputerengineering-facpubs%2F87&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.newhaven.edu/electricalcomputerengineering-facpubs?utm_source=digitalcommons.newhaven.edu%2Felectricalcomputerengineering-facpubs%2F87&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.newhaven.edu/electricalcomputerengineering-facpubs?utm_source=digitalcommons.newhaven.edu%2Felectricalcomputerengineering-facpubs%2F87&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.newhaven.edu/electricalcomputerengineering?utm_source=digitalcommons.newhaven.edu%2Felectricalcomputerengineering-facpubs%2F87&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.newhaven.edu/electricalcomputerengineering?utm_source=digitalcommons.newhaven.edu%2Felectricalcomputerengineering-facpubs%2F87&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.newhaven.edu/electricalcomputerengineering-facpubs?utm_source=digitalcommons.newhaven.edu%2Felectricalcomputerengineering-facpubs%2F87&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.newhaven.edu/electricalcomputerengineering-facpubs?utm_source=digitalcommons.newhaven.edu%2Felectricalcomputerengineering-facpubs%2F87&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.newhaven.edu%2Felectricalcomputerengineering-facpubs%2F87&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.newhaven.edu%2Felectricalcomputerengineering-facpubs%2F87&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1277?utm_source=digitalcommons.newhaven.edu%2Felectricalcomputerengineering-facpubs%2F87&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=digitalcommons.newhaven.edu%2Felectricalcomputerengineering-facpubs%2F87&utm_medium=PDF&utm_campaign=PDFCoverPages


On efficiency of artifact lookup strategies in digital forensics

Lorenz Liebler a, b, *, Patrick Schmitt c, Harald Baier a, b, Frank Breitinger d

a da/sec Biometrics and Internet Security Research Group, Hochschule Darmstadt, Darmstadt, Germany
b CRISP, Center for Research in Security and Privacy, Darmstadt, Germany
c Secure Software Engineering Group, Technische Universit€at Darmstadt, Darmstadt, Germany
d Cyber Forensics Research and Education Group (UNHcFREG), University of New Haven, New Haven, USA

a r t i c l e i n f o

Article history:

Keywords:
Database lookup problem
Artifact lookup
Approximate matching
Carving

a b s t r a c t

In recent years different strategies have been proposed to handle the problem of ever-growing digital
forensic databases. One concept to deal with this data overload is data reduction, which essentially
means to separate the wheat from the chaff, e.g., to filter in forensically relevant data. A prominent
technique in the context of data reduction are hash-based solutions. Data reduction is achieved because
hash values (of possibly large data input) are much smaller than the original input. Today's approaches of
storing hash-based data fragments reach from large scale multithreaded databases to simple Bloom filter
representations. One main focus was put on the field of approximate matching, where sorting is a
problem due to the fuzzy nature of the approximate hashes. A crucial step during digital forensic analysis
is to achieve fast query times during lookup (e.g., against a blacklist), especially in the scope of small or
ordinary resource availability. However, a comparison of different database and lookup approaches is
considerably hard, as most techniques partially differ in considered use-case and integrated features,
respectively. In this work we discuss, reassess and extend three widespread lookup strategies suitable for
storing hash-based fragments: (1) Hashdatabase for hash-based carving (hashdb), (2) hierarchical Bloom
filter trees (hbft) and (3) flat hash maps (fhmap). We outline the capabilities of the different approaches,
integrate new extensions, discuss possible features and perform a detailed evaluationwith a special focus
on runtime efficiency. Our results reveal major advantages for fhmap in case of runtime performance and
applicability. hbft showed a comparable runtime efficiency in case of lookups, but hbft suffers from
pitfalls with respect to extensibility and maintenance. Finally, hashdb performs worst in case of a single
core environment in all evaluation scenarios. However, hashdb is the only candidate which offers full
parallelization capabilities, transactional features, and a Single-level storage.
© 2019 The Author(s). Published by Elsevier Ltd on behalf of DFRWS. This is an open access article under

the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Approximate matching (a.k.a. fuzzy hashing or similarity hash-
ing) is a common concept across the digital forensic community to
do known file/block identification in order to cope with the large
amounts of data. However, due to the fuzzy nature of approximate
hashes current approaches suffer from the Database Lookup Prob-
lem (Breitinger et al., 2014a). This problem is based on the decision,
if a given fingerprint is member of the reference dataset. The
general database lookup problem is of complexity OðnÞ in terms of
the number of queries and hence exponential. To address this

problem, different techniques have been discussed such as multiple
Bloom filters, single large Bloom filters, Cuckoo filters or Hierar-
chical Bloom filter trees (Harichandran et al., 2016; Lillis et al.,
2017).

Besides the complexity, an investigator has to deal with com-
mon blocks which makes the identification of the correct match
hard (Garfinkel and McCarrin, 2015). The extraction and correct
assignment of a specific data fragment is of crucial importance, i.e.,
those identified chunks allow the inference of the original source
(e.g., a potentially malicious file or a media file). Specificially,
different files of the same type or application often share a non-
negligible amount of common blocks, e.g., file structure elements
in the file header. This leads to multihits, hence, those blocks or
chunks are not suitable for a unique identification of a specific file.
To avoid this problem, lookup strategies should consider additional

* Corresponding author. da/sec Biometrics and Internet Security Research Group,
Hochschule Darmstadt, Darmstadt, Germany.

E-mail address: lorenz.liebler@h-da.de (L. Liebler).

Contents lists available at ScienceDirect

Digital Investigation

journal homepage: www.elsevier .com/locate/di in

https://doi.org/10.1016/j.diin.2019.01.020
1742-2876/© 2019 The Author(s). Published by Elsevier Ltd on behalf of DFRWS. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/
licenses/by-nc-nd/4.0/).

Digital Investigation 28 (2019) S116eS125

http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:lorenz.liebler@h-da.de
http://crossmark.crossref.org/dialog/?doi=10.1016/j.diin.2019.01.020&domain=pdf
www.sciencedirect.com/science/journal/17422876
http://www.elsevier.com/locate/diin
https://doi.org/10.1016/j.diin.2019.01.020
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.diin.2019.01.020
https://doi.org/10.1016/j.diin.2019.01.020


mechanisms to handle common blocks, e.g., by integrating func-
tions of filtration or deduplication. Those requirements influence
the applicability of a specific lookup strategy. The consideration of
common blocks influences the results of higher level analysis, too
(e.g., approximate matching used for the task of identifying similar
binaries or detecting shared libraries (Liebler and Breitinger, 2018;
Pagani et al., 2018)).

In this work we discuss, reassess and extend three widespread
lookup strategies suitable for storing hash-based fragments which
have been proposed and are currently utilized in the field of digital
forensics:

1 hashdb: In 2015 Garfinkel andMcCarrin (2015) introduced Hash-
based carving, “a technique for detecting the presence of specific
target files on digital media by evaluating the hashes of indi-
vidual data blocks, rather than the hashes of entire files”.
Common blocks were identified as a problem and have to be
handled or filtered out, as they are not suitable for identifying a
specific file. To handle the sheer amount of digital artifacts and
to perform fast and efficient queries, the authors utilized a so
called hashdb. The approach was integrated into the bulk_ex-
tractor forensic tool. Both implementations have been made
publicly available.1

2 hbft: In the scope of approximate matching, probabilistic data
structures have been proposed to reduce the amount of needed
memory for storing relevant artifacts. Approaches to store ar-
tifacts comprise multiple Bloom filters (Breitinger and Baier,
2012), single Bloom filters 8 or more exotic Cuckoo filters (Fan
et al., 2014; Gupta and Breitinger, 2015). One major problem of
probabilistic data structures is the fact of losing the ability to
actually identify a file. In 2014 Breitinger et al. (2014b) provided
a theoretical concept of structured Bloom filter trees for iden-
tifying a file. In 2017, a more detailed discussion and concrete
implementation was provided by Lillis et al. (2017). The
approach is based on “the well-known divide and conquer
paradigm and builds a Bloom filter-based tree data structure in
order to enable an efficient lookup of similarity digests”. This
leads to Hierarchical Bloom filter trees (hbft).

