
MRSH-MEM:
Approximate Matching on Raw Memory

Dumps

Lorenz Liebler †, Frank Breitinger ‡

† University of Applied Sciences ‡ University of New Haven
Darmstadt, Germany, da/sec USA, UNHcFREG

Biometrics and Internet-Security Cyber Forensics
Research Group Research and Education Group

IMF 2018 - Hamburg, 2018-05-08

Lorenz Liebler MRSH-MEM / IMF 2018 - Hamburg, 2018-05-08 1/31



Introduction

Memory Analysis

Interpretation of Structures Memory Carving

Framework interprets the com-
plex system related structures,
where Profiles interface images
(Rekall/Volatility):

I formats of acquisition

I memory management

I underlying architecture

I OS meta structures

I different versions

Unstructured analysis extract con-
tent information out of memory
dumps:

I string extraction

I file carver

I signature matching (YARA)

Lorenz Liebler MRSH-MEM / IMF 2018 - Hamburg, 2018-05-08 2/31



Introduction

Memory Analysis

Interpretation of Structures Memory Carving

+ detailed examination of
manifold information

+ cross validation tasks

- needs domain knowledge for
application

- needs maintance;
understand and implement
OS in framework

+ straight forward application

+ not reliant on OS related
structures

- less insights and not so
powerful

- carving approach for specific
examination

Lorenz Liebler MRSH-MEM / IMF 2018 - Hamburg, 2018-05-08 3/31



Introduction

Motivation of Memory Carving

1. Extend analysis by data-driven cross validation
(e.g. avoid OS-structure based analysis)

2. Open new possibilities to counter anti-forensics
(e.g. Williams and Torres [8]: irrelevant and non-existing
meta structures)

3. Need fast data reduction methods similar to disk forensics
(e.g. for whitelisting known or blacklisting malicious code)

4. Methods for first or last resort of interpretation
(e.g. no adequate / matching profiles; missing patches)

Lorenz Liebler MRSH-MEM / IMF 2018 - Hamburg, 2018-05-08 4/31



Introduction

Memory Carving - Code

I special focus on examination of code-related structures
I Whitelisting of benign code
I Blacklisting of malicious code

I Loading executables could lead to major manipulations:
ELF/PE loader, offset patching, base relocations, page
alignment, alternative instructions, ...

Lorenz Liebler MRSH-MEM / IMF 2018 - Hamburg, 2018-05-08 5/31



Introduction

Memory Management

Beside the adaptations during loading, we should consider:

1. virtually contiguous 6= physically contiguous

2. page size and page alignment could vary

3. memory shared between processes

4. not able to resolve virtual address without context

5. memory could be swapped to disk

Lorenz Liebler MRSH-MEM / IMF 2018 - Hamburg, 2018-05-08 6/31



Related Approaches

Code integrity in memory - White et al. [7]

based on Walters et al. [6]

I Creates Hash-Templates of previously normalized pages
(Hash-Templates are offsets + hash value)

I Imitates loading by a Virtual PE Loader

I Based on process identification (Filename)

Lorenz Liebler MRSH-MEM / IMF 2018 - Hamburg, 2018-05-08 7/31



Related Approaches

Practical realization similar to White et al. [7]

inVteroJitHash
https://github.com/K2/Scripting/blob/master/inVteroJitHash.py

I Forensics, Memory integrity and assurance tool

I Server-based PE integrity hash database

I Send loading address and hash to server

I Lifting of the binaries and hashing on server side

I BlackHat USA ’17

Lorenz Liebler MRSH-MEM / IMF 2018 - Hamburg, 2018-05-08 8/31

https://github.com/K2/Scripting/blob/master/inVteroJitHash.py


Related Approaches

Summarized

I Most of the previous approaches rely on structural
examinations and are process-context aware:
→ Process enumeration / reconstruction
→ Process identification
→ Code normalization/lifting
→ Integrity check (data reduction)

I We want to carve code in memory dumps
without recreating a process context.

I Could we utilize Approximate Matching for this task?