3 fhmap: Recently Malte Skarupke presented a fast hash table
called flat_hash_map2 (fhmap). The author claims that the
implementation features the fastest lookups until now. A hash
table features a constant lookup complexity of Oð1Þ given a good
hash function. The database implementation provides an
interface for accessing the hash table itself, however, it does not
feature any image slicing, chunk extraction or hashing. Thus, in
order to utilize and evaluate fhmap in our context, it has to be
extended by additional concepts to extract data fragments
comparable to Hash-based carving or fuzzy hashing.

Considering our depicted candidates and the overall goal of
reassessing those in terms of capabilities and performance, the
goals of this paper are as follows:

1. Assess the aforementened proposed techniques for the task of
fast artifact handling (i.e., hbft, fhmap and hashdb). Identify the
capabilities of those techniques and the possible handling of
common blocks.

2. We inspect the feasibility and discuss concepts to integrate the
missing feature of multihit prevention (filtration of common
blocks) similar to hashdb, into hbft or fhmap.

3. Discuss possible extensions of existing techniques in order to be
able to compare the approaches.

4. Assess how the different approaches compete with respect to
runtime performance and resource usage.

Our result is that fhmap is best in case of runtime performance
and applicability. hbft showed a comparable runtime efficiency in
case of lookups, but hbft suffers from pitfalls with respect to
extensibility and maintenance. Finally, hashdb performs worst in
case of a single core environment in all evaluation scenarios,
however, it is the only candidate which offers full parallelization
capabilities and transactional features.

The remainder of this work is structured as follows: In Section
‘Candiate and features analysis’ we give a short introduction in our
considered use case. In addition, an overview of the depicted
evaluation candidates and their already integrated features is given.
In Section ‘Extensions to hbft and fhmap’we describe our proposed
extensions and our performed evaluation of those. We give a
detailed performance evaluation and discuss advantages and dis-
advantages of the different techniques in Section ‘Evaluation’.
Finally, we conclude this work.

Candidates and feature analysis

As all of the mentioned approaches strongly differ (either in
their original use case, or in their supported capabilities) we outline
the motivation behind our decision of the depicted candidates.
Therefore, we first describe the conditions of application and
introduce the forensic use case which formalizes additional re-
quirements and mandatory features (see Section ‘Use case and re-
quirements’). Afterwards, we explain our three candidates of choice
in Section ‘Depicted Candidates’. Beside the required features of our
considered use case, we need to discuss the already present fea-
tures and capabilities of the different approaches. Thus, we outline
the existing features and capabilities for each candidate in Section
‘Feature Analysis’.

Use case and requirements

In this work we address the problem of querying digital artifacts
out of a large corpus of relevant digital artifacts. Sample applica-
tions are carving or approximatematching. Both applications suffer
from the Database Lookup Problem, i.e., how to link an extracted
artifact within a forensic investigation to a corresponding source of
a forensic corpus efficiently (i.e., in terms of required storage ca-
pacity, required memory capacity or lookup performance). Beside
those, our digital forensic scenarios bare additional pitfalls and
challenges.

We consider the extraction of chunks (i.e., substrings) out of a
raw bytestream, without the definition of any extraction process. A
major challenge of matching an artifact to a source are occurring
multihits, i.e., one chunk is linked to multiple files. This was first
mentioned by Foster (2012). A multihit is also called a common
block or a non-probative block, too. For instance Microsoft Office
documents such as Excel or Word documents share common byte
blocks across different files (Garfinkel and McCarrin, 2015). Similar
problems occur during the examination of executable binaries
which have been statically linked (e.g., share a large amount of
common code or data). Summarized, multi matches are a challenge
for identifying an unknown fragment with full confidence. In
addition, storing multihits also increases memory requirements
and decreases lookup performance.

1 https://github.com/simsong/(last accessed 2018-10-23).
2 You Can Do Better than std::unordered_map: New and Recent Improvements to

Hash Table Performance presented by Malte Skarupke at CþþNow in 2018; https://
probablydance.com/2018/05/28/a-new-fast-hash-table-in-response-to-googles-
new-fast-hash-table/(last accessed 2018-10-23).

L. Liebler et al. / Digital Investigation 28 (2019) S116eS125 S117

https://github.com/simsong/
https://probablydance.com/2018/05/28/a-new-fast-hash-table-in-response-to-googles-new-fast-hash-table/
https://probablydance.com/2018/05/28/a-new-fast-hash-table-in-response-to-googles-new-fast-hash-table/
https://probablydance.com/2018/05/28/a-new-fast-hash-table-in-response-to-googles-new-fast-hash-table/


Multihits can either be identified during the construction phase
of the database (e.g., by deduplication or filtration) or during the
lookup phase. By filtration of common blocks during a construction
phase, the overall database load gets reduced and the lookup speed
is increased as only unique hits are considered. Two different
strategies of multihit prevention during the construction phase
were proposed. First, as introduced by Garfinkel and McCarrin
(2015) rules are defined to filter out known blocks with a high
occurrence (and thus low identification probability of an individual
file). Such an approach requires extensive pre-analysis of the input
set and its given structures. A second approach is the filtration of
common blocks during construction by the additional integration
of a deduplication step. Beside hashdb, none of our candidates
provide deduplication or multihit prevention techniques so far. We
refer to Garfinkel and McCarrin (2015) for further details and solely
focus on the utilized database in the following subsection.

Features of adding and deleting artifacts have the major benefit
of not needing to re-generate the complete database everytime a
new artifact needs to be included. While deleting inputs may be
less frequent, adding new items to an existing storage scheme
seems obvious and indispensable. While fhmap and hashdb support
adding and deleting hashes from their scheme, this feature is not
yet available in the current prototype of hbft. In detail, adding new
elements to a hbft is possible, however, the tree needs to be re-
generated as soon as a critical point of unacceptable false posi-
tives is reached. The definition of buckets also limits the capabilities
to add further files to the database. Loosing the capabilities of de-
leting elements out of a binary Bloom filter is the main reason for
making features of deletion impossible to realize. Summarized,
adding and deleting hashes from a database is a mandatory or
optional feature, depending on the specific use case.

Depicted candidates

In this section we present three widespread lookup strategies
suitable for storing hash-based fragments: (1) Hashdatabase for
hash-based carving (hashdb), (2) hierarchical Bloom filter trees
(hbft) and (3) flat hash maps (fhmap).

LMDB/hashdb. To store the considered blocks Garfinkel and
McCarrin (2015) make use of hashdb, a database which provides
fast hash value lookups. The idea of hashdb is based on Foster
(2012) and Young et al. (2012). In 2018, the current version (3.13)
introduces significant changes compared to the original version
mentioned by Garfinkel and McCarrin (2015).