Lorenz Liebler MRSH-MEM / IMF 2018 - Hamburg, 2018-05-08 9/31



Approximate Matching

MRSH Family [2, 3, 4]

1

Input
Hash  

Chunks

SD1

2

SD2

Similarity 78%

Similarity 

Digest

Pseudo Random Function (PRF) Chunk Hash Function (CHF)

Comparison Function (CP)

Similarity Preserving Hash Function (SPHF)

Extract  
Chunks

I Sliding window rolls through byte sequence

I PRF defines chunk boundaries

I CHF compress the chunk

I MRSH-NET saves chunk in a single large Bloom filter (Hamming distance)

Lorenz Liebler MRSH-MEM / IMF 2018 - Hamburg, 2018-05-08 10/31



Approximate Matching

Memory forensics - impracticability

I Bytewise Approximate Matching respects
every change in the underlying byte structure

versus mutability of code in memory

� Influences Chunk Extraction (PRF)

� Influences Chunk Hashing (CHF)

→ Influences Similarity Digest itself

I We need an additional layer of normalization similar to
Walters et al. [6] and White et al. [7]

Lorenz Liebler MRSH-MEM / IMF 2018 - Hamburg, 2018-05-08 11/31



Approximate Disassembling

Motivation

1. Detect sequences of code within raw bytes

2. Normalize detected code by disassembling

→ apply Approximate Matching on disassembled instructions

Definition: Approximate Disassembling should not provide a full
decoding of the x86 complex instruction set. We decode for each
instruction a representing mnemonic and length.

Raw bytes

41 55

48 89 f3

48 81 ec

→

Mnemonic + Length

push 2

mov 3

sub 3

Lorenz Liebler MRSH-MEM / IMF 2018 - Hamburg, 2018-05-08 12/31



Approximate Disassembling

Classes of Disassemblers

I Disassembler for unknown x86/x64 instruction sequences

I Focuses on computational efficiency

I Discriminate code from data

Decoding Length
Disas.

Approximate
Disas.

Linear
Sweep

Recursive
Traversal

Full 7 7 3 3

Mnemonic 7 3 3 3

Length 3 3 3 3

Linearity 3 3 3 7

Code
Detection

- 3 - -

Interpretation Bit Byte Bit Bit

Lorenz Liebler MRSH-MEM / IMF 2018 - Hamburg, 2018-05-08 13/31



Approximate Disassembling

approxis [5] - Disassembling

root

64
mov

48
mov

8b
mov

48
lea sub

mov

89
mov

f3
mov

81
sub

ec
sub

8d
lea

41
push

55
push

Example:
Simplified x64

instruction set!

I Build prefix-tree from a set of ground truth assemblies
obtained by Andriesse et al. [1]

I Stay on a byte-level during disassembling; traverse tree

Lorenz Liebler MRSH-MEM / IMF 2018 - Hamburg, 2018-05-08 14/31



Approximate Disassembling

approxis [5] - Disassembling

root

64
mov

48
mov

8b
mov

48
lea sub

mov

89
mov

f3
mov

81
sub

ec
sub

8d
lea

41
push

55
push

Interpret the raw
byte sequence

with the
generated prefix

tree.

41 55 48 89 f3

48 81 ec 48 8d

64 48 8b
→

push 41 55

mov 48 89 f3

sub 48 81 ec

lea 48 8d

mov 64 48 8b

Lorenz Liebler MRSH-MEM / IMF 2018 - Hamburg, 2018-05-08 15/31



Approximate Disassembling

approxis [5] - Code Confidence

Mnemonic bigram frequencies as absolute logits: λ =
∣∣∣ln p

1−p

∣∣∣
λ

Lorenz Liebler MRSH-MEM / IMF 2018 - Hamburg, 2018-05-08 16/31



Approximate Disassembling

approxis [5] - Code Detection

I Interleaved 32 and 64 bit binaries into block of random data
I ωx describes average confidence of current window at offset x

low

approxis-32

ωx

approxis-64

high

Lorenz Liebler MRSH-MEM / IMF 2018 - Hamburg, 2018-05-08 17/31



Approximate Disassembling

approxis [5] - Computational Performance

I Created three images with a size of 2 GiB

I Reduced diStorm: no output, large buffer, full decoding

Execution time Description

approxis diStorm disassembler

32 64 32 64 mode

29.084s 21.936s 1m20.770s 1m7.772s 64bit binaries from /usr/bin

27.859s 31.918s 1m43.999s 1m43.046s Raw memory dump (LiME)

1m15.521s 1m44.990s 1m58.278s 1m56.192s Random sequences (/dev/urandom)