The former implementation of hashdb originally supported B-
Trees. Those have been replaced by the Lightning Memory Mapped
Database (LMDB) which is a high-performance and fully trans-
actional database (Chu, 2011). It is a key-value store based on
B þ Trees with shared-memory features and copy-on-write se-
mantics. The database is read-optimised and can handle large data
sets. The technique originally focused on the reduction of cache
layers bymapping the whole database entirely into memory. Direct
access to the mapped memory is established by a single address
space and by features of the operating system itself. Storages are
considered as primary (RAM) or secondary (disk) storages. Data
which is already loaded can be accessed without a delay as the data
is already referenced by a memory page. Accessing not-referenced
data triggers a page-fault. This in turns leads the operating system
to load the data without the need of any explicit I/O calls. Sum-
marised, the fundamental concept behind LMDB is a single-level
store, the mapping is read-only and write operations are

performed regulary. The read-only memory and the filesystem are
kept coherent through a Unified Buffer Cache. The size is restricted
by the virtual address space limits of an underlying architecture. As
mentioned by Chu (2011), on a 64 bit architecture which supports
48 addressable bits, this leads to an upper bound of 128 TiB of the
database (i.e., 47 bits out of 64 bits).

hbft. The concept of hierarchical Bloom filter trees (hbft) is fairly
new. This theoretical concept was introduced by Breitinger et al.
(2014b) and later implemented by Lillis et al. (Lillis et al., Scan-
lon). The lookup differs from the approximate matching algorithm
mrsh-v2, as hbft only focuses on fragments to identify potential
buckets of files. A parameter named min_run describes how many
consecutive chunk hashes need to be found to emit a match. A good
recall rate was accomplished for min_run ¼ 4. The tree structure is
then traversed further if a queried file is considered a match in the
root node. Each of the nodes is represented by a single Bloom filter
which empowers to traverse the tree. A traditional pairwise com-
parison can be done at possible matching leaf nodes. For details of
the actual traversing concept we refer to the original paper (Lillis
et al., Scanlon).

Just like previous mrsh implementations the lookup structure
can be precomputed in advance. First, the tree is constructed with
its necessary nodes. Then the database files are inserted. Thus, the
time for construction can be neglected in the actual comparison
phase. More precisely the tree structure is represented as a space
efficient array where each position in the array points to a Bloom
filter. The implementation uses a bottom up construction which
fills trees from the leaf nodes to the root. The array representation
does not store references to nodes, its children, or leaves explicitely.
Every reference needs to be calculated depending on the index in
the array. Efficient index calculations are only applicable for binary
trees. The lookup complexity within the tree structure is OðlogxðnÞÞ,
where x describes the degree of the tree and n is the file set size.

fhmap. Flat hash maps have been introduced as fast and easy to
realize lookup strategies. Up to now, they have been mainly dis-
cussed in different fields of application. Similar to hbft, the actual
implementation of fhmap represents a proof of concept imple-
mentation with good capabilities but limited features.

The concept of flat hash maps is an array of buckets which
contain multiple entries. Each entry consists of a key-value pair.
The key part represents the identifier for the value and is usually
unique in the table. An index of the bucket is determined by a
hash function and a modulo operation. The position i equals to:
hashðkeyÞmod sizeðtableÞ. A large amount of inserts into a small
table causes collisions, where multiple items are inserted in the
same bucket. A proper hash function needs to be chosen in order to
maintain a lookup complexity of Oð1Þ. The function needs to spread
the entries without clustering. The amount of inserted items is
denoted by the load factor, i.e., the ratio of entries per buckets. A
high load factor obviously causes more collisions. The table gets
slower since the buckets have to be traversed to find the correct
entry. The lower the load factor the faster the table. However, more
memory is required since buckets will be left empty on purpose. If a
slot is full the entries are re-arranged.

The whole table is implemented as a contiguous (flat) array
without buckets which allows fast lookups in memory. With linear
probing the next entry in the table is checked if its free. If not the
next one is checked until either a free slot is found or the upper
probing limit is reached. The table is re-sized as soon as a defined
limit is reached. The default load factor of this table is 0.5. Specific
features should speed up the lookup phase: open addressing, linear
probing, Robin Hood hashing, prime number of slots and an upper
limit probe count. Robin Hood hashing introduced by (Celis et al.,
1985) ensures that most of the elements are close to their ideal
entry in the table. The algorithm rearranges entries: elements

3 http://downloads.digitalcorpora.org/downloads/hashdb/hashdb_um.pdf (last
accessed 2018-10-23).

L. Liebler et al. / Digital Investigation 28 (2019) S116eS125S118

http://downloads.digitalcorpora.org/downloads/hashdb/hashdb_um.pdf


which are very far will be positioned closer to their original slot,
even if it is occupied by another element. The element which oc-
cupies this specific slot will also be rearranged from its possibly
ideal slot to enable approximately equal distances for each element
to its ideal position in the table. The algorithm takes slots from rich
elements, which are close to their ideal slot, and gives those slots to
the poor, elements which are very far away, hence the name.

Feature analysis

In what follows we shortly inspect the capabilities and proper-
ties of all considered techniques. We discuss the current state of
each approach in the case of existing features and properties.
Table 1 provides a summary of the discussed capabilities. Note, the
marks (*) and (̂ ) mean that these attributes are introduced or
discussed, respectively, in the course of this work. For instance, an
important extension in the case of fhmap is the integration of an
appropriate chunk extraction and insertion technique.

Block Building. In case of hashdb the database building and
scanning of images is now possible without the use of bulk extractor
which was originally proposed to extract chunks. It builds and
hashes the blocks with a fixed sliding window which shifts along a
fixed step size s. Obviously this produces quite a lot of block hashes
to be stored in the database. Similar to the original mrsh-v2 algo-
rithm, the current hbft implementation identifies chunks by the
usage of a Pseudo-Random-Function (PRF). As soon as the current
byte input triggers a previously defined modulus a new chunk
boundary is defined. The current implementation sticks to the
originally proposed rolling_hash (Breitinger and Baier, 2012). Thus,
the extraction of chunks relies on the current context of an input
sequence and not on a previously defined block size. Those
Context-Triggered Piecewise-Hashing (CTPH) algorithms prevent
issues by changing starting offsets of an input sequence. The fixed
defined modulus bm approximates the extracted block size in
average. Unlike hashdb or hbft, the fhmap implementation itself
does obviously not feature any block building or hashing. As it will
just serve as a container, we have to extend the capabilities to
extract, hash and store fragments during evaluation.

Block-Hashing Algorithm. In case of hashdb the authors pro-
pose the cryptographic hash functionMD5 and an initial blocksize b
of 4 KiB. A value which is obviously inspired by the common cluster
size of todays’ file systems. hbftmakes use of the FNV hash function
to hash its chunks and sets 5 bits in its leaf nodes and the corre-
sponding ancestor nodes. Since the root Bloom filter is considerably
large, the adapted version of FNV which outputs 256 bits is
required. Finally, fhmap makes use of FNV-1 for hashing an input.

Multithreading support. With respect to multithreading sup-
port hashdb (or Lightning Memory Mapped Database) allows mul-
tithreaded reading operations to improve the runtime
performance. However, up to now no theoretical or practical con-
cepts are available to integrate mulithreading support into hbft and
fhmap, respectively. Nevertheless the block building phase may use
multithreading for both hbft and fhmap.

Multihit handling. hashdb associates hashed blocks with meta
data. A meta data describes the count of matching files for a specific
block. The saved counts are used to remove duplicates from a
database and to rule out multi matches in advance. In detail, all
hashed blocks are removedwhich have an associated counter value
higher than one (Garfinkel and McCarrin, 2015). The current pro-
totypes of both hbft and fhmap do not provide any functionality of
deduplication. Thus, a feature for filtering common blocks and
common shared chunks is missing. We address this problem in
Section 3 and extend both prototypes.