Lorenz Liebler MRSH-MEM / IMF 2018 - Hamburg, 2018-05-08 18/31



Approach: MRSH-MEM

Concept

I MRSH-MEM: integration of approxis into MRSH-NET

I Focus on computational efficiency

I From Bytewise to Mnemonic-wise Approximate Matching

MEMORY

IMAGE

data

processing

MEMORY

DIGEST

DISK

DIGEST

data

processing

DISK

SAMPLE

compare

Lorenz Liebler MRSH-MEM / IMF 2018 - Hamburg, 2018-05-08 19/31



Approach: MRSH-MEM

MRSH-MEM - Processing Pipeline

chunk hashescode chunkschunksconfidencemenmonicsraw bytes

∂ [approxis]
approximate
disassemble

∑ [approxis]
determine
confidence

∏ [MRSH]
determine chunks

(apply PRF)

π [approxis/MRSH]
remove irrelevant

chunks

∫ [MRSH]
hash chunks
(apply CHF)

Lorenz Liebler MRSH-MEM / IMF 2018 - Hamburg, 2018-05-08 20/31



Approach: MRSH-MEM

MRSH-MEM - Processing Pipeline

chunk hashescode chunkschunksconfidencemenmonicsraw bytes

Byte

00 00 00

31 ed 49

89 d1 5e

48 89 e2

48 83 e4

f0 00 00

00 00 00

MNE : Byte

000 : 00

000 : 00

000 : 00

092 : 31 ed

095 : 49 89 d1

105 : 5e

095 : 48 89 e2

090 : 48 83 e4 f0

000 : 00

000 : 00

000 : 00

MNE : �

000 : 64

000 : 64

000 : 63

092 : 12

095 : 09

105 : 11

095 : 10

090 : 10

000 : 64

000 : 64

000 : 64

MNE : Chunk

000 : C1

000 : C1

000 : C1

092 : C2

095 : C2

105 : C2

095 : C2

090 : C3

000 : C3

000 : C3

000 : C3

MNE : Chunk [CF]

000 : C1

000 : C1

000 : C1 [0]

092 : C2

095 : C2

105 : C2

095 : C2 [1]

090 : C3

000 : C3

000 : C3

000 : C3 [0]

Chunk : Hash

092 : C2

095 : C2

105 : C2

095 : C2 [5AC]

∂ [approxis]
approximate
disassemble

∑ [approxis]
determine
confidence

∏ [MRSH]
determine chunks

(apply PRF)

π [approxis/MRSH]
remove irrelevant

chunks

∫ [MRSH]
hash chunks
(apply CHF)

Lorenz Liebler MRSH-MEM / IMF 2018 - Hamburg, 2018-05-08 20/31



Approach: MRSH-MEM

MRSH-MEM - Technical Details

I Detailed example in the paper

I Strongly interleaved implementation
I Usage of multiple buffers, e.g.:

1. Raw byte buffer
2. Integerized mnemonic buffer
3. Relative offset buffer

...

I Usage of multiple parameters, e.g.:

1. Block size
2. Code confidence threshold
3. Code coverage per block

...

Lorenz Liebler MRSH-MEM / IMF 2018 - Hamburg, 2018-05-08 21/31



Application

Concept

I MRSH-MEM uses a single, large Bloom filter → disadvantage:
Lack of file identification: the approach can only answer the
question if a file is contained in a given Bloom filter, but we
cannot say to which file a similarity exists.

temporal solution CHDB:
I database of extracted chunk hash values (CHV)
I chunk hash database (CHDB) consists of single lookup tree
I each leaf node with corresponding file name(s)

Lorenz Liebler MRSH-MEM / IMF 2018 - Hamburg, 2018-05-08 22/31



Application

Concept Overview

System

Repository

HDD Files MRSH-MEM

CHDB BF

RAM MRSH-MEM

acquire

acquire

insert CHV

lookup CHV

insert

detect

acquire

Figure 7. Overview of the application of MRSH-MEM.

filter out identified chunks which are related to multiple
Kernels. The examination of distinct mapped chunks in
Figure 8 (bar single) underline the presence of our expected
Kernel version (vmlinuz-3.16.0-4-amd64).

Considerations: Discussing the examination of the Ker-
nel .text section in memory leads to the question if
MRSH-MEM can be used for detecting advanced Kernel
infection techniques. Different hijacking techniques should
lead to the presences of modifications in the memory located
version of the original Kernel. However, the process of
Kernel loading is quiet complex and the Linux Kernel bina-
ries could additional contain modification instructions, i.e.,
alternative instructions (.altinstructions9). Those in-
structions patch the original code during loading. At this
point we leave the question if MRSH-MEM is usable for ad-
vanced code integrity checks of Linux Kernels unanswered
for further research.