Add and remove hashes. hashdb supports adding new hashes
into a database (with integrated deduplication). First the new files
are split into blocks and hashed. Afterwards, hashes are inserted
into the database. The implementation also supports deletion of
hashes from a given database by subtracting a database from the
original. In order to insert new files into an existing hbft database,
the tree needs to be rebuilt with the new file hashes if the tree was
limited for the original file set. One can save the original block
hashes in order to avoid rehashing. The current concept of the
structure does not provide any functionality for deleting a given
chunk hash. This is obviously primarily caused by the nature of
Bloom filters. The original implementation of fhmap supports
adding and deleting entries by default. After determining the index
in the table, the entries are re-arranged as soon as a slot is full. After
adding or deleting, the table is optionally re-sized to a final load
factor of 0.5.

Prefiltering of non-matches. hashdb provides prechecking by a
Hash Store. A Hash Store is described as a highly compressed opti-
mized store of all block hashes in the database.4 In case of hbft the
root Bloom filter provides an easy discrimination between a match
and a non-match and thus, yielding prefiltering of non-matches.
The current version of fhmap does not provide any prechecking
or prefiltering mechanisms. The additional implementation of a
Bloom filter may solve this problem and is object of future research.

False Positives. Similar to a probabilistic lookup strategy like

Table 1
Features of hashdb, hbft and fhmap. New implementations are marked with asterisks (symbol *, table cell is coloured green) and potential techniques are marked with a caret
(symbol ,̂ table cell is coloured red).

4 http://downloads.digitalcorpora.org/downloads/hashdb/hashdb_um.pdf (last
accessed 2018-10-23).

L. Liebler et al. / Digital Investigation 28 (2019) S116eS125 S119

http://downloads.digitalcorpora.org/downloads/hashdb/hashdb_um.pdf


Bloom filters, the currently proposed Hash Store of hashdb causes
false positives. Even if the concept of prechecking produces false
positives, hashdb still performs a complete lookup of the queried
hash value. Thus, the overall lookup does not suffer from any false
positives. A major disadvantage of utilizing a probabilistic lookup
strategy like in case of hbft is the possible collision of lookups. Thus,
the lookup strategy suffers from false positives. The expected value
of false positives is controlled by the size of the root Bloom filter
and the handled amount of inserts. As fhmap performs a full lookup
on the stored hash values, the approach does not suffer from any
possible false positives.

Limited to RAM. The current implementation of hashdb in-
tegrates capabilities of loading and storing entries from and to disk.
Thus, the approach is not limited to any memory boundaries. The
overall design and construction of the hbft tree heavily relies on the
memory constraints. The original implementation was created as a
RAM-resident solution only. The proposed parametrization and
initialization mainly focuses on memory boundaries of a target
system. In case of fhmap, the structure of the contiguous array is
directly created in memory and thus, the current approach is
limited to the given memory boundaries of system.

Persistent Database The database of hashdb is persistent. The
current implementation of hbft offers the possibility to save and
load a database to and fromdisk. The recent prototype of fhmapwas
only proposed as a simple proof of concept. No features for saving
or restoring a disk-based database have been considered so far.

Extensions to hbft and fhmap

In this section we discuss extensions of our candidates hbft and
fhmap with respect to both already implemented and potential
future ones. The extended code is available for both hbft5 and
fhmap.6 In contrary, hashdb already fulfills most of the required
capabilities and is the only ready-to-use approach for our consid-
ered context. In Section ‘Multihit Prevention fhmap’we first discuss
strategies for the handling of multihits in the case of hbft, bench-
mark them, and depict a proper candidate. In Section ‘Chunk
Extraction hbft and fhmp’ we discuss the possible multihit pre-
vention via deduplication for fhmap. The integration of persistence
for fhmapwill not be outlined in detail in the course of this work. In
Section 3.3 we discuss the chunk extraction process in the case of
hbft and fhmap. We will additionally introduce a concept for the
parallelization of the chunk extraction via a rolling hash function.
Finally, we will outline in Section ‘Theoretical Extensions’ some
theoretically extensions and thoughts.

Multihit prevention hbft

The prevention of multihits (i.e., the filtration of common
blocks) could be differentiated at the construction or at the lookup
phase. In the following we discuss two approaches of multihit
prevention, one realized during the construction phase and one
during the lookup phase.

Tree-filter based. By the utilization of a temporary hbft for each
file, multihit chunks could be marked during the construction
phase. Each file is processed sequentially one after another. As can
be seen in Fig. 1, a temporary hbft stores the chunks of a currently
selected file. The following files are compared against the tempo-
rary hbft. A multihit is highlighted within the tree by a counter. The
currently compared chunk of a processed file is also labeled with a

counter. After processing all of the subsequent files, unique chunks
of the current tree are saved into a global hbft. The next file gen-
erates a temporary hbft again. However, only chunks with a zero
counter are considered during the pass. The final tree stores unique
chunks in different leaf nodes. Thus, it could be guaranteed that the
tree does not feature the same chunk in a different leaf node.

Obviously, this approach has a higher building time but offers
additional features. A possible advantage of utilizing counters for
each chunk could be the definition of a threshold for accepted
multihits. Thus, by the definition of a threshold a tree is generated
which stores the maximum amount of elements in each leaf node.
This empowers to identify chunks related to multiple files.
Considering an interleaved multihit between two unique hits, an
investigator could infer the gap between both.

Global-filter based. A straightforward approach could be the
utilization of a separate Bloom filter which represents all multihits
for a target file set. Therefor, two Bloom filters are generated with
an adequate size (i.e., a size which respects an upper bound of false
positives).

As shown in Fig. 2, a single global Bloom filter stores all chunks
of a file set. A second global multihit Bloom filter will store all
multihits for a corresponding set. A temporary local Bloom filter is
generated for a specific file and gets zeroed out before another file
will be processed. The local filter empowers to distinguishmultihits
within a file itself. Recalling the informal definition of a multihit, a
multihit within a file itself but with no matches in other files could
still be used for unique identification and is desired to keep. The
local filter emits possible multihits on a file base. Those are ignored
and not further processed in the global filter. If a chunk is neither in
the local filter, nor in the global filter, it will be inserted in the global
filter. We consider such a chunk as a unique chunk until proven
otherwise. If a chunk is already in the global filter, an identical
chunk has been seen before. Such a chunk will be further consid-
ered as multihit and gets inserted into the multihit filter. This
process gets repeated for each file. The result is a global filter which
stores all occurred multihits. A set (including multihits) could be

Fig. 1. Tree-filter based multihit prevention with temporary hbfts per file. Temporary
Bloom filter trees (TBFi) are used to filter multihits for a current file Fi and all its
subsequent files. A global hbft (GBF) represents all unique elements in the processed
set.

Fig. 2. Global-filter based prevention of multihits. Three different Bloom filter are used
to filter multihits: A local Bloom filter (BFL), a global multihit Bloom filter (BFM), and a
global Bloom filter (BFG).

5 https://github.com/ishnid/mrsh-hbft.
6 https://github.com/skarupke/flat_hash_map, further extensions will be avail-

able via https://dasec.h-da.de/staff/lorenz-liebler/in April 2019.

L. Liebler et al. / Digital Investigation 28 (2019) S116eS125S120

https://github.com/ishnid/mrsh-hbft
https://github.com/skarupke/flat_hash_map
https://dasec.h-da.de/staff/lorenz-liebler/


stored in a global hbftwith an additional check against the multihit
filter. An additional step of deduplication could shift the prevention
of multihits to the construction phase.

Evaluation and selection. We benchmarked7 the two intro-
duced approaches in the case of construction and lookup runtime.
For our benchmark wemake use of the t5-corpus8 and each node in
the tree will represent one file of the corpus. The corpus consists of
4457 files with a total size of approximately 1.9 GiB. The interface
was extended to additionally handle a single large image as input.
We constructed an image by concatenating all 4457 files of the set.
The amount of extracted chunks by the utilization of the roll-
ing_hash with a block size b ¼ 160 produces 8,311,785 chunks. In
total 457,793 of the chunks are multihits (i.e., shared in more than
one file).

Fig. 3 outlines the results of the benchmark. The construction
phase does not differ for the file or image lookup. The prevention is
handled during construction phase, as we focus on an improved
lookup performance. The deduplication handling causes longer
construction times in both cases. The tree filter approach clearly
outreaches the global filter approach in terms of construction time.
Depicting an appropriate candidate (i.e., Tree-filter or Global-filter)
is a trade off between performance and matching capabilities. By
the utilization of a global filter, we loose the ability to match
multihits to their root files.

Lookup timings are identical for both techniques as both ap-
proaches filter multihits before the construction of the tree. Once
the search for a file hits a leaf node it can be assumed that the query
will not match any other leaf nodes. This holds true considering the
false positives caused by the probabilistic Bloom filters. Even if it
depends to the overall use case how often a filter has be rebuilt
from scratch, the time needed to construct a Tree-filter becomes
unbearable for larger data sets. Therefore, this enhancement will
not be pursued any further and we propose the usage of a Global-
filter.

Multihit prevention fhmap

Originally and naturally hash tables do not feature our consid-
ered handling of multihits by design. Each of the inserted keys
should be unique. Implementations behave differently upon mul-
tihit insertions. Some databases will simply overwrite existing
values, while others won't insert the value at all as soon as a key is
already occupied. However, there are hash tables which support
duplicated keys. This section presents an algorithmwhich prevents
multihit insertions in any hash table.

Each inserted chunk is represented by a hash value, i.e., the

actual key. The value of the corresponding key is a reference to the
filename the chunk originates from. We assume that the corre-
sponding chunks are multihits if two hash values are identical. In
order to rule them out in the final database, each chunk will be
looked up first. If a key is not in the table it can be safely inserted. If
a key is already present in the table it is very likely a multihit. As
already explained, multihits which occur in a file itself, but not in
any other, should be kept. If the found value of the key (i.e., the
filename) is equal to the value of the key which needs to be
inserted, it is a multihit in a file itself. The insertion is ignored since
the chunk is already represented in the table. If the found value is
not equal to the query value, the chunk is a multihit within the file
set. The entry will be marked as a duplicate in the table. This pro-
cedure is done for all chunks in the file set and comparable.

In the second processing step each entry is checked for the
duplicate mark. If a mark is found the entry will be deleted from the
hash table. This algorithm also reduces the amount of inserted
chunks while keeping unique insertions only. Fewer insertions also
mean less collisions and the increase of lookup speed. We will
inspect the runtime, also in terms of deduplication, in the following
section. Keeping the multihits is possible and would be comparable
to the concept of hashdb which keeps internal counters to inserted
chunks. However, this would force the database to handle multihits
during the lookup phase.

Chunk extraction hbft and fhmp

Chunk extraction means the following. A given input sequence
of bytes is divided into chunks by the definition of a fixed modulus
b (common values are 64 � b � 320 bytes). The extraction algo-
rithm iterates over the input stream in a sliding window fashion,
rolls through the sequence byte-by-byte, and processes 7 consec-
utive bytes at a time. A current window is hashed with a roll-
ing_hash function, which returns a value between 0 and b. If this
value hits the value b� 1, a trigger point is found and thus, defines
the boundary of a current chunk.

We consider an example of block building and querying an
image of 2 GiB. Reading in the image, constructing the block hashes
via rolling_hash, and hashing the blocks via FNV-256 takes
approximately 43 seconds. Querying each chunk against the hbft
takes approximately 8.5 seconds (with each chunk present in the
hbft). Thus, the extraction without lookup takes about 83.4% of the
overall query time for a single process.

Beside the evaluation of lookup strategies, we also discuss the
possible parallelization of the extraction process itself. A possible
parallelized version of the rolling_hash is depicted in Fig. 4. We
evenly split the input S into parts Pi which start at byte si (offset)
and end at ei (offset). The splitted blocks are further processed by a

Fig. 3. Benchmark of multihit prevention approaches for hbft.

Fig. 4. Introducing wrong blocks at the borders of image blocks.

7 performed on a laptop with Intel I7 2.2 GHz, 8 GiB of RAM and a SSD.
8 http://roussev.net/t5/t5.html (last accessed 2018-10-23).

L. Liebler et al. / Digital Investigation 28 (2019) S116eS125 S121

http://roussev.net/t5/t5.html


rolling_hash function which subsequently defines the chunk
boundaries within each block. Thus, each Pi contains 0 or more
chunks Ci. The challenge arises at each chunk boundary, i.e., the last
chunk in Pi and the first in Piþ1 (marked red). The chunk boundaries
are implicitly defined by the block boundaries and do not match
with the original chunk boundaries of S. The naive alignment of
blocks, which would set the start address of a block to the end
address of a subsequent block (i.e., siþ1 ¼ ei), would process chunks
at the borders incorrectly (e.g., compared to non-parellized pro-
cessing of S). To produce consistent chunk boundaries in the par-
allelized and non-parallized version, we could move the starting
point into the range of a preceding block. This would create an
overlap which gives the rolling_hash a chance to re-synchronize.
We could also run over the end ei until we identify a match with
the leading chunks of its successor (i.e., block processed by Piþ1).

Evaluation rolling_hash. Our prototype implementation uses
the producer consumer paradigm. The image is read as a stream of
bytes by the main thread. Depending on the amount of cores the
first image size=cpu num bytes are read. Those bytes are passed to
a thread which performs the rolling hash algorithm and hashes
identified blocks. In parallel, the next (image size=cpu numÞþ
overlap bytes are read and processed by another thread. In Table 2
times are shown needed to process a 2 GiB image into block hashes
with and without threading. In the case of multithreading, the time
needed for resynchronization is already included. Obviously the
needed CPU time will increase since it is spread over multiple
threads. The actual elapsed time is remarkably lower. A speedup of
approximately 30 seconds can be achieved. This increases the
processing speed by a factor of 3.2 by keeping consistent block
boundaries. The query could be parallelized as well, but was not
implemented in the course of this work.

Theoretical extensions

This subsection will continue with an analysis of possible ex-
tensions which have not been integrated.

New file insertion in hbft. Adding new elements to a hbft is
considerable easy, as long as the tree does not reach a critical load
factor. A naive approach is the initial design of an oversized tree
structure to create additional empty leaf nodes. A parameterization
always has to consider the impact on the overall false positive rate.
The new files can then be splitted into blocks and hashed into the
tree. The already introduced Global-filter can be used to filter
multihits with low dependencies. Therefore, only the original
global and multi Bloom filters have to be updated and saved after a
finished session. With a further growing amount of additional files
being inserted, the empty leaf node pool will starve and the false
positive rate for the structure will become unacceptable. At this
point the database needs to be resized and rebuilt. Original block
hashes can be saved to disk to shorten the build time. However, in
many cases, this suggestion is infeasible. Adding additional files to
the tree requires careful and storage-intensive pre-planning. Most
of the times the database is optimized for a given file set. Intro-
ducing empty leaf nodes possibly adds additional levels to the tree.
This pessimistic growth would slow down the lookup phase and
adds memory overhead which indeed never could be required.