B. Identify Application in User Memory

As already introduced in Section II, the Kernel memory
mappings should be considered contiguous in most of the
cases. To determine the capabilities of our approach in
user space memory, we performed a task of process and
application identification. We inspected the raw memory
dump on the presences of application related code frag-
ments. In detail, we acquired three different versions of the
Wireshark Protocol Analyzer10 from a Debian repository11

(see Table VIII). The acquired ELFs were dynamically
linked and stripped. We extracted the allocable .text
sections of the different executables and processed them with

9https://lwn.net/Articles/531148/ (last accessed 2018-02-10).
10https://www.wireshark.org/ (last accessed 2018-02-10).
11http://ftp.us.debian.org/debian/pool/main/w/wireshark/ (last accessed

2018-02-10).

MRSH-MEM, where each executable approximately contained
4130 chunks. Again, the chunks were also inserted into the
CHDB for the evaluation of single and multiple hits.

We ensured that an instance of Wireshark 1.12.1 was run-
ning at the time of memory acquisition. Figure 9 illustrates
the capabilities of detecting and discriminating a running (or
formerly running) application in memory, where the amount
of single occupied chunks (1766) clearly identifies the actual
running Wireshark version (1.12.1).

To investigate possible false positives and to examine the
discrimination between a running and not running process
we repeated the procedure after rebooting the system. Thus,
we were not expecting to find presence of Wireshark. The
results are shown in Figure 10 and the plot indicates very
low numbers / matches. Precisely, the bars show some hits
in the case of multiple occupied chunks. To lower the values
of false positives, we propose the adaptation and increase of
the MIN_RUN parameter. We additional suggest a minimum
required chunk size, as most of the false positives were
smaller than 40 bytes.

C. Runtime performance

In the following paragraph we examine the runtime effi-
ciency of MRSH-MEM. In detail, we measured the runtime for
disassembling, chunk extraction, chunk hashing and Bloom
filter handling. Note, we differentiate between Bloom filter
creation and Bloom filter lookup. As mentioned in the
original paper of approxis [21], the processed byte se-
quences can significantly influence the overall disassembling
performance. Therefore, similar to Liebler and Baier [21] we
study the runtime performance for three different images: a
concatenated set of 64 bit ELF binaries, a raw memory dump
acquired with LiME and a random sequence of bytes. Lastly,
we removed all unnecessary functionalities (e.g., printout

Lorenz Liebler MRSH-MEM / IMF 2018 - Hamburg, 2018-05-08 23/31



Application

Target System

I Debian 8 installation (Debian 3.16.7 x86 64 GNU/Linux)

I Virtual Box (Version 5.2.6 r120293)

I Network analysis tasks

I Acquire dump with LiME 7 (Linux Memory Extractor)

Lorenz Liebler MRSH-MEM / IMF 2018 - Hamburg, 2018-05-08 24/31



Application

Examination 1) Kernel Version

I Determine the running kernel version of an acquired dump

I Extracted 12 Linux Kernel images from the Debian repository

I Present Kernel: 3.16.0-4-amd64 (9)

ID Kernel ID Kernel
(1) 3.2.0-4-amd64 (2) 4.13.0-0.bpo.1-amd64
(3) 4.14.0-0.bpo.2-rt-amd64 (4) 4.14.0-0.bpo.3-amd64
(5) 3.2.0-4-rt-amd64 (6) 4.14.0-3-amd64
(7) 4.15.0-rc8-amd64 (8) 4.14.0-0.bpo.2-amd64
(9) 3.16.0-4-amd64 (10) 4.14.0-3-rt-amd64

(11) 3.16.0-0.bpo.4-amd64 (12) 4.14.0-0.bpo.3-rt-amd64

Lorenz Liebler MRSH-MEM / IMF 2018 - Hamburg, 2018-05-08 25/31



Application

Examination 1) Kernel Version

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
0

500

1,000

1,500

2,000

35
7

18
0

12
3

13
7 25

2

19
3

19
3

12
2

1,
63

9

13
1

48
1

14
4

0 60 0 0 0 0 0 0

1,
23

5

17 28 0

multiple
single

Figure 8. The detected chunk sequences and the overall counts for each Kernel version. As could be seen, the present Kernel version of our target system,
i.e. vmlinux-3.2.0-4-amd64 (9), shows a significant amount of detected chunks.

ID Kernel ID Kernel ID Kernel
(1) 3.2.0-4-amd64 (2) 4.13.0-0.bpo.1-amd64 (3) 4.14.0-0.bpo.2-rt-amd64
(4) 4.14.0-0.bpo.3-amd64 (5) 3.2.0-4-rt-amd64 (6) 4.14.0-3-amd64
(7) 4.15.0-rc8-amd64 (8) 4.14.0-0.bpo.2-amd64 (9) 3.16.0-4-amd64

(10) 4.14.0-3-rt-amd64 (11) 3.16.0-0.bpo.4-amd64 (12) 4.14.0-0.bpo.3-rt-amd64
Table VII

EXTRACTED LINUX KERNEL IMAGES FROM THE DEBIAN REPOSITORY (MARKED WITH AN IDENTIFIER). THE ACTUAL PRESENT KERNEL IN THE
EXTRACTED MEMORY IMAGE IS HIGHLIGHTED (9).

(1) (2) (3)
0

1,000

2,000

3,000

4,000

95
6 1,
21

4

2,
88

6

1 2

1,
76

6

multiple
single

Figure 9. Examination of a memory dump of our target system
meanwhile Wireshark was running (ELF executable amd64; version
1.12.1).

(1) (2) (3)
0

1,000

2,000

3,000

4,000

18
3

14
9

951 1 15

multiple
single

Figure 10. Memory dump of our target system after rebooting the
virtual machine and thus, without a running Wireshark instance.

mechanisms) and compiled our binary with an optimization
set to O212.

The efficiency test was performed on a Lenovo Thinkpad
x250 with a Intel Core i5 2x 2,2 GHz and 8 GB RAM.
The performance of the built in Solid State Drive was also
determined, where the read performance was 508 MB/s and
the write performance was 513 MB/s. The overall results
are shown in Table IX. The column of chunks defines the

12https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html (last
accessed 2018-02-10).

amount of triggered chunk boundaries for each image and
for one pass.

Considerations: The current implementation shows fur-
ther potential for improving the overall runtime performance.
So far, our current implementation does not consider any
additional steps of previous data filtration steps (e.g. the
usage of entropy analysis). In addition, it should be men-
tioned that the current processing does not consider any
parallelization and the introduced approach empowers to
concurrently process the input memory images.

I single hits clearly identify correct running kernel version

Lorenz Liebler MRSH-MEM / IMF 2018 - Hamburg, 2018-05-08 26/31



Application

Examination 2) Running Application

ID Version ID Version ID Version

(1) 2.4.4-1 amd64 (2) 2.2.6* amd64 (3) 1.12.1* amd64

I Acquired two memory dumps of target system
with running and without running Wireshark instance

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
0

500

1,000

1,500

2,000

35
7

18
0

12
3

13
7 25

2

19
3

19
3

12
2

1,
63

9

13
1

48
1

14
4

0 60 0 0 0 0 0 0

1,
23

5

17 28 0

multiple
single

Figure 8. The detected chunk sequences and the overall counts for each Kernel version. As could be seen, the present Kernel version of our target system,
i.e. vmlinux-3.2.0-4-amd64 (9), shows a significant amount of detected chunks.

ID Kernel ID Kernel ID Kernel
(1) 3.2.0-4-amd64 (2) 4.13.0-0.bpo.1-amd64 (3) 4.14.0-0.bpo.2-rt-amd64
(4) 4.14.0-0.bpo.3-amd64 (5) 3.2.0-4-rt-amd64 (6) 4.14.0-3-amd64
(7) 4.15.0-rc8-amd64 (8) 4.14.0-0.bpo.2-amd64 (9) 3.16.0-4-amd64

(10) 4.14.0-3-rt-amd64 (11) 3.16.0-0.bpo.4-amd64 (12) 4.14.0-0.bpo.3-rt-amd64
Table VII

EXTRACTED LINUX KERNEL IMAGES FROM THE DEBIAN REPOSITORY (MARKED WITH AN IDENTIFIER). THE ACTUAL PRESENT KERNEL IN THE
EXTRACTED MEMORY IMAGE IS HIGHLIGHTED (9).

(1) (2) (3)
0

1,000

2,000

3,000

4,000

95
6 1,
21

4

2,
88

6

1 2

1,
76

6

multiple
single

Figure 9. Examination of a memory dump of our target system
meanwhile Wireshark was running (ELF executable amd64; version
1.12.1).

(1) (2) (3)
0

1,000

2,000

3,000

4,000

18
3

14
9

951 1 15

multiple
single

Figure 10. Memory dump of our target system after rebooting the
virtual machine and thus, without a running Wireshark instance.

mechanisms) and compiled our binary with an optimization
set to O212.