File deletion in hbft. Hashes cannot be deleted from Bloom fil-
ters (except Counting Bloom filters). This in turn leads to the major

drawback that hbft structures need to be partially rebuilt without the
deleted file. In order to delete a specific file from the data structure,
all related nodes from a leaf node up to its final root node are
affected. Such affected filters need to be deleted and re-populated
again. Also file chunks which are represented by the affected
nodes need to be re-inserted again. Concerning the depicted tree
structure in Fig. 5, lastly, every file hash is needed since the root filter
holds the block hashes for every file in the set. Splitting the root node
into several filters would reduce the amount of recreated hashes
from scratch. During a lookup, this would require to horizontally
process a sequence of root-filters first. Fig. 5 describes the problem of
deleting files in a hbft structure. Deleting a file from the tree comes
with considerable effort and computational overhead.

Evaluation

The following performance tests focus on a runtime comparison
between hashdb, hbft and fhmap. Each phase ranging from creating
a database to the actual lookup is measured individually. Beside the
overallMemory Consumption (4.2), we consider threemajor phases:
Build Phase (4.3), Deduplication Phase (4.4) and Lookup Phase (4.5).

The assessment of required resources and performance limita-
tions of the candidates should respect the proposed environmental
conditions. In particular, the considered techniques are scaled for
specific environments where hashdb explicitly targets large scale
systems with multiprocessing capabilities. Even if the presence of
an adequate infrastructure is a considerable assumption, we aim for
similar evaluation conditions and thereforewill limit resources (e.g.
the number of processing cores). Again, it should be clear that
hashdb as a single-level store clearly stands out compared to our
memory-only candidates hbft and fhmap. However, we strive for a
comprehensive comparison in our introduced use case by including
a fully equipped database with desirable features.

Testsystem and testdata

Testsystem. All of the tests were performed on a laptop with
Ubuntu 16.4 LTS using an underlying ext4 filesystem. The machine
features an Intel I7 Processor with 2.2 GHz, 8 GB RAM, a built-in
HDD, and a built-in SSD. After each evaluation run the memory
and caches have been cleared in order to avoid run time or storage
benefits in a subsequent evaluation pass (i.e., we make use of a
‘cold’ machine). Each test was repeated three times and the results
have been averaged. Building and lookup phase are influenced by
the underlying storage drive. A benchmark of both drives reported
a read data rate of 128MiB per second for the HDD and 266 MiB per
second for the SSD. Thus, reading a 2 GiB file into memory takes
approximately 16 seconds from the HDD and 8 seconds from the
SSD. We further used the SSD throughout the following tests. Both
drives have been benchmarked using the linux tool hdparm.

Testdata. Tests are performed on random data and synthetic
images. The considered file set consists of 4096 files. Each file has a
size of 524,288 bytes totaling in an image of 2 GiB. The image was
created by concatenating all files together. We depict a global
blocksize b of 512 bytes for all candidates and all tests. This should
lead to a comparable compression rate and equal treatment in

Table 2
Times of building/hashing blocks of an 2 GiB image in seconds (s).

Singlethread Multithread (8 Threads)

Real 43.82 s 13.59 s
CPU 35.87 s 49.25 s

Fig. 5. Deletion of elements in a hbft could be performed in two steps. First: delete all
Bloom filters which were influenced by the deleted file in a top-down or bottom-up
approach. Second: Reinsert block hashes affected by the deletion in a bottom-up
approach.

L. Liebler et al. / Digital Investigation 28 (2019) S116eS125S122



different phases of processing. Since each file is a multiple of b in
length, a fixed size extraction of blocks will not have to cope with
any alignment issues.

Further extensions. Fixed block size hashing was additionally
implemented for hbft and fhmap to allow an uniform comparison.
However, the originally proposed chunk hashing function FNV-256
remained unchanged. FNV-1 is used for fhmap since the length of
FNV-256 is not necessary. In case of the parallelized rolling hash all
cores can be kept busy as long as the process of reading is faster
than the actual processing of extracted chunks. If the wait time for
I/O is slower than the processing time, only one thread will process
the image blocks. Remaining cores will not be utilized and the block
building is bottlenecked by a slow I/O bus. hashdb can operate
multi-threaded in all reading steps. As introduced in the course of
this work, hfbt and fhmap feature multi-threading in its block
building phase only. To allow a comparison, timings for single
threaded usage of hashdb is given as well, where hashdb imple-
ments a check of available system cores. This function was
temporarily altered to always return a value of one. However, the
implementation uses a producer-consumer approach and will
spawn an additional thread anyways. By the usage of taskset we
finally forced the execution on a single core.

Memory consumption

The three approaches feature different memory requirements.
After ingesting the 2 GiB test set hashdb produces files totaling in
405.9 MB on disk. Since there is no theoretical background to
calculate the data structures size in main memory, it is approxi-
mated using the top command. The in memory size of the structure
is about 900 MB.

In the case of fhmaps, the author9 mentions some storage
overhead for the handling of key-value-pairs. The overhead will be
at a minimum of 8 bits per entry and will be padded to match with
the actual key length. Assuming a key length of 64 bit, then the
overhead for fhmap would be 64 bit as well. Assuming the test set
of 2 GiB with a block size b ¼ 512, then the total amount of blocks n
will be 4;194;304. The total size s in main memory with a load
factor of 0.5 would then result in s ¼ n,64 bits,3

0:5 z200 MiB. The
allocation size on disk would be halved to approximately 100 MiB
caused by the load factor.

The size s of a hbft depends on various parameters and is mainly
influenced by the data set size, the block size b, and a desired false
positive rate fpr. In our scenario we approximate the root filter size
for the parameters¼ 2 GiB, b ¼ 512 and fpr ¼ 10�6. This would lead
to an approximated root filter size of m1 ¼ m*215:84z14MiB. The
tree consists of log2ð4096Þ ¼ 12 levels. Thus, the total amount of
neededmemory is approximately 12,14MiB ¼ 168MiB. The size on
disk will be approximately the same since the array and corre-
sponding Bloom filters need to be saved. Fur further details of the
hbft parametrization and calculation, we refer to Lillis et al. (Lillis
et al., Scanlon).

An overview of the required storage for each technique can be

seen in Table 3. In conclusion, hbft is the most memory efficient
approach, followed by fhmap and hashdb. Nevertheless, it should be
noted that only hashdb is able towork with databases which do not
completely fit into RAM. In contrary hbft and fhmap will only work
if the databases fit into RAM.

Build phase

The creation of a database consists of several steps including the
initialization of the different structures for data storage and
handling. The extraction of blocks by splitting an input stream is
considered for fixed blocks (similar to hash-based carving) or
varying blocks (similar to approximate matching). In detail, we
integrated a fixed block extraction (fi) and the extraction per roll-
ing_hash (ro) for hbft and fhmap. Afterwards, in all cases the blocks
are hashed. In case of hashdbMD5 is used while hbft and fhmap use
FNV-2561 and FNV-1 respectively.