The efficiency test was performed on a Lenovo Thinkpad
x250 with a Intel Core i5 2x 2,2 GHz and 8 GB RAM.
The performance of the built in Solid State Drive was also
determined, where the read performance was 508 MB/s and
the write performance was 513 MB/s. The overall results
are shown in Table IX. The column of chunks defines the

12https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html (last
accessed 2018-02-10).

amount of triggered chunk boundaries for each image and
for one pass.

Considerations: The current implementation shows fur-
ther potential for improving the overall runtime performance.
So far, our current implementation does not consider any
additional steps of previous data filtration steps (e.g. the
usage of entropy analysis). In addition, it should be men-
tioned that the current processing does not consider any
parallelization and the introduced approach empowers to
concurrently process the input memory images.

Lorenz Liebler MRSH-MEM / IMF 2018 - Hamburg, 2018-05-08 27/31



Application

Runtime Performance

Execution time Chunks Description

insert lookup

46.0s 48.0s 6,887,955 Concatenated set of 64bit binaries from /usr/bin

50.0s 50.0s 1,608,674 Raw memory dump acquired with LiME

197.0s 192.0s 10,537,710 Random sequences of bytes generated with /dev/urandom

I Intel(R) Core(TM) i5-3570K CPU @ 3.40GHz, 16 GiB

DDR3 RAM (1333 MHz) and 6 MiB L3 cache

I Prototype in C (-O3)

I Created three images with a size of 2 GiB

I 64 bit case; Bloom filter only

Lorenz Liebler MRSH-MEM / IMF 2018 - Hamburg, 2018-05-08 28/31



Conclusion

I Discuss the considerations and limitations by applying
Approximate Matching on code located in memory

I Introduced a new specimen of Approximate Matching:
MRSH-MEM

I Demonstrated a first use case by comparing a memory dump
with code fragments of different resources

I More details given in our paper

I Release prototype
https://github.com/dasec/approximate-memory

lorenz.liebler@h-da.de

https://dasec.h-da.de/staff/lorenz-liebler/

Lorenz Liebler MRSH-MEM / IMF 2018 - Hamburg, 2018-05-08 29/31

https://github.com/dasec/approximate-memory
lorenz.liebler@h-da.de
https://dasec.h-da.de/staff/lorenz-liebler/


Conclusion

Future Wok

1. Database Lookup Problem (CHDB replacement)

2. Better verification (Synthetic Carving Images)

3. Extend by Windows-based analysis (in 2018)

4. Integration into framework-based analysis
(e.g. as plugin for Volatitliy, Rekall)

Lorenz Liebler MRSH-MEM / IMF 2018 - Hamburg, 2018-05-08 30/31



Conclusion

Bibliography I

[1] Dennis Andriesse, Xi Chen, Victor van der Veen, Asia Slowinska, and Herbert Bos. An in-depth analysis of
disassembly on full-scale x86/x64 binaries. In USENIX Security Symposium, pages 583–600, 2016.

[2] Frank Breitinger and Ibrahim Baggili. File detection on network traffic using approximate matching. The
Journal of Digital Forensics, Security and Law: JDFSL, 9(2):23, 2014.

[3] Frank Breitinger and Harald Baier. Similarity preserving hashing: Eligible properties and a new algorithm
mrsh-v2. In International Conference on Digital Forensics and Cyber Crime, pages 167–182. Springer, 2012.

[4] Vikram S Harichandran, Frank Breitinger, and Ibrahim Baggili. Bytewise approximate matching: The good,
the bad, and the unknown. The Journal of Digital Forensics, Security and Law: JDFSL, 11(2):59, 2016.

[5] Lorenz Liebler and Harald Baier. Approxis: A fast, robust, lightweight and approximate disassembler
considered in the field of memory forensics. In International Conference on Digital Forensics and Cyber Crime,
pages 158–172. Springer, 2017.

[6] A Walters, Blake Matheny, and Doug White. Using hashing to improve volatile memory forensic analysis. In
American Acadaemy of forensic sciences annual meeting, 2008.

[7] Andrew White, Bradley Schatz, and Ernest Foo. Integrity verification of user space code. Digital Investigation,
10:S59–S68, 2013.

[8] Jake Williams and Alissa Torres. Add-complicating memory forensics through memory disarray. ShmooCon,
Jan, 2014.

Lorenz Liebler MRSH-MEM / IMF 2018 - Hamburg, 2018-05-08 31/31


	Introduction
	Related Approaches
	Approximate Matching
	Approximate Disassembling
	Approach: MRSH-MEM
	Application
	Conclusion