The overall runtime is presented in Fig. 6a for a single-threaded
execution. Results for both block building approaches are displayed
and evaluated in the case of hbft and fhmap. The high discrepancy of
runtime in case of hashdb is also caused by the setup of its metadata
and relational features. The high difference from CPU to real time is
related to read and write operations. Fig. 6b shows the results for a
multi-threaded execution (8 threads). The timings for the hbft and
fhmap block building algorithms keeps constant since multi-
threading is not implemented in the building phase yet. With the
utilization of eight threads, hashdb cuts down its processing time
tremendously. However, the approach is still slower than both
block building algorithms of hbft and fhmap.

Deduplication phase

Recalling the utilized set of random data, randomly generated
data does not feature any multi hits and thus, nearly all of the
extracted chunks result in unique hits. Our considered version of
hashdb allows deduplication of an existing database per configu-
ration. The associated counter value for all hashed blocks are
checked and all blocks with a value higher than one are deleted. The
remaining chunks are written to a new database which finally
ensures unique matches during lookup. The size of the newly
established database stays the same. The in Section ‘Extensions to
hbft and fhmap’ introduced and implemented multihit mecha-
nisms of hbft and fhmap are executed in memory only. The runtime
results of the deduplication phase are displayed in Fig. 7a and b.

Timings do not differ remarkably for single- or multi-threaded
scenarios. The deduplication procedure for hashdb is slightly
slower since it needs to read the database from disk first. As the
rolling hash produces less blocks than a fixed-size extraction, the

Table 3
Harddisk and Memory consumption of hashdb, fhmap and hbft for processing 2 GiB
of input data.

Technique DISK RAM

hashdb 405.9 MiB 900.0 MiB
fhmap 100.0 MiB 200.0 MiB
hbft 168.0 MiB 168.0 MiB

Fig. 6. Build time performance of hashdb/hbft/fhmap. In case of hbft and fhmap we
consider fixed blocks (fi) and the extraction per rolling_hash (ro).9 https://probablydance.com/2017/02/26/i-wrote-the-fastest-hashtable/.

L. Liebler et al. / Digital Investigation 28 (2019) S116eS125 S123

https://probablydance.com/2017/02/26/i-wrote-the-fastest-hashtable/


overall amount of inserted chunks decreases and thus, the runtime
of deduplication improves. The fast deduplication time of fhmap is
caused by three facts: First, there are no special structures which
have to be additionally set up or evaluated. Second, the dedupli-
cation happens in the building phase as well, so there is no clear
separation in building and deduplication for hash tables. Last, the
random set does not feature any multi hits. hashdb and hbft need to
process their temporary databases and filter out multi hits before
inserting unique chunks in the actual database. In the case of
fhmap, previously marked multihit-entries are simply deleted from
the database.

Lookup phase

The lookup consists of splitting an image in blocks, hashing
those blocks, and query them against the database. As we are only
interested in efficiency (but not in detection performance), we
make use of a simple approach to simulate full and partial detection
scenarios. We create four different images which are queried
against the databases. All images have a fixed size of 2 GiB. Each of
the four images is constructed to match either 100%, 75%, 50%, or
25% of the database. Again we point out that the different file
matching sizes are only used to investigate the efficiency behaviour
dependent on different matching rates, i.e., the matching rate is the
input parameter. Images with matching rates below 100% are
partially filled with random bytes to reach the desired size of 2 GiB.
The size of every inserted file is a multiple of b ¼ 512 bytes. Thus,
images are crafted which do not cause alignment issues for a fixed
block extraction. It has to be considered that the rolling hash

produces less blocks which additionally vary in size.
Results of the benchmark are shown in Fig. 8. In Fig. 8a and b the

lookup performance in the case of single-threaded evaluations are
shown. Fig. 8c displays the parallelized version with a total amount
of eight running threads.

As shown fhmap features the fastest lookup followed by hbft
and lastly hashdb. The results underline the performance of fhmap
in all cases and the impact of fixed blocks, in contrary to the
overhead caused by computing a rolling hash. A significant
speeding up is gained by our proposed parallelization of the rolling
hash. The plot shows stable lookup results for all matching rates
with fhmap outperforming its competitors. Lookup times for hbft
and fhmap increase slightly by a rising matching rate. The lookups
of hashdb are higher due to its complex internal structure.

Pre-filters for hbft and hashdb speed up the lookup time for
non-matches notably. In case of hbft the root Bloom filter will rule
out non matches instantly. Otherwise, a query needs to inspect
subsequent nodes, shown by the slightly increased lookup times for
higher matching rates. If a chunk does not match hashdb's com-
pressed Hash Store the actual database is not queried either. A Hash
Store claims to have a false positive rate of 1 in 72 million with a
database containing 1 billion hashes. However, every hash will be
queried against this store first before searching the actual database.
The presented flat hash map does not feature any pre-filtering so
far. Each key will be queried against the database. Performed tests
with different sized databases did not differ remarkably.

Conclusion

In this work we discussed and evaluated three different
implementations of artifact lookup strategies in the course of dig-
ital forensics. Several extensions have been proposed to finally
perform a comprehensive performance evaluation of hashdb, hbft,
and fhmap. We introduced concepts to handle multihits for hbft
and fhmap by the implementation of deduplication and filtration
features. Moreover, we interfaced fhmap with a rolling hash based
extraction of chunks. For a better comparison to hashdb, we addi-
tionally parallelized the extraction of chunks.

Results show that fhmap outperforms hbft in most of the
considered performance evaluations. While hbfts are faster than
hashdb in nearly all evaluations, the concept introduces false pos-
itives by the utilized Bloom filters. Even if hbfts have small ad-
vantages in case of memory and storage efficiency, their
complexity, fixed parametrization, and limited scope of features
make such an advantage negligible. However, specific use cases
with tight memory constraints could make hbfts still valuable.

Discussions of hashdb in terms of performance should consider
the underlying concept of single-level stores. Shifting the discus-
sion to offered features and a long term usage with an ongoing
maintenance, hashdb and fhmap are more suitable. One thing to
note is that hashdb is the only implementation that is able to deal
with databases which do not fit into main memory. In addition it
supports transactional features.

In Table 4 a final comparison of all three candidates in terms of
performance and supported features is given. The final overview
underlines the trade-offs between the concepts, where fhmap
shows a constant performance inmost of thementioned categories.

Future work

A concept similar to single-level stores for digital artifacts with
stable results in all of the mentioned categories is desirable. Where
most of the considered challenges rely on an high amount of en-
gineering effort first, the direct integration of a multihit prevention
into a single-level store could be an interesting field of research.

Fig. 7. Deduplication performance of hashdb/hbft/fhmap with zero occurring multihits
in a set.

Fig. 8. Lookup performance evaluation (real time).

L. Liebler et al. / Digital Investigation 28 (2019) S116eS125S124



Concepts to close the gap between performance-oriented memo-
ry-resistant lookup strategies and transactional database are
needed.

Acknowledgment

This work was supported by the German Federal Ministry of
Education and Research (BMBF) as well as by the Hessen State
Ministry of Higher Education, Research and the Arts within CRISP
(www.crisp-da.de).

References

Breitinger, F., Baier, H., 2012. Similarity preserving hashing: eligible properties and a

new algorithm mrsh-v2. In: International Conference on Digital Forensics and
Cyber Crime. Springer, pp. 167e182.

Breitinger, F., Baier, H., White, D., 2014. On the database lookup problem of
approximate matching. Digit. Invest. 11, S1eS9. Supplement 1.0 (2014). Pro-
ceedings of the First Annual DFRWS Europe, ISSN: 1742-2876.

Breitinger, F., Rathgeb, C., Baier, H., 2014. An efficient similarity digests database
lookup-a logarithmic divide & conquer approach. The Journal of Digital Fo-
rensics, Security and Law: JDFSL 9, 155.

Celis, P., Larson, P.-A., Munro, J.I., 1985. Robin hood hashing. In: Foundations of
Computer Science (Ed.), 26th Annual Symposium on, IEEE, pp. 281e288.

Chu, H., 2011. Mdb: a memory-mapped database and backend for openldap. In:
Proceedings of the 3rd International Conference on LDAP, Heidelberg, Germany,
p. 35.

Fan, B., Andersen, D.G., Kaminsky, M., Mitzenmacher, M.D., 2014. Cuckoo filter:
practically better than bloom. In: Proceedings of the 10th ACM International on
Conference on Emerging Networking Experiments and Technologies. ACM,
pp. 75e88.

Foster, K., 2012. Using Distinct Sectors in Media Sampling and Full Media Analysis to
Detect Presence of Documents from a Corpus, Technical Report. NAVAL POST-
GRADUATE SCHOOL MONTEREY CA.

Garfinkel, S.L., McCarrin, M., 2015. Hash-based carving: searching media for com-
plete files and file fragments with sector hashing and hashdb. Digit. Invest. 14,
S95eS105.

Gupta, V., Breitinger, F., 2015. How cuckoo filter can improve existing approximate
matching techniques. In: International Conference on Digital Forensics and
Cyber Crime. Springer, pp. 39e52.

Harichandran, V.S., Breitinger, F., Baggili, I., 2016. Bytewise approximate matching:
the good, the bad, and the unknown. Journal of Digital Forensics, Security and
Law 11, 4.

Liebler, L., Breitinger, F., 2018. mrsh-mem: approximate matching on raw memory
dumps. In: International Conference on IT Security Incident Management and IT
Forensics. IEEE, pp. 47e64.

Lillis, D., Breitinger, F., Scanlon, M., 2017. Expediting mrsh-v2 approximate matching
with hierarchical bloom filter trees. In: International Conference on Digital
Forensics and Cyber Crime. Springer, pp. 144e157.

Pagani, F., Dell'Amico, M., Balzarotti, D., 2018. Beyond precision and recall: under-
standing uses (and misuses) of similarity hashes in binary analysis. In: Pro-
ceedings of the Eighth ACM Conference on Data and Application Security and
Privacy. ACM, pp. 354e365.

Young, J., Foster, K., Garfinkel, S., Fairbanks, K., 2012. Distinct sector hashes for target
file detection. Computer 45, 28e35.

Table 4
Final comparison of hashdb/hbft/fhmap in case of performance and offered features.

L. Liebler et al. / Digital Investigation 28 (2019) S116eS125 S125

http://www.crisp-da.de
http://refhub.elsevier.com/S1742-2876(19)30030-1/sref2
http://refhub.elsevier.com/S1742-2876(19)30030-1/sref2
http://refhub.elsevier.com/S1742-2876(19)30030-1/sref2
http://refhub.elsevier.com/S1742-2876(19)30030-1/sref2
http://refhub.elsevier.com/S1742-2876(19)30030-1/sref3
http://refhub.elsevier.com/S1742-2876(19)30030-1/sref3
http://refhub.elsevier.com/S1742-2876(19)30030-1/sref3
http://refhub.elsevier.com/S1742-2876(19)30030-1/sref3
http://refhub.elsevier.com/S1742-2876(19)30030-1/sref4
http://refhub.elsevier.com/S1742-2876(19)30030-1/sref4
http://refhub.elsevier.com/S1742-2876(19)30030-1/sref4
http://refhub.elsevier.com/S1742-2876(19)30030-1/sref4
http://refhub.elsevier.com/S1742-2876(19)30030-1/sref5
http://refhub.elsevier.com/S1742-2876(19)30030-1/sref5
http://refhub.elsevier.com/S1742-2876(19)30030-1/sref5
http://refhub.elsevier.com/S1742-2876(19)30030-1/sref6
http://refhub.elsevier.com/S1742-2876(19)30030-1/sref6
http://refhub.elsevier.com/S1742-2876(19)30030-1/sref6
http://refhub.elsevier.com/S1742-2876(19)30030-1/sref7
http://refhub.elsevier.com/S1742-2876(19)30030-1/sref7
http://refhub.elsevier.com/S1742-2876(19)30030-1/sref7
http://refhub.elsevier.com/S1742-2876(19)30030-1/sref7
http://refhub.elsevier.com/S1742-2876(19)30030-1/sref7
http://refhub.elsevier.com/S1742-2876(19)30030-1/sref8
http://refhub.elsevier.com/S1742-2876(19)30030-1/sref8
http://refhub.elsevier.com/S1742-2876(19)30030-1/sref8
http://refhub.elsevier.com/S1742-2876(19)30030-1/sref9
http://refhub.elsevier.com/S1742-2876(19)30030-1/sref9
http://refhub.elsevier.com/S1742-2876(19)30030-1/sref9
http://refhub.elsevier.com/S1742-2876(19)30030-1/sref9
http://refhub.elsevier.com/S1742-2876(19)30030-1/sref10
http://refhub.elsevier.com/S1742-2876(19)30030-1/sref10
http://refhub.elsevier.com/S1742-2876(19)30030-1/sref10
http://refhub.elsevier.com/S1742-2876(19)30030-1/sref10
http://refhub.elsevier.com/S1742-2876(19)30030-1/sref11
http://refhub.elsevier.com/S1742-2876(19)30030-1/sref11
http://refhub.elsevier.com/S1742-2876(19)30030-1/sref11
http://refhub.elsevier.com/S1742-2876(19)30030-1/sref12
http://refhub.elsevier.com/S1742-2876(19)30030-1/sref12
http://refhub.elsevier.com/S1742-2876(19)30030-1/sref12
http://refhub.elsevier.com/S1742-2876(19)30030-1/sref12
http://refhub.elsevier.com/S1742-2876(19)30030-1/sref13
http://refhub.elsevier.com/S1742-2876(19)30030-1/sref13
http://refhub.elsevier.com/S1742-2876(19)30030-1/sref13
http://refhub.elsevier.com/S1742-2876(19)30030-1/sref13
http://refhub.elsevier.com/S1742-2876(19)30030-1/sref14
http://refhub.elsevier.com/S1742-2876(19)30030-1/sref14
http://refhub.elsevier.com/S1742-2876(19)30030-1/sref14
http://refhub.elsevier.com/S1742-2876(19)30030-1/sref14
http://refhub.elsevier.com/S1742-2876(19)30030-1/sref14
http://refhub.elsevier.com/S1742-2876(19)30030-1/sref15
http://refhub.elsevier.com/S1742-2876(19)30030-1/sref15
http://refhub.elsevier.com/S1742-2876(19)30030-1/sref15

	University of New Haven
	Digital Commons @ New Haven
	4-2019

	On Efficiency of Artifact Lookup Strategies in Digital Forensics
	Lorenz Liebler
	Patrick Schmitt
	Harald Baier
	Frank Breitinger
	Publisher Citation
	Comments


	On efficiency of artifact lookup strategies in digital forensics
	Introduction
	Candidates and feature analysis
	Use case and requirements
	Depicted candidates
	Feature analysis

	Extensions to hbft and fhmap
	Multihit prevention hbft
	Multihit prevention fhmap
	Chunk extraction hbft and fhmp
	Theoretical extensions

	Evaluation
	Testsystem and testdata
	Memory consumption
	Build phase
	Deduplication phase
	Lookup phase

	Conclusion
	Future work

	Acknowledgment
	References


